Science.gov

Sample records for acetate buffer solution

  1. Separation of Trivalent Actinides from Lanthanides in an Acetate Buffer Solution Using Cyanex 301

    SciTech Connect

    Jack D. Law; Dean R. Peterman; Terry A. Todd; Richard D. Tillotson

    2006-05-01

    The separation of trivalent actinides from the lanthanides using the active extractant in the Cyanex 301 reagent, bis(2,4,4-trimethylpentyl)dithiophosphinic acid, was studied. Specifically, the extractant was studied for an ammonium acetate/acetic acid buffered feed that would result from a transuranic separation process utilizing an ammonium acetate strip solution. Separation factors of 241Am from 154Eu with this extractant, as a function of total acetate concentration and pH, have been measured. Additionally, the extraction behavior of stable La, Ce, Pr, Nd, Sm, and Eu was measured. Separation factors were typically very high for Am from Eu at a pH ranging from 3.8 to 5.8 and a total acetate concentration ranging from 0.2 M to 1.0 M. However, separation factors across the lanthanide series varied considerably and resulted in separation of the lighter lanthanides from the heavier lanthanides at the higher pH’s.

  2. Graphene ultrathin film electrode for detection of lead ions in acetate buffer solution.

    PubMed

    Wang, Zhaomeng; Liu, Erjia

    2013-01-15

    Few-layer graphene ultrathin films were synthesized via solid-state carbon diffusion from amorphous carbon (a-C) thin layers sputtering coated on Si substrates with or without a SiO(2) layer, which an a-C layer was covered by a nickel (Ni) layer as a catalyst. When the Ni/a-C bilayer coated samples were heated at 1000°C the carbon (C) atoms from the a-C layers diffused into the top Ni layers to form a C rich surface. Upon rapid cooling, the C atoms accumulated on the surface of the Ni layers and formed graphene ultrathin films through nucleation and growth processes. The formation of graphene ultrathin films was confirmed by Raman spectroscopy, high resolution transmission electron microscopy (HR-TEM), electron diffraction, field-emission scanning electron microscopy (FE-SEM) and 4-point probe. The synthesized graphene ultrathin films were used as working electrodes for detection of trace heavy metal ions (Pb(2+), as low as 7 nM) in acetate buffer solutions (pH 5.3) using square wave anodic stripping voltammetry (SWASV). The effects of substrate surface condition and Ni layer thickness on the structure and electrochemical properties of graphene ultrathin film electrodes were investigated in detail. Compared to conventional diamond-like carbon (DLC) electrodes, the graphene electrodes developed in this study had better repeatability, higher sensitivity and higher resistance to passivation caused by surface active species. PMID:23200357

  3. Tested Demonstrations: Buffer Capacity of Various Acetic Acid-Sodium Acetate Systems: A Lecture Experiment.

    ERIC Educational Resources Information Center

    Donahue, Craig J.; Panek, Mary G.

    1985-01-01

    Background information and procedures are provided for a lecture experiment which uses indicators to illustrate the concept of differing buffer capacities by titrating acetic acid/sodium acetate buffers with 1.0 molar hydrochloric acid and 1.0 molar sodium hydroxide. A table with data used to plot the titration curve is included. (JN)

  4. Electrodialysis operation with buffer solution

    DOEpatents

    Hryn, John N.; Daniels, Edward J.; Krumdick, Greg K.

    2009-12-15

    A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.

  5. The Effects of Acetate Buffer Concentration on Lysozyme Solubility

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Pusey, Marc L.

    1996-01-01

    The micro-solubility column technique was employed to systematically investigate the effects of buffer concentration on tetragonal lysozyme solubility. While keeping the NaCl concentrations constant at 2%, 3%, 4%, 5% and 7%, and the pH at 4.0, we have studied the solubility of tetragonal lysozyme over an acetate buffer concentration range of 0.01M to 0.5M as a function of temperature. The lysozyme solubility decreased with increasing acetate concentration from 0.01M to 0.1M. This decrease may simply be due to the net increase in solvent ionic strength. Increasing the acetate concentration beyond 0.1M resulted in an increase in the lysozyme solubility, which reached a peak at - 0.3M acetate concentration. This increase was believed to be due to the increased binding of acetate to the anionic binding sites of lysozyme, preventing their occupation by chloride. In keeping with the previously observed reversal of the Hoffmeister series for effectiveness of anions in crystallizing lysozyme, acetate would be a less effective precipitant than chloride. Further increasing the acetate concentration beyond 0.3M resulted in a subsequent gradual decrease in the lysozyme solubility at all NaCl concentrations.

  6. What's in your buffer? Solute altered millisecond motions detected by solution NMR.

    PubMed

    Wong, Madeline; Khirich, Gennady; Loria, J Patrick

    2013-09-17

    To date, little work has been conducted on the relationship between solute and buffer molecules and conformational exchange motion in enzymes. This study uses solution NMR to examine the effects of phosphate, sulfate, and acetate in comparison to MES- and HEPES-buffered references on the chemical shift perturbation and millisecond, chemical, or conformational exchange motions in the enzyme ribonuclease A (RNase A), triosephosphate isomerase (TIM) and HisF. The results indicate that addition of these solutes has a small effect on (1)H and (15)N chemical shifts for RNase A and TIM but a significant effect for HisF. For RNase A and TIM, Carr-Purcell-Meiboom-Gill relaxation dispersion experiments, however, show significant solute-dependent changes in conformational exchange motions. Some residues show loss of millisecond motions relative to the reference sample upon addition of solute, whereas others experience an enhancement. Comparison of exchange parameters obtained from fits of dispersion data indicates changes in either or both equilibrium populations and chemical shifts between conformations. Furthermore, the exchange kinetics are altered in many cases. The results demonstrate that common solute molecules can alter observed enzyme millisecond motions and play a more active role than what is routinely believed. PMID:23991940

  7. Ozone decomposition in aqueous acetate solutions

    SciTech Connect

    Sehested, K.; Holcman, J.; Bjergbakke, E.; Hart, E.J.

    1987-01-01

    The acetate radical ion reacts with ozone with a rate constant of k = (1.5 +/- 0.5) x 10Z dmT mol s . The products from this reaction are CO2, HCHO, and O2 . By subsequent reaction of the peroxy radical with ozone the acetate radical ion is regenerated through the OH radical. A chain decomposition of ozone takes place. It terminates when the acetate radical ion reacts with oxygen forming the unreactive peroxy acetate radical. The chain is rather short as oxygen is developed, as a result of the ozone consumption. The inhibiting effect of acetate on the ozone decay is rationalized by OH scavenging by acetate and successive reaction of the acetate radical ion with oxygen. Some products from the bimolecular disappearance of the peroxy acetate radicals, however, react further with ozone, reducing the effectiveness of the stabilization.

  8. A nitrilo-tri-acetic-acid/acetic acid route for the deposition of epitaxial cerium oxide films as high temperature superconductor buffer layers

    SciTech Connect

    Thuy, T.T.; Lommens, P.; Narayanan, V.; Van de Velde, N.; De Buysser, K.; Herman, G.G.; Cloet, V.; Van Driessche, I.

    2010-09-15

    A water based cerium oxide precursor solution using nitrilo-tri-acetic-acid (NTA) and acetic acid as complexing agents is described in detail. This precursor solution is used for the deposition of epitaxial CeO{sub 2} layers on Ni-5at%W substrates by dip-coating. The influence of the complexation behavior on the formation of transparent, homogeneous solutions and gels has been studied. It is found that ethylenediamine plays an important role in the gelification. The growth conditions for cerium oxide films were Ar-5% gas processing atmosphere, a solution concentration level of 0.25 M, a dwell time of 60 min at 900 {sup o}C and 5-30 min at 1050 {sup o}C. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), pole figures and spectroscopic ellipsometry were used to characterize the CeO{sub 2} films with different thicknesses. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to determine the carbon residue level in the surface of the cerium oxide film, which was found to be lower than 0.01%. Textured films with a thickness of 50 nm were obtained. - Graphical abstract: Study of the complexation and hydrolysis behavior of Ce{sup 4+} ions in the presence of nitrilo-tri-acetic acid and the subsequent development of an aqueous chemical solution deposition route suited for the processing of textured CeO{sub 2} buffer layers on Ni-W tapes.

  9. 21 CFR 522.960b - Flumethasone acetate solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Flumethasone acetate solution. 522.960b Section 522.960b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.960b Flumethasone acetate solution....

  10. On the Preparation of Buffer Solutions.

    ERIC Educational Resources Information Center

    Thomson, Bruce M.; Kessick, Michael A.

    1981-01-01

    Presents a method, suitable for use on programmable calculators, which allows calculation of the pH and ionic strength (I) of a mixed solution of salts of an acid or amounts necessary to produce a solution of a particular pH and I. Includes limitations when using the calculations described. (SK)

  11. Use of buffered hypochlorite solution for disinfecting fibrescopes.

    PubMed Central

    Coates, D; Death, J E

    1982-01-01

    The possible use of sodium hypochlorite solution buffered to pH 7.6 and containing 100 ppm available chlorine (avCl) for disinfecting fibrescopes was investigated. A flexible fibrescope experimentally contaminated with Pseudomonas putida, Mycobacterium fortuitum, or Bacillus subtilis spores was effectively disinfected within 10 m in repeatedly and without any observable adverse effect on the instrument. The corrosive nature of buffered hypochlorite was investigated by immersing various fibrescope components and metal wires in solutions of different strength for long periods and examining them for damage. Stainless steel, platinum, glass, Teflon, polythene and epoxy resin were apparently unaffected whereas polyurethane, rubber and other metals tested were damaged to different extents. Buffered hypochlorite solutions may have many applications pertaining to the disinfection of items which are either thermolabile or require rapid effective disinfection. PMID:6802880

  12. Application of Acetate Buffer in pH Adjustment of Mash and its Influence on Fuel Ethanol Fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2M sodium acetate buffer at pH 4.2 was used to adjust pH of liquefied mashes in a simultaneous saccharification and fermentation (SSF) procedure. Although 5 mL of the buffer did not bring the pH values of the mashes (~100 mL) from a sorghum hybrid to 4.2, it kept the system stable (pH from 4.7 to ...

  13. A procedure for the joint evaluation of substrate partitioning and kinetic parameters for reactions catalyzed by enzymes in reverse micellar solutions. I. Hydrolysis of 2-naphthyl acetate catalyzed by lipase in sodium 1,4-bis(2-ethylhexyl) sulphosuccinate (AOT)/buffer/heptane.

    PubMed

    Aguilar, L F; Abuin, E; Lissi, E

    2001-04-15

    A simple method useful for the joint evaluation of substrate partitioning and kinetic parameters for reactions catalyzed by enzymes entrapped in reverse micelles is proposed. The method is applied to the hydrolysis of 2-naphthyl acetate (2-NA) catalyzed by lipase in sodium 1,4-bis(2-ethylhexyl) sulfosuccinate (AOT)/buffer/heptane reverse micellar solutions. In the presence of micelles, the relationship between the initial reaction rate and the analytical concentration of 2-NA was dependent on AOT concentration at a constant W ([water]/[AOT]) value. The dependence of the initial reaction rate profiles with [AOT] was analyzed according with the method proposed to obtain the partition constant of 2-NA between the micelles and the external solvent, Kp. A value of Kp = 2.7 L mol(-1) was obtained irrespective of the water content of the micelles (W from 5 to 20). The catalytic rate constant kcat in the micellar solutions was independent of [AOT] but slightly decreased with an increase in W from 2 x 10(-6) mol g(-1) s(-1) at W = 5 to 1.2 x 10(-6) mol g(-1) s(-1) at W = 20. The apparent Michaelis constant determined in terms of the analytical concentration of 2-NA increased with [AOT] at a given W and moderately decreased with W at a fixed [AOT]. The increase with [AOT] is accounted for by considering the partitioning of the substrate. After correction for the partitioning of 2-NA values of (Km)corr were obtained as 3.9 x 10(-3) mol L(-1) (W = 5), 4.6 x 10(-3) mol L(-1) (W = 10), 2.3 x 10(-3) mol L(-1) (W = 15), and 1.7 x 10(-3) mol L(-1) (W = 20). The rate parameters in the aqueous phase in the absence of micelles, were obtained as (kcat)aq = 7.9 x 10(-6) mol g(-1) s(-1) and (Km)aq = 2.5 x 10(-3) mol L(-1). In order to compare the efficiency of the enzyme in the micellar solution with that in aqueous phase, the values of (Km)corr were in turn corrected to take into account differences in the substrate activity, obtaining so a set of (Km)*corr values. The efficiency of the

  14. CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS

    SciTech Connect

    Paranthaman, Mariappan Parans

    2011-01-01

    We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCO wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.

  15. Nacre surface transformation to hydroxyapatite in a phosphate buffer solution.

    PubMed

    Ni, Ming; Ratner, Buddy D

    2003-10-01

    Nacre, also known as mother-of-pearl, constitutes the inner layer of mollusc shells. Nacre is a natural composite material consisting mostly of calcium carbonate in the aragonite crystal form and some organic matter. Previous studies have shown that geological aragonite, coral and nacre can convert hydrothermally to hydroxyapatite (HAP) in phosphate solution by a solid-state topotactic ion-exchange reaction. This conversion typically occurs within the range of 140-260 degrees C, although higher temperatures are possible. In this work, we have found that nacre can transform to HAP in a phosphate buffer solution at room temperature via a surface reaction. The morphology of the nacre-transformed HAP surface was investigated by scanning electron microscopy (SEM). The HAP surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). A layer covered with packed particles was found in contrast to the tablet structure typical of nacre surfaces. XPS and SIMS indicated that the mineral phase of the nacre surface had converted from an aragonite phase to an HAP phase. Fourier transform infrared spectroscopy (FTIR) showed that phosphate (PO(4)) bands appeared after nacre was soaked in a phosphate buffer and the intensity of the PO(4) bands increased with exposure time. The FTIR was consistent with XPS and SIMS results. We suggest that this surface reaction occurs by a dissolution-precipitation mechanism. Calcium ions are released from the nacre surface, react with phosphate ions in the buffer solution, and then precipitate as HAP on the nacre surface. PMID:12853263

  16. Quantitative Screening of Agrochemical Residues in Fruits and Vegetables by Buffered Ethyl Acetate Extraction and LC-MS/MS Analysis.

    PubMed

    Jadhav, Manjusha R; Oulkar, Dasharath P; Shabeer T P, Ahammed; Banerjee, Kaushik

    2015-05-13

    A buffered ethyl acetate extraction method is proposed for the simultaneous analysis of 296 agrochemicals in a wide range of fruit and vegetable matrices by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The optimized quantity of acetate buffer (1% acetic acid + 0.5 g of sodium acetate per 10 g of sample) adjusted the pH of each test matrix to 5-6, which in turn significantly improved recoveries of acidic and basic compounds. The role of diethylene glycol (used in the evaporation step) on signal suppression of certain compounds was evaluated, and its quantity was optimized to minimize such an effect. The method was validated in grape, mango, drumstick, bitter gourd, capsicum, curry leaf, and okra as per the DG-SANCO/12571/2013 guidelines. Recoveries in the fortification range of 1-40 μg/kg were within 70-120% with associated relative standard deviations below 20% for most of the compounds. The method has potential for regulatory and commercial applications with a generic approach. PMID:25639652

  17. Finding the lost open-circuit voltage in polymer solar cells by UV-ozone treatment of the nickel acetate anode buffer layer.

    PubMed

    Wang, Fuzhi; Sun, Gang; Li, Cong; Liu, Jiyan; Hu, Siqian; Zheng, Hua; Tan, Zhan'ao; Li, Yongfang

    2014-06-25

    Efficient polymer solar cells (PSCs) with enhanced open-circuit voltage (Voc) are fabricated by introducing solution-processed and UV-ozone (UVO)-treated nickel acetate (O-NiAc) as an anode buffer layer. According to X-ray photoelectron spectroscopy data, NiAc partially decomposed to NiOOH during the UVO treatment. NiOOH is a dipole species, which leads to an increase in the work function (as confirmed by ultraviolet photoemission spectroscopy), thus benefitting the formation of ohmic contact between the anode and photoactive layer and leading to increased Voc. In addition, the UVO treatment improves the wettability between the substrate and solvent of the active layer, which facilitates the formation of an upper photoactive layer with better morphology. Further, the O-NiAc layer can decrease the series resistance (Rs) and increase the parallel resistance (Rp) of the devices, inducing enhanced Voc in comparison with the as-prepared NiAc-buffered control devices without UVO treatment. For PSCs based on the P3HT:PCBM system, Voc increases from 0.50 to 0.60 V after the NiAc buffer layer undergoes UVO treatment. Similarly, in the P3HT:ICBA system, the Voc value of the device with a UVO-treated NiAc buffer layer increases from 0.78 to 0.88 V, showing an enhanced power conversion efficiency of 6.64%. PMID:24878826

  18. The erosion kinetics of conventional and resin-modified glass-ionomer luting cements in acidic buffer solutions.

    PubMed

    Hazar-Yoruc, Binnaz; Bavbek, Andac Barkin; Özcan, Mutlu

    2012-01-01

    This study investigated the erosion kinetics of conventional and resin-modified glass-ionomer luting cements in acidic buffer solutions as a function of time. Disc shaped specimens were prepared from conventional (Ketac-Cem: KTC) and resin-modified glass ionomer cements (Fuji Plus: FP) and immersed in three acidic buffer solutions (0.01 M) namely, acetic acid/sodium acetate (AA(B)), lactic acid/sodium lactate (LA(B)) and citric acid/sodium citrate (CA(B)) with a constant pH of 4.1 and stored for 1, 8, 24, 48, 80, 120 and 168 h. F concentration was determined using ion-specific electrode. Si, Ca and Al concentrations were determined by atomic absorption spectroscopy. Ca, Al, Si and F solubility rates in both FP and KTC were the highest in CA(B) solution. The erosion rates of both FP and KTC in all buffer solutions increased as a function of immersion time. The amount of F eluted from FP was more than that of KTC. The total amount of elements released from FP was less than KTC in all solutions. PMID:23207217

  19. Electrochemical behaviour of silver in borate buffer solutions

    NASA Astrophysics Data System (ADS)

    Zaky, Ayman M.; Assaf, Fawzi H.; Abd El Rehim, Sayed S.; Mohamed, Basheer M.

    2004-01-01

    The electrochemical behaviour of Ag in aqueous 0.15 M borax and 0.15 M boric acid buffer solution was studied under various conditions using cyclic voltammetry and potentiostatic techniques. It was found that the anodic polarization curve of Ag in borate buffer solution was characterized by the appearance of two potential regions, active and passive, prior to the oxygen evolution reaction. The active potential region was characterized by the appearance of three anodic peaks, the first two peaks A 1 and A 2 correspond to the oxidation of Ag and formation of [Ag(OH) 2] - soluble compound and a passive film of Ag 2O on the electrode surface. The third anodic peak corresponds to the conversion of both [Ag(OH) 2] - and Ag 2O to Ag 2O 2. X-ray diffraction patterns confirmed the existence of Ag 2O and Ag 2O 2 passive layers on the electrode surface potentiodynamically polarized up to 800 mV. Potentiostatic current transient measurements showed that the formation of Ag 2O and Ag 2O 2 involves a nucleation and growth mechanism under diffusion control.

  20. Stability of biodegradable waterborne polyurethane films in buffered saline solutions.

    PubMed

    Lin, Ying Yi; Hung, Kun-Che; Hsu, Shan-Hui

    2015-01-01

    The stability of polyurethane (PU) is of critical importance for applications such as in coating industry or as biomaterials. To eliminate the environmental concerns on the synthesis of PU which involves the use of organic solvents, the aqueous-based or waterborne PU (WBPU) has been developed. WBPU, however, may be unstable in an electrolyte-rich environment. In this study, the authors reported the stability of biodegradable WBPU in the buffered saline solutions evaluated by atomic force microscopy (AFM). Various biodegradable WBPU films were prepared by spin coating on coverslip glass, with a thickness of ∼300 nm. The surface AFM images of poly(ε-caprolactone) (PCL) diol-based WBPU revealed nanoglobular structure. The same feature was observed when 20% molar of the PCL diol soft segment was replaced by polyethylene butylenes adipate diol. After hydration in buffered saline solutions for 24 h, the surface domains generally increased in sizes and became irregular in shape. On the other hand, when the soft segment was replaced by 20% poly(l-lactide) diol, a meshlike surface structure was demonstrated by AFM. When the latter WBPU was hydrated, the surface domains appeared to be disconnected. Results from the attenuated total reflectance infrared spectroscopy and x-ray photoelectron spectroscopy indicated that the surface chemistry of WBPU films was altered after hydration. These changes were probably associated with the neutralization of carboxylate by ions in the saline solutions, resulting in the rearrangements of soft and hard segments and causing instability of the WBPU. PMID:26296357

  1. Temperature dependence of ion transport in dilute tetrabutylammonium triflate-acetate solutions and self-diffusion in pure acetate liquids.

    PubMed

    Bopege, Dharshani N; Petrowsky, Matt; Fleshman, Allison M; Frech, Roger; Johnson, Matthew B

    2012-01-12

    Conductivities and static dielectric constants for 0.0055 M tetrabutylammonium trifluoromethanesulfonate in n-butyl acetate, n-pentyl acetate, n-hexyl acetate, n-octyl acetate, and n-decyl acetate have been collected over the temperature range of 0-80 °C. Self-diffusion coefficients and static dielectric constants of pure acetates were obtained over the same temperature range. Both temperature-dependent diffusion coefficients and ionic conductivities of these pure acetates and dilute acetate solutions can be accurately described by the compensated Arrhenius formalism. Activation energies were calculated from compensated Arrhenius plots for both conductivity and diffusion data. Activation energies are higher for conductivity data of 0.0055 M TbaTf-acetates compared to diffusion data of pure acetates. The plot of the exponential prefactor versus the dielectric constant yields a single master curve for both conductivity and diffusion data. These data support the argument that mass and charge transport are thermally activated processes in the acetates, as previously observed in alcohol-based electrolytes. PMID:22145961

  2. Critical evaluation of buffering solutions for pKa determination by capillary electrophoresis.

    PubMed

    Fuguet, Elisabet; Reta, Mario; Gibert, Carme; Rosés, Martí; Bosch, Elisabeth; Ràfols, Clara

    2008-07-01

    The performance of the most common and also some other less common CE buffers has been tested for the pKa determination of several types of compounds (pyridine, amines, and phenols). The selected buffers cover a pH ranging from 3.7 to 11.8. Whereas some buffers, like acetic acid/acetate, BisTrisH+/BisTris, TrisH+/Tris, CHES/CHES-, and CAPS/CAPS- can be used with all type of analytes, others like ammonium/ammonia, butylammonium/butylammonia, ethylammonium/ethylammonia, diethylammonium/diethylammonia, and hydrogenphosphate/phosphate are not recommended because they interact with a wide range of compounds. The rest of the tested buffers (dihydrogenphosphate/hydrogenphosphate, MES/MES-, HEPES/HEPES-, and boric acid/borate) can show specific interactions depending on the nature of the analytes, and their use in some applications should be restricted. PMID:18546174

  3. In situ XANES study of the passive film formed on iron in borate buffer and in sodium acetate

    SciTech Connect

    Oblonsky, L.J.; Ryan, M.P.; Isaacs, S.

    1996-12-31

    The passive film formed on Fe in pH 8.4 borate buffer (0. 1 36 M) over a broad potential range was characterized by in situ XANES (x-ray absorption near edge structure). On stepping the potential to a value between -0.6 V and +0.4 V (MSE), a passive film forms without detectable dissolution. The edge position indicates that the valence state of Fe in the film is 10 {+-} 5% Fe{sup 2+} and 90 {+-} 5% Fe{sup 3+}. Formation of a passive film at potentials between -0.8 V and -0.65 V is associated with dissolution prior to passivation, and a lower average valence state of 17 {+-} 5% Fe{sup 2+} and 83 {+-} 5% Fe{sup 3+}. At -0.9 V, the Fe did not passivate. The passive film that forms in pH 8.2 sodium acetate (0.1 M) at +0.4 V gives an edge similar to the high potential passive film formed in borate buffer, but dissolution occurs prior to passivation.

  4. Photocatalytic decomposition of cortisone acetate in aqueous solution.

    PubMed

    Romão, Joana Sobral; Hamdy, Mohamed S; Mul, Guido; Baltrusaitis, Jonas

    2015-01-23

    The photocatalytic decomposition of cortisone 21-acetate (CA), a model compound for the commonly used steroid, cortisone, was studied. CA was photocatalytically decomposed in a slurry reactor with the initial rates between 0.11 and 0.46 mg L(-1)min(-1) at 10 mg L(-1) concentration, using the following heterogeneous photocatalysts in decreasing order of their catalytic activity: ZnO>Evonik TiO2 P25>Hombikat TiO2>WO3. Due to the lack of ZnO stability in aqueous solutions, TiO2 P25 was chosen for further experiments. The decomposition reaction was found to be pseudo-first order and the rate constant decreased as a function of increasing initial CA concentration. Changing the initial pH of the CA solution did not affect the reaction rate significantly. The decomposition reaction in the presence of the oxidizing sacrificial agent sodium persulfate showed an observed decomposition rate constant of 0.004 min(-1), lower than that obtained for TiO2 P25 (0.040 min(-1)). The highest photocatalytic degradation rate constant was obtained combining both TiO2 P25 and S2O8(2-) (0.071 min(-1)) showing a synergistic effect. No reactive intermediates were detected using LC-MS showing fast photocatalytic decomposition kinetics of CA. PMID:24953705

  5. Impact of solute concentration on the electrocatalytic conversion of dissolved gases in buffered solutions

    NASA Astrophysics Data System (ADS)

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2015-08-01

    To maintain local pH levels near the electrode during electrochemical reactions, the use of buffer solutions is effective. Nevertheless, the critical effects of the buffer concentration on electrocatalytic performances have not been discussed in detail. In this study, two fundamental electrochemical reactions, oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR), on a platinum rotating disk electrode are chosen as model gas-related aqueous electrochemical reactions at various phosphate concentrations. Our detailed investigations revealed that the kinetic and limiting diffusion current densities for both the ORR and HOR logarithmically decrease with increasing solute concentration (log |jORR | = - 0.39 c + 0.92 , log |jHOR | = - 0.35 c + 0.73) . To clarify the physical aspects of this phenomenon, the electrolyte characteristics are addressed: with increasing phosphate concentration, the gas solubility decrease, the kinematic viscosity of the solution increase and the diffusion coefficient of the dissolved gases decrease. The simulated limiting diffusion currents using the aforementioned parameters match the measured ones very well (log |jORR | = - 0.43 c + 0.99 , log |jHOR | = - 0.40 c + 0.54) , accurately describing the consequences of the electrolyte concentration. These alterations of the electrolyte properties associated with the solute concentration are universally applicable to other aqueous gas-related electrochemical reactions because the currents are purely determined by mass transfer of the dissolved gases.

  6. Temperature dependence of hydrogen-bond dynamics in acetic acid-water solutions.

    PubMed

    D'Amico, Francesco; Bencivenga, Filippo; Gessini, Alessandro; Masciovecchio, Claudio

    2010-08-19

    An inelastic UV scattering experiment has been carried out on acetic acid-water solutions as a function of temperature and concentration. The analysis of experimental data indicates the presence of a crossover temperature (T(c) approximately 325 +/- 10 K). Above T(c), the energy of hydrogen bonds responsible for water-acetic acid and acetic acid-acetic acid interactions is strongly reduced. This leads to a reduction in the average number of water molecule interacting with acetic acid, as well as to a lower number of acetic acid clusters. The latter behavior can be mainly ascribed to a temperature change in the activation energy of carboxylic groups of acetic acid. These results may be also relevant to better understand the folding mechanism in protein-water solutions. PMID:20701390

  7. Rheological study of chitosan acetate solutions containing chitin nanofibrils.

    PubMed

    Mikešová, Jana; Hašek, Jindřich; Tishchenko, Galina; Morganti, Pierfrancesco

    2014-11-01

    Rheological properties of chitosan acetate solutions containing chitin nanofibrils (n-chitin) and biocompatible plasticizers intended for preparation of biodegradable films are reported in the steady, oscillatory and transient shear flow. The experiments were performed on slurries with an optimum proportion of 65/35 wt.% between chitosan and n-chitin in the films which was determined from our results of mechanical properties and absorption of water vapor. The time-dependent dynamic experiments revealed the chitin nanofibrils as an effective "gelling agent" of chitosan phase. The phenomenon is explained by a chitosan-like surface of n-chitin and by the interactions inducing orientational cooperativity of chitosan molecules dissolved in close neighborhood of the anisotropic chitin nanofibrils. Additions of glycerol or poly(ethylene glycol), improving mechanical properties of the films, delay significantly the onset of gelation of chitosan/n-chitin slurries. The effect is induced by an increase in viscosity of the slurries and by their enhanced chaotropic character. PMID:25129805

  8. Development of buffer layers by chemical solution deposition for YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Akin, Yalcin

    Short length YBCO coated conductors have been fabricated by vacuum thin film deposition techniques. However, the fabrication process increases the cost, and makes them impractical to use for commercial applications even if they are fabricated in kilometer lengths. YBCO coated conductors could be available in the market with a cheaper price by developing non-vacuum deposition techniques. The objective of this research was to investigate development of buffer layers by chemical solution deposition technique for YBCO coated conductors. Buffer layer structures are mainly used to prevent metal ion diffusion, and to reduce the lattice mismatch between YBCO and the metallic substrate. The technical approach, which was adapted here, is the reel-to-reel sol-gel dip coating process to fabricate long length coatings by developing buffer layers' chemical solutions. Rolling assisted biaxially textured Ni substrates were used for deposition of buffer layers. Cold rolled Ni strips were heat-treated at certain conditions to form biaxially textured structure, which became templates for textured growth of buffer layers that is necessary to obtain high critical current in the coated conductors. CeO2 was chosen as a buffer layers because it has been recognized as one of the best cap layers. Growth of highly textured, crack free, pinhole free and smooth CeO2 buffer layers have been demonstrated by chemical solution deposition technique on biaxially textured substrates. A new buffer layer with pseudocubic lattice parameters matching YBCO, (Eu0.893Yb0.107)2O3, was developed for the first time by using a mixture of Eu2O 3 and Yb2O3 to eliminate lattice mismatch, which adversely affected the critical current of the coated conductors. Highly textured (Eu0.893Yb0.107)2O3 buffer layers were deposited on biaxially textured Ni substrates by chemical solution deposition technique. Finally, the growth of CeO2 and (Eu0.893Yb 0.107)2O3 buffer layers were investigated on oxide layers because both Ce

  9. Polymicrobial Biofilm Inhibition Effects of Acetate-Buffered Chitosan Sponge Delivery Device.

    PubMed

    Jennings, Jessica Amber; Beenken, Karen E; Parker, Ashley C; Smith, James Keaton; Courtney, Harry S; Smeltzer, Mark S; Haggard, Warren O

    2016-04-01

    Polymicrobial biofilm-associated implant infections present a challenging clinical problem. Through modifications of lyophilized chitosan sponges, degradable drug delivery devices for antibiotic solution have been fabricated for prevention and treatment of contaminated musculoskeletal wounds. Elution of amikacin, vancomycin, or a combination of both follows a burst release pattern with vancomycin released above minimum inhibitory concentration for Staphylococcus aureus for 72 h and amikacin released above inhibitory concentrations for Pseudomonas aeruginosa for 3 h. Delivery of a vancomycin, amikacin, or a combination of both reduces biofilm formation on polytetrafluoroethylene catheters in an in vivo model of contamination. Release of dual antibiotics from sponges is more effective at preventing biofilm formation than single-loaded chitosan sponges. Treatment of pre-formed biofilm with high-dose antibiotic release from chitosan sponges shows minimal reduction after 48 h. These results demonstrate infection-preventive efficacy for antibiotic-loaded sponges, as well as the need for modifications in the development of advanced materials to enhance treatment efficacy in removing established biofilm. PMID:26756211

  10. Influence of an acetate- and a lactate-based balanced infusion solution on acid base physiology and hemodynamics: an observational pilot study

    PubMed Central

    2012-01-01

    Background The current pilot study compares the impact of an intravenous infusion of Ringer’s lactate to an acetate-based solution with regard to acid–base balance. The study design included the variables of the Stewart approach and focused on the effective strong ion difference. Because adverse hemodynamic effects have been reported when using acetate buffered solutions in hemodialysis, hemodynamics were also evaluated. Methods Twenty-four women who had undergone abdominal gynecologic surgery and who had received either Ringer’s lactate (Strong Ion Difference 28 mmol/L; n = 12) or an acetate-based solution (Strong Ion Difference 36.8 mmol/L; n = 12) according to an established clinical protocol and its precursor were included in the investigation. After induction of general anesthesia, a set of acid–base variables, hemodynamic values and serum electrolytes was measured three times during the next 120 minutes. Results Patients received a mean dose of 4,054 ± 450 ml of either one or the other of the solutions. In terms of mean arterial blood pressure and norepinephrine requirements there were no differences to observe between the study groups. pH and serum HCO3- concentration decreased slightly but significantly only with Ringer’s lactate. In addition, the acetate-based solution kept the plasma effective strong ion difference more stable than Ringer’s lactate. Conclusions Both of the solutions provided hemodynamic stability. Concerning consistency of acid base parameters none of the solutions seemed to be inferior, either. Whether the slight advantages observed for the acetate-buffered solution in terms of stability of pH and plasma HCO3- are clinically relevant, needs to be investigated in a larger randomized controlled trial. PMID:22769740

  11. The Determination of the pH of Standard Buffer Solution: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Harris, K. R.

    1985-01-01

    Describes an experiment which shows: (1) how measurements of the reaction electromotive force for the cell (Pt/glass/NaCl(aq,m),buffer/AgCl/Ag/Pt) can be utilized in determining the absolute pH of the buffer; and (2) the demonstration of the use of the Debye-Huckel model of an electrolyte solution in solving an important electrochemical problem.…

  12. [Alanine solution as enzyme reaction buffer used in A to O blood group conversion].

    PubMed

    Li, Su-Bo; Zhang, Xue; Zhang, Yin-Ze; Tan, Ying-Xia; Bao, Guo-Qiang; Wang, Ying-Li; Ji, Shou-Ping; Gong, Feng; Gao, Hong-Wei

    2014-06-01

    The aim of this study was to investigate the effect of alanine solution as α-N-acetylgalactosaminidase enzyme reaction buffer on the enzymatic activity of A antigen. The binding ability of α-N-acetylgalactosaminidase with RBC in different reaction buffer such as alanine solution, glycine solution, normal saline (0.9% NaCl), PBS, PCS was detected by Western blot. The results showed that the efficiency of A to O conversion in alanine solution was similar to that in glycine solution, and Western blot confirmed that most of enzymes blinded with RBC in glycine or alanine solution, but few enzymes blinded with RBC in PBS, PCS or normal saline. The evidences indicated that binding of enzyme with RBC was a key element for A to O blood group conversion, while the binding ability of α-N-acetylgalactosaminidase with RBC in alanine or glycine solution was similar. It is concluded that alanine solution can be used as enzyme reaction buffer in A to O blood group conversion. In this buffer, the α-N-acetylgalactosaminidase is closely blinded with RBC and α-N-acetylgalactosaminidase plays efficient enzymatic activity of A antigen. PMID:24989301

  13. A Simple and Universal Method for Making up Buffer Solutions.

    ERIC Educational Resources Information Center

    Dennison, Clive

    1988-01-01

    Uses a method which involves weighing out an amount of the appropriate weak acid or base and dissolving it in distilled water close to the final volume. Solution is then titrated with strong acid or base to give the desired pH. Provides three examples. (MVL)

  14. The potentiometric determination of stability constants for zinc acetate complexes in aqueous solutions to 295C

    SciTech Connect

    Giordano, T.H. ); Drummond, S.E. )

    1991-09-01

    A potentiometric method was used to determine the formation quotients of zinc acetate complexes in aqueous solutions from 50 to 295C at ionic strengths of 0.03, 0.3, and 1.0 m. The potentiometric titrations were carried out in an externally heated, Teflon-lined concentration cell fitted with hydrogen electrodes. Formal sodium acetate concentrations of the experimental solutions ranged from 0.001 to 0.1 m with acetic acid to sodium acetate ratios ranging from 30 to 300. Sodium trifluoromethanesulfonate (F{sub 3}CSO{sub 3}Na) was used as a supporting electrolyte. Stoichiometries and formation quotients for the complexes ZnCH{sub 3}COO{sup +}, Zn(CH{sub 3}COO){sub 2}, and Zn(CH{sub 3}COO){sub 3}{sup {minus}} were derived from the titration data by regression analysis. Stability constants at infinite dilution (K{sub n}) and other relevant thermodynamic quantities were calculated for these three complexes. Calculations of zinc speciation in acetate-chloride solutions show that zinc acetate complexes should have an importance similar to zinc chloride complexes in high acetate waters where chloride to acetate molal ratios are less than about 10.

  15. Comparison of Ring-Buffer-Based Packet Capture Solutions

    SciTech Connect

    Barker, Steven Andrew

    2015-10-01

    Traditional packet-capture solutions using commodity hardware incur a large amount of overhead as packets are copied multiple times by the operating system. This overhead slows sensor systems to a point where they are unable to keep up with high bandwidth traffic, resulting in dropped packets. Incomplete packet capture files hinder network monitoring and incident response efforts. While costly commercial hardware exists to capture high bandwidth traffic, several software-based approaches exist to improve packet capture performance using commodity hardware.

  16. Myocardial protection against global ischemia with Krebs-Henseleit buffer-based cardioplegic solution

    PubMed Central

    2013-01-01

    Background The Krebs-Henseleit buffer is the best perfusion solution for isolated mammalian hearts. We hypothesized that a Krebs-Henseleit buffer-based cardioplegic solution might provide better myocardial protection than well-known crystalloid cardioplegic solutions because of its optimal electrolyte and glucose levels, presence of buffer systems, and mild hyperosmolarity. Methods Isolated Langendorff-perfused rat hearts were subjected to either global ischemia without cardioplegia (controls) or cardioplegic arrest for either 60 or 180 min, followed by 120 min of reperfusion. The modified Krebs-Henseleit buffer-based cardioplegic solution (mKHB) and St. Thomas’ Hospital solution No. 2 (STH2) were studied. During global ischemia, the temperatures of the heart and the cardioplegic solutions were maintained at either 37°C (60 min of ischemia) or 22°C (moderate hypothermia, 180 min of ischemia). Hemodynamic parameters were registered throughout the experiments. The infarct size was determined through histochemical examination. Results Cardioplegia with the mKHB solution at moderate hypothermia resulted in a minimal infarct size (5 ± 3%) compared to that in the controls and STH2 solution (35 ± 7% and 19 ± 9%, respectively; P < 0.001, for both groups vs. the mKHB group). In contrast to the control and STH2-treated hearts, no ischemic contracture was registered in the mKHB group during the 180-min global ischemia. At normothermia, the infarct sizes were 4 ± 3%, 72 ± 6%, and 70 ± 12% in the mKHB, controls, and STH2 groups, respectively (P < 0.0001). In addition, cardioplegia with mKHB at normothermia prevented ischemic contracture and improved the postischemic functional recovery of the left ventricle (P < 0.001, vs. STH2). Conclusions The data suggest that the Krebs-Henseleit buffer-based cardioplegic might be superior to the standard crystalloid solution (STH2). PMID:23547937

  17. Multi-ion sensing of buffer solutions using terahertz chemical microscopy

    NASA Astrophysics Data System (ADS)

    Akimune, Kosuke; Okawa, Yuki; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji

    2014-12-01

    Terahertz chemical microscopy (TCM) has been proposed and developed to visualize electric potential and/or chemical changes in water solutions. To simultaneously detect two types of ions mixed in buffer solutions, five membranes for sodium ions and four membranes for potassium ions were integrated on a sensing plate, and the selectivity to each ion was evaluated. The results suggest that TCM can be used for multi-ion sensing in mixed solutions.

  18. Thick lanthanum zirconate buffer layers from water-based precursor solutions on Ni-5%W substrates

    SciTech Connect

    Narayanan, Vyshnavi; Lommens, Petra; De Buysser, Klaartje; Huehne, Ruben; Van Driessche, Isabel

    2011-11-15

    In this work, water-based precursor solutions suitable for dip-coating of thick La{sub 2}Zr{sub 2}O{sub 7} (LZO) buffer layers for coated conductors on Ni-5%W substrates were developed. The solutions were prepared based on chelate chemistry using water as the main solvent. The effect of polymer addition on the maximum crack-free thickness of the deposited films was investigated. This novel solution preparation method revealed the possibility to grow single, crack-free layers with thicknesses ranging 100-280 nm with good crystallinity and an in-plane grain misalignment with average FWHM of 6.55{sup o}. TEM studies illustrated the presence of nanovoids, typical for CSD-LZO films annealed under Ar-5%H{sub 2} gas flow. The appropriate buffer layer action of the film in preventing the Ni diffusion was studied using XPS. It was found that the Ni diffusion was restricted to the first 30 nm of a 140 nm thick film. The surface texture of the film was improved using a seed layer. - Graphical abstract: Thick LZO buffer layers from water-based precursor solutions were synthesized and their crystallinity, microstructure and buffer layer action were studied. The buffer layer action of the LZO layer was substantial to restrict the Ni penetration within 30 nm of a 140 nm thick film. Highlights: > LZO buffer layers with high thicknesses for use in coated conductors were prepared. > Prepared from water-based solutions. > Polymeric PVP increases the crack-free critical thickness of thick films. > Thick films showed good barrier action against Ni penetration. > Seed layers promote epitaxial growth of thick layers.

  19. Dopamine-melanin film deposition depends on the used oxidant and buffer solution.

    PubMed

    Bernsmann, Falk; Ball, Vincent; Addiego, Frédéric; Ponche, Arnaud; Michel, Marc; Gracio, José Joaquin de Almeida; Toniazzo, Valérie; Ruch, David

    2011-03-15

    The deposition of "polydopamine" films, from an aqueous solution containing dopamine or other catecholamines, constitutes a new and versatile way to functionalize solid-liquid interfaces. Indeed such films can be deposited on almost all kinds of materials. Their deposition kinetics does not depend markedly on the surface chemistry of the substrate, and the films can reach thickness of a few tens of nanometers in a single reaction step. Up to now, even if a lot is known about the oxidation mechanism of dopamine in solution, only little information is available to describe the deposition mechanism on surfaces either by oxidation in solution or by electrodeposition. The deposition kinetics of melanin was only investigated from dopamine solutions using oxygen or ammonium persulfate as an oxidant and from a tris(hydroxymethyl) aminomethane (Tris) containing buffer solutions at pH 8.5. Many other oxidants could be used, and the buffer agent containing a primary amine group may influence the deposition process. Herein we show that the deposition kinetics of melanin from dopamine containing buffers at pH 8.5 can be markedly modified using Cu(2+) instead of O2 as an oxidant: the deposition kinetics remains linear up to thicknesses of more than 70 nm, whereas the film growth stops at 45 ± 5 nm in the presence of 02. In addition, the films prepared from Cu(2+) containing solutions display an absorption spectrum with defined peaks at 320 and 370 nm, which are absent in the spectra of films prepared in oxygenated solutions. The replacement of Tris buffer by phosphate buffer also has a marked effect on the melanin deposition kinetics. PMID:21332218

  20. EQUALIZING THE ELECTRIC FIELD INTENSITY WITHIN CHICK BRAIN IMMERSED IN BUFFER SOLUTION AT DIFFERENT CARRIER FREQUENCIES

    EPA Science Inventory

    Presented here are the numerical relationships between incident power densities that produce the same average electric field intensity within a chick brain half immersed in buffered saline solution and exposed to a uniform electromagnetic field at carrier frequencies of 50, 147, ...

  1. Acanthamoeba encystment: multifactorial effects of buffers, biocides, and demulcents present in contact lens care solutions

    PubMed Central

    Kovacs, Christopher J; Lynch, Shawn C; Rah, Marjorie J; Millard, Kimberly A; Morris, Timothy W

    2015-01-01

    Purpose To determine whether agents which are purportedly capable of inducing encystment of Acanthamoeba can recapitulate the signal when tested in differing formulations. Methods In accordance with the International Standard ISO 19045, Acanthamoeba castellanii ATCC 50370 trophozoites were cultured in antibiotic-free axenic medium, treated with test solutions, and encystment rates plus viability were measured via bright field and fluorescent microscopy. Test solutions included phosphate-buffered saline (PBS), borate-buffered saline, biguanide- and hydrogen peroxide (H2O2)-based biocides, propylene glycol (PG) and povidone (POV) ophthalmic demulcents, and one-step H2O2-based contact lens disinfection systems. Results Only PBS solutions with 0.25 ppm polyaminopropyl biguanide (PAPB) and increasing concentrations of PG and POV stimulated A. castellanii encystment in a dose-dependent manner, whereas PBS solutions containing 3% H2O2 and increasing concentrations of PG and POV did not stimulate encystment. Borate-buffered saline and PBS/citrate solutions containing PG also did not stimulate encystment. In addition, no encystment was observed after 24 hours, 7 days, or 14 days of exposures of trophozoites to one-step H2O2 contact lens disinfection products or related solutions. Conclusion The lack of any encystment observed when trophozoites were treated with existing or new one-step H2O2 contact lens care products, as well as when trophozoites were exposed to various related test solutions, confirms that Acanthamoeba encystment is a complex process which depends upon simultaneous contributions of multiple factors including buffers, biocides, and demulcents. PMID:26508829

  2. Corrosion behavior of ASTM A106 and AISI 316SS in KOH and nickel acetate solutions

    SciTech Connect

    Gonzalez, J.J.; Baron, E.; Saldeho, J.

    1999-11-01

    The present work is concerned with the corrosion behavior of ASTM A106 B grade and AISI 316 stainless steel in the presence of three different environments: a mixture or an emulsion formed by oil-KOH-nickel acetate solution, a KOH (40 wt. %) solution and a nickel acetate (14 wt. %) solution, which are representative fluids used during a PDVSA proprietary process for improving heavy crude oils. Corrosion rate measurements and stress corrosion cracking (SCC) behavior were evaluated through weight loss (in the laboratory and in situ measurements), and mechanical testing (constant load and slow strain rate tests). In the emulsion the corrosion rate was almost undetectable for both steels and the evidence suggested that no SCC had taken place. However, the corrosion rate of the carbon steel in 40wt.% KOH solution at 130 C was 2.8 mm/y, showing the presence of pitting corrosion. On the other hand, the stainless steel showed an undetectable corrosion rate. Though SCC was not observed in any of the materials tested in presence of KOH at both 30 and 130 C, a deterioration in the mechanical properties was found for the high temperature case for carbon steel. During nickel acetate solution tests at 130 C, the A 106 steel showed a relatively high corrosion rate (5.9 mm/y) and the formation of pits. For the stainless steel case, acetate solution had no corrosive effect whatsoever. This last environment offered no SCC susceptibility for any material at both temperatures tested.

  3. Hydrogen production in microbial reverse-electrodialysis electrolysis cells using a substrate without buffer solution.

    PubMed

    Song, Young-Hyun; Hidayat, Syarif; Kim, Han-Ki; Park, Joo-Yang

    2016-06-01

    The aim of this work was to use substrate without buffer solution in a microbial reverse-electrodialysis electrolysis cell (MREC) for hydrogen production under continuous flow condition (10 cell pairs of RED stacks, HRT=5, 7.5, and 15h). Decreasing in the HRT (increasing in the organic matter) made cell current stable and increased. Hydrogen gas was produced at a rate of 0.61m(3)-H2/m(3)-Van/d in H-MREC, with a COD removal efficiency of 81% (1.55g/L/d) and a Coulombic efficiency of 41%. This MREC system without buffer solution could successfully produce hydrogen gas at a consistent rate. PMID:26888336

  4. Closed-form solutions of performability. [modeling of a degradable buffer/multiprocessor system

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1981-01-01

    Methods which yield closed form performability solutions for continuous valued variables are developed. The models are similar to those employed in performance modeling (i.e., Markovian queueing models) but are extended so as to account for variations in structure due to faults. In particular, the modeling of a degradable buffer/multiprocessor system is considered whose performance Y is the (normalized) average throughput rate realized during a bounded interval of time. To avoid known difficulties associated with exact transient solutions, an approximate decomposition of the model is employed permitting certain submodels to be solved in equilibrium. These solutions are then incorporated in a model with fewer transient states and by solving the latter, a closed form solution of the system's performability is obtained. In conclusion, some applications of this solution are discussed and illustrated, including an example of design optimization.

  5. Catalytic Deprotection of Acetals In Strongly Basic Solution Usinga Self-Assembled Supramolecular 'Nanozyme'

    SciTech Connect

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2007-07-26

    Acetals are among the most commonly used protecting groups for aldehydes and ketones in organic synthesis due to their ease of installation and resistance to cleavage in neutral or basic solution.[1] The common methods for hydrolyzing acetals almost always involve the use of either Broensted acid or Lewis acid catalysts.[2] Usually aqueous acids or organic solutions acidified with organic or inorganic acids have been used for reconversion of the acetal functionality to the corresponding carbonyl group; however, recently a number of reports have documented a variety of strategies for acetal cleavage under mild conditions. These include the use of Lewis acids such as bismuth(III)[3] or cerium(IV),[4, 5] functionalized silica gel, such as silica sulfuric acid[6] or silica-supported pyridinium p-toluene sulfonate,[7] or the use of silicon-based reagents such as TESOTf-2,6-Lutidine.[8] Despite these mild reagents, all of the above conditions require either added acid or overall acidic media. Marko and co-workers recently reported the first example of acetal deprotection under mildly basic conditions using catalytic cerium ammonium nitrate at pH 8 in a water-acetonitrile solution.[5] Also recently, Rao and co-workers described a purely aqueous system at neutral pH for the deprotection of acetals using {beta}-cyclodextrin as the catalyst.[9] Herein, we report the hydrolysis of acetals in strongly basic aqueous solution using a self-assembled supramolecular host as the catalyst. During the last decade, we have used metal-ligand interactions for the formation of well-defined supramolecular assemblies with the stoichiometry M{sub 4}L{sub 6}6 (M = Ga{sup III} (1 refers to K{sub 12}[Ga{sub 4}L{sub 6}]), Al{sup III}, In{sup III}, Fe{sup III}, Ti{sup IV}, or Ge{sup IV}, L = N,N{prime}-bis(2,3-dihydroxybenzoyl)-1,5-diaminonaphthalene) (Figure 1).[10] The metal ions occupy the vertices of the tetrahedron and the bisbidentate catecholamide ligands span the edges. The strong

  6. Buffer capacity of biologics--from buffer salts to buffering by antibodies.

    PubMed

    Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick

    2013-01-01

    Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. PMID:23296746

  7. [Bicarbonate instead of lactate buffered substitution solution for continuous hemofiltration in intensive care].

    PubMed

    Olbricht, C J; Huxmann-Nägeli, D; Bischoff, H

    1990-04-01

    The substitution fluids applied in continuous haemofiltration contain 40 mmol/l of lactate. This is unphysiological, since administration of large amounts of lactate lowers the phosphorylation potential and increases catabolism. With bicarbonate-buffered fluid three problems may arise: 1. Precipitation of calcium carbonate and magnesium carbonate; 2. pH is usually 8.4; 3. evaporation of CO2 increases pH. To solve these problems we applied a two-component system consisting of a glass bottle with 160 ml sodium bicarbonate 8.4% and a bag with 4.5 l of acidic solution. Prior to use, the bicarbonate was infused into the bag. The values of Ca++, Mg++, bicarbonate, and pH in this final substitution solution were constant during a 24 hr period after mixing. Precipitation of Ca++ and Mg++ carbonate was prevented by 3 mmol/l of lactic acid in the solution. The pH was 7.37. Evaporation of CO2 was prevented by bags made of special plastic sheeting. The solution was then applied in 7 intensive-care patients suffering from acute renal failure treated by continuous arteriovenous haemofiltration. No side effects of the solution were observed during six days of treatment. The values of Ca++, bicarbonate, pH, and pCO2 remained constant under clinical routine conditions. Hence, bicarbonate-buffered substitution solution is recommended for continuous haemofiltration. Continuous haemofiltration is now also available for patients with impaired liver function and increased lactate levels. PMID:2360710

  8. Hydrolysis of chlorantraniliprole and cyantraniliprole in various pH buffer solutions.

    PubMed

    Sharma, Ashok K; Zimmerman, William T; Lowrie, Chris; Chapleo, Simon

    2014-04-23

    The hydrolysis reactions of [(14)C]-chlorantraniliprole (CLAP) and cyantraniliprole (CNAP) were investigated in sterile buffer solutions at pH 4, 7, and 9. Both compounds displayed similar degradation reactions. The reactions observed were intramolecular cyclizations and rearrangements instead of the anticipated amide hydrolysis to carboxylic acids. Despite a minor difference in their structures, the degradation rates for the two compounds were substantially different. The reaction rates were examined at multiple temperatures to understand the mechanistic aspects of the underlying transformations. Similarities and differences in the hydrolysis behavior of these compounds in various pH values and temperatures are described. PMID:24694259

  9. Performance of cellulose acetate butyrate membranes in hyperfiltration of sodium chloride and urea feed solution

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Leban, M.

    1973-01-01

    Cellulose acetate butyrate (CAB) membranes are shown to give high salt and urea rejection with water flux of about 3 gallons/sq ft per day at 600 psig. Membranes prepared from a formulation containing glyoxal show a significant increase in flux and decrease in salt and urea rejection with drying time. Zero drying time gives maximum urea and salt rejection and is therefore most suitable for hyperfiltration of sodium chloride and urea feed solution.

  10. A resin-buffered nutrient solution for controlling metal speciation in the algal bottle assay.

    PubMed

    Verheyen, L; Merckx, R; Smolders, E

    2012-06-15

    Metal speciation in solution is uncontrolled during algal growth in the traditional algal bottle assay. A resin-buffered nutrient solution was developed to overcome this problem and this was applied to test the effect of chloride (Cl⁻) on cadmium (Cd) uptake. Standard nutrient solution was enriched with 40 mM of either NaNO₃ or NaCl, and was prepared to contain equal Cd²⁺ but varying dissolved Cd due to the presence of CdCl(n)(2-n) complexes. Both solutions were subsequently used in an algal assay in 100 mL beakers that contained only the solution (designated "-R") or contained the solution together with a cation exchange sulfonate resin (2 g L⁻¹, designated "+R") as a deposit on the bottom of the beaker. Pseudokirchneriella subcapitata was grown for 72 h (1.4 × 10⁵-1.4 × 10⁶ cells mL⁻¹) in stagnant solution and shaken three times a day. Growth was unaffected by the presence of the resin (p>0.05). The Cd concentrations in solution of the -R devices decreased with 50-58% of initial values due to Cd uptake. No such changes were found in the +R devices or in abiotic controls. Cd uptake was unaffected by either NaNO₃ or NaCl treatment in the +R device, confirming that Cd²⁺ is the preferred Cd species in line with the general concept of metal bioavailability. In contrast, Cd uptake in the -R devices was two-fold larger in the NaCl treatment than in the NaNO₃ treatment (p<0.001), suggesting that CdCl(n)(2-n) complexes are bioavailable in this traditional set-up. However this bioavailability is partially, but not completely, an apparent one, because of the considerable depletion of solution ¹⁰⁹Cd in this set-up. Resin-buffered solutions are advocated in the algal bottle assay to control trace metal supply and to better identify the role of metal complexes on bioavailability. PMID:22447105

  11. Development anmd testing of electrophoresis solutions. Task I.1: Development of optimal buffer system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Two buffers were explored for testing: low ionic strength electrophoresis buffer with and without density gradient material. It was found that the electrophoresis routine was better tolerated when Ficoll was present. The results of a viability study of primary human fetal kidney (HFK-1) cells at the first passage are shown. Cell strain HFK-1 was used in several experiments at the first and second passage. The HFK consisted mainly of fibroblasts, and HFK-1 has a high epithelioid cell content. The chromosomes of HFK were examined and found to be euploid. The stock medium for cell electrophoresis is described. In this solution density gradient solutes such as sucrose and Ficoll are dissolved to bring the osmolarity to 0.30. Its ionic strength is less than 0.01M, and its conductivity is usually 0.0011 mho/cm. Methods for viability determination included direct microscopic counting of the percent cells attached and spread within 24 hr of plating test cultures or electrophoretically separated fractions. The Cytograf viability assay concept was tested, and shown that blue stained cells scatter less light into the 0.8 to 3.3 deg angular interval than do unstained cells.

  12. Buffer Capacity: An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Russo, Steven O.; Hanania, George I. H.

    1987-01-01

    Describes a quantitative experiment designed to demonstrate buffer action and the measurement of buffer capacity. Discusses how to make acetate buffers, determine their buffer capacity, plot the capacity/pH curve, and interpret the data obtained. (TW)

  13. Effect of Buffers on Aqueous Solute-Exclusion Zones around Ion-Exchange Resins

    PubMed Central

    Zheng, Jian-ming; Wexler, Adam

    2009-01-01

    Interaction between charged surfaces in aqueous solution is a fundamental feature of colloid science. Theoretically, surface potential falls to half its value at a distance equal to a Debye length, which is typically on the order of tens to hundreds of nanometers. This potential prevents colloids from aggregating. On the other hand, long-range surface effects have been frequently reported. Here we report additional long-range effects. We find that charged latex particles in buffer solutions are uniformly excluded from several-hundred-micron-thick shells surrounding ion-exchange beads. Exclusion is observed whether the beads are charged similarly or oppositely to the particles. Hence, electrostatic interactions between bead and microsphere do not cause particle exclusion. Rather, exclusion may be the consequence of water molecules re-orienting to produce a more ordered structure, which then excludes the particles. PMID:19185312

  14. The Acid Hydrolysis Mechanism of Acetals Catalyzed by a Supramolecular Assembly in Basic Solution

    SciTech Connect

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2008-09-24

    A self-assembled supramolecular host catalyzes the hydrolysis of acetals in basic aqueous solution. The mechanism of hydrolysis is consistent with the Michaelis-Menten kinetic model. Further investigation of the rate limiting step of the reaction revealed a negative entropy of activation ({Delta}S{double_dagger} = -9 cal mol{sup -1}K{sup -1}) and an inverse solvent isotope effect (k(H{sub 2}O)/k(D{sub 2}O) = 0.62). These data suggest that the mechanism of hydrolysis that takes place inside the assembly proceeds through an A-2 mechanism, in contrast to the A-1 mechanism operating in the uncatalyzed reaction. Comparison of the rates of acetal hydrolysis in the assembly with the rate of the reaction of unencapsulated substrates reveals rate accelerations of up to 980 over the background reaction for the substrate diethoxymethane.

  15. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  16. Development of Solution Buffer Layers for RABiTS Based YBCO Coated Conductors

    SciTech Connect

    Paranthaman, Mariappan Parans; Qiu, Xiaofeng; List III, Frederick Alyious; Zhang, Yifei; Li, Xiaoping; Sathyamurthy, Srivatsan; Thieme, C. L. H.; Rupich, M. W.

    2011-01-01

    Abstract The main objective of this research is to find a suitable alternate solution based seed layer for the standard RABiTS three-layer architecture of physical vapor deposited CeO cap/YSZ barrier/Y O seed on Ni-5%W metal tape. In the present work, we have identified CeO buffer layer as a potential replacement for Y O seeds. Using a metal-organic deposition (MOD) process, we have grown smooth, crack-free, epitaxial thin films of CeO (pure and Zr, Cu and Gd-doped) directly on biaxially textured Ni-5W substrates in short lengths. Detailed XRD studies indicate that a single epitaxial CeO phase with slightly improved out-of-plane texture compared to the texture of the underlying Ni-W substrates can be achieved in pure, undoped CeO samples. We have also demonstrated the growth of YSZ barrier layers on pure CeO seeds using sputtering. Both sputtered CeO cap layers and MOD-YBCO films were grown epitaxially on these YSZ-buffered MOD-CeO /Ni-5W substrates. High critical currents per unit width, of 264 A/cm (critical current density, of 3.3 MA/cm ) at 77 K and 0.01 T was achieved for 0.8 m thick MOD-YBCO films grown on MOD-CeO seeds. These results indicate that CeO films can be grown directly on Ni-5W substrates and still support high performance YBCO coated conductors. This work holds promise for a route for producing low-cost buffer architecture for RABiTS based YBCO coated conductors.

  17. Development of Solution Buffer Layers for RABiTS Based YBCO Coated Conductors

    SciTech Connect

    Paranthaman, Mariappan Parans; Qiu, Xiaofeng; Kim, Kyunghoon; Shi, D.; Zhang, Yifei; Li, Xiaoping; Sathyamurthy, Srivatsan; Thieme, C. L. H.; Rupich, M. W.

    2010-01-01

    The main objective of this research is to find a suitable alternate solution based seed layer for the standard RABiTS three-layer architecture of physical vapor deposited CeO2 cap/YSZ barrier/Y2O3 seed on Ni-5%W metal tape. In the present work, we have identified CeO2 buffer layer as a potential replacement for Y2O3 seeds. Using a metal-organic deposition (MOD) process, we have grown smooth, crack-free, epitaxial thin films of CeO2 (both pure and Zr, Cu and Gd-doped) directly on biaxially textured Ni-5W substrates in short lengths. Detailed XRD studies indicate that a single epitaxial CeO2 phase with slightly improved out-of-plane texture compared to the texture of underlying Ni-W substrates can be achieved in pure, undoped CeO2 samples. We have also demonstrated the growth of YSZ barrier layers on pure CeO2 seeds using sputtering. Both sputtered CeO2 cap layers and MOD-YBCO films were grown epitaxially on these YSZ-buffered MOD-CeO2/Ni-5W substrates. High critical currents per unit width, Ic of 264 A/cm (critical current density, Jc of 3.3 MA/cm2) at 77 K and 0.01 T was achieved for 0.8 m thick MOD-YBCO films grown on MOD-CeO2 seeds. These results indicate that CeO2 films can be grown directly on Ni-5W substrates and still support high performance YBCO coated conductors. This work holds promise for a route for producing low-cost buffer architecture for RABiTS based YBCO coated conductors.

  18. Critical zinc[sup +2] activities for sour orange determined with chelator-buffered nutrient solutions

    SciTech Connect

    Swietlik, D.; Zhang, L. )

    1994-07-01

    Chelator-buffered nutrient solutions were used to study the effect of different levels of Zn activity in the rhizosphere on growth and nutritive responses of various tissues of sour orange seedlings. The seedlings were grown for 3 months in a growth chamber in a hydroponic culture containing from 5 to 69 [mu]m and 5 to 101 [mu]m total Zn in Expts. 1 and 2, respectively. Zn[sup +2] activities were calculated with a computerized chemical equilibrium model, and buffered by inclusion of a chelator, diethylenetriamine pentaacetate (DTPA), at 74 and 44 [mu]m in excess of the sum of Fe, Mn, Zn, Cu, Ni, and Co in Expts. 1 and 2, respectively. The use of DTPA-buffered solutions proved successful in imposing varying degrees of Zn deficiency. The deficiency was confirmed by leaf symptomatology, leaf chemical analyses, i.e., <16 mg[center dot]kg[sup [minus]1] Zn, and responses to foliar sprays and application of Zn to the roots. Growth parameters varied in their sensitivity to Zn deficiency, i.e., root dry weight < leaf number and white root growth < stem dry weight < leaf dry weight < shoot elongation and leaf area. The critical activities, expressed as pZn = [minus]log(Zn[sup +2]), were [approximately]10.2 [+-] 0.2 for root dry weight, 10.1 [+-] 0.2 for leaf number and white root growth, 10.0 [+-] 0.2 for stem dry weight, 9.9 [+-] 0.2 for leaf dry weight, and 9.8 [+-] 0.2 for shoot growth and leaf area. Increases in growth were observed in response to Zn applications even in the absence of visible Zn-deficiency symptoms. Seedlings containing > 23 mg[center dot]kg[sup [minus]1] Zn in leaves did not respond to further additions of Zn to the nutrient solution. Zinc foliar sprays were less effective than Zn applications to the roots in alleviating severe Zn deficiency because foliar-absorbed Zn was not translocated from the top of the roots and thus could not correct Zn deficiency in the roots.

  19. Effect of phosphate buffer concentration on the heat resistance of Bacillus stearothermophilus spores suspended in parenteral solutions.

    PubMed

    Gauthier, C A; Smith, G M; Pflug, I J

    1978-09-01

    The effect of various quantities of Butterfield phosphate buffer added to four parenteral solutions on the survival of Bacillus stearothermophilus spores heated at 121 degrees C was determined. The effect of the addition of phosphate buffer on spore survival varied with the parenteral solution. Spore survival was increased or decreased, depending upon the composition of the parenteral solution and the buffer concentration. The results obtained in these experiments attest to the fact that environmental factors, including the type of ions present and ionic concentration, affect the heat destruction rate of B. stearothermophilus spores. Therefore, the sterilization requirements of a product such as a parenteral solution may be affected by small changes in formulation. PMID:727778

  20. Effect of phosphate buffer concentration on the heat resistance of Bacillus stearothermophilus spores suspended in parenteral solutions.

    PubMed Central

    Gauthier, C A; Smith, G M; Pflug, I J

    1978-01-01

    The effect of various quantities of Butterfield phosphate buffer added to four parenteral solutions on the survival of Bacillus stearothermophilus spores heated at 121 degrees C was determined. The effect of the addition of phosphate buffer on spore survival varied with the parenteral solution. Spore survival was increased or decreased, depending upon the composition of the parenteral solution and the buffer concentration. The results obtained in these experiments attest to the fact that environmental factors, including the type of ions present and ionic concentration, affect the heat destruction rate of B. stearothermophilus spores. Therefore, the sterilization requirements of a product such as a parenteral solution may be affected by small changes in formulation. PMID:727778

  1. Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution.

    PubMed Central

    Karrasch, S; Dolder, M; Schabert, F; Ramsden, J; Engel, A

    1993-01-01

    Scanning force microscopy allows imaging of biological molecules in their native state in buffer solution. To this end samples have to be fixed to a flat solid support so that they cannot be displaced by the scanning tip. Here we describe a method to achieve the covalent binding of biological samples to glass surfaces. Coverslips were chemically modified with the photoactivatable cross-linker N-5-azido-2-nitrobenzoyloxysuccinimide. Samples are squeezed between derivatized coverslips and then cross-linked to the glass surface by irradiation with ultraviolet light. Such samples can be imaged repeatedly by the scanning force microscope without loss of image quality, whereas identical but not immobilized samples are pushed away by the stylus. Images FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 PMID:8312482

  2. The passivity of Type 316L stainless steel in borate buffer solution

    NASA Astrophysics Data System (ADS)

    Nicic, Igor; Macdonald, Digby D.

    2008-09-01

    The passivity of Type 316 SS in borate buffer solution (pH 8.35), in the steady-state, has been explored using a variety of electrochemical techniques, including potentiostatic polarization, Mott Schottky analysis, and electrochemical impedance spectroscopy. The study shows that the passive film is an n-type semiconductor with a donor density that is essentially independent of voltage across the passive state. The passive current density is also found to be voltage-independent, but the thickness of the barrier layer depends linearly on the applied voltage. These observations are consistent with the predictions of the Point Defect Model, noting that the point defects within the barrier layer of the passive film are metal interstitials or oxygen vacancies, or both. No evidence for p-type behavior was obtained, indicating that cation vacancies do not have a significant population density in the film compared with the two donors (cation interstitials and oxygen vacancies).

  3. Labile synthetic cadmium complexes are not bioavailable to Pseudokirchneriella subcapitata in resin buffered solutions.

    PubMed

    Verheyen, L; Merckx, R; Smolders, E

    2012-11-15

    The Free Ion Activity Model (FIAM) predicts that cadmium (Cd) uptake by organisms is identical for solutions with the same free Cd(2+) concentration and inorganic composition. Clear exceptions to the FIAM have been shown for Cd uptake by plant roots, periphyton and human cells where labile Cd complexes increase bioavailability and which has been attributed to their role in enhancing Cd diffusion towards the uptake cells. Here, we assessed the role of labile Cd complexes on Cd uptake by algae, for which diffusion limitations should be less pronounced due to their smaller size. Long-term (3 days) Cd uptake by the green algae Pseudokirchneriella subcapitata was measured in resin buffered solutions with or without synthetic ligands and at three Cd(2+) ion activities (pCd 8.2-5.7). The free Cd(2+) activity was maintained during the test using a metal-selective resin located in the algal bottles. Total dissolved Cd increased up to 35-fold by adding the synthetic ligands at constant Cd(2+) activity. In contrast, Cd uptake by algae increased maximally 2.8 fold with increasing concentration of the synthetic ligands and the availability of the complexes were maximally 5.2% relative to Cd(2+) for NTA and CDTA complexes. It is concluded that labile Cd complexes do not greatly enhance Cd bioavailability to the unicellular algae and calculations suggest that Cd transport from solution to these small cells is not rate limiting. PMID:22903064

  4. Aluminum elution and precipitation in glass vials: effect of pH and buffer species.

    PubMed

    Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide

    2015-02-01

    Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions. PMID:24261406

  5. Performance improvement of polymer solar cells by using a solution processible titanium chelate as cathode buffer layer

    NASA Astrophysics Data System (ADS)

    Tan, Zhan'ao; Yang, Chunhe; Zhou, Erjun; Wang, Xiang; Li, Yongfang

    2007-07-01

    A solution processible titanium chelate, titanium (diisopropoxide) bis (2,4-pentanedionate) (TIPD), was used as the cathode buffer layer in the polymer solar cells (PSCs) based on the blend of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] and [6,6]-phenyl-C61-butyric acid methyl ester. Introducing TIPD buffer layer reduced the interface resistance between the active layer and Al electrode, leading to a lower device resistance. The power conversion efficiency of the PSC with TIPD buffer layer reached 2.52% under the illumination of AM1.5, 100mW/cm2, which is increased by 51.8% in comparison with that (1.66%) of the device without TIPD buffer layer under the same experimental conditions.

  6. Comparison of peak shape in hydrophilic interaction chromatography using acidic salt buffers and simple acid solutions.

    PubMed

    Heaton, James C; Russell, Joseph J; Underwood, Tim; Boughtflower, Robert; McCalley, David V

    2014-06-20

    The retention and peak shape of neutral, basic and acidic solutes was studied on hydrophilic interaction chromatography (HILIC) stationary phases that showed both strong and weak ionic retention characteristics, using aqueous-acetonitrile mobile phases containing either formic acid (FA), ammonium formate (AF) or phosphoric acid (PA). The effect of organic solvent concentration on the results was also studied. Peak shape was good for neutrals under most mobile phase conditions. However, peak shapes for ionised solutes, particularly for basic compounds, were considerably worse in FA than AF. Even neutral compounds showed deterioration in performance with FA when the mobile phase water concentration was reduced. The poor performance in FA cannot be entirely attributed to the negative impact of ionic retention on ionised silanols on the underlying silica base materials, as results using PA at lower pH (where their ionisation is suppressed) were inferior to those in AF. Besides the moderating influence of the salt cation on ionic retention, it is likely that salt buffers improve peak shape due to the increased ionic strength of the mobile phase and its impact on the formation of the water layer on the column surface. PMID:24813934

  7. THE EFFECT OF THE PH OF PH BUFFERED NUTRIENT SOLUTIONS ON NICKEL HYPERACCUMULATION BY ALYSSUM CORSICUM AND BERKHEYA CODDII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is hypothesized that plant hyperaccumulation of Ni evolved as a defense mechanism against diseases and insects. Two hyperaccumulators, Alyssum corsicum and Berkheya coddii, were compared to cabbage (Brassica oleracea) grown in MES-HEPES buffered nutrient solutions and maintained at four pH levels...

  8. Substituent Effects on the Photodeprotection Reactions of Selected Ketoprofen Derivatives in Phosphate Buffered Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Liu, Mingyue; Li, Ming-De; Huang, Jinqing; Li, Tianlu; Liu, Han; Li, Xuechen; Phillips, David Lee

    2016-02-01

    Photodeprotection is an important reaction that has been attracting broad interest for use in a variety of applications. Recent advances in ultrafast and vibrational time-resolved spectroscopies can facilitate obtaining data to help unravel the reaction mechanisms involving in the photochemical reactions of interest. The kinetics and reaction mechanisms for the photodeprotection reactions of ketoprofen derivatives containing three different substituents (ibuprofen, Br and I) were investigated by femtosecond transient absorption (fs-TA) and nanosecond time-resolved resonance Raman (ns-TR3) spectroscopy methods in phosphate buffered solutions (PBS). Fs-TA allows us to detect the decay kinetics of the triplet species as the key precursor for formation of a carbanion species for three different substituents attached to ketoprofen. To characterize the structural and electronic properties of the corresponding carbanion and triplet intermediates, TR3 spectroscopic experiments were conducted. The transient spectroscopy work reveals that the different substituents affect the photodecarboxylation reaction to produce carbon dioxide which in turn influences the generation of the carbanion species which determines the rate of the photorelease of the functional groups attached on the ketoprofen parent molecule. The fingerprint TR3 spectroscopy results suggest that ketoprofen derivatives may be deactivated to produce a triplet carbanion when increasing the atom mass of the halogen atoms.

  9. Substituent Effects on the Photodeprotection Reactions of Selected Ketoprofen Derivatives in Phosphate Buffered Aqueous Solutions.

    PubMed

    Liu, Mingyue; Li, Ming-De; Huang, Jinqing; Li, Tianlu; Liu, Han; Li, Xuechen; Phillips, David Lee

    2016-01-01

    Photodeprotection is an important reaction that has been attracting broad interest for use in a variety of applications. Recent advances in ultrafast and vibrational time-resolved spectroscopies can facilitate obtaining data to help unravel the reaction mechanisms involving in the photochemical reactions of interest. The kinetics and reaction mechanisms for the photodeprotection reactions of ketoprofen derivatives containing three different substituents (ibuprofen, Br and I) were investigated by femtosecond transient absorption (fs-TA) and nanosecond time-resolved resonance Raman (ns-TR(3)) spectroscopy methods in phosphate buffered solutions (PBS). Fs-TA allows us to detect the decay kinetics of the triplet species as the key precursor for formation of a carbanion species for three different substituents attached to ketoprofen. To characterize the structural and electronic properties of the corresponding carbanion and triplet intermediates, TR(3) spectroscopic experiments were conducted. The transient spectroscopy work reveals that the different substituents affect the photodecarboxylation reaction to produce carbon dioxide which in turn influences the generation of the carbanion species which determines the rate of the photorelease of the functional groups attached on the ketoprofen parent molecule. The fingerprint TR(3) spectroscopy results suggest that ketoprofen derivatives may be deactivated to produce a triplet carbanion when increasing the atom mass of the halogen atoms. PMID:26899243

  10. Substituent Effects on the Photodeprotection Reactions of Selected Ketoprofen Derivatives in Phosphate Buffered Aqueous Solutions

    PubMed Central

    Liu, Mingyue; Li, Ming-De; Huang, Jinqing; Li, Tianlu; Liu, Han; Li, Xuechen; Phillips, David Lee

    2016-01-01

    Photodeprotection is an important reaction that has been attracting broad interest for use in a variety of applications. Recent advances in ultrafast and vibrational time-resolved spectroscopies can facilitate obtaining data to help unravel the reaction mechanisms involving in the photochemical reactions of interest. The kinetics and reaction mechanisms for the photodeprotection reactions of ketoprofen derivatives containing three different substituents (ibuprofen, Br and I) were investigated by femtosecond transient absorption (fs-TA) and nanosecond time-resolved resonance Raman (ns-TR3) spectroscopy methods in phosphate buffered solutions (PBS). Fs-TA allows us to detect the decay kinetics of the triplet species as the key precursor for formation of a carbanion species for three different substituents attached to ketoprofen. To characterize the structural and electronic properties of the corresponding carbanion and triplet intermediates, TR3 spectroscopic experiments were conducted. The transient spectroscopy work reveals that the different substituents affect the photodecarboxylation reaction to produce carbon dioxide which in turn influences the generation of the carbanion species which determines the rate of the photorelease of the functional groups attached on the ketoprofen parent molecule. The fingerprint TR3 spectroscopy results suggest that ketoprofen derivatives may be deactivated to produce a triplet carbanion when increasing the atom mass of the halogen atoms. PMID:26899243

  11. Monolayer formation of luminescent germanium nanoparticles on silica surface in aqueous buffer solution.

    PubMed

    Shirahata, Naoto

    2014-03-01

    The present paper reports monolayer formation of germanium nanoparticles (Ge NPs) on silica substrate. The NPs were prepared by hydride reduction of GeCl4, which is encapsulated with an inverse micelle of dimethyldioctylammonium bromide, with lithium aluminum hydride, and subsequent hydrogermylation of allylamine in the presence of platinum catalyst. The resultant NPs showed the blue photoluminescence property. Due to the terminal amine, the NPs were soluble highly in aqueous buffer solution. To fabricate a monolayer of Ge NPs, the chemical reactivity of the NPs was studied using a multi-functional microarray in which different kinds of siloxane monolayers were periodically aligned on a silica substrate. We observed using fluorescence microscope whether the terminal amines of the NPs recognize the specific monolayers in the microarray. In terms of fluorescence observation, the entire surface of the monolayer-covered microsize-domains emits uniformly the blue light. This suggests a high degree of coverage of the luminescent NPs covering over the monolayer regions in the microarray, and implies the non-occurrence of quenching through energy transfer between adjacent NPs. PMID:24745276

  12. The formation of stable pH gradients with weak monovalent buffers for isoelectric focusing in free solution

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Thormann, Wolfgang; Graham, Aly; Bier, Milan

    1985-01-01

    Two methods which utilize simple buffers for the generation of stable pH gradients (useful for preparative isoelectric focusing) are compared and contrasted. The first employs preformed gradients comprised of two simple buffers in density-stabilized free solution. The second method utilizes neutral membranes to isolate electrolyte reservoirs of constant composition from the separation column. It is shown by computer simulation that steady-state gradients can be formed at any pH range with any number of components in such a system.

  13. Enhancement of the absorption of CO{sub 2} in alkaline buffer solutions: Joint action of two enhancers

    SciTech Connect

    Vazquez, G.; Chenlo, F.; Pereira, G.; Vazquez, P.

    1999-05-01

    The authors measured the absorption of CO{sub 2} in alkaline 0.5 M/0.5 M sodium carbonate/bicarbonate buffers containing either saccharose and sodium arsenite or saccharose and formaldehyde. Absorption enhancement increased upon increasing the concentration of either of the catalysts, but the joint action of the two was always less than the sum of their individual effects, the difference being a function of the acidities and concentrations of the catalysts and the pH of the carbonate/bicarbonate buffer solution

  14. Improving impurities clearance by amino acids addition to buffer solutions for chromatographic purifications of monoclonal antibodies.

    PubMed

    Ishihara, Takashi; Hosono, Mareto

    2015-07-15

    The performance of amino acids in Protein A affinity chromatography, anion exchange chromatography and cation exchange chromatography for monoclonal antibody purification was investigated. Glycine, threonine, arginine, glutamate, and histidine were used as buffer components in the equilibration, washing, and elution steps of these chromatographies. Improved clearance of impurity, high molecular weight species (HMW) and host cell proteins (HCP) was observed in the purification processes when using the amino acids as base-buffer constituents, additives or eluents compared with that of buffers without these amino acids. In addition, we designed a buffer system in which the mobile phases were composed of only a single amino acid, histidine, and applied it to the above three chromatographies. Effective HMW and HCP clearance was also obtained in this manner. These results suggest that amino acids may enhance impurity clearance during the purification of monoclonal antibodies. PMID:26057847

  15. The stability of DLC film on nitrided CoCrMo alloy in phosphate buffer solution

    NASA Astrophysics Data System (ADS)

    Zhang, T. F.; Liu, B.; Wu, B. J.; Liu, J.; Sun, H.; Leng, Y. X.; Huang, N.

    2014-07-01

    CoCrMo alloy is often used as the material for metal artificial joint, but metal debris and metal ions are the main concern on tissue inflammation or tissue proliferation for metal prosthesis. In this paper, nitrogen ion implantation and diamond like carbon (DLC) film composite treatment was used to reduce the wear and ion release of biomedical CoCrMo substrate. The mechanical properties and stability of N-implanted/DLC composite layer in phosphate buffer solution (PBS) was evaluated to explore the full potential of N-implanted/DLC composite layer as an artificial joint surface modification material. The results showed that the DLC film on N implanted CoCrMo (N-implanted/DLC composite layer) had the higher surface hardness and wear resistance than the DLC film on virgin CoCrMo alloy, which was resulted from the strengthen effect of the N implanted layer on CoCrMo alloy. After 30 days immersion in PBS, the structure of DLC film on virgin CoCrMo or on N implanted CoCrMo had no visible change. But the adhesion and corrosion resistance of DLC on N implanted CoCrMo (N-implanted/DLC composite layer) was weakened due to the dissolution of the N implanted layer after 30 days immersion in PBS. The adhesion reduction of N-implanted/DLC composite layer was adverse for in vivo application in long term. So researcher should be cautious to use N implanted layer as an inter-layer for increasing CoCrMo alloy load carrying capacity in vivo environment.

  16. Stabilizing effect of citrate buffer on the photolysis of riboflavin in aqueous solution

    PubMed Central

    Ahmad, Iqbal; Sheraz, Muhammad Ali; Ahmed, Sofia; Kazi, Sadia Hafeez; Mirza, Tania; Aminuddin, Mohammad

    2011-01-01

    In the present investigation the photolysis of riboflavin (RF) in the presence of citrate species at pH 4.0–7.0 has been studied. A specific multicomponent spectrophotometric method has been used to assay RF in the presence of photoproducts during the reactions. The overall first-order rate constants (kobs) for the photolysis of RF range from 0.42 to 1.08×10–2 min−1 in the region. The values of kobs have been found to decrease with an increase in citrate concentration indicating an inhibitory effect of these species on the rate of reaction. The second-order rate constants for the interaction of RF with total citrate species causing inhibition range from 1.79 to 5.65×10–3 M−1 min−1 at pH 4.0–7.0. The log k–pH profiles for the reactions at 0.2–1.0 M citrate concentration show a gradual decrease in kobs and the value at 1.0 M is more than half compared to that of k0, i.e., in the absence of buffer, at pH 5.0. Divalent citrate ions cause a decrease in RF fluorescence due to the quenching of the excited singlet state resulting in a decrease in the rate of reaction and consequently leading to the stabilization of RF solutions. The greater quenching of fluorescence at pH 4.0 compared to that of 7.0 is in accordance with the greater concentration of divalent citrate ions (99.6%) at that pH. The trivalent citrate ions exert a greater inhibitory effect on the rate of RF photolysis compared to that of the divalent citrate ions probably as a result of excited triplet state quenching. The values of second-order rate constants for the interaction of divalent and trivalent citrate ions are 0.44×10–2 and 1.06×10–3 M–1 min–1, respectively, indicating that the trivalent ions exert a greater stabilizing effect, compared to the divalent ions, on RF solutions. PMID:25755977

  17. Highly sensitive and selective detection of Al(III) ions in aqueous buffered solution with fluorescent peptide-based sensor.

    PubMed

    In, Byunggyu; Hwang, Gi Won; Lee, Keun-Hyeung

    2016-09-15

    A fluorescent sensor based on a tripeptide (SerGluGlu) with a dansyl fluorophore detected selectively Al(III) among 16 metal ions in aqueous buffered solutions without any organic cosolvent. The peptide-based sensor showed a highly sensitive turn on response to aluminium ion with high binding affinity (1.84×10(4)M(-1)) in aqueous buffered solutions. The detection limit (230nM, 5.98ppb) of the peptide-based sensor was much lower than the maximum allowable level (7.41μM) of aluminium ions in drinking water demanded by EPA. The binding mode of the peptide sensor with aluminium ions was characterized using ESI mass spectrometry, NMR titration, and pH titration experiments. PMID:27503680

  18. CHLORIDEDETERMINATION IN HIGH IONIC STRENGTH SOLUTION OF AMMONIUM ACETATE USING NEGATIVE ION ELECTRON SPRAY IONIZATION (HPLC/MS)

    EPA Science Inventory

    A precise ion chromatography method has been developed for the determination of chloride in high ionic strength ammonium acetate solutions (10-5 M-5 M) using sodium carbonate/sodium bicarbonate as eluent. Negative ion electrospray ionization (ESI) mass spectrometry was used for q...

  19. An experimental determination of ferrous chloride and acetate complexation in aqueous solutions to 300°C

    NASA Astrophysics Data System (ADS)

    Palmer, Donald A.; Hyde, K. E.

    1993-04-01

    The formation of the monochloroiron(II) complex, FeCl +, was studied potentiometrically from 125 to 295°C at 25 degree intervals at one molal ionic strength in aqueous solutions containing acetic acid, sodium acetate, and sodium trifluoromethanesulfonate. In this method, competition between chloride and acetate ions for the ferrous cation resulted in a change in solution pH, which in turn was monitored in situ in a hydrogen-electrode, concentration cell. A simple empirical approach was used to extrapolate these formation quotients to infinite dilution. The resulting constants proved to be in excellent agreement with previous spectrophotometric results obtained from 25 to 200°C. Thus, the present study confirms the validity of the conclusions made based on these earlier data concerning the solubility of Fe-containing minerals in hydrothermal brines. Formation constants at infinite dilution for FeCl + are compared with the stability of ferrous acetate and hydroxide complexes. The original potentiometric titration data for ferrous acetate complex formation were combined in a new fit with values determined from the present study at unit ionic strength. Two empirical treatments (namely the isocoulombic method and the temperature/water density function) were considered for fitting and extrapolating the infinite dilution formation constants to 350°C.

  20. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Lan; Lin, Xianzhong; Ennaoui, Ahmed; Wolf, Christian; Lux-Steiner, Martha Ch.; Klenk, Reiner

    2016-02-01

    We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  1. Removal and recovery of furfural, 5-hydroxymethylfurfural, and acetic acid from aqueous solutions using a soluble polyelectrolyte.

    PubMed

    Carter, Brian; Gilcrease, Patrick C; Menkhaus, Todd J

    2011-09-01

    In the cellulosic ethanol process, furfural, 5-hydroxymethylfurfural (HMF), and acetic acid are formed during the high temperature acidic pretreatment step needed to convert biomass into fermentable sugars. These compounds can inhibit cellulase enzymes and fermentation organisms at relatively low concentrations (≥ 1 g/L). Effective removal of these inhibitory compounds would allow the use of more severe pretreatment conditions to improve sugar yields and lead to more efficient fermentations; if recovered and purified, they could also be sold as valuable by-products. This study investigated the separation of aldhehydes (furfural and HMF) and organic acid (acetic acid) inhibitory compounds from simple aqueous solutions by using polyethyleneimene (PEI), a soluble cationic polyelectrolyte. PEI added to simple solutions of each inhibitor at a ratio of 1 mol of functional group to 1 mol inhibitor removed up to 89.1, 58.6, and 81.5 wt% of acetic acid, HMF, and furfural, respectively. Furfural and HMF were recovered after removal by washing the polyelectrolyte/inhibitor complex with dilute sulfuric acid solution. Recoveries up to 81.0 and 97.0 wt% were achieved for furfural and HMF, respectively. The interaction between PEI and acetic acid was easily disrupted by the addition of chloride ions, sulfate ions, or hydroxide ions. The use of soluble polymers for the removal and recovery of inhibitory compounds from biomass slurries is a promising approach to enhance the efficiency and economics of an envisioned biorefinery. PMID:21455937

  2. The potentiometric determination of stability constants for zinc acetate complexes in aqueous solutions to 295°C

    NASA Astrophysics Data System (ADS)

    Glordano, Thomas H.; Drummond, S. E.

    1991-09-01

    A potentiometric method was used to determine the formation quotients of zinc acetate complexes in aqueous solutions from 50 to 295°C at ionic strengths of 0.03,0.3, and 1.0 m. The potentiometric titrations were carried out in an externally heated, Teflon-lined concentration cell fitted with hydrogen electrodes. Formal sodium acetate concentrations of the experimental solutions ranged from 0.001 to 0. 1 m with acetic acid to sodium acetate ratios ranging from 30 to 300. Sodium trifluoromethanesulfonate (F3CSO3Na) was used as a supporting electrolyte. Stoichiometries and formation quotients for the complexes ZnCH3COO+, Zn(CH3COO)2, and Zn(CH3COO)-3 were derived from the titration data by regression analysis. Stability constants at infinite dilution (Kn) and other relevant thermodynamic quantities were calculated for these three complexes. Logarithms for the formation constants of the general reaction Zn2+ + nCH3COO- = Zn(CH3COO)n2-n are n = 1-(1.9 ± 0.2, 50°C), (2.3 ± 0.1, 100°C), (2.8 ± 0.1, 150°C), (3.5 ± 0.1, 200°C), (4.3 ± 0.2, 250°C), (5.3 ± 0.3, 300°C); n = 2-(3.4 ± 0.1, 50°C), (4.0 ± 0.1, 100°C), (4.83 ± 0.09, 150°C), (5.9 ± 0.1, 200°C), (7.1 ± 0.1, 250°C), (8.7 ± 0.2, 300°C); n = 3-(4.1 ± 0.3, 50°C), (4.7 ± 0.3, 100°C), (5.5 ± 0.3, 150°C), (6.6 ± 0.3, 200°C), (7.9 ± 0.3, 250°C), (9.4 ± 0.3, 300°C). Calculations of zinc speciation in acetate-chloride solutions show that zinc acetate complexes should have an importance similar to zinc chloride complexes in high acetate waters where chloride to acetate molal ratios are less than about 10.

  3. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?

    PubMed

    Cristofoletti, Rodrigo; Dressman, Jennifer B

    2016-06-01

    The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration. PMID:27032508

  4. Aspirin absorption rates and platelet inhibition times with 325-mg buffered aspirin tablets (chewed or swallowed intact) and with buffered aspirin solution.

    PubMed

    Feldman, M; Cryer, B

    1999-08-15

    Large clinical trials such as the second International Study of Infarct Survival routinely gave patients with myocardial infarction a chewed aspirin, yet there are no data to show whether chewing of aspirin is better, or worse, than swallowing a whole tablet. We performed a randomized, placebo-controlled study to determine whether chewing aspirin or administering it in solution accelerates its absorption and antiplatelet activity. On separate days, 12 fasting volunteers ingested 325 mg of buffered aspirin, either by chewing a tablet for 30 seconds before swallowing it with 4 ounces of water, swallowing a whole tablet with 4 ounces of water, or drinking 4 ounces of Alka Seltzer. Frequent blood samples were obtained for serum aspirin, salicylate, and thromboxane B2 (TxB2) concentrations. With all formulations of aspirin, serum TxB2 decreased 50% when the plasma aspirin concentration reached approximately 1,000 ng/ml. A 50% and 90% decrease in serum TxB2 occurred more quickly after chewing a tablet than after a tablet was swallowed whole. For example, the t 50% for serum TxB2 inhibition was 5.0 +/- 0.6 minutes with the chewed tablet versus 12.0 +/- 2.3 minutes when the tablet was swallowed (p = 0.01). A 50% decrease in serum TxB2 occurred 7.6 +/- 1.2 minutes after Alka Seltzer solution (p = 0.04 vs chewing a tablet; p = 0.13 vs swallowing a whole tablet). Chewing an aspirin tablet is the most effective way of accelerating absorption of aspirin into the blood and shortening the time required for an antiplatelet effect. PMID:10468077

  5. Proposing buffer zones and simple technical solutions for safeguarding river water quality and public health

    NASA Astrophysics Data System (ADS)

    Podimata, M. V.; Bekri, E. S.; Yannopoulos, P. C.

    2012-04-01

    Alfeios River Basin (ARB) constitutes one of the major hydrologic basins (≈3650km2) of Peloponnisos peninsula in Southern Greece. It is drained by Alfeios River and its tributaries, such as Lousios, Ladhon, Erymanthos, Kladheos, Selinous etc. The present manuscript takes a closer look at the importance of tributary basins and focuses on Erymanthos sub-basin that covers about 360 km2. Erymanthos River springs from Erymanthos Mountain that reaches altitudes of 2200 m and discharges 10 m3/sec, approximately, during the winter period, presenting a sound decrease from half to about an order of magnitude during summertime. Two factors stand out as reasons to select Erymanthos sub-basin as a case study. First, the sub-basin presents a significant variety of ecosystems and comprises a very important river system, since Erymanthos Tributary satisfies, among other uses, drinking water supply for a great majority of citizens in the region. Second, authors' experience of the study area in Research Program Pythagoras II, funded by the European Social Fund (ESF) and the Operational Program for Educational and Vocational Training II (EPEAEK II) of Greece, offers a basis for better understanding of the real problems in the area. Erymanthos watershed, in fact, faces a lot of pressures, in several levels, provoked by human activities and Erymanthos Tributary is vulnerable to pollution. Recognizing the importance of clean water for healthy people, a developing economy, and a sustainable environment, the challenge of the present paper is elaborating human-induced pressures in the study area, analyzing their effects, estimating pollution factors and proposing integrated solutions/tools and a number of methodologies/initiatives used to overcome the problem of contaminating water supply in a catchment that lacks of wastewater treatment and disposal systems. The preservation of a good ecological status in Erymanthos River is not only a necessity for achieving the goals of EU Water

  6. The Effect of Crystallizing and Non-crystallizing Cosolutes on Succinate Buffer Crystallization and the Consequent pH Shift in Frozen Solutions

    SciTech Connect

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-09-06

    To effectively inhibit succinate buffer crystallization and the consequent pH changes in frozen solutions. Using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), the crystallization behavior of succinate buffer in the presence of either (i) a crystallizing (glycine, mannitol, trehalose) or (ii) a non-crystallizing cosolute (sucrose) was evaluated. Aqueous succinate buffer solutions, 50 or 200 mM, at pH values 4.0 or 6.0 were cooled from room temperature to -25 C at 0.5 C/min. The pH of the solution was measured as a function of temperature using a probe designed to function at low temperatures. The final lyophiles prepared from these solutions were characterized using synchrotron radiation. When the succinic acid solution buffered to pH 4.0, in the absence of a cosolute, was cooled, there was a pronounced shift in the freeze-concentrate pH. Glycine and mannitol, which have a tendency to crystallize in frozen solutions, remained amorphous when the initial pH was 6.0. Under this condition, they also inhibited buffer crystallization and prevented pH change. At pH 4.0 (50 mM initial concentration), glycine and mannitol crystallized and did not prevent pH change in frozen solutions. While sucrose, a non-crystallizing cosolute, did not completely prevent buffer crystallization, the extent of crystallization was reduced. Sucrose decomposition, based on XRD peaks attributable to {beta}-D-glucose, was observed in frozen buffer solutions with an initial pH of 4.0. Trehalose completely inhibited crystallization of the buffer components when the initial pH was 6.0 but not at pH 4.0. At the lower pH, the crystallization of both trehalose dihydrate and buffer components was evident. When retained amorphous, sucrose and trehalose effectively inhibited succinate buffer component crystallization and the consequent pH shift. However, when trehalose crystallized or sucrose degraded to yield a crystalline decomposition product, crystallization of buffer was

  7. Calorimetric and Diffractometric Evidence for the Sequential Crystallization of Buffer Components and the Consequential pH Swing in Frozen Solutions

    SciTech Connect

    Sundaramurthi, Prakash; Shalaev, Evgenyi; Suryanarayanan, Raj

    2010-06-22

    Sequential crystallization of succinate buffer components in the frozen solution has been studied by differential scanning calorimetry and X-ray diffractometry (both laboratory and synchrotron sources). The consequential pH shifts were monitored using a low-temperature electrode. When a solution buffered to pH < pK{sub a2} was cooled from room temperature (RT), the freeze-concentrate pH first increased and then decreased. This was attributed to the sequential crystallization of succinic acid, monosodium succinate, and finally disodium succinate. When buffered to pH > pK{sub a2}, the freeze-concentrate pH first decreased and then increased due to the sequential crystallization of the basic (disodium succinate) followed by the acidic (monosodium succinate and succinic acid) buffer components. XRD provided direct evidence of the crystallization events in the frozen buffer solutions, including the formation of disodium succinate hexahydrate [Na{sub 2}(CH{sub 2}COO){sub 2} {center_dot} 6H{sub 2}O]. When the frozen solution was warmed in a differential scanning calorimeter, multiple endotherms attributable to the melting of buffer components and ice were observed. When the frozen solutions were dried under reduced pressure, ice sublimation was followed by dehydration of the crystalline hexahydrate to a poorly crystalline anhydrate. However, crystalline succinic acid and monosodium succinate were retained in the final lyophiles. The pH and the buffer salt concentration of the prelyo solution influenced the crystalline salt content in the final lyophile. The direction and magnitude of the pH shift in the frozen solution depended on both the initial pH and the buffer concentration. In light of the pH-sensitive nature of a significant fraction of pharmaceuticals (especially proteins), extreme care is needed in both the buffer selection and its concentration.

  8. Decontamination of aquatic vegetable leaves by removing trace toxic metals during pickling process with acetic acid solution.

    PubMed

    Wu, Wenbiao; Yang, Yixing

    2011-01-01

    The heavy-metal content of aquatic plants is mainly dependent upon their ecological system. This study indicated that although the toxic heavy-metal contents could be above the recommended maximum levels depending upon their concentrations in growing water, they can be decontaminated by pickling with 5% acetic acid solution. Almost all Cd, Hg, Ba, or Sb and 99.5% Pb, 96.7% Ag, or 97.1% Al were removed from Water Spinach leaves by soaking in acetic acid solution. For Water-Shield leaves, almost all Cd, Hg, Pb, Ba, or Sb and 95.0% Ag or 96.1% Al were removed. For Watercress leaves, almost all Cd, Hg, Ba, or Sb and 99.0% Pb or 99.7% Ag were removed. For Water Hyacinth leaves, almost all Cd, Ba, or Sb and 99.0% Hg, 98.5% Pb, 95.0% Ag, or 98.7% Al were removed. PMID:21888602

  9. Size Control of (99m)Tc-tin Colloid Using PVP and Buffer Solution for Sentinel Lymph Node Detection.

    PubMed

    Kim, Eun-Mi; Lim, Seok Tae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2015-06-01

    Colloidal particle size is an important characteristic that allows mapping sentinel nodes in lymphoscintigraphy. This investigation aimed to introduce different ways of making a (99m)Tc-tin colloid with a size of tens of nanometers. All agents, tin fluoride, sodium fluoride, poloxamer-188, and polyvinylpyrrolidone (PVP), were mixed and labeled with (99m)Tc. Either phosphate or sodium bicarbonate buffers were used to adjust the pH levels. When the buffers were added, the size of the colloids increased. However, as the PVP continued to increase, the size of the colloids was controlled to within tens of nanometers. In all samples, phosphate buffer added PVP (30 mg) stabilized tin colloid ((99m)Tc-PPTC-30) and sodium bicarbonate solution added PVP (50 mg) stabilized tin colloid ((99m)Tc-BPTC-50) were chosen for in vitro and in vivo studies. (99m)Tc-BPTC-50 (<20 nm) was primarily located in bone marrow and was then secreted through the kidneys, and (99m)Tc-PPTC-30 (>100 nm) mainly accumulated in the liver. When a rabbit was given a toe injection, the node uptake of (99m)Tc-PPTC-30 decreased over time, while (99m)Tc-BPTC-50 increased. Therefore, (99m)Tc-BPTC-50 could be a good candidate radiopharmaceutical for sentinel node detection. The significance of this study is that nano-sized tin colloid can be made very easily and quickly by PVP. PMID:26028937

  10. In situ measurement of reaction volume and calculation of pH of weak acid buffer solutions under high pressure.

    PubMed

    Min, Stephen K; Samaranayake, Chaminda P; Sastry, Sudhir K

    2011-05-26

    Direct measurements of reaction volume, so far, have been limited to atmospheric pressure. This study describes a method for in situ reaction volume measurements under pressure using a variable volume piezometer. Reaction volumes for protonic ionization of weak acid buffering agents (MES, citric acid, sulfanilic acid, and phosphoric acid) were measured in situ under pressure up to 400 MPa at 25 °C. The methodology involved initial separation of buffering agents within the piezometer using gelatin capsules. Under pressure, the volume of the reactants was measured at 25 °C, and the contents were heated to 40 °C to dissolve the gelatin and allow the reaction to occur, and cooled to 25 °C, where the volume of products was measured. Reaction volumes were used to calculate pH of the buffer solutions as a function of pressure. The results show that the measured reaction volumes as well as the calculated pH values generally quite agree with their respective theoretically predicted values up to 100 MPa. The results of this study highlight the need for a comprehensive theory to describe the pressure behavior of ionization reactions in realistic systems especially at higher pressures. PMID:21542618

  11. Coagulation of chitin and cellulose from 1-ethyl-3-methylimidazolium acetate ionic-liquid solutions using carbon dioxide.

    PubMed

    Barber, Patrick S; Griggs, Chris S; Gurau, Gabriela; Liu, Zhen; Li, Shan; Li, Zengxi; Lu, Xingmei; Zhang, Suojiang; Rogers, Robin D

    2013-11-18

    Chemisorption of carbon dioxide by 1-ethyl-3-methylimidazolium acetate ([C2 mim][OAc]) provides a route to coagulate chitin and cellulose from [C2 mim][OAc] solutions without the use of high-boiling antisolvents (e.g., water or ethanol). The use of CO2 chemisorption as an alternative coagulating process has the potential to provide an economical and energy-efficient method for recycling the ionic liquid. PMID:24115399

  12. An experimental determination of ferrous chloride and acetate complexation in aqueous solutions to 300[degrees]C

    SciTech Connect

    Palmer, D.A. ); Hyde, K.E. )

    1993-04-01

    Reliable thermodynamic information on the stability of ferrous chloride complexes at high temperatures is important to evaluations of iron transport in hydrothermal fluids, and to the power industry for iron corrosion and transport in the water/steam cycle. The formation of the monochloroiron(II) complex, FeCl[sup +], was studied potentiometrically from 125 to 295[degrees]C at 25 degree intervals at one molal ionic strength in aqueous solutions containing acetic acid, sodium acetate, and sodium trifluoromethanesulfonate. In this method, competition between chloride and acetate ions for the ferrous cation resulted in a change in solution pH, which in turn was monitored in situ in a hydrogen-electrode, concentration cell. A simple empirical approach was used to extrapolate these formation quotients to infinite dilution. The resulting constants proved to be in excellent agreement with previous spectrophotometric results obtained from 25 to 200[degrees]C. Thus, the present study confirms the validity of the conclusions made based on these earlier data concerning the solubility of Fe-containing minerals in hydrothermal brines. Formation constants at infinite dilution for FeCl[sup +] are compared with the stability of ferrous acetate and hydroxide complexes. The original potentiometric titration data for ferrous acetate complex formation were combined in a new fit with values determined from the present study at unit ionic strength. Two empirical treatments (namely the isocoulombic method and the temperature/water density function) were considered for fitting and extrapolating the infinite dilution formation constants to 350[degrees]C. 40 refs., 12 figs., 5 tabs.

  13. Robust Benzo[g, h, i ]perylenetriimide Dye-Sensitized Electrodes in Air-Saturated Aqueous Buffer Solution.

    PubMed

    Chen, Hung-Cheng; Williams, René M; Reek, Joost N H; Brouwer, Albert M

    2016-04-11

    Highly electron deficient benzo[ghi]perylenetriimide (BPTI) chromophores were persistently anchored to a metal oxide electrode surface and reversible formation of their radical anions was shown in air-saturated aqueous buffer solution. Our results show a very low reaction-rate constant of BPTI(.-) with O2 (k=1.92±0.05×10(-2)  s(-1) ). BPTI is a robust chromophore that can be used as the electron acceptor in molecule-based artificial photosynthetic devices for direct water splitting in aqueous phase. PMID:26928886

  14. Solvent effects of 1-ethyl-3-methylimidazolium acetate: solvation and dynamic behavior of polar and apolar solutes.

    PubMed

    Lesch, Volker; Heuer, Andreas; Holm, Christian; Smiatek, Jens

    2015-04-01

    We study the solvation properties of the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM](+)[ACE](-)) and the resulting dynamic behavior for differently charged model solutes at room temperature via atomistic molecular dynamics (MD) simulations of 300 ns length and 200 ns equilibration time. The solutes are simple model spheres which are either positively or negatively charged with a valency of one, or uncharged. The numerical findings indicate a distinct solvation behavior with the occurrence of well-pronounced solvation shells whose composition significantly depends on the charge of the solute. All the results of our simulations evidence the existence of a long-range perturbation effect in presence of the solutes. Our findings validate the dominance of electrostatic interactions with regard to unfavorable entropic ordering effects which elucidates the enthalpic character of the solvation process in ionic liquids for charged solutes. PMID:25680082

  15. Halogenated earth abundant metalloporphyrins as photostable sensitizers for visible-light-driven water oxidation in a neutral phosphate buffer solution.

    PubMed

    Chen, Hung-Cheng; Reek, Joost N H; Williams, René M; Brouwer, Albert M

    2016-06-01

    Very photostable tetrachloro-metalloporphyrins were developed as sensitizers for visible-light-driven water oxidation coupled to cobalt based water-oxidation catalysts in concentrated (0.1 M) phosphate buffer solution. Potassium persulfate (K2S2O8) acts as a sacrificial electron acceptor to oxidize the metalloporphyrin photosensitizers in their excited states. The radical cations thus produced drive the cobalt based water-oxidation catalysts: Co4O4-cubane and Co(NO3)2 as pre-catalyst for cobalt-oxide (CoOx) nanoparticles. Two different metalloporphyrins (Cu(ii) and Ni(ii)) both showed very high photostability in the photocatalytic reaction, as compared to non-halogenated analogues. This indicates that photostability primarily depends on the substitution of the porphyrin macrocycle, not on the central metal. Furthermore, our molecular design strategy not only positively increases the electrochemical potential by 120-140 mV but also extends the absorption spectrum up to ∼600 nm. As a result, the solar photon capturing abilities of halogenated metalloporphyrins (Cu(ii) and Ni(ii)) are comparable to that of the natural photosynthetic pigment, chlorophyll a. We successfully demonstrate long-term (>3 h) visible-light-driven water oxidation using our molecular system based on earth-abundant (first-row transition) metals in concentrated phosphate buffer solution. PMID:27197873

  16. Basics of base in hemodialysis solution: Dialysate buffer production, delivery and decontamination

    PubMed Central

    Desai, N.

    2015-01-01

    Hemodialysis requires the use of high volumes of freshly prepared, clean dialysate to foster the removal of low molecular weight metabolites (i.e., urea) and to correct the electrolyte and acid-base imbalance of chronic renal failure. Dialysate is produced by mixing clean, AAMI grade water with both an acid and base concentrate. This purpose of this report is to describe production, mixing and delivery of the buffer component of dialysate, and to also to address the cost, safety and feasibility of producing online bicarbonate. As endotoxin contaminated dialysate has been associated with the release of key mediators in acute and chronic inflammatory diseases associated with long-term hemodialysis therapy, aspects of disinfecting a bicarbonate delivery loop are also addressed. PMID:26199467

  17. Photoelectrochemical study of pitting on iron in borate buffer solution containing inhibitor

    SciTech Connect

    Yang, M.; Chen, L.; Cai, S.

    1997-01-01

    The photoelectrochemical behavior and the susceptibility of iron to pitting in borate buffer containing chloride ions (Cl{sup {minus}}) were investigated in the presence and absence of inhibitor PC-604, which is a mixture of polyhydric alcohol phosphoric easter and polyphosphoric ester of various molecular weights. Measurements of the band gap (E{sub g}) of the passive film on iron showed inhibitor concentration and passivation time did not interfere with E{sub g}. Photocurrent and photocurrent transients increased with increasing inhibitor quantities and passivation times at constant potential. The decay time-constant of the photocurrent transient was investigated as a specific parameter of the film. Data showed this parameter was related to pitting susceptibility of the passive film on iron.

  18. Viscosity Behavior of α-Amino Acids in Acetate Salt Solutions at Temperatures (303.15 to 323.15) K

    NASA Astrophysics Data System (ADS)

    Siddique, Jamal Akhter; Naqvi, Saeeda

    2012-01-01

    Viscosities of l-lysine monohydrochloride, l-histidine, and l-arginine in 1 m (mol · kg-1) aqueous solutions of sodium acetate, potassium acetate, and calcium acetate salts has been determined at (303.15, 308.15, 313.15, 318.15, and 323.15) K. The Falkenhagen coefficient, A, and Jones-Dole coefficient, B, relative viscosity, and specific viscosity of the solutions have also been determined using the measured viscosities. The results are interpreted in terms of solute-solute and solute-solvent interactions occurring in the system under investigation and also discussed in terms of the structure-making/breaking ability of the solute in these salt solutions. The structure making/breaking abilities of the solutes in the studied systems are strongly influenced by temperature.

  19. In situ ellipsometric investigation of stainless steel corrosion behavior in buffered solutions with amino acids

    NASA Astrophysics Data System (ADS)

    Vinnichenko, M. V.; Pham, M. T.; Chevolleau, T.; Poperenko, L. V.; Maitz, M. F.

    2003-02-01

    The corrosion of metals is associated both with a release of ions and changes in optical surface properties. In this study, these two effects were correlated by a potentiodynamic corrosion test and in situ probing of the surface by ellipsometry. The studies were carried out with stainless steel (SS) AISI 304 and 316 in phosphate buffered saline (PBS) and in Dulbecco's modified minimal essential medium (DMEM) at pH 7.4. In both media, 304 steel is more susceptible to corrosion than 316 grade. The 316 steel shows a higher corrosion potential and higher corrosion current density in PBS than in DMEM, for 304 steel this behavior is vice versa. Ellipsometry demonstrated a higher sensitivity than potentiodynamics to surface modification in the cathodic area. In DMEM the removal of a surface layer at negative potential and a further repassivation with increasing potential was characteristic. In PBS a surface layer started to grow immediately. X-ray photoelectron spectra of this layer formed in PBS are consistent with iron phosphate. Its formation is inhibited in DMEM; the presence of amino acids is discussed as the reason.

  20. An evaluation of MES (2(N-Morpholino)ethanesulfonic acid) and Amberlite IRC-50 as pH buffers for nutrient solution studies

    NASA Technical Reports Server (NTRS)

    Bugbee, B. G.; Salisbury, F. B.

    1985-01-01

    All buffering agents used to stabilize pH in hydroponic research have disadvantages. Inorganic buffers are absorbed and may become phytotoxic. Solid carbonate salts temporarily mitigate decreasing pH but provide almost no protection against increasing pH, and they alter nutrient absorption. Exchange resins are more effective, but we find that they remove magnesium and manganese from solution. We have tested 2(N-Morpholino)ethanesulfonic acid (MES) as a buffering agent at concentrations of 1 and 10 mol m-3 (1 and 10 mM) with beans, corn, lettuce, tomatoes, and wheat. MES appears to be biologically inert and does not interact significantly with other solution ions. Relative growth rates among controls and MES treatments were nearly identical for each species during the trial period. The pH was stabilized by 1 mol m-3 MES. This buffer warrants further consideration in nutrient research.

  1. An evaluation of MES (2(N-Morpholino)ethanesulfonic acid) and Amberlite IRC-50 as pH buffers for nutrient solution studies.

    PubMed

    Bugbee, B G; Salisbury, F B

    1985-01-01

    All buffering agents used to stabilize pH in hydroponic research have disadvantages. Inorganic buffers are absorbed and may become phytotoxic. Solid carbonate salts temporarily mitigate decreasing pH but provide almost no protection against increasing pH, and they alter nutrient absorption. Exchange resins are more effective, but we find that they remove magnesium and manganese from solution. We have tested 2(N-Morpholino)ethanesulfonic acid (MES) as a buffering agent at concentrations of 1 and 10 mol m-3 (1 and 10 mM) with beans, corn, lettuce, tomatoes, and wheat. MES appears to be biologically inert and does not interact significantly with other solution ions. Relative growth rates among controls and MES treatments were nearly identical for each species during the trial period. The pH was stabilized by 1 mol m-3 MES. This buffer warrants further consideration in nutrient research. PMID:11539688

  2. Removal of dicyclohexyl acetic acid from aqueous solution using ultrasound, ozone and their combination.

    PubMed

    Kumar, Pardeep; Headley, John; Peru, Kerry; Bailey, Jon; Dalai, Ajay

    2014-01-01

    Naphthenic acids are a complex mixture of organic components, some of which include saturated alkyl-substituted cycloaliphatic carboxylic acids and acyclic aliphatic acids. They are naturally found in hydrocarbon deposits like oil sand, petroleum, bitumen and crude oil. In this study, the oxidation of a relatively high molecular weight naphthenic acid (Dicyclohexyl acetic acid) was investigated using ozonation, ultrasonication and hydrogen peroxide alone and their combinations. Effects on oxidation of dicyclohexyl acetic acid (DAA) were measured for different concentrations of ozone ranging between 0.7 to 3.3 mg L(-1) and pH in the range 6 to 10. Ultrasonication and hydrogen peroxide alone were not effective to oxidize dicyclohexyl acetic acid, but combining ultrasonication with H2O2 had a significant effect on oxidation of dicyclohexyl acetic acid with maximum removal reaching to 84 ± 2.2% with 81 ± 2.1% reduction in chemical oxygen demand (COD). Synergistic effects were observed for combining ultrasonication with ozonation and resulted in 100% DAA removal with 98 ± 0.8% reduction in COD within 15 min at 3.3 mg L(-1) ozone concentration and 130 Watts ultrasonication power. The reaction conditions obtained for the maximum oxidation of DAA and COD removal were used for the degradation of naphthenic acids mixture extracted from oil sands process water (OSPW). The percentage oxidation of NAs mixture extracted from OSPW was 89.3 ± 1.1% in ozonation and combined ozonation and ultrasonication, but COD removal observed was 65 ± 1.2% and 78 ± 1.4% for ozonation and combined ozonation and ultrasonication treatments, respectively. PMID:25137539

  3. Effect of Phosphate-Buffered Solution Corrosion on the Ratcheting Fatigue Behavior of a Duplex Mg-Li-Al Alloy

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Yu, Dunji; Gao, Li-Lan; Gao, Hong

    2016-05-01

    This work reports the uniaxial ratcheting and fatigue behavior of a duplex Mg-Li-Al alloy under the influence of phosphate-buffered solution corrosion. Microstructural observations reveal pitting and filament corrosion defects, which impair the load-bearing capacity of the alloy and cause stress concentration, thus leading to an accelerated accumulation of ratcheting strain and shortened fatigue life under the same nominal loading conditions. Comparing Smith model, Smith-Watson-Topper model, and Paul-Sivaprasad-Dhar model, a ratcheting fatigue life prediction model based on the Broberg damage rule and the Paul-Sivaprasad-Dhar model was proposed, and the model yielded a superior prediction for the studied magnesium alloy.

  4. Growth and Characterization of La2Zr2O7 Buffer Layers Deposited by Chemical Solution Deposition

    NASA Astrophysics Data System (ADS)

    Armenio, A. Angrisani; Augieri, A.; Fabbri, F.; Freda, R.; Galluzzi, V.; Mancini, A.; Rizzo, F.; Rufoloni, A.; Vannozzi, A.; Sotgiu, G.; Pompeo, N.; Torokhtii, K.; Silva, E.; Bemporad, E.; Contini, G.; Celentano, G.

    The deposition and characterization of La2Zr2O7 thin films deposited by metal-organic decomposition method on both single crystal SrTiO3 and cube textured Ni-5 at.%W substrates are presented. Metal acetylacetonates in propionic acid solution was used. The results showed that LZO films are epitaxially grown with smooth surface with rms roughness around 2 nm. YBa2Cu3O7-δ films, deposited by pulsed laser deposition technique on LZO buffer layers, showed critical temperature of 90 K and critical current density in self magnetic field Jc = 1.6 and 13 MA/cm2 at 77 K and 4.2 K, respectively. A better Jc retention in magnetic field for YBCO films deposited on LZO/STO than YBCO on bare STO is observed indicating a rather strong vortex pinning as confirmed by microwave measurements.

  5. Electrochemical Behavior of Pure Copper in Phosphate Buffer Solutions: A Comparison Between Micro- and Nano-Grained Copper

    NASA Astrophysics Data System (ADS)

    Imantalab, O.; Fattah-alhosseini, A.; Keshavarz, M. K.; Mazaheri, Y.

    2016-02-01

    In this work, electrochemical behavior of annealed (micro-) and nano-grained pure copper (fabricated by accumulative roll bonding process) in phosphate buffer solutions of various pH values ranging from 10.69 to 12.59 has been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by optical microscope and transmission electron microscopy. To investigate the electrochemical behavior of the samples, the potentiodynamic polarization, Mott-Schottky analysis, and electrochemical impedance spectroscopy (EIS) were carried out. Potentiodynamic polarization plots and EIS measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure copper. Also, Mott-Schottky analysis indicated that the passive films behaved as p-type semiconductors and grain refinement did not change the semiconductor type of passive films.

  6. A simple ratiometric and colorimetric chemosensor for the selective detection of fluoride in DMSO buffered solution

    NASA Astrophysics Data System (ADS)

    Niu, Hu; Shu, Qinghai; Jin, Shaohua; Li, Bingjun; Zhu, Jiaping; Li, Lijie; Chen, Shusen

    2016-01-01

    A derivative of squaramide (cyclobuta[b]quinoxaline-1, 2(3H, 8H)-dione) has been synthesized for the ratiometric and colorimetric sensing of F- in aqueous solution in competitive fashion. With F-, probe 1 showed a highly selective naked-eye detectable color change along with a characteristic UV-Vis absorbance over other tested ions, which probably originates from the deprotonation occurred between 1 and F-, as proved by the 1H NMR titration experiments and DFT calculations.

  7. Chemiluminescence flow biosensor for glucose using Mg-Al carbonate layered double hydroxides as catalysts and buffer solutions.

    PubMed

    Wang, Zhihua; Liu, Fang; Lu, Chao

    2012-01-01

    In this work, serving as supports in immobilizing luminol reagent, catalysts of luminol chemiluminescence (CL), and buffer solutions for the CL reaction, Mg-Al-CO(3) layered double hydroxides (LDHs) were found to trigger luminol CL in weak acid solutions (pH 5.8). The silica sol-gel with glucose oxidase and horseradish peroxidase was immobilized in the first half of the inside surface of a clear quartz tube, and luminol-hybrid Mg-Al-CO(3) LDHs were packed in the second half. Therefore, a novel CL flow-through biosensor for glucose was constructed in weak acid solutions. The CL intensity was linear with glucose concentration in the range of 0.005-1.0mM, and the detection limit for glucose (S/N=3) was 0.1 μM. The proposed biosensor exhibited excellent stability, high reproducibility and high selectivity for the determination of glucose and has been successfully applied to determine glucose in human plasma samples with satisfactory results. The success of this work has broken the bottleneck of the pH incompatibility between luminol CL and enzyme activity. PMID:22770831

  8. Nanofiltration of rhodium tris(triphenylphosphine) catalyst in ethyl acetate solution

    NASA Astrophysics Data System (ADS)

    Shaharun, Maizatul S.; Mustafa, Ahmad K.; Taha, Mohd F.

    2012-09-01

    Solvent resistant nanofiltration (SRNF) using polymer membranes has recently received enhanced attention due to the search for cleaner and more energy-efficient technologies. The large size of the rhodium tris(triphenylphosphine) [HRh(CO)(PPh3)3] catalyst (>400 Da) - relative to other components of the hydroformylation reaction provides the opportunity for a membrane separation based on retention of the catalyst species while permeating the solvent. The compatibility of the solvent-polyimide membrane (DuraMem{trade mark, serif} 200 and DuraMem{trade mark, serif} 500) combinations was assessed in terms of the membrane stability in solvent plus non-zero solvent flux at 2.0 MPa. Good HRh(CO)(PPh3)3 rejection (>0.95) and solvent fluxes of 9.9 L/m2ṡh1 at 2.0 MPa were obtained in the catalyst-ethyl acetate-DuraMem 500 system. The effect of pressure and catalyst concentration on the solvent flux and catalyst rejection was conducted on the catalyst-ethyl acetate-membrane systems. Increasing pressure substantially improved both solvent flux and catalyst rejection, while increasing catalyst concentration was found to be beneficial in terms of substantial increases in catalyst rejection without significantly affecting solvent flux.

  9. Synthesis and Spectroscopic Analysis of a Cyclic Acetal: A Dehydration Performed in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Collard, David M.; Jones, Adolphus G.; Kriegel, Robert M.

    2001-01-01

    The treatment of aldehydes (and ketones) with diols in the presence of acid gives acetals (and ketals) in an equilibrium reaction. Treatment of pentaerythritol with benzaldehyde in aqueous acid gives the monoacetal, 5,5-bis(hydroxymethyl)-2-phenyl-1,3-dioxane. The reaction has a number of interesting features. The isolated product is the monobenzal not the dibenzal, and the reaction, a dehydration, is performed in water. The reaction proceeds to provide the acetal owing to the insolubility of the product in the aqueous reaction medium, thus removing the product from the equilibrium. This experiment is suitable for incorporation into the undergraduate organic laboratory as the synthesis of a product for characterization by melting point, solubility, and proton nuclear magnetic resonance. Only through recognition of the three-dimensional structure of the dioxane ring can students explain the appearance of the 1H NMR spectrum of the product. The hydroxymethyl groups of the product are inequivalent, as are the hydrogens of the methylenes in the ring. The experiment may also be presented as a group exercise to optimize the conditions of a reaction to maximize the yield of the desired product.

  10. Ink-jet printing of SrTiO3 buffer layers from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pollefeyt, G.; Clerick, S.; Vermeir, P.; Feys, J.; Hühne, R.; Lommens, P.; Van Driessche, I.

    2014-09-01

    In this work, fully a-axis oriented SrTiO3 thin films were synthesized by ink-jet printing of water-based precursor inks. The developed precursor solution or ‘ink’ was optimized in terms of rheology, leading to the ejection of single droplets showing a maximum contact angle of 12° on (100) oriented single crystal LaAlO3 substrates. By using the appropriate ink-jet deposition parameters and thermal treatment, well-textured and dense SrTiO3 films of 130 nm thickness were obtained. The biaxial texture is maintained up to the surface of the films, leading to the formation of (h00)-oriented terraces. As shown by transmission electron microscopy, excellent texture transfer was achieved from the SrTiO3 film to the YBa2Cu3O7 - δ layer deposited by pulsed laser deposition. Outstanding superconducting properties were obtained with critical current densities up to 3.6 MA cm-2 in self-field at 77 K, demonstrating that these sustainable SrTiO3 films meet the requirements to be used as growing template for high quality superconducting coatings.

  11. Preparation of DNA films for studies under vacuum conditions. The influence of cations in buffer solutions

    NASA Astrophysics Data System (ADS)

    Śmiałek, M. A.; Balog, R.; Jones, N. C.; Field, D.; Mason, N. J.

    2010-10-01

    Experiments were carried out to determine the optimum conditions required for the preparation of uniform films of supercoiled plasmid DNA to be used in irradiation experiments under high vacuum conditions. Investigations reveal that significant damage to the DNA molecules occurs due to the evacuation process when films were formed from DNA samples in ultra high purity water only. A variety of bases were tested for their possible protective capabilities and sodium hydroxide solution was found to be the most effective in maintaining the supercoiled structure of plasmid DNA during the preparation process. Using a transmission electron microscope we also examined the structure of the DNA films which are formed upon evacuation and how the proposed adducts influence the preparation process. It was found that the addition of bases cause the DNA to aggregate, noting that a base is required for the stability of the DNA molecules. The experimental results presented in this paper show that it may not be possible to perform experiments on so-called pure DNA under vacuum with no stabilizers being added to the sample before the evacuation process.

  12. Preparation of bi-axially aligned YBa 2Cu 3O 7- δ film on CeO 2-buffered MgO by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Yamagiwa, K.; Hiei, H.; Takahashi, Y.; Kim, S. B.; Matsumoto, K.; Ikuta, H.; Mizutani, U.; Hirabayashi, I.

    2000-06-01

    We have succeeded in preparing in-plane aligned YBa 2Cu 3O 7- δ (Y123) film by chemical solution deposition (CSD) processing on CeO 2 (100)-buffered MgO (100) substrates. The CeO 2 buffer film was deposited on MgO (100) single crystalline substrate by pulsed laser deposition (PLD). For CSD coating, a homogeneous coating solution having a molar ratio of Y:Ba:Cu=1:2:3, was prepared by dissolving metal naphthenates in toluene. This solution was spin-coated both on the YSZ (100) and on the CeO 2-buffered MgO (100) single crystalline substrates. The precursor films were calcined at 425°C and fired at various temperatures under low oxygen partial pressure ( pO 2). All Y123 films showed strong (00 n) peaks, which correspond to c-axis orientation perpendicular to the substrates and their a/ b-axes were in-plane aligned. We confirmed that CeO 2 buffer is usable for CSD processing. While the Y123 films on the YSZ reacted with the substrate forming BaZrO 3 phase and did not show sufficient superconducting properties. The Tc,zero value of the Y123 film prepared on CeO 2-buffered MgO substrate was 91.5 K and Jc was 1.2×10 5 A/cm 2 at 77 K, 0 T.

  13. Comparative Evaluation of Shear Bond Strength of Luting Cements to Different Core Buildup Materials in Lactic Acid Buffer Solution

    PubMed Central

    Patil, Siddharam M.; Desai, Raviraj G.; Arabbi, Kashinath C.; Prakash, Ved

    2015-01-01

    Aim and Objectives The core buildup material is used to restore badly broken down tooth to provide better retention for fixed restorations. The shear bond strength of a luting agent to core buildup is one of the crucial factors in the success of the cast restoration. The aim of this invitro study was to evaluate and compare the shear bond strength of luting cements with different core buildup materials in lactic acid buffer solution. Materials and Methods Two luting cements {Traditional Glass Ionomer luting cement (GIC) and Resin Modified Glass Ionomer luting cement (RMGIC)} and five core buildup materials {Silver Amalgam, Glass ionomer (GI), Glass Ionomer Silver Reinforced (GI Silver reinforced), Composite Resin and Resin Modified Glass Ionomer(RMGIC)} were selected for this study. Total 100 specimens were prepared with 20 specimens for each core buildup material using a stainless steel split metal die. Out of these 20 specimens, 10 specimens were bonded with each luting cement. All the bonded specimens were stored at 370c in a 0.01M lactic acid buffer solution at a pH of 4 for 7days. Shear bond strength was determined using a Universal Testing Machine at a cross head speed of 0.5mm/min. The peak load at fracture was recorded and shear bond strength was calculated. The data was statistically analysed using Two-way ANOVA followed by HOLM-SIDAK method for pair wise comparison at significance level of p<0.05. Results Two-Way ANOVA showed significant differences in bond strength of the luting cements (p<0.05) and core materials (p<0.05) and the interactions (p<0.05). Pairwise comparison of luting cements by HOLM-SIDAK test, showed that the RMGIC luting cement had higher shear bond strength values than Traditional GIC luting cement for all the core buildup materials. RMGIC core material showed higher bond strength values followed by Composite resin, GI silver reinforced, GI and silver amalgam core materials for both the luting agents. Conclusion Shear bond strength of

  14. 76 FR 32366 - Determination That ORLAAM (Levomethadyl Acetate Hydrochloride) Oral Solution, 10 Milligrams...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... Book. In the Federal Register of November 7, 2007 (72 FR 62858), FDA ] announced that it was... solution, 10 mg/mL, if all other legal and regulatory requirements are met. FOR FURTHER INFORMATION...

  15. Acid neutralizing processes in an alpine watershed front range, Colorado, U.S.A.-1: Buffering capacity of dissolved organic carbon in soil solutions

    USGS Publications Warehouse

    Iggy, Litaor M.; Thurman, E.M.

    1988-01-01

    Soil interstitial waters in the Green Lakes Valley, Front Range, Colorado were studied to evaluate the capacity of the soil system to buffer acid deposition. In order to determine the contribution of humic substances to the buffering capacity of a given soil, dissolved organic carbon (DOC) and pH of the soil solutions were measured. The concentration of the organic anion, Ai-, derived from DOC at sample pH and the concentration of organic anion, Ax- at the equivalence point were calculated using carboxyl contents from isolated and purified humic material from soil solutions. Subtracting Ax- from Ai- yields the contribution of humic substances to the buffering capacity (Aequiv.-). Using this method, one can evaluate the relative contribution of inorganic and organic constituents to the acid neutralizing capacity (ANC) of the soil solutions. The relative contribution of organic acids to the overall ANC was found to be extremely important in the alpine wetland (52%) and the forest-tundra ecotone (40%), and somewhat less important in the alpine tundra sites (20%). A failure to recognize the importance of organic acids in soil solutions to the ANC will result in erroneous estimates of the buffering capacity in the alpine environment of the Front Range, Colorado. ?? 1988.

  16. Morphological and phase evolution of TiO 2 nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il

    2009-04-01

    Nanosized anatase and rutile TiO 2 having different shape, phase and size have been prepared from aqueous solutions of peroxo titanium complex starting from titanium(IV) isopropoxide (TTIP), acetic acid and hydrogen peroxide (H 2O 2) in water/isopropanol media by a facile sol-gel process. The TiO 2 nanocrystals are characterized by powder X-ray diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, TEM, high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) techniques. The influence of pH and the sequence of addition of reaction contents on the phase and morphology of TiO 2 are studied. The reasons for the observation of only anatase and/or mixture of anatase and rutile are given.

  17. Corrosion Behavior of Ultra-fine Grained 1050 Aluminum Alloy Fabricated by ARB Process in a Buffer Borate Solution

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, A.; Gashti, S. O.

    2015-09-01

    Accumulative roll bonding (ARB) has been used as a severe plastic deformation process for the industrial production of ultra-fine grained (UFG) and nano-crystalline sheets with excellent mechanical properties. In the present study, the effect of the ARB process on the corrosion behavior of UFG and nano-crystalline 1050 aluminum alloy in a buffer borate solution (pH 5.5) has been investigated. The result of microhardness tests revealed that microhardness values increase with an increasing number of ARB cycles. A sharp increase in microhardness is seen after three ARB cycles, whereas moderate additional increases are observed afterward for up to nine cycles. Also, the XRD results showed that the mean crystallite size decreased to about 91 nm after nine cycles. The potentiodynamic plots show that as a result of ARB, the corrosion behavior of the UFG and nano-crystalline specimens improves, compared to the annealed 1050 aluminum alloy. Moreover, electrochemical impedance spectroscopy measurements showed that the polarization resistance increases with an increasing number of ARB cycles.

  18. Repassivation behavior of 316L stainless steel in borate buffer solution: Kinetics analysis of anodic dissolution and film formation

    NASA Astrophysics Data System (ADS)

    Xu, Haisong; Sun, Dongbai; Yu, Hongying

    2015-12-01

    The repassivation behavior of metals or alloys after oxide film damage determines the development of local corrosion and corrosion resistance. In this work, the repassivation kinetics of 316L stainless steel (316L SS) are investigated in borate buffer solution (pH 9.1) by using the abrading electrode technique. The current densities flowing from bare 316L SS surface are measured by potentiostatic method and analyzed to characterize repassivation kinetics. The initial stages of current decay (t < 500 ms) are discussed according to a film growth model, which describes the initial current transient should be divided into substrate dissolution current and passive film formation current based on Avrami kinetics. Then the two independent components are analyzed individually. The film formation rate and the thickness of film are compared in different applied potential. It is shown that anodic dissolution dominates the repassivation for a short time during the early times, and a higher applied potential will promote the anodic dissolution of metal. The film growth rate increases slightly with increasing in potential. Correspondingly, increase in applied potential from 0 VSCE to 0.8 VSCE results in thicker monolayer, which covers the whole bare surface at the time of θ = 1. The electric field strengths through the thin passive film could reach 3.97 × 106 V cm-1.

  19. The bacteriophage phi29 head-tail connector imaged at high resolution with the atomic force microscope in buffer solution.

    PubMed

    Müller, D J; Engel, A; Carrascosa, J L; Vélez, M

    1997-05-15

    The surfaces of two- and three-dimensional phi29 connector crystals were imaged in buffer solution by atomic force microscopy (AFM). Both topographies show a rectangular unit cell with dimensions of 16.5 nm x 16.5 nm. High resolution images of connectors from the two-dimensional crystal surface show two connectors per unit cell confirming the p42(1)2 symmetry. The height of the connector was estimated to be at least 7.6 nm, a value close to that found in previous studies using different techniques. The 12 subunits of the wide connector domain were clearly resolved and showed a right-handed vorticity. The channel running along the connector had a diameter of 3.7 nm in the wide domain, while it was 1.7 nm in the narrow domain end, thus suggesting a tronco-conical channel shape. Moreover, the narrow connector end appears to be rather flexible. When the force applied to the stylus was between 50 and 100 pN, the connector end was fully extended. At forces of approximately 150 pN, these ends were pushed towards the crystal surface. The complementation of the AFM data with the three-dimensional reconstruction obtained from electron microscopy not only confirmed the model proposed, but also offers new insights that may help to explain the role of the connector in DNA packing. PMID:9184202

  20. The preparation of accelerator targets by the evaporation of acetate-organic solutions in the presence of NH/sub 3/ gas

    SciTech Connect

    Cai, S.Y.; Ghiorso, A.; Hoffman, D.C.

    1987-03-01

    The chemical methods described in this paper have been developed for preparation of isotopic targets for bombardment by accelerator-produced ions. Three systems are compared: nitrate-, chloride-, and acetate-organic solutions. The best method was found to be the metallic acetate-organic solution system, evaporated onto the substrate in the presence of ammonia gas. A detailed procedure is given for this method. The targets obtained by the acetate-organic solution system are uniform and adherent. The hydroxide forms fine crystals of good quality for target thicknesses from a few ..mu..g/cm/sup 2/ to several mg/cm/sup 2/. Thicknesses up to 5 mg/cm/sup 2/ of Eu as the oxide were obtained by this method. The process is simple and fast. 18 refs., 1 tab.

  1. Resonance Raman characterization of different forms of ground-state 8-bromo-7-hydroxyquinoline caged acetate in aqueous solutions.

    PubMed

    An, Hui-Ying; Ma, Chensheng; Nganga, Jameil L; Zhu, Yue; Dore, Timothy M; Phillips, David Lee

    2009-03-26

    The 8-bromo-7-hydroxyquinolinyl group (BHQ) is a derivative of 7-hydroxyquinoline (7-HQ) and BHQ molecules coexisting as different forms in aqueous solution. Absorption and resonance Raman spectroscopic methods were used to examine 8-bromo-7-hydroxyquinoline protected acetate (BHQ-OAc) in acetonitrile (MeCN), H(2)O/MeCN (60:40, v/v, pH 6 approximately 7), and NaOH-H(2)O/MeCN (60:40, v/v, pH 11 approximately 12) to obtain a better characterization of the forms of the ground-state species of BHQ-OAc in aqueous solutions and to examine their properties. The absorption spectra of BHQ-OAc in water show no absorption bands of the tautomeric species unlike the strong band at about 400 nm observed for the tautomeric form in 7-HQ aqueous solution. The resonance Raman spectra in conjunction with Raman spectra predicted from density functional theory (DFT) calculations reveal the observation of a double Raman band system characteristic of the neutral form (the nominal C=C ring stretching, C-N stretching, and O-H bending modes at 1564 and 1607 cm(-1)) and a single Raman band diagnostic of the enol-deprotonated anionic form (the nominal C=C ring, C-N, and C-O(-) stretching modes in the 1593 cm(-1) region). These results suggest that the neutral form of BHQ-OAc is the major species in neutral aqueous solution. There is a modest increase in the amount of the anionic form and a big decrease in the amount of the tautomeric form of the molecules for BHQ-OAc compared to 7-HQ in neutral aqueous solution. The presence of the 8-bromo group and/or competitive hydrogen bonding that hinder the formation and transfer process of a BHQ-OAc-water cyclic complex may be responsible for this large substituent effect. PMID:19296708

  2. Direct determination of peracetic acid, hydrogen peroxide, and acetic acid in disinfectant solutions by far-ultraviolet absorption spectroscopy.

    PubMed

    Higashi, Noboru; Yokota, Hiroshi; Hiraki, Satoru; Ozaki, Yukihiro

    2005-04-01

    In this paper we propose a rapid and highly selective far-ultraviolet (FUV) spectroscopic method for the simultaneous determination of peracetic acid (PAA), hydrogen peroxide, and acetic acid (AA). For this purpose we developed a novel FUV spectrometer that enables us to measure the spectra down to 180 nm. Direct determination of PAA, H(2)O(2), and AA, the three main species in disinfectant solutions, was carried out by using their absorption bands in the 180-220-nm region. The proposed method does not require any reagents or catalysts, a calibration standard, and a complicated procedure for the analysis. The only preparation procedure requested is a dilution of H(2)O(2) with pure water to a concentration range lower than 0.2 wt % in the sample solutions. Usually, the required concentration range can be obtained by the 10 times volume dilution of the actual disinfectant solutions. As the measured sample does not leave any impurity for the disinfection, it can be reused completely by using a circulation system. The detection limit for PAA of the new FUV spectrometer was evaluated to be 0.002 wt %, and the dynamic ranges of the measured concentrations were from 0 to 0.05 wt %, from 0 to 0.2 wt %, and from 0 to 0.2 wt % for PAA, H(2)O(2), and AA, respectively. The response time for the simultaneous determination of the three species is 30 s, and the analysis is applicable even to the flowing samples. This method may become a novel approach for the continuous monitoring of PAA in disinfectant solutions on the process of sterilization. PMID:15801764

  3. Transport phenomena accompanying redox switching in polythionine films immersed in aqueous acetic acid solutions

    SciTech Connect

    Bruckenstein, S.; Wilde, C.P. ); Hillman, A.R. )

    1990-08-09

    The transport of neutral molecules in electroactive polymer films is a problem of considerable importance and is addressed here for thin (ca. 10 nm thick) polythionine films. In weak acid media, pH < pK{sub HA}, both solvent and undissociated weak acid are present in the polymer. Raising the pH above pK{sub HA} progressively removes HA. Using the quartz crystal microbalance, we determined the film weight changes accompanying the redox switching process. At all pH's studied, a mass decrease accompanies reduction. The magnitude of this change is consistent with the expulsion of one water molecule per redox site where, at low pH, HA within the film acts as the sole source of counterion, A{sup {minus}}. At higher pH, counterions must increasingly be supplied by the bathing solution, with the result that the mass change becomes less negative. These results are interpreted from a purely thermodynamic viewpoint, and then we discuss a coordination model as a relevant, special case.

  4. Diffusion of 1-ethyl-3-methyl-imidazolium acetate in glucose, cellobiose, and cellulose solutions.

    PubMed

    Ries, Michael E; Radhi, Asanah; Keating, Alice S; Parker, Owen; Budtova, Tatiana

    2014-02-10

    Solutions of glucose, cellobiose and microcrystalline cellulose in the ionic liquid 1-ethyl-3-methyl-imidazolium ([C2mim][OAc]) have been examined using pulsed-field gradient (1)H NMR. Diffusion coefficients of the cation and anion across the temperature range 20-70 °C have been determined for a range of concentrations (0-15% w/w) of each carbohydrate in [C2mim][OAc]. These systems behave as an "ideal mixture" of free ions and ions that are associated with the carbohydrate molecules. The molar ratio of carbohydrate OH groups to ionic liquid molecules, α, is the key parameter in determining the diffusion coefficients of the ions. Master curves for the diffusion coefficients of cation, anion and their activation energies are generated upon which all our data collapses when plotted against α. Diffusion coefficients are found to follow an Arrhenius type behavior and the difference in translational activation energy between free and associated ions is determined to be 9.3 ± 0.9 kJ/mol. PMID:24405090

  5. Diffusion of 1-Ethyl-3-methyl-imidazolium Acetate in Glucose, Cellobiose, and Cellulose Solutions

    PubMed Central

    2014-01-01

    Solutions of glucose, cellobiose and microcrystalline cellulose in the ionic liquid 1-ethyl-3-methyl-imidazolium ([C2mim][OAc]) have been examined using pulsed-field gradient 1H NMR. Diffusion coefficients of the cation and anion across the temperature range 20–70 °C have been determined for a range of concentrations (0–15% w/w) of each carbohydrate in [C2mim][OAc]. These systems behave as an “ideal mixture” of free ions and ions that are associated with the carbohydrate molecules. The molar ratio of carbohydrate OH groups to ionic liquid molecules, α, is the key parameter in determining the diffusion coefficients of the ions. Master curves for the diffusion coefficients of cation, anion and their activation energies are generated upon which all our data collapses when plotted against α. Diffusion coefficients are found to follow an Arrhenius type behavior and the difference in translational activation energy between free and associated ions is determined to be 9.3 ± 0.9 kJ/mol. PMID:24405090

  6. Thermodynamic characteristics of molecular interactions between L-tryptophan and nicotinic acid and uracyl in aqueous buffer solutions at 298 K

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Tyunina, E. Yu.; Mezhevoi, I. N.; Tarasova, G. N.

    2015-12-01

    The interaction between L-tryptophan (Trp) and nicotinic acid (NA) and uracyl (Ur) in aqueous buffer solutions (pH 7.35) at different ratios of reagents is studied via the calorimetry of dissolution. The enthalpies of dissolution of the amino acid in the buffer solutions of the ligands at 298.15 K are obtained. The stoichiometric compositions of the complexes being formed and binding constants have been determined. The values of the thermodynamic characteristics for the complex formation of L-tryptophan with nicotinic acid and uracyl are calculated. It is shown that the formation of molecular complexes with 1 : 2 composition is stabilized by the entropy factor for the Trp-NA system, and by the enthalpy factor for the Trp-Ur system.

  7. Spectral features of guanidinium-carboxylate salt bridges. The combined ATR-IR and theoretical studies of aqueous solution of guanidinium acetate

    NASA Astrophysics Data System (ADS)

    Levina, Elena O.; Lokshin, Boris V.; Mai, Bich D.; Vener, Mikhail V.

    2016-08-01

    The spectrum of guanidinium acetate in aqueous solution has been recorded by attenuated total reflectance infrared spectroscopy (ATR-IR). Assignments of the bands have been done using the polarizable continuum model (PCM). Three IR intensive bands at 1670, 1550, and 1410 cm-1 are associated with stretching and bending vibrations of the groups forming a ring of six heavy atoms of the bidentate configuration of guanidinium acetate. The relatively weak broad band near 2200 cm-1 is tentatively assigned to the stretching vibration of the Nsbnd H⋯O fragment of the hydrogen-bonded ion pairs.

  8. DNA and buffers: the hidden danger of complex formation.

    PubMed

    Stellwagen, N C; Gelfi, C; Righetti, P G

    2000-08-01

    The free solution electrophoretic mobility of DNA differs significantly in different buffers, suggesting that DNA-buffer interactions are present in certain buffer systems. Here, capillary and gel electrophoresis data are combined to show that the Tris ions in Tris-acetate-EDTA (TAE) buffers are associated with the DNA helix to approximately the same extent as sodium ions. The borate ions in Tris-borate-EDTA (TBE) buffers interact with DNA to form highly charged DNA-borate complexes, which are stable both in free solution and in polyacrylamide gels. DNA-borate complexes are not observed in agarose gels, because of the competition of the agarose gel fibers for the borate residues. The resulting agarose-borate complexes increase the negative charge of the agarose gel fibers, leading to an increased electroendosmotic flow of the solvent in agarose-TBE gels. The combined results indicate that the buffers in which DNA is studied cannot automatically be assumed to be innocuous. PMID:10861374

  9. Complexation of buffer constituents with neutral complexation agents: part I. Impact on common buffer properties.

    PubMed

    Riesová, Martina; Svobodová, Jana; Tošner, Zdeněk; Beneš, Martin; Tesařová, Eva; Gaš, Bohuslav

    2013-09-17

    The complexation of buffer constituents with the complexation agent present in the solution can very significantly influence the buffer properties, such as pH, ionic strength, or conductivity. These parameters are often crucial for selection of the separation conditions in capillary electrophoresis or high-pressure liquid chromatography (HPLC) and can significantly affect results of separation, particularly for capillary electrophoresis as shown in Part II of this paper series (Beneš, M.; Riesová, M.; Svobodová, J.; Tesařová, E.; Dubský, P.; Gaš, B. Anal. Chem. 2013, DOI: 10.1021/ac401381d). In this paper, the impact of complexation of buffer constituents with a neutral complexation agent is demonstrated theoretically as well as experimentally for the model buffer system composed of benzoic acid/LiOH or common buffers (e.g., CHES/LiOH, TAPS/LiOH, Tricine/LiOH, MOPS/LiOH, MES/LiOH, and acetic acid/LiOH). Cyclodextrins as common chiral selectors were used as model complexation agents. We were not only able to demonstrate substantial changes of pH but also to predict the general complexation characteristics of selected compounds. Because of the zwitterion character of the common buffer constituents, their charged forms complex stronger with cyclodextrins than the neutral ones do. This was fully proven by NMR measurements. Additionally complexation constants of both forms of selected compounds were determined by NMR and affinity capillary electrophoresis with a very good agreement of obtained values. These data were advantageously used for the theoretical descriptions of variations in pH, depending on the composition and concentration of the buffer. Theoretical predictions were shown to be a useful tool for deriving some general rules and laws for complexing systems. PMID:23889602

  10. UV-visible spectral identification of the solution-phase and solid-phase permanganate oxidation reactions of thymine acetic acid.

    PubMed

    Bui, Chinh T; Sam, Lien A; Cotton, Richard G H

    2004-03-01

    Solution-phase and solid-phase permanganate oxidation reactions of thymine acetic acid were investigated by spectroscopy. The spectral data showed the formation of a stable organomanganese intermediate, which was responsible for the rise in the absorbance at 420 nm. This result enables unambiguous interpretation of the absorbance change at 420 nm, as the intermediate permanganate ions could be isolated on the solid supports. PMID:14980689

  11. Optimization of the Energy Level Alignment between the Photoactive Layer and the Cathode Contact Utilizing Solution-Processed Hafnium Acetylacetonate as Buffer Layer for Efficient Polymer Solar Cells.

    PubMed

    Yu, Lu; Li, Qiuxiang; Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Wang, Fuzhi; Zhang, Bing; Dai, Songyuan; Lin, Jun; Tan, Zhan'ao

    2016-01-13

    The insertion of an appropriate interfacial buffer layer between the photoactive layer and the contact electrodes makes a great impact on the performance of polymer solar cells (PSCs). Ideal interfacial buffer layers could minimize the interfacial traps and the interfacial barriers caused by the incompatibility between the photoactive layer and the electrodes. In this work, we utilized solution-processed hafnium(IV) acetylacetonate (Hf(acac)4) as an effective cathode buffer layer (CBL) in PSCs to optimize the energy level alignment between the photoactive layer and the cathode contact, with the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) all simultaneously improved with Hf(acac)4 CBL, leading to enhanced power conversion efficiencies (PCEs). Ultraviolet photoemission spectroscopy (UPS) and scanning Kelvin probe microscopy (SKPM) were performed to confirm that the interfacial dipoles were formed with the same orientation direction as the built-in potential between the photoactive layer and Hf(acac)4 CBL, benefiting the exciton separation and electron transport/extraction. In addition, the optical characteristics and surface morphology of the Hf(acac)4 CBL were also investigated. PMID:26684416

  12. Corrosion behavior of Mg-3Zn/bioglass (45S5) composite in simulated body fluid (SBF) and phosphate buffered saline (PBS) solution

    NASA Astrophysics Data System (ADS)

    Ab llah, N.; Jamaludin, S. B.; Daud, Z. C.; Zaludin, M. A. F.; Jamal, Z. A. Z.; Idris, M. S.; Osman, R. A. M.

    2016-07-01

    Magnesium has emerged as promising materials in biomaterials research due to its good mechanical and physical properties closer to human bones. However, magnesium has poor corrosion resistance to chloride ions that exist in human blood plasma thus preventing its application in biomedical. The addition of zinc and bioglass can reduce magnesium corrosion rate. In this work, the effect of different solution media (Simulated Body Fluid and Phosphate Buffered Saline) to the corrosion behavior of Mg-Zn/bioglass (45S5) composites was investigated. The composites of Mg-3Zn added with 5, 10, 15, 20, 15 and 30 wt. % bioglass were fabricated by powder metallurgy. The composites were prepared by mixing at 140 rpm for 1 hour, pressing at 500 MPa and sintering in an argon environment at a temperature of 450°C for 3 hours. Sintered samples were immersed in Simulated Body Fluid (SBF) and Phosphate Buffered Saline (PBS) in order to investigate the corrosion behavior. Samples mass loss was determined after 3 days of immersion. Samples microstructure and corrosion products were analyzed using optical microscope and x-ray diffraction (XRD) respectively. The results revealed that the samples immersed in the Phosphate Buffered Saline (PBS) shows lower mass loss compare to the samples immersed in the Simulated Body Fluid (SBF) for all composition except for Mg-3Zn without bio-glass. The results indicated that the existence of high phosphate ions in PBS has retarded the corrosion rate of composite Mg-3Zn/45S5. The pH value of the PBS solution after immersion showed significant increase between 10.3 and 11.09. Diffraction pattern (XRD) showed the presence of Mg(OH)2 as the major corrosion product for samples immersed in the SBF and PBS solutions. The mass loss of samples decreased with the addition of bio-glass.

  13. Efficiency of buffered aqueous carboxylic acid solutions and organic solvents to absorb SO/sub 2/ from industrial flue gas; solubility data from gas-liquid chromatography

    SciTech Connect

    Sanza, G.J.

    1982-01-01

    Nine adsorbents were examined. These potential candidates for flue gas desulfurization included 1-methyl-2-pyrrolidinone, tri-n-butyl phosphate (TBP), both 0.5 M and 1.0 M solutions of citric acid and glycolic acid, buffered to pH's of 4.5 and 3.8, and pure water. Infinite dilution activity coefficients of SO/sub 2/ were obtained by gas-liquid chromatography in a trial solvent of Nitrobenzene, and then in systems of 1-methyl-2-pyrrolidinone and TBP, independently. The solubility data of SO/sub 2/ was derived and found to be comparable to data obtained from a classical bubble-sparger apparatus. Solubility data was then programmed into an absorber-stripper computer simulator in order to calculate the various concentration and temperature profiles that would exist, the degree of desulfurization, and the steam consumption for all nine systems. Concentrated solutions of citric acid buffered to a low pH exhibited the most favorable conditions for application in direct steam regeneration processes. 1-methyl-2-pyrrolidinone yielded better performance than TBP did with high-pressure indirect steam used for stripping. Comparison between the aqueous solution systems which employed direct steam, and the organic systems which used indirect steam was inconclusive.

  14. Thermal and Environmental Stability of Semi-Transparent Perovskite Solar Cells for Tandems Enabled by a Solution-Processed Nanoparticle Buffer Layer and Sputtered ITO Electrode.

    PubMed

    Bush, Kevin A; Bailie, Colin D; Chen, Ye; Bowring, Andrea R; Wang, Wei; Ma, Wen; Leijtens, Tomas; Moghadam, Farhad; McGehee, Michael D

    2016-05-01

    A sputtered oxide layer enabled by a solution-processed oxide nanoparticle buffer layer to protect underlying layers is used to make semi-transparent perovskite solar cells. Single-junction semi-transparent cells are 12.3% efficient, and mechanically stacked tandems on silicon solar cells are 18.0% efficient. The semi-transparent perovskite solar cell has a T 80 lifetime of 124 h when operated at the maximum power point at 100 °C without additional sealing in ambient atmosphere under visible illumination. PMID:26880196

  15. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    PubMed

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications. PMID:27093053

  16. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production

    PubMed Central

    Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications. PMID:27093053

  17. Studies of the chemistry of the [Ru(H{sub 2}O)Cl{sub 5}]{sup 2{minus}} form of ruthenium(III) in acetic acid solutions

    SciTech Connect

    Buslaeva, T.M.; Rudnitskaya, O.V.; Marov, I.N.; Red`kina, S.N.; Belyaeva, V.K.

    1995-03-01

    The behavior of the [Ru(H{sub 2}O)Cl{sub 5}]{sup 2{minus}} form of ruthenium(III) in acetic acid solutions is studied for the first time. It is established that, when the solution of the title complex is allowed to stand in 8.5 M CH{sub 3}COOH at 50{degrees}C, it first hydrates with simultaneous substitution of the acetate ions for the water molecules to form the [Ru(H{sub 2}O)Cl{sub 4}(CH{sub 3}COO)]{sup 2{minus}} and/or [RuCl{sub 4}(CH{sub 3}COO){sub 2}]{sup 3{minus}} complexes in addition to [Ru(H{sub 2}O){sub 2}Cl{sub 4}]{sup {minus}}. The two former complexes yield EPR signals with 2.68 and 2.52 g-factors, respectively. It is noted that EPR spectra with g = 2.31, 2.21, 2.09, and 2.05 can belong both to the mono- and polynuclear ruthenium(III) compounds that are formed in reaction of the parent complex with acetic acid. Experimental evidence favoring both currently suggested concepts is presented.

  18. High performance perovskite solar cell via multi-cycle low temperature processing of lead acetate precursor solutions.

    PubMed

    Singh, Trilok; Miyasaka, Tsutomu

    2016-04-01

    A lead acetate-based precursor, as a lead source in CH3NH3PbI3 perovskite, showed potential in rapidly (<60 seconds) forming homogeneous films with a very smooth interface and large grain growth at relatively low temperatures via multi-step coating. Cells based on this method exhibited high power conversion efficiency beyond 17% with good reproducibility. PMID:26958661

  19. A controlled Nordic multicentre study of zuclopenthixol acetate in oil solution, haloperidol and zuclopenthixol in the treatment of acute psychosis.

    PubMed

    Baastrup, P C; Alhfors, U G; Bjerkenstedt, L; Dencker, S J; Fensbo, C; Gravem, A; Pedersen, V; Elgen, K; Brekke, B; Fredslund-Andersen, K

    1993-01-01

    Zuclopenthixol acetate--a new injectable formulation with a duration of action of 2-3 days--was compared with conventional intramuscular and oral formulations of haloperidol and zuclopenthixol in the initial treatment of acutely disturbed, psychotic patients. The patients were stratified into 3 diagnostic categories: acute psychoses (48 patients), mania (22 patients), and exacerbation of chronic psychoses (73 patients). The patients were rated on the Brief Psychiatric Rating Scale (BPRS), the Bech-Rafaelsen Mania Rating Scale (BRMAS) (only manic patients) and globally on the Clinical Global Impression (CGI). The study was an open, randomized multicentre trial with a 6-day treatment period. The zuclopenthixol acetate patients received 1-4 doses, the haloperidol patients 1-26 and the zuclopenthixol patients 1-22 doses. The assessments on the CGI showed that all 3 treatments caused a clear reduction of the severity of illness scores in all 3 diagnostic categories, with no differences between treatments. The ratings of the acute and chronic psychotic patients on the BPRS also showed significant reductions in scores with no differences between treatments. All 3 treatments caused a rapid remission of symptoms on the BRMAS. Haloperidol induced hypokinesia in significantly more patients than zuclopenthixol acetate after 24 h. Later there were no significant differences between treatments. Zuclopenthixol acetate fulfils many desires for an amended neuroleptic formulation for the initial treatment of acutely disturbed psychotic patients. PMID:8093824

  20. Real-time HD Exchange Kinetics of Proteins from Buffered Aqueous Solution with Electrothermal Supercharging and Top-Down Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Going, Catherine C.; Xia, Zijie; Williams, Evan R.

    2016-02-01

    Electrothermal supercharging (ETS) with electrospray ionization produces highly charged protein ions from buffered aqueous solutions in which proteins have native folded structures. ETS increases the charge of ribonuclease A by 34%, whereas only a 6% increase in charge occurs for a reduced-alkylated form of this protein, which is unfolded and its structure is ~66% random coil in this solution. These results indicate that protein denaturation that occurs in the ESI droplets is the primary mechanism for ETS. ETS does not affect the extent of solution-phase hydrogen-deuterium exchange (HDX) that occurs for four proteins that have significantly different structures in solution, consistent with a droplet lifetime that is considerably shorter than observable rates of HDX. Rate constants for HDX of ubiquitin are obtained with a spatial resolution of ~1.3 residues with ETS and electron transfer dissociation of the 10+ charge-state using a single capillary containing a few μL of protein solution in which HDX continuously occurs. HDX protection at individual residues with ETS HDX is similar to that with reagent supercharging HDX and with solution-phase NMR, indicating that the high spray potentials required to induce ETS do not lead to HD scrambling.

  1. Real-time HD Exchange Kinetics of Proteins from Buffered Aqueous Solution with Electrothermal Supercharging and Top-Down Tandem Mass Spectrometry.

    PubMed

    Going, Catherine C; Xia, Zijie; Williams, Evan R

    2016-06-01

    Electrothermal supercharging (ETS) with electrospray ionization produces highly charged protein ions from buffered aqueous solutions in which proteins have native folded structures. ETS increases the charge of ribonuclease A by 34%, whereas only a 6% increase in charge occurs for a reduced-alkylated form of this protein, which is unfolded and its structure is ~66% random coil in this solution. These results indicate that protein denaturation that occurs in the ESI droplets is the primary mechanism for ETS. ETS does not affect the extent of solution-phase hydrogen-deuterium exchange (HDX) that occurs for four proteins that have significantly different structures in solution, consistent with a droplet lifetime that is considerably shorter than observable rates of HDX. Rate constants for HDX of ubiquitin are obtained with a spatial resolution of ~1.3 residues with ETS and electron transfer dissociation of the 10+ charge-state using a single capillary containing a few μL of protein solution in which HDX continuously occurs. HDX protection at individual residues with ETS HDX is similar to that with reagent supercharging HDX and with solution-phase NMR, indicating that the high spray potentials required to induce ETS do not lead to HD scrambling. Graphical Abstract ᅟ. PMID:26919868

  2. Real-time HD Exchange Kinetics of Proteins from Buffered Aqueous Solution with Electrothermal Supercharging and Top-Down Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Going, Catherine C.; Xia, Zijie; Williams, Evan R.

    2016-06-01

    Electrothermal supercharging (ETS) with electrospray ionization produces highly charged protein ions from buffered aqueous solutions in which proteins have native folded structures. ETS increases the charge of ribonuclease A by 34%, whereas only a 6% increase in charge occurs for a reduced-alkylated form of this protein, which is unfolded and its structure is ~66% random coil in this solution. These results indicate that protein denaturation that occurs in the ESI droplets is the primary mechanism for ETS. ETS does not affect the extent of solution-phase hydrogen-deuterium exchange (HDX) that occurs for four proteins that have significantly different structures in solution, consistent with a droplet lifetime that is considerably shorter than observable rates of HDX. Rate constants for HDX of ubiquitin are obtained with a spatial resolution of ~1.3 residues with ETS and electron transfer dissociation of the 10+ charge-state using a single capillary containing a few μL of protein solution in which HDX continuously occurs. HDX protection at individual residues with ETS HDX is similar to that with reagent supercharging HDX and with solution-phase NMR, indicating that the high spray potentials required to induce ETS do not lead to HD scrambling.

  3. Dynamics of Liquid Plugs of Buffer and Surfactant Solutions in a Micro-Engineered Pulmonary Airway Model

    PubMed Central

    Tavana, Hossein; Kuo, Chuan-Hsien; Lee, Qian Yi; Mosadegh, Bobak; Huh, Dongeun; Christensen, Paul J.; Grotberg, James B.; Takayama, Shuichi

    2009-01-01

    We describe a bio-inspired microfluidic system that resembles pulmonary airways and enables on-chip generation of airway occluding liquid plugs from a stratified air-liquid two-phase flow. User-defined changes in the air stream pressure facilitated by mechanical components and tuning the wettability of the microchannels enable generation of well-defined liquid plugs. Significant differences are observed in liquid plug generation and propagation when surfactant is added to the buffer. The plug flow patterns suggest a protective role of surfactant for airway epithelial cells against pathological flow-induced mechanical stresses. We discuss the implications of the findings for clinical settings. This approach and the described platform will enable systematic investigation of the effect of different degrees of fluid mechanical stresses on lung injury at the cellular level and administration of exogenous therapeutic surfactants. PMID:20017471

  4. Buffer Biology.

    ERIC Educational Resources Information Center

    Morgan, Kelly

    2000-01-01

    Presents a science experiment in which students test the buffering capacity of household products such as shampoo, hand lotion, fizzies candy, and cola. Lists the standards addressed in this experiment and gives an example of a student lab write-up. (YDS)

  5. Free flow cell electrophoresis using zwitterionic buffer

    NASA Technical Reports Server (NTRS)

    Rodkey, R. Scott

    1990-01-01

    Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.

  6. Biomimetic apatite formation on calcium phosphate-coated titanium in Dulbecco's phosphate-buffered saline solution containing CaCl(2) with and without fibronectin.

    PubMed

    Chen, Cen; Lee, In-Seop; Zhang, Sheng-Min; Yang, Hyeong Cheol

    2010-06-01

    Calcium phosphate (CaP) thin films with different degrees of crystallinity were coated on the surfaces of commercially pure titanium by electron beam evaporation. The details of apatite nucleation and growth on the coating layer were investigated in Dulbecco's phosphate-buffered saline solutions containing calcium chloride (DPBS) or DPBS with fibronectin (DPBSF). The surfaces of the samples were examined by field emission scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The concentrations of fibronectin and calcium ions (Ca(2+)) were monitored by the bicinchoninic acid method (BCA) and use of a calcium assay kit (DICA-500), respectively. Apatite initially formed at the fastest rate on the CaP-coated samples with the lowest degree of crystallinity and reached the maximum Ca(2+) concentration after immersion in DPBS solution for 15min. After 15min the concentration of Ca(2+) decreased with the growth of apatite on the coating layers. For all the samples the maximum Ca(2+) concentration in the DPBS solutions decreased with increasing crystallinity and immersion time to reach the maximum concentration increased. The presence of fibronectin in the DPBS solutions delayed the formation and affected the morphology of the apatite. Fibronectin incorporated into apatite deposited on the surface of titanium did not affect its biological activity in terms of promoting osteoblast adhesion. PMID:19962459

  7. Growth of thick La2Zr2O7 buffer layers for coated conductors by polymer-assisted chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhao, Yong; Xia, Yudong; Guo, Chunsheng; Cheng, C. H.; Zhang, Yong; Zhang, Han

    2015-06-01

    La2Zr2O7 (LZO) epitaxial films have been deposited on LaAlO3 (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa2Cu3O7-x (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm2 at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors.

  8. In-Line Desalting of Proteins from Buffer and Synthetic Urine Solution Prior to ESI-MS Analysis via a Capillary-Channeled Polymer Fiber Microcolumn

    NASA Astrophysics Data System (ADS)

    Burdette, Carolyn Q.; Marcus, R. Kenneth

    2013-06-01

    Presented here is a novel in-line solid phase extraction (SPE) method utilizing a capillary-channeled polymer (C-CP) fiber microcolumn prior to introduction to an electrospray ionization (ESI) source. The high permeability of the microcolumn allows for operation under syringe pump or HPLC driven flow, ultimately providing greater mass spectral clarity and accurate molecular weight determinations for different protein/buffer combinations. Studies presented here focus on the desalting of several target proteins from a standard phosphate buffered saline (PBS) matrix and a synthetic urine solution prior to ESI-MS determinations. In every case, responses for μM-level proteins in PBS improve from the situation of not permitting molecular weight determinations to values that are precise to better than ±10 Da, without internal standards, with relative improvements in the signal-to-background ratios (S/B) on the order of 3,000×. De-salting of a myoglobin-spiked (12 μM) synthetic urine results in equally-improved spectral quality.

  9. Solution Processing of Cadmium Sulfide Buffer Layer and Aluminum-Doped Zinc Oxide Window Layer for Thin Films Solar Cells

    NASA Astrophysics Data System (ADS)

    Alam, Mahboob; Islam, Mohammad; Achour, Amine; Hayat, Ansar; Ahsan, Bilal; Rasheed, Haroon; Salam, Shahzad; Mujahid, Mohammad

    2014-07-01

    Cadmium sulfide (CdS) and aluminum-doped zinc oxide (Al:ZnO) thin films are used as buffer layer and front window layer, respectively, in thin film solar cells. CdS and Al:ZnO thin films were produced using chemical bath deposition (CBD) and sol-gel technique, respectively. For CBD CdS, the effect of bath composition and temperature, dipping time and annealing temperature on film properties was investigated. The CdS films are found to be polycrystalline with metastable cubic crystal structure, dense, crack-free surface morphology and the crystallite size of either few nanometers or 12-17 nm depending on bath composition. In case of CdS films produced with 1:2 ratio of Cd and S precursors, spectrophotometer studies indicate quantum confinement effect, owing to extremely small crystallite size, with an increase in Eg value from 2.42 eV (for bulk CdS) to 3.76 eV along with a shift in the absorption edge toward 330 nm wavelength. The optimum annealing temperature is 400°C beyond which film properties deteriorate through S evaporation and CdO formation. On the other hand, Al:ZnO films prepared via spin coating of precursor sols containing 0.90-1.10 at.% Al show that, with an increase in Al concentration, the average grain size increases from 28 nm to 131 nm with an associated decrease in root-mean-square roughness. The minimum value of electrical resistivity, measured for the films prepared using 0.95 at.% Al in the precursor sol, is 2.7 × 10-4 Ω ṡ cm. The electrical resistivity value rises upon further increase in Al doping level due to introduction of lattice defects and Al segregation to the grain boundary area, thus limiting electron transport through it.

  10. Buffer Effects in the Solubility, Nucleation and Growth of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Gibson, Ursula J.

    1999-01-01

    The growth of protein crystals is important for determination of their three-dimensional structure, which relates to their biochemical functions and to the practical goal of designing pharmaceuticals to modify that function. While many proteins have been successfully crystallized by a variety of methods, there is still limited understanding of the process of nucleation and growth of even the simplest proteins. Chicken egg-white lysozyme (CEWL) is readily crystallized under a variety of conditions, and studies underway at MSFC are designed to elucidate the mechanisms by which the crystals nucleate and grow. We have investigated the effect of buffer choice on the solubility, nucleation and growth of CEWL. CEWL was purified by dialysis against a .05M phosphate buffer and chromatographic separation from contaminants in a sepharose column. Solubility studies were made as a function of buffer concentration for phosphate and formate buffers, and the nucleation and growth of crystals at 10 C was studied as a function of pH for oxalate, succinate, formate, butyrate, carbonate, phosphate and acetate buffer solutions. The solubility data support the conclusion that there is a solubility minimum as a function of buffer concentration for amphiphilic molecules, while no minimum is observed for a phosphate buffer. Nucleation is suppressed at pH greater than pKa for all buffers except phosphate. The aspect ratio of the (110) faces is shown to be a function of crystal size, rather than pH.

  11. Solution and solid state characterization of oxo-centered trinuclear iron(III) acetate complexes [Fe 3(μ 3-O)(μ-OAc) 6(L) 3] +

    NASA Astrophysics Data System (ADS)

    Amani, Vahid; Safari, Nasser; Khavasi, Hamid Reza

    2012-01-01

    [Fe 3(μ 3-O)(μ-OAc) 6(py) 3][FeBr 4] 2[py·H], complex ( 1), (OAc is acetate) was prepared from the reaction of FeBr 3 with pyridine in 1.2 molar aqueous HBr and 2.4 molar aqueous CH 3COOH. Recrystallization of 1 in acetonitrile produced the [Fe 3(μ 3-O)(μ-OAc) 6(py) 3][FeBr 4] complex ( 2). Both complexes were characterized by IR and 1H NMR spectroscopies and their structures were studied using the single-crystal diffraction method. There is a lack of thorough characterization of the titled compounds in solution. Paramagnetic 1H NMR is introduced as a good probe for the characterization of a family of titled compounds in solution when the L ligand coordinated to iron varies as: CH 3OH, CH 3CN, DMSO, H 2O, py and acetone.

  12. Phosphorus concentrations in soil and subsurface water: a field study among cropland and riparian buffers.

    PubMed

    Young, Eric O; Briggs, Russell D

    2008-01-01

    Riparian buffers can be effective at removing phosphorus (P) in overland flow, but their influence on subsurface P loading is not well known. Phosphorus concentrations in the soil, soil solution, and shallow ground water of 16 paired cropland-buffer plots were characterized during 2004 and 2005. The sites were located at two private dairy farms in Central New York on silt and gravelly silt loams (Aeric Endoaqualfs, Fluvaquentic Endoaquepts, Fluvaquentic Eutrudepts, Glossaquic Hapludalfs, and Glossic Hapludalfs). It was hypothesized that P availability (sodium acetate extractable-P) and soil-landscape variability would affect P release to the soil solution and shallow ground water. Results showed that P availability tended to be greater in crop fields relative to paired buffer plots. Soil P was a good indicator of soil solution dissolved (<0.45 microm) molybdate-reactive P (DRP) concentrations among plots, but was not independently effective at predicting ground water DRP concentrations. Mean ground water DRP in corn fields ranged from < or =20 to 80 microg L(-1), with lower concentrations in hay and buffer plots. More imperfectly drained crop fields and buffers tended to have greater average DRP, particulate (> or =0.45 microm) reactive P (PRP), and dissolved unreactive P (DUP) concentrations in ground water. Soil organic matter and 50-cm depth soil solution DRP in buffers jointly explained 75% of the average buffer ground water DRP variability. Results suggest that buffers were relatively effective at reducing soil solution and shallow ground water DRP concentrations, but their impact on particulate and organic P in ground water was less clear. PMID:18178879

  13. The appearance of Ti3+ states in solution-processed TiOx buffer layers in inverted organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhidkov, Ivan S.; McLeod, John A.; Kurmaev, Ernst Z.; Korotin, Michael A.; Kukharenko, Andrey I.; Savva, Achilleas; Choulis, Stelios A.; Korotin, Danila M.; Cholakh, Seif O.

    2016-07-01

    We study the low-temperature solution processed TiOx films and device structures using core level and valence X-ray photoelectron spectroscopy (XPS) and electronic structure calculations. We are able to correlate the fraction of Ti3+ present as obtained from Ti 2p core level XPS with the intensity of the defect states that appear within the band gap as observed with our valence XPS. Constructing an operating inverted organic photovoltaic (OPV) using the TiOx film as an electron selective contact may increase the fraction of Ti3+ present. We provide evidence that the number of charge carriers in TiOx can be significantly varied and this might influence the performance of inverted OPVs.

  14. CdS and Cd-Free Buffer Layers on Solution Phase Grown Cu2ZnSn(SxSe1- x)4 :Band Alignments and Electronic Structure Determined with Femtosecond Ultraviolet Photoemission Spectroscopy

    SciTech Connect

    Haight, Richard; Barkhouse, Aaron; Wang, Wei; Yu, Luo; Shao, Xiaoyan; Mitzi, David; Hiroi, Homare; Sugimoto, Hiroki

    2013-12-02

    The heterojunctions formed between solution phase grown Cu2ZnSn(SxSe1- x)4(CZTS,Se) and a number of important buffer materials including CdS, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission spectroscopy (fs-UPS) and photovoltage spectroscopy. With this approach we extract the magnitude and direction of the CZTS,Se band bending, locate the Fermi level within the band gaps of absorber and buffer and measure the absorber/buffer band offsets under flatband conditions. We will also discuss two-color pump/probe experiments in which the band bending in the buffer layer can be independently determined. Finally, studies of the bare CZTS,Se surface will be discussed including our observation of mid-gap Fermi level pinning and its relation to Voc limitations and bulk defects.

  15. Morphological and phase evolution of TiO{sub 2} nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid

    SciTech Connect

    Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il

    2009-04-15

    Nanosized anatase and rutile TiO{sub 2} having different shape, phase and size have been prepared from aqueous solutions of peroxo titanium complex starting from titanium(IV) isopropoxide (TTIP), acetic acid and hydrogen peroxide (H{sub 2}O{sub 2}) in water/isopropanol media by a facile sol-gel process. The TiO{sub 2} nanocrystals are characterized by powder X-ray diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, TEM, high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) techniques. The influence of pH and the sequence of addition of reaction contents on the phase and morphology of TiO{sub 2} are studied. The reasons for the observation of only anatase and/or mixture of anatase and rutile are given. - Graphical abstract: The morphology of TiO{sub 2} depends on the sequence of addition of AcOH and H{sub 2}O{sub 2} from the system of titanium isopropoxide and acetic acid (AcOH) in the presence of H{sub 2}O{sub 2}.

  16. Preparation of Superconducting Bi-Sr-Ca-Cu-O Coating Films by the Sol-Gel Method Using an Aqueous Solution of Metal Acetates

    NASA Astrophysics Data System (ADS)

    Zhuang, Haoren; Kozuka, Hiromitsu; Yoko, Toshinobu; Sakka, Sumio

    1990-07-01

    Superconducting Bi-Sr-Ca-Cu-O coating films have been prepared on YSZ (yttria-stabilized zirconia) and Al2O3 substrates by the sol-gel method using an aqueous solution of metal acetates containing tartaric acid. A film of 20 μm thickness on the YSZ substrate showed Tc(onset) at 115 K and Tc(end) at 79 K, consisting of Bi2Sr2CaCu2Ox crystals with the c-axis perpendicular to the substrate. The reaction between the film and the YSZ and Al2O3 substrates produced CaZrO3 and CuAl2O4, respectively, during heat treatment, which suppresses the formation of superconducting phases and causes the degradation of the superconducting properties of the films.

  17. Effect of different concentrations of acetic, citric, and propionic acid dipping solutions on bacterial contamination of raw chicken skin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial contamination of raw, processed poultry may include spoilage bacteria and foodborne pathogens. We evaluated different combinations of organic acid (OA) wash solutions for their ability to reduce bacterial contamination of raw chicken skin and to inhibit growth of spoilage bacteria and path...

  18. Effect of synovial fluid, phosphate-buffered saline solution, and water on the dissolution and corrosion properties of CoCrMo alloys as used in orthopedic implants.

    PubMed

    Lewis, A C; Kilburn, M R; Papageorgiou, I; Allen, G C; Case, C P

    2005-06-15

    The corrosion and dissolution of high- and low-carbon CoCrMo alloys, as used in orthopedic joint replacements, were studied by immersing samples in phosphate-buffered saline (PBS), water, and synovial fluid at 37 degrees C for up to 35 days. Bulk properties were analyzed with a fine ion beam microscope. Surface analyses by X-ray photoelectron spectroscopy and Auger electron spectroscopy showed surprisingly that synovial fluid produced a thin oxide/hydroxide layer. Release of ions into solution from the alloy also followed an unexpected pattern where synovial fluid, of all the samples, had the highest Cr concentration but the lowest Co concentration. The presence of carbide inclusions in the alloy did not affect the corrosion or the dissolution mechanisms, although the carbides were a significant feature on the metal surface. Only one mechanism was recognized as controlling the thickness of the oxide/hydroxide interface. The analysis of the dissolved metal showed two mechanisms at work: (1) a protein film caused ligand-induced dissolution, increasing the Cr concentration in synovial fluid, and was explained by the equilibrium constants; (2) corrosion at the interface increased the Co in PBS. The effect of prepassivating the samples (ASTM F-86-01) did not always have the desired effect of reducing dissolution. The release of Cr into PBS increased after prepassivation. The metal-synovial fluid interface did not contain calcium phosphate as a deposit, typically found where samples are exposed to calcium rich bodily fluids. PMID:15900610

  19. Ammonium acetate

    Integrated Risk Information System (IRIS)

    Ammonium acetate ; CASRN 631 - 61 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  20. Vinyl acetate

    Integrated Risk Information System (IRIS)

    Vinyl acetate ; CASRN 108 - 05 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  1. Ethyl acetate

    Integrated Risk Information System (IRIS)

    Ethyl acetate ; CASRN 141 - 78 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  2. Phenylmercuric acetate

    Integrated Risk Information System (IRIS)

    Phenylmercuric acetate ; CASRN 62 - 38 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  3. Thallium acetate

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 30 , 2009 , the assessment summary for Thallium acetate is included in t

  4. An experimental study of zinc chloride speciation from 300 to 600 °C and 0.5 to 2.0 kbar in buffered hydrothermal solutions

    USGS Publications Warehouse

    Cygan, G.L.; Hemley, J.J.; d'Angelo, W. M.

    1994-01-01

    The solubility of sphalerite (ZnS) was measured in KCl-HCl-H2O solutions at 300-600??C and 0.5-2.0 kbar. The silicate assemblage K-feldspar-muscovite (or andalusite)-quartz was used to buffer the solution to acid conditions, resulting in the total solubility reaction 2K+ + KAl2AlSi3O10(OH)2 + 6SiO2 + ZnS + nCl- = ZnCln(2-n) + 3KAlSi3O8 + H2S. (muscovite) (quartz) (sphalerite) (K-feldspar) A computer retrieval technique was used to derive average chloride ligand numbers for chlorozinc species at 0.25-2.0 molal total chloride. This technique mathematically solves for the average ligand number using a series of pertinent chemical relations at P and T. Mono- and di-chlorozinc species were found to predominate throughout the pressure-temperature-composition range investigated. The logarithms of the first and second dissociation constants for ZnCl20 were evaluated over the P-T range; for example, at 1 kbar, the values -0.41 and -1.42 were computed for the logarithm of the first dissociation constant, while -7.62 and -10.57 were computed for the logarithm of the second dissociation constant, for 400 and 500??C, respectively. Results are compared to past studies conducted at subcritical conditions and differ in that we find no evidence for more highly coordinated chloro-zinc species except possibly for ZnCl3- at 600??C, 1 and 2 kbar. Our results are consistent with electrostatic theory, which favors lower charged to neutral molecules in low dielectric-constant media. ?? 1994.

  5. [The coagulation characteristics of human oxyhemoglobin in the presence of a mercury (II) ion in a neutral phosphate buffer].

    PubMed

    Bogdanova, L D; Myshkin, A E

    1990-01-01

    The kinetics of human oxyhemoglobin coagulation in neutral phosphate buffer in the presence of mercury acetate at 20 degrees has been studied using turbidimetric methods. The addition of small amounts of concentrated Hg2+ solution leads to rapid local protein coagulation with subsequent dissolution of the formed coagulate. Coagulation can be inhibited by addition of Tris that binds to mercury ions. The pattern of oxyhemoglobin coagulation is determined by molar Hg2+/protein ration rather than by total Hg2+ concentration. PMID:2362035

  6. Prophylactic Effects of Garlic Oil and Onion Oil Fractions as Compared to Vitamin E on Rats Orally Fed with Lead Acetate Solution.

    PubMed

    Sajitha, G R; Augusti, K T; Jose, Regi

    2016-07-01

    Heavy metal pollution is a global public health challenge due to its stable and persistent environmental contamination. Of these lead is considered to be one of the most common ubiquitous and industrial pollutants and at low concentration it exerts extensive damages to the tissues. Daily feeding of lead acetate solution (Dose: 10 mg/kg/day) to normal rats for a month adversely altered the parameters of blood, serum and tissues, viz; RBC, WBC, Hb, ɗ- ALAD (Delta amino levulinic acid dehydratase), Pb content, lipids, oxidized lipids (TBARS), vitamins C and E and GSH levels and activities of AST, ALT and antioxidant enzymes viz; catalase, GR, Gpx and SOD. In order to study whether antioxidants have any effect to counteract the toxicity of lead we have selected comparatively better active allium fractions for the study viz: polar fraction of garlic (PFG) and polar fraction of onion (PFO). On feeding of these active fractions of garlic and onion oils i.e. their polar fractions and vitamin E (Dose 100 mg/kg/day) separately for a month along with or without lead acetate to rats each nutraceutical and vitamin E counteracted the adverse effects of Pb significantly (p ≤ 0.05). Their effects are in the order of PFG > PFO > Vitamin E. All these results point out that garlic and onion oils contain natural disulfoxide compounds which act as antioxidant and anti toxic to lead compounds. Their comparative differences in action may be due to the presence and position of double bonds and disulfide oxide bonds in their molecules. i.e., in PFG the allyl disulfide oxide group is present and in PFO saturated methyl and propyl groups and unsaturated propenyl group are present in place of allyl groups. The former group confers a better antioxidant activity on PFG, while the latter groups confer a lesser activity on PFO. PMID:27382196

  7. Understanding, Deriving, and Computing Buffer Capacity

    NASA Astrophysics Data System (ADS)

    Urbansky, Edward T.; Schock, Michael R.

    2000-12-01

    The concept of buffer capacity appears in varied disciplines, including bio-, geo-, analytical, and environmental chemistry, physiology, medicine, dentistry, and agriculture. Unfortunately, however, derivation and systematic calculation of buffer capacity is a topic that seems to be neglected in the undergraduate analytical chemistry curriculum. In this work, we give an account of the development of the buffer capacity concept and derive the buffer capacity contribution equations for buffer systems containing mono-, di-, and triprotic weak acids (and their conjugate bases) and aluminum(III), which undergoes hydrolysis. A brief review of pH is provided because pH is involved in applying buffer capacity to the real world. In addition, we discuss evaluation of the equations, numerical approximation of buffer capacity when an analytic solution is not derived, and the mathematical properties of the buffer capacity expressions.

  8. Predicting Effects of Corrosion Erosion of High Strength Steel Pipelines Elbow on CO2-Acetic Acid (HAc) Solution

    NASA Astrophysics Data System (ADS)

    Asmara, Y. P.; Ismail, M. F.; Giok Chui, L.; Halimi, Jamiludin

    2016-02-01

    Simultaneously effect of erosion combined with corrosion becomes the most concern in oil and gas industries. It is due to the fast deterioration of metal as effects of solid particles mixed with corrosive environment. There are many corrosion software to investigate possible degradation mechanisms developed by researchers. They are using many combination factors of chemical reactions and physical process. However effects of CO2 and acid on pipelines orientations are still remain uncovered in their simulation. This research will investigate combination effects of CO2 and HAc on corrosion and erosion artificial environmental containing sands particles in 45°, 90° and 180° elbow pipelines. The research used theoretical calculations combined with experiments for verification. The main concerns are to investigate the maximum erosion corrosion rate and maximum shear stress at the surface. Methodology used to calculate corrosion rate are Linear Polarization Resistance (LPR) and weight loss. The results showed that at 45°, erosion rate is the more significant effects in contributing degradation of the metal. The effects of CO2 and HAc gave significant effects when flow rate of the solution are high which reflect synergism effects of solid particles and those chemical compositions.

  9. 1-Naphthyl Acetate-Dependent Medium Acidification by Zea mays L. Coleoptile Segments 1

    PubMed Central

    Salguero, Julio; Calatayud, Angeles; Gonzalez-Daros, Francisco; del Valle-Tascon, Secundino

    1991-01-01

    Zea mays L. cv INRA 5a coleoptile segments ecidify the incubation medium on the addition of 1-naphthyl acetate (1-NA). The buffering capacity of the bathing solution increases during 1-NA stimulated medium acidification. The solution bathing the 1-NA treated coleoptile segment was analyzed by high performance liquid chromatography. A considerable amount of acetic acid was detected in the bathing solution used to measure 1-NA-dependent medium acidification. For the first time, the data demonstrate directly the release of acetic acid from 1-NA. The extent of medium acidification was proportional to 1-NA concentration. Simultaneous measurement of medium acidification and acetate content upon addition of 1-NA showed that both processes were temporally correlated. The stoichiometry of proton equivalents to acetate ion was 0.966. Addition of 50 micromolar N,N′-dicyclohexylcarbodiimide had little effect on 1-NA-dependent medium acidification. The results indicate that 1-NA is hydrolyzed in the extracellular space of coleoptile cells. PMID:16668108

  10. A stability-indicating HPLC method for medroxyprogesterone acetate in bulk drug and injection formulation.

    PubMed

    Burana-Osot, Jankana; Ungboriboonpisal, Sooksri; Sriphong, Lawan

    2006-03-18

    A stability-indicating HPLC assay method has been developed and validated for medroxyprogesterone acetate (MPA) in bulk drug and injectable suspension. An isocratic RP-HPLC was achieved on a Hichrom C(18) column (150 mm x 4.6mm i.d., 5 microm) utilizing a mobile phase of methanol 0.020 M acetate buffer pH 5 (65:35, v/v) and a photodiode array detector at 245 nm. The stress testing of MPA was carried out under acidic and alkaline hydrolysis, and oxidation conditions. MPA was well resolved from its degradation products, a main related substance (megestrol acetate) and two preservatives (methyl paraben and propyl paraben) with the resolution >or=2. The proposed method was validated for selectivity, linearity, accuracy, precision and solution stability. The method was found to be suitable for the quality control of MPA in bulk drug and injections as well as the stability-indicating studies. PMID:16242876

  11. Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution.

    PubMed

    Taha, Ahmed A; Wu, Yi-na; Wang, Hongtao; Li, Fengting

    2012-12-15

    Novel NH(2)-functionalized cellulose acetate (CA)/silica composite nanofibrous membranes were successfully prepared by sol-gel combined with electrospinning technology. Tetraethoxysilane (TEOS) as a silica source, CA as precursor and 3-ureidopropyltriethoxysilane as a coupling agent were used in membrane preparation. The membrane's chemical and morphological structures were investigated by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) images, X-ray diffraction (XRD), element analyzer, Fourier-transform infrared spectroscopy (FTIR) and N(2) adsorption-desorption isotherms. The composite nanofibrous membranes exhibited high surface area and porosity. The membranes were used for Cr(VI) ion removal from aqueous solution through static and dynamic experiments. The adsorption behavior of Cr(VI) can be well described by the Langmuir adsorption model, and the maximum adsorption capacity for Cr(VI) is estimated to be 19.46 mg/g. The membrane can be conveniently regenerated by alkalization. Thus the composite membrane prepared from biodegradable raw material has potential applications in the field of water treatment. PMID:22858801

  12. Pyrroloquinoline quinone (PQQ) is reduced to pyrroloquinoline quinol (PQQH2) by vitamin C, and PQQH2 produced is recycled to PQQ by air oxidation in buffer solution at pH 7.4.

    PubMed

    Mukai, Kazuo; Ouchi, Aya; Nagaoka, Shin-ichi; Nakano, Masahiko; Ikemoto, Kazuto

    2015-01-01

    Measurements of the reaction of sodium salt of pyrroloquinoline quinone (PQQNa2) with vitamin C (Vit C) were performed in phosphate-buffered solution (pH 7.4) at 25 °C under nitrogen atmosphere, using UV-vis spectrophotometry. The absorption spectrum of PQQNa2 decreased in intensity due to the reaction with Vit C and was changed to that of pyrroloquinoline quinol (PQQH2, a reduced form of PQQ). One molecule of PQQ was reduced by two molecules of Vit C producing a molecule of PQQH2 in the buffer solution. PQQH2, thus produced, was recycled to PQQ due to air oxidation. PQQ and Vit C coexist in many biological systems, such as vegetables, fruits, as well as in human tissues. The results obtained suggest that PQQ is reduced by Vit C and functions as an antioxidant in biological systems, because it has been reported that PQQH2 shows very high free-radical scavenging and singlet-oxygen quenching activities in buffer solutions. PMID:26264520

  13. Dissolution reaction and surface iron speciation of UICC crocidolite in buffered solution at pH 7.4: A combined ICP-OES, XPS and TEM investigation

    NASA Astrophysics Data System (ADS)

    Pacella, Alessandro; Fantauzzi, Marzia; Turci, Francesco; Cremisini, Carlo; Montereali, Maria Rita; Nardi, Elisa; Atzei, Davide; Rossi, Antonella; Andreozzi, Giovanni B.

    2014-02-01

    The dissolution reaction and the surface modifications of crocidolite asbestos fibres incubated for 0.5, 1, 24, 48, 168 and 1440 h in a phosphate buffered solution at pH 7.4 with and without hydrogen peroxide were investigated. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) was used to monitor the ion release into solution, X-ray Photoelectron Spectroscopy (XPS) was performed to unveil the chemistry of the leached surface, and High Resolution Transmission Electron Microscopy (HR-TEM) was carried out to monitor the structural modifications of the fibres. No significant differences were observed between dissolution experiments carried out with and without H2O2 with the exception of results after the first hour, from which it may be inferred that the dissolution proceeds faster in the presence of H2O2 but only in its very early steps. Congruent mobilization of Si and Mg from crocidolite was observed, increasing with time especially in the range between 1 and 48 h, while Ca decreased after 48 h and Fe was not detected at any incubation time. In the undersaturated conditions (0-48 h), dissolution rate of UICC crocidolite fibres has been estimated to be d(Si)/dt = 0.079 μmol h-1. The fibre surface modification is continuous with time: XPS results showed a regular depletion of Si and Mg and enrichment of Fe along dissolution. The Fe2p3/2 signal on the surface was fitted with four components at 709.0, 710.5, 711.6 and 712.8 eV binding energy values corresponding to: (i) Fe(II)-O and (ii) Fe(III)-O surrounded by oxygen atoms in the silicate structure, (iii) Fe(III)-OOH as a product of the dissolution process, and (iv) Fe in a phosphate precipitate (Fe-P), respectively. The evolution of Fe speciation on the crocidolite surface was followed by integrating the four photoemission peaks, and results showed that the oxidative environment promotes the formation of Fe(III)-O (up to 37% Fetot) and of Fe-P species (up to 16% Fetot), which are found on the fibre

  14. Properties of Pb(0.92)La(0.08)Zr(0.52)Ti(0.48)O(3) thin films grown on SrRuO(3) buffered nickel and silicon substrates by chemical solution deposition

    SciTech Connect

    Narayanan, M.; Ma, B.; Tong, S.; Koritala, R.; Balachandran, U.

    2012-01-01

    Ferroelectric film-on-foil capacitors are suitable to replace discrete passive components in the quest to develop electronic devices that show superior performance and are smaller in size. The film-on-foil approach is the most practical method to fabricate such components. Films of Pb{sub 0.92}La{sub 0.08}Zr{sub 0.52}Ti{sub 0.48}O{sub 3} (PLZT) were deposited on SrRuO{sub 3} (SRO) buffer films over nickel and silicon substrates. High-quality polycrystalline SRO thin-film electrodes were first deposited by chemical solution deposition. A phase pure, dense, uniform microstructure with grain size <100 nm was obtained in films crystallized at 700 C. The room-temperature resistivity of the SRO films crystallized at 700 C was {approx}800-900 {mu}{Omega}-cm. The dielectric properties of sol-gel derived PLZT capacitors on SRO-buffered nickel were evaluated as a function of temperature, bias field, and frequency, and the results were compared to those of the same films on silicon substrates. The comparison demonstrated the integrity of the buffer layer and its compatibility with nickel substrates. Device-quality dielectric properties were measured on PLZT films deposited on SRO-buffered nickel foils and found to be superior to those for PLZT on SRO-buffered silicon and expensive platinized silicon. These results suggest that SRO films can act as an effective barrier layer on nickel substrates suitable for embedded capacitor applications.

  15. Comparison of phosphorus forms in three extracts of dairy feces by solution 31P NMR analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using solution 31P NMR spectroscopy, we compared three extractants, deionized water, sodium acetate buffer (pH 5.0) with fresh sodium dithionite (NaAc-SD), and 0.25 M NaOH-0.05 M EDTA (NaOH-EDTA), for the profile of P compounds in two dairy fecal samples. Phosphorus extracted was 35% for water, and...

  16. Acetate dialysate versus bicarbonate dialysate: a continuing controversy.

    PubMed

    Diamond, S M; Henrich, W L

    1987-01-01

    The use of bicarbonate dialysate as the buffer during routine dialysis is growing. This discussion reviews several of the comparative trials in which bicarbonate and acetate buffers have been tested. Effects of the two buffers on BP, cardiac function, and pulmonary performance are discussed. Costs of the two systems are also compared. Patients who seem most likely to benefit from bicarbonate dialysate include those with a reduced muscle mass in whom a high sodium dialysate has not prevented hypotension. PMID:3028133

  17. Retention of ionisable compounds on high-performance liquid chromatography. XV. Estimation of the pH variation of aqueous buffers with the change of the acetonitrile fraction of the mobile phase.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2004-12-01

    The most commonly used mobile phases in reversed-phase high-performance liquid chromatography (RP-HPLC) are hydro-organic mixtures of an aqueous buffer and an organic modifier. The addition of this organic solvent to buffered aqueous solutions involves a variation of the buffer properties (pH and buffer capacity). In this paper, the pH variation is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-citrate, and ammonium-ammonia buffers. The proposed equations allow pH estimation of acetonitrile-water buffered mobile phases up to 60% (v/v) of organic modifier and initial aqueous buffer concentrations between 0.001 and 0.1 mol L(-1), from the initial aqueous pH. The estimated pH variation of the mobile phase and the pKa variation of the analytes allow us to predict the degree of ionisation of the analytes and from this and analyte hydrophobicities, to interpret the relative retention and separation of analyte mixtures. PMID:15628122

  18. VIRTUAL FRAME BUFFER INTERFACE

    NASA Technical Reports Server (NTRS)

    Wolfe, T. L.

    1994-01-01

    Large image processing systems use multiple frame buffers with differing architectures and vendor supplied user interfaces. This variety of architectures and interfaces creates software development, maintenance, and portability problems for application programs. The Virtual Frame Buffer Interface program makes all frame buffers appear as a generic frame buffer with a specified set of characteristics, allowing programmers to write code which will run unmodified on all supported hardware. The Virtual Frame Buffer Interface converts generic commands to actual device commands. The virtual frame buffer consists of a definition of capabilities and FORTRAN subroutines that are called by application programs. The virtual frame buffer routines may be treated as subroutines, logical functions, or integer functions by the application program. Routines are included that allocate and manage hardware resources such as frame buffers, monitors, video switches, trackballs, tablets and joysticks; access image memory planes; and perform alphanumeric font or text generation. The subroutines for the various "real" frame buffers are in separate VAX/VMS shared libraries allowing modification, correction or enhancement of the virtual interface without affecting application programs. The Virtual Frame Buffer Interface program was developed in FORTRAN 77 for a DEC VAX 11/780 or a DEC VAX 11/750 under VMS 4.X. It supports ADAGE IK3000, DEANZA IP8500, Low Resolution RAMTEK 9460, and High Resolution RAMTEK 9460 Frame Buffers. It has a central memory requirement of approximately 150K. This program was developed in 1985.

  19. Understanding Palladium Acetate from a User Perspective.

    PubMed

    Carole, William A; Colacot, Thomas J

    2016-06-01

    The behavior of palladium acetate is reviewed with respect to its synthesis, characterization, structure (in both solution and solid state), and activation pathways. In addition, comparisons of catalytic activities between pure palladium acetate and two common byproducts, Pd3 (OAc)5 (NO2 ) and polymeric [Pd(OAc)2 ]n , typically present in commercially available material are reviewed. Hence, this minireview serves as a concise guide for the users of palladium acetate from both academia and industry. PMID:27125630

  20. Method for regeneration of electroless nickel plating solution

    DOEpatents

    Eisenmann, Erhard T.

    1997-01-01

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.

  1. Method for regeneration of electroless nickel plating solution

    DOEpatents

    Eisenmann, E.T.

    1997-03-11

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.

  2. Oxidized cellulose esters: I. Preparation and characterization of oxidized cellulose acetates--a new class of biodegradable polymers.

    PubMed

    Kumar, V; Yang, D

    2002-01-01

    Oxidized cellulose acetates (OCA), with a degree of substitution (DS) value ranging between 1.1 and 2.3 and a free carboxylic acid group content of 20% (w/w), have been prepared by reacting oxidized cellulose (OC, COOH content 20% w/w) with a mixture of acetic acid and acetic anhydride in the presence of sulfuric acid as a catalyst. The DS of OCA, in general, increased with increasing reaction temperature, reaction time, and concentration of acetic anhydride in the reaction mixture. The yield of OCA, in contrast, increased with increasing concentration of acetic anhydride and decreased with increasing reaction time and temperature. The intrinsic viscosity of OCA varied between 0.100 and 0.275, depending on the reaction conditions used during its preparation. In general, an increase in reaction temperature and the use of a prolonged reaction time decreased the intrinsic viscosity of OCA. No correlation was found between DS and intrinsic viscosity of OCA. The apparent pKa of OCA is 3.7-3.9. The new OCA polymers are practically insoluble in water and slowly dissolve in pH 7.4 phosphate buffer solution. They are, however, soluble in a range of organic solvents (e.g. ethyl acetate, acetone, acetone/water, chloroform/methylene chloride, dimethylsulfoxide, dimethylformamide, and/or chloroform/methanol). PMID:12102594

  3. Iron autoxidation in Mops and Hepes buffers.

    PubMed

    Tadolini, B

    1987-01-01

    Iron autoxidation in Mops and Hepes buffers is characterized by a lag phase that becomes shorter with increasing FeCl2 concentration and pH. During iron oxidation in these buffers a yellow colour develops in the solution. When the reaction is conducted in the presence of nitro blue tetrazolium (NBT), blue formazan is formed. Of the many OH scavengers tested, mannitol and sorbitol are most effective in inhibiting Fe2+ oxidation, yellow colour development and NBT reduction. Some inhibition was also noted with catalase. The iron product of the oxidative reaction differs from Fe3+ in its absorption spectrum and its low reactivity with thiocyanate. Similar results are obtained when iron autoxidation is studied in unbuffered solutions brought to alkaline pH with NaOH. In phosphate buffer, no lag phase is evident and the absorption spectrum of the final solution is identical to that of Fe3+ in this buffer. The iron product reacts immediately with thiocyanate. When iron oxidation is conducted in the presence of NBT the formation of formazan is almost undetectable. Of the many compounds tested only catalase inhibits iron autoxidation in this buffer. The sequence of reactions leading to iron autoxidation in Good-type buffers thus resembles that occurring in unbuffered solutions brought to alkaline pH with NaOH and greatly differs from that occurring in phosphate buffer. These results are in agreement with the observation that these buffers have very low affinity for iron. The data presented define experimental conditions where Fe2+ is substantially stable for a considerable length of time in Mops buffer. PMID:3148493

  4. Common data buffer

    NASA Technical Reports Server (NTRS)

    Byrne, F.

    1981-01-01

    Time-shared interface speeds data processing in distributed computer network. Two-level high-speed scanning approach routes information to buffer, portion of which is reserved for series of "first-in, first-out" memory stacks. Buffer address structure and memory are protected from noise or failed components by error correcting code. System is applicable to any computer or processing language.

  5. Buffer Therapy for Cancer.

    PubMed

    Ribeiro, Maria de Lourdes C; Silva, Ariosto S; Bailey, Kate M; Kumar, Nagi B; Sellers, Thomas A; Gatenby, Robert A; Ibrahim-Hashim, Arig; Gillies, Robert J

    2012-08-15

    Oral administration of pH buffers can reduce the development of spontaneous and experimental metastases in mice, and has been proposed in clinical trials. Effectiveness of buffer therapy is likely to be affected by diet, which could contribute or interfere with the therapeutic alkalinizing effect. Little data on food pH buffering capacity was available. This study evaluated the pH and buffering capacity of different foods to guide prospective trials and test the effect of the same buffer (lysine) at two different ionization states. Food groups were derived from the Harvard Food Frequency Questionnaire. Foods were blended and pH titrated with acid from initial pH values until 4.0 to determine "buffering score", in mmol H(+)/pH unit. A "buffering score" was derived as the mEq H(+) consumed per serving size to lower from initial to a pH 4.0, the postprandial pH of the distal duodenum. To differentiate buffering effect from any metabolic byproduct effects, we compared the effects of oral lysine buffers prepared at either pH 10.0 or 8.4, which contain 2 and 1 free base amines, respectively. The effect of these on experimental metastases formation in mice following tail vein injection of PC-3M prostate cancer cells were monitored with in vivo bioluminescence. Carbohydrates and dairy products' buffering score varied between 0.5 and 19. Fruits and vegetables showed a low to zero buffering score. The score of meats varied between 6 and 22. Wine and juices had negative scores. Among supplements, sodium bicarbonate and Tums(®) had the highest buffering capacities, with scores of 11 and 20 per serving size, respectively. The "de-buffered" lysine had a less pronounced effect of prevention of metastases compared to lysine at pH 10. This study has demonstrated the anti-cancer effects of buffer therapy and suggests foods that can contribute to or compete with this approach to manage cancer. PMID:24371544

  6. Immunolocalization of MAP-2 in routinely formalin-fixed, paraffin-embedded guinea pig brain sections using microwave irradiation: a comparison of different combinations of antibody clones and antigen retrieval buffer solutions.

    PubMed

    Kan, Robert K; Pleva, Christina M; Hamilton, Tracey A; Petrali, John P

    2005-04-01

    The present study was designed to evaluate the efficacy of different microwave pretreatment methods to retrieve microtubule-associated protein 2 (MAP-2) immunoreactivity in formalin-fixed, paraffin-embedded guinea pig brain sections. Brain sections, microwave pretreated in boiling sodium citrate, citric acid, Tris hydrochloride, and EDTA buffers of pH 4, 6, and 8, were labeled with four different clones of MAP-2 monoclonal antibodies. No MAP-2 immunoreactivity was observed in control sections processed without microwave pretreatment. Optimal MAP-2 immunoreactivity was observed only when MAP-2 antibody clone AP18 was used in conjunction with citric acid buffer of pH 6.0. Using this combination, brain sections from nerve agent soman-exposed guinea pigs were found to exhibit marked reduction in MAP-2 immunostaining in the hippocampus. These observations suggest that the clone of the antibody in addition to the type and pH of antigen retrieval (AR) solution are important variables to be considered for establishing an optimal AR technique. When studying counterpart antigens of species other than that to which the antibodies were originally raised, different antibody clones must be tested in combination with different microwave-assisted AR (MAR) methods. This MAR method makes it possible to conduct retrospective studies on archival guinea pig brain paraffin blocks to evaluate changes in neuronal MAP-2 expression as a consequence of chemical warfare nerve agent toxicity. PMID:15817147

  7. Effect of royal jelly on experimental colitis induced by acetic acid and alteration of mast cell distribution in the colon of rats

    PubMed Central

    Karaca, T.; Bayiroglu, F.; Yoruk, M.; Kaya, M.S.; Uslu, S.; Comba, B.; Mis, L.

    2010-01-01

    This study investigated the effects of royal jelly (RJ) on acetic acid-induced colitis in rats. Twenty adult female Wistar albino rats were divided into four treatment groups of 5 animals each, including a control group (Group I); Group II was treated orally with RJ (150 mg kg−1 body weight); Group III had acetic acid-induced colitis; and Group IV had acetic acid-induced colitis treated orally with RJ (150 mg kg−1 body weight) for 4 weeks. Colitis was induced by intracolonic instillation of 4% acetic acid; the control group received physiological saline (10 mL kg−1). Colon samples were obtained under deep anaesthesia from animals in all groups. Tissues were fixed in 10% formalin neutral buffer solution for 24 h and embedded in paraffin. Six-micrometre-thick sections were stained with Mallory’s triple stain and toluidine blue in 1% aqueous solution at pH 1.0 for 5 min (for Mast Cells). RJ was shown to protect the colonic mucosa against the injurious effect of acetic acid. Colitis (colonic damage) was confirmed histomorphometrically as significant increases in the number of mast cells (MC) and colonic erosions in rats with acetic acid-induced colitis. The RJ treatment significantly decreased the number of MC and reduced the area of colonic erosion in the colon of RJ-treated rats compared with rats with untreated colitis. The results suggest that oral treatment with RJ could be used to treat colitis. PMID:21263740

  8. Buffer Therapy for Cancer

    PubMed Central

    Ribeiro, Maria de Lourdes C; Silva, Ariosto S.; Bailey, Kate M.; Kumar, Nagi B.; Sellers, Thomas A.; Gatenby, Robert A.; Ibrahim-Hashim, Arig; Gillies, Robert J.

    2013-01-01

    Oral administration of pH buffers can reduce the development of spontaneous and experimental metastases in mice, and has been proposed in clinical trials. Effectiveness of buffer therapy is likely to be affected by diet, which could contribute or interfere with the therapeutic alkalinizing effect. Little data on food pH buffering capacity was available. This study evaluated the pH and buffering capacity of different foods to guide prospective trials and test the effect of the same buffer (lysine) at two different ionization states. Food groups were derived from the Harvard Food Frequency Questionnaire. Foods were blended and pH titrated with acid from initial pH values until 4.0 to determine “buffering score”, in mmol H+/pH unit. A “buffering score” was derived as the mEq H+ consumed per serving size to lower from initial to a pH 4.0, the postprandial pH of the distal duodenum. To differentiate buffering effect from any metabolic byproduct effects, we compared the effects of oral lysine buffers prepared at either pH 10.0 or 8.4, which contain 2 and 1 free base amines, respectively. The effect of these on experimental metastases formation in mice following tail vein injection of PC-3M prostate cancer cells were monitored with in vivo bioluminescence. Carbohydrates and dairy products’ buffering score varied between 0.5 and 19. Fruits and vegetables showed a low to zero buffering score. The score of meats varied between 6 and 22. Wine and juices had negative scores. Among supplements, sodium bicarbonate and Tums® had the highest buffering capacities, with scores of 11 and 20 per serving size, respectively. The “de-buffered” lysine had a less pronounced effect of prevention of metastases compared to lysine at pH 10. This study has demonstrated the anti-cancer effects of buffer therapy and suggests foods that can contribute to or compete with this approach to manage cancer. PMID:24371544

  9. UV-ozone-treated MoO3 as the hole-collecting buffer layer for high-efficiency solution-processed SQ:PC71BM photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Yang, Qian-Qian; Yang, Dao-Bin; Zhao, Su-Ling; Huang, Yan; Xu, Zheng; Gong, Wei; Fan, Xing; Liu, Zhi-Fang; Huang, Qing-Yu; Xu, Xu-Rong

    2014-03-01

    The enhanced performance of a squaraine compound, with 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor, in solution-processed organic photovoltaic devices is obtained by using UV-ozone-treated MoO3 as the hole-collecting buffer layer. The optimized thickness of the MoO3 layer is 8 nm, at which the device shows the best power conversion efficiency (PCE) among all devices, resulting from a balance of optical absorption and charge transport. After being treated by UV-ozone for 10 min, the transmittance of the MoO3 film is almost unchanged. Atomic force microscopy results show that the treated surface morphology is improved. A high PCE of 3.99% under AM 1.5 G illumination (100 mW/cm2) is obtained.

  10. Basal buffer systems for a newly glycosylated recombinant human interferon-β with biophysical stability and DoE approaches.

    PubMed

    Kim, Nam Ah; Song, Kyoung; Lim, Dae Gon; Hada, Shavron; Shin, Young Kee; Shin, Sangmun; Jeong, Seong Hoon

    2015-10-12

    The purpose of this study was to develop a basal buffer system for a biobetter version of recombinant human interferon-β 1a (rhIFN-β 1a), termed R27T, to optimize its biophysical stability. The protein was pre-screened in solution as a function of pH (2-11) using differential scanning calorimetry (DSC) and dynamic light scattering (DLS). According to the result, its experimental pI and optimal pH range were 5.8 and 3.6-4.4, respectively. Design of experiment (DoE) approach was developed as a practical tool to aid formulation studies as a function of pH (2.9-5.7), buffer (phosphate, acetate, citrate, and histidine), and buffer concentration (20 mM and 50 mM). This method employed a weight-based procedure to interpret complex data sets and to investigate critical key factors representing protein stability. The factors used were Tm, enthalpy, and relative helix contents which were obtained by DSC and Fourier Transform Infrared spectroscopy (FT-IR). Although the weights changed by three responses, objective functions from a set of experimental designs based on four buffers were highest in 20 mM acetate buffer at pH 3.6 among all 19 scenarios tested. Size exclusion chromatography (SEC) was adopted to investigate accelerated storage stability in order to optimize the pH value with susceptible stability since the low pH was not patient-compliant. Interestingly, relative helix contents and storage stability (monomer remaining) increased with pH and was the highest at pH 4.0. On the other hand, relative helix contents and thermodynamic stability decreased at pH 4.2 and 4.4, suggesting protein aggregation issues. Therefore, the optimized basal buffer system for the novel biobetter was proposed to be 20 mM acetate buffer at pH 3.8±0.2. PMID:26215462

  11. Isotherm parameters and intraparticle mass transfer kinetics on molecularly imprinted polymers in acetonitrile/buffer mobile phases

    SciTech Connect

    Kim, Hyunjung; Kaczmarski, Krzysztof; Guiochon, Georges A

    2006-03-01

    The equilibrium isotherm and the intraparticle mass transfer kinetics of the enantiomers of the template were investigated on an Fmoc-L-tryptophan (Fmoc-L-Trp) imprinted polymer at different pHs and water concentrations in acetonitrile/aqueous buffer mobile phases. The equilibrium isotherm data were measured using frontal analysis at 25 {+-} 2 C. The adsorption energy distribution was found to be trimodal, with narrow modes. Consistent with this distribution, the adsorption data were modeled using a tri-Langmuir isotherm equation and the best estimates of the isotherm parameters were determined. The intraparticle mass transfer parameters were derived by comparing the profiles of experimental overloaded bands and the profiles calculated using the isotherm model and the lumped pore diffusion (POR) model of chromatography. These results showed that different adsorption and mass transfer mechanisms exist in mobile phases made of acetonitrile/aqueous buffer and of acetonitrile/acetic acid solutions.

  12. Evaluation of ampouled tonometered buffer solutions as a quality-control system for pH, pCO2, and pO2 measurement.

    PubMed

    Maas, A H; Veefkind, A H; Van den Camp, R A; Teunissen, A J; Winckers, E K; Jansen, A P

    1977-09-01

    In response to the need for an adequate quality-control system for blood-pH and blood-gas analyzers, we investigated the practical application of ampouled phosphate-bicarbonate-chloride solutions tonometered with mixtures of carbon dioxide, oxygen, and nitrogen. This system offers three discrete sets of pH, pCO2, AND PO2 values, which are consistent with normal and pathophysiologically high and low values. The stated values were based on the U.S. National Bureau of Standards scale for pH and on gas analysis for pCO2 and pO2. Influence of temperature, air contact, calibration gas, and storage was established. Internal and external quality control by means of these ampoules is presented. The system is stable, accurate, precise, and suitable for simultaneous quality control of pH, pCO2, and pO2 measurements. PMID:19168

  13. Conjugation of silica nanoparticles with cellulose acetate/polyethylene glycol 300 membrane for reverse osmosis using MgSO4 solution.

    PubMed

    Sabir, Aneela; Shafiq, Muhammad; Islam, Atif; Jabeen, Faiza; Shafeeq, Amir; Ahmad, Adnan; Zahid Butt, Muhammad Taqi; Jacob, Karl I; Jamil, Tahir

    2016-01-20

    Thermally-induced phase separation (TIPS) method was used to synthesize polymer matrix (PM) membranes for reverse osmosis from cellulose acetate/polyethylene glycol (CA/PEG300) conjugated with silica nanoparticles (SNPs). Experimental data showed that the conjugation of SNPs changed the surface properties as dense and asymmetric composite structure. The results were explicitly determined by the permeability flux and salt rejection efficiency of the PM-SNPs membranes. The effect of SNPs conjugation on MgSO4 salt rejection was more significant in magnitude than on permeation flux i.e. 2.38 L/m(2)h. FTIR verified that SNPs were successfully conjugated on the surface of PM membrane. DSC of PM-SNPs shows an improved Tg from 76.2 to 101.8 °C for PM and PM-S4 respectively. Thermal stability of the PM-SNPs membranes was observed by TGA which was significantly enhanced with the conjugation of SNPs. The micrographs of SEM and AFM showed the morphological changes and increase in the valley and ridges on membrane surface. Experimental data showed that the PM-S4 (0.4 wt% SNPs) membrane has maximum salt rejection capacity and was selected as an optimal membrane. PMID:26572387

  14. Fabrication of organic FETs based on printing techniques and the improvement of FET properties by the insertion of solution-processable buffer layers

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Kanamori, Akira

    2016-04-01

    In this study, we developed multilayer deposition and patterning processes that can be used to fabricate all-printed, organic field-effect transistors (OFETs) on the basis of vacuum-free, solution-processable soft-lithography techniques. We have used regioregular poly(3-hexylthiophene) (P3HT) as a soluble p-type polymer semiconductor and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) as a soluble n-type semiconductor, and cross-linked poly(vinyl phenol) (CL-PVP) as a low-temperature (<150 °C)-curable soluble polymer gate insulator. We have compared the electrical properties of OFETs with multiwalled carbon nanotubes (MWCNTs), silver nanoparticles (NPs), and their composites (or multilayers) as printed source-drain (S-D) electrodes in order to fabricate vacuum-free, all-printed OFETs. The P3HT-OFETs with MWCNT S-D electrodes exhibited higher hole mobility and on/off ratios than the devices with Ag NP S-D electrodes owing to better contact at the MWCNT/P3HT interface. On the other hand, Ag/molybdenum oxide (MoO3) S-D electrodes considerably enhanced the hole injection and caused the reduction in the on/off ratio and the difficulty in turning off the devices. The PCBM-OFETs with MWCNT S-D electrodes also exhibited higher electron mobility that is almost comparable to that of P3HT-OFETs and lower threshold voltage, which was considered to be due to the enhanced electron injection at the electrode interface.

  15. Optimization of protein solution by a novel experimental design method using thermodynamic properties.

    PubMed

    Kim, Nam Ah; An, In Bok; Lee, Sang Yeol; Park, Eun-Seok; Jeong, Seong Hoon

    2012-09-01

    In this study, the structural stability of hen egg white lysozyme in solution at various pH levels and in different types of buffers, including acetate, phosphate, histidine, and Tris, was investigated by means of differential scanning calorimetry (DSC). Reasonable pH values were selected from the buffer ranges and were analyzed statistically through design of experiment (DoE). Four factors were used to characterize the thermograms: calorimetric enthalpy (ΔH), temperature at maximum heat flux (T( m )), van't Hoff enthalpy (ΔH( V )), and apparent activation energy of protein solution (E(app)). It was possible to calculate E(app) through mathematical elaboration from the Lumry-Eyring model by changing the scan rate. The transition temperature of protein solution, T( m ), increased when the scan rate was faster. When comparing the T( m ), ΔH( V ), ΔH, and E(app) of lysozyme in various pH ranges and buffers with different priorities, lysozyme in acetate buffer at pH 4.767 (scenario 9) to pH 4.969 (scenario 11) exhibited the highest thermodynamic stability. Through this experiment, we found a significant difference in the thermal stability of lysozyme in various pH ranges and buffers and also a new approach to investigate the physical stability of protein by DoE. PMID:23054718

  16. The SVT Hit Buffer

    SciTech Connect

    Belforte, S.; Dell`Orso, M.; Donati, S.

    1996-06-01

    The Hit Buffer is part of the Silicon Vertex Tracker, a trigger processor dedicated to the reconstruction of particle trajectories in the Silicon Vertex Detector and the Central Tracking Chamber of the Collider Detector at Fermilab. The Hit Buffer is a high speed data-traffic node, where thousands of words are received in arbitrary order and simultaneously organized in an internal structured data base, to be later promptly retrieved and delivered in response to specific requests. The Hit Buffer is capable of processing data at a rate of 25 MHz, thanks to the use of special fast devices like Cache-Tag RAMs and high performance Erasable Programmable Logic Devices from the XILINX XC7300 family.

  17. Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.

    1998-01-01

    The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.

  18. High rates of [1-14C]acetate incorporation into the lipid of isolated spinach chloroplasts.

    PubMed Central

    Roughan, P G; Slack, C R; Holland, R

    1976-01-01

    Spinach chloroplasts, isolated by techniques yielding preparations with high O2- evolving activity, showed rates of light-dependent acetate incorporation into lipids 3-4 fold higher than any previously reported. Incorporation rates as high as 500 nmol of acetate/h per mg of chlorophyll were measured in buffered sorbitol solutions containing only NaHCO3 and [1-14C]acetate, and as high as 800 nmol/h per mg of chlorophyll when 0.13 mM-Triton X-100 was also included in the reaction media. The fatty acids synthesized were predominantly oleic (70-80% of the total fatty acid radioactivity) and palmitic (20-25%) with only minor amounts (1-5%) of linoleic acid. Linolenic acid synthesis was not detected in the system in vitro. Free fatty acids accounted for 70-90% of the radioactivity incorporated and the remainder was shared fairly evenly between 1,2-diacylglycerols and polar lipids. Oleic acid constituted 80-90% of the free fatty acids synthesized, but the diacylglycerols and polar lipids contained slightly more palmitic acid than oleic acid. Triton X-100 stimulated the synthesis of diacylglycerols 3-6 fold, but stimulated free fatty acid synthesis only 1-1.5-fold. Added glycerol 1-phosphate stimulated both the synthesis of diacylglycerols and palmitic acid relative to oleic acid, but did not increase acetate incorporation into total chloroplast lipids. CoA and ATP, when added separately, stimulated acetate incorporation into chloroplast lipids to variable extents and had no effect on the types of lipid synthesized, but when added together resulted in 34% of the incorporated acetate appearing in long-chain acyl-CoA. Pyruvate was a much less effective precursor of chloroplast fatty acids than was acetate. PMID:985452

  19. Preparation of vinyl acetate

    DOEpatents

    Tustin, Gerald Charles; Zoeller, Joseph Robert; Depew, Leslie Sharon

    1998-01-01

    This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

  20. Preparation of vinyl acetate

    DOEpatents

    Tustin, G.C.; Zoeller, J.R.; Depew, L.S.

    1998-03-24

    This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

  1. [Degradation of oxytetracycline with ozonation in acetic acid solvent].

    PubMed

    Li, Shi-Yin; Li, Xiao-Rong; Zhu, Yi-Ping; Zhu, Jiang-Peng; Wang, Guo-Xiang

    2012-12-01

    Use acetic acid as the media of ozone degradation of oxytetracycline (OTC), and effects of the initial dosing ratio of ozone/OTC, ozone flow, free radical scavenger, metal ions on the removal rate of OTC were investigated respectively. The results showed that acetic acid had a high ozone stability and solubility. OTC had a high removal rate and degradation rate in acetic acid solution. With the increase of OTC dosage, the removal rate of OTC decreased in acetic acid. Removal rate of OTC was increased distinctly when ozone flow increased properly. It was also observed that free radical scavenger had a significantly negative effect on OTC ozonation degradation in acetic acid. Furthermore the main reactions of OTC ozone oxidation were direct oxidation and indirect oxidation in acetic acid. When Fe3+ and Co2+ were existent in acetic acid, the degradation of OTC was inhibited significantly. PMID:23379161

  2. Valuation of forested buffers

    NASA Astrophysics Data System (ADS)

    Basnyat, Prakash

    The research concentrated on two fronts: (1) defining relationships between land use complex and nitrate and sediment concentrations; and (2) developing a method for assessing the extent of potential and water quality improvements available through land management options and their associated costs. In this work, selected basins of the Fish River (Alabama) were delineated, land use/land cover types were classified, and "contributing zones" were delineated using Geographic Information System (GIS) and Remote Sensing (RS) analytical tools. Water samples collected from these basins were analyzed for their nutrient contents. Based on measured nitrate and sediment concentrations in basin streams, a linkage model was developed. This linkage model relates land use/land cover with the pollution levels in the stream. The linkage model was evaluated at three different scales: (1) the basin scale; (2) the contributing zone scale; and (3) the stream buffer/riparian zone scale. The contributing zone linkage model suggests that forests act as a sink or transformation zone. Residential/urban/built-up areas were identified as the strongest contributors of nitrate in the contributing zones model and active agriculture was identified as the second largest contributor. Regression results for the "land use/land cover diversity" model (stream buffer/riparian zone scale) suggest that areas that are close (adjacent) to the stream and any disturbances in these areas will have major impacts on stream water quality. The economic model suggests the value of retiring lands from agricultural land uses to forested buffers varies from 0 to 3067 per hectare, depending on the types of crops currently grown. Along with conversion costs, this land value forms the basis for estimates of the costs of land management options for improving (or maintaining) water quality throughout the study area. The model also shows the importance of stream-side management zones, which are key to maintenance of stream

  3. Effect of surface chemistries and characteristics of Ti6Al4V on the Ca and P adsorption and ion dissolution in Hank's ethylene diamine tetra-acetic acid solution.

    PubMed

    Chang, E; Lee, T M

    2002-07-01

    This study examined the influence of chemistries and surface characteristics of Ti6Al4V on the adsorption of Ca and P species and ion dissolution behavior of the material exposed in Hank's solution with 8.0 mM ethylene diamine tetra-acetic acid at 37 degrees C. The variation of chemistries of the alloy and nano-surface characteristics (chemistries of nano-surface oxides, amphoteric OH group adsorbed on oxides, and oxide thickness) was effected by surface modification and three passivation methods (34% nitric acid passivation. 400 degrees C heated in air, and aged in 100 degrees C water). X-ray photoelectron spectroscopy and Auger electron spectroscopy were used for surface analyses. The chemistries of nano-surface oxides in a range studied should not change the capability of Ca and P adsorption. Nor is the capability affected significantly by amphoteric OH group and oxide thickness. However, passivations influence the surface oxide thickness and the early stage ion dissolution rate of the alloy. The rate-limiting step of the rate can be best explained by metal-ion transport through the oxide film, rather than hydrolysis of the film. Variation of the chemistries of titanium alloy alters the electromotive force potential of the metal, thereby affecting the corrosion and ion dissolution rate. PMID:12069333

  4. Synthesis of Gold Nanoparticles with Buffer-Dependent Variations of Size and Morphology in Biological Buffers.

    PubMed

    Ahmed, Syed Rahin; Oh, Sangjin; Baba, Rina; Zhou, Hongjian; Hwang, Sungu; Lee, Jaebeom; Park, Enoch Y

    2016-12-01

    The demand for biologically compatible and stable noble metal nanoparticles (NPs) has increased in recent years due to their inert nature and unique optical properties. In this article, we present 11 different synthetic methods for obtaining gold nanoparticles (Au NPs) through the use of common biological buffers. The results demonstrate that the sizes, shapes, and monodispersity of the NPs could be varied depending on the type of buffer used, as these buffers acted as both a reducing agent and a stabilizer in each synthesis. Theoretical simulations and electrochemical experiments were performed to understand the buffer-dependent variations of size and morphology exhibited by these Au NPs, which revealed that surface interactions and the electrostatic energy on the (111) surface of Au were the determining factors. The long-term stability of the synthesized NPs in buffer solution was also investigated. Most NPs synthesized using buffers showed a uniquely wide range of pH stability and excellent cell viability without the need for further modifications. PMID:26847691

  5. Synthesis of Gold Nanoparticles with Buffer-Dependent Variations of Size and Morphology in Biological Buffers

    NASA Astrophysics Data System (ADS)

    Ahmed, Syed Rahin; Oh, Sangjin; Baba, Rina; Zhou, Hongjian; Hwang, Sungu; Lee, Jaebeom; Park, Enoch Y.

    2016-02-01

    The demand for biologically compatible and stable noble metal nanoparticles (NPs) has increased in recent years due to their inert nature and unique optical properties. In this article, we present 11 different synthetic methods for obtaining gold nanoparticles (Au NPs) through the use of common biological buffers. The results demonstrate that the sizes, shapes, and monodispersity of the NPs could be varied depending on the type of buffer used, as these buffers acted as both a reducing agent and a stabilizer in each synthesis. Theoretical simulations and electrochemical experiments were performed to understand the buffer-dependent variations of size and morphology exhibited by these Au NPs, which revealed that surface interactions and the electrostatic energy on the (111) surface of Au were the determining factors. The long-term stability of the synthesized NPs in buffer solution was also investigated. Most NPs synthesized using buffers showed a uniquely wide range of pH stability and excellent cell viability without the need for further modifications.

  6. Virtual Frame Buffer Interface Program

    NASA Technical Reports Server (NTRS)

    Wolfe, Thomas L.

    1990-01-01

    Virtual Frame Buffer Interface program makes all frame buffers appear as generic frame buffer with specified set of characteristics, allowing programmers to write codes that run unmodified on all supported hardware. Converts generic commands to actual device commands. Consists of definition of capabilities and FORTRAN subroutines called by application programs. Developed in FORTRAN 77 for DEC VAX 11/780 or DEC VAX 11/750 computer under VMS 4.X.

  7. On the delay analysis of a TDMA channel with finite buffer capacity

    NASA Technical Reports Server (NTRS)

    Yan, T.-Y.

    1982-01-01

    The throughput performance of a TDMA channel with finite buffer capacity for transmitting data messages is considered. Each station has limited message buffer capacity and has Poisson message arrivals. Message arrivals will be blocked if the buffers are congested. Using the embedded Markov chain model, the solution procedure for the limiting system-size probabilities is presented in a recursive fashion. Numerical examples are given to demonstrate the tradeoffs between the blocking probabilities and the buffer sizing strategy.

  8. Ring Buffered Network Bus

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report describes the research effort to demonstrate the integration of a data sharing technology, Ring Buffered Network Bus, in development by Dryden Flight Research Center, with an engine simulation application, the Java Gas Turbine Simulator, in development at the University of Toledo under a grant from the Glenn Research Center. The objective of this task was to examine the application of the RBNB technologies as a key component in the data sharing, health monitoring and system wide modeling elements of the NASA Aviation Safety Program (AVSP) [Golding, 1997]. System-wide monitoring and modeling of aircraft and air safety systems will require access to all data sources which are relative factors when monitoring or modeling the national airspace such as radar, weather, aircraft performance, engine performance, schedule and planning, airport configuration, flight operations, etc. The data sharing portion of the overall AVSP program is responsible for providing the hardware and software architecture to access and distribute data, including real-time flight operations data, among all of the AVSP elements. The integration of an engine code capable of numerically "flying" through recorded flight paths and weather data using a software tool that allows for distributed access of data to this engine code demonstrates initial steps toward building a system capable of monitoring and modeling the National Airspace.

  9. Oracle Log Buffer Queueing

    SciTech Connect

    Rivenes, A S

    2004-12-08

    The purpose of this document is to investigate Oracle database log buffer queuing and its affect on the ability to load data using a specialized data loading system. Experiments were carried out on a Linux system using an Oracle 9.2 database. Previous experiments on a Sun 4800 running Solaris had shown that 100,000 entities per minute was an achievable rate. The question was then asked, can we do this on Linux, and where are the bottlenecks? A secondary question was also lurking, how can the loading be further scaled to handle even higher throughput requirements? Testing was conducted using a Dell PowerEdge 6650 server with four CPUs and a Dell PowerVault 220s RAID array with 14 36GB drives and 128 MB of cache. Oracle Enterprise Edition 9.2.0.4 was used for the database and Red Hat Linux Advanced Server 2.1 was used for the operating system. This document will detail the maximum observed throughputs using the same test suite that was used for the Sun tests. A detailed description of the testing performed along with an analysis of bottlenecks encountered will be made. Issues related to Oracle and Linux will also be detailed and some recommendations based on the findings.

  10. BUFFERS AND VEGETATIVE FILTER STRIPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Buffers and filter strips are areas of permanent vegetation located within and between agricultural fields and the water courses to which they drain. These buffers are intended to intercept and slow runoff thereby providing water quality benefits. In addition, in many settings they are intended to...

  11. Irrigation with N,N-dichloro-2,2-dimethyltaurine (NVC-422) in a citrate buffer maintains urinary catheter patency in vitro and prevents encrustation by Proteus mirabilis.

    PubMed

    Rani, Suriani Abdul; Celeri, Chris; Najafi, Ron; Bley, Keith; Debabov, Dmitri

    2016-06-01

    Long-term use of indwelling urinary catheters can lead to urinary tract infections and loss of catheter patency due to encrustation and blockage. Encrustation of urinary catheters is due to formation of crystalline biofilms by urease-producing microorganisms such as Proteus mirabilis. An in vitro catheter biofilm model (CBM) was used to evaluate current methods for maintaining urinary catheter patency. We compared antimicrobial-coated urinary Foley catheters, with both available catheter irrigation solutions and investigational solutions containing NVC-422 (N,N-dichloro-2,2-dimethyltaurine; a novel broad-spectrum antimicrobial). Inoculation of the CBM reactor with 10(8) colony-forming units of P. mirabilis resulted in crystalline biofilm formation in catheters by 48 h and blockage of catheters within 5 days. Silver hydrogel or nitrofurazone-coated catheters did not extend the duration of catheter patency. Catheters irrigated daily with commercially available solutions such as 0.25 % acetic acid and isotonic saline blocked at the same rate as untreated catheters. Daily irrigations of catheters with 0.2 % NVC-422 in 10 mM acetate-buffered saline pH 4 or Renacidin maintained catheter patency throughout 10-day studies, but P. mirabilis colonization of the CBM remained. In contrast, 0.2 % NVC-422 in citrate buffer (6.6 % citric acid at pH 3.8) resulted in an irrigation solution that not only maintained catheter patency for 10 days but also completely eradicated the P. mirabilis biofilm within one treatment day. These data suggest that an irrigation solution containing the rapidly bactericidal antimicrobial NVC-422 in combination with citric acid to permeabilize crystalline biofilm may significantly enhance catheter patency versus other approved irrigation solutions and antimicrobial-coated catheters. PMID:26282899

  12. Acetate Dependence of Tumors

    PubMed Central

    Comerford, Sarah A.; Huang, Zhiguang; Du, Xinlin; Wang, Yun; Cai, Ling; Witkiewicz, Agnes; Walters, Holly; Tantawy, Mohammed N.; Fu, Allie; Manning, H. Charles; Horton, Jay D.; Hammer, Robert E.; McKnight, Steven L.; Tu, Benjamin P.

    2014-01-01

    SUMMARY Acetyl-CoA represents a central node of carbon metabolism that plays a key role in bioenergetics, cell proliferation and the regulation of gene expression. How highly glycolytic or hypoxic tumors are able to produce sufficient quantities of this metabolite to support cell growth and survival under nutrient-limiting conditions remains poorly understood. Here we show that the nucleocytosolic acetyl-CoA synthetase enzyme, ACSS2, supplies a key source of acetyl-CoA for tumors by capturing acetate as a carbon source. Despite exhibiting no gross deficits in growth or development, adult mice lacking ACSS2 exhibit a significant reduction in tumor burden in two different models of hepatocellular carcinoma. ACSS2 is expressed in a large proportion of human tumors and its activity is responsible for the majority of cellular acetate uptake into both lipids and histones. These observations may qualify ACSS2 as a targetable metabolic vulnerability of a wide spectrum of tumors. PMID:25525877

  13. Buffer layer effect on ZnO nanorods growth alignment

    NASA Astrophysics Data System (ADS)

    Zhao, Dongxu; Andreazza, Caroline; Andreazza, Pascal; Ma, Jiangang; Liu, Yichun; Shen, Dezhen

    2005-06-01

    Vertical aligned ZnO nanorods array was fabricated on Si with introducing a ZnO thin film as a buffer layer. Two different nucleation mechanisms were found in growth process. With using Au catalyst, Zn vapor could diffuse into Au nanoclusters with forming a solid solution. Then the ZnO nucleation site is mainly on the catalyst by oxidation of Au/Zn alloy. Without catalyst, nucleation could occur directly on the surface of buffer layer by homoepitaxy. The density and the size of ZnO nanorods could be governed by morphological character of catalyst and buffer layer. The nanorods growth is followed by vapor-solid mechanism.

  14. 1,3,5-Tris(phenyl-2-benzimidazole)-benzene cathode buffer layer thickness dependence in solution-processable organic solar cell based on 1,4,8,11,15,18,22,25-octahexylphthalocyanine

    NASA Astrophysics Data System (ADS)

    De Roméo Banoukepa, Gilles; Fujii, Akihiko; Shimizu, Yo; Ozaki, Masanori

    2015-04-01

    Studies on the insertion effects of a cathode buffer layer on bulk heterojunction organic solar cell based on 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2) and 1-(3-methoxy-carbonyl)-propyl-1-1-phenyl-(6,6)C61 (PCBM) by using 1,3,5-tris(phenyl-2-benzimidazole)-benzene (TPBi) as a cathode buffer layer material have been carried out. The external quantum efficiency and the short-circuit current markedly increased, resulting in the enhancement of the power conversion efficiency. The solar cell performance has been discussed from the atomic force microscopy, photoelectron yield spectroscopy and X-ray photoelectron spectroscopy measurements.

  15. Specific ion and buffer effects on protein-protein interactions of a monoclonal antibody.

    PubMed

    Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R

    2015-01-01

    Better predictive ability of salt and buffer effects on protein-protein interactions requires separating out contributions due to ionic screening, protein charge neutralization by ion binding, and salting-in(out) behavior. We have carried out a systematic study by measuring protein-protein interactions for a monoclonal antibody over an ionic strength range of 25 to 525 mM at 4 pH values (5, 6.5, 8, and 9) in solutions containing sodium chloride, calcium chloride, sodium sulfate, or sodium thiocyante. The salt ions are chosen so as to represent a range of affinities for protein charged and noncharged groups. The results are compared to effects of various buffers including acetate, citrate, phosphate, histidine, succinate, or tris. In low ionic strength solutions, anion binding affinity is reflected by the ability to reduce protein-protein repulsion, which follows the order thiocyanate > sulfate > chloride. The sulfate specific effect is screened at the same ionic strength required to screen the pH dependence of protein-protein interactions indicating sulfate binding only neutralizes protein charged groups. Thiocyanate specific effects occur over a larger ionic strength range reflecting adsorption to charged and noncharged regions of the protein. The latter leads to salting-in behavior and, at low pH, a nonmonotonic interaction profile with respect to sodium thiocyanate concentration. The effects of thiocyanate can not be rationalized in terms of only neutralizing double layer forces indicating the presence of an additional short-ranged protein-protein attraction at moderate ionic strength. Conversely, buffer specific effects can be explained through a charge neutralization mechanism, where buffers with greater valency are more effective at reducing double layer forces at low pH. Citrate binding at pH 6.5 leads to protein charge inversion and the formation of attractive electrostatic interactions. Throughout the report, we highlight similarities in the measured

  16. Tau Aggregation Propensity Engrained in Its Solution State.

    PubMed

    Eschmann, Neil A; Do, Thanh D; LaPointe, Nichole E; Shea, Joan-Emma; Feinstein, Stuart C; Bowers, Michael T; Han, Songi

    2015-11-12

    A peptide fragment of the human tau protein which stacks to form neat cross β-sheet fibrils, resembling that found in pathological aggregation, (273)GKVQIINKKLDL(284) (here "R2/WT"), was modified with a spin-label at the N-terminus. With the resulting peptide, R2/G273C-SL, we probed events at time scales spanning seconds to hours after aggregation is initiated using transmission electron microscopy (TEM), thioflavin T (THT) fluorescence, ion mobility mass spectrometry (IMMS), electron paramagnetic resonance (EPR), and Overhauser dynamic nuclear polarization (ODNP) to determine if deliberate changes to its conformational states and population in solution influence downstream propensity to form fibrillar aggregates. We find varying solution conditions by adding the osmolyte urea or TMAO, or simply using different buffers (acetate buffer, phosphate buffer, or water), produces significant differences in early monomer/dimer populations and conformations. Crucially, these characteristics of the peptide in solution state before aggregation is initiated dictate the fibril formation propensity after aggregation. We conclude the driving forces that accelerate aggregation, when heparin is added, do not override the subtle intra- or interprotein interactions induced by the initial solvent conditions. In other words, the balance of protein-protein vs protein-solvent interactions present in the initial solution conditions is a critical driving force for fibril formation. PMID:26484390

  17. Branch target buffer design and optimization

    NASA Technical Reports Server (NTRS)

    Perleberg, Chris H.; Smith, Alan J.

    1993-01-01

    Consideration is given to two major issues in the design of branch target buffers (BTBs), with the goal of achieving maximum performance for a given number of bits allocated to the BTB design. The first issue is BTB management; the second is what information to keep in the BTB. A number of solutions to these problems are reviewed, and various optimizations in the design of BTBs are discussed. Design target miss ratios for BTBs are developed, making it possible to estimate the performance of BTBs for real workloads.

  18. Buffer Gas Acquisition and Storage

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F.; Lueck, Dale E.; Jennings, Paul A.; Callahan, Richard A.; Delgado, H. (Technical Monitor)

    2001-01-01

    The acquisition and storage of buffer gases (primarily argon and nitrogen) from the Mars atmosphere provides a valuable resource for blanketing and pressurizing fuel tanks and as a buffer gas for breathing air for manned missions. During the acquisition of carbon dioxide (CO2), whether by sorption bed or cryo-freezer, the accompanying buffer gases build up in the carbon dioxide acquisition system, reduce the flow of CO2 to the bed, and lower system efficiency. It is this build up of buffer gases that provide a convenient source, which must be removed, for efficient capture Of CO2 Removal of this buffer gas barrier greatly improves the charging rate of the CO2 acquisition bed and, thereby, maintains the fuel production rates required for a successful mission. Consequently, the acquisition, purification, and storage of these buffer gases are important goals of ISRU plans. Purity of the buffer gases is a concern e.g., if the CO, freezer operates at 140 K, the composition of the inert gas would be approximately 21 percent CO2, 50 percent nitrogen, and 29 percent argon. Although there are several approaches that could be used, this effort focused on a hollow-fiber membrane (HFM) separation method. This study measured the permeation rates of CO2, nitrogen (ND, and argon (Ar) through a multiple-membrane system and the individual membranes from room temperature to 193K and 10 kpa to 300 kPa. Concentrations were measured with a gas chromatograph that used a thermoconductivity (TCD) detector with helium (He) as the carrier gas. The general trend as the temperature was lowered was for the membranes to become more selective, In addition, the relative permeation rates between the three gases changed with temperature. The end result was to provide design parameters that could be used to separate CO2 from N2 and Ar.

  19. Protein buffering in model systems and in whole human saliva.

    PubMed

    Lamanda, Andreas; Cheaib, Zeinab; Turgut, Melek Dilek; Lussi, Adrian

    2007-01-01

    The aim of this study was to quantify the buffer attributes (value, power, range and optimum) of two model systems for whole human resting saliva, the purified proteins from whole human resting saliva and single proteins. Two model systems, the first containing amyloglucosidase and lysozyme, and the second containing amyloglucosidase and alpha-amylase, were shown to provide, in combination with hydrogencarbonate and di-hydrogenphosphate, almost identical buffer attributes as whole human resting saliva. It was further demonstrated that changes in the protein concentration as small as 0.1% may change the buffer value of a buffer solution up to 15 times. Additionally, it was shown that there was a protein concentration change in the same range (0.16%) between saliva samples collected at the time periods of 13:00 and others collected at 9:00 am and 17:00. The mode of the protein expression changed between these samples corresponded to the change in basic buffer power and the change of the buffer value at pH 6.7. Finally, SDS Page and Ruthenium II tris (bathophenantroline disulfonate) staining unveiled a constant protein expression in all samples except for one 50 kDa protein band. As the change in the expression pattern of that 50 kDa protein band corresponded to the change in basic buffer power and the buffer value at pH 6.7, it was reasonable to conclude that this 50 kDa protein band may contain the protein(s) belonging to the protein buffer system of human saliva. PMID:17327922

  20. The effect of oral sodium acetate administration on plasma acetate concentration and acid-base state in horses

    PubMed Central

    Waller, Amanda; Lindinger, Michael I

    2007-01-01

    Aim Sodium acetate (NaAcetate) has received some attention as an alkalinizing agent and possible alternative energy source for the horse, however the effects of oral administration remain largely unknown. The present study used the physicochemical approach to characterize the changes in acid-base status occurring after oral NaAcetate/acetic acid (NAA) administration in horses. Methods Jugular venous blood was sampled from 9 exercise-conditioned horses on 2 separate occasions, at rest and for 24 h following a competition exercise test (CET) designed to simulate the speed and endurance test of 3-day event. Immediately after the CETs horses were allowed water ad libitum and either: 1) 8 L of a hypertonic NaAcetate/acetic acid solution via nasogastric tube followed by a typical hay/grain meal (NAA trial); or 2) a hay/grain meal alone (Control trial). Results Oral NAA resulted in a profound plasma alkalosis marked by decreased plasma [H+] and increased plasma [TCO2] and [HCO3-] compared to Control. The primary contributor to the plasma alkalosis was an increased [SID], as a result of increased plasma [Na+] and decreased plasma [Cl-]. An increased [Atot], due to increased [PP] and a sustained increase in plasma [acetate], contributed a minor acidifying effect. Conclusion It is concluded that oral NaAcetate could be used as both an alkalinizing agent and an alternative energy source in the horse. PMID:18096070

  1. [Nomegestrol acetate: clinical pharmacology].

    PubMed

    Lello, S

    2009-10-01

    Progestogens are used in clinical practice in some conditions. Their effects depend on their chemical structure, pharmacokinetics, pharmacodynamics, with important differences among various progestogens. Generally, progestins are classified according to their parent molecule, of which often they keep some features. Derivatives of 19-nor-progesterone are characterized by high selectivity of action on progestin receptor. In particular, nomegestrol acetate (NomAc) shows an important progestational potency, neutral gluco-lipid profile, and antigonadotropic activity. It is used for treating menstrual cycle disorders and for hormone replacement therapy in menopause in association with an estrogen. In future, thanks to its antigonadotropic activity, NomAc will be used in estroprogestin combinations in fertile women, thus taking advantage of its tolerability profile and obtaining numerous non-contraceptive benefits as well. PMID:19749678

  2. Zebrafish as a Model for Systems Medicine R&D: Rethinking the Metabolic Effects of Carrier Solvents and Culture Buffers Determined by (1)H NMR Metabolomics.

    PubMed

    Akhtar, Muhammad T; Mushtaq, Mian Y; Verpoorte, Robert; Richardson, Michael K; Choi, Young H

    2016-01-01

    Zebrafish is a frequently employed model organism in systems medicine and biomarker discovery. A crosscutting fundamental question, and one that has been overlooked in the field, is the "system-wide" (omics) effects induced in zebrafish by metabolic solvents and culture buffers. Indeed, any bioactivity or toxicity test requires that the target compounds are dissolved in an appropriate nonpolar solvent or aqueous media. It is important to know whether the solvent or the buffer itself has an effect on the zebrafish model organism. We evaluated the effects of two organic carrier solvents used in research with zebrafish, as well as in drug screening: dimethyl sulfoxide (DMSO) and ethanol, and two commonly used aqueous buffers (egg water and Hank's balanced salt solution). The effects of three concentrations (0.01, 0.1, and 1%) of DMSO and ethanol were tested in the 5-day-old zebrafish embryo using proton nuclear magnetic resonance ((1)H NMR) based metabolomics. DMSO (1% and 0.1%, but not 0.01%) exposure significantly decreased the levels of adenosine triphosphate (ATP), betaine, alanine, histidine, lactate, acetate, and creatine (p < 0.05). By contrast, ethanol exposure did not alter the embryos' metabolome at any concentration tested. The two different aqueous media noted above impacted the zebrafish embryo metabolome as evidenced by changes in valine, alanine, lactate, acetate, betaine, glycine, glutamate, adenosine triphosphate, and histidine. These results show that DMSO has greater effects on the embryo metabolome than ethanol, and thus is used with caution as a carrier solvent in zebrafish biomarker research and oral medicine. Moreover, the DMSO concentration should not be higher than 0.01%. Careful attention is also warranted for the use of the buffers egg water and Hank's balanced salt solution in zebrafish. In conclusion, as zebrafish is widely used as a model organism in life sciences, metabolome changes induced by solvents and culture buffers warrant further

  3. Facile hydrolysis and alcoholysis of palladium acetate.

    PubMed

    Bedford, Robin B; Bowen, John G; Davidson, Russell B; Haddow, Mairi F; Seymour-Julen, Annabelle E; Sparkes, Hazel A; Webster, Ruth L

    2015-05-26

    Palladium(II) acetate is readily converted into [Pd3 (μ(2) -OH)(OAc)5 ] (1) in the presence of water in a range of organic solvents and is also slowly converted in the solid state. Complex 1 can also be formed in nominally anhydrous solvents. Similarly, the analogous alkoxide complexes [Pd3 (μ(2) -OR)(OAc)5 ] (3) are easily formed in solutions of palladium(II) acetate containing a range of alcohols. An examination of a representative Wacker-type oxidation shows that the Pd-OH complex 1 and a related Pd-oxo complex 4 can be excluded as potential catalytic intermediates in the absence of exogenous water. PMID:25865439

  4. Solution properties of polygalacturonic acid

    PubMed Central

    Stoddart, R. W.; Spires, I. P. C.; Tipton, K. F.

    1969-01-01

    1. The specimen of polygalacturonic acid used in these studies was shown to contain very little neutral sugar, methyl ester groups or ash, and only residues of galacturonic acid. Its electrophoretic homogeneity was examined in pyridine–acetic acid buffer at pH6·5 and in borate buffer at pH9·2. The distribution of effective particle weights was shown to be fairly narrow. 2. The pH-titration curve of the polymer gave a pK value of 3·7. 3. The interaction of the polymer with Ruthenium Red was studied and titration curves were obtained for the spectral shifts associated with the formation of a complex. 4. Optical-rotatory-dispersion studies showed that the Drude constant, λc, was dependent on pH. 5. Polygalacturonic acid was shown to display non-Newtonian properties in solution and to have an anomalously high relative specific viscosity at low concentrations. 6. Studies were made of the pH-dependence of the sedimentation coefficient of the polymer. 7. These results are discussed in terms of the structure of the molecule and their relevance to the properties of pectic substances. PMID:5343801

  5. Effect of buffer cations and of H3O+ on the charge states of native proteins. Significance to determinations of stability constants of protein complexes.

    PubMed

    Verkerk, Udo H; Peschke, Michael; Kebarle, Paul

    2003-06-01

    The progressive reduction of charge in charge states of non-denatured proteins (lysozyme, ubiquitin, and cytochrome c), observed with nanospray in the positive ion mode, when the buffer salt ammonium acetate is replaced by ethylammonium acetates (EtNH(3)Ac, Et(2)NH(2)Ac and Et(3)NHAc) is rationalized on the basis of the charge residue model (CRM). The charge states of the multiply protonated protein are shown to be controlled by the increasing gas-phase basicities, GB(B), of the bases(B) NH(3), EtNH(2), Et(2)NH and Et(3)N. Charge states derived from evaluated apparent gas-phase basicities GB(app) of the basic side-chains of the protein and the known GB(B) of the above bases are found to be in agreement with the experimentally observed charge states. This is a requirement of the CRM, because in this model the small positive ions (the buffer cations in the present case) at the surface of the electrospray droplets are the excess ions that provide the charge of the final small droplet that contains the protein molecule and on evaporation of the solvent transfer the charge to the protein. The observed charge states in the absence of buffer salts, i.e. pure water, are attributed to excess H(3)O(+) ions produced by the electrolysis process that attends electrospray. A proposed extended mechanism provides predictions of factors that determine the sensitivity for detection of the multiply protonated proteins. Consideration of restraints imposed by the CRM lead to some simple predictions for conditions that should be present to obtain accurate determinations by electrospray and nanospray of stability constants for the protein-complex equilibrium in aqueous solution. PMID:12827631

  6. Bi-directional ACET micropump for on-chip biological applications.

    PubMed

    Vafaie, Reza Hadjiaghaie; Ghavifekr, Habib Badri; Van Lintel, Harald; Brugger, Juergen; Renaud, Philippe

    2016-03-01

    The ability to control and pump high ionic strength fluids inside microchannels forms a major advantage for clinical diagnostics and drug screening processes, where high conductive biological and physiological buffers are used. Despite the known potential of AC electro-thermal (ACET) effect in different biomedical applications, comparatively little is known about controlling the velocity and direction of fluid inside the chip. Here, we proposed to discretize the conventional electrodes to form various asymmetric electrode structures in order to control the fluid direction by simple switching the appropriate electric potential applied to the discretized electrodes. The ACET pumping effect was numerically studied by solving electrical, thermal and hydrodynamic multi-physic coupled equations to optimize the geometrical dimensions of the discretized system. PBS solutions with different ionic strength were seeded with 1 μm sized fluorescent particles and electrothermally driven fluid motion was observed inside the channel for different electrode structures. Experimental analyses confirm that the proposed micropump is efficient for a conductivity range between 0.1 and 1 S/m and the efficiency improves by increasing the voltage amplitude. Behavior of the proposed electrode-electrolyte system is discussed by lumped circuit model. Frequency response of system illustrated that the optimal frequency range increases by increasing the conductivity of medium. For 0.18 S/m PBS solution, the constant pumping effect was observed at frequency range between 100 kHz and 1 MHz, while frequency range of 100 kHz to 5 MHZ was observed for 0.42 S/m. The characteristics of experimental results were in good agreement with the theoretical model. PMID:26790840

  7. Buffering in cyclic gene networks

    NASA Astrophysics Data System (ADS)

    Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh.

    2016-06-01

    We consider cyclic chains of unidirectionally coupled delay differential-difference equations that are mathematical models of artificial oscillating gene networks. We establish that the buffering phenomenon is realized in these system for an appropriate choice of the parameters: any given finite number of stable periodic motions of a special type, the so-called traveling waves, coexist.

  8. Integrated optical buffers for packet-switched networks

    NASA Astrophysics Data System (ADS)

    Burmeister, Emily Frances

    Routers form the backbone of the Internet, directing data to the right locations with huge throughput capacity of terabits/second) and very few errors (1 error allowed in 1012 bits). However, as the Internet continues to grow rapidly, so must the capacity of electronic routers, thereby also growing in footprint and power consumption. The energy bill alone has developers looking for an alternate solution. Today's routers can only operate with electrical signals although Internet data is transmitted optically. This requires the data to be converted from the optical domain to the electrical domain and back again. Optical routers have the potential of saving in power by omitting these conversions, but have been held back in part by the lack of a practical optical memory device. This work presents the first integrated optical buffer for next generation optical packet-switched networks. Buffering is required in a router to move packets of data in order to avoid collisions between packets heading to the same destination at the same time. The device presented here uses an InP-based two-by-two switch with a silica waveguide delay to form a recirculating buffer. Packet storage was shown with 98% packet recovery for 5 circulations. Autonomous contention resolution was demonstrated with two buffered channels to show that the technology is a realistic solution for creating multiple element buffers on multiple router ports. This thesis proposes and demonstrates the first integrated optical random access memory, thereby making a great stride toward high capacity optical routers.

  9. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may be produced by the calcium hydroxide neutralization of acetic acid. (b) The ingredient meets...

  10. Good’s buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research†

    PubMed Central

    Taha, Mohamed; e Silva, Francisca A.; Quental, Maria V.; Ventura, Sónia P. M.; Freire, Mara G.; Coutinho, João A. P.

    2014-01-01

    This work reports a promising approach to the development of novel self-buffering and biocompatible ionic liquids for biological research in which the anions are derived from biological buffers (Good’s buffers, GB). Five Good’s buffers (Tricine, TES, CHES, HEPES, and MES) were neutralized with four suitable hydroxide bases (1-ethyl-3-methylimidazolium, tetramethylammonium, tetraethylammonium, and tetrabutylammonium) producing 20 Good’s buffer ionic liquids (GB-ILs). The presence of the buffering action of the synthesized GB-ILs was ascertained by measuring their pH-profiles in water. Moreover, a series of mixed GB-ILs with wide buffering ranges were formulated as universal buffers. The impact of GB-ILs on bovine serum albumin (BSA), here used as a model protein, is discussed and compared with more conventional ILs using spectroscopic techniques, such as infrared and dynamic light scattering. They appear to display, in general, a greater stabilizing effect on the protein secondary structure than conventional ILs. A molecular docking study was also carried out to investigate on the binding sites of GB-IL ions to BSA. We further used the QSAR-human serum albumin binding model, log K(HSA), to calculate the binding affinity of some conventional ILs/GB-ILs to HSA. The toxicity of the GB and GB-ILs was additionally evaluated revealing that they are non-toxic against Vitro fischeri. Finally, the GB-ILs were also shown to be able to form aqueous biphasic systems when combined with aqueous solutions of inorganic or organic salts, and we tested their extraction capability for BSA. These systems were able to extract BSA with an outstanding extraction efficiency of 100% in a single step for the GB-IL-rich phase, and, as a result, the use of GB-IL-based ABS for the separation and extraction of other added-value biomolecules is highly encouraging and worthy of further investigation. PMID:25729325

  11. Influence of glyphosate on the copper dissolution in phosphate buffer

    NASA Astrophysics Data System (ADS)

    Coutinho, C. F. B.; Silva, M. O.; Machado, S. A. S.; Mazo, L. H.

    2007-01-01

    The electrochemical behavior of copper microelectrode in phosphate buffer in the presence of glyphosate was investigated by electrochemical techniques. It was observed that the additions of glyphosate in the phosphate buffer increased the anodic current of copper microelectrode and the electrochemical dissolution was observed. This phenomenon could be associated with the Cu(II) complexation by glyphosate forming a soluble complex. Physical characterization of the surface showed that, in absence of glyphosate, an insoluble layer covered the copper surface; on the other hand, in presence of glyphosate, it was observed a corroded copper surface with the formation of glyphosate complex in solution.

  12. Antibiofilm Properties of Acetic Acid

    PubMed Central

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup; Nielsen, Anne K.; Johansen, Helle Krogh; Homøe, Preben; Høiby, Niels; Givskov, Michael; Kirketerp-Møller, Klaus

    2015-01-01

    Bacterial biofilms are known to be extremely tolerant toward antibiotics and other antimicrobial agents. These biofilms cause the persistence of chronic infections. Since antibiotics rarely resolve these infections, the only effective treatment of chronic infections is surgical removal of the infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram-negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms. PMID:26155378

  13. Cell buffer with built-in test

    NASA Technical Reports Server (NTRS)

    Ott, William E. (Inventor)

    2004-01-01

    A cell buffer with built-in testing mechanism is provided. The cell buffer provides the ability to measure voltage provided by a power cell. The testing mechanism provides the ability to test whether the cell buffer is functioning properly and thus providing an accurate voltage measurement. The testing mechanism includes a test signal-provider to provide a test signal to the cell buffer. During normal operation, the test signal is disabled and the cell buffer operates normally. During testing, the test signal is enabled and changes the output of the cell buffer in a defined way. The change in the cell buffer output can then be monitored to determine if the cell buffer is functioning correctly. Specifically, if the voltage output of the cell buffer changes in a way that corresponds to the provided test signal, then the functioning of the cell buffer is confirmed. If the voltage output of the cell buffer does not change correctly, then the cell buffer is known not to be operating correctly. Thus, the built in testing mechanism provides the ability to quickly and accurately determine if the cell buffer is operating correctly. Furthermore, the testing mechanism provides this functionality without requiring excessive device size and complexity.

  14. Sorption, uptake, and biotransformation of 17β-estradiol, 17α-ethinylestradiol, zeranol, and trenbolone acetate by hybrid poplar.

    PubMed

    Bircher, Sam; Card, Marcella L; Zhai, Guangshu; Chin, Yu-Ping; Schnoor, Jerald L

    2015-12-01

    Hormonally active compounds may move with agricultural runoff from fields with applied manure and biosolids into surface waters where they pose a threat to human and environmental health. Riparian zone plants could remove hormonally active compounds from agricultural runoff. Therefore, sorption to roots, uptake, translocation, and transformation of 3 estrogens (17β-estradiol, 17α-ethinylestradiol, and zeranol) and 1 androgen (trenbolone acetate) commonly found in animal manure or biosolids were assessed by hydroponically grown hybrid poplar, Populus deltoides x nigra, DN-34, widely used in riparian buffer strips. Results clearly showed that these hormones were rapidly removed from 2 mg L(-1) hydroponic solutions by more than 97% after 10 d of exposure to full poplar plants or live excised poplars (cut-stem, no leaves). Removals by sorption to dead poplar roots that had been autoclaved were significantly less, 71% to 84%. Major transformation products (estrone and estriol for estradiol; zearalanone for zeranol; and 17β-trenbolone from trenbolone acetate) were detected in the root tissues of all 3 poplar treatments. Root concentrations of metabolites peaked after 1 d to 5 d and then decreased in full and live excised poplars by further transformation. Metabolite concentrations were less in dead poplar treatments and only slowly increased without further transformation. Taken together, these findings show that poplars may be effective in controlling the movement of hormonally active compounds from agricultural fields and avoiding runoff to streams. PMID:26184466

  15. Simultaneous determination of 2-naphthoxyacetic acid and indole-3-acetic acid by first derivation synchronous fluorescence spectroscopy.

    PubMed

    Liu, Xiangxiang; Wan, Yiqun

    2013-07-01

    A simple, rapid, sensitive and selective method for simultaneously determining 2-naphthoxyacetic acid (BNOA) and Indole-3-Acetic Acid (IAA) in mixtures has been developed using derivation synchronous fluorescence spectroscopy based on their synchronous fluorescence. The synchronous fluorescence spectra were obtained with Δλ=100 nm in a pH 8.5 NaH2PO4-NaOH buffer solution, and the detected wavelengths of quantitative analysis were set at 239 nm for BNOA and 293 nm for IAA respectively. The over lapped fluorescence spectra were well separated by the synchronous derivative method. Under optimized conditions, the limits of detection (LOD) were 0.003 μg/mL for BNOA and 0.012 μg/mL for IAA. This method is simple and expeditious, and it has been successfully applied to the determination of 2-naphthoxyacetic acid and indole-3-acetic acid in fruit juice samples with satisfactory results. The samples were only filtrated through a 0.45 μm membrane filter, which was free from the tedious separation procedures. The obtaining recoveries were in the range of 83.88-87.43% for BNOA and 80.76-86.68% for IAA, and the relative standard deviations were all less than 5.0%. Statistical comparison of the results with high performance liquid chromatography Mass Spectrometry (HPLC-MS) method revealed good agreement and proved that there were no significant difference in the accuracy and precision between these two methods. PMID:23651742

  16. Simultaneous determination of 2-naphthoxyacetic acid and indole-3-acetic acid by first derivation synchronous fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Xiangxiang; Wan, Yiqun

    2013-07-01

    A simple, rapid, sensitive and selective method for simultaneously determining 2-naphthoxyacetic acid (BNOA) and Indole-3-Acetic Acid (IAA) in mixtures has been developed using derivation synchronous fluorescence spectroscopy based on their synchronous fluorescence. The synchronous fluorescence spectra were obtained with Δλ = 100 nm in a pH 8.5 NaH2PO4-NaOH buffer solution, and the detected wavelengths of quantitative analysis were set at 239 nm for BNOA and 293 nm for IAA respectively. The over lapped fluorescence spectra were well separated by the synchronous derivative method. Under optimized conditions, the limits of detection (LOD) were 0.003 μg/mL for BNOA and 0.012 μg/mL for IAA. This method is simple and expeditious, and it has been successfully applied to the determination of 2-naphthoxyacetic acid and indole-3-acetic acid in fruit juice samples with satisfactory results. The samples were only filtrated through a 0.45 μm membrane filter, which was free from the tedious separation procedures. The obtaining recoveries were in the range of 83.88-87.43% for BNOA and 80.76-86.68% for IAA, and the relative standard deviations were all less than 5.0%. Statistical comparison of the results with high performance liquid chromatography Mass Spectrometry (HPLC-MS) method revealed good agreement and proved that there were no significant difference in the accuracy and precision between these two methods.

  17. Laser velocimeter (autocovariance) buffer interface

    NASA Technical Reports Server (NTRS)

    Clemmons, J. I., Jr.

    1981-01-01

    A laser velocimeter (autocovariance) buffer interface (LVABI) was developed to serve as the interface between three laser velocimeter high speed burst counters and a minicomputer. A functional description is presented of the instrument and its unique features which allow the studies of flow velocity vector analysis, turbulence power spectra, and conditional sampling of other phenomena. Typical applications of the laser velocimeter using the LVABI are presented to illustrate its various capabilities.

  18. Effects of L-cysteine and N-acetyl-L-cysteine on 4-hydroxy-2, 5-dimethyl-3(2H)-furanone (furaneol), 5-(hydroxymethyl)furfural, and 5-methylfurfural formation and browning in buffer solutions containing either rhamnose or glucose and arginine.

    PubMed

    Haleva-Toledo, E; Naim, M; Zehavi, U; Rouseff, R L

    1999-10-01

    Solutions of L-cysteine (Cys) and N-acetyl-L-cysteine (AcCys), containing glucose or rhamnose, with or without arginine, were buffered to pH 3, 5, and 7 and incubated at 70 degrees C for 48 h. Cys and AcCys inhibited the formation of (hydroxymethyl)furfural (HMF) from glucose and methylfurfural (MF) from rhamnose under acidic conditions. AcCys inhibited the accumulation of 4-hydroxy-2, 5-dimethyl- 3(2H)-furanone (DMHF, Furaneol) from rhamnose, but Cys, under our experimental conditions, enhanced Furaneol accumulation from rhamnose. Cys and AcCys reacted directly with Furaneol but not with HMF or MF. Both Cys and AcCys inhibited nonenzymatic browning at pH 7. At pH 3, however, Cys reacted with both glucose and rhamnose to produce unidentified compounds that increased the visible absorbency. PMID:10552780

  19. Microscopic optical buffering in a harmonic potential

    NASA Astrophysics Data System (ADS)

    Sumetsky, M.

    2015-12-01

    In the early days of quantum mechanics, Schrödinger noticed that oscillations of a wave packet in a one-dimensional harmonic potential well are periodic and, in contrast to those in anharmonic potential wells, do not experience distortion over time. This original idea did not find applications up to now since an exact one-dimensional harmonic resonator does not exist in nature and has not been created artificially. However, an optical pulse propagating in a bottle microresonator (a dielectric cylinder with a nanoscale-high bump of the effective radius) can exactly imitate a quantum wave packet in the harmonic potential. Here, we propose a tuneable microresonator that can trap an optical pulse completely, hold it as long as the material losses permit, and release it without distortion. This result suggests the solution of the long standing problem of creating a microscopic optical buffer, the key element of the future optical signal processing devices.

  20. Microscopic optical buffering in a harmonic potential

    PubMed Central

    Sumetsky, M.

    2015-01-01

    In the early days of quantum mechanics, Schrödinger noticed that oscillations of a wave packet in a one-dimensional harmonic potential well are periodic and, in contrast to those in anharmonic potential wells, do not experience distortion over time. This original idea did not find applications up to now since an exact one-dimensional harmonic resonator does not exist in nature and has not been created artificially. However, an optical pulse propagating in a bottle microresonator (a dielectric cylinder with a nanoscale-high bump of the effective radius) can exactly imitate a quantum wave packet in the harmonic potential. Here, we propose a tuneable microresonator that can trap an optical pulse completely, hold it as long as the material losses permit, and release it without distortion. This result suggests the solution of the long standing problem of creating a microscopic optical buffer, the key element of the future optical signal processing devices. PMID:26689546

  1. Buffering agents modify the hydration landscape at charged interfaces.

    PubMed

    Trewby, William; Livesey, Duncan; Voïtchovsky, Kislon

    2016-02-23

    Buffering agents are widely used to stabilise the pH of solutions in soft matter and biological sciences. They are typically composed of weak acids and bases mixed in an aqueous solution, and can interact electrostatically with charged surfaces such as biomembranes. Buffers can induce protein aggregation and structural modification of soft interfaces, but a molecular-level picture is still lacking. Here we use high-resolution atomic force microscopy to investigate the effect of five commonly used buffers, namely 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 2-(N-morpholino)ethanesulfonic acid (MES), monosodium phosphate, saline sodium citrate (SSC) and tris(hydroxymethyl)aminomethane (Tris) on the hydration landscape of Muscovite mica in solution. Mica is an ideal model substrate due to its negative surface charge and identical lattice parameter when compared with gel-phase lipid bilayers. We show that buffer molecules can produce cohesive aggregates spanning over tens of nanometres of the interface. SSC, Tris and monosodium phosphate tend to create an amorphous mesh layer several molecules thick and with no preferential ordering. In contrast, MES and HEPES adopt epitaxial arrangements commensurate with the underlying mica lattice, suggesting that they offer the most suitable solution for high-resolution studies. To confirm that this effect persisted in biologically-relevant interfaces, the experiments were repeated on a silica-supported lipid bilayer. Similar trends were observed for this system using atomic force microscopy as well as ellipsometry. The effect of the buffering agents can be mitigated by the inclusion of salt which helps displace them from the interface. PMID:26837938

  2. Buffer-gas effects on dark resonances: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Erhard, Michael; Helm, Hanspeter

    2001-04-01

    Dark resonances with widths below 30 Hz have been observed in a rubidium cell filled with neon as buffer gas at room temperature. We compare an approximate analytic solution of a Λ system to our data and show that under our experimental conditions the presence of the buffer gas reduces the power broadening of the dark resonances by two orders of magnitude. We also present numerical calculations that take into account the thermal motion and velocity-changing collisions with the buffer-gas atoms. The resulting dark-resonance features exhibit strong Dicke-type narrowing effects and thereby explain the elimination of Doppler shifts and Doppler broadening, leading to observation of a single ultranarrow dark line.

  3. Effects of hypertonic buffer composition on lymph node uptake and bioavailability of rituximab, after subcutaneous administration

    PubMed Central

    Fathallah, Anas M.; Turner, Michael R.; Balu-Iyer, Sathy V.

    2015-01-01

    Subcutaneous administration of biologics is highly desirable; however, incomplete bioavailability after sc administration remains a major challenge. In this work we investigated the effects of excipient dependent hyper-osmolarity on lymphatic uptake and plasma exposure of rituximab as a model protein. Using Swiss Webster (SW) mice as our animal model, we compared the effects of NaCl, mannitol and, O-Phospho-L-Serine (OPLS) on plasma concentration of rituximab over 5 days after sc administration. We observed an increase in plasma concentrations in animals administered rituximab in hypertonic buffer solutions, as compared to isotonic buffer. Bioavailability, as estimated by our pharmacokinetic model, increased from 29% in isotonic buffer to 54% in hypertonic buffer containing NaCl, to almost complete bioavailability in hypertonic buffers containing high dose OPLS or mannitol. This improvement in plasma exposure is due to improved lymphatic trafficking as evident from the increase in the fraction of dose trafficked through the lymph node in the presence of hypertonic buffers. The fraction of the dose trafficked through the lymphatic, as estimated by the model, increased from 0.05 % in isotonic buffer to 13% in hyper-tonic buffer containing NaCl to about 30% for hypertonic buffers containing high dose OPLS and mannitol. Our data suggests that hypertonic solutions may be a viable option to improve sc bioavailability. PMID:25377184

  4. Electrodialytic membrane suppressors for ion chromatography make programmable buffer generators.

    PubMed

    Chen, Yongjing; Srinivasan, Kannan; Dasgupta, Purnendu K

    2012-01-01

    The use of buffer solutions is immensely important in a great variety of disciplines. The generation of continuous pH gradients in flow systems plays an important role in the chromatographic separation of proteins, high-throughput pK(a) determinations, etc. We demonstrate here that electrodialytic membrane suppressors used in ion chromatography can be used to generate buffers. The generated pH, computed from first principles, agrees well with measured values. We demonstrate the generation of phosphate and citrate buffers using a cation-exchange membrane (CEM) -based anion suppressor and Tris and ethylenediamine buffers using an anion-exchange membrane (AEM) -based cation suppressor. Using a mixture of phosphate, citrate, and borate as the buffering ions and using a CEM suppressor, we demonstrate the generation of a highly reproducible (avg RSD 0.20%, n = 3), temporally linear (pH 3.0-11.9, r(2) > 0.9996), electrically controlled pH gradient. With butylamine and a large concentration (0.5 M) of added NaCl, we demonstrate a similar linear pH gradient of large range with a near-constant ionic strength. We believe that this approach will be of value for the generation of eluents in the separation of proteins and other biomolecules and in online process titrations. PMID:22103670

  5. Doped LZO buffer layers for laminated conductors

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  6. RESEARCH NEEDS IN RIPARIAN BUFFER RESTORATION

    EPA Science Inventory

    Riparian buffer restorations are used as management tools to produce favorable water quality impacts; moreover, the basis for riparian buffers as an instrument of water quality restoration rests on a relatively firm foundation. However, the extent to which buffers can restore rip...

  7. Kinetics of Imidazole Catalyzed Ester Hydrolysis: Use of Buffer Dilutions to Determine Spontaneous Rate, Catalyzed Rate, and Reaction Order.

    ERIC Educational Resources Information Center

    Lombardo, Anthony

    1982-01-01

    Described is an advanced undergraduate kinetics experiment using buffer dilutions to determine spontaneous rate, catalyzed rate, and reaction order. The reaction utilized is hydrolysis of p-nitro-phenyl acetate in presence of imidazole, which has been shown to enhance rate of the reaction. (Author/JN)

  8. Analytical model for radionuclide transport in the buffer zone of the deep geological disposal

    NASA Astrophysics Data System (ADS)

    Tsao, L. D.; Chen, J. S.; Li, M. H.

    2015-12-01

    Radioactive nuclear waste poses long-term threat to human beings and the environment because that remains radioactive after millions of years. Therefore, radioactive wastes must be isolated from the living environment for millennia. A deep geological disposal entails a combination of four parts: vitrified waste form, imaginary zone, buffer zone and excavation-affected zone. The buffer zone constituted by bentonite clay provides a high level of containment of the radioactivity in the wastes over a very long time period. Analytical solution is an efficient tool for the performance evaluation of the buffer zone. This study develops a new analytical model to diffusion equation in cylindrical coordinate for describing radionuclide transport in the buffer zone. The derived solution is compared against the previous solution to illustrate the validity of previous solution which was derived using a diffusion equation in Cartesian coordinates.

  9. Exogenous acetate ion reaches the type II copper centre in CueO through the water-excretion channel and potentially affects the enzymatic activity.

    PubMed

    Komori, Hirofumi; Kataoka, Kunishige; Tanaka, Sakiko; Matsuda, Nana; Higuchi, Yoshiki; Sakurai, Takeshi

    2016-07-01

    The acetate-bound form of the type II copper was found in the X-ray structure of the multicopper oxidase CueO crystallized in acetate buffer in addition to the conventional OH(-)-bound form as the major resting form. The acetate ion was retained bound to the type II copper even after prolonged exposure of a CueO crystal to X-ray radiation, which led to the stepwise reduction of the Cu centres. However, in this study, when CueO was crystallized in citrate buffer the OH(-)-bound form was present exclusively. This fact shows that an exogenous acetate ion reaches the type II Cu centre through the water channel constructed between domains 1 and 3 in the CueO molecule. It was also found that the enzymatic activity of CueO is enhanced in the presence of acetate ions in the solvent water. PMID:27380373

  10. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Buffered penicillin powder, penicillin powder with buffered aqueous diluent. 520.1696a Section 520.1696a Food and Drugs FOOD AND DRUG ADMINISTRATION... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered...