Science.gov

Sample records for acetate membrane electrophoresis

  1. A simple cellulose acetate membrane-based small lanes technique for protein electrophoresis.

    PubMed

    Na, Na; Liu, Tingting; Yang, Xiaojun; Sun, Binjie; Ouyang, Jenny; Ouyang, Jin

    2012-08-01

    Combining electrophoresis with a cellulose acetate membrane-based technique, we developed a simple and low-cost method, named cellulose acetate membrane-based small lanes (CASL), for protein electrophoresis. A home-made capillary plotter controlled by a 3D moving stage was used to create milli-to-micro channels by printing poly(dimethylsiloxane) on to a hydrophilic cellulose acetate membrane. In the hydrophilic channels, 5 nL protein mixture was separated on the basis of electro-migration under an electric field. Compared with polyacrylamide gel electrophoresis (PAGE), CASL resulted in higher protein signal intensity for separation of mixtures containing the same mass of protein. The platform was easily fabricated at low cost (approx. $0.005 for each 1-mm-wide channel), and separation of three protein mixtures was completed in 15 min. Both electrophoresis time and potential affected the separation. Rather than chromatographic separation, this method accomplished application of microchannel techniques for cellulose acetate membrane-based protein electrophoresis. It has potential in proteomic analysis, especially for rapid, low-cost, and low-volume sample analysis in clinical diagnosis. PMID:22752445

  2. Silver stain for proteins on a cellulose acetate membrane.

    PubMed

    Fujita, T; Toda, T; Ohashi, M

    1984-06-01

    A rapid and sensitive silver staining method to detect proteins on a cellulose acetate membrane has been established. This method is achieved by modification of the silver-based color staining for detection of proteins in polyacrylamide gels [D. W. Sammons, L. D. Adams, and E. E. Nishizawa, Electrophoresis 2, 135-141 (1981)] and applied to our new type of two-dimensional electrophoresis for analysis of proteins on a cellulose acetate sheet [T. Toda, T. Fujita, and M. Ohashi, Anal. Biochem. 119, 167-176 (1982)]. Maximal sensitivity of silver stain for proteins on a cellulose acetate membrane can be obtained by an optimal balance between deposition of silver on the protein and on the background. Certain kinds of proteins are colored red, orange, or grayish-blue. The silver stain is 20-80 times more sensitive than Coomassie blue and some spots are visualized reproducibly by silver only. Densitometric evaluation of standard proteins stained with silver and Coomassie blue is also demonstrated. The method takes only 50 min to perform and is sensitive, simple, and reproducible. PMID:6206749

  3. Gold staining in cellulose acetate membranes.

    PubMed

    Righetti, P G; Casero, P; Del Campo, G B

    1986-06-15

    A novel method for revealing proteins after electrophoresis on cellulose acetate is described, based on adsorption of mixed gold-Tween 20 micelles onto TCA-fixed protein bands. The sensitivity is 2-300 times higher than conventional Coomassie Blue staining and ca. 10 fold higher than silver coloring, detecting barely 1 ng protein/mm2 gel. Acidic and ammoniacal silver dyeing, based on ionic silver, perform very poorly on cellulose matrices, while a new variant, colloidal silver, stains protein bands on a clear background, but with a sensitivity ca. 10 times lower than micellar gold. Urines, cerebrospinal fluid and other biological liquids can be revealed without resorting to a concentration step prior to electrophoresis. The method is simple to perform and does not require any destaining step. PMID:2424644

  4. Fabricating PFPE Membranes for Capillary Electrophoresis

    NASA Technical Reports Server (NTRS)

    Lee, Michael C.; Willis, Peter A.; Greer, Frank; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist).

  5. Continuous-flow electrophoresis: Membrane-associated deviations of buffer pH and conductivity

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Mcguire, J. K.

    1978-01-01

    The deviations in buffer pH and conductivity which occur near the electrode membranes in continuous-flow electrophoresis were studied in the Beckman charged particle electrophoresis system and the Hanning FF-5 preparative electrophoresis instrument. The nature of the membranes separating the electrode compartments from the electrophoresis chamber, the electric field strength, and the flow rate of electrophoresis buffer were all found to influence the formation of the pH and conductivity gradients. Variations in electrode buffer flow rate and the time of electrophoresis were less important. The results obtained supported the hypothesis that a combination of Donnan membrane effects and the differing ionic mobilities in the electrophoresis buffer was responsible for the formation of the gradients. The significance of the results for the design and stable operation of continuous-flow electrophoresis apparatus was discussed.

  6. Use of Cellulose Acetate Electrophoresis in the Taxonomy of Steinernematids (Rhabditida, Nematoda)

    PubMed Central

    Jagdale, G. B.; Gordon, R.; Vrain, T. C.

    1996-01-01

    A steinernematid nematode was isolated from soil samples collected near St. John's, Newfoundland, Canada. On the basis of its morphometry and RFLPs in ribosomal DNA spacer, it was designated as a new strain, NF, of Steinernema feltiae. Cellulose acetate electrophoresis was used to separate isozymes of eight enzymes in infective juveniles of S. feltiae NF as well as four other isolates: S. feltiae Umeå strain, S. feltiae L1C strain, Steinernema carpocapsae All strain, and Steinernema riobravis TX strain. Based on comparisons of the relative electrophoretic mobilities (μ) of the isozymes, one of the eight enzymes (arginine kinase) yielded zymograms that were distinctive for each of the isolates, except for the Umeå and NF strains of S. feltiae, which had identical banding patterns. Four enzymes (fumarate hydratase, phosphoglucoisomerase, phosphoglucomutase, and 6-phosphogluconate dehydrogenase) yielded isozyme banding patterns that were characteristic for all isolates, except for the L1C and NF strains of S. feltiae, which were identical. Two enzymes (aspartate amino transferase and glycerol-3-phosphate dehydrogenase) yielded zymograms that permitted S. carpocapsae All strain to be discriminated from the other four isolates, while the remaining enzyme (mannose-6-phosphate isomerase) was discriminatory for S. riobravis TX strain. Except for one enzyme, the isozyme banding pattern of the NF isolate of S. feltiae was the same as in the L1C strain, isolated 13 years previously from Newfoundland. Cellulose acetate electrophoresis could prove invaluable for taxonomic identification of isolates of steinernematids, provided that a combination of enzymes is used. PMID:19277147

  7. Use of cellulose acetate electrophoresis in the taxonomy of steinernematids (rhabditida, nematoda).

    PubMed

    Jagdale, G B; Gordon, R; Vrain, T C

    1996-09-01

    A steinernematid nematode was isolated from soil samples collected near St. John's, Newfoundland, Canada. On the basis of its morphometry and RFLPs in ribosomal DNA spacer, it was designated as a new strain, NF, of Steinernema feltiae. Cellulose acetate electrophoresis was used to separate isozymes of eight enzymes in infective juveniles of S. feltiae NF as well as four other isolates: S. feltiae Umeå strain, S. feltiae L1C strain, Steinernema carpocapsae All strain, and Steinernema riobravis TX strain. Based on comparisons of the relative electrophoretic mobilities (mu) of the isozymes, one of the eight enzymes (arginine kinase) yielded zymograms that were distinctive for each of the isolates, except for the Umeå and NF strains of S. feltiae, which had identical banding patterns. Four enzymes (fumarate hydratase, phosphoglucoisomerase, phosphoglucomutase, and 6-phosphogluconate dehydrogenase) yielded isozyme banding patterns that were characteristic for all isolates, except for the L1C and NF strains of S. feltiae, which were identical. Two enzymes (aspartate amino transferase and glycerol-3-phosphate dehydrogenase) yielded zymograms that permitted S. carpocapsae All strain to be discriminated from the other four isolates, while the remaining enzyme (mannose-6-phosphate isomerase) was discriminatory for S. riobravis TX strain. Except for one enzyme, the isozyme banding pattern of the NF isolate of S. feltiae was the same as in the L1C strain, isolated 13 years previously from Newfoundland. Cellulose acetate electrophoresis could prove invaluable for taxonomic identification of isolates of steinernematids, provided that a combination of enzymes is used. PMID:19277147

  8. Dissolution control of Mg by cellulose acetate-polyelectrolyte membranes.

    PubMed

    Yliniemi, Kirsi; Wilson, Benjamin P; Singer, Ferdinand; Höhn, Sarah; Kontturi, Eero; Virtanen, Sannakaisa

    2014-12-24

    Cellulose acetate (CA)-based membranes are used for Mg dissolution control: the permeability of the membrane is adjusted by additions of the polyelectrolyte, poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA). Spin-coated films were characterized with FT-IR, and once exposed to an aqueous solution the film distends and starts acting as a membrane which controls the flow of ions and H2 gas. Electrochemical measurements (linear sweep voltammograms, open-circuit potential, and polarization) show that by altering the CA:PDMAEMA ratio the dissolution rate of Mg can be controlled. Such a control over Mg dissolution is crucial if Mg is to be considered as a viable, temporary biomedical implant material. Furthermore, the accumulation of corrosion products between the membrane and the sample diminishes the undesirable effects of high local pH and H2 formation which takes place during the corrosion process. PMID:25426707

  9. Electrophoresis and diffusion in the plane of the cell membrane.

    PubMed Central

    Poo, M; Lam, J W; Orida, N; Chao, A W

    1979-01-01

    Electrophoretic and diffusional movements of concanavalin A (Con A) receptors and acetylcholine (ACh) receptors in the plane of the plasma membrane of mononucleate, spherical Xenopus myoblasts were studied by microfluorimetry and iontophoresis. We found that (a) a uniform electric field of 10 V/cm applied along the cell surface produces a partial accumulation of both types of receptors toward the cathodal pole of the cell within 30 min: (b) post-field relaxation of the culture results in the complete recovery of the uniform distribution of the Con A receptors within 10 min; and (c) in contrast to the Con A receptor in general, accumulation of ACh receptors by the electric field results in the formation of stable, localized receptor aggregates. Theoretical analyses were carried out for the distribution of charged membrane receptors at equilibrium between electrophoresis and diffusion, and for the rate of back diffusion after the removal of the field. These analyses indicated that, at 22 degrees C, the average electrophoretic mobility of the electrophoretically mobile population of the Con A receptors is about 1.9 X 10(-3) micron/s per V/cm, while their average diffusion coefficient is 5.1 X 10(-9) cm2/s. Images FIGURE 11 PMID:262406

  10. Membrane interfaces for sample introduction in capillary zone electrophoresis

    SciTech Connect

    Bao, L.; Dasgupta, P.K.

    1992-05-01

    Small lengths of narrow-bore tubular membranes can be interposed in the separation capillary in capillary electrophoretic separation systems. These membrane segments can be used as sampling interfaces; a jacket is built outside the membrane, and the sample is introduced by diffusion/permeation through the membrane. Various examples are shown; the determination of gaseous samples through a porous membrane, the determination of ionizable/nonionic solutes by permeation through a silicone rubber membrane, and the separation of low MW constituents in blood plasma by transport through a dialysis membrane. In the first two cases, significant preconcentration is possible, thus permitting attractive detection limits. 23 refs., 10 figs., 2 tabs.

  11. Electrophoresis of Dyes and Proteins in Poly(Acrylamide) Gel Containing Immobilized Bilayer Membranes

    NASA Astrophysics Data System (ADS)

    Ishihara, Hiroki; Matsuo, Goh; Sasaki, Takanori; Saito, Yuko; Demura, Makoto; Tsujii, Kaoru

    Electrophoresis of dye stuffs and proteins in poly(acrylamide) gel containing immobilized bilayer membranes have been studied. Bilayer membranes of a polymerizable surfactant, dodecylglyceryl itaconate (DGI), can be immobilized in poly(acrylamide) gels, and the hybrid gels are first applied to a substrate of the poly(acrylamide) gel electrophoresis (PAGE). The bilayer-membranes-immobilized-gel (abbreviated as BM-gel) showed different separation behaviors from those by the conventional PAGE. The separation behavior of dye stuffs suggests that the bilayer membranes in the BM-gel work as a separator of the test molecules due to their hydrophilic/hydrophobic nature. Water-soluble proteins migrated faster in the BM-gels than in the simple poly(acrylamide) gels. Membrane proteins, on the other hand, did not move at all in the BM-gels probably because the protein molecules were entrapped firmly inside the bilayer membranes.

  12. Concanavalin A-reactive protein of rabbit thymocyte plasma membranes: analysis by crossed immune electrophoresis and sodium dodecylsulfate/polyacrylamide gel electrophoresis.

    PubMed

    Schmidt-Ullrich, R; Wallach, D F; Hendricks, J

    1975-03-25

    1. Thymocyte plasma membrane extracts, prepared with the non-ionic detergent Triton X-100, show 10 major protein components upon sodium dodecysulfate/polyacrylamide gel electrophoresis and at least 11 immunologic components upon crossed immune electrophoresis. 2. Concanavalin A reactive membrane proteins have been identified using crossed immune electrophoresis with receptor-ligand interaction. 3. These proteins are absorbed from Triton X-100-solubilized membranes onto immobilized concanavalin A. They are eluted in stepwise fashion, using increasing concentrations of alpha-methyl-d-glucoside, between 0.0004 M and 0.1 M. The predominant proteins eluted in each step are components with high electrophoretic mobility in crossed immune electrophoresis and are identical with a glycosylated component in sodium dodecysulfate/polyacrylamide gel electrophoresis with molecular weight of 55 000. 4. This component forms multimers in the presence of Triton X-100 which are not totally dissociated in sodium dodecylsulfate. 5. Neuramidase treatment followed by crossed immune electrophoresis of total plasma membrane isolates, as well as the purified glycoprotein fraction, indicates that the concanavalin A-reactive proteins are sialoglycoproteins. 6. Sodium dodecylsulfate component 5.1 comprises at least two different populations of glycoproteins (6 and 9) in crossed immune electrophoresis, one of which exclusively exhibits heterogenous carbohydrate antigenic sites (component 9). 7. Present data, taken together with previously published experiments, indicate that concanavalin A binding to intact thymocytes induces an increased turnover and release of the receptor protein(s). PMID:1125237

  13. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    NASA Astrophysics Data System (ADS)

    Kusworo, T. D.; Aryanti, N.; Firdaus, M. M. H.; Sukmawati, H.

    2015-12-01

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70 C for 15 second.

  14. Inability of Microorganisms To Degrade Cellulose Acetate Reverse-Osmosis Membranes

    PubMed Central

    Ho, Leighton C. W.; Martin, David D.; Lindemann, William C.

    1983-01-01

    Operational cellulose acetate reverse-osmosis membranes were examined for evidence of biological degradation. Numerous fungi and bacteria were isolated by direct and enrichment techniques. When tested, most of the fungi were active cellulose degraders, but none of the bacteria were. Neither fungi nor bacteria were able to degrade cellulose acetate membrane in vitro, although many fungi were able to degrade cellulose acetate membrane after it had been deacetylated. Organisms did not significantly degrade powdered cellulose acetate in pure or mixed cultures as measured by reduction in acetyl content or intrinsic viscosity or production of reducing sugars. Organisms did not affect the performance of cellulose triacetate fibers when incubated with them. The inability of the organisms to degrade cellulose acetate was attributed to the high degree of acetate substitution of the cellulose polymer. The rate of salt rejection decline was strongly correlated with chlorination of feed water and inversely with densities of microorganisms. These data suggest that microbial degradation of operational cellulose acetate reverse-osmosis membranes is unlikely. PMID:16346192

  15. Continuous Ethanol Production with a Membrane Bioreactor at High Acetic Acid Concentrations

    PubMed Central

    Ylitervo, Päivi; Franzén, Carl Johan; Taherzadeh, Mohammad J.

    2014-01-01

    The release of inhibitory concentrations of acetic acid from lignocellulosic raw materials during hydrolysis is one of the main concerns for 2nd generation ethanol production. The undissociated form of acetic acid can enter the cell by diffusion through the plasma membrane and trigger several toxic effects, such as uncoupling and lowered intracellular pH. The effect of acetic acid on the ethanol production was investigated in continuous cultivations by adding medium containing 2.5 to 20.0 g·L−1 acetic acid at pH 5.0, at a dilution rate of 0.5 h−1. The cultivations were performed at both high (~25 g·L−1) and very high (100–200 g·L−1) yeast concentration by retaining the yeast cells inside the reactor by a cross-flow membrane in a membrane bioreactor. The yeast was able to steadily produce ethanol from 25 g·L−1 sucrose, at volumetric rates of 5–6 g·L−1·h−1 at acetic acid concentrations up to 15.0 g·L−1. However, the yeast continued to produce ethanol also at a concentration of 20 g·L−1 acetic acid but at a declining rate. The study thereby demonstrates the great potential of the membrane bioreactor for improving the robustness of the ethanol production based on lignocellulosic raw materials. PMID:25028956

  16. Investigation of the pore structure and morphology of cellulose acetate membranes using small-angle neutron scattering. 1: Cellulose acetate active layer membranes

    SciTech Connect

    Kulkarni, S.; Krause, S. ); Wignall, G.D. . Solid State Div.); Hammouda, B. . Center for High Resolution Neutron Scattering)

    1994-11-07

    The structure of ultrathin cellulose acetate membranes, known as active layer membranes, has been investigated using small-angle neutron scattering. These membranes are known to have structural and functional similarity to the surface or skin layer in commercial reverse-osmosis (RO) membranes and hence are useful model systems for understanding the structure of the RO membrane skin layer. Active layer membranes were studied after swelling them with either D[sub 2]O or CD[sub 3]OD. The results in both cases clearly indicated the presence of very small (10--20 [angstrom]) porous structures in the membrane. The presence of such pores has been a subject of long-standing controversy in this area. The data were analyzed using a modified Debye-Bueche analysis and the resultant membrane structure was seen to agree well with structural information from electron microscopic studies. Finally, a possible explanation for the differences in scattering observed between the D[sub 2]O swollen membranes and the CD[sub 3]OD swollen membranes has been presented.

  17. Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis

    PubMed Central

    Churchward, Matthew A; Butt, R Hussain; Lang, John C; Hsu, Kimberly K; Coorssen, Jens R

    2005-01-01

    Background The analysis of hydrophobic membrane proteins by two-dimensional gel electrophoresis has long been hampered by the concept of inherent difficulty due to solubility issues. We have optimized extraction protocols by varying the detergent composition of the solubilization buffer with a variety of commercially available non-ionic and zwitterionic detergents and detergent-like phospholipids. Results After initial analyses by one-dimensional SDS-PAGE, quantitative two-dimensional analyses of human erythrocyte membranes, mouse liver membranes, and mouse brain membranes, extracted with buffers that included the zwitterionic detergent MEGA 10 (decanoyl-N-methylglucamide) and the zwitterionic lipid LPC (1-lauroyl lysophosphatidylcholine), showed selective improvement over extraction with the common 2-DE detergent CHAPS (3 [(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate). Mixtures of the three detergents showed additive improvements in spot number, density, and resolution. Substantial improvements in the analysis of a brain membrane proteome were observed. Conclusion This study demonstrates that an optimized detergent mix, coupled with rigorous sample handling and electrophoretic protocols, enables simple and effective analysis of membrane proteomes using two-dimensional electrophoresis. PMID:15941475

  18. Adsorptive Membranes vs. Resins for Acetic Acid Removal from Biomass Hydrolysates

    SciTech Connect

    Han, B.; Carvalho, W.; Canilha, L.; da Silva, S. S.; e Silva, J. B. A.; McMillan, J. D.; Wickramasinghe, S. R.

    2006-01-01

    Acetic acid is a compound commonly found in hemicellulosic hydrolysates. This weak acid strongly influences the bioconversion of sugar containing hydrolysates. Previous investigators have used anion exchange resins for acetic acid removal from different hemicellulosic hydrolysates. In this study, the efficiency of an anion exchange membrane was compared to that of an anion exchange resin, for acetic acid removal from a DI water solution and an acidic hemicellulose hydrolysate pretreated using two different methods. Ion exchange membranes and resins have very different geometries. Here the performance of membranes and resins is compared using two dimensionless parameters, the relative mass throughput and chromatographic bed number. The relative mass throughput arises naturally from the Thomas solution for ion exchange. The results show that the membrane exhibit better performance in terms of capacity, and loss of the desired sugars. In addition acetic acid may be eluted at a higher concentration from the membrane thus leading to the possibility of recovery and re-use of the acetic acid.

  19. Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer.

    PubMed

    Ye, Sang Ho; Watanabe, Junji; Iwasaki, Yasuhiko; Ishihara, Kazuhiko

    2003-10-01

    The ideal surface of an artificial blood purification membrane needs hemocompatibility and durability of high performance; it should not adsorb any proteins or cells but should still have high permeability in the desired range of solute size. To improve the anti-fouling property of cellulose acetate (CA) membranes, a CA membrane blended with poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)) (PMB30) was designed as a blood purification membrane. The polymer solutions for preparing the membrane were prepared using a solvent mixture composed of N, N-dimethylformamide, acetone, 2-propanol or water. The CA and CA/PMB30 blend membranes with an asymmetric and porous structure were prepared by a phase inversion process. The characteristics of the CA/PMB30 blend membrane, such as structural properties, mechanical properties, and solute permeability were examined with attention to changes in the preparation conditions of the membrane. The CA/PMB30 blend membrane had good water and solute permeability and a sharp molecular weight cut-off property. Moreover, the amount of proteins adsorbed on the CA/PMB30 blend membrane surface was less than that of the original CA membrane and a conventional polysulfone membrane. Adhesion and activation of platelets on the CA/PMB30 blend membrane were reduced compared with that on a CA membrane. In addition, the CA/PMB30 blend membrane showed good permselectivity and an antifouling property during a long time ultrafiltration experiment with protein solutions. PMID:12853244

  20. Performance of cellulose acetate butyrate membranes in hyperfiltration of sodium chloride and urea feed solution

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Leban, M.

    1973-01-01

    Cellulose acetate butyrate (CAB) membranes are shown to give high salt and urea rejection with water flux of about 3 gallons/sq ft per day at 600 psig. Membranes prepared from a formulation containing glyoxal show a significant increase in flux and decrease in salt and urea rejection with drying time. Zero drying time gives maximum urea and salt rejection and is therefore most suitable for hyperfiltration of sodium chloride and urea feed solution.

  1. Impact of membrane immobilization on particle formation and trichloroethylene dechlorination for bimetallic Fe/Ni nanoparticles in cellulose acetate membranes.

    PubMed

    Meyer, D E; Bhattacharyya, D

    2007-06-28

    The use of membrane immobilization to carry out the batch dechlorination of trichloroethylene (TCE) using bimetallic Fe/Ni (4:1, Fe to Ni) nanoparticles in cellulose acetate membranes is examined using modeling of transport phenomenon based on experimental results. Membranes are synthesized using both gelation and solvent evaporation techniques for phase inversion. The reduction of metal ions within cellulose acetate phase-inversion membranes was accomplished using sodium borohydride reduction to obtain up to 2 wt % total metals. Characterization of the mixed-matrix structure reveals a bimodal particle distribution ranging between 18 and 80 nm within the membrane cross section. The distribution is the result of changes in the morphology of the cellulose acetate support. The diffusivity and linear partitioning coefficient for the chlorinated organic were measured and are 2.0 x 10(-8) cm2.s-1 and 3.5 x 10(-2) L.g-1, respectively. An unsteady-state model for diffusion through a membrane with reaction was developed to predict experimental results with an error of only 7.2%. The error can be attributed to the lack of the model to account for loss of reactivity through pH effects, alloy effects (bimetallic ratio), and oxidation of nanoparticles. Simulations were run to vary the major transport variables, partitioning and diffusivity, and determine their impact on reaction kinetics. Of the two, diffusivity was less significant because it really only influences the time required for maximum TCE partitioning to the membrane to be achieved and has no effect on the limiting capacity of the membrane for TCE. Therefore, selection of an appropriate support material is crucial for development of highly reactive mixed-matrix membrane systems. PMID:17530798

  2. Electrospinning of silver nanoparticles loaded highly porous cellulose acetate nanofibrous membrane for treatment of dye wastewater

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Ma, Qian; Wang, Shu-Dong; Liu, Hua; Zhang, Sheng-Zhong; Bao, Wei; Zhang, Ke-Qin; Ling, Liang-Zhong

    2016-01-01

    In this paper, silver nanoparticles (NPs) were reduced form silver nitrate. Morphology and distribution of the synthesized silver NPs were characterized. In order to obtain cellulose acetate (CA), nanofibrous membrane with high effective adsorption performance to carry silver NPs for treatment of dye wastewater, different solvent systems were used to fabricate CA nanofibrous membranes with different morphologies and porous structures via electrospinning. Morphologies and structures of the obtained CA nanofibrous membranes were compared by scanning electron microscopy (SEM), which showed that CA nanofibrous membrane obtained from acetone/dichloromethane (1/2, v/v) was with the highly porous structure. SEM, energy-dispersive spectrometry and Fourier transform infrared spectrometry showed that the silver NPs were effectively incorporated in the CA nanofibrous membrane and the addition of silver NPs did not damage the porous structure of the CA nanofibrous membrane. Adsorption of dye solution (rhodamine B aqueous solution) revealed that the highly porous CA nanofibrous membrane exhibited effective adsorption performance and the addition of silver NPs did not affect the adsorption of the dye. Antibacterial property of the CA nanofibrous membrane showed that the silver-loaded highly porous CA nanofibrous membrane had remarkable antibacterial property when compared to the CA nanofibrous membrane without silver NPs. The silver-loaded highly porous CA nanofibrous membrane could be considered as an ideal candidate for treatment of the dye wastewater.

  3. Study of polydimethylsiloxane/aromatic polyamide laminated membranes for separation of acetic acid/water mixtures by pervaporation process

    SciTech Connect

    Deng, S.; Sourirajan, S.; Matsuura, T. )

    1994-06-01

    Separation of acetic acid/water mixtures by pervaporation was attempted over a range of compositions using polydimethylsiloxane (PDMS), aromatic polyamide (PA), and laminated polydimethylsiloxane-aromatic polyamide membranes. PDMS membranes are hydrophobic and acetic acid selective, whereas PA membranes are hydrophilic and water selective. When PDMS and PA membranes were laminated, with PDMS on the top side and in contact with the feed, water selectivity of the bottom PA membrane was intensified. On the other hand, when the PA membrane was on the top side and in contact with the feed, the selectivity was lowered. 10 refs., 4 figs.

  4. Non-denaturing gel electrophoresis system for the purification of membrane bound proteins

    SciTech Connect

    Cavinato, A.G.; Macleod, R.M.; Ahmed, M.S.

    1988-01-01

    A new method is described for the purification of a membrane bound glycoprotein, the kappa opioid receptor from human placental tissue. The method uses preparative slab-gel electrophoresis in the presence of the non-denaturing detergent CHAPS. A linear relationship between log molecular weight and SDS PAGE electrophoretic mobility of known molecular weight markers, in the presence of CHAPS, is observed. Using this method, we were able partially to purify an /sup 3/H-etorphine binding glycoprotein, from placental villus tissue, with an apparent molecular weight range of 60-70,000. The iodinated glycoprotein migrates in SDS PAGE with an apparent molecular weight of 63,000. This method may be useful for the isolation of membrane bound proteins, especially when an affinity ligand is not available.

  5. Alginate fouling reduction of functionalized carbon nanotube blended cellulose acetate membrane in forward osmosis.

    PubMed

    Choi, Hyeon-Gyu; Son, Moon; Yoon, SangHyeon; Celik, Evrim; Kang, Seoktae; Park, Hosik; Park, Chul Hwi; Choi, Heechul

    2015-10-01

    Functionalized multi-walled carbon nanotube blended cellulose acetate (fCNT-CA) membranes were synthesized for forward osmosis (FO) through phase inversion. The membranes were characterized through SEM, FTIR, and water contact angle measurement. AFM was utilized to investigate alginate fouling mechanism on the membrane. It reveals that the fCNT contributes to advance alginate fouling resistance in FO (57% less normalized water flux decline for 1% fCNT-CA membrane was observed than that for bare CA membrane), due to enhanced electrostatic repulsion between the membrane and the alginate foulant. Furthermore, it was found that the fCNT-CA membranes became more hydrophilic due to carboxylic groups in functionalized carbon nanotube, resulting in approximately 50% higher water-permeated flux than bare CA membrane. This study presents not only the fabrication of fCNT-CA membrane and its application to FO, but also the quantification of the beneficial role of fCNT with respect to alginate fouling in FO. PMID:26022283

  6. Cellulose Acetate 398-10 Asymmetric Membrane Capsules for Osmotically Regulated Delivery of Acyclovir

    PubMed Central

    Sonkar, Alka; Kumar, Anil; Pathak, Kamla

    2016-01-01

    The study was aimed at developing cellulose acetate asymmetric membrane capsules (AMCs) of acyclovir for its controlled delivery at the absorption site. The AMCs were prepared by phase inversion technique using wet process. A 23 full factorial design assessed the effect of independent variables (level(s) of polymer, pore former, and osmogen) on the cumulative drug release from AMCs. The buoyant optimized formulation F7 (low level of cellulose acetate; high levels of both glycerol and sodium lauryl sulphate) displayed maximum drug release of 97.88 ± 0.77% in 8 h that was independent of variation in agitational intensity and intentional defect on the cellulose acetate AMC. The in vitro data best fitted zero-order kinetics (r2 = 0.9898). SEM micrograph of the transverse section confirmed the asymmetric nature of the cellulose acetate capsular membrane. Statistical analysis by Design Expert software indicated no interaction between the independent variables confirming the efficiency of the design in estimating the effects of variables on drug release. The optimized formulation F7 (desirability = 0.871) displayed sustenance of drug release over the drug packed in AMC in pure state proving the superiority of osmotically active formulation. Conclusively the AMCs have potential for controlled release of acyclovir at its absorption site. PMID:26981319

  7. Western Blotting Using Microchip Electrophoresis Interfaced to a Protein Capture Membrane

    PubMed Central

    Jin, Shi; Anderson, Gwendolyn J.; Kennedy, Robert T.

    2013-01-01

    Western blotting is a commonly used assay for proteins. Despite the utility of the method, it is also characterized by long analysis times, manual operation, and lack of established miniaturized counterpart. We report a new way to Western blot which addresses these limitations. In the method, sodium dodecyl sulfate (SDS)-protein complexes are separated by sieving electrophoresis in a microfluidic device or chip. The chip is interfaced to a moving membrane so that proteins are captured in discrete zones as they migrate from the chip. Separations of SDS-protein complexes in the molecular weight range of 11 to 155 kDa were completed in 2 min with 4 × 104 theoretical plates at 460 V/cm. Migration time and peak area relative standard deviations were 3–6% and 0.2% respectively. Detection limit for actin was 0.7 nM. Assays for actin, AMP-kinase, carbonic anhydrase, and lysozyme are shown to demonstrate versatility of the method. Total analysis time including immunoassay was 22–32 min for a single sample. Because processing membrane for immunoassay is the slow step of the assay, sequential injections from different reservoirs on the chip and capture in different tracks on the same membrane allow increased throughput. As a demonstration, 9 injections were collected on one membrane and analyzed in 43 min (~5 min/sample). Further improvements in throughput are possible with more reservoirs or parallel channels. PMID:23672369

  8. A high-definition native polyacrylamide gel electrophoresis system for the analysis of membrane complexes.

    PubMed

    Ladig, Roman; Sommer, Maik S; Hahn, Alexander; Leisegang, Matthias S; Papasotiriou, Dimitrios G; Ibrahim, Mohamed; Elkehal, Rajae; Karas, Michael; Zickermann, Volker; Gutensohn, Michael; Brandt, Ulrich; Klösgen, Ralf Bernd; Schleiff, Enrico

    2011-07-01

    Native polyacrylamide gel electrophoresis (PAGE) is an important technique for the analysis of membrane protein complexes. A major breakthrough was the development of blue native (BN-) and high resolution clear native (hrCN-) PAGE techniques. Although these techniques are very powerful, they could not be applied to all systems with the same resolution. We have developed an alternative protocol for the analysis of membrane protein complexes of plant chloroplasts and cyanobacteria, which we termed histidine- and deoxycholate-based native (HDN-) PAGE. We compared the capacity of HDN-, BN- and hrCN-PAGE to resolve the well-studied respiratory chain complexes in mitochondria of bovine heart muscle and Yarrowia lipolytica, as well as thylakoid localized complexes of Medicago sativa, Pisum sativum and Anabaena sp. PCC7120. Moreover, we determined the assembly/composition of the Anabaena sp. PCC7120 thylakoids and envelope membranes by HDN-PAGE. The analysis of isolated chloroplast envelope complexes by HDN-PAGE permitted us to resolve complexes such as the translocon of the outer envelope migrating at approximately 700 kDa or of the inner envelope of about 230 and 400 kDa with high resolution. By immunodecoration and mass spectrometry of these complexes we present new insights into the assembly/composition of these translocation machineries. The HDN-PAGE technique thus provides an important tool for future analyses of membrane complexes such as protein translocons. PMID:21418111

  9. Comparison of diffusion by anionic surfactants through cellulose acetate and collagen membranes.

    PubMed

    García Ramón, M T; Ribosa, I; Leal, J S; Parra, J L

    1989-06-01

    Synopsis From a dermatological point of view, it is important to know what is the irritation potential of surfactants on human skin. Recent research trends have been oriented towards the establishment of new 'in vitro' techniques that will avoid animal experimentation. In this paper, some results on the rate of diffusion of different anionic surfactants through both cellulose acetate and collagen membranes are described. A correlation between results of diffusion through the protein membrane and results published on the same surfactants and their irritation potential during 'in vivo' experiments appears possible. PMID:19456944

  10. Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli

    SciTech Connect

    Axe, D.D.; Bailey, J.E.

    1995-07-05

    Escherichia coli produces lactate and acetate in significant amounts during both aerobic and anaerobic glycolysis. A model describing the mechanism of protein-mediated lactate transport has previously been proposed. A simple theoretical analysis here indicates that the proposed model would drain cellular energy resources by catalytically dissipating the proton-motive force. An experimental analysis of lactate and acetate transport employs nuclear magnetic resonance (NMR) spectroscopy to measure the relative concentrations of these end products on the two sides of the cytoplasmic membrane of anaerobically glycolyzing cells. Comparison of measured concentration ratios of those expected at equilibrium for various transport modes indicates that acetate is a classical uncoupling agent, permeating the membrane at comparable rates in the dissociated and undissociated forms. The lactate concentration ratio changes markedly after an initial period of sustained glycolysis. This change is most readily explained as resulting from a lactate transport system that responds to an indicator of glycolytic activity. The data further indicate that lactate permeates the membrane in both dissociated and undissociated forms. Both acids, then, are capable of catalytically dissipating the proton-motive force.

  11. Identification of the major membrane and core proteins of vaccinia virus by two-dimensional electrophoresis.

    PubMed Central

    Jensen, O N; Houthaeve, T; Shevchenko, A; Cudmore, S; Ashford, T; Mann, M; Griffiths, G; Krijnse Locker, J

    1996-01-01

    Vaccinia virus assembly has been well studied at the ultrastructural level, but little is known about the molecular events that occur during that process. Towards this goal, we have identified the major membrane and core proteins of the intracellular mature virus (IMV). Pure IMV preparations were subjected to Nonidet P-40 (NP-40) and dithiothreitol (DTT) treatment to separate the core proteins from the membrane proteins. These proteins were subsequently separated by two-dimensional (2D) gel electrophoresis, and the major polypeptide spots, as detected by silver staining and 35S labeling, were identified by either matrix-assisted laser desorption/ionization mass spectrometry, N-terminal amino acid sequencing, or immunoprecipitation with defined antibodies. Sixteen major spots that partitioned into the NP-40-DTT-soluble fraction were identified; 11 of these were previously described virally encoded proteins and 5 were cellular proteins, mostly of mitochondrial origin. The core fraction revealed four major spots of previously described core proteins, two of which were also detected in the membrane fraction. Subsequently, the NP-40-DTT-soluble and -insoluble fractions from purified virus preparations, separated by 2D gels, were compared with postnuclear supernatants of infected cells that had been metabolically labeled at late times (6 to 8 h) postinfection. This relatively short labeling period as well as the apparent shutoff of host protein synthesis allowed the selective detection in such postnuclear supernatants of virus-encoded proteins. These postnuclear supernatants were subsequently treated with Triton X-114 or with sodium carbonate to distinguish the membrane proteins from the soluble proteins. We have identified the major late membrane and nonmembrane proteins of the IMV as they occur in the virus as well as in infected cells. This 2D gel map should provide an important reference for future molecular studies of vaccinia virus morphogenesis. PMID:8892867

  12. Quantitative analysis of plasma membrane proteome using two-dimensional difference gel electrophoresis.

    PubMed

    Tang, Wenqiang

    2012-01-01

    The plasma membrane (PM) controls cell's exchange of both material and information with the outside environment, and PM-associated proteins play key roles in cellular regulation. Numerous cell surface receptors allow cells to perceive and respond to various signals from neighbor cells, pathogens, or the environment; large numbers of transporter and channel proteins control material uptake or release. Quantitative proteomic analysis of PM-associated proteins can identify key proteins involved in signal transduction and cellular regulation. Here, we describe a protocol for quantitative proteomic analysis of PM proteins using two-dimensional difference gel electrophoresis. The protocol has been successfully employed to identify new components of the brassinosteroid signaling pathway, and should also be applicable to the studies of other plant signal transduction pathways and regulatory mechanisms. PMID:22576086

  13. Adsorptive removal of phenolic compounds using cellulose acetate phthalate-alumina nanoparticle mixed matrix membrane.

    PubMed

    Mukherjee, Raka; De, Sirshendu

    2014-01-30

    Mixed matrix membranes (MMMs) were prepared using alumina nanoparticles and cellulose acetate phthalate (CAP) by varying concentration of nanoparticles in the range of 10 to 25wt%. The membranes were characterized by scanning electron micrograph, porosity, permeability, molecular weight cut off, contact angle, surface zeta potential, mechanical strength. Addition of nanoparticles increased the porosity, permeability of the membrane up to 20wt% of alumina. pH at point of zero charge of the membrane was 5.4. Zeta potential of the membrane became more negative up to 20wt% of nanoparticles. Adsorption of phenolic derivatives, catechol, paranitrophenol, phenol, orthochloro phenol, metanitrophenol, by MMMs were investigated. Variation of rejection and permeate flux profiles were studied for different solutes as a function of various operating conditions, namely, solution pH, solute concentration in feed and transmembrane pressure drop. Difference in rejection of phenolic derivatives is consequence of interplay of surface charge and adsorption by alumina. Adsorption isotherm was fitted for different solutes and effects of pH were investigated. Catechol showed the maximum rejection 91% at solution pH 9. Addition of electrolyte reduced the rejection of solutes. Transmembrane pressure drop has insignificant effects on solute rejection. Competitive adsorption reduced the rejection of individual solute. PMID:24333710

  14. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. [Polyetherimide, cellulose acetate and ethylcellulose

    SciTech Connect

    Not Available

    1986-01-01

    The goal of this program is to develop polymer membranes useful in the preparation of hydrogen from coal-derived synthesis gas. During this quarter the first experiment were aimed at developing high performance composite membranes for the separation of hydrogen from nitrogen and carbon monoxide. Three polymers have been selected as materials for these membranes: polyetherimide cellulose acetate and ethylcellulose. This quarter the investigators worked on polyetherimide and cellulose acetate membranes. The overall structure of these membranes is shown schematically in Figure 1. As shown, a microporous support membrane is first coated with a high flux intermediate layer then with an ultrathin permselective layer and finally, if necessary, a thin protective high flux layer. 1 fig., 4 tabs.

  15. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    SciTech Connect

    Nurhadini, Arcana, I Made

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  16. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    NASA Astrophysics Data System (ADS)

    Nurhadini, Arcana, I. Made

    2015-09-01

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10-4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  17. Rapid and sensitive determination of phosphoamino acids in phosvitin by N-hydroxysuccinimidyl fluorescein-O-acetate derivatization and capillary zone electrophoresis with laser-induced fluorescence detection.

    PubMed

    Deng, Ying-Hua; Zhang, Hua-Shan; Wang, Hong

    2008-09-01

    A method was developed for the determination of phosphoamino acids by capillary zone electrophoresis-laser-induced fluorescence detection (argon ion laser, excitation at 488 nm and emission at 520 nm) using derivatization with N-hydroxysuccinimidyl fluorescein-O-acetate (SIFA). Different variables affecting the derivatization (SIFA concentration, derivatization pH, reaction temperature and reaction time) and the separation (type, pH and concentration of buffer, applied voltage and injection mode) were investigated in detail. The optimized separation conditions were 40 mM boric acid buffer (pH 9.2) for background electrolyte, 25 kV for the separation voltage, 25 degrees C for the capillary temperature and 5 s at 0.5 psi for the sample injection. Under the optimal conditions, the SIFA-labeled phosphoamino acids were fully separated within 7 min. The detection limits ranged from 0.1 to 0.3 nM, which are the lowest values reported for capillary electrophoresis (CE) methods. The proposed methodology allowed the rapid, sensitive and selective determination of phosphoamino acids in hen egg yolk phosvitin by the standard addition method. The recovery of these compounds in real sample was 94.0-103.5%. The developed method surpasses previously published CE methods in terms of detection limit, separation time, stability and simplicity of the electrophoretic procedure. PMID:18648781

  18. Composite membrane of niobium(V) oxide and cellulose acetate: Preparation and characterization

    SciTech Connect

    Campos, E.A.; Gushikem, Y.

    1997-09-01

    Composite membranes of niobium(V) oxide and cellulose acetate (Cel/Nb{sub 2}O{sub 5}) were prepared with the following Nb{sub 2}O{sub 5} loadings (in wt%): 1.1, 6.1, 9.8, 15.6, and 20.9. The thermal stability of the membranes slightly decreased in relation to the pure membrane on incorporation of the metal oxide into the matrix. Scanning electron microscopy and niobium mapping with an X-ray EDS microprobe showed that the metal oxide particles are homogeneously dispersed in the matrix. The electronic absorption bands indicated that the oxide particle size varies from that of the monomer to those of oligomer species on increased Nb{sub 2}O{sub 5} loading in the matrix. The dispersed oxide possesses mainly Lewis acid character, a clear indication that on increasing the oxide loading in the matrix, the coordination number of the metal is not saturated by formation of the Nb-O-Nb bond. These materials can be useful in ion-exchange process, as supports for enzymes, in catalytic reactions, and in reverse osmosis experiments.

  19. Investigation of the pore structure and morphology of cellulose acetate membranes using small-angle neutron scattering. 2: Ultrafiltration and reverse-osmosis membranes

    SciTech Connect

    Kulkarni, S.; Krause, S. ); Wignall, G.D. . Solid State Div.)

    1994-11-07

    Pore structure in cellulose acetate ultrafiltration (UF) and reverse-osmosis (RO) membranes has been studied using small-angle neutron scattering. Scattering experiments were carried out on dry membranes as well as on membranes swollen with deuterated solvents (D[sub 2]O and CD[sub 3]OD). In addition, the RO membranes were studied both before and after annealing (a process of heating a membrane in a water bath at [approximately]75 C to improve its separation properties). The pore surface in UF membranes was found to be smooth and nonfractal, as evidenced by the fourth power law behavior at high Q. Values of average pore sizes obtained for dry and solvent swollen membranes agree well with pore sizes obtained by other methods. For cellulose acetate RO membranes in their dry state, the unannealed membrane appears to consist of two discrete pore size distributions in the intermediate and high Q region while the annealed membrane contains a much wider distribution of pore sizes. These results give a good account of the changes occurring in the structure of RO membranes as a result of annealing, and agree well with the prediction of other authors.

  20. A novel, post-column micro-membrane reactor for fluorescent analysis of protein in capillary electrophoresis.

    PubMed

    Liu, Fan; Zhang, Lingyi; Qian, Junhong; Ren, Jun; Gao, Fangyuan; Zhang, Weibing

    2013-11-01

    Based on the semipermeability of hollow fiber membranes, a post-column membrane reactor was developed for capillary electrophoresis (CE)-laser induced fluorescence (LIF) analysis of proteins by using a hollow fiber membrane to connect the separation and detection capillaries. The membrane length between the separation and detection capillaries was 1 mm. Driven by the chemical potential difference between the separation buffer inside the membrane and the fluorescence derivatization solution outside the membrane, the derivatization reagent can be easily drawn into hollow fiber membrane to react with proteins. Also, the separation buffer can be adjusted by the derivatization solution to match the conditions of derivatization without sample loss. The effect of the separation buffer on the derivatization reaction was investigated and the results showed that even a strong acidic solution and multiple additives can be adopted in the separation buffer without destroying the post-column derivatization of proteins. Under the optimized conditions, the highly sensitive detection of BSA was achieved with a detection limit of 3.3 nmol L(-1) and a linear calibration range from 0.007 to 0.1 mg mL(-1). The proposed CE-LIF system with a post-column membrane reactor was also successfully applied to the separation and detection of proteins in rat liver and loach muscle. PMID:24015400

  1. A green approach to ethyl acetate: quantitative conversion of ethanol through direct dehydrogenation in a Pd-Ag membrane reactor.

    PubMed

    Zeng, Gaofeng; Chen, Tao; He, Lipeng; Pinnau, Ingo; Lai, Zhiping; Huang, Kuo-Wei

    2012-12-01

    Pincers do the trick: The conversion of ethanol to ethyl acetate and hydrogen was achieved using a pincer-Ru catalyst in a Pd-Ag membrane reactor. Near quantitative conversions and yields could be achieved without the need for acid or base promoters or hydrogen acceptors (see scheme). PMID:23136053

  2. Cellulose acetate hollow fiber membranes blended with phospholipid polymer and their performance for hemopurification.

    PubMed

    Ye, Sang Ho; Watanabe, Junji; Ishihara, Kazuhiko

    2004-01-01

    Commercially available hollow fiber membranes (HFMs) made from synthetic polymers, including cellulose acetate (CA) HFMs, used as hemopurification membranes, need to improve in hemocompatibility, by suppressing protein adsorption and clot formation. In this study, CA HFMs blended with 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymer (PMB30 composed of MPC and n-butyl methacrylate (BMA)) were prepared by a dry-jet wet spinning process. Their performances were evaluated by characterizing their properties such as structure, permeability and protein adsorption. CA/PMB30-blend HFMs showed structure changes such as increase of porosity, development of large pores and decreasing of the thickness of the active layer. And the structure and permeability of CA/PMB30-blend HFMs were controllable by changing preparation conditions. Also, the CA/PMB30-blend HFMs had good permeability, low protein adsorption and low fouling property during the permeability experiment in comparison with CA HFMs, because the hydrophilic and hemocompatible MPC copolymer (PMB30) existed on the surface of the HFM. PMID:15461185

  3. Analysis of steric partition behavior of molecules in membranes using statistical physics. Application to gel chromatography and electrophoresis.

    PubMed Central

    Schnitzer, J E

    1988-01-01

    The principles of statistical physics are used to formulate general expressions for the steric partition behavior of molecules in both random and ordered membrane structures that may be applied to any shape of the solute and/or the volume-excluding element of the membrane. These expressions fully define partitioning in terms of the volume excluded to point molecules and to finite-sized molecules. The mean effective exclusion volume for a molecule is calculated as a function of a global interaction energy, which varies with position, conformation, and orientation of the molecule. It allows consideration of electrostatic and other nonsteric factors. To test the model, specific partition functions are derived for several simple geometries describing the membrane and solute. Frequently, the derived expressions agree with past analyses; however, a new expression describing partitioning within an random network of fibers is derived. It agrees with past results only in the limit of low exclusion volumes. With greater volume exclusions, past results greatly overestimate the partition function. It is applied to gel electrophoresis and chromatography and survives testing with available experimental data. Unlike past analyses, it predicts nonlinear Ferguson plots for agarose gel electrophoresis. In addition, an analytical expression predicting the minimum radius of a sphere excluded from a random fiber matrix is derived, tested, and found to agree with experimental data. PMID:3148335

  4. Magnetic Targeted Delivery of Dexamethasone Acetate across the Round Window Membrane in Guinea Pigs

    PubMed Central

    Du, Xiaoping; Chen, Kejian; Kuriyavar, Satish; Kopke, Richard D.; Grady, Brian P.; Bourne, David H.; Li, Wei; Dormer, Kenneth J.

    2012-01-01

    Hypothesis Magnetically susceptible PLGA nanoparticles will effectively target the round window membrane (RWM) for delivery of dexamethasone-acetate (Dex-Ac) to the scala tympani. Background Targeted delivery of therapeutics to specific tissues can be accomplished using different targeting mechanisms. One technology includes iron oxide nanoparticles, susceptible to external magnetic fields. If a nanocomposite composed of biocompatible polymer (PLGA), magnetite, and Dex-Ac can be pulled into and across the mammalian RWM, drug delivery can be enhanced. Method In vitro targeting and release kinetics of PLGA-magnetite-Dex-Ac nanoparticles first were measured using a RWM model. Next, these optimized nanocomposites were targeted to the RWM by filling the niche in anesthetized guinea pigs. A permanent magnet was placed opposite the RWM for 1 hour. Cochlear soft tissues, perilymph, and RWM were harvested after euthanasia and steroid levels were measured using HPLC. Results Membrane transport, in vitro, proved optimal targeting using a lower particle magnetite concentration (1 versus 5 or 10 mg/ml). In vivo targeted PLGA-magnetite-Dex-Ac particles had an average size of 482.8 ± 158 nm (DLS) and an average zeta potential −19.9 ± 3.3 mV. In 1 hour, there was significantly increased cochlear targeted delivery of Dex or Dex-Ac, compared with diffusion alone. Conclusion Superparamagnetic PLGA-magnetite-Dex-Ac nanoparticles under an external magnetic field (0.26 mT) for 1 hour significantly increased Dex-Ac delivery to the inner ear. The RWM was not completely permeated and also became loaded with nanocomposites, indicating that delivery to the cochlea would continue for weeks by PLGA degradation and passive diffusion. PMID:23187928

  5. Fouling propensity and separation efficiency of epoxidated polyethersulfone incorporated cellulose acetate ultrafiltration membrane in the retention of proteins

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, A.; Rajesh, S.; Mohan, D.

    2012-10-01

    Epoxidated polyethersulfone (EPES) incorporated cellulose acetate (CA) ultrafiltration membranes were prepared by diffusion induced precipitation technique in the absence and presence of pore former polyethyleneglycol-600. Effect of blend ratio on the compatibility, thermal stability, mechanical strength, hydrophilicity, morphology, pure water flux, protein adsorption resistance, protein separation efficiency and fouling propensity of the CA/EPES blend membranes was evaluated. Addition of EPES results in the formation of thin separating layer and spongy sub layer in CA/EPES blend membranes. The efficiency of these membranes in the separation of commercially important proteins such as bovine serum albumin, egg albumin, pepsin and trypsin was studied and found to be enhanced as compared to CA membranes. The fouling-resistant capability of the membranes was studied by bovine serum albumin as the model foulant and flux recovery ratio of the membranes were calculated. Attempts have been made to correlate the changes in membrane morphology with pure water flux, hydraulic resistance, thermal and mechanical stability, separation efficiency and antifouling property of the CA/EPES membranes. The optimal combination of CA and EPES, thus allows the preparation of high performance UF membranes which are sufficiently dense to retain proteins and at the same time give economically viable fluxes.

  6. Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis.

    PubMed

    Sabir, Aneela; Shafiq, Muhammad; Islam, Atif; Sarwar, Afsheen; Dilshad, Muhammad Rizwan; Shafeeq, Amir; Zahid Butt, Muhammad Taqi; Jamil, Tahir

    2015-11-01

    In this study pristine multi-walled carbon nanotubes (MWCNTs) were surface engineered (SE) in strong acidic medium by oxidation purification method to form SE-MWCNT. Five different amount of SE-MWCNT ranging from 0.1 to 0.5 wt% were thoroughly and uniformly dispersed in cellulose acetate/polyethylene glycol (CA/PEG400) polymer matrix during synthesis of membrane by dissolution casting method. The structural analysis, surface morphology and roughness was carried out by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively, which showed that the dispersed SE-MWCNT was substantially tethered in CA/PEG400 polymer matrix membrane. The thermogravimetric analysis (TGA) of membranes also suggested some improvement in thermal properties with the addition of SE-MWCNT. Finally, the performance of these membranes was assessed for suitability in drinking water treatment. The permeation flux and salt rejection were determined by using indigenously fabricated reverse osmosis pilot plant with 1000 ppm NaCl feed solution. The results showed that the tethered SE-MWCNT/CA/PEG400 polymer matrix membrane, with strong SE-MWCNTs/polymer matrix interaction, improved the salt rejection performance of the membrane with the salt rejection of 99.8% for the highest content of SE-MWCNT. PMID:26256386

  7. Electrophoresis and isoelectric focusing of whole cell and membrane proteins from the extremely halophilic archaebacteria

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Lang, Frank J., Jr.; Hochstein, Lawrence I.

    1989-01-01

    The subunits from two purified halobacterial membrane enzymes (ATPase and nitrate reductase) behaved differently with respect to isoelectric focusing, silver staining and interaction with ampholytes. Differential behavior was also observed in whole cell proteins from Halobacterium saccharovorum regarding resolution in two-dimensional gels and silver staining. It is proposed that these differences reflect the existence of two classes of halobacterial proteins.

  8. A novel precursor composed of polycarbosilane and palladium(II) acetate for a SiC-based gas separation membrane

    NASA Astrophysics Data System (ADS)

    Idesaki, Akira; Sugimoto, Masaki; Yoshikawa, Masahito

    2011-04-01

    Organic-inorganic conversion process of a novel precursor composed of polycarbosilane and palladium(II) acetate was investigated in order to develop a SiC-based gas separation membrane. It was found that the precursor was converted to inorganic material forming Si-C-Si, Si-O-Si and Si-O-C network and evolving hydrogen, methane, ethane, carbon monoxide and carbon dioxide gases in a temperature range of 350-1000K. Furthermore, it was found that the volume shrinkage of precursor during pyrolysis process was 50%, which is 14% lower than that of PCS, because of efficient crosslinking of PCS and network formation.

  9. Development of Low Cost Membranes (Ta, Nb & Cellulose Acetate) for H2/CO2 Separation in WGS Reactors

    SciTech Connect

    Seetala, Naidu; Siriwardane, Upali

    2011-12-15

    The main aim of this work is to synthesize low temperature bimetallic nanocatalysts for Water Gas Shift reaction (WGS) for hydrogen production from CO and steam mixture; and develop low-cost metal (Nb/Ta)/ceramic membranes for H2 separation and Cellulose Acetate membranes for CO2 separation. .

  10. Dynamic supported liquid membrane tip extraction of glyphosate and aminomethylphosphonic acid followed by capillary electrophoresis with contactless conductivity detection.

    PubMed

    See, Hong Heng; Hauser, Peter C; Sanagi, M Marsin; Ibrahim, Wan Aini Wan

    2010-09-10

    A dynamic supported liquid membrane tip extraction (SLMTE) procedure for the effective extraction and preconcentration of glyphosate (GLYP) and its metabolite aminomethylphosphonic acid (AMPA) in water has been investigated. The SLMTE procedure was performed in a semi-automated dynamic mode and demonstrated a greater performance against a static extraction. Several important extraction parameters such as donor phase pH, cationic carrier concentration, type of membrane solvent, type of acceptor stripping phase, agitation and extraction time were comprehensively optimized. A solution of Aliquat-336, a cationic carrier, in dihexyl ether was selected as the supported liquid incorporated into the membrane phase. Quantification of GLYP and AMPA was carried out using capillary electrophoresis with contactless conductivity detection. An electrolyte solution consisting of 12 mM histidine (His), 8 mM 2-(N-morpholino)ethanesulfonic acid (MES), 75 microM cetyltrimethylammonium bromide (CTAB), 3% methanol, pH 6.3, was used as running buffer. Under the optimum extraction conditions, the method showed good linearity in the range of 0.01-200 microg/L (GLYP) and 0.1-400 microg/L (AMPA), acceptable reproducibility (RSD 5-7%, n=5), low limits of detection of 0.005 microg/L for GLYP and 0.06 microg/L for AMPA, and satisfactory relative recoveries (90-94%). Due to the low cost, the SLMTE device was disposed after each run which additionally eliminated the possibility of carry-over between runs. The validated method was tested for the analysis of both analytes in spiked tap water and river water with good success. PMID:20696433

  11. Effect of gossypol-acetic acid on calcium transport and ATPase activity in plasma membranes from ram and bull spermatozoa.

    PubMed

    Breitbart, H; Rubinstein, S; Nass-Arden, L

    1984-10-01

    The effects of gossypol acetic acid on the activity of Mg-ATPase and Ca-Mg-ATPase and on calcium uptake by plasma membranes from ram and bull spermatozoa were examined. The three parameters were almost completely inhibited by 10 microM gossypol for both ram and bull sperm. In order to assess the effects of higher gossypol concentrations isolated membrane vesicles were loaded with calcium by operating the ATP-dependent calcium pump after which gossypol was added and calcium uptake followed. At 10 microM gossypol, additional calcium uptake was 85% inhibited while at 40 microM a release of the accumulated calcium was observed. The inhibitory effect of 10 microM gossypol was almost completely reversible by simple dilution of gossypol-treated membranes, whilst at 40 microM the effect was only 50% reversible. The data show a high degree of similarity between bull and ram, suggesting minimal differences between the two species as far as the structure and function of the sperm plasma membrane is concerned. PMID:6151940

  12. Free-Flow Electrophoresis of Plasma Membrane Vesicles Enriched by Two-Phase Partitioning Enhances the Quality of the Proteome from Arabidopsis Seedlings.

    PubMed

    de Michele, Roberto; McFarlane, Heather E; Parsons, Harriet T; Meents, Miranda J; Lao, Jeemeng; González Fernández-Niño, Susana M; Petzold, Christopher J; Frommer, Wolf B; Samuels, A Lacey; Heazlewood, Joshua L

    2016-03-01

    The plant plasma membrane is the interface between the cell and its environment undertaking a range of important functions related to transport, signaling, cell wall biosynthesis, and secretion. Multiple proteomic studies have attempted to capture the diversity of proteins in the plasma membrane using biochemical fractionation techniques. In this study, two-phase partitioning was combined with free-flow electrophoresis to produce a population of highly purified plasma membrane vesicles that were subsequently characterized by tandem mass spectroscopy. This combined high-quality plasma membrane isolation technique produced a reproducible proteomic library of over 1000 proteins with an extended dynamic range including plasma membrane-associated proteins. The approach enabled the detection of a number of putative plasma membrane proteins not previously identified by other studies, including peripheral membrane proteins. Utilizing multiple data sources, we developed a PM-confidence score to provide a value indicating association to the plasma membrane. This study highlights over 700 proteins that, while seemingly abundant at the plasma membrane, are mostly unstudied. To validate this data set, we selected 14 candidates and transiently localized 13 to the plasma membrane using a fluorescent tag. Given the importance of the plasma membrane, this data set provides a valuable tool to further investigate important proteins. The mass spectrometry data are available via ProteomeXchange, identifier PXD001795. PMID:26781341

  13. ADSORPTION AND MEMBRANE SEPARATION MEASUREMENTS WITH MIXTURES OF ETHANOL, ACETIC ACID, AND WATER

    EPA Science Inventory

    Biomass fermentation produces ethanol and other renewable biofuels. Pervaporation using hydrophobic membranes is potentially a cost-effective means of removing biofuels from fermentation broths for small- to medium-scale applications. Silicalite-filled polydimethylsiloxane (PDMS)...

  14. Regulation of hepatocyte plasma membrane alpha 1-adrenergic receptors by 4 beta-phorbol 12-myristate 13-acetate.

    PubMed

    Beeler, J F; Cooper, R H

    1995-01-01

    The effect of phorbol 12-myristate 13-acetate (PMA) on hepatocyte alpha 1-adrenergic receptors was determined by [3H]prazosin binding to plasma membranes from control and PMA-treated hepatocytes. Membranes from hepatocytes incubated with PMA (1 microgram/ml) for 1 h exhibited a 40% decrease in alpha 1-adrenergic receptors (481 +/- 10 fmol/mg of protein; mean +/- S.E.M. for three separate experiments) relative to vehicle-treated (dimethylformamide) hepatocytes (802 +/- 91 fmol/mg of protein; n = 3), with no significant effect on the KD. The PMA-induced decrease in alpha 1-adrenergic receptors was maximal by 30 min and half-maximal inhibition of [3H]prazosin binding occurred with a PMA concentration of approx. 15 ng/ml. Pretreatment of hepatocytes with staurosporine (5 microM) blocked the effect of PMA, and 4 beta-phorbol 13-monoacetate was ineffective, suggesting the involvement of protein kinase C (PKC). Treatment of hepatocytes with primaquine (300 microM) for 15 min decreased hepatocyte plasma membrane alpha 1-adrenergic receptors by 34.0 +/- 2.4% (mean +/- S.E.M. of three experiments). Removal of primaquine allowed essentially complete recovery (98 +/- 4%; mean +/- S.E.M. for five separate experiments) of plasma membrane [3H]prazosin binding within 20 min, suggesting that the alpha 1-adrenergic receptor undergoes endocytotic recycling. Addition of PMA (1 microgram/ml) to hepatocytes immediately after removal of primaquine, completely inhibited the increase in plasma membrane alpha 1-adrenergic receptors relative to control cells, but had no effect on hepatocytes whose cell surface alpha 1-receptors remaining after primaquine treatment had been inactivated by alkylation. These observations suggested that activation of PKC may facilitate the internalization of the alpha 1-adrenergic receptor in hepatocytes. PMID:7826356

  15. Grafting of cellulose acetate with ionic liquids for biofuel purification by a membrane process: Influence of the cation.

    PubMed

    Hassan Hassan Abdellatif, Faten; Babin, Jérôme; Arnal-Herault, Carole; David, Laurent; Jonquieres, Anne

    2016-08-20

    A new strategy was developed for grafting ionic liquids (ILs) onto cellulose acetate in order to avoid IL extraction and improve its performance for ethyl tert-butyl ether (ETBE) biofuel purification by the pervaporation membrane process. This work extended the scope of IL-containing membranes to the challenging separation of organic liquid mixtures, in which these ILs were soluble. The ILs contained the same bromide anion and different cations with increasing polar feature. The membrane properties were strongly improved by IL grafting. Their analysis in terms of structure-property relationships revealed the influence of the IL content, chemical structure and chemical physical parameters α, β, π* in the Kamlet-Taft polarity scale. The ammonium IL led to the best normalized flux of 0.182kg/m(2)h for a reference thickness of 5μm, a permeate ethanol content of 100% and an outstanding infinite separation factor for the azeotropic mixture EtOH/ETBE at 50°C. PMID:27178937

  16. Removal of chromium from aqueous solution using cellulose acetate and sulfonated poly(ether ether ketone) blend ultrafiltration membranes.

    PubMed

    Arthanareeswaran, G; Thanikaivelan, P; Jaya, N; Mohan, D; Raajenthiren, M

    2007-01-01

    A process for purifying aqueous solutions containing heavy and toxic metals such as chromium has been investigated. Chromium salts are largely used in various industries including leather-manufacturing industry. Ultrafiltration processes are largely being applied for macromolecular and heavy metal ion separation from aqueous streams. Cellulose acetate and sulfonated poly(ether ether ketone) blend ultrafiltration membranes were prepared by precipitation phase inversion technique in 100/0, 90/10, 80/20 and 70/30% polymer blend compositions and subjected to the rejection of chromium at different concentrations such as 200, 400, 600, 800 and 1000 ppm with a water-soluble macroligand (polyvinylalcohol). Factors affecting the percentage rejection and permeate flux such as pH, concentration of solute, concentration of PVA, transmembrane pressure and composition of blend membranes were investigated. It was found that percentage rejection improved at a pH 6 and a macroligand concentration of 2 wt.%. The transmembrane pressure and concentration of solute also have an effect on the separation and product rate efficiencies of the blend membranes. PMID:16860465

  17. Controlled porosity osmotic pump-based controlled release systems of pseudoephedrine. I. Cellulose acetate as a semipermeable membrane.

    PubMed

    Makhija, Sapna N; Vavia, Pradeep R

    2003-04-14

    A controlled porosity osmotic pump-based drug delivery system has been described in this study. Unlike the elementary osmotic pump (EOP) which consists of an osmotic core with the drug surrounded by a semipermeable membrane drilled with a delivery orifice, controlled porosity of the membrane is accomplished by the use of different channeling agents in the coating. The usual dose of pseudoephedrine is 60 mg to be taken three or four times daily. It has a short plasma half life of 5-8 h. Hence, pseudoephedrine was chosen as a model drug with an aim to develop a controlled release system for a period of 12 h. Sodium bicarbonate was used as the osmogent. The effect of different ratios of drug:osmogent on the in-vitro release was studied. Cellulose acetate (CA) was used as the semipermeable membrane. Different channeling agents tried were diethylphthalate (DEP), dibutylphthalate (DBP), dibutylsebacate (DBS) and polyethyleneglycol 400 (PEG 400). The effect of polymer loading on in-vitro drug release was studied. It was found that drug release rate increased with the amount of osmogent due to the increased water uptake, and hence increased driving force for drug release. This could be retarded by the proper choice of channeling agent in order to achieve the desired zero order release profile. Also the lag time seen with tablets coated using diethylphthalate as channeling agent was reduced by using a hydrophilic plasticizer like polyethyleneglycol 400 in combination with diethylphthalate. This system was found to deliver pseudoephedrine at a zero order rate for 12 h. The effect of pH on drug release was also studied. The optimized formulations were subjected to stability studies as per ICH guidelines at different temperature and humidity conditions. PMID:12695059

  18. Fluorescence Detection In Electrophoresis

    NASA Astrophysics Data System (ADS)

    Swarner, Susan

    1988-04-01

    Fluorescence detection is in common usage in forensic science laboratories for the visualization of three enzyme markers. The fluorogenic substrates, 4-methylumbelliferyl phosphate, 4-methylutbel-liveryl acetate, and fluorecein diacetate, are acted upon by the enzymes Erythrocyte Acid Phospha, tase, Esterase-D, and Carbonic Anhydrase-III, respectively, to produce compounds visible to the analyst when viewed with transmitted UV light at 365 nm. Additionally, the choice of fluorogenic corn, pounds may help detect a specific enzyme from a related enzyme. One of the responsibilities of a forensic science laboratory may be the analysis of blood for genetically controlled polymorphic enzymes and protein markers. The genetic markers are said to be polymorphic because each exhibits types which can be differentiated and allows for the inclusion or exclusion of possible-donors of the blood. Each genetic marker can be separated into these recognizable types by electrophoresis, a technique which separates compounds based on electrical charges. Electrophoresis is conducted by placing a portion or extract of each bloodstain into a support medium which will conduct electricity. This is known as a plate or membrane. By controlling the pH of the buffer and the potential that is applied to the plate, the analyst can achieve separation of the types within an enzyme marker. The types appear as differing patterns of bands. Once the bloodstain has been subjected to electrophoresis, the enzymes must be visualized. This is generally best accomplished by using the specific activity of the enzyme. For the enzymes described in the present work, the visualization is performed by over-layering the plate with a piece of filter paper that 'has been saturated with the appropriate non-fluorescent substrate and buffer. The bands of enzyme, which is now in discrete patterns, will act upon the non-fluorescent substrate to create a fluorescent compound. The plate is then viewed with transmitted UV light at 365 nm to locate the band patterns which will identify the phenotype of the blood source. The plate should be photographed to record the findings.

  19. Effect of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) upon membrane ionic exchanges in sea urchin eggs

    SciTech Connect

    Ciapa, B.; Payan, P. ); Allemand, D. )

    1989-12-01

    The effect of TPA (12-O-tetradecanoylphorbol-13-acetate) upon ionic exchanges was investigated in eggs of the sea urchin Arbacia lixula. Ouabain-sensitive {sup 86}Rb uptake and amiloride-sensitive {sup 24}Na influx were dramatically stimulated after TPA addition, indicating an enhancement of total ionic permeabilities. Stimulation by TPA of both Na{sup +}/H{sup +} and Na{sup +}/K{sup +} exchanges was canceled by amiloride, suggesting that activation of protein kinase C elicits, via Na{sup +}/H{sup +} activity, stimulation of the sodium pump. However, TPA did not stimulate sodium pump activity and Na{sup +}/H{sup +} exchange at the same rate as fertilization, probably because of an absence of calcium-dependent events. Further fertilization of TPA pretreated eggs triggered an enhancement of sodium pump activity when the TPA treatment duration did not exceed 10 minutes. It is suggested that TPA activates preexisting transporting mechanisms in plasma membranes of unfertilized eggs (Na{sup +} stat, pH stat).

  20. Studies on electrochemical characterization and performance prediction of cellulose acetate and Zeocarb-225 composite membranes in aqueous NaCl solutions.

    PubMed

    Tiwari, A K; Ahmad, Suhail

    2006-06-01

    We have mixed cellulose acetate and Zeocarb-225 in different ratios, leading to the preparations of Membrane-1 and Membrane-2. Membrane potential, water content, and conductance measurements have been carried out to estimate and analyze the data in terms of equilibria and important electrochemical parameters. The Donnan equilibrium has been incorporated to estimate the activity coefficient of counterions, y(p)M, and solute, y(+/-)M in the membrane phase along with the parameter, so called varphi expressing non-ideality. Dependence of the extent of hydrophilicity of both membranes on mean electrolyte concentrations has been examined. Selectivity in membranes is discussed in terms of dissociation equilibria, K(d)s and K(d)f. It has been found that membrane surface charge density sigma(s) increases with increasing of external NaCl concentration. Dependence of water transport number and cationic transport number on electrolyte concentration shows a similar trend of variation. At higher mean concentration of electrolyte, water transport number in Membrane-2 has a negative value. Membrane-2 has a higher value of water transport number than Membrane-1. The entropy production due to solute and water transport has been quantified for both the membranes in the light of nonequilibrium thermodynamics. The various type of interactions such as solute-membrane, solute-water, and water-membrane are analyzed in terms of friction coefficients (f(ij)) of Spiegler's frictional pore model. In our case, an f(wm) < f(sm) < f(sw)-like trend is observed in both membranes. These frictional coefficients show close dependence on external electrolyte concentrations. Pore potential values of Membrane-1 and Membrane-2 have been worked out using the Poisson-Boltzmann equation. In both systems pore potential values increase with increasing mean electrolyte concentrations. The transport through Membrane-1 and Membrane-2 tends to follow diffusion-control criteria, i.e., (D(+/-) . C. d/D(+/-)M C(M) . delta) > 2. A slightly higher value of solute rejection is found in Membrane-2. PMID:16499917

  1. Conjugation of silica nanoparticles with cellulose acetate/polyethylene glycol 300 membrane for reverse osmosis using MgSO4 solution.

    PubMed

    Sabir, Aneela; Shafiq, Muhammad; Islam, Atif; Jabeen, Faiza; Shafeeq, Amir; Ahmad, Adnan; Zahid Butt, Muhammad Taqi; Jacob, Karl I; Jamil, Tahir

    2016-01-20

    Thermally-induced phase separation (TIPS) method was used to synthesize polymer matrix (PM) membranes for reverse osmosis from cellulose acetate/polyethylene glycol (CA/PEG300) conjugated with silica nanoparticles (SNPs). Experimental data showed that the conjugation of SNPs changed the surface properties as dense and asymmetric composite structure. The results were explicitly determined by the permeability flux and salt rejection efficiency of the PM-SNPs membranes. The effect of SNPs conjugation on MgSO4 salt rejection was more significant in magnitude than on permeation flux i.e. 2.38 L/m(2)h. FTIR verified that SNPs were successfully conjugated on the surface of PM membrane. DSC of PM-SNPs shows an improved Tg from 76.2 to 101.8 °C for PM and PM-S4 respectively. Thermal stability of the PM-SNPs membranes was observed by TGA which was significantly enhanced with the conjugation of SNPs. The micrographs of SEM and AFM showed the morphological changes and increase in the valley and ridges on membrane surface. Experimental data showed that the PM-S4 (0.4 wt% SNPs) membrane has maximum salt rejection capacity and was selected as an optimal membrane. PMID:26572387

  2. Electrophoresis-Enhanced Detection of Deoxyribonucleic Acids on a Membrane-Based Lateral Flow Strip Using Avian Influenza H5 Genetic Sequence as the Model

    PubMed Central

    Wu, Jui-Chuang; Chen, Chih-Hung; Fu, Ja-Wei; Yang, Huan-Ching

    2014-01-01

    This study reports a simple strategy to detect a deoxyribonucleic acid (DNA) on a membrane-based lateral flow (MBLF) strip without tedious gel preparation, gel electrophoresis, and EtBr-staining processes. The method also enhances the detection signal of the genetic sample. A direct electric field was applied over two ends of the MBLF strips to induce an electrophoresis of DNAs through the strips. The signal enhancement was demonstrated by the detection of the H5 subtype of avian influenza virus (H5 AIV). This approach showed an excellent selectivity of H5 AIV from other two control species, Arabidopsis thaliana and human PSMA5. It also showed an effective signal repeatability and sensitivity over a series of analyte concentrations. Its detection limit could be enhanced, from 40 ng to 0.1 ng by applying 12 V. The nano-gold particles for the color development were labeled on the capture antibody, and UV-VIS and TEM were used to check if the labeling was successful. This detection strategy could be further developed to apply on the detection of drug-allergic genes at clinics or detection of infectious substances at incident sites by a simple manipulation with an aid of a mini-PCR machine and auxiliary kits. PMID:24603637

  3. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    EPA Science Inventory

    Pervaporation is a potential process for recovering bioethanol produced from biomass fermentation. Fermentation broths contain ethanol, water, and a variety of other compounds, often including carboxylic acids. The effects of acetic acid on long-term pervaporation of aqueous et...

  4. Versatile microanalytical system with porous polypropylene capillary membrane for calibration gas generation and trace gaseous pollutants sampling applied to the analysis of formaldehyde, formic acid, acetic acid and ammonia in outdoor air.

    PubMed

    Coelho, Lúcia H G; Melchert, Wanessa R; Rocha, Flavio R; Rocha, Fábio R P; Gutz, Ivano G R

    2010-11-15

    The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the μg m(-3) range) and their variations with sampling site and time. In this work, a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE), a quick separation technique that requires nothing more than some nanoliters of sample and, when combined with capacitively coupled contactless conductometric detection (C(4)D), is particularly favorable for ionic species that do not absorb in the UV-vis region, like the target analytes formaldehyde, formic acid, acetic acid and ammonium. The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry's constant such as formaldehyde and carboxylic acids, or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8.3 nL s(-1)), while the sample was aspirated through the annular gap of the concentric tubes at 2.5 mL s(-1). A second unit, in all similar to the CMDS, was operated as a capillary membrane diffusion emitter (CMDE), generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS. The fluids of the system were driven with inexpensive aquarium air pumps, and the collected samples were stored in vials cooled by a Peltier element. Complete protocols were developed for the analysis, in air, of NH(3), CH(3)COOH, HCOOH and, with a derivatization setup, CH(2)O, by associating the CMDS collection with the determination by CE-C(4)D. The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot's reaction. Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction, solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW). All techniques and methods of this work are in line with the green analytical chemistry trends. PMID:21035648

  5. Analysis of Streptomyces coelicolor membrane proteome using two-dimensional native/native and native/sodium dodecyl sulfate gel electrophoresis.

    PubMed

    Li, Fuhou; Liang, Jingdan; Wang, Weixia; Zhou, Xiufen; Deng, Zixin; Wang, Zhijun

    2014-11-15

    Analysis of the oligomeric state of a protein may provide insights into its physiological functions. Because membrane proteins are considered to be the workhorses of energy generation and polypeptide and nutrient transportation, in this study we characterized the membrane-associated proteome of Streptomyces coelicolor by two-dimensional (2D) blue native/sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), high-resolution clear native/native PAGE, and native/SDS-PAGE. A total of 77 proteins were identified, and 20 proteins belonging to 15 complexes were characterized. Moreover, the resolution of high-resolution clear native/SDS-PAGE is much higher than that of blue native/SDS-PAGE. OBP (SCO5477) and BldKB (SCO5113) were identified as the main protein spots from the membrane fractions of S. coelicolor M145, suggesting that these two proteins are involved in extracellular peptide transportation. These two transporters exhibited multiple oligomeric states in the native PAGE system, which may suggest their multiple physiological functions in the development of S. coelicolor. PMID:25150108

  6. Gypsum (CaSO42H2O) Scaling on Polybenzimidazole and Cellulose Acetate Hollow Fiber Membranes under Forward Osmosis

    PubMed Central

    Chen, Si Cong; Su, Jincai; Fu, Feng-Jiang; Mi, Baoxia; Chung, Tai-Shung

    2013-01-01

    We have examined the gypsum (CaSO42H2O) scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO) processes. Three hollow fiber membranes made of (1) cellulose acetate (CA), (2) polybenzimidazole (PBI)/polyethersulfone (PES) and (3) PBI-polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) were studied. For the first time in FO processes, we have found that surface ionic interactions dominate gypsum scaling on the membrane surface. A 70% flux reduction was observed on negatively charged CA and PBI membrane surfaces, due to strong attractive forces. The PBI membrane surface also showed a slightly positive charge at a low pH value of 3 and exhibited a 30% flux reduction. The atomic force microscopy (AFM) force measurements confirmed a strong repulsive force between gypsum and PBI at a pH value of 3. The newly developed PBI-POSS/PAN membrane had ridge morphology and a contact angle of 51.42 14.85 after the addition of hydrophilic POSS nanoparticles and 3 min thermal treatment at 95 C. Minimal scaling and an only 1.3% flux reduction were observed at a pH value of 3. Such a ridge structure may reduce scaling by not providing a locally flat surface to the crystallite at a pH value of 3; thus, gypsum would be easily washed away from the surface. PMID:24957062

  7. Toxic metal ion separation by cellulose acetate/sulfonated poly(ether imide) blend membranes: effect of polymer composition and additive.

    PubMed

    Nagendran, A; Vijayalakshmi, A; Arockiasamy, D Lawrence; Shobana, K H; Mohan, D

    2008-07-15

    Toxic heavy metal ion removal from industrial effluents are gaining increased visibility owing to environmental concern and saving precious materials. In this work, an attempt has been made to remove the valuable metal ions using modified ultrafiltration (UF) blend membranes based on cellulose acetate (CA) and sulfonated poly(ether imide) (SPEI) were prepared in the presence and absence of additive, poly(ethylene glycol) 600 (PEG600) in various compositions. Prepared membranes were characterized in terms of pure water flux (PWF), water content and membrane hydraulic resistance. High flux UF membranes were obtained in the range of 15-25 wt% SPEI and 2.5-10 wt% PEG600 in the polymer blend. The molecular weight cut-off (MWCO) of the blend membranes were determined using protein separation studies found to vary from 20 to greater than 69 kDa. Surface morphology of the blend membranes were analysed with scanning electron microscopy. Studies were carried out to find the rejection and permeate flux of metal ions such as Cu(II), Ni(II), Zn(II) and Cd(II) using polyethyleneimine as the chelating ligand. On increasing the composition of SPEI and PEG600, the rejection of metal ions is decreasing while the permeate flux has an increasing trend. These effects are due to the increased pore formation in the CA/SPEI blend membranes because of the hydrophilic SPEI and polymeric additive PEG600. In general, it was found that CA/SPEI blend membranes displayed higher permeate flux and lower rejection compared to pure CA membranes. The extent of separation of metal ions depends on the affinity of metal ions to polyethyleneimine to form macromolecular complexes and the stability of the formed complexes. PMID:18191025

  8. Bargain Electrophoresis.

    ERIC Educational Resources Information Center

    Maderia, Vitor M. C.; Pires, Euclides M. V.

    1986-01-01

    Discusses the value of electrophoresis in the fields of protein chemistry and biochemistry. Describes how to build an inexpensive electrophoresis setup for use in either research or teaching activities. Details the construction of both the separating device and the power supply. (TW)

  9. Synthesis and Characterisation of ETS-10/Acetate-based Ionic Liquid/Chitosan Mixed Matrix Membranes for CO2/N2 Permeation

    PubMed Central

    Casado-Coterillo, Clara; López-Guerrero, María del Mar; Irabien, Ángel

    2014-01-01

    Mixed matrix membranes (MMMs) were prepared by incorporating organic surfactant-free hydrothermally synthesised ETS-10 and 1-ethyl-3-methylimidazolium acetate ionic liquid (IL) to chitosan (CS) polymer matrix. The membrane material characteristics and permselectivity performance of the two-component membranes were compared with the three-component membrane and the pure CS membrane. The addition of IL increased CO2 solubility of the polymer, and, thus, the CO2 affinity was maintained for the MMMs, which can be correlated with the crystallinity, measured by FT-IR, and void fraction calculations from differences between theoretical and experimental densities. The mechanical resistance was enhanced by the ETS-10 nanoparticles, and flexibility decreased in the two-component ETS-10/CS MMMs, but the flexibility imparted by the IL remained in three-component ETS-10/IL/CS MMMs. The results of this work provide insight into another way of facing the adhesion challenge in MMMs and obtain CO2 selective MMMs from renewable or green chemistry materials. PMID:24957178

  10. Analysis of diazinon pesticide using potentiometric biosensor based on enzyme immobilized cellulose acetate membrane in gold electrode

    NASA Astrophysics Data System (ADS)

    Mashuni; Ramadhan, L. O. A. N.; Jahiding, M.; Herniati

    2016-02-01

    Biosensor for analysis of diazinon pesticide using Potentiometric transducer has been developed. The basic element of this biosensor was a gold electrode modified with an immobilized acetylcholinesterase enzyme layer formed by entrapment with glutaraldehyde crosslinked-cellulose acetate. The aim of the research is to determine the composition of glutaraldehyde crosslinked-cellulose acetate in the gold electrode which provide optimum performance of biosensors of diazinon pesticide analysis on characterization include a range of working concentration, sensitivity, and detection limit. The results showed the composition of the cellulose acetate 15% and glutaraldehyde 25% that obtain optimum performance in the measurement of diazinon pesticide with a range of working concentration of 10-6 ppm to 1 ppm, the value of sensitivity 20.275 mV/decade and detection limit 10-6 ppm. The use of cellulose acetate provides highly sensitive devices allowing the efficient analysis of pesticides. The response time of electrode is on the measurement of pesticide diazinon with concentration variation of 10-6 ppm to 1 ppm with response time is about 5 minutes.

  11. Micromanipulation of adhesion of phorbol 12-myristate-13-acetate-stimulated T lymphocytes to planar membranes containing intercellular adhesion molecule-1.

    PubMed Central

    Tözeren, A; Mackie, L H; Lawrence, M B; Chan, P Y; Dustin, M L; Springer, T A

    1992-01-01

    This paper presents an analytical and experimental methodology to determine the physical strength of cell adhesion to a planar membrane containing one set of adhesion molecules. In particular, the T lymphocyte adhesion due to the interaction of the lymphocyte function associated molecule 1 on the surface of the cell, with its counter-receptor, intercellular adhesion molecule-1 (ICAM-1), on the planar membrane, was investigated. A micromanipulation method and mathematical analysis of cell deformation were used to determine (a) the area of conjugation between the cell and the substrate and (b) the energy that must be supplied to detach a unit area of the cell membrane from its substrate. T lymphocytes stimulated with phorbol 12-myristate-13-acetate (PMA) conjugated strongly with the planar membrane containing purified ICAM-1. The T lymphocytes attached to the planar membrane deviated occasionally from their round configuration by extending pseudopods but without changing the size of the contact area. These adherent cells were dramatically deformed and then detached when pulled away from the planar membrane by a micropipette. Detachment occurred by a gradual decrease in the radius of the contact area. The physical strength of adhesion between a PMA-stimulated T lymphocyte and a planar membrane containing 1,000 ICAM-1 molecules/micron 2 was comparable to the strength of adhesion between a cytotoxic T cell and its target cell. The comparison of the adhesive energy density, measured at constant cell shape, with the model predictions suggests that the physical strength of cell adhesion may increase significantly when the adhesion bonds in the contact area are immobilized by the actin cytoskeleton. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 8 FIGURE 9 PMID:1358239

  12. Analysis of electrophoresis performance

    NASA Technical Reports Server (NTRS)

    Roberts, G. O.

    1984-01-01

    The SAMPLE computer code models electrophoresis separation in a wide range of conditions. Results are included for steady three dimensional continuous flow electrophoresis (CFE), time dependent gel and acetate film experiments in one or two dimensions and isoelectric focusing in one dimension. The code evolves N two dimensional radical concentration distributions in time, or distance down a CFE chamber. For each time or distance increment, there are six stages, successively obtaining the pH distribution, the corresponding degrees of ionization for each radical, the conductivity, the electric field and current distribution, and the flux components in each direction for each separate radical. The final stage is to update the radical concentrations. The model formulation for ion motion in an electric field ignores activity effects, and is valid only for low concentrations; for larger concentrations the conductivity is, therefore, also invalid.

  13. In-line coupling of microextractions across polymer inclusion membranes to capillary zone electrophoresis for rapid determination of formate in blood samples.

    PubMed

    Pantůčková, Pavla; Kubáň, Pavel; Boček, Petr

    2015-08-01

    Polymer inclusion membranes (PIMs) have several important features, i.e., PIMs are dry and non-porous membranes, which can be prepared ahead of use and stored without noticeable deterioration in extraction performance. In this contribution, in-line coupling of microextractions across PIMs to a separation method for clinical purposes was demonstrated for the first time. Formate (the major metabolite in methanol poisoning) was determined in undiluted human serum and whole blood by capillary zone electrophoresis (CZE) with simultaneous capacitively coupled contactless conductivity detection (C(4)D) and UV-Vis detection. A purpose-made microextraction device with PIM was coupled to a commercial CZE instrument in order to ensure complete automation of the entire analytical procedure, i.e., of formate extraction, injection, CZE separation and quantification. PIMs for formate extractions consisted of 60% (w/w) cellulose triacetate as base polymer and 40% (w/w) Aliquat™ 336 as anion carrier. The method was characterized by good repeatability of peak areas (≤7.0%) and migration times (≤0.8%) and by good linearity of calibration curves (r(2) = 0.993-0.999). Limits of detection in various matrices ranged from 15 to 54 μM for C(4)D and from 200 to 635 μM for UV-Vis detection and were sufficiently low to clearly distinguish between endogenous and toxic levels of formate in healthy and methanol intoxicated individuals. In addition, PIMs proved that they may act as phase interfaces with excellent long-term stability since once prepared, they retained their extractions properties for, at least, two months of storage. PMID:26320792

  14. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology

    NASA Technical Reports Server (NTRS)

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Said; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.

  15. Electrophoresis technology

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.

    1985-01-01

    A new high resolution apparatus designed for space was built as a laboratory prototype. Using a moving wall with a low zeta potential coating, the major sources of flow distortion for an electrophoretic sample stream are removed. Highly resolved fractions, however, will only be produced in space because of the sensitivity of this chamber to buoyancy-induced convection in the laboratory. The second and third flights of the McDonnell Douglas Astronautics Corporation continuous flow electrophoresis system carried samples developed at MSFC intended to evaluate the broad capabilities of free flow electrophoresis in a reduced gravity environment. Biological model materials, hemoglobin and polystyrene latex microspheres, were selected because of their past use as electrophoresis standards and as visible markers for fluid flow due to electroosmosis, spacecraft acceleration or other factors. The dependence of the separation resolution on the properties of the sample and its suspension solution was assessed.

  16. Simulating Electrophoresis.

    ERIC Educational Resources Information Center

    Moertel, Cheryl; Frutiger, Bruce

    1996-01-01

    Describes a DNA fingerprinting simulation that uses vegetable food coloring and plastic food containers instead of DNA and expensive gel electrophoresis chambers. Allows students to decipher unknown combinations of dyes in a method similar to that used to decipher samples of DNA in DNA fingerprint techniques. (JRH)

  17. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    EPA Science Inventory

    Pervaporation is potentially a cost-effective means of recovering biofuels, such as ethanol, from biomass fermentation broths for small- to medium-scale applications (~2 - 20 million liters per year). Hydrophobic zeolite-filled polydimethylsiloxane (PDMS) membranes have been sho...

  18. Electricity generation coupled with wastewater treatment using a microbial fuel cell composed of a modified cathode with a ceramic membrane and cellulose acetate film.

    PubMed

    Seo, Ha Na; Lee, Woo Jin; Hwang, Tae Sik; Park, Doo Hyun

    2009-09-01

    A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99 degrees of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99 degrees similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences. PMID:19809261

  19. Mechanism of gas permeation through polymer membranes. Part I. Pure gases. Comprehensive progress report. [Polybutadiene, poly(vinyl acetate), poly(methyl acrylate)

    SciTech Connect

    Stern, S.A.; Kulkarni, S.S.; Mauze, G.R.

    1982-07-01

    The objective of this study is to assess the validity of a free-volume model of gas permeation through nonporous polymer membranes. This model provides a formalism for the prediction of permeability coefficients for pure gaseous penetrants and their mixtures as a function of both pressure and temperature. Such information is of great importance for the development of new, energy-efficient membrane processes for the separation of gas mixtures. Diffusion and solubility coefficients for Ar, CO/sub 2/, CH/sub 4/, C/sub 2/H/sub 4/, C/sub 3/H/sub 8/, and SF/sub 6/ in polyethylene membranes and rods have been measured in the temperature range from 5/sup 0/ to 50/sup 0/C and at pressures up to 40 atm. under isothermal-isobaric conditions. It was found that the dependence of the diffusion and permeability coefficients on penetrant gas pressure and on temperature is satisfactorily represented by Fujita's free-volume model for the transport of small molecules in polymers and by its extension to gas permeation. The free-volume model of gas permeation relates permeability coefficients for gases in polymers to three thermodynamic variables, namely, temperature, pressure, and penetrant concentration, and to three characteristic parameters denoted A/sub d/, B/sub d/, and ..gamma... Semi-empirical correlations were developed for these parameters as a function of physicochemical properties of the penetrant and the polymer. These correlations were obeyed by the gas-polyethylene systems studied in the present work. A generalized correlation was found for B/sub d/ values of penetrants of various molecular sizes in polyethylene, polybutadiene, poly(vinyl acetate), poly(methyl acrylate), silicone rubber, and natural rubber.

  20. Effect of K+ and Ca2+ on the indole-3-acetic acid- and fusicoccin-induced growth and membrane potential in maize coleoptile cells

    PubMed Central

    Siemieniuk, Agnieszka; Karcz, Waldemar

    2015-01-01

    The role of potassium (K+) and calcium (Ca2+) in the regulation of plant growth and development is complex and needs a diverse range of physiological studies. Both elements are essential for satisfactory crop production. Here, the effects of K+ and Ca2+ ions on endogenous growth and growth in the presence of either indole-3-acetic acid (IAA) or fusicoccin (FC) were studied in maize (Zea mays) coleoptiles. Membrane potentials of coleoptile parenchymal cells, incubated in media containing IAA, FC and different concentrations of K+ and Ca2+, were also determined. Growth experiments have shown that in the absence of K+ in the incubation medium, both endogenous and IAA- or FC-induced growth were significantly inhibited by 0.1 and 1 mM Ca2+, respectively, while in the presence of 1 mM K+ they were inhibited only by 1 mM Ca2+. At 10 mM K+, endogenous growth and growth induced by either IAA or FC did not depend on Ca2+ concentration. TEA-Cl, a potassium channel blocker, added 1 h before IAA or FC, caused a reduction of growth by 59 or 45 %, respectively. In contrast to TEA-Cl, verapamil, the Ca2+ channel blocker, did not affect IAA- and FC-induced growth. It was also found that in parenchymal cells of maize coleoptile segments, membrane potential (Em) was strongly affected by the medium K+, independently of Ca2+. However, lack of Ca2+ in the incubation medium significantly reduced the IAA- and FC-induced membrane potential hyperpolarization. TEA-Cl applied to the control medium in the same way as in growth experiments caused Em hyperpolarization synergistic with hyperpolarization produced by IAA or FC. Verapamil did not change either the Em of parenchymal cells incubated in the control medium or the IAA- and FC-induced membrane hyperpolarization. The data presented here have been discussed considering the role of K+ uptake channels in regulation of plant cell growth. PMID:26134122

  1. Effect of K+ and Ca2+ on the indole-3-acetic acid- and fusicoccin-induced growth and membrane potential in maize coleoptile cells.

    PubMed

    Siemieniuk, Agnieszka; Karcz, Waldemar

    2015-01-01

    The role of potassium (K(+)) and calcium (Ca(2+)) in the regulation of plant growth and development is complex and needs a diverse range of physiological studies. Both elements are essential for satisfactory crop production. Here, the effects of K(+) and Ca(2+) ions on endogenous growth and growth in the presence of either indole-3-acetic acid (IAA) or fusicoccin (FC) were studied in maize (Zea mays) coleoptiles. Membrane potentials of coleoptile parenchymal cells, incubated in media containing IAA, FC and different concentrations of K(+) and Ca(2+), were also determined. Growth experiments have shown that in the absence of K(+) in the incubation medium, both endogenous and IAA- or FC-induced growth were significantly inhibited by 0.1 and 1 mM Ca(2+), respectively, while in the presence of 1 mM K(+) they were inhibited only by 1 mM Ca(2+). At 10 mM K(+), endogenous growth and growth induced by either IAA or FC did not depend on Ca(2+) concentration. TEA-Cl, a potassium channel blocker, added 1 h before IAA or FC, caused a reduction of growth by 59 or 45 %, respectively. In contrast to TEA-Cl, verapamil, the Ca(2+) channel blocker, did not affect IAA- and FC-induced growth. It was also found that in parenchymal cells of maize coleoptile segments, membrane potential (Em) was strongly affected by the medium K(+), independently of Ca(2+). However, lack of Ca(2+) in the incubation medium significantly reduced the IAA- and FC-induced membrane potential hyperpolarization. TEA-Cl applied to the control medium in the same way as in growth experiments caused Em hyperpolarization synergistic with hyperpolarization produced by IAA or FC. Verapamil did not change either the Em of parenchymal cells incubated in the control medium or the IAA- and FC-induced membrane hyperpolarization. The data presented here have been discussed considering the role of K(+) uptake channels in regulation of plant cell growth. PMID:26134122

  2. Using linoleic acid embedded cellulose acetate membranes to in situ monitor polycyclic aromatic hydrocarbons in lakes and predict their bioavailability to submerged macrophytes.

    PubMed

    Tao, Yuqiang; Xue, Bin; Yao, Shuchun

    2015-05-19

    To date no passive sampler has been used to predict bioavailability of contaminants to macrophytes. Here a novel passive sampler, linoleic acid embedded cellulose acetate membrane (LAECAM), was developed and used to in situ measure the freely dissolved concentrations of ten polycyclic aromatic hydrocarbons in the sediment porewaters and the water columns of two lakes in both winter and summer and predict their bioavailability to the shoots of resident submerged macrophytes (Potamogeton malainus, Myriophyllum spicata, Najas minor All., and Vallisneria natans (Lour.) Hara). PAH sampling by LAECAMs could reach equilibrium within 21 days. The influence of temperature on LAECAM-water partition coefficients was 0.0008-0.0116 log units/°C. The method of LAECAM was comparable with the active sampling methods of liquid-liquid extraction combined with fDOC adjustment, centrifugation/solid-phase extraction (SPE), and filtration/SPE but had several advantages. After lipid normalization, concentrations of the PAHs in LAECAMs were not significantly different from those in the macrophytes. In contrast, concentrations of the PAHs in the triolein containing passive sampler (TECAM) deployed simultaneously with LAECAM were much higher. The results suggest that linoleic acid is more suitable than triolein as the model lipid for passive samplers to predict bioavailability of PAHs to submerged macrophytes. PMID:25877046

  3. Fluid flow electrophoresis in space

    NASA Technical Reports Server (NTRS)

    Griffin, R. N.

    1975-01-01

    Four areas relating to free-flow electrophoresis in space were investigated. The first was the degree of improvement over earthbound operations that might be expected. The second area of investigation covered the problems in developing a flowing buffer electrophoresis apparatus. The third area of investigation was the problem of testing on the ground equipment designed for use in space. The fourth area of investigation was the improvement to be expected in space for purification of biologicals. The results of some ground-based experiments are described. Other studies included cooling requirements in space, fluid sealing techniques, and measurement of voltage drop across membranes.

  4. Serum globulin electrophoresis

    MedlinePlus

    ... levels of proteins called globulins in the fluid (serum) part of a blood sample. Other electrophoresis tests that measure proteins in the serum include: Immunoelectrophoresis Immunfixation Protein electrophoresis

  5. Electrophoresis. [in microgravity environment

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1977-01-01

    Ground-based techniques for electrophoresis take account of the need either to circumvent the effects of gravity to prevent convection, or to use gravity for fluid stabilization through artificial density gradients. The microgravity environments of orbiting spacecraft provides a new alternative for electrophoresis by avoiding the need for either of these two approaches. The paper presents some theoretical considerations concerning electrophoresis, examines certain experimental techniques (zone and high density gel electrophoresis, isoelectric focusing and isotachophoresis), and examines the electrophoresis of living cells.

  6. Thallium acetate

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 30 , 2009 , the assessment summary for Thallium acetate is included in t

  7. Phenylmercuric acetate

    Integrated Risk Information System (IRIS)

    Phenylmercuric acetate ; CASRN 62 - 38 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  8. Ethyl acetate

    Integrated Risk Information System (IRIS)

    Ethyl acetate ; CASRN 141 - 78 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  9. Ammonium acetate

    Integrated Risk Information System (IRIS)

    Ammonium acetate ; CASRN 631 - 61 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  10. Vinyl acetate

    Integrated Risk Information System (IRIS)

    Vinyl acetate ; CASRN 108 - 05 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  11. Electrophoresis device

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S. (Inventor)

    1982-01-01

    A device for separating cellular particles of a sample substance into fractionated streams of different cellular species includes a casing having a distribution chamber, a separation chamber, and a collection chamber. The electrode chambers are separated from the separation chamber interior by means of passages such that flow variations and membrane variations around the slotted portion of the electrode chamber do not enduce flow perturbations into the laminar buffer curtain flowing in the separation chamber. The cellular particles of the sample are separated under the influence of the electrical field and the separation chamber into streams of different cellular species. The streams of separated cells enter a partition array in the collection chamber where they are fractionated and collected.

  12. Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing potential membrane protein complexes of Mycobacterium bovis bacillus Calmette-Guérin

    PubMed Central

    2011-01-01

    Background Tuberculosis is an infectious bacterial disease in humans caused primarily by Mycobacterium tuberculosis, and infects one-third of the world's total population. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine has been widely used to prevent tuberculosis worldwide since 1921. Membrane proteins play important roles in various cellular processes, and the protein-protein interactions involved in these processes may provide further information about molecular organization and cellular pathways. However, membrane proteins are notoriously under-represented by traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and little is known about mycobacterial membrane and membrane-associated protein complexes. Here we investigated M. bovis BCG by an alternative proteomic strategy coupling blue native PAGE to liquid chromatography tandem mass spectrometry (LC-MS/MS) to characterize potential protein-protein interactions in membrane fractions. Results Using this approach, we analyzed native molecular composition of protein complexes in BCG membrane fractions. As a result, 40 proteins (including 12 integral membrane proteins), which were organized in 9 different gel bands, were unambiguous identified. The proteins identified have been experimentally confirmed using 2-D SDS PAGE. We identified MmpL8 and four neighboring proteins that were involved in lipid transport complexes, and all subunits of ATP synthase complex in their monomeric states. Two phenolpthiocerol synthases and three arabinosyltransferases belonging to individual operons were obtained in different gel bands. Furthermore, two giant multifunctional enzymes, Pks7 and Pks8, and four mycobacterial Hsp family members were determined. Additionally, seven ribosomal proteins involved in polyribosome complex and two subunits of the succinate dehydrogenase complex were also found. Notablely, some proteins with high hydrophobicity or multiple transmembrane helixes were identified well in our work. Conclusions In this study, we utilized LC-MS/MS in combination with blue native PAGE to characterize modular components of multiprotein complexes in BCG membrane fractions. The results demonstrated that the proteomic strategy was a reliable and reproducible tool for analysis of BCG multiprotein complexes. The identification in our study may provide some evidence for further study of BCG protein interaction. PMID:21241518

  13. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1979-01-01

    A kidney cell electrophoresis technique is described in four parts: (1) the development and testing of electrophoresis solutions; (2) optimization of freezing and thawing; (3) procedures for evaluation of separated kidney cells; and (4) electrophoretic mobility characteristics of kidney cells.

  14. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1980-01-01

    The following aspects of kidney cell electrophoresis are discussed: (1) the development and testing of electrophoresis solutions; (2) optimization of freezing and thawing; (3) procedures for evaluation of separated kidney cells; and (4) electrophoretic mobility characterization of kidney cells.

  15. An Economical Electrophoresis Apparatus

    ERIC Educational Resources Information Center

    Andrews, I. M.

    1975-01-01

    Describes the production of an electrophoresis apparatus from commonly discarded articles. Outlines paper and gel electrophoresis and its application to the separation of amino acids and intestinal enzymes. (GS)

  16. Protein electrophoresis - serum

    MedlinePlus

    This lab test measures the types of protein in the fluid (serum) part of a blood sample. Other electrophoresis tests that measure proteins in the serum include: Immunoelectrophoresis Immunofixation Globulin electrophoresis

  17. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P. W.

    1985-01-01

    Tasks were undertaken in support of two objectives. They are: (1) to carry out electrophoresis experiments on cells in microgravity; and (2) assess the feasibility of using purified kidney cells from embryonic kidney cultures as a source of important cell products. Investigations were carried out in the following areas: (1) ground based electrophoresis technology; (2) cell culture technology; (3) electrophoresis of cells; (4) urokinase assay research; (5) zero-g electrophoresis; and (6) flow cytometry.

  18. Western Blotting using Capillary Electrophoresis

    PubMed Central

    Anderson, Gwendolyn J.; Cipolla, Cynthia; Kennedy, Robert T.

    2011-01-01

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein adsorption. Although discrete protein zones could be detected, bands were broadened by ~1.7-fold by transfer to membrane. A complete Western blot for lysozyme was completed in about one hour with 50 pg mass detection limit from low microgram per milliliter samples. These results demonstrate substantial reduction in time requirements and improvement in mass sensitivity compared to conventional Western blots. Western blotting using capillary electrophoresis shows promise to analyze low volume samples with reduced reagents and time, while retaining the information content of a typical Western blot. PMID:21265514

  19. Resolution of G(s)alpha and G(q)alpha/G(11)alpha proteins in membrane domains by two-dimensional electrophoresis: the effect of long-term agonist stimulation.

    PubMed

    Matousek, P; Novotný, J; Svoboda, P

    2004-01-01

    Low-density membrane-domain fractions were prepared from S49 lymphoma cells and clone e2m11 of HEK293 cells expressing a large number of thyrotropin-releasing hormone receptor (TRH-R) and G(11)alpha by flotation on sucrose density gradients. The intact cell structure was broken by detergent-extraction, alkaline-treatment or drastic homogenization. Three types of low-density membranes were resolved by two-dimensional electrophoresis and analyzed for G(s)alpha (S49) or G(q)alpha/G11) (e2m11) content. Four individual immunoblot signals of Gsalpha protein were identified in S49 lymphoma cells indicating complete resolution of the long G(s)alpha L+/-ser and short G(s)alpha S+/-ser variants of G(s)alpha. All these were diminished by prolonged agonist (isoprenaline) stimulation. In e2m11-HEK cells, five different immunoblot signals were detected indicating post-translational modification of G proteins of G(q)alpha/G(11)alpha family. The two major spots corresponding to exogenously (over)expressed G(11)alpha and endogenous G(q)alpha were reduced; the minor spots diminished by hormonal stimulation. Parallel analysis by silver staining of the total protein content indicated that no major changes in protein composition occurred under these conditions. Our data thus indicate that agonist-stimulation of target cells results in down-regulation of all different members of G(s) and G(q)/G(11) families. This agonist-specific effect may be demonstrated in crude membrane as well as domain/raft preparations and it is not accompanied by changes in overall protein composition. PMID:15209537

  20. Kidney Cell Electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1985-01-01

    Materials and procedures for microgravity electrophoresis of living human embryonic kidney cells were evaluated, ground support in the form of analytical cell electrophoresis and flow cytometry was provided and cells returned from space flight were analyzed. Preflight culture media, electrophoresis buffer, fraction collection media, temperature profiles, and urokinase assay procedures were tested prior to flight. Electrophoretic mobility distributions of aliquots of the cell population to be fractionated in flight were obtained. The protocol established and utilized is given.

  1. Automatic multiple applicator electrophoresis

    NASA Technical Reports Server (NTRS)

    Grunbaum, B. W.

    1977-01-01

    Easy-to-use, economical device permits electrophoresis on all known supporting media. System includes automatic multiple-sample applicator, sample holder, and electrophoresis apparatus. System has potential applicability to fields of taxonomy, immunology, and genetics. Apparatus is also used for electrofocusing.

  2. Electrophoresis of biological materials

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The selection of biological products was studied for electrophoresis in space. Free flow electrophoresis, isoelectric focusing, and isotachophoresis are described. The candidates discussed include: immunoglobulins and gamma globulins; isolated islet of langerhans from pancreas; bone marrow; tumor cells; kidney cells, cryoprecipitate; and column separated cultures.

  3. Improved Electrophoresis Cell

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.

    1982-01-01

    Several proposed modifications are expected to improve performance of a continous-flow electrophoresis cell. Changes would allow better control of buffer flow and would increase resolution by suppressing thermal gradients. Improved electrophoresis device would have high resolution and be easy to operate. Improvements would allow better flow control and heat dissipation.

  4. Electrophoresis experiments for space

    NASA Astrophysics Data System (ADS)

    Snyder, Robert S.; Rhodes, Percy H.

    2000-01-01

    It has long been hoped that space could alleviate the problems of large-scale, high-capacity electrophoresis. Support media and reduced chamber dimensions of capillary electrophoresis have established the physical boundaries for Earth-based systems. Ideally, electrophoresis conducted in a virtual weightless environment in an unrestricted ``free'' fluid should have great potential. The electrophoresis and isoelectric focusing experiments done in the reduced gravity over the past twenty-five years have demonstrated the absence of thermal convection and sedimentation as well as the presence of electrohydrodynamics that requires careful control. One commercial venture produced gram amounts of an electrophoretically purified protein during seven Space Shuttle flights but the market disappeared in the six years between experiment conception and performance on the Space Shuttle. Our accumulated experience in microgravity plus theoretical models predict improvements that should be possible with electrophoresis if past problems are considered and both invention of new technologies and innovation of procedures on the Space Station are encouraged. .

  5. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii.

    PubMed

    Lindahl, Lina; Genheden, Samuel; Eriksson, Leif A; Olsson, Lisbeth; Bettiga, Maurizio

    2016-04-01

    Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic-acid-tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo-lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin-treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress. Biotechnol. Bioeng. 2016;113: 744-753. © 2015 Wiley Periodicals, Inc. PMID:26416641

  6. Effect of phorbol myristate acetate on secretion of parathyroid hormone

    SciTech Connect

    Morrissey, J.J. )

    1988-01-01

    The influence of phorbol myristate acetate (PMA), an activator of protein kinase c, on the secretion of parathyroid hormone from collagenase-dispersed bovine parathyroid cells was tested. The cells were incubated at low or high concentrations of calcium in the medium, and the hormone secreted into the medium was measured by a radioimmunoassay that recognizes both intact and C-terminal fragments of hormone. A stimulatory effect of PMA at high calcium, seen at PMA concentrations as low as 1.6 nM, did not occur with a biologically inactive 4{alpha}-isomer of phorbol ester, and was independent of changes in cellular adenosine 3{prime},5{prime}-cyclic monophosphate levels. Examination of {sup 32}P-labeled phosphoproteins by two-dimensional gel electrophoresis revealed acidic proteins of {approximately}20,000 and 100,000 Da that were phosphorylated at low and high calcium + 1.6 {mu}M PMA but not at high calcium alone. The protein kinase c activity associated with the membrane fraction of parathyroid cells significantly decreased 40% when the cells were incubated at high vs. low calcium. The data suggest that calcium may regulate parathyroid hormone secretion through changes in protein kinase c activity of the membrane fraction of the cell and protein phosphorylation.

  7. [Electrophoresis of rare earth elements on cellulose acetate].

    PubMed

    Aitzetmüller, K; Buchtela, K; Grass, F; Hecht, F

    1966-01-01

    Previous work on th electrophoretic separation of rare earth mixtures in α-hydroxyisobutyric acid was continued using cellogel strips and radioactive tracers. The purity and sequence were determined by γ-spectrometric analysis and the decay of the various activities. The detection of rare earths by direct activation of the electropherogram is demonstrated. Mixtures containing all the lanthanoides are clearly separated. PMID:23045747

  8. Preparative electrophoresis experiment design

    NASA Technical Reports Server (NTRS)

    Thiehler, A.

    1972-01-01

    A multifaceted study supporting the NASA programs to develop a space electrophoresis capability has been conducted. The study involved principally the technique of continuous free electrophoresis. It comprised a critical review of the art, study of new techniques for enhancing resolution and stability, and construction and initial testing of a high resolution cell. The effort resulted in a significant advance in free electrophoresis technique. It has provided also a much improved base for developments exploiting the added advantages of a zero-gravity environment.

  9. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1996-01-01

    We present preliminary results of our implementation of a novel electrophoresis separation technique: Binary Oscillatory Cross flow Electrophoresis (BOCE). The technique utilizes the interaction of two driving forces, an oscillatory electric field and an oscillatory shear flow, to create an active binary filter for the separation of charged species. Analytical and numerical studies have indicated that this technique is capable of separating proteins with electrophoretic mobilities differing by less than 10%. With an experimental device containing a separation chamber 20 cm long, 5 cm wide, and 1 mm thick, an order of magnitude increase in throughput over commercially available electrophoresis devices is theoretically possible.

  10. Electrophoresis operations in space

    NASA Technical Reports Server (NTRS)

    Richman, D. W.

    1982-01-01

    Application of electrophoresis in space processing is described. Spaceborne experiments in areas such as biological products and FDA approved drugs are discussed. These experiments will be carried on shuttle payloads.

  11. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis.

    PubMed

    Rosenfeld, J; Capdevielle, J; Guillemot, J C; Ferrara, P

    1992-05-15

    We examined the different steps necessary for the enzymatic digestion of proteins in the polyacrylamide matrix after gel electrophoresis. As a result, we developed an improved method for obtaining peptides for internal sequence analysis from 1-2 micrograms of in-gel-digested proteins. The long washing-lyophilization-equilibration steps necessary to eliminate the dye, sodium dodecyl sulfate, and other gel-associated contaminants that perturb protein digestion in Coomassie blue-stained gels have been replaced by washing for 40 min with 50% acetonitrile, drying for 10 min at room temperature, and then rehydrating with a protease solution. The washing and drying steps result in a substantial reduction of the gel slice volume that, when next swollen in the protease solution, readily absorbs the enzyme, facilitating digestion. The Coomassie blue staining procedure has also been modified by reducing acetic acid and methanol concentrations in the staining solution and by eliminating acetic acid in the destaining solution. The peptides resulting from the in-gel digestion are easily recovered by passive elution, in excellent yields for structural characterization. This simple and rapid method has been successfully applied for the internal sequence analysis of membrane proteins from the rat mitochondria resolved in preparative two-dimensional gel electrophoresis. PMID:1524213

  12. Recent advances in preparative electrophoresis

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Thormann, Wolfgang; Egen, Ned B.; Couasnon, Pascal; Sammons, David W.

    1987-01-01

    Various approaches for preparative electrophoresis, and three new instruments for preparative electrophoresis are discussed. Consideration is given to isoelectric focusing, isotachophoresis, and zone electrophoresis, three gel-based electrophoresis methods. The design, functions, and performance of the Elphor VaP 21 device of Hannig (1982), the shear-stabilized BIOSTREAM separator of Thompson (1983), and the recycling isoelectric focusing device are described.

  13. Membrane proteome of Acinetobacter radioresistens S13 during aromatic exposure.

    PubMed

    Pessione, Enrica; Giuffrida, Maria Gabriella; Prunotto, Laura; Barello, Cristina; Mazzoli, Roberto; Fortunato, Donatella; Conti, Amedeo; Giunta, Carlo

    2003-06-01

    Study of the bacterial membrane proteome, though in its early stages, is a field of growing interest in the search for information about nutrient transport and processing. We tested different strategies and chemical compounds to extract proteins from the membranes (inner and outer) of Acinetobacter radioresistens S13, a Gram-negative bacterium selected for its ability to degrade aromatics. A. radioresistens S13 was monitored under different growth substrate conditions, using acetate, benzoate or phenol as sole carbon source. Two-dimensional gel electrophoresis map analysis of membrane extracts from benzoate- and phenol-grown cells reveals differences versus controls (acetate-grown cultures). Primarily, a different pattern of spots was observed and, in particular, some proteins were only expressed in the presence of aromatic substrate. Among these, we detected a Na(+)/H(+) antiporter, whose function is likely to be regulation of intracellular pH, and an ABC type sugar transport system, probably involved in capsular polysaccharide translocation. We also identified other proteins, detectable in acetate-grown but over-expressed in aromatic-grown cells. These include: (1) an outer membrane protein ascribable to an OmpA-like protein, recently described in the literature as "alasan", a bioemulsifying agent involved in solubilizing and enhancing bioavailability of hydrocarbons; (2) a trimeric porin of the PhoE family also belonging to the outer membrane and involved in facilitating the transport of anions (especially phosphate); and (3) two glycosyl transferases probably involved in capsules and/or lipopolysaccharide biosynthesis. Study of the bacterial membrane proteome helps to elucidate the role of the membrane as modulable site enabling communication between internal and external environments. PMID:12833532

  14. Electrophoresis in space.

    PubMed

    Bauer, J; Hymer, W C; Morrison, D R; Kobayashi, H; Seaman, G V; Weber, G

    1999-01-01

    Programs for free flow electrophoresis in microgravity over the past 25 years are reviewed. Several studies accomplished during 20 spaceflight missions have demonstrated that sample throughput is significantly higher in microgravity than on the ground. Some studies have shown that resolution is also increased. However, many cell separation trials have fallen victim to difficulties associated with experimenting in the microgravity environment such as microbial contamination, air bubbles in electrophoresis chambers, and inadequate facilities for maintaining cells before and after separation. Recent studies suggest that the charge density of cells at their surface may also be modified in microgravity. If this result is confirmed, a further cellular mechanism of "sensing" the low gravity environment will have been found. Several free fluid electrophoresis devices are now available. Most have been tried at least once in microgravity. Newer units not yet tested in spaceflight have been designed to accommodate problems associated with space processing. The USCEPS device and the Japanese FFEU device are specifically designed for sterile operations, whereas the Octopus device is designed to reduce electroosmotic and electrohydrodynamic effects, which become dominant and detrimental in microgravity. Some of these devices will also separate proteins by zone electrophoresis, isotachophoresis, or isoelectric focusing in a single unit. Separation experiments with standard test particles are useful and necessary for testing and optimizing new space hardware. A cohesive free fluid electrophoresis program in the future will obviously require (1) flight opportunities and funding, (2) identification of suitable cellular and macromolecular candidate samples, and (3) provision of a proper interface of electrophoresis processing equipment with biotechnological facilities--equipment like bioreactors and protein crystal growth chambers. The authors feel that such capabilities will lead to the production of commercially useful quantities of target products and to an accumulation of new knowledge relating to the complexities of electrostatic phenomena at the cell surface. PMID:10660776

  15. Pulse Field Gel Electrophoresis.

    PubMed

    Sharma-Kuinkel, Batu K; Rude, Thomas H; Fowler, Vance G

    2016-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments. PMID:25682374

  16. Ultra-trace determination of lead(II) in water using electrothermal atomic absorption spectrometry after preconcentration by solid-phase extraction to a small piece of cellulose acetate type membrane filter.

    PubMed

    Mizuguchi, Hitoshi; Ishida, Mirai; Takahashi, Tomohiro; Sasaki, Atsushi; Shida, Junichi

    2011-01-01

    A simple and inexpensive preconcentration technique has been developed for the ultra-trace determination of lead(II) using electrothermal atomic absorption spectrometry (ETAAS). The lead(II) complex with dicyclohexano-18-crown 6-ether (DC18C6) was extracted to a small piece of cellulose acetate-type membrane filter (2 × 5 mm) merely by vigorously eccentric stirring for 120 min under the coexistence of sodium dodecyl sulfate (SDS) at around pH 7. The extraction medium was inserted into a graphite cuvette for the determination of lead(II) by ETAAS. A linear relation was obtained for the range of 0.1-5.0 ng in 10 ml of lead(II) standard solution (r = 0.998). The detection limit was found to be 0.03 ng of lead(II) in 10 ml (0.003 µg l(-1)) of water sample. The proposed method was applied to the ultra-trace determination of lead(II) in river water, underground water, tap water, and snow fall samples. PMID:21233566

  17. DNA ELECTROPHORESIS AT SURFACES

    SciTech Connect

    RAFAILOVICH, MIRIAM; SOKOLOV, JONATHAN; GERSAPPE, DILIP

    2003-09-01

    During this year we performed two major projects: I. We developed a detailed theoretical model which complements our experiments on surface DNA electrophoresis. We found that it was possible to enhance the separation of DNA chains by imposing a chemical nanoscale pattern on the surface. This approach utilized the surface interaction effect of the DNA chains with the substrate and is a refinement to our previous method in which DNA chains were separated on homogeneous flat surfaces. By introducing the nano-patterns on the surface, the conformational changes of DNA chains of different lengths can be amplified, which results in the different friction strengths with the substrate surface. Our results also show that, when compared to the DNA electrophoresis performed on homogeneous flat surfaces, nanopatterned surfaces offer a larger window in choosing different surface interactions to achieve separation. II. In collaboration with a large international manufacturer of skin care products we also embarked on a project involving photo toxicity of titanium dioxide nanoparticles, which are a key ingredient in sunscreen and cosmetic lotions. The results clearly implicated the nanoparticles in catalyzing damage to chromosomal DNA. We then used this knowledge to develop a polymer/anti-oxidant coating which prevented the photocatalytic reaction on DNA while still retaining the UV absorptive properties of the nanoparticles. The standard gel electrophoresis was not sufficient in determining the extent of the DNA damage. The conclusions of this study were based predominantly on analysis obtained with the surface electrophoresis method.

  18. Automatic multiple-sample applicator and electrophoresis apparatus

    NASA Technical Reports Server (NTRS)

    Grunbaum, B. W. (Inventor)

    1977-01-01

    An apparatus for performing electrophoresis and a multiple-sample applicator is described. Electrophoresis is a physical process in which electrically charged molecules and colloidal particles, upon the application of a dc current, migrate along a gel or a membrane that is wetted with an electrolyte. A multiple-sample applicator is provided which coacts with a novel tank cover to permit an operator either to depress a single button, thus causing multiple samples to be deposited on the gel or on the membrane simultaneously, or to depress one or more sample applicators separately by means of a separate button for each applicator.

  19. Preparative electrophoresis for space

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1987-01-01

    A premise of continuous flow electrophoresis is that removal of buoyancy-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chambers are used, distortion of the injected sample stream due to electrohydrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field have not been considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection.

  20. Electrophoresis experiments in microgravity

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.; Rhodes, Percy H.

    1991-01-01

    The use of the microgravity environment to separate and purify biological cells and proteins has been a major activity since the beginning of the NASA Microgravity Science and Applications program. Purified populations of cells are needed for research, transplantation and analysis of specific cell constituents. Protein purification is a necessary step in research areas such as genetic engineering where the new protein has to be separated from the variety of other proteins synthesized from the microorganism. Sufficient data are available from the results of past electrophoresis experiments in space to show that these experiments were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. However, electrophoresis is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.

  1. Preparative electrophoresis for space

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1988-01-01

    A premise of continuous flow electrophoresis is that removal of buoyance-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chamber are used, distortion of the injected sample stream due to electrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field were not considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection.

  2. Preparation of vinyl acetate

    DOEpatents

    Tustin, Gerald Charles (Kingsport, TN); Zoeller, Joseph Robert (Kingsport, TN); Depew, Leslie Sharon (Kingsport, TN)

    1998-01-01

    This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

  3. Preparation of vinyl acetate

    DOEpatents

    Tustin, G.C.; Zoeller, J.R.; Depew, L.S.

    1998-03-24

    This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

  4. [Acetate metabolism: experimental study].

    PubMed

    Girela, E; Hernández-Cueto, C; Calvo, M D; Luna, J D; Villanueva, E

    1993-06-01

    Plasma levels of ethanol and acetate, which is the end product of hepatic ethanol oxidation, have been studied in 60 rats. Animals were divided into two groups: 1) Control rats, and 2) Alcohol-treated rats. Ethanol and acetate were measured without any previous handling (endogenous levels) and after intraperitoneal injection of a single dose of ethanol. Blood specimens were taken at 30, 60, 120, 180 and 240 minutes after ethanol injection. Plasma levels of ethanol and acetate were performed by Head Space Gas Chromatography. Alcohol-treated animals had higher plasma acetate levels than control ones. There were statistically significant differences for acetate between both groups of rats at 0, 30, 120 and 180 minutes. PMID:8378582

  5. A unique enzyme of acetic acid bacteria, PQQ-dependent alcohol dehydrogenase, is also present in Frateuria aurantia.

    PubMed

    Trček, Janja; Matsushita, Kazunobu

    2013-08-01

    A membrane-bound, pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) was purified from Frateuria aurantia LMG 1558(T). Although F. aurantia belongs to a group of γ-Proteobacteria, the characteristics of its PQQ-ADH were similar to the enzyme characteristics of the typical high-acetic acid-resistant bacterium Gluconacetobacter europaeus from the group of α-Proteobacteria. The PQQ-dependent ADH was solubilized from the membranes and purified after anionic, cationic, and affinity chromatography with specific activity of 117 U/mg. The purified enzyme was estimated to be composed of two subunits of ca. 72 and 45 kDa, as judged by SDS-polyacrylamide gel electrophoresis. The purified enzyme had maximum activity at pH 4.5 and showed the highest substrate specificity to ethanol, isoamyl alcohol, 1-butanol, and 1-propanol. The deduced sequences of cloned genes adhA and adhB encoding subunits I and II of PQQ-ADH showed 80 % amino acid (AA) identity to AdhA and 68 % AA identity to AdhB of Ga. europaeus V3 (LMG 18494). Because of the high similarity between genes encoding subunits I and II of PQQ-ADH and its homologous genes found in a distantly related taxonomic group of acetic acid bacteria, the results suggest the possibility of horizontal gene transfer between these two groups of genera. PMID:23760531

  6. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.; Li, Q.; Lu, X.

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  7. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Li, Q.; Lu, X.

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  8. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.; Li, Qingbo; Lu, Xiandan

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  9. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Li, Qingbo; Lu, Xiandan

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  10. Possibility of Microchip Electrophoresis for Biological Application

    NASA Astrophysics Data System (ADS)

    Kataoka, Masatoshi; Kido, Jun-Ichi; Shinohara, Yasuo

    Microchip electrophoresis has recently attracted much attention in the field of nuclear acid analysis due to its high efficiency, ease of operation, low consumption of samples and reagents, and relatively low costs. Nucleic acid fragments are separated by capillary electrophoresis in a chip with microfabricated channels, with automated detection as well as on-line data evaluation. Microfabricated devices are forecast to be fundamental to the postgenome era, especially in the field of genetics and medicine. However, although there are many reports of the use of these instruments to evaluate standard DNA, DNA ladders, PCR products, and commercially available plasmid digests, little information is available their use with biological material. In this report, we showed the accuracy of sizing and quantification of endonuclease-digested plasmid DNA. We also showed the feasibility of on-microchip endonuclease treatment of plasmid DNA and sequential analysis as an additional application for DNA analysis. Furthermore, to evaluate the possibility of microchip electrophoresis for biological application, the results of the examination of blood sugar in human plasma and mitochondrial membrane potential were shown.

  11. Temperature effects on electrophoresis.

    PubMed

    Rogacs, Anita; Santiago, Juan G

    2013-05-21

    We present a model capturing the important contributors to the effects of temperature on the observable electrophoretic mobilities of small ions, and on solution conductivity and pH. Our temperature model includes relations for temperature-dependent viscosity, ionic strength corrections, degree of ionization (pK), and ion solvation effects on mobility. We incorporate thermophysical data for water viscosity, temperature-dependence of the Onsager-Fuoss model for finite ionic strength effects on mobility, temperature-dependence of the extended Debye-Huckel theory for correction of ionic activity, the Clarke-Glew approach and tabulated thermodynamic quantities of ionization reaction for acid dissociation constants as a function of temperature, and species-specific, empirically evaluated correction terms for temperature-dependence of Stokes' radii. We incorporated our model into a MATLAB-based simulation tool we named Simulation of Temperature Effects on ElectroPhoresis (STEEP). We validated our model using conductivity and pH measurements across a temperature variation of 25-70 °C for a set of electrolytes routinely used in electrophoresis. The model accurately captures electrolyte solution pH and conductivity, including important effects not captured by simple Walden-type relations. PMID:23627294

  12. Apparatus for electrophoresis separation

    DOEpatents

    Anderson, Norman L.

    1978-01-01

    An apparatus is disclosed for simultaneously performing electrophoresis separations on a plurality of slab gels containing samples of protein, protein subunits or nucleic acids. A reservoir of buffer solution is divided into three compartments by two parallel partitions having vertical slots spaced along their length. A sheet of flexible, electrically insulative material is attached to each partition and is provided with vertical slits aligned with the slots. Slab-gel holders are received within the slots with the flexible material folded outwardly as flaps from the slits to overlay portions of the holder surfaces and thereby act as electrical and liquid seals. An elongated, spaghetti-like gel containing a sample of specimen that was previously separated by isoelectric focusing techniques is vertically positioned along a marginal edge portion of the slab gel. On application of an electrical potential between the two outer chambers of buffer solution, a second dimensional electrophoresis separation in accordance with molecular weight occurs as the specimen molecules migrate across the slab gel.

  13. The Acetate Switch

    PubMed Central

    Wolfe, Alan J.

    2005-01-01

    To succeed, many cells must alternate between life-styles that permit rapid growth in the presence of abundant nutrients and ones that enhance survival in the absence of those nutrients. One such change in life-style, the “acetate switch,” occurs as cells deplete their environment of acetate-producing carbon sources and begin to rely on their ability to scavenge for acetate. This review explains why, when, and how cells excrete or dissimilate acetate. The central components of the “switch” (phosphotransacetylase [PTA], acetate kinase [ACK], and AMP-forming acetyl coenzyme A synthetase [AMP-ACS]) and the behavior of cells that lack these components are introduced. Acetyl phosphate (acetyl∼P), the high-energy intermediate of acetate dissimilation, is discussed, and conditions that influence its intracellular concentration are described. Evidence is provided that acetyl∼P influences cellular processes from organelle biogenesis to cell cycle regulation and from biofilm development to pathogenesis. The merits of each mechanism proposed to explain the interaction of acetyl∼P with two-component signal transduction pathways are addressed. A short list of enzymes that generate acetyl∼P by PTA-ACKA-independent mechanisms is introduced and discussed briefly. Attention is then directed to the mechanisms used by cells to “flip the switch,” the induction and activation of the acetate-scavenging AMP-ACS. First, evidence is presented that nucleoid proteins orchestrate a progression of distinct nucleoprotein complexes to ensure proper transcription of its gene. Next, the way in which cells regulate AMP-ACS activity through reversible acetylation is described. Finally, the “acetate switch” as it exists in selected eubacteria, archaea, and eukaryotes, including humans, is described. PMID:15755952

  14. Electrophoresis experiment for space

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.

    1976-01-01

    The Apollo 16 electrophoresis experiment was analyzed, demonstrating that the separation of the two different-size monodisperse latexes did indeed take place, but that the separation was obscured by the pronounced electroosmotic flow of the liquid medium. The results of this experiment, however, were dramatic since it is impossible to carry out a similar separation on earth. It can be stated unequivocally from this experiment that any electrophoretic separation will be enhanced under microgravity conditions. The only question is the degree of this enhancement, which can be expected to vary from one experimental technique to another. The low-electroosmotic-mobility coating (Z6040-MC) developed under this program was found to be suitable for a free-fluid electrophoretic separation such as the experiment designed for the ASTP flight. The problem with this coating, however, is that its permanency is limited because of the slow desorption of the methylcellulose from the coated surface.

  15. Static continuous electrophoresis device

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H. (Inventor)

    1982-01-01

    An apparatus is disclosed for carrying out a moving wall type electrophoresis process for separation of cellular particles. The apparatus includes a water-tight housing containing an electrolytic buffer solution. A separation chamber in the housing is defined by spaced opposed moving walls and spaced opposed side walls. Substrate assemblies, which support the moving wall include vacuum ports for positively sealing the moving walls against the substrate walls. Several suction conduits communicate with the suction ports and are arranged in the form of valleys in a grid plate. The raised land portion of the grid plat supports the substrate walls against deformation inwardly under suction. A cooling chamber is carried on the back side of plate. The apparatus also has tensioner means including roller and adjustment screws for maintaining the belts in position and a drive arrangement including an electric motor with a gear affixed to its output shaft. Electrode assemblies are disposed to provide the required electric field.

  16. Diagnostic use of an analysis of urinary proteins by a practicable sodium dodecyl sulfate-electrophoresis method and rapid two-dimensional electrophoresis.

    PubMed

    Lapin, A; Gabl, F; Kopsa, H

    1989-01-01

    Two methods suitable for routine clinical analyses of urinary proteins are presented and compared. The first is a horizontal sodium dodecyl sulfate-polyacrylamide gel electrophoresis technique, suitable for simultaneous analysis of 20 native urinary samples. This method uses polyacrylamide gradient gels, prepared with a laboratory-built gel casting device. The second method is a rapid two-dimensional electrophoresis procedure, combining cellulose acetate electrophoresis and sodium dodecyl sulfate-electrophoresis. The first step uses a routine system (Chemetron), the second separation step followed by staining with Coomassie Brilliant Blue R is performed on the PhastSystem. The resulting two-dimensional patterns reveal urinary proteins distributed according to the 5-zone pattern of native proteins (albumin, alpha-1, alpha-2, beta, gamma-globulin) as well as to the logarithm of their molecular weights. Examples of (routine) diagnoses with a special interest in the monitoring of kidney transplant patients are shown. PMID:2806208

  17. Kidney cell electrophoresis, continuing task

    NASA Technical Reports Server (NTRS)

    Todd, P. W.

    1985-01-01

    Materials and procedures for microgravity electrophoresis of living human embryonic kidney cells were evaluated to provide ground support in the form of analytical cell electrophoresis and flow cytometry. Preflight culture media, electrophoresis buffer, fraction collection media, temperature profiles, and urokinase assay procedures were tested prior to flight. Electrophoretic mobility distributions of aliquots of the cell population to be fractionated in flight were obtained. Cells were prepared in suspension prior to flight in electrophoresis buffer and 10% calf serum. Electrophoretic separation proceeded in electrophoresis buffer without serum in the Continuous Flow Electrophoretic Separator, and fractions were collected into sample bags containing culture medium and concentrated serum. Fractions that yielded enough progeny cells were analyzed for morphology and electrophoretic mobility distributions. It is noted that the lowest mobility fraction studied produced higher mobility progeny while the other fractions produced progeny cells with mobilities related to the fractions from which they were collected.

  18. Electrophoresis demonstration on Apollo 16

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.

    1972-01-01

    Free fluid electrophoresis, a process used to separate particulate species according to surface charge, size, or shape was suggested as a promising technique to utilize the near zero gravity condition of space. Fluid electrophoresis on earth is disturbed by gravity-induced thermal convection and sedimentation. An apparatus was developed to demonstrate the principle and possible problems of electrophoresis on Apollo 14 and the separation boundary between red and blue dye was photographed in space. The basic operating elements of the Apollo 14 unit were used for a second flight demonstration on Apollo 16. Polystyrene latex particles of two different sizes were used to simulate the electrophoresis of large biological particles. The particle bands in space were extremely stable compared to ground operation because convection in the fluid was negligible. Electrophoresis of the polystyrene latex particle groups according to size was accomplished although electro-osmosis in the flight apparatus prevented the clear separation of two particle bands.

  19. Surface Charge Measurement of SonoVue, Definity and Optison: A Comparison of Laser Doppler Electrophoresis and Micro-Electrophoresis.

    PubMed

    Ja'afar, Fairuzeta; Leow, Chee Hau; Garbin, Valeria; Sennoga, Charles A; Tang, Meng-Xing; Seddon, John M

    2015-11-01

    Microbubble (MB) contrast-enhanced ultrasonography is a promising tool for targeted molecular imaging. It is important to determine the MB surface charge accurately as it affects the MB interactions with cell membranes. In this article, we report the surface charge measurement of SonoVue, Definity and Optison. We compare the performance of the widely used laser Doppler electrophoresis with an in-house micro-electrophoresis system. By optically tracking MB electrophoretic velocity in a microchannel, we determined the zeta potentials of MB samples. Using micro-electrophoresis, we obtained zeta potential values for SonoVue, Definity and Optison of -28.3, -4.2 and -9.5 mV, with relative standard deviations of 5%, 48% and 8%, respectively. In comparison, laser Doppler electrophoresis gave -8.7, +0.7 and +15.8 mV with relative standard deviations of 330%, 29,000% and 130%, respectively. We found that the reliability of laser Doppler electrophoresis is compromised by MB buoyancy. Micro-electrophoresis determined zeta potential values with a 10-fold improvement in relative standard deviation. PMID:26318559

  20. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that solute is drawn into the cell from reservoirs at both ends of the cell leading to a large mass build up. As a consequence, any initially induced mass flux will vanish after short times. This effect was not captured by the infinite channel model and hence numerical and experimental results deviated significantly. The revised model including finite cell lengths and reservoir volumes allowed quantitative predictions of the time history of the concentration profile throughout the system. This latter model accurately describes the fluxes observed for both oscillatory flow modes in experiments using single protein species. Based on the results obtained from research funded under NASA grant NAG-8-1080.S, we conclude that binary separations are not possible using purely oscillatory flow modes because of end effects associated with the cos((omega)t) mode. Our research shows, however, that a combination of cos(2(omega)t) and steady flow should lead to efficient separation free of end effects. This possibility is currently under investigation.

  1. Polyacrylamide gel electrophoresis.

    PubMed

    Chrambach, A; Rodbard, D

    1971-04-30

    Polyacrylamide gel electrophoresis (PAGE) provides a versatile, gentle, high resolution method for fractionation and physical-chemical characterization of molecules on the basis of size, conformation, and net charge. The polymerization reaction can be rigorously controlled to provide uniform gels of reproducible, measurable pore size over a wide range. This makes it possible to obtain reproducible relative mobility (Rf) values as physical-chemical constants. Application and extension of Ogston's (random fiber) model for a gel allows for calculation of molecular volume, surface area, or radius, free mobility, and valence from RJ measurements at several gel concentrations, to calculate gel concentration for optimal resolution, and to predict behavior of macromolecules on gel gradients by computerized methods. Extension of classical moving boundary theory has been used to generate multiphasic buffer systems (providing selective stacking, unstacking, restacking, and preparative steady-state-stacking) with known operating characteristics for any pH at 0 degrees and 25 degrees C. A general strategy for isolation of macromolecules and for macromolecular mapping has been developed. Preparative scale PAGE is operational for milligram loads and feasible for gram quantities. PMID:4927678

  2. Electrophoresis of Ferroelectric Nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Xiya; Davidovic, Dragomir

    2006-03-01

    We have studied the electrophoresis of ferroelectric nanoparticles(Ba1-xSrxTiO3). We used de-ionized (DI) water as solvent and an optical microscope to observe the motion of suspended ferroelectric nanoparticles driven by AC electric fields. The immediate start and stop of motion were noticed when the driving electric field was turned on and off, which was similar to dielectricphoresis. Higher voltage generated higher speed as expected. In some instances, the dielectric constant ɛ of ferroelectric materials can increase greatly, which makes it possible that a low driving voltage (no larger than 10V) could induce a relatively high speed. At room temperature, we studied the frequency dependence of the motion speed. By comparing a serial of captured motion movies, we found that higher speeds were corresponding to lower frequencies of driving AC electric field. Further, we use well defined electrodes made by electron-beam lithography and high-vacuum deposition, which may regulate the electric field distribution. Consequently, we can characterize the electric force applied on those nanoparticles.

  3. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  4. DNA typing by capillary electrophoresis

    SciTech Connect

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  5. Biomedical applications of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Kartsova, L. A.; Bessonova, E. A.

    2015-08-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references.

  6. Electrophoresis for Under Five Dollars.

    ERIC Educational Resources Information Center

    Lumetta, Vincent J.; Doktycz, Mitchel J.

    1994-01-01

    Equipped with a little more than batteries, food-dye, and sieving media, teachers can demonstrate an essential process used in biochemical research. An activity is provided to aid in helping students to understand electrophoresis. (ZWH)

  7. Antibody enhancement of free-flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Cohly, H. H. P.; Morrison, Dennis R.; Atassi, M. Zouhair

    1988-01-01

    Specific T cell clones and antibodies (ABs) were developed to study the efficiency of purifying closely associated T cells using Continuous Flow Electrophoresis System. Enhanced separation is accomplished by tagging cells first with ABs directed against the antigenic determinants on the cell surface and then with ABs against the Fc portion of the first AB. This second AB protrudes sufficiently beyond the cell membrane and glycocalyx to become the major overall cell surface potential determinant and thus causes a reduction of electrophoretic mobility. This project was divided into three phases. Phase one included development of specific T cell clones and separation of these specific clones. Phase two extends these principles to the separation of T cells from spleen cells and immunized lymph node cells. Phase three applies this double antibody technique to the separation of T cytotoxic cells from bone marrow.

  8. DNA sequencing with direct blotting electrophoresis.

    PubMed Central

    Beck, S; Pohl, F M

    1984-01-01

    A method for transferring the DNA molecules of sequencing reaction mixtures onto an immobilizing matrix during electrophoresis has been developed. A blotting membrane moves with constant speed across the end of a very short, denaturing gel and collects the molecules according to size. A constant distance between bands for molecules differing in length by one nucleotide is obtained over a large range (approximately 600 nucleotides with a 5% gel), simplifying the determination of DNA sequences considerably. Reliable sequences of 500 nucleotides can be read and sequence features up to greater than 1000 nucleotides are revealed in a single experiment. The sequencing of a potential Z-DNA-forming fragment from Escherichia coli DNA is given as an example and possible further developments are discussed. Images Fig. 2. Fig. 3. Fig. 5. PMID:6396083

  9. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided. PMID:25575804

  10. PNEUMATIC MICROVALVE FOR ELECTROKINETIC SAMPLE PRECONCENTRATION AND CAPILLARY ELECTROPHORESIS INJECTION

    SciTech Connect

    Cong, Yongzheng; Rausch, Sarah J.; Geng, Tao; Jambovane, Sachin R.; Kelly, Ryan T.

    2014-10-27

    Here we show that a closed pneumatic microvalve on a PDMS chip can serve as a semipermeable membrane under an applied potential, enabling current to pass through while blocking the passage of charged analytes. Enrichment of both anionic and cationic species has been demonstrated, and concentration factors of ~70 have been achieved in just 8 s. Once analytes are concentrated, the valve is briefly opened and the sample is hydrodynamically injected onto an integrated microchip or capillary electrophoresis (CE) column. In contrast to existing preconcentration approaches, the membrane-based method described here enables both rapid analyte concentration as well as high resolution separations.

  11. Electrophoresis as a management tool

    USGS Publications Warehouse

    Morgan, R.P., II; Chapman, J.A.; Noe, L.A.; Henny, C.J.

    1974-01-01

    The theme of this 1974 Northeast Fish and Wildlife Conference is 'A New Era'. Indeed, it is a new era for improved techniques to assist in management of our fish and wildlife resources for the maximum benefit of all. In some cases, the new techniques are primarily used in research.on fish and wildlife, and the results from the research are used to aid management and enforcement agencies in the decision-making process. One of the newer techniques that is being applied to problems in fisheries and wildlife is electrophoresis. In this paper, we review briefly the techniques of electrophoresis and illustrate research problems in wildlife and fisheries where the use of electrophoresis is now assisting or may potentially aid in management decisions.

  12. Contactless conductivity detector for microchip capillary electrophoresis

    NASA Technical Reports Server (NTRS)

    Pumera, Martin; Wang, Joseph; Opekar, Frantisek; Jelinek, Ivan; Feldman, Jason; Lowe, Holger; Hardt, Steffen; Svehla, D. (Principal Investigator)

    2002-01-01

    A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation channel. The contactless route obviates problems (e.g., fouling, unwanted reactions) associated with the electrode-solution contact, offers isolation of the detection system from high separation fields, does not compromise the separation efficiency, and greatly simplifies the detector fabrication. Relevant experimental variables, such as the frequency and amplitude of the applied ac voltage or the separation voltage, were examined and optimized. The detector performance was illustrated by the separation of potassium, sodium, barium, and lithium cations and the chloride, sulfate, fluoride, acetate, and phosphate anions. The response was linear (over the 20 microM-7 mM range) and reproducible (RSD = 3.4-4.9%; n = 10), with detection limits of 2.8 and 6.4 microM (for potassium and chloride, respectively). The advantages associated with the contactless conductivity detection, along with the low cost of the integrated PMMA chip/detection system, should enhance the power and scope of microfluidic analytical devices.

  13. Gas separation membranes

    DOEpatents

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  14. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen

    PubMed Central

    Kimura, Zen-ichiro; Okabe, Satoshi

    2013-01-01

    Anodic microbial communities in acetate-fed microbial fuel cells (MFCs) were analyzed using stable-isotope probing of 16S rRNA genes followed by denaturing gradient gel electrophoresis. The results revealed that Geobacter sulfurreducens and Hydrogenophaga sp. predominated in the anodic biofilm. Although the predominance of Geobacter sp. as acetoclastic exoelectrogens in acetate-fed MFC systems has been often reported, the ecophysiological role of Hydrogenophaga sp. is unknown. Therefore, we isolated and characterized a bacterium closely related to Hydrogenophaga sp. (designated strain AR20). The newly isolated strain AR20 could use molecular hydrogen (H2), but not acetate, with carbon electrode as the electron acceptor, indicating that the strain AR20 was a hydrogenotrophic exoelectrogen. This evidence raises a hypothesis that acetate was oxidized by G. sulfurreducens in syntrophic cooperation with the strain AR20 as a hydrogen-consuming partner in the acetate-fed MFC. To prove this hypothesis, G. sulfurreducens strain PCA was cocultivated with the strain AR20 in the acetate-fed MFC without any dissolved electron acceptors. In the coculture MFC of G. sulfurreducens and strain AR20, current generation and acetate degradation were the highest, and the growth of strain AR20 was observed. No current generation, acetate degradation and cell growth occurred in the strain AR20 pure culture MFC. These results show for the first time that G. sulfurreducens can oxidize acetate in syntrophic cooperation with the isolated Hydrogenophaga sp. strain AR20, with electrode as the electron acceptor. PMID:23486252

  15. DNA electrophoresis in microfabricated devices

    NASA Astrophysics Data System (ADS)

    Dorfman, Kevin D.

    2010-10-01

    Picking up at the conclusion of Viovy’s review of the physics of gel electrophoresis [J.-L. Viovy, Rev. Mod. Phys. 72, 813 (2000)10.1103/RevModPhys.72.813], this review synthesizes the experimental data, theoretical models, and simulation results for DNA electrophoresis in microfabricated and nanofabricated devices appearing since the seminal paper by Volkmuth and Austin [Nature (London) 358, 600 (1992)10.1038/358600a0]. Prototype versions of these devices separate DNA by molecular weight at a rate far superior to gel electrophoresis. After providing an overview of the requisite background material in polymer physics, electrophoresis, and microfluidic device fabrication, the focus is on the following three generic problems: (i) collision with an isolated post, (ii) transport in an array of posts, and (iii) entropic trapping and filtration in the slit-well motif. The transport phenomena are examined here in the context of the length and time scales characterizing the DNA, the device, and the applied electric field.

  16. Formation of acetic anhydride by carbonylation of methyl acetate

    SciTech Connect

    Mamyan, V.A.; Barsegyan, V.L.; Pirozhkov, S.D.; Sominskii, S.D.

    1986-04-01

    This paper studies the carbonylation reaction of methyl acetate (MA) with the formation of acetic anhydride, and also elucidates the mechanism of this reaction in the presence of a catalytic system including RhCl/sub 3/, Zn acetate, and MeI. The results obtained show that the metal halides studied can be arranged in order of activity and selectivity: RhCl/sub 3/ greater than RuCl/sub 3/ greater than PdCl/sub 2/. Small quantities of acetaldehyde, butyradehyde, acetic acid, and acetone are found in the reaction products.

  17. Vinegar as a burn-down herbicide: Acetic acid concentrations, application volumes, and adjuvants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acetic acid acts as a contact herbicide, injuring and killing plants by first destroying the cell membranes, which causes the rapid desiccation of the plant tissues. Vinegars with acetic acid concentrations of 11% or greater can burn the skin and cause serious to severe eye injury, including blindn...

  18. Techniques For Focusing In Zone Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Twitty, Garland E.; Sammons, David W.

    1994-01-01

    In two techniques for focusing in zone electrophoresis, force of applied electrical field in each charged particle balanced by restoring force of electro-osmosis. Two techniques: velocity-gradient focusing (VGF), suitable for rectangular electrophoresis chambers; and field-gradient focusing (FGF), suitable for step-shaped electrophoresis chambers.

  19. Fast separation and analysis of reduced monoclonal antibodies with capillary zone electrophoresis coupled to mass spectrometry.

    PubMed

    Zhao, Yimeng; Sun, Liangliang; Knierman, Michael D; Dovichi, Norman J

    2016-02-01

    Capillary zone electrophoresis-electrospray ionization-mass spectrometry (CZE-ESI-MS) was used for analysis of reduced antibodies. We first developed a simple protocol to condition commercial linear-polyacrylamide coated capillaries for use in top-down proteomics. We then suspended reduced antibodies in a solution of 35% acetic acid, 50% acetonitrile in water. Heavy and light chains were baseline resolved within 10 min and with 3-30 µg/mL detection limits using a 0.1% aqueous formic acid background electrolyte. Quintuplicate runs of a two-antibody mixture produced relative standard deviations of ∼1% in migration time and 10% in peak amplitudes. Resolution was further improved for the two-antibody mixture by using 5% acetic acid as the background electrolyte, highlighting the potential of capillary electrophoresis-mass spectrometry for analysis of antibody mixtures. PMID:26653481

  20. [Nomegestrol acetate: clinical pharmacology].

    PubMed

    Lello, S

    2009-10-01

    Progestogens are used in clinical practice in some conditions. Their effects depend on their chemical structure, pharmacokinetics, pharmacodynamics, with important differences among various progestogens. Generally, progestins are classified according to their parent molecule, of which often they keep some features. Derivatives of 19-nor-progesterone are characterized by high selectivity of action on progestin receptor. In particular, nomegestrol acetate (NomAc) shows an important progestational potency, neutral gluco-lipid profile, and antigonadotropic activity. It is used for treating menstrual cycle disorders and for hormone replacement therapy in menopause in association with an estrogen. In future, thanks to its antigonadotropic activity, NomAc will be used in estroprogestin combinations in fertile women, thus taking advantage of its tolerability profile and obtaining numerous non-contraceptive benefits as well. PMID:19749678

  1. Membranes and Films from Polymers.

    ERIC Educational Resources Information Center

    Blumberg, Avrom A.

    1986-01-01

    Provides background information on polymeric films and membranes including production methods, special industrial and medical applications, laboratory preparation, and an experimental investigation of a porous cellulose acetate membrane. Presents a demonstration to distinguish between high- and low-density polyethylene. (JM)

  2. Membrane humidity control investigation

    NASA Technical Reports Server (NTRS)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    The basic performance data on a hollow fiber membrane unit that removes water from a breathing gas loop by diffusion is presented. Using available permeability data for cellulose acetate, a preliminary design was made of a dehumidifier unit that would meet the problem statement.

  3. Electrophoresis technology experiment MA-011

    NASA Technical Reports Server (NTRS)

    Allen, R. E.; Barlow, G. H.; Bier, M.; Bigazzi, P. E.; Knox, R. J.; Micale, F. J.; Seaman, G. V. F.; Vanderhoff, J. W.; Vanoss, C. J.; Patterson, W. J.

    1976-01-01

    Experiment MA-011, electrophoresis technology, was designed to test electrophoresis hardware that would continue the development of technology for electrophoretic separation of materials in the near zero g environment of space. The experimental hardware generally functioned as planned. Frozen live cells were successfully transported into space, electrophoretic processing was performed, and viable cells were returned to earth. A separation of the three types of fixed red blood cells (rabbit, human, and horse) was demonstrated. The human lymphocytes, however, showed no apparent migration. The separation of human kidney cells produced the most exciting data. Analysis shows electrophoretic separation throughout the entire column with at least four bands of viable cells. The isotachophoresis experiment definitely demonstrated the isotachophoretic separation of biological cells in a near zero g environment.

  4. Capillary electrophoresis systems and methods

    DOEpatents

    Dorairaj, Rathissh; Keynton, Robert S.; Roussel, Thomas J.; Crain, Mark M.; Jackson, Douglas J.; Walsh, Kevin M.; Naber, John F.; Baldwin, Richard P.; Franco, Danielle B.

    2011-08-02

    An embodiment of the invention is directed to a capillary electrophoresis apparatus comprising a plurality of separation micro-channels. A sample loading channel communicates with each of the plurality of separation channels. A driver circuit comprising a plurality of electrodes is configured to induce an electric field across each of the plurality of separation channels sufficient to cause analytes in the samples to migrate along each of the channels. The system further comprises a plurality of detectors configured to detect the analytes.

  5. Enhancing Centrifugal Separation With Electrophoresis

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1986-01-01

    Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.

  6. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4) Moderate ammonia flux. The advantages of producing acetic acid by fermentation include its appropriateness for small-scale production, lower cost feedstocks, low energy membrane-based purification, and lower temperature and pressure requirements. Potential energy savings of using fermentation are estimated to be approximately 14 trillion Btu by 2020 from a reduction in natural gas use. Decreased transportation needs with regional plants will eliminate approximately 200 million gallons of diesel consumption, for combined savings of 45 trillion Btu. If the fermentation process captures new acetic acid production, savings could include an additional 5 trillion Btu from production and 7 trillion Btu from transportation energy.

  7. Regulation of membrane associated protein kinase C activity by guanine nucleotide in rabbit peritoneal neutrophils

    SciTech Connect

    Huang, C.K.; Devanney, J.F.

    1986-03-05

    Addition of phorbol myristate acetate (PMA) (0.1 ..mu..g/ml) or guanosine-5'-0-(3-thiotriphosphate) (GTP..gamma..S) (10..mu..M) to the membrane fraction from rabbit peritoneal neutrophils results in an increase of phosphorylation of several membrane proteins. To test whether membrane associated protein kinase C is involved in the activation, histone is added to the membrane as a substrate for protein kinase C. Phosphorylation of histone is determined by counting the gel pieces containing histone IIIS after separation from other membrane components by SDS-gel electrophoresis. In the presence of CaC12 (20 ..mu..M), GTP..gamma..S (10 ..mu..M) or PMA (0.1 ..mu..g/ml) stimulates the phosphorylation of histone IIIS (40% to 70% increase). To achieve this effect calcium is required for GTP..gamma..S but not for PMA. The effect of GTP..gamma..S but not PMA is inhibited in membranes obtained from cells pretreated with pertussis toxin. Membrane protein kinase C is solubilized with Triton X-100 (1%) and then applied to a DEAE-52 cellulose column chromatography. Two peaks of protein kinase C activity are observed. Peak one is eluted at 40 mM NaCl, peak two is eluted at 140 mM NaCl. The activity of peak one is stimulated with phosphatidylserine (PS) and PMA but not with PS and calcium. The activity of peak two is stimulated with either PS and PMA or PS and calcium. The results suggest that GTP binding protein is involved in the activation of membrane associated protein kinase C and the kinase may exist in two forms, calcium sensitive and calcium insensitive.

  8. Mathematical models of continuous flow electrophoresis: Electrophoresis technology

    NASA Technical Reports Server (NTRS)

    Saville, Dudley A.

    1986-01-01

    Two aspects of continuous flow electrophoresis were studied: (1) the structure of the flow field in continuous flow devices; and (2) the electrokinetic properties of suspended particles relevant to electrophoretic separations. Mathematical models were developed to describe flow structure and stability, with particular emphasis on effects due to buoyancy. To describe the fractionation of an arbitrary particulate sample by continuous flow electrophoresis, a general mathematical model was constructed. In this model, chamber dimensions, field strength, buffer composition, and other design variables can be altered at will to study their effects on resolution and throughput. All these mathematical models were implemented on a digital computer and the codes are available for general use. Experimental and theoretical work with particulate samples probed how particle mobility is related to buffer composition. It was found that ions on the surface of small particles are mobile, contrary to the widely accepted view. This influences particle mobility and suspension conductivity. A novel technique was used to measure the mobility of particles in concentrated suspensions.

  9. Microbeam-coupled capillary electrophoresis.

    PubMed

    Garty, G; Ehsan, M U; Buonanno, M; Yang, Z; Sweedler, J V; Brenner, D J

    2015-09-01

    Within the first few microseconds following a charged particle traversal of a cell, numerous oxygen and nitrogen radicals are formed along the track. Presented here is a method, using capillary electrophoresis, for simultaneous measurement, within an individual cell, of specific reactive oxygen species, such as the superoxide radical ([Formula: see text]) as well as the native and oxidised forms of glutathione, an ubiquitous anti-oxidant that assists the cell in coping with these species. Preliminary data are presented as well as plans for integrating this system into the charged particle microbeam at Columbia University. PMID:25870435

  10. Integrated multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Tan, Hongdong

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  11. Capillary electrophoresis in metallodrug development.

    PubMed

    Holtkamp, Hannah; Hartinger, Christian G

    2015-09-01

    Capillary electrophoresis (CE) is a separation method based on differential migration of analytes in electric fields. The compatibility with purely aqueous separation media makes it a versatile tool in metallodrug research. Many metallodrugs undergo ligand exchange reactions that can easily be followed with this method and the information gained can even be improved by coupling the CE to advanced detectors, such as mass spectrometers. This gives the method high potential to facilitate the development of metallodrugs, especially when combined with innovative method development and experimental design. PMID:26547417

  12. Antibiofilm Properties of Acetic Acid

    PubMed Central

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup; Nielsen, Anne K.; Johansen, Helle Krogh; Homøe, Preben; Høiby, Niels; Givskov, Michael; Kirketerp-Møller, Klaus

    2015-01-01

    Bacterial biofilms are known to be extremely tolerant toward antibiotics and other antimicrobial agents. These biofilms cause the persistence of chronic infections. Since antibiotics rarely resolve these infections, the only effective treatment of chronic infections is surgical removal of the infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram-negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms. PMID:26155378

  13. Conducting Polymer Electrodes for Gel Electrophoresis

    PubMed Central

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D.

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation. PMID:24586761

  14. Tris-acetate polyacrylamide gradient gels for the simultaneous electrophoretic analysis of proteins of very high and low molecular mass.

    PubMed

    Cubillos-Rojas, Monica; Amair-Pinedo, Fabiola; Tato, Irantzu; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2012-01-01

    Polyacrylamide gel electrophoresis (PAGE) is one of the most powerful tools used for protein analysis. We describe the use of Tris-acetate buffer and 3-15% polyacrylamide gradient gels to simultaneously separate proteins in the mass range of 10-500 kDa. We show that this system is highly sensitive, it has good resolution and high reproducibility, and that it can be used for general applications of PAGE such as Coomassie Brilliant Blue staining and immunoblotting. Moreover, we describe how to generate mini Tris-acetate polyacrylamide gels to use them in miniprotein electrophoresis systems. These economical gels are easy to generate and to manipulate and allow a rapid analysis of proteins. All these features make the Tris-acetate-PAGE system a very helpful tool for protein analysis. PMID:22585488

  15. Capillary electrophoresis for drug analysis

    NASA Astrophysics Data System (ADS)

    Lurie, Ira S.

    1999-02-01

    Capillary electrophoresis (CE) is a high resolution separation technique which is amenable to a wide variety of solutes, including compounds which are thermally degradable, non-volatile and highly polar, and is therefore well suited for drug analysis. Techniques which have been used in our laboratory include electrokinetic chromatography (ECC), free zone electrophoresis (CZE) and capillary electrochromatography (CEC). ECC, which uses a charged run buffer additive which migrates counter to osmotic flow, is excellent for many applications, including, drug screening and analyses of heroin, cocaine and methamphetamine samples. ECC approaches include the use of micelles and charged cyclodextrins, which allow for the separation of complex mixtures. Simultaneous separation of acidic, neutral and basic solutes and the resolution of optical isomers and positional isomers are possible. CZE has been used for the analysis of small ions (cations and anions) in heroin exhibits. For the ECC and CZE experiments performed in our laboratory, uncoated capillaries were used. In contrast, CEC uses capillaries packed with high performance liquid chromatography stationary phases, and offers both high peak capacities and unique selectivities. Applications include the analysis of cannabinoids and drug screening. Although CE suffers from limited concentration sensitivity, it is still applicable to trace analysis of drug samples, especially when using injection techniques such as stacking, or detection schemes such as laser induced fluorescence and extended pathlength UV.

  16. DNA electrophoresis in microlithographic arrays

    NASA Astrophysics Data System (ADS)

    Volkmuth, W. D.; Austin, R. H.

    1992-08-01

    WE have used optical microlithography to fabricate capped quasi-two-dimensional obstacle courses in SiO2. We report here observations using epifluorescence microscopy of the electrophoresis and length fractionation of large DNA molecules confined in arrays. Simple reptation theory, based on the work of deGennes1, predicts that at low electric fields the electrophoretic mobility of a polymer of length L much greater than the persistence length p scales inversely with L (ref. 2). But elongation of the coil in the matrix at sufficiently strong electric fields3 results in a length-independent electrophoretic mobility4,5. The application of suitably timed pulsed electric fields restores the fractionating power of gels for long molecules6 but the protocols of pulsed-field electrophoresis are semi-empirical because the complex and ill-understood gel matrix plays a critical role in fractionation. Microlithographically constructed obstacle arrays, with their low dimensionality, small volume and extremely reproducible topography, will make it possible to understand the motion and fractionation of large polymer molecules in complex but well characterized topologies.

  17. Acetate transport across the intestinal epithelium of an herbivorous teleost. [Oreochromis mossambicus

    SciTech Connect

    Titus, E.; Ahearn, G.A. )

    1990-02-26

    {sup 3}H-acetate transport across the upper intestine of the tilapia, Oreochromis mossabicus, using brush border and basolateral membrane vesicles, and intestinal sheets mounted in modified Ussing chambers was investigated. Brush border and basolateral vesicles demonstrated qualitatively similar anion antiport activity where, in the presence of a full profile of organic and inorganic anions, volatile fatty acids (VFA; acetate, propionate, butyrate) and bicarbonate showed reciprocal trans-stimulation and cis-inhibition of {sup 3}H-acetate influx, suggesting both membranes had the same VFA/bicarbonate exchange mechanism. Kinetic analysis of {sup 3}H-acetate influx into brush border and basolateral vesicles revealed different half-saturation constants (Km) as a function of external acetate concentrations (6.43 mM and 11.91 mM, respectively) and as a function of internal bicarbonate (5.89 mM and 0.41 mM, respectively). Intestinal sheets supported net absorptive fluxes when serosal acetate concentrations were held steady at 1.0 mM and mucosal acetate was varied from 1.60 to 10.0 mM. Unidirectional fluxes were significantly diminished by the addition of acetazolamide. This study postulates a transcellular transport pathway for VFA whereby qualitatively similar antiporters in series lead to a downhill flow of luminal acetate to the blood, which is driven by intracellular carbonic anhydrase and a transmural VFA concentration gradient.

  18. 21 CFR 73.2396 - Lead acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Lead acetate. 73.2396 Section 73.2396 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2396 Lead acetate. (a) Identity. The color additive lead acetate is the trihydrate of lead (2+) salt of acetic acid. The color additive has the chemical formula...

  19. 21 CFR 73.2396 - Lead acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Lead acetate. 73.2396 Section 73.2396 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2396 Lead acetate. (a) Identity. The color additive lead acetate is the trihydrate of lead (2+) salt of acetic acid. The color additive has the chemical formula...

  20. 21 CFR 73.2396 - Lead acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Lead acetate. 73.2396 Section 73.2396 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2396 Lead acetate. (a) Identity. The color additive lead acetate is the trihydrate of lead (2+) salt of acetic acid. The color additive has the chemical formula...

  1. 21 CFR 73.2396 - Lead acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Lead acetate. 73.2396 Section 73.2396 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2396 Lead acetate. (a) Identity. The color additive lead acetate is the trihydrate of lead (2+) salt of acetic acid. The color additive has the chemical formula...

  2. 21 CFR 73.2396 - Lead acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Lead acetate. 73.2396 Section 73.2396 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2396 Lead acetate. (a) Identity. The color additive lead acetate is the trihydrate of lead (2+) salt of acetic acid. The color additive has the chemical formula...

  3. Compensating for Electro-Osmosis in Electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1987-01-01

    Simple mechanical adjustment eliminates transverse velocity component. New apparatus for moving-wall electrophoresis increases degree of collimation of chemical species in sample stream. Electrophoresis chamber set at slight angle in horizontal plane to adjust angle between solution flow and wall motion. Component of velocity created cancels electro-osmotic effect.

  4. Fluorescence detection for gel and capillary electrophoresis

    SciTech Connect

    Hogan, B.

    1992-07-21

    First, an indirect fluorescence detection system for the separation of proteins via gel electrophoresis. Quantities as low as 50 nanograms of bovine serum albumin and soybean trypsin inhibitor are separated and detected visually without the need for staining of the analytes. This is very similar to levels of protein commonly separated with gel electrophoresis.

  5. Getting the Most out of Electrophoresis Units

    ERIC Educational Resources Information Center

    Mulvihill, Charlotte

    2007-01-01

    At Oklahoma City Community College, they have developed gel electrophoresis activities that support active learning of many scientific concepts, including: pH, electrolysis, oxidation reduction, electrical currents, potentials, conductivity, molarity, gel electrophoresis, DNA and protein separation, and DNA fingerprinting. This article presents

  6. A method for demonstrating prophenoloxidase after electrophoresis.

    PubMed

    Nellaiappan, K; Vinayakam, A

    1993-07-01

    The demonstration of prophenoloxidase after electrophoresis is based on its activation by sodium dodecyl sulfate (SDS) or sodium oleate and staining the activated phenoloxidase with dopamine and 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH). A rapid method is presented for demonstrating the presence of activated phenoloxidase using polyacrylamide gel electrophoresis followed by staining in the presence of SDS or sodium oleate. PMID:7692984

  7. Getting the Most out of Electrophoresis Units

    ERIC Educational Resources Information Center

    Mulvihill, Charlotte

    2007-01-01

    At Oklahoma City Community College, they have developed gel electrophoresis activities that support active learning of many scientific concepts, including: pH, electrolysis, oxidation reduction, electrical currents, potentials, conductivity, molarity, gel electrophoresis, DNA and protein separation, and DNA fingerprinting. This article presents…

  8. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, B.D.; Fought, E.R.

    1987-11-10

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface. 8 figs.

  9. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  10. Non-Aqueous Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Szumski, Michał; Buszewski, Bogusław

    Non-aqueous capillary electrophoresis and capillary electrochromatography are special variants of these techniques. Here, organic solvents or their mixtures with or without dissolved electrolytes are used as separation buffer or mobile phase, respectively. The most important features of non-aqueous systems are: better solubility of more hydrophobic ionic substances (many natural products) than in water, much less current and Joule heating allows for using highly concentrated buffers and/or larger capillary internal diameters, polar interactions are enhanced in organic solvents which is often highly advantageous in chiral separation systems. This chapter presents most frequently used solvents, their properties, as well as shows pH* scale which is often used in non-aqueous systems.

  11. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... Specific Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid....

  12. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... synthetically by the neutralization of acetic acid with sodium carbonate or by treating calcium acetate with... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3...

  13. Two Electrophoresis Experiments for Freshmen in the Health Professions.

    ERIC Educational Resources Information Center

    Brabson, G. Dana; Waugh, David S.

    1986-01-01

    Describes procedures involved with paper electrophoresis separation of amino acids, gel electrophoresis separation of DNA, and design of an electrophoresis tank. Describes experiments using paper (amino acids) and gel (deoxyribonucleic acid fragments). Provides material lists, procedures, and discussion. (JM)

  14. Acetate and Formate Stress: Opposite Responses in the Proteome of Escherichia coli

    PubMed Central

    Kirkpatrick, Christopher; Maurer, Lisa M.; Oyelakin, Nikki E.; Yoncheva, Yuliya N.; Maurer, Russell; Slonczewski, Joan L.

    2001-01-01

    Acetate and formate are major fermentation products of Escherichia coli. Below pH 7, the balance shifts to lactate; an oversupply of acetate or formate retards growth. E. coli W3110 was grown with aeration in potassium-modified Luria broth buffered at pH 6.7 in the presence or absence of added acetate or formate, and the protein profiles were compared by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Acetate increased the steady-state expression levels of 37 proteins, including periplasmic transporters for amino acids and peptides (ArtI, FliY, OppA, and ProX), metabolic enzymes (YfiD and GatY), the RpoS growth phase regulon, and the autoinducer synthesis protein LuxS. Acetate repressed 17 proteins, among them phosphotransferase (Pta). An ackA-pta deletion, which nearly eliminates interconversion between acetate and acetyl-coenzyme A (acetyl-CoA), led to elevated basal levels of 16 of the acetate-inducible proteins, including the RpoS regulon. Consistent with RpoS activation, the ackA-pta strain also showed constitutive extreme-acid resistance. Formate, however, repressed 10 of the acetate-inducible proteins, including the RpoS regulon. Ten of the proteins with elevated basal levels in the ackA-pta strain were repressed by growth of the mutant with formate; thus, the formate response took precedence over the loss of the ackA-pta pathway. The similar effects of exogenous acetate and the ackA-pta deletion, and the opposite effect of formate, could have several causes; one possibility is that the excess buildup of acetyl-CoA upregulates stress proteins but excess formate depletes acetyl-CoA and downregulates these proteins. PMID:11591692

  15. Biodegradable cellulose acetate nanofiber fabrication via electrospinning.

    PubMed

    Christoforou, Theopisti; Doumanidis, Charalabos

    2010-09-01

    Nanofiber manufacturing is one of the key advancements in nanotechnology today. Over the past few years, there has been a tremendous growth of research activities to explore electrospinning for nanofiber formation from a rich variety of materials. This quite simple and cost effective process operates on the principle that the solution is extracted under the action of a high electric field. Once the voltage is sufficiently high, a charged jet is ejected following a complicated looping trajectory. During its travel, the solvent evaporates leaving behind randomly oriented nanofibers accumulated on the collector. The combination of their nanoscale dimensionality, high surface area, porosity, flexibility and superior strength makes the electrospun fibers suitable for several value-added applications, such as filters, protecting clothes, high performance structures and biomedical devices. In this study biodegradable cellulose acetate (CA) nanofibrous membranes were produced using electrospinning. The device utilized consisted of a syringe equipped with a metal needle, a microdialysis pump, a high voltage supply and a collector. The morphology of the yielded fibers was determined using SEM. The effect of various parameters, including electric field strength, tip-to-collector distance, solution feed rate and composition on the morphological features of the electrospun fibers was examined. The optimum operating conditions for the production of uniform, non-beaded fibers with submicron diameter were also explored. The biodegradable CA nanofiber membranes are suitable as tissue engineering scaffolds and as reinforcements of biopolymer matrix composites in foils by ultrasonic welding methods. PMID:21133179

  16. DNA Sequencing Using capillary Electrophoresis

    SciTech Connect

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other application papers of sequencing up to this level were also published in the mid 1990's. A major interest of the sequencing community has always been read length. The longer the sequence read per run the more efficient the process as well as the ability to read repeat sequences. We therefore devoted a great deal of time to studying the factors influencing read length in capillary electrophoresis, including polymer type and molecule weight, capillary column temperature, applied electric field, etc. In our initial optimization, we were able to demonstrate, for the first time, the sequencing of over 1000 bases with 90% accuracy. The run required 80 minutes for separation. Sequencing of 1000 bases per column was next demonstrated on a multiple capillary instrument. Our studies revealed that linear polyacrylamide produced the longest read lengths because the hydrophilic single strand DNA had minimal interaction with the very hydrophilic linear polyacrylamide. Any interaction of the DNA with the polymer would lead to broader peaks and lower read length. Another important parameter was the molecular weight of the linear chains. High molecular weight (> 1 MDA) was important to allow the long single strand DNA to reptate through the entangled polymer matrix. In an important paper, we showed an inverse emulsion method to prepare reproducibility linear polyacrylamide polymer with an average MWT of 9MDa. This approach was used in the polymer for sequencing the human genome. Another critical factor in the successful use of capillary electrophoresis for sequencing was the sample preparation method. In the Sanger sequencing reaction, high concentration of salts and dideoxynucleotide remained. Since the sample was introduced to the capillary column by electrokinetic injection, these salt ions would be favorably injected into the column over the sequencing fragments, thus reducing the signal for longer fragments and hence reading read length. In two papers, we examined the role of individual components from the sequencing reaction and then developed a protocol to reduce the deleterious salts. We demonstrated a robust method for achieving long read length DNA sequencing. Continuing our advances, we next demonstrated the achievement of over 1000 bases in less than one hour with a base calling accuracy of between 98 and 99%. In this work, we implemented energy transfer dyes which allowed for cleaner differentiation of the 4 dye labeled terminal nucleotides. In addition, we developed improved base calling software to help read sequencing when the separation was only minimal as occurs at long read lengths. Another critical parameter we studied was column temperature. We demonstrated that read lengths improved as the column temperature was increased from room temperature to 60 C or 70 C. The higher temperature relaxed the DNA chains under the influence of the high electric field.

  17. Ultrathin-layer gel electrophoresis of biopolymers.

    PubMed

    Guttman, A; Rónai, Z

    2000-12-01

    Emerging need for large-scale, high-resolution analysis of biopolymers, such as DNA sequencing polymerase chain reaction, (PCR) product sizing, single nucleotide polymorphism (SNP) hunting and analysis of protein molecules necessitated the development of automated and high-throughput gel electrophoresis based methods enabling rapid, high-performance separations in a wide molecular weight range. Scaling down electric field mediated separation processes supports higher throughput due to the applicability of higher voltages, thus speeding up analysis time. Indeed, efforts in miniaturization resulted in faster, easier, less costly and more convenient analyses, fulfilling the needs of the emerging biotechnology industry for microscale and massively parallel assays. The two primary approaches in miniaturizing electrophoresis dimensions are the capillary and microslab formats. This latter one evolved towards ultrathin-layer gel electrophoresis which is, except from the thickness of the separation platform, slightly in the upper side of the scale, resulting in considerably easier handling. Ultrathin-layer gel electrophoresis combines the advantages of conventional slab-gel electrophoresis (multilane format) and capillary gel electrophoresis (rapid, high-efficiency separations). It is readily automated, automatic versions of it have been extensively used for large-scale DNA sequencing in the Human Genome Project and more recently became popular in high throughput DNA fragment analysis. Ultrathin-layer techniques are the first step towards the wider use of electrophoresis microchips in perfecting a user-friendly interface between the user and the microdevice. PMID:11192118

  18. Proteins causing membrane fouling in membrane bioreactors.

    PubMed

    Miyoshi, Taro; Nagai, Yuhei; Aizawa, Tomoyasu; Kimura, Katsuki; Watanabe, Yoshimasa

    2015-01-01

    In this study, the details of proteins causing membrane fouling in membrane bioreactors (MBRs) treating real municipal wastewater were investigated. Two separate pilot-scale MBRs were continuously operated under significantly different operating conditions; one MBR was a submerged type whereas the other was a side-stream type. The submerged and side-stream MBRs were operated for 20 and 10 days, respectively. At the end of continuous operation, the foulants were extracted from the fouled membranes. The proteins contained in the extracted foulants were enriched by using the combination of crude concentration with an ultrafiltration membrane and trichloroacetic acid precipitation, and then separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The N-terminal amino acid sequencing analysis of the proteins which formed intensive spots on the 2D-PAGE gels allowed us to partially identify one protein (OmpA family protein originated from genus Brevundimonas or Riemerella anatipestifer) from the foulant obtained from the submerged MBR, and two proteins (OprD and OprF originated from genus Pseudomonas) from that obtained from the side-stream MBR. Despite the significant difference in operating conditions of the two MBRs, all proteins identified in this study belong to β-barrel protein. These findings strongly suggest the importance of β-barrel proteins in developing membrane fouling in MBRs. PMID:26360742

  19. Comparison of non-electrophoresis grade with electrophoresis grade BIS in NIPAM polymer gel preparation

    PubMed Central

    Khodadadi, Roghayeh; Khajeali, Azim; Farajollahi, Ali Reza; Hajalioghli, Parisa; Raeisi, Noorallah

    2015-01-01

    Introduction:The main objective of this study was to investigate the possibility of replacing electrophoresis cross-linker with non-electrophoresis N, N′-methylenebisacrylamide (BIS) in N-isopropyl acrylamide (NIPAM) polymer gel and its possible effect on dose response. Methods: NIPAM polymer gel was prepared from non-electrophoresis grade BIS and the relaxation rate (R2) was measured by MR imaging after exposing the gel to gamma radiation from Co-60 source. To compare the response of this gel with the one that contains electrophoresis grade BIS, two sets of NIPAM gel were prepared using electrophoresis and non-electrophoresis BIS and irradiated to different gamma doses. Results: It was found that the dose–response of NIPAM gel made from the non-electrophoresis grade BIS is coincident with that of electrophoresis grade BIS. Conclusion:Taken all, it can be concluded that the non-electrophoresis grade BIS not only is a suitable alternative for the electrophoresis grade BIS but also reduces the cost of gel due to its lower price. PMID:26457250

  20. Preparation of Electrically Conductive Polymeric Membranes

    NASA Astrophysics Data System (ADS)

    Encinas, J. C.; Castillo-Ortega, M. M.; Rodríguez, F.; Castaño, V. M.

    2015-10-01

    Cellulose acetate porous membranes, coated with polyaniline, were chemically modified with polyelectrolytes to produce films of varying and controlled porosity and electrical conductivity. The highest electrical conductivity was obtained in membranes prepared with poly(styrene sulfonate) with large pore sizes. The electrical properties as well as scanning electron microscopy (SEM) images are discussed.

  1. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  2. High-performance capillary electrophoresis of histones

    SciTech Connect

    Gurley, L.R.; London, J.E.; Valdez, J.G.

    1991-01-01

    A high performance capillary electrophoresis (HPCE) system has been developed for the fractionation of histones. This system involves electroinjection of the sample and electrophoresis in a 0.1M phosphate buffer at pH 2.5 in a 50 {mu}m {times} 35 cm coated capillary. Electrophoresis was accomplished in 9 minutes separating a whole histone preparation into its components in the following order of decreasing mobility; (MHP) H3, H1 (major variant), H1 (minor variant), (LHP) H3, (MHP) H2A (major variant), (LHP) H2A, H4, H2B, (MHP) H2A (minor variant) where MHP is the more hydrophobic component and LHP is the less hydrophobic component. This order of separation is very different from that found in acid-urea polyacrylamide gel electrophoresis and in reversed-phase HPLC and, thus, brings the histone biochemist a new dimension for the qualitative analysis of histone samples. 27 refs., 8 figs.

  3. Acetate enhances the specific consumption rate of toluene under denitrifying conditions.

    PubMed

    Martínez-Hernández, Sergio; Olguín, Eugenia J; Gómez, Jorge; Cuervo-López, Flor de María

    2009-11-01

    Toluene is usually present in the environment as a contaminant along with other carbon sources which may influence its removal. In this work we studied the effect of a readily consumable carbon source such as acetate on toluene mineralization under denitrifying conditions. Continuous and batch cultures with stabilized denitrifying sludge were carried out. An upflow anaerobic sludge blanket reactor (UASB) was fed with several ratios of acetate-C/toluene-C loading rates (mg C/L-day: 100/0, 75/25, 50/50, and 0/100). Batch assays with different acetate-C/toluene-C ratios (10/70, 30/50, 50/30, and 65/20 mg C/L) were also done. As the acetate loading rate decreased in the culture, the carbon and nitrate consumption efficiency decreased by 40% and 34%, respectively. HCO(3) (-) and N(2) yields also decreased by 43%. Analysis of the denitrifying community using the denaturing gradient gel electrophoresis technique indicated that there was no clear relationship between its population profile and the metabolic pattern. In batch assays, when the acetate concentration was higher than that of toluene (65 mg acetate-C/L vs 20 mg toluene-C/L), the specific consumption rate of toluene (q(T)) was two times higher than in assays with 20 mg toluene-C/L as the sole electron source (0.006 mg C/mg volatile suspended solids-day). It is proposed that acetate can act by enhancing the growth of microbial populations and as a biochemical enhancer. The results show that acetate addition can be useful to improve the consumption rate of toluene in contaminated water. PMID:19387525

  4. Affinity Electrophoresis Using Ligands Attached To Polymers

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.

    1990-01-01

    In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.

  5. Free-Flow Open-Chamber Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Free-flow open-chamber electrophoresis variant of free-flow electrophoresis performed in chamber with open ends and in which velocity of electro-osmotic flow adjusted equal to and opposite mean electrophoretic velocity of sample. Particles having electrophoretic mobilities greater than mean mobility of sample particles move toward cathode, those with mobilities less move toward anode. Technique applied to separation of components of mixtures of biologically important substances. Sensitivity enhanced by use of tapered chamber.

  6. Ozone decomposition in aqueous acetate solutions

    SciTech Connect

    Sehested, K.; Holcman, J.; Bjergbakke, E.; Hart, E.J.

    1987-01-01

    The acetate radical ion reacts with ozone with a rate constant of k = (1.5 +/- 0.5) x 10Z dmT mol s . The products from this reaction are CO2, HCHO, and O2 . By subsequent reaction of the peroxy radical with ozone the acetate radical ion is regenerated through the OH radical. A chain decomposition of ozone takes place. It terminates when the acetate radical ion reacts with oxygen forming the unreactive peroxy acetate radical. The chain is rather short as oxygen is developed, as a result of the ozone consumption. The inhibiting effect of acetate on the ozone decay is rationalized by OH scavenging by acetate and successive reaction of the acetate radical ion with oxygen. Some products from the bimolecular disappearance of the peroxy acetate radicals, however, react further with ozone, reducing the effectiveness of the stabilization.

  7. Carbon-isotopic analysis of dissolved acetate

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Hayes, J. M.

    1990-01-01

    Heating of dried, acetate-containing solids together with oxalic acid dihydrate conveniently releases acetic acid for purification by gas chromatography. For determination of the carbon-isotopic composition of total acetate, the acetate-containing zone of the chromatographic effluent can be routed directly to a combustion furnace coupled to a vacuum system allowing recovery, purification, and packaging of CO2 for mass-spectrometric analysis. For analysis of methyl carbon, acetic acid can be cryogenically trapped from the chromatographic effluent, then transferred to a tube containing excess NaOH. The tube is evacuated, sealed, and heated to 500 degrees C to produce methane by pyrolysis of sodium acetate. Subsequent combustion of the methane allows determination of the 13C content at the methyl position in the parent acetate. With typical blanks, the standard deviation of single analyses is less than 0.4% for acetate samples larger than 5 micromoles. A full treatment of uncertainties is outlined.

  8. Microfluidic Breadboard Approach to Capillary Electrophoresis.

    PubMed

    Koenka, Israel Joel; Sáiz, Jorge; Rempel, Paul; Hauser, Peter C

    2016-04-01

    A breadboard approach for electrophoretic separations with contactless conductivity detection is presented. This is based on miniature off-the-shelf components such as syringe pumps, valves, and pressure controllers which could be set up in a very compact overall arrangement. It has a high flexibility for different tasks at hand, and the common operations of hydrodynamic injection and capillary flushing are automated. For demonstration of the versatility of the proposition, several very diverse configurations and modes of electrophoresis were successfully implemented, namely, standard capillary zone electrophoresis, pressure assisted zone electrophoresis, the simultaneous separation of cations and anions by dual-capillary zone electrophoresis, the separation of cationic amino acids by isotachophoresis, as well as the separation of small carboxylic acids by gradient elution moving boundary electrophoresis. The system also allows fast separations, as demonstrated by the analysis of six inorganic cations within 35 s. The approach addresses respective limitations of either conventional capillary electrophoresis instruments as well as electrophoretic lab-on-chip devices, while maintaining a performance in terms of detection limits and reproducibility comparable to standard instrumentation. PMID:26926522

  9. Microfluidic flow counterbalanced capillary electrophoresis.

    PubMed

    Xia, Ling; Dutta, Debashis

    2013-04-01

    Flow counterbalanced capillary electrophoresis (FCCE) offers a powerful approach to realizing difficult charge based separations in compact microchip devices with application of relatively small electrical voltages. The need for dynamically controlling the pressure-gradient in the FCCE column however presents a significant challenge in implementing this technique on the microchip platform. In this article, we report the use of a simple on-chip pumping unit that allows precise introduction of a periodic pressure-driven backflow into a microfluidic separation channel enabling an FCCE analysis. The backflow in our device was produced by fabricating a shallow segment (0.5 μm deep) downstream of the analysis column (5 μm deep) and applying an electric field across it. A mismatch in the electroosmotic transport rate at the interface of this segment was shown to yield a pressure-gradient that could reverse the flow of the analyte bands without inverting the direction of the electric field. Although such a pressure-gradient also led to additional band broadening in the system, overall, the separation resolution of our device was observed to improve with an increasing number of back-and-forth sample passes through the analysis channel. For our current design, the corresponding improvement in the effective separation length was as much as 52% of the actual distance travelled by the chosen FITC-labeled amino acid samples. The reported device is well suited for further miniaturization of the FCCE method to the nanofluidic length scale which likely would improve its performance, and is easily integrable to other analytical procedures on the microchip platform for lab-on-a-chip applications. PMID:23420375

  10. Sodium chloride in separation medium enhances cell compatibility of free flow electrophoresis.

    PubMed

    Bondy, B; Bauer, J; Seuffert, I; Weber, G

    1995-01-01

    Free flow electrophoresis of cell suspensions in buffers containing sodium chloride was investigated using a modified procedure and the new apparatus Octopus PZE. The major methodical innovations are upward fluid flow, margin buffers flowing through the electrophoresis chamber at both sides of a central cell suspension buffer, adjacent to the electrode membranes, and a sample injection device which focuses the cells hydrodynamically to the middle of the chamber thickness. Mononuclear leukocytes, suspended in a buffer containing 35 mM NaCl, could be fractionated with the same accuracy as by conventional free flow electrophoresis, operated with a single NaCl-free chamber buffer. However, testing the vitality of separated cells with the help of the calcium indicator FURA2-AM clearly demonstrated the biological importance of the presence of a minimum amount of sodium chloride during cell electrophoresis. Only if at least 35 mM NaCl were present could an undisturbed cytosolic Ca2+ metabolism be maintained for the time of a free flow electrophoresis cell separation experiment. PMID:7737096

  11. Vibrational spectroscopy and electrophoresis as a "golden means" in monitoring of polysaccharides in medical plant and gels.

    PubMed

    Pielesz, A

    2012-07-01

    In recent years, some bioactive polysaccharides isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. Of them, polysaccharides or their glycoconjugates were shown to exhibit multiple biological activities including anticarcinogenic, anticoagulant, immunostimulating, antioxidant, etc. Pharmacotherapy using plant-derived substances can be currently regarded as a very promising future alternative to conventional therapy. The advanced biotechnologies available today enable chemical investigation of well-defined bioactive plant components as sources of novel drugs. The need for safer drugs without side effects has led to the use of natural ingredients with proven safety. Special interest is focused on plant polysaccharides. This article attempts to review the current structural and conformational characterization of some importantly bioactive monosaccharides isolated from following plant cell-wall: Symphytum officinale (comfrey), Thymus pulegioides (thyme), Trigonella foenum-graecum L. (fenugreek), Tussilago farfara L. (coltsfoot), Hyssopus officinalis (hyssop), Althaea officinalis L. (marshmallow) and Equisetum arvense L. (horsetail). The chemical structures of monosaccharides were analysed using FTIR and Raman spectroscopies as well as cellulose acetate membrane electrophoresis (CAE). The dried plant samples were gently hydrolysed with sulphuric acid. The presence of glucuronic acid, galacturonic acid, alginic acid, glucose, mannose and xylose in the hydrolysates of reference substances and non-defatted plant films was proved. The possibility of a taxonomic classification of plant cell walls based on infrared and Raman spectroscopies and the use of spectral fingerprinting for authentication and detection of adulteration of products rich in cell-wall materials are discussed. Individual bands were selected to monitor the sugar content in medical plant cell walls and to confirm the identity of the analysed plants. PMID:22465769

  12. Vibrational spectroscopy and electrophoresis as a "golden means" in monitoring of polysaccharides in medical plant and gels

    NASA Astrophysics Data System (ADS)

    Pielesz, A.

    In recent years, some bioactive polysaccharides isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. Of them, polysaccharides or their glycoconjugates were shown to exhibit multiple biological activities including anticarcinogenic, anticoagulant, immunostimulating, antioxidant, etc. Pharmacotherapy using plant-derived substances can be currently regarded as a very promising future alternative to conventional therapy. The advanced biotechnologies available today enable chemical investigation of well-defined bioactive plant components as sources of novel drugs. The need for safer drugs without side effects has led to the use of natural ingredients with proven safety. Special interest is focused on plant polysaccharides. This article attempts to review the current structural and conformational characterization of some importantly bioactive monosaccharides isolated from following plant cell-wall: Symphytum officinale (comfrey), Thymus pulegioides (thyme), Trigonella foenum-graecum L. (fenugreek), Tussilago farfara L. (coltsfoot), Hyssopus officinalis (hyssop), Althaea officinalis L. (marshmallow) and Equisetum arvense L. (horsetail). The chemical structures of monosaccharides were analysed using FTIR and Raman spectroscopies as well as cellulose acetate membrane electrophoresis (CAE). The dried plant samples were gently hydrolysed with sulphuric acid. The presence of glucuronic acid, galacturonic acid, alginic acid, glucose, mannose and xylose in the hydrolysates of reference substances and non-defatted plant films was proved. The possibility of a taxonomic classification of plant cell walls based on infrared and Raman spectroscopies and the use of spectral fingerprinting for authentication and detection of adulteration of products rich in cell-wall materials are discussed. Individual bands were selected to monitor the sugar content in medical plant cell walls and to confirm the identity of the analysed plants.

  13. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1005 Acetic acid. (a) Product. Acetic acid....

  14. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1005 Acetic acid. (a) Product. Acetic acid....

  15. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is...

  16. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is...

  17. 21 CFR 522.2476 - Trenbolone acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... days. (A) 140 milligrams (mg) trenbolone acetate (one implant consisting of 7 pellets, each pellet containing 20 mg trenbolone acetate) per implant dose. (B) 140 mg trenbolone acetate (one implant consisting... 29 mg tylosin tartrate) per implant dose. (ii) Indications for use. For improved feed...

  18. 21 CFR 522.2476 - Trenbolone acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... days. (A) 140 milligrams (mg) trenbolone acetate (one implant consisting of 7 pellets, each pellet containing 20 mg trenbolone acetate) per implant dose. (B) 140 mg trenbolone acetate (one implant consisting... 29 mg tylosin tartrate) per implant dose. (ii) Indications for use. For improved feed...

  19. 21 CFR 522.2476 - Trenbolone acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... days. (A) 140 milligrams (mg) trenbolone acetate (one implant consisting of 7 pellets, each pellet containing 20 mg trenbolone acetate) per implant dose. (B) 140 mg trenbolone acetate (one implant consisting... 29 mg tylosin tartrate) per implant dose. (ii) Indications for use. For improved feed...

  20. 21 CFR 522.2476 - Trenbolone acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... days. (A) 140 milligrams (mg) trenbolone acetate (one implant consisting of 7 pellets, each pellet containing 20 mg trenbolone acetate) per implant dose. (B) 140 mg trenbolone acetate (one implant consisting... 29 mg tylosin tartrate) per implant dose. (ii) Indications for use. For improved feed...

  1. 21 CFR 522.2476 - Trenbolone acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... days. (A) 140 milligrams (mg) trenbolone acetate (one implant consisting of 7 pellets, each pellet containing 20 mg trenbolone acetate) per implant dose. (B) 140 mg trenbolone acetate (one implant consisting... 29 mg tylosin tartrate) per implant dose. (ii) Indications for use. For improved feed...

  2. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is...

  3. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is...

  4. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is...

  5. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate...

  6. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is...

  7. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 2 § 582.6185 Calcium acetate. (a) Product. Calcium acetate....

  8. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is...

  9. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is...

  10. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is...

  11. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  12. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... synthetically by the neutralization of acetic acid with sodium carbonate or by treating calcium acetate with... C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant...

  13. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... synthetically by the neutralization of acetic acid with sodium carbonate or by treating calcium acetate with... C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant...

  14. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  15. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology.

    PubMed

    Muyzer, G; Smalla, K

    1998-01-01

    Here, the state of the art of the application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology will be presented. Furthermore, the potentials and limitations of these techniques will be discussed, and it will be indicated why their use in ecological studies has become so important. PMID:9602286

  16. Effect of membrane polymeric materials on relationship between surface pore size and membrane fouling in membrane bioreactors

    NASA Astrophysics Data System (ADS)

    Miyoshi, Taro; Yuasa, Kotaku; Ishigami, Toru; Rajabzadeh, Saeid; Kamio, Eiji; Ohmukai, Yoshikage; Saeki, Daisuke; Ni, Jinren; Matsuyama, Hideto

    2015-03-01

    We investigated the effect of different membrane polymeric materials on the relationship between membrane pore size and development of membrane fouling in a membrane bioreactor (MBR). Membranes with different pore sizes were prepared using three different polymeric materials, cellulose acetate butyrate (CAB), polyvinyl butyral (PVB), and polyvinylidene fluoride (PVDF), and the development of membrane fouling in each membrane was evaluated by batch filtration tests using a mixed liquor suspension obtained from a laboratory-scale MBR. The results revealed that the optimal membrane pore size to mitigate membrane fouling differed depending on membrane polymeric material. For PVDF membranes, the degree of membrane fouling decreased as membrane pore size increased. In contrast, CAB membranes with smaller pores had less fouling propensity than those with larger ones. Such difference can be attributed to the difference in major membrane foulants in each membrane; in PVDF, they were small colloids or dissolved organics in which proteins are abundant, and in CAB, microbial flocs. The results obtained in this study strongly suggested that optimum operating conditions of MBRs differ depending on the characteristics of the used membrane.

  17. A new injection method for soil nutrient analysis in capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Smolka, M.; Puchberger-Enengl, D.; Bipoun, M.; Fercher, G.; Klasa, A.; Krutzler, C.; Keplinger, F.; Vellekoop, M. J.

    2013-05-01

    We present a new method for the direct injection of liquid sample into a capillary electrophoresis (CE) device. Instead of a double-T injection mechanism, a single inlet provided with a membrane filter is used. From a reservoir on top of this inlet, the liquid directly enters the separation channel through the membrane. The driving force is a short electrical pulse. This avoids an additional sample channel, so that the chip needs only three microfluidic connects and no mechanical sample pumping is demanded. The high injection reproducibility and the comparatively simple setup open up the way for mobile application of soil analysis.

  18. Free flow cell electrophoresis using zwitterionic buffer

    NASA Technical Reports Server (NTRS)

    Rodkey, R. Scott

    1990-01-01

    Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.

  19. DNA electrophoresis in Pluronic F127

    NASA Astrophysics Data System (ADS)

    You, Seungyong; van Winkle, David

    2006-03-01

    Electrophoresis involves the separation of bio-molecules in a sieving medium by applying an electric field. DNA molecule fragments are separated in conventional gels and a several models have been successfully applied for understanding the separations. Recently, a pluronic gel was found to be an effective sieving medium for electrophoresis. However, the mobility of DNA in this gel cannot be described by the conventional theories. One reason is that Pluronic F127 is not a crosslinked gel, but a lattice of polymer micelles. The migration of single DNA molecules stained with various dye molecules was studied in slab gel electrophoresis by real-time fluorescence microscopy. Results for a variety of sizes will be presented.

  20. Membrane controlled anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Omstead, D. R.

    In response to general shortages of energy, examination of the anaerboic digestion process as a potential source of a combustible, methane-rich fuel has intensified in recent years. It has been suggested that orgaic intermediates (such as fatty acids), produced during digestion, might also be recovered for use as chemical feedstocks. This investigation has been concerned with combining ultrafiltration separation techniques with anaerobic digestion for the development of a process in which the total production of acetic acid (the most valuable intermediate in anaerobic digestion) and methane are optimized. Enrichment cultures, able to utilize glucose as a sole carbon source, were adapted from sewage digesting cultures using conventional techniques. An ultrafiltration system was constructed and coupled to an anaerobic digester culture vessel which contained the glucose enrichment. The membrane controlled anaerobic digester appears to show promise as a means of producing high rates of both methane gas and acetic acid.

  1. Plasmodium falciparum Polypeptides Associated with the Infected Erythrocyte Plasma Membrane

    NASA Astrophysics Data System (ADS)

    Stanley, Harold A.; Reese, Robert T.

    1986-08-01

    Plasmodium falciparum proteins associated with plasma membranes of infected erythrocytes were identified by using three techniques: (i) isolated plasma membranes from infected and uninfected erythrocytes were compared by gel electrophoresis and silver staining; (ii) isolated plasma membranes from cells metabolically labeled with [35S]methionine were assayed by gel electrophoresis; and (iii) uninfected and infected intact erythrocytes were surface-labeled by lactoperoxidase iodination, and the labeled polypeptides were compared by gel electrophoresis. The results from these experiments indicate that at least six parasite-derived polypeptides (Mr = > 240,000, 150,000, 55,000, 45,000, 35,000, and 20,000) are associated with the infected erythrocyte plasma membrane. At least four of these peptides (Mr = 55,000, 45,000, 35,000, and 20,000) may be exposed on the surface of the infected erythrocytes.

  2. Role of gravity in preparative electrophoresis

    NASA Technical Reports Server (NTRS)

    Bier, M.; Hinckley, J. O. N.; Smolka, A. J. K.; Binder, M. J.; Coxon, M.; Nee, T. W.; Scully, M. O.; Shih, H. S. T.; Snyder, R. S.

    1974-01-01

    Electrophoresis has contributed significantly to the methodology of biological sciences, and shows the potential for large scale fractionation of a wide range of medically important substances, including living cells. Gravity plays an important role in the electrophoretic process, and hence the importance of the NASA effort to develop a zero-gravity separation facility as part of its shuttle program. The current state of art in electrophoresis is reviewed with particular emphasis on the role of gravity and the possible use of istachophoresis. This technique utilizes a discontinuous buffer system, and appears to be the only high resolution electrophoretic technique currently available for separation of living cells.

  3. Undergraduate physics laboratory: Electrophoresis in chromatography paper

    NASA Astrophysics Data System (ADS)

    Hyde, Alexander; Batishchev, Oleg

    2015-12-01

    An experiment studying the physical principles of electrophoresis in liquids was developed for an undergraduate laboratory. We have improved upon the standard agarose gel electrophoresis experimental regime with a straightforward and cost-effective procedure, in which drops of widely available black food coloring were separated by electric field into their dye components on strips of chromatography paper soaked in a baking soda/water solution. Terminal velocities of seven student-safe dyes were measured as a function of the electric potential applied along the strips. The molecular mobility was introduced and calculated by analyzing data for a single dye. Sources of systematic and random errors were investigated.

  4. Application of Microchip Electrophoresis for Clinical Tests

    NASA Astrophysics Data System (ADS)

    Yatsushiro, Shouki; Kataoka, Masatoshi

    Microchip electrophoresis has recently attracted much attention in the field of nuclear acid analysis due to its high efficiency, ease of operation, low consumption of samples and reagents, and relatively low costs. In addition, the analysis has expanded to an analytical field like not only the analysis of DNA but also the analysis of RNA, the protein, the sugar chain, and the cellular function, etc. In this report, we showed that high-performance monitoring systems for human blood glucose levels and α-amylase activity in human plasma using microchip electrophoresis.

  5. Acetic acid induces pH-independent cellular energy depletion in Salmonella enterica.

    PubMed

    Tan, Sin Mei; Lee, Sui Mae; Dykes, Gary A

    2015-03-01

    Weak organic acids are widely used as preservatives and disinfectants in the food industry. Despite their widespread use, the antimicrobial mode of action of organic acids is still not fully understood. This study investigated the effect of acetic acid on the cell membranes and cellular energy generation of four Salmonella strains. Using a nucleic acid/protein assay, it was established that acetic acid did not cause leakage of intracellular components from the strains. A scanning electron microscopy study further confirmed that membrane disruption was not the antimicrobial mode of action of acetic acid. Some elongated Salmonella cells observed in the micrographs indicated a possibility that acetic acid may inhibit DNA synthesis in the bacterial cells. Using an ATP assay, it was found that at a neutral pH, acetic acid caused cellular energy depletion with an ADP/ATP ratio in the range between 0.48 and 2.63 (p<0.05) that was apparent for the four Salmonella strains. We suggest that this effect was probably due solely to the action of undissociated acid molecules. The antimicrobial effect of acetic acid was better under acidic conditions (ADP/ATP ratio of 5.56 ± 1.27; p<0.05), where the role of both pH and undissociated acid molecules can act together. We concluded that the inhibitory effect of acetic acid is not solely attributable to acidic pH but also to undissociated acid molecules. This finding has implication for the use of acetic acid as an antimicrobial against Salmonella on food products, such as chicken meat, which can buffer its pH. PMID:25562466

  6. Enzymatic production of glycerol acetate from glycerol.

    PubMed

    Oh, Seokhyeon; Park, Chulhwan

    2015-02-01

    In this study, we report the enzymatic production of glycerol acetate from glycerol and methyl acetate. Lipases are essential for the catalysis of this reaction. To find the optimum conditions for glycerol acetate production, sequential experiments were designed. Type of lipase, lipase concentration, molar ratio of reactants, reaction temperature and solvents were investigated for the optimum conversion of glycerol to glycerol acetate. As the result of lipase screening, Novozym 435 (Immobilized Candida antarctica lipase B) was turned out to be the optimal lipase for the reaction. Under the optimal conditions (2.5 g/L of Novozym 435, 1:40 molar ratio of glycerol to methyl acetate, 40 °C and tert-butanol as the solvent), glycerol acetate production was achieved in 95.00% conversion. PMID:25640720

  7. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  8. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory

  9. Planetary In Situ Capillary Electrophoresis System (PISCES)

    NASA Astrophysics Data System (ADS)

    Willis, P. A.; Stockton, A. M.; Mora, M. F.; Cable, M. L.; Bramall, N. E.; Jensen, E. C.; Jiao, H.; Lynch, E.; Mathies, R. A.

    2012-10-01

    We propose to develop PISCES, a 3-kg, 2W, flight-capable microfluidic lab-on-a-chip capillary electrophoresis analyzer capable of ingesting solid, liquid, or gas samples and performing a suite of chemical analyses with parts per trillion sensitivity.

  10. DNA ADDUCT RESEARCH WITH CAPILLARY ELECTROPHORESIS

    EPA Science Inventory

    DNA's central importance in all biological systems dictates a wide variety of DNA-related research. or much of this research, the utilization of capillary electrophoresis (CE) can be of significant advantage. pen-tube CE yields excellent separations of DNA components, which can b...

  11. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…

  12. Increasing Sensitivity In Continuous-Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Sensitivity of continuous-flow electrophoresis (CFE) chamber increased by introducing lateral gradients in concentration of buffer solution and thickness of chamber. Such gradients, with resulting enhanced separation, achieved in CFE chamber with wedge-shaped cross section and collateral flow. Enables improved separations of homogeneous components of mixtures of variety of biologically important substances.

  13. Role of gravity in preparative electrophoresis

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1975-01-01

    The fundamental formulas of electrophoresis are derived microscopically and applied to the problem of isotachophoresis. A simple physical model of the isotachophoresis front is proposed. The front motion and structure are studied in the simplified case without convection, diffusion and non-electric external forces.

  14. Membrane stabilizer

    DOEpatents

    Mingenbach, William A.

    1988-01-01

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material.

  15. Study on Dicarboxylic Acids in Aerosol Samples with Capillary Electrophoresis

    PubMed Central

    Adler, Heidi; Sirén, Heli

    2014-01-01

    The research was performed to study the simultaneous detection of a homologous series of α, ω-dicarboxylic acids (C2–C10), oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, and sebacic acids, with capillary electrophoresis using indirect UV detection. Good separation efficiency in 2,6-pyridinedicarboxylic acid as background electrolyte modified with myristyl trimethyl ammonium bromide was obtained. The dicarboxylic acids were ionised and separated within five minutes. For the study, authentic samples were collected onto dry cellulose membrane filters of a cascade impactor (12 stages) from outdoor spring aerosols in an urban area. Hot water and ultrasonication extraction methods were used to isolate the acids from membrane filters. Due to the low concentrations of acids in the aerosols, the extracts were concentrated with solid-phase extraction (SPE) before determination. The enrichment of the carboxylic acids was between 86 and 134% with sample pretreatment followed by 100-time increase by preparation of the sample to 50 μL. Inaccuracy was optimised for all the sample processing steps. The aerosols contained dicarboxylic acids C2–C10. Then, mostly they contained C2, C5, and C10. Only one sample contained succinic acid. In the study, the concentrations of the acids in aerosols were lower than 10 ng/m3. PMID:24729915

  16. Study on dicarboxylic acids in aerosol samples with capillary electrophoresis.

    PubMed

    Adler, Heidi; Sirén, Heli

    2014-01-01

    The research was performed to study the simultaneous detection of a homologous series of α , ω -dicarboxylic acids (C2-C10), oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, and sebacic acids, with capillary electrophoresis using indirect UV detection. Good separation efficiency in 2,6-pyridinedicarboxylic acid as background electrolyte modified with myristyl trimethyl ammonium bromide was obtained. The dicarboxylic acids were ionised and separated within five minutes. For the study, authentic samples were collected onto dry cellulose membrane filters of a cascade impactor (12 stages) from outdoor spring aerosols in an urban area. Hot water and ultrasonication extraction methods were used to isolate the acids from membrane filters. Due to the low concentrations of acids in the aerosols, the extracts were concentrated with solid-phase extraction (SPE) before determination. The enrichment of the carboxylic acids was between 86 and 134% with sample pretreatment followed by 100-time increase by preparation of the sample to 50  μ L. Inaccuracy was optimised for all the sample processing steps. The aerosols contained dicarboxylic acids C2-C10. Then, mostly they contained C2, C5, and C10. Only one sample contained succinic acid. In the study, the concentrations of the acids in aerosols were lower than 10 ng/m(3). PMID:24729915

  17. Using Gel Electrophoresis To Illustrate Protein Diversity and Isoelectric Point.

    ERIC Educational Resources Information Center

    Browning, Mark; Vanable, Joseph

    2002-01-01

    Demonstrates the differences in protein structures by focusing on isoelectric point with an experiment that is observable under certain pH levels in gel electrophoresis. Explains the electrophoresis procedure and reports results of the experiments. (YDS)

  18. Positron scattering from vinyl acetate

    NASA Astrophysics Data System (ADS)

    Chiari, L.; Zecca, A.; Blanco, F.; García, G.; Brunger, M. J.

    2014-09-01

    Using a Beer-Lambert attenuation approach, we report measured total cross sections (TCSs) for positron scattering from vinyl acetate (C4H6O2) in the incident positron energy range 0.15-50 eV. In addition, we also report an independent atom model with screening corrected additivity rule computation results for the TCSs, differential and integral elastic cross sections, the positronium formation cross section and inelastic integral cross sections. The energy range of these calculations is 1-1000 eV. While there is a reasonable qualitative correspondence between measurement and calculation for the TCSs, in terms of the energy dependence of those cross sections, the theory was found to be a factor of ˜2 larger in magnitude at the lower energies, even after the measured data were corrected for the forward angle scattering effect.

  19. Extractive fermentation of acetic acid

    SciTech Connect

    Busche, R.M.

    1991-12-31

    In this technoeconomic evaluation of the manufacture of acetic acid by fermentation, the use of the bacterium: Acetobacter suboxydans from the old vinegar process was compared with expected performance of the newer Clostridium thermoaceticum bacterium. Both systems were projected to operate as immobilized cells in a continuous, fluidized bed bioreactor, using solvent extraction to recover the product. Acetobacter metabolizes ethanol aerobically to produce acid at 100 g/L in a low pH medium. This ensures that the product is in the form of a concentrated extractable free acid, rather than as an unextractable salt. Unfortunately, yields from glucose by way of the ethanol fermentation are poor, but near the biological limits of the organisms involved. Conversely, C. thermoaceticum is a thermophilic anaerobe that operates at high fermentation rates on glucose at neutral pH to produce acetate salts directly in substantially quantitative yields. However, it is severely inhibited by product, which restricts concentration to a dilute 20 g/L. An improved Acetobacter system operating with recycled cells at 50 g/L appears capable of producing acid at $0.38/lb, as compared with a $0.29/lb price for synthetic acid. However, this system has only a limited margin for process improvement. The present Clostridium system cannot compete, since the required selling price would be $0.42/lb. However, if the organism could be adapted to tolerate higher product concentrations at acid pH, selling price could be reduced to $0.22/lb, or about 80% of the price of synthetic acid.

  20. SOLID-PHASE ASSAY FOR THE PHOSPHORYLATION OF PROTEINS BLOTTED ON NITROCELLULOSE MEMBRANE FILTERS

    EPA Science Inventory

    A new procedure for the phosphorylation and assay of phosphoproteins is described. Proteins are solubilized from tissue samples, separated by polyacrylamide gel electrophoresis, transferred onto nitrocellulose membrane filters and the blotted polypeptides are phosphorylated with ...

  1. Aurantiamide acetate suppresses the growth of malignant gliomas in vitro and in vivo by inhibiting autophagic flux

    PubMed Central

    Yang, Yi; Zhang, Li-hui; Yang, Bing-xian; Tian, Jin-kui; Zhang, Lin

    2015-01-01

    We aim to investigate the effect of aurantiamide acetate isolated from the aerial parts of Clematis terniflora DC against gliomas. Human malignant glioma U87 and U251 cells were incubated with different concentrations (0–100 μM) of aurantiamide acetate. Aurantiamide acetate greatly decreased the cell viability in a dose- and time-dependent manner. It induced moderate mitochondrial fragmentation and the loss of mitochondrial membrane potential. No significant difference was found in the alternation of other intracellular organelles, although F-actin structure was slightly disturbed. Apparent ultrastructure alternation with increased autophagosome and autolysosome accumulation was observed in aurantiamide acetate-treated cells. The expression of LC3-II was greatly up-regulated in cells exposed to aurantiamide acetate (P < 0.05 compared with control). The cytoplasmic accumulation of autophagosomes and autolysosomes induced by aurantiamide acetate treatment was confirmed by fluorescent reporter protein labelling. Administration of chloroquine (CQ), which inhibits the fusion step of autophagosomes, further increased the accumulation of autophagosomes in the cytoplasm of U87 cells. Autophagy inhibition by 3-methyladenine, Bafilomycin A1 or CQ had no influence on aurantiamide acetate-induced cytotoxicity, whereas autophagy stimulator rapamycin significantly suppressed aurantiamide acetate-induced cell death. The anti-tumour effects of aurantiamide acetate were further evaluated in tumour-bearing nude mice. Intratumoural injection of aurantiamide acetate obviously suppressed tumour growth, and increased number of autophagic vacuoles was observed in tumour tissues of animals receiving aurantiamide acetate. Our findings suggest that aurantiamide acetate may suppress the growth of malignant gliomas by blocking autophagic flux. PMID:25704599

  2. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrophoresis apparatus for clinical use. 862... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An electrophoresis apparatus for clinical use is a device intended to separate molecules or particles, including...

  3. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrophoresis apparatus for clinical use. 862... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An electrophoresis apparatus for clinical use is a device intended to separate molecules or particles, including...

  4. Tonoplast vesicles of opposite sidedness from soybean hypocotyls by preparative free-flow electrophoresis.

    PubMed

    Canut, H; Brightman, A; Boudet, A M; Morré, D J

    1990-11-01

    Tonoplast vesicles were purified from a microsomal fraction isolated from etiolated soybean hypocotyls (Glycine max L.) by preparative free-flow electrophoresis. Marker enzyme determinations and immunoblot analysis against the vacuolar-ATPase confirmed the nature and the purity of the isolated membranes. A purified tonoplast fraction also was obtained by consecutive sucrose and glycerol centrifugation which was further resolved into two different populations of vesicles (T(A) and T(B)) by free-flow electrophoresis. The determination of the sidedness of these different vesicles included concanavalin A binding as an imposed label, NADH-ferricyanide oxidoreductase cytochemistry, and ATPase latency. The tonoplast fractions, obtained by consecutive sucrose and glycerol gradient centrifugations, were found to consist of a mixture of two populations of vesicles of opposite sidedness. The least electronegative fraction obtained by free-flow electrophoresis (T(B)) consisted predominantly of cytoplasmic side out tonoplast vesicles while a fraction of greater electronegativity (T(A)) contained the cytoplasmic side in tonoplast vesicles. The relative amounts of each type of vesicle varied with the method of homogenization. Razor blade chopping, Polytron, and Waring Blendor homogenization gave predominantly cytoplasmic side out vesicles, whereas mashing with a mortar and pestle gave nearly equal amounts of the two populations of membrane vesicles of different orientation. PMID:16667810

  5. Manufacturing Ethyl Acetate From Fermentation Ethanol

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  6. Detection of biclonal gammopathy by capillary zone electrophoresis in a cat and a dog with plasma cell neoplasia.

    PubMed

    Facchini, Roberto Vailati; Bertazzolo, Walter; Zuliani, Davide; Bonfanti, Ugo; Caldin, Marco; Avallone, Giancarlo; Roccabianca, Paola

    2010-12-01

    Gammopathies associated with plasma cell neoplasms in a 15-year-old female spayed domestic shorthaired cat and a 9-year-old female spayed Rottweiler dog were evaluated by serum protein electrophoresis. In the cat, the plasma cell neoplasm was found in the liver and spleen, and an evaluable sample of bone marrow was not obtained. Some of the plasma cells had the morphologic appearance of flame cells. The paraprotein was confirmed as IgG based on agar gel immunodiffusion precipitation and both immunocytochemical and immunohistochemical staining. The dog had multiple myeloma with production of IgG and IgA paraproteins. In both cases, serum proteins were evaluated by 2 methods of protein electrophoresis: cellulose acetate electrophoresis (CAE) and capillary zone electrophoresis (CZE). In the cat and the dog, CAE showed a single large oligoclonal-like peak, which occurred in the γ-region in the cat and the β-γ-region in the dog, whereas CZE showed a biclonal gammopathy with 2 very close narrow spikes in the γ- and β-γ-regions in the cat and dog, respectively. In selected cases, CZE may be more effective than routine CAE in distinguishing oligoclonal from monoclonal or biclonal paraproteinemia. PMID:21039713

  7. Degeneration and regeneration of chloroplasts in Euglena gracilis grown in the presence of acetate: ultrastructural evidence.

    PubMed

    Vannini, G L

    1983-05-01

    When green cells of Euglena gracilis, strain Z, were light-grown for several months on a solid medium containing an excess of sodium acetate (1.0% instead of the normal 0.1%), some 30% of the cells were colourless. The 'acetate-bleached' organisms, isolated by plating methods and subsequently incubated in the light in a liquid medium, regained the capacity to form chlorophyll in a few days in the absence of any organic carbon source, and within 1-2 weeks in the presence of 0.1% acetate. A number of bleached colonies, however, gave rise to populations in which the delay in pigment synthesis initiation was at least 2 months. Besides numerous paramylum granules and lipid inclusions, the acetate-bleached cells exhibited variably shaped and sized plastids, apparently lacking in ribosomes and showing a deeply disorganized membrane system. In the alga greened in the presence of 0.1% acetate, the pattern of plastidome reorganization was altered; the thylakoids were often unpaired and vesiculated in different degrees, owing primarily to the swelling of the lumen. A complete recovery of normal chloroplast structure occurred only after several weeks of exponential growth. The entire population greened in the absence of acetate constantly showed normal chloroplasts with perfectly reassociated thylakoids and clear partitions. PMID:6411750

  8. Elucidating acetate tolerance in E. coli using a genome-wide approach.

    PubMed

    Sandoval, Nicholas R; Mills, Tirzah Y; Zhang, Min; Gill, Ryan T

    2011-03-01

    Engineering organisms for improved performance using lignocellulose feedstocks is an important step towards a sustainable fuel and chemical industry. Cellulosic feedstocks contain carbon and energy in the form of cellulosic and hemicellulosic sugars that are not metabolized by most industrial microorganisms. Pretreatment processes that hydrolyze these polysaccharides often also result in the accumulation of growth inhibitory compounds, such as acetate and furfural among others. Here, we have applied a recently reported strategy for engineering tolerance towards the goal of increasing Escherichia coli growth in the presence of elevated acetate concentrations (Lynch et al., 2007). We performed growth selections upon an E. coli genome library developed using a moderate selection pressure to identify genomic regions implicated in acetate toxicity and tolerance. These studies identified a range of high-fitness genes that are normally involved in membrane and extracellular processes, are key regulated steps in pathways, and are involved in pathways that yield specific amino acids and nucleotides. Supplementation of the products and metabolically related metabolites of these pathways significantly increased growth rate (a 130% increase in specific growth) at inhibitory acetate concentrations. Our results suggest that acetate tolerance will not involve engineering of a single pathway; rather we observe a range of potential mechanisms for overcoming acetate based inhibition. PMID:21163359

  9. Detection of glycoproteins in the Acanthamoeba plasma membrane

    SciTech Connect

    Paatero, G.I.L. ); Gahmberg, C.G. )

    1988-11-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by {sup 125}I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB{sup 3}H{sub 4} and galactose oxidase/NaB{sup 3}H{sub 4} labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M{sub r} of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with ({sup 35}S)methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.

  10. Detection of glycoproteins in the Acanthamoeba plasma membrane.

    PubMed

    Paatero, G I; Gahmberg, C G

    1988-11-01

    In the present study we have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by 125I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB3H4 and galactose oxidase/NaB3H4 labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with Mr of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with [35S]methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis. PMID:3169144

  11. Aptamers in Affinity Separations:Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Guthrie, Jeffrey W.; Shao, Yuanhua; Le, X. Chris

    Assays employing aptamers in capillary electrophoresis (CE), including competitive and noncompetitive assays, fluorescence polarization (FP) assays, nonequilibrium capillary electrophoresis of equilibrium mixtures, and affinity-polymerase chain reaction-CE assays, are summarized. These assays can be used to estimate dissociation rate and equilibrium binding constants, determine binding stoichiometries, study molecular interactions, and quantitatively determine specific analytes (e.g., proteins) in complex media. They can potentially be completed in under 60 s, detect zeptomol (10-24) amounts of analyte, be utilized in complex media with little or no cross reaction, and target a number of different analytes of biological, environmental, and clinical importance. This chapter briefly overviews the process of aptamer selection using CE and discusses the various CE-based bioanalytical methods that have been used to study biomolecular interactions.

  12. [Capillary electrophoresis, a new diagnostic tool].

    PubMed

    Magaña, Jonathan J; de la Luz Arenas-Sordo, María; Gómez Ortega, Rocío

    2009-07-01

    Capillary electrophoresis (CE) may replace many conventional clinical laboratory methods, such as electrophoresis, Southern blotting, sequencing and HPLC (High-performance liquid chromatography). It is an ideal technique due to analytical speed, the possibility of handling great amount of samples, its capacity to separate small molecules according to their size, charge, hydrophobic and stereo-specificity its good reproducibility the use of small amounts of sample and reagents, its low costs and easy handling. The diagnosis of hereditary diseases or the predisposition to polygenic diseases related to specific mutations or polymorphisms can be carried out with this method. In clinical laboratories, this technique is being used for the analysis of several substrates present in urine or serum and for the diagnosis of some infectious agents. It is also a firsthand tool in forensic medicine for human identification and anthropology. PMID:19802425

  13. Numerical simulation of electrophoresis separation processes

    NASA Technical Reports Server (NTRS)

    Ganjoo, D. K.; Tezduyar, T. E.

    1986-01-01

    A new Petrov-Galerkin finite element formulation has been proposed for transient convection-diffusion problems. Most Petrov-Galerkin formulations take into account the spatial discretization, and the weighting functions so developed give satisfactory solutions for steady state problems. Though these schemes can be used for transient problems, there is scope for improvement. The schemes proposed here, which consider temporal as well as spatial discretization, provide improved solutions. Electrophoresis, which involves the motion of charged entities under the influence of an applied electric field, is governed by equations similiar to those encountered in fluid flow problems, i.e., transient convection-diffusion equations. Test problems are solved in electrophoresis and fluid flow. The results obtained are satisfactory. It is also expected that these schemes, suitably adapted, will improve the numerical solutions of the compressible Euler and the Navier-Stokes equations.

  14. Fish Muscle Proteins: Extraction, Quantitation, and Electrophoresis

    NASA Astrophysics Data System (ADS)

    Smith, Denise

    Electrophoresis can be used to separate and visualize proteins. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), proteins are separated based on size. When protein samples are applied to such gels, it is usually necessary to know the protein content of the sample. This makes it possible to apply a volume of sample to the gel such that samples have a comparable amount of total protein. While it is possible to use an official method of protein analysis (e.g., Kjeldahl, N combustion) for such an application, it often is convenient to use a rapid spectroscopic protein analysis that requires only a small amount of sample. The bicinchoninic acid (BCA) assay method will be used for this purpose.

  15. A new approach to electrophoresis in space

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.; Rhodes, Percy H.

    1990-01-01

    Previous electrophoresis experiments performed in space are reviewed. There is sufficient data available from the results of these experiments to show that they were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. Redesigning laboratory chambers and operating procedures developed on Earth for space without understanding both the advantages and disadvantages of the microgravity environment has yielded poor separations of both cells and proteins. However, electrophoreris is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.

  16. Mathematical Models of Continuous Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.; Snyder, R. S.

    1985-01-01

    Development of high resolution continuous flow electrophoresis devices ultimately requires comprehensive understanding of the ways various phenomena and processes facilitate or hinder separation. A comprehensive model of the actual three dimensional flow, temperature and electric fields was developed to provide guidance in the design of electrophoresis chambers for specific tasks and means of interpreting test data on a given chamber. Part of the process of model development includes experimental and theoretical studies of hydrodynamic stability. This is necessary to understand the origin of mixing flows observed with wide gap gravitational effects. To insure that the model accurately reflects the flow field and particle motion requires extensive experimental work. Another part of the investigation is concerned with the behavior of concentrated sample suspensions with regard to sample stream stability particle-particle interactions which might affect separation in an electric field, especially at high field strengths. Mathematical models will be developed and tested to establish the roles of the various interactions.

  17. Portable electrophoresis apparatus using minimum electrolyte

    NASA Technical Reports Server (NTRS)

    Stevens, M. R.; Vickers, J. M. (Inventor)

    1976-01-01

    An electrophoresis unit for use in conducting electrophoretic analysis of specimens is described. The unit includes a sealable container in which a substrate mounted specimen is suspended in an electrolytic vapor. A heating unit is employed to heat a supply of electrolyte to produce the vapor. The substrate is suspended within the container by being attached between a pair of clips which also serve as electrodes to which a direct current power source may be connected.

  18. Determination of protein association constants by electrophoresis.

    PubMed

    Matejec, R; Schnert, H

    1998-08-24

    An electrophoresis cell with scanning UV-absorption optics is presented. It allows the measurement of moving reaction boundaries of dilute protein solutions with a high-resolution. The protein profiles in the boundaries can be extrapolated to infinite time after an appropriate transformation of space and time coordinates and then evaluated with respect to association constants. This is demonstrated for the dimer-tetramer equilibrium of haemoglobin. PMID:17029737

  19. Method and apparatus for continuous electrophoresis

    DOEpatents

    Watson, Jack S.

    1992-01-01

    A method and apparatus for conducting continuous separation of substances by electrophoresis are disclosed. The process involves electrophoretic separation combined with couette flow in a thin volume defined by opposing surfaces. By alternating the polarity of the applied potential and producing reciprocating short rotations of at least one of the surfaces relative to the other, small increments of separation accumulate to cause substantial, useful segregation of electrophoretically separable components in a continuous flow system.

  20. Capillary zone electrophoresis-mass spectrometer interface

    DOEpatents

    D'Silva, Arthur

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conducts is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer.

  1. Capillary zone electrophoresis-mass spectrometer interface

    DOEpatents

    D`Silva, A.

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.

  2. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.

  3. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  4. Commander prepares glass columns for electrophoresis experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Jack Lousma prepares on of the glass columns for the electrophoresis test in the middeck area of the Columbia. The experiment, deployed in an L-shaped mode in upper right corner, consists of the processing unit with glass columns in which the separation takes place; a camera (partially obscurred by Lousma's face) to document the process; and a cryogenic freezer to freeze and store the samples after separation.

  5. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.

  6. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  7. Production and utilization of acetate in mammals.

    PubMed

    Knowles, S E; Jarrett, I G; Filsell, O H; Ballard, F J

    1974-08-01

    1. In an attempt to define the importance of acetate as a metabolic precursor, the activities of acetyl-CoA synthetase (EC 6.2.1.1) and acetyl-CoA hydrolase (Ec 3.1.2.1) were assayed in tissues from rats and sheep. In addition, the concentrations of acetate in blood and liver were measured, as well as the rates of acetate production by tissue slices and mitochondrial fractions of these tissues. 2. Acetyl-CoA synthetase occurs at high activities in heart and kidney cortex of both species as well as in rat liver and the sheep masseter muscle. The enzyme is mostly in the cytosol fraction of liver, whereas it is associated with the mitochondrial fraction in heart tissue. Both mitochondrial and cytosol activities have a K(m) for acetate of 0.3mm. Acetyl-CoA synthetase activity in liver was not altered by changes in diet, age or alloxan-diabetes. 3. Acetyl-CoA hydrolase is widely distributed in rat and sheep tissues, the highest activity being found in liver. Essentially all of the activity in liver and heart is localized in the mitochondrial fraction. Hepatic acetyl-CoA hydrolase activity is increased by starvation in rats and sheep and during the suckling period in young rats. 4. The concentrations of acetate in blood are decreased by starvation and increased by alloxan-diabetes in both species. The uptake of acetate by the sheep hind limb is proportional to the arterial concentration of acetate, except in alloxan-treated animals, where uptake is impaired. 5. Acetate is produced by liver and heart slices and also by heart mitochondrial fractions that are incubated with either pyruvate or palmitoyl-(-)-carnitine. Liver mitochondrial fractions do not form acetate from either substrate but instead convert acetate into acetoacetate. 6. We propose that acetate in the blood of rats or starved sheep is derived from the hydrolysis of acetyl-CoA. Release of acetate from tissues would occur under conditions when the function of the tricarboxylic acid cycle is restricted, so that the circulating acetate serves to redistribute oxidizable substrate throughout the body. This function is analogous to that served by ketone bodies. PMID:4441381

  8. Detection of telomerase activity using microchip electrophoresis.

    PubMed

    Karasawa, Koji; Arakawa, Hidetoshi

    2015-07-01

    Telomerase participates in malignant transformation or immortalization of cells and thus has attracted attention as an anticancer drug target and diagnostic tumor marker. The telomeric repeat amplification protocol (TRAP) and improved TRAP methods (TRAP-fluorescence, TRAP-hybridization, etc.) are widely used forms of this telomerase assay. However, these approaches generally employ acrylamide gel electrophoresis after amplification of telomeric repeats by polymerase chain reaction (PCR), making these TRAP methods time consuming and technically demanding. In this study we developed a novel telomerase assay using microchip electrophoresis for rapid and highly sensitive detection of telomerase activity in cancer cells. The mixed gel of 0.8% hydroxypropyl methylcellulose (HPMC) and 0.3% polyethylene oxide (PEO) with SYBR Gold (fluorescent reagent) was used for microchip electrophoresis. As a result, the product amplified by a telomerase-positive cell could be measured in one cell per assay and detected with high reproducibility (CV=0.67%) in the short time of 100s. PMID:25980765

  9. Neuronal network analysis of serum electrophoresis.

    PubMed Central

    Kratzer, M. A.; Ivandic, B.; Fateh-Moghadam, A.

    1992-01-01

    AIMS: To advise a system of neuronal networks which can classify the densitometric patterns of serum electrophoresis. METHODS: Digitised data containing 83 normal and 132 pathological serum protein electrophoresis patterns were presented to four neuronal networks containing 1900 neurons. Network 1 evaluates the integrated values of the albumin, alpha 1, alpha 2, beta and gamma fractions together with total protein (Biuret method). Networks 2, 3, and 4 analyse the shape of the albumin, beta and gamma fractions. To increase the sensitivity for the detection of monoclonal gammopathies a Fourier transformation was applied to the beta and gamma fractions. RESULTS: After a learning period of 20 minutes (back-propagation learning algorithm) the system was tested with a set of electrophoresis patterns comprising 446 routinely collected samples. It differentiated between physiological and pathological curves with a sensitivity of 97.5% and a specificity of 98.8%, with 86% correct diagnoses. All monoclonal gammopathies were recognised by the Fourier detector. CONCLUSIONS: Neuronal networks could be useful for certain medical uses. Unlike rule based systems, neuronal networks do not have to be programmed but have the capacity to "learn" quickly. PMID:1517463

  10. Fabrication and performance of fiber electrophoresis microchips.

    PubMed

    Chen, Zhi; Zhang, Luyan; Chen, Gang

    2007-07-01

    A method based on the in situ polymerization of methyl methacrylate (MMA) has been developed for the rapid fabrication of a novel separation platform, fiber electrophoresis microchip. To demonstrate the concept, prepolymerized MMA molding solution containing a UV initiator was sandwiched between a poly(methyl methacrylate) (PMMA) cover plate and a PMMA base plate bearing glycerol-permeated fiberglass bundles and was exposed to UV light. During the UV-initiated polymerization, the fiberglass bundles were embedded in the PMMA substrate to form fiberglass-packed microchannels. When the glycerol in the fiberglass bundles was flushed away with water, the obtained porous fiberglass-packed channels could be employed to perform electrophoresis separation. Scanning electron micrographs (SEMs) and microscopic images offered insights into the fiber electrophoresis microchip. The analytical performance of the novel microchip has been demonstrated by separating and detecting dopamine and catechol in connection with end-column amperometric detection. The fiber-based microchips can be fabricated by the new approach without the need for complicated and expensive lithography-based microfabrication techniques, indicating great promise for the low-cost production of microchips, and should find a wide range of applications. PMID:17577889

  11. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    DOEpatents

    Zhang, Jian-Shi; Giometti, Carol S.; Tollaksen, Sandra L.

    1989-01-01

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.

  12. Lipidomic Profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii Reveals Critical Changes in Lipid Composition in Response to Acetic Acid Stress

    PubMed Central

    Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L−1, while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L−1 acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large rearrangements in its lipid profile. PMID:24023914

  13. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.

    PubMed

    Lindberg, Lina; Santos, Aline Xs; Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L(-1), while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L(-1) acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large rearrangements in its lipid profile. PMID:24023914

  14. Biogenesis of plasma membrane cholesterol

    SciTech Connect

    Lange, Y.

    1986-05-01

    A striking feature of the molecular organization of eukaryotic cells is the singular enrichment of their plasma membranes in sterols. The authors studies are directed at elucidating the mechanisms underlying this inhomogeneous disposition. Cholesterol oxidase catalyzes the oxidation of plasma membrane cholesterol in intact cells, leaving intracellular cholesterol pools untouched. With this technique, the plasma membrane was shown to contain 95% of the unesterified cholesterol of cultured human fibroblasts. Cholesterol synthesized from (/sup 3/H) acetate moved to the plasma membrane with a half-time of 1 h at 37/sup 0/C. They used equilibrium gradient centrifugation of homogenates of biosynthetically labeled, cholesterol oxidase treated cells to examine the distribution of newly synthesized sterols among intracellular pools. Surprisingly, lanosterol, a major precursor of cholesterol, and intracellular cholesterol both peaked at much lower buoyant density than did 3-hydroxy-3-methylglutaryl-CoA reductase. This suggests that cholesterol biosynthesis is not taken to completion in the endoplasmic reticulum. The cholesterol in the buoyant fraction eventually moved to the plasma membrane. Digitonin treatment increased the density of the newly synthesized cholesterol fractions, indicating that nascent cholesterol in transit is associated with cholesterol-rich membranes. The authors are testing the hypothesis that the pathway of cholesterol biosynthesis is spatially organized in various intracellular membranes such that the sequence of biosynthetic steps both concentrates the sterol and conveys it to the plasma membrane.

  15. Membrane stabilizer

    DOEpatents

    Mingenbach, W.A.

    1988-02-09

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material. 10 figs.

  16. Acetate metabolism and aging: An emerging connection.

    PubMed

    Shimazu, Tadahiro; Hirschey, Matthew D; Huang, Jing-Yi; Ho, Linh T Y; Verdin, Eric

    2010-01-01

    Sirtuins are NAD(+)-dependent protein deacetylases that regulate gene silencing, energy metabolism and aging from bacteria to mammals. SIRT3, a mammalian mitochondrial sirtuin, deacetylates acetyl-CoA synthetase (AceCS2) in the mitochondria. AceCS2 is conserved from bacteria to humans, catalyzes the conversion of acetate to acetyl-CoA and enables peripheral tissues to utilize acetate during fasting conditions. Here, we review the regulation of acetate metabolism by sirtuins, the remarkable conservation of this metabolic regulatory pathway and its emerging role in the regulation of aging and longevity. PMID:20478325

  17. Conversion to eslicarbazepine acetate monotherapy

    PubMed Central

    French, Jacqueline; Jacobson, Mercedes P.; Pazdera, Ladislav; Gough, Mallory; Cheng, Hailong; Grinnell, Todd; Blum, David

    2016-01-01

    Objective: To assess the efficacy and safety of eslicarbazepine acetate (ESL) monotherapy. Methods: This post hoc pooled analysis of 2 randomized double-blind studies (093-045 and -046) included adults with partial-onset seizures medically uncontrolled by 1 or 2 antiepileptic drugs (AEDs). Following the baseline period (8 weeks), eligible patients were randomized 2:1 to receive ESL 1,600 mg or 1,200 mg once daily for 18 weeks; the primary endpoint was study exit by meeting predefined exit criteria (signifying worsening seizure control). In each study, treatment was considered effective if the upper 95% confidence limit for exit rate was lower than the historical control threshold (65.3%). Results: Pooled exit rates were as follows: ESL 1,600 mg = 20.6% (95% confidence interval: 15.6%–26.8%); ESL 1,200 mg = 30.8% (23.0%–40.5%). Use of 2 baseline AEDs or rescue medication, US location, epilepsy duration ≥20 years, and higher maximum baseline seizure frequency were associated with higher exit risks. Median percent reductions in standardized seizure frequency between baseline and the 18-week double-blind period were as follows: ESL 1,600 mg = 43.2%; ESL 1,200 mg = 35.7%; baseline carbamazepine use was associated with smaller reductions. Safety profiles were similar between ESL doses. Conclusions: Exit rates for ESL monotherapy (1,600 mg and 1,200 mg once daily) were lower than the historical control threshold, irrespective of baseline AED use and region, with no additional safety concerns identified. Clinical factors and location clearly influence treatment responses in conversion-to-monotherapy trials. Classification of evidence: This pooled analysis provides Class IV evidence that for adults with medically uncontrolled partial-onset seizures, ESL monotherapy is well tolerated and effective. PMID:26911639

  18. The pharmacology of nomegestrol acetate.

    PubMed

    Ruan, Xiangyan; Seeger, Harald; Mueck, Alfred O

    2012-04-01

    Nomegestrol acetate (NOMAC) is a 19-norprogesterone derivative with high biological activity at the progesterone receptor, a weak anti-androgenic effect, but with no binding to estrogen, glucocorticoid or mineralocorticoid receptors. At dosages of 1.5mg/day or more, NOMAC effectively suppresses gonadotropic activity and ovulation in women of reproductive age. Hemostasis, lipids and carbohydrate metabolism remain largely unchanged. In normal and cancerous human breast cells, NOMAC has shown favorable effects on estrogen metabolism. Like natural progesterone (but in contrast to some other synthetic progestogens), it does not appear stimulate the proliferation of cancerous breast cells. While there has been some experience of the use of NOMAC in combination with estrogens as a hormone replacement therapy, most of the data on the compound are reported in the context of its inclusion as a component of a new contraceptive pill comprising 2.5mg NOMAC combined with 1.5mg estradiol. Because of its strong endometrial efficacy, and due to its high antigonadotropic activity and long elimination half-life (about 50h), the contraceptive efficacy of the new pill is maintained even when dosages are missed. Furthermore, for the first time with a monophasic 24/4 regimen containing estradiol, cyclical stability can be achieved comparable with that obtained using pills containing ethinyl estradiol and progestogens like levonorgestrel or drospirenone. The addition of NOMAC to estradiol means that the beneficial effects of estrogen are not lost, which is of especial importance in relation to the cardiovascular system. On the basis both of its pharmacology and of studies performed during the development of the NOMAC/estradiol pill, involving some 4000 women in total, good long-term tolerability can be expected for NOMAC, although its safety profile is still to be fully ascertained, as the clinical endpoint studies are yet to be completed. PMID:22364709

  19. Density functional theory study of selective deacylation of aromatic acetate in the presence of aliphatic acetate under ammonium acetate mediated conditions.

    PubMed

    Xia, Shijing; Zhang, Haoyu

    2014-07-01

    Aromatic acetates can be selectively deprotected in the presence of aliphatic acetates under ammonium acetate mediated condition. B3LYP/6-31++G** level of theory was demonstrated to be successfully used to model the relative reaction rates for deacylation reactions for aliphatic and aromatic ester systems. On the basis of the mechanistic studies, acetate anion is most likely to be the active catalyst for the ester deacylation reactions under ammonium acetate mediated condition. PMID:24956355

  20. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    DOEpatents

    Zhang, Jian-Shi; Giometti, C.S.; Tollaksen, S.L.

    1987-09-04

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a dc power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. 8 figs.

  1. Methanogenesis from acetate: a nonmethanogenic bacterium from an anaerobic acetate enrichment.

    PubMed

    Ward, D M; Mah, R A; Kaplan, I R

    1978-06-01

    A methanogenic acetate enrichment was initiated by inoculation of an acetate-mineral salts medium with domestic anaerobic digestor sludge and maintained by weekly transfer for 2 years. The enrichment culture contained a Methanosarcina and several obligately anaerobic nonmethanogenic bacteria. These latter organisms formed varying degrees of association with the Methanosarcina, ranging from the nutritionally fastidious gram-negative rod called the satellite bacterium to the nutritionally nonfastidious Eubacterium limosum. The satellite bacterium had growth requirements for amino acids, a peptide, a purine base, vitamin B12, and other B vitamins. Glucose, mannitol, starch, pyruvate, cysteine, lysine, leucine, isoleucine, arginine, and asparagine stimulated growth and hydrogen production. Acetate was neither incorporated nor metabolized by the satellite organism. Since acetate was the sole organic carbon source in the enrichment culture, organism(s) which metabolize acetate (such as the Methanosarcina) must produce substrates and growth factors for associated organisms which do not metabolize acetate. PMID:677881

  2. Nomegestrol acetate/estradiol: in oral contraception.

    PubMed

    Yang, Lily P H; Plosker, Greg L

    2012-10-01

    Nomegestrol acetate/estradiol is a combined oral contraceptive with approval in many countries. This fixed-dose combination tablet contains nomegestrol acetate, a highly selective progestogen, and estradiol, a natural estrogen. It is the first monophasic combined oral contraceptive to contain estradiol, and is taken in 28-day cycles, consisting of 24 active therapy days with 4 placebo days (i.e. 24/4-day cycles). In two large, 1-year, randomized, open-label, multicentre, phase III trials in healthy adult women (aged 18-50 years), nomegestrol acetate/estradiol was at least as effective as drospirenone/ethinylestradiol as contraceptive therapy, as the pregnancy rates in women aged 18-35 years (primary efficacy population) in terms of the Pearl Index (primary endpoint) were numerically lower with nomegestrol acetate/estradiol, although the between-group difference was not statistically significant. In both trials, nomegestrol acetate/estradiol was given in a 24/4-day cycle, and drospirenone/ethinylestradiol was given in a 21/7-day cycle. The criteria for using condoms in case of forgotten doses were less stringent in the nomegestrol acetate/estradiol group than in the drospirenone/ethinylestradiol group. Nomegestrol acetate/estradiol therapy for up to 1 year was generally well tolerated in healthy adult women, with an acceptable tolerability profile in line with that expected for a combined oral contraceptive. The most commonly reported adverse events were acne and abnormal withdrawal bleeding (most often shorter, lighter or absent periods). Overall, compared with drospirenone/ethinylestradiol, nomegestrol acetate/estradiol appeared to be associated with less favourable acne-related outcomes, and shorter, lighter or absent periods. PMID:22950535

  3. Acetate limitation and nitrite accumulation during denitrification

    SciTech Connect

    Oh, J.; Silverstein, J.

    1999-03-01

    Nitrite accumulated in denitrifying activated sludge mixed liquor when the carbon and electron source, acetate, was limited. If acetate was added to obtain a carbon-to-nitrogen (C:N) ratio in the range of 2:1 to 3:1, nitrate was completely consumed at the same rate with no nitrite accumulation, indicating that nitrate concentration controlled the respiration rate as long as sufficient substrate was present. However, when acetate was reduced to a C:N ratio of 1:1, while nitrate continued to be consumed, > 50% of the initial nitrate-nitrogen accumulated as nitrite and 29% persisted as nitrite throughout an endogenous denitrification period of 8--9 h. While nitrite accumulated during acetate-limited denitrification, the specific nitrate reduction rate increased significantly compared with the rate when excess acetate was provided as follows: 0.034 mg-NO{sub 3}-N/mg-mixed liquid volatile suspended solids/h versus 0.023 mg-NO{sub 3}-N/mg-mixed liquid volatile suspended solids/h, respective. This may be explained by nitrate respiration out-competing nitrite respiration for limited acetate electrons. Complete restoration of balanced denitrification and elimination of nitrite accumulation during denitrification required several weeks after the C:N ratio was increased back to 2:1.

  4. Separation and determination of homologues of linear alkylbenzenesulfonates by nonaqueous capillary zone electrophoresis using alkylammonium salts in ethanol.

    PubMed

    Herrero-Martínez, J M; Simó-Alfonso, E F; Ramis-Ramos, G

    2001-06-01

    The separation of linear alkylbenzene sulfonates (LAS) by nonaqueous capillary electrophoresis (NACE) using negative polarity, and a buffer containing acetic acid and an alkylamine in nonaqueous ethanol, has been investigated. Several primary, secondary, and tertiary alkylamines with alkyl chains of different length were compared. The solutes travelled against the electroosmotic flow (EOF), and at the same time were braked by association with the alkylamine molecules or with the alkylammonium ions. The best resolution between adjacent LAS homologues (R approximately 2.1), partial isomer resolution in two peaks, and at the same time an excellent repeatability, was obtained with a small dipentylamine excess over the acetic acid. When the buffer concentration increased, resolution between the homologues increased slightly (R approximately 2.4), and a different isomer group was partially separated. A background electrolyte (BGE) containing 10 mM acetic acid and 20 mM dipentylamine to separate and quantify the homologues within 25 min is recommended. The isomer peak profile with up to three peaks can be estimated using this buffer and another one with 80 mM acetic acid and 90 mM dipentylamine. The former BGE was used to determine LAS in liquid and powder laundry detergents. The detection limit for the determination of total LAS in these products was 2.5 microg mL(-1), and the peak area and migration time interday repeatabilities were below 4.3 and 2.8%, respectively. PMID:11465501

  5. The fluid mechanics of continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1990-01-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  6. Quantitative determination of short single-stranded oligonucleotides from blood plasma using capillary electrophoresis with laser-induced fluorescence.

    PubMed

    Reyderman, L; Stavchansky, S

    1997-08-15

    The quantitative determination of short (< 20 bases) single-standed (ss-) oligonucleotides (oligos) from blood plasma using capillary gel electrophoresis with laser-induced fluorescence is reported. Oligos were derivatized on column after equilibration of the column with a 1:150 dilution of OliGreen dye. The resulting fluorescent complex was detected and measured with an argon ion laser detector using excitation/emission wavelengths of 488/520 nm, respectively. The method involves precipitation of plasma proteins with phenol-chloroform followed by dilution and drop analysis in nanopure water for 30 min on a 0.025 microns cellulose acetate membrane. This treatment lowers the ionic strength of the plasma sample resulting in a significant improvement of the electrokinetic loading (5 kV, 10 s) of the analyte. Optimal electrophoretic separation was achieved at 13 kV using 4 M urea in a 10% polyacrylamide gel filled capillary, 100 mM Tris borate as the running buffer, and a temperature of 30 degrees C. Oligos were determined in the presence of p(dT)20/40 as internal standard. The observed migration times were 6.35 and 6.60 min for the oligo and internal standard, respectively. The migration times and fluorescent yield of the complex were temperature dependent. Increasing the separation temperature (20 to 60 degrees C) resulted in a decrease in the migration time and fluorescent yield of the oligonucleotide-dye complex. A linear response over a broad concentration range (0.02-1.5 micrograms/mL, R2 = 0.997) was obtained. The limit of quantitation was set at 20 ng/mL (CV% = 11.3%). The intraday variability was 9.44, 5.28, and 9.2% for 190, 760, and 1520 ng/mL plasma samples, respectively. Data are presented to illustrate the practicality of the method for the pharmacokinetic evaluation of GS522 and potential metabolites in plasma after intravenous administration to rats. PMID:9271066

  7. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  8. Microfabricated capillary array electrophoresis device and method

    DOEpatents

    Simpson, Peter C.; Mathies, Richard A.; Woolley, Adam T.

    2004-06-15

    A capillary array electrophoresis (CAE) micro-plate with an array of separation channels connected to an array of sample reservoirs on the plate. The sample reservoirs are organized into one or more sample injectors. One or more waste reservoirs are provided to collect wastes from reservoirs in each of the sample injectors. Additionally, a cathode reservoir is also multiplexed with one or more separation channels. To complete the electrical path, an anode reservoir which is common to some or all separation channels is also provided on the micro-plate. Moreover, the channel layout keeps the distance from the anode to each of the cathodes approximately constant.

  9. Microfabricated capillary array electrophoresis device and method

    DOEpatents

    Simpson, Peter C.; Mathies, Richard A.; Woolley, Adam T.

    2000-01-01

    A capillary array electrophoresis (CAE) micro-plate with an array of separation channels connected to an array of sample reservoirs on the plate. The sample reservoirs are organized into one or more sample injectors. One or more waste reservoirs are provided to collect wastes from reservoirs in each of the sample injectors. Additionally, a cathode reservoir is also multiplexed with one or more separation channels. To complete the electrical path, an anode reservoir which is common to some or all separation channels is also provided on the micro-plate. Moreover, the channel layout keeps the distance from the anode to each of the cathodes approximately constant.

  10. Cytokine Analysis by Immunoaffinity Capillary Electrophoresis

    PubMed Central

    Mendonca, Mark; Kalish, Heather

    2014-01-01

    Immunoaffinity capillary electrophoresis (ICE) is a powerful tool used to detect and quantify target proteins of interest in complex biological fluids. The target analyte is captured and bound to antibodies immobilized onto the wall of a capillary, labeled in situ with a fluorescent dye, eluted and detected online using laser-induced fluorescence following electrophoretic separation. Here, we illustrate how to construct an immunoaffinity capillary and utilize it to run ICE in order to capture and quantify target cytokines and chemokines from a clinical sample. PMID:22976107

  11. Determination of aristolochic acids by capillary electrophoresis.

    PubMed

    Priestap, Horacio A; Iglesias, Silvia L; Desimone, Martín F; Diaz, Luis E

    2003-01-01

    A method for the separation and quantification of aristolochic acids by capillary electrophoresis is described. Buffer solutions composed of sodium dihydrogen phosphate, sodium borate, and sodium dodecyl sulfate at pH 6.5-7 were found to be suitable for the separation of aristolochic acids, which can be well resolved in a few minutes. The separation and identification of six aristolochic acids contained in a commercial tincture called charrua, a traditional herbal medicine consisting of a hydroalcoholic extract of Aristolochia argentina, corroborate the usefulness of the method. The eventual toxic properties of the aristolochic acid containing charrua tincture are discussed. PMID:14596334

  12. A new approach to scaling up electrophoresis

    SciTech Connect

    Tarnopolsky, Y.; Roman, M.; Brown, P.R.

    1993-01-01

    Free Flow Electrophoresis (FFE) has been utilized for the separation of proteins and cells for many years, and has evolved into the most promising method of continuous separation. One of the major drawbacks inherent with FFE, however, is the thermal convection due to Joule heating which occurs whenever current is passed through a conducting solution. To provide efficient heat dissipation, the size of FFE units is restricted, which limits sample throughput. A new type of FFE design, which internally cools the separation unit by passing water through capillary tubes, has been developed and tested. Results of separations of dyes are presented, using a bed {1/4} inch thick which maintains efficient cooling.

  13. Fluid mechanics of continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.; Ostrach, S.

    1978-01-01

    The following aspects of continuous flow electrophoresis were studied: (1) flow and temperature fields; (2) hydrodynamic stability; (3) separation efficiency, and (4) characteristics of wide gap chambers (the SPAR apparatus). Simplified mathematical models were developed so as to furnish a basis for understanding the phenomena and comparison of different chambers and operating conditions. Studies of the hydrodynamic stability disclosed that a wide gap chamber may be particularly sensitive to axial temperature variations which could be due to uneven heating or cooling. The mathematical model of the separation process includes effects due to the axial velocity, electro-osmotic cross flow and electrophoretic migration, all including the effects of temperature dependent properties.

  14. Electrohydrodynamic effects in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.; Roberts, G. O.; Baygents, J. C.

    1991-01-01

    We demonstrate experimentally and theoretically the importance of electrohydrodynamic (EHD) flows in continuous-flow electrophoresis (CFE) separations. These flows are associated with variations in the conductivity or dielectric constant, and are quadratic in the field strength. They appear to be the main cause of extraneous and undesired flows in CFE which have degraded separation performance and have until now not been explained. We discuss the importance of EHD flows relative to other effects. We also describe possible techniques for reducing the associated degradation of CFE separations.

  15. A biologically inspired hydrophobic membrane for application in pervaporation.

    PubMed

    Jullok, Nora; Martínez, Rodrigo; Wouters, Christine; Luis, Patricia; Sanz, María Teresa; Van der Bruggen, Bart

    2013-02-01

    An artificial polydimethylsiloxane/polyphenylsulfone (PDMS/PPSU) membrane, which emulates the hydrophobic behavior of natural membranes, was synthesized. Hydrophobicity was achieved by coating the membrane surface sublayer using conventional silicon material, which imitates the character of epicuticular wax (EW) of Prunus laurocerasus L. leaves. It was then applied as a separation medium in pervaporation (PV) of diluted mixtures of ethyl acetate and aroma compounds. The membrane's biomimetic characteristics were evaluated using surface morphology analyses, that is, Fourier transform infrared (FTIR), water contact angle measurements, and SEM imaging. A comparison of properties of the membranes synthesized in this work against selected hydrophobic plant leaves indicated a good agreement. PV using these biologically inspired artificial membranes demonstrated preference for the permeation of ethyl acetate. Besides intrinsic characteristics, it was also observed that the chemical potential is highly influential in activating sorption, diffusion, and desorption of a specific compound. PMID:23323794

  16. Membrane tethering

    PubMed Central

    Chia, Pei Zhi Cheryl

    2014-01-01

    Membrane trafficking depends on transport vesicles and carriers docking and fusing with the target organelle for the delivery of cargo. Membrane tethers and small guanosine triphosphatases (GTPases) mediate the docking of transport vesicles/carriers to enhance the efficiency of the subsequent SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-mediated fusion event with the target membrane bilayer. Different classes of membrane tethers and their specific intracellular location throughout the endomembrane system are now well defined. Recent biochemical and structural studies have led to a deeper understanding of the mechanism by which membrane tethers mediate docking of membrane carriers as well as an appreciation of the role of tethers in coordinating the correct SNARE complex and in regulating the organization of membrane compartments. This review will summarize the properties and roles of membrane tethers of both secretory and endocytic systems. PMID:25343031

  17. Indium acetate toxicity in male reproductive system in rats.

    PubMed

    Lee, Kuo-Hsin; Chen, Hsiu-Ling; Leung, Chung-Man; Chen, Hsin-Pao; Hsu, Ping-Chi

    2016-01-01

    Indium, a rare earth metal characterized by high plasticity, corrosion resistance, and a low melting point, is widely used in the electronics industry, but has been reported to be an environmental pollutant and a health hazard. We designed a study to investigate the effects of subacute exposure of indium compounds on male reproductive function. Twelve-week old male Sprague-Dawley rats were randomly divided into test and control groups, and received weekly intraperitoneal injections of indium acetate (1.5 mg/kg body weight) and normal saline, respectively, for 8 weeks. Serum indium levels, cauda epididymal sperm count, motility, morphology, chromatin DNA structure, mitochondrial membrane potential, oxidative stress, and testis DNA content were investigated. The indium acetate-treated group showed significant reproductive toxicity, as well as an increased percentage of sperm morphology abnormality, chromatin integrity damage, and superoxide anion generation. Furthermore, positive correlations among sperm morphology abnormalities, chromatin DNA damage, and superoxide anion generation were also noted. The results of this study demonstrated the toxic effect of subacute low-dose indium exposure during the period of sexual maturation on male reproductive function in adulthood, through an increase in oxidative stress and sperm chromatin DNA damage during spermiogenesis, in a rodent model. PMID:25044390

  18. Distinct Effects of Sorbic Acid and Acetic Acid on the Electrophysiology and Metabolism of Bacillus subtilis

    PubMed Central

    van Beilen, J. W. A.; Teixeira de Mattos, M. J.; Hellingwerf, K. J.

    2014-01-01

    Sorbic acid and acetic acid are among the weak organic acid preservatives most commonly used to improve the microbiological stability of foods. They have similar pKa values, but sorbic acid is a far more potent preservative. Weak organic acids are most effective at low pH. Under these circumstances, they are assumed to diffuse across the membrane as neutral undissociated acids. We show here that the level of initial intracellular acidification depends on the concentration of undissociated acid and less on the nature of the acid. Recovery of the internal pH depends on the presence of an energy source, but acidification of the cytosol causes a decrease in glucose flux. Furthermore, sorbic acid is a more potent uncoupler of the membrane potential than acetic acid. Together these effects may also slow the rate of ATP synthesis significantly and may thus (partially) explain sorbic acid's effectiveness. PMID:25038097

  19. Immobilized Metal Affinity Electrophoresis: A Novel Method of Capturing Phosphoproteins by Electrophoresis

    PubMed Central

    Lee, Bao-Shiang; Lasanthi, G.D.; Jayathilaka, P.; Huang, Jin-Sheng; Gupta, Shalini

    2008-01-01

    An immobilized metal affinity electrophoresis (IMAEP) method is described here. In this method, metal ions are immobilized in a native polyacrylamide gel to capture phosphoproteins. The capture of phosphoproteins by IMAEP is demonstrated with immobilized metals like iron, aluminum, manganese, or titanium. In the case studies, phosphoproteins ?-casein, ?-casein, and phosvitin are successfully extracted from a protein mixture by IMAEP. PMID:19137092

  20. A centrifugal method for the evaluation of polymer membranes for reverse osmosis

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.; Mccullough, R. P.

    1973-01-01

    A rapid and simple method employing the laboratory centrifuge shows promise for evaluation of membrane performance during reverse osmosis. Results are presented for cellulose acetate membranes for rejection of salt and urea dissolved solids. Implications of the study are to rapid screening of membrane performance, use in laboratories with limited facilities, and possible space waste water purification.

  1. Recent advances in microchip electrophoresis for amino acid analysis.

    PubMed

    Ou, Gaozhi; Feng, Xiaojun; Du, Wei; Liu, Xin; Liu, Bi-Feng

    2013-10-01

    With the maturation of microfluidic technologies, microchip electrophoresis has been widely employed for amino acid analysis owing to its advantages of low sample consumption, reduced analysis time, high throughput, and potential for integration and automation. In this article, we review the recent progress in amino acid analysis using microchip electrophoresis during the period from 2007 to 2012. Innovations in microchip materials, surface modification, sample introduction, microchip electrophoresis, and detection methods are documented, as well as nascent applications of amino acid analysis in single-cell analysis, microdialysis sampling, food analysis, and extraterrestrial exploration. Without doubt, more applications of microchip electrophoresis in amino acid analysis may be expected soon. PMID:23436170

  2. Capillary electrophoresis coupled with automated fraction collection.

    PubMed

    Huge, Bonnie Jaskowski; Flaherty, Ryan J; Dada, Oluwatosin O; Dovichi, Norman J

    2014-12-01

    A fraction collector based on a drop-on-demand ink-jet printer was developed to interface capillary zone electrophoresis with a 96 well microtiter plate. We first evaluated the performance of the collector by using capillary zone electrophoresis to analyze a 1mM solution of tetramethylrhodamine; a fluorescent microtiter plate reader was then used to detect the analyte and characterize fraction carryover between wells. Relative standard deviation in peak height was 20% and the relative standard deviation in migration time was 1%. The mean and standard deviation of the tetramethylrhodamine peak width was 5 ± 1 s and likely limited by the 4-s period between droplet deposition. We next injected a complex mixture of DNA fragments and used real-time PCR to quantify the product in a CE-SELEX experiment. The reconstructed electrophoretic peak was 27 s in duration. Finally, we repeated the experiment in the presence of a 30-µM thrombin solution under CE-SELEX conditions; fractions were collected and next-generation sequencing was used to characterize the DNA binders. Over 25,000 sequences were identified with close matches to known thrombin binding aptamers. PMID:25159411

  3. Capillary Electrophoresis coupled with Automated Fraction Collection

    PubMed Central

    Huge, Bonnie Jaskowski; Flaherty, Ryan; Dada, Oluwatosin O.; Dovichi, Norman J.

    2014-01-01

    A fraction collector based on a drop-on-demand ink-jet printer was developed to interface capillary zone electrophoresis with a 96 well microtiter plate. We first evaluated the performance of the collector by using capillary zone electrophoresis to analyze a 1 mM solution of tetramethylrhodamine; a fluorescent microtiter plate reader was then used to detect the analyte and characterize fraction carryover between wells. Relative standard deviation in peak height was 20% and the relative standard deviation in migration time was 1%. The mean and standard deviation of the tetramethylrhodamine peak width was 5 ± 1 s and likely limited by the 4-s period between droplet deposition. We next injected a complex mixture of DNA fragments and used real-time PCR to quantify the product in a CE-SELEX experiment. The reconstructed electrophoretic peak was 27 s in duration. Finally, we repeated the experiment in the presence of a 30-μM thrombin solution under CE-SELEX conditions; fractions were collected and next-generation sequencing was used to characterize the DNA binders. Over 25,000 sequences were identified with close matches to known thrombin binding aptamers. PMID:25159411

  4. Fractionation of mineral species by electrophoresis

    NASA Technical Reports Server (NTRS)

    Dunning, J. D.; Herren, B. J.; Tipps, R. W.; Snyder, R. S.

    1982-01-01

    The fractionation of fine-grained aggregates into their major components is a problem in many scientific areas including earth and planetary science. Electrophoresis, the transport of electrically charged particles, immersed in a suspension medium, by a direct current field (Bier, 1959), was employed in this study as a means of separating simulated lunar soil into its constituent minerals. In these tests, conducted in a static analytical cylindrical microelectrophoresis apparatus, samples of simulated lunar soil and samples of pure mineral constituents were placed in the chamber; the electrophoretic mobilities of the lunar soil and the individual mineral constituents were measured. In most of the suspension buffers employed separability was indicated, on the basis of differences in mobility, for all the constituent mineral species except ilmenite and pyroxene, which were not efficiently separable in any of the buffers. Although only a few suspension media were employed, the success of this initial study suggests that electrophoresis may be an important mineral fractionation option in fine-grained aggregate processing.

  5. Capillary zone electrophoresis of large DNA.

    PubMed

    Guszczynski, T; Pulyaeva, H; Tietz, D; Garner, M M; Chrambach, A

    1993-01-01

    Capillary zone electrophoresis (CZE) of DNA 23.1 to 48.5 kb in length in polyacrylamide solutions of several concentrations provides evidence for polymer concentration and DNA length-dependent stretching and orientation of these species and suggests an effective separation at a polymer concentration of about 0.6%. Applying a 0.1% polyacrylamide concentration to the lambda-phage DNA ladder, at least 5 components are separated; separation improves with lowering of the field strength to 2 V/cm and, correspondingly, extended duration of CZE. Saccharomyces pombe chromosomal DNA separates into 3 major components on CZE at high field strength (270 V/cm) in 0.9% polyacrylamide solution, confirming a previous finding made on electrophoresis in a 1.1 mm ID tube at low field strength. However, the finding is limited to one source of the DNA plug, and the chromosomal identity of the components remains unknown. Methodological problems in the CZE of large DNA relate to the need for extended duration of pressure injection if absorbance detection is applied, the need to define the starting zone after extended pressure injection, the need to melt and digest agarose plugs prior to loading, and related needs for thermostating of the sample chamber and for software compatible with low voltage operation. PMID:8354238

  6. Gel Electrophoresis of Gold-DNA Nanoconjugates

    DOE PAGESBeta

    Pellegrino, T.; Sperling, R. A.; Alivisatos, A. P.; Parak, W. J.

    2007-01-01

    Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effectivemore » diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.« less

  7. Determination of herbicides paraquat, glyphosate, and aminomethylphosphonic acid in marijuana samples by capillary electrophoresis.

    PubMed

    Lanaro, Rafael; Costa, José L; Cazenave, Silvia O S; Zanolli-Filho, Luiz A; Tavares, Marina F M; Chasin, Alice A M

    2015-01-01

    In this work, two methods were developed to determine herbicides paraquat, glyphosate, and aminomethylphosphonic acid (AMPA) in marijuana samples by capillary electrophoresis. For paraquat analysis, sample was extracted with aqueous acetic acid solution and analyzed by capillary zone electrophoresis with direct UV detection. The running electrolyte was 50 mmol/L phosphate buffer (pH 2.50). For glyphosate and AMPA, indirect UV/VIS detection was used, as these substances do not present chromophoric groups. Samples were extracted with 5 mmol/L hydrochloric acid. The running electrolyte was 10 mmol/L gallic acid, 6 mmol/L TRIS, and 0.1 mmol/L CTAB (pH = 4.7). The methods presented good linearity, precision, accuracy, and recovery. Paraquat was detected in 12 samples (n = 130), ranging from 0.01 to 25.1 mg/g. Three samples were positive for glyphosate (0.15-0.75 mg/g), and one sample presented AMPA as well. Experimental studies are suggested to evaluate the risks of these concentrations to marijuana user. PMID:25413634

  8. Determination of ciclopirox olamine in pharmaceutical products by capillary electrophoresis with capacitively coupled contactless conductivity detection.

    PubMed

    Felix, Fabiana Silva; do Lago, Claudimir Lucio; Angnes, Lúcio

    2011-04-01

    This paper describes the determination of ciclopirox olamine in pharmaceutical formulations using capillary electrophoresis with capacitively coupled contactless conductivity detection. In an alkaline medium, ciclopirox olamine is converted into an anionic species and its detection is possible in capillary electrophoresis with capacitively coupled contactless conductivity detection without an electroosmotic flow modifier, because it is a low-mobility species. A linear working range from 2.64 to 264 μg/mL in sodium hydroxide electrolyte as well as low detection limit (0.39 μg/mL) and a good repeatability (RSD = 3.4% for 264 μg/mL ciclopirox solution (n = 10)) were achieved. It was also possible to determine olamine in its cationic form when acetic acid was used as the electrolyte solution. The results obtained include a linear range from 26.4 to 184.8 μg/mL and a detection limit of 2.6 μg/mL olamine. The proposed methods were applied to the analysis of commercial pharmaceutical products and the results were compared with the values indicated by the manufacturer as well as those obtained using a titrimetric method recommended by American Pharmacopoeia. PMID:21394732

  9. Direct detection of the acetate-forming activity of the enzyme acetate kinase.

    PubMed

    Fowler, Matthew L; Ingram-Smith, Cheryl J; Smith, Kerry S

    2011-01-01

    Acetate kinase, a member of the acetate and sugar kinase-Hsp70-actin (ASKHA) enzyme superfamily, is responsible for the reversible phosphorylation of acetate to acetyl phosphate utilizing ATP as a substrate. Acetate kinases are ubiquitous in the Bacteria, found in one genus of Archaea, and are also present in microbes of the Eukarya. The most well characterized acetate kinase is that from the methane-producing archaeon Methanosarcina thermophila. An acetate kinase which can only utilize PP(i) but not ATP in the acetyl phosphate-forming direction has been isolated from Entamoeba histolytica, the causative agent of amoebic dysentery, and has thus far only been found in this genus. In the direction of acetyl phosphate formation, acetate kinase activity is typically measured using the hydroxamate assay, first described by Lipmann, a coupled assay in which conversion of ATP to ADP is coupled to oxidation of NADH to NAD(+) by the enzymes pyruvate kinase and lactate dehydrogenase, or an assay measuring release of inorganic phosphate after reaction of the acetyl phosphate product with hydroxylamine. Activity in the opposite, acetate-forming direction is measured by coupling ATP formation from ADP to the reduction of NADP(+) to NADPH by the enzymes hexokinase and glucose 6-phosphate dehydrogenase. Here we describe a method for the detection of acetate kinase activity in the direction of acetate formation that does not require coupling enzymes, but is instead based on direct determination of acetyl phosphate consumption. After the enzymatic reaction, remaining acetyl phosphate is converted to a ferric hydroxamate complex that can be measured spectrophotometrically, as for the hydroxamate assay. Thus, unlike the standard coupled assay for this direction that is dependent on the production of ATP from ADP, this direct assay can be used for acetate kinases that produce ATP or PP(i). PMID:22214984

  10. Membrane Extraction for Detoxification of Biomass Hydrolysates

    SciTech Connect

    Grzenia, D. L.; Schell, D. J.; Wickramasinghe, S. R.

    2012-05-01

    Membrane extraction was used for the removal of sulfuric acid, acetic acid, 5-hydroxymethyl furfural and furfural from corn stover hydrolyzed with dilute sulfuric acid. Microporous polypropylene hollow fiber membranes were used. The organic extractant consisted of 15% Alamine 336 in: octanol, a 50:50 mixture of oleyl alcohol:octanol or oleyl alcohol. Rapid removal of sulfuric acid, 5-hydroxymethyl and furfural was observed. The rate of acetic acid removal decreased as the pH of the hydrolysate increased. Regeneration of the organic extractant was achieved by back extraction into an aqueous phase containing NaOH and ethanol. A cleaning protocol consisting of flushing the hydrolysate compartment with NaOH and the organic phase compartment with pure organic phase enabled regeneration and reuse of the module. Ethanol yields from hydrolysates detoxified by membrane extraction using 15% Alamine 336 in oleyl alcohol were about 10% higher than those from hydrolysates detoxified using ammonium hydroxide treatment.

  11. Acetate Transport and Utilization in the Rat Brain

    PubMed Central

    Deelchand, Dinesh K.; Shestov, Alexander A.; Koski, Dee M.; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2009-01-01

    Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-13C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMRace) increased progressively and reached close to saturation for plasma acetate concentration > 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization ( KMutil=0.01±0.14mM) was much smaller than for acetate transport through the blood-brain barrier ( KMt=4.18±0.83mM). The maximum transport capacity of acetate through the blood-brain barrier ( Vmaxt=0.96±0.18μmol/g/min) was nearly two-fold higher than the maximum rate of brain acetate utilization ( Vmaxutil=0.50±0.08μmol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the blood-brain barrier, but occurs after entry of acetate into the brain. PMID:19393008

  12. Nanofiltration of rhodium tris(triphenylphosphine) catalyst in ethyl acetate solution

    NASA Astrophysics Data System (ADS)

    Shaharun, Maizatul S.; Mustafa, Ahmad K.; Taha, Mohd F.

    2012-09-01

    Solvent resistant nanofiltration (SRNF) using polymer membranes has recently received enhanced attention due to the search for cleaner and more energy-efficient technologies. The large size of the rhodium tris(triphenylphosphine) [HRh(CO)(PPh3)3] catalyst (>400 Da) - relative to other components of the hydroformylation reaction provides the opportunity for a membrane separation based on retention of the catalyst species while permeating the solvent. The compatibility of the solvent-polyimide membrane (DuraMem{trade mark, serif} 200 and DuraMem{trade mark, serif} 500) combinations was assessed in terms of the membrane stability in solvent plus non-zero solvent flux at 2.0 MPa. Good HRh(CO)(PPh3)3 rejection (>0.95) and solvent fluxes of 9.9 L/m2ṡh1 at 2.0 MPa were obtained in the catalyst-ethyl acetate-DuraMem 500 system. The effect of pressure and catalyst concentration on the solvent flux and catalyst rejection was conducted on the catalyst-ethyl acetate-membrane systems. Increasing pressure substantially improved both solvent flux and catalyst rejection, while increasing catalyst concentration was found to be beneficial in terms of substantial increases in catalyst rejection without significantly affecting solvent flux.

  13. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.

    PubMed

    Yüksel, Suna; Kabay, Nalan; Yüksel, Mithat

    2013-12-15

    The removal of an endocrine disrupting compound, bisphenol A (BPA), from model solutions by selected nanofiltration (NF) and reverse osmosis (RO) membranes was studied. The commercially available membranes NF 90, NF 270, XLE BWRO, BW 30 (Dow FilmTech), CE BWRO and AD SWRO (GE Osmonics) were used to compare their performances for BPA removal. The water permeability coefficients, rejection of BPA and permeate flux values were calculated for all membranes used. No significant changes in their BPA removal were observed for all tight polyamide based NF and RO membranes tested except for loose NF 270 membrane. The polyamide based membranes exhibited much better performance than cellulose acetate membrane for BPA removal. Almost a complete rejection (≥ 98%) for BPA was obtained with three polyamide based RO membranes (BW 30, XLE BWRO and AD SWRO). But cellulose acetate based CE BWRO membrane offered a low and variable (10-40%) rejection for BPA. PMID:23731784

  14. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid. PMID:25416587

  15. Tested Demonstrations: Buffer Capacity of Various Acetic Acid-Sodium Acetate Systems: A Lecture Experiment.

    ERIC Educational Resources Information Center

    Donahue, Craig J.; Panek, Mary G.

    1985-01-01

    Background information and procedures are provided for a lecture experiment which uses indicators to illustrate the concept of differing buffer capacities by titrating acetic acid/sodium acetate buffers with 1.0 molar hydrochloric acid and 1.0 molar sodium hydroxide. A table with data used to plot the titration curve is included. (JN)

  16. Acetylation of Starch with Vinyl Acetate in Imidazolium Ionic Liquids and Characterization of Acetate Distribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch was acetylated with vinyl acetate in different 1-butyl-3-methylimidazolium (BMIM) salts as solvent in effort to produce starches with different acetylation patterns. Overall degree of substitution was much higher for basic anions such as acetate and dicyanimide (dca) than for neutral anions ...

  17. A mammalian acetate switch regulates stress erythropoiesis

    PubMed Central

    Xu, Min; Nagati, Jason S.; Xie, Jian; Li, Jiwen; Walters, Holly; Moon, Young-Ah; Gerard, Robert D.; Huang, Chou-Long; Comerford, Sarah A.; Hammer, Robert E.; Horton, Jay D.; Chen, Rui; Garcia, Joseph A.

    2014-01-01

    Endocrine erythropoietin (Epo), which is synthesized in the kidney or liver of adult mammals, controls erythrocyte production and is regulated by the stress-responsive transcription factor Hypoxia Inducible Factor 2 (HIF-2). We previously reported that the lysine acetyltransferase Cbp is required for HIF-2α acetylation and efficient HIF-2 dependent Epo induction during hypoxia. We now show these processes require acetate-dependent acetyl CoA synthetase 2 (Acss2). In Hep3B hepatoma cells and in Epo-generating organs of hypoxic or acutely anemic mice, acetate levels increase and Acss2 is required for HIF-2α acetylation, Cbp/HIF-2α complex formation and recruitment to the Epo enhancer, and efficient Epo induction. In acutely anemic mice, acetate supplementation augments stress erythropoiesis in an Acss2-dependent manner. In acquired and genetic chronic anemia mouse models, acetate supplementation also increases Epo expression and resting hematocrits. Thus, a mammalian stress-responsive acetate switch controls HIF-2 signaling and Epo induction during pathophysiological states marked by tissue hypoxia. PMID:25108527

  18. High-Throughput Capillary-Electrophoresis Analysis of the Contents of Single Mitochondria

    PubMed Central

    Allen, Peter B.; Doepker, Byron R.; Chiu, Daniel T.

    2009-01-01

    We present a technique for labeling the contents of acidic organelles and rapidly releasing, separating, and detecting their labeled contents with laser-induced fluorescence. We have performed solution-phase separation of the contents of single mitochondria and single 100 nm vesicles, which represents a demonstration of an analyzed volume of ~1 attoliter. Our strategy to label the acidic contents of the mitochondrion relies on the use of the membrane-permeable dye, Oregon Green diacetate succinimidyl ester, and a membrane-permeable base to raise intra-mitochondrial pH. In order to measure the contents, we utilized a glass microfluidic chip and high voltage gradient for millisecond capillary-electrophoresis separation after single-mitochondrion photolysis. We observed heterogeneity among a population of mitochondria with respect to a constituent chemical component. PMID:19344146

  19. Optimization of the separation of Vinca alkaloids by nonaqueous capillary electrophoresis.

    PubMed

    Barthe, Laetitia; Ribet, Jean-Paul; Pélissou, Martine; Degude, Marie-José; Fahy, Jacques; Duflos, Alain

    2002-08-30

    A rapid method for the determination of Vinca alkaloids by nonaqueous capillary electrophoresis with diode array detection has been developed. A group of 11 alkaloids (catharanthine, vinorelbine, anhydrovinblastine, vinflunine, vindoline, 4-O-deacetylvinorelbine, 4-O-deacetylvinflunine, vindesine, vinblastine, 4'-deoxy-20',20'-difluorovinblastine, vincristine) could be readily separated within 10 min. The compounds were separated using a capillary of 38 cm effective length, a running buffer composed of 50 mM ammonium acetate and 0.6 M acetic acid in a methanol-acetonitrile (75:25, v/v) mixture. A constant voltage of 25 kV with a ramp time of 1 min and a 344.7 x 10(3) Pa pressure, applied simultaneously to inlet and outlet buffer vials, were used during sample analysis. Five of these alkaloids were selected for optimization of the separation and for validation studies with respect to specificity, linearity, range, limits of quantification and detection and then accuracy. The feasibility of the assay was demonstrated by analyzing a commercial sample of vinorelbine (Navelbine, ampoule at 10 mg/ml of vinorelbine base). The results were compared with a high-performance liquid chromatography method. PMID:12236508

  20. Simultaneous analysis of oxidized and reduced glutathione in cell extracts by capillary zone electrophoresis.

    PubMed

    Yang, Qing; Krautmacher, Carsten; Schilling, David; Pittelkow, Mark R; Naylor, Stephen

    2002-05-01

    Glutathione (GSH) and glutathione disulfide (GSSG) levels in cells constitute a thiol redox system. They can be used as an indicator of oxidative stress of the cell. In this study, a capillary zone electrophoresis (CZE) method is described that enables quantitation of GSH and GSSG from cellular extracts. The CZE buffer used was 20 mM ammonium acetate containing 5% (v/v) acetic acid at pH 3.1 in conjunction with a polybrene coated capillary operated in reverse polarity mode. Effects of different acids used to prepare cell samples were investigated on CZE performance. The acids include meta phosphoric acid (MPA), trichloroacetic acid (TCA), phosphoric acid (PA) and sulfosalicylic acid (SSA) and are used to stabilize GSH and GSSG before performing CZE analysis. The method features a limit of detection of 4 microM and a limit of quantitation of 12 microM for both GSSG and GSH and recoveries of 94% for GSH and 100% for GSSG. Quantitative analysis of GSSG and GSH in HaCaT cell extracts (5% SSA, w/v) was performed with this method and changes in the ratio of GSH to GSSG in N-ethylmaleimide treated cell sample was observed by comparing with control cell samples. PMID:11920949

  1. Dynamic Protonation Equilibrium of Solvated Acetic Acid

    SciTech Connect

    Gu, Wei; Frigato, Tomaso; Straatsma, TP; Helms, Volkhard H.

    2007-04-13

    For the first time, the dynamic protonation equilibrium between an amino acid side chain analogue and bulk water as well as the diffusion properties of the excess proton were successfully reproduced through unbiased computer simulations. During a 50 ns Q-HOP MD simulation, two different regimes of proton transfer were observed. Extended phases of frequent proton swapping between acetic acid and nearby water were separated by phases where the proton freely diffuses in the simulation box until it is captured again by acetic acid. The pKa of acetic acid was calculated around 3.0 based on the relative population of protonated and deprotonated states and the diffusion coefficient of excess proton was computed from the average mean squared displacement in the simulation. Both calculated values agree well with the experimental measurements.

  2. Modification of gel architecture and TBE/TAE buffer composition to minimize heating during agarose gel electrophoresis

    PubMed Central

    Sanderson, Brian A.; Araki, Naoko; Lilley, Jennifer L.; Guerrero, Gilberto; Lewis, L. Kevin

    2014-01-01

    Agarose gel electrophoresis of DNA and RNA is routinely performed using buffers containing either Tris, acetate and EDTA (TAE) or Tris, borate and EDTA (TBE). Gels are run at a low, constant voltage (~ 10 V/cm) to minimize current and asymmetric heating effects, which can induce band artifacts and poor resolution. In this study, alterations of gel structure and conductive media composition were analyzed to identify factors causing higher electrical currents during horizontal slab gel electrophoresis. Current was reduced when thinner gels and smaller chamber buffer volumes were used, but was not influenced by agarose concentration or the presence of ethidium bromide. Current was strongly dependent upon the amount and type of EDTA used and on the concentrations of the major acid-base components of each buffer. Interestingly, resolution and the mobilities of circular versus linear plasmid DNAs were also affected by the chemical form and amount of EDTA. With appropriate modifications to gel structure and buffer constituents, electrophoresis could be performed at high voltages (20–25 V/cm), reducing run times by up to 3-fold. The most striking improvements were observed with small DNAs and RNAs (10 – 100 bp): high voltages and short run times produced sharper bands and higher resolution. PMID:24637158

  3. Gel Electrophoresis on a Budget to Dye for

    ERIC Educational Resources Information Center

    Yu, Julie H.

    2010-01-01

    Gel electrophoresis is one of the most important tools used in molecular biology and has facilitated the entire field of genetic engineering by enabling the separation of nucleic acids and proteins. However, commercial electrophoresis kits can cost up to $800 for each setup, which is cost prohibitive for most classroom budgets. This article

  4. Gel Electrophoresis on a Budget to Dye for

    ERIC Educational Resources Information Center

    Yu, Julie H.

    2010-01-01

    Gel electrophoresis is one of the most important tools used in molecular biology and has facilitated the entire field of genetic engineering by enabling the separation of nucleic acids and proteins. However, commercial electrophoresis kits can cost up to $800 for each setup, which is cost prohibitive for most classroom budgets. This article…

  5. Inexpensive and Safe DNA Gel Electrophoresis Using Household Materials

    ERIC Educational Resources Information Center

    Ens, S.; Olson, A. B.; Dudley, C.; Ross, N. D., III; Siddiqi, A. A.; Umoh, K. M.; Schneegurt, M. A.

    2012-01-01

    Gel electrophoresis is the single most important molecular biology technique and it is central to life sciences research, but it is often too expensive for the secondary science classroom or homeschoolers. A simple safe low-cost procedure is described here that uses household materials to construct and run DNA gel electrophoresis. Plastic

  6. Inexpensive and Safe DNA Gel Electrophoresis Using Household Materials

    ERIC Educational Resources Information Center

    Ens, S.; Olson, A. B.; Dudley, C.; Ross, N. D., III; Siddiqi, A. A.; Umoh, K. M.; Schneegurt, M. A.

    2012-01-01

    Gel electrophoresis is the single most important molecular biology technique and it is central to life sciences research, but it is often too expensive for the secondary science classroom or homeschoolers. A simple safe low-cost procedure is described here that uses household materials to construct and run DNA gel electrophoresis. Plastic…

  7. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrophoresis apparatus for clinical use. 862.2485 Section 862.2485 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An...

  8. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrophoresis apparatus for clinical use. 862.2485 Section 862.2485 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An...

  9. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrophoresis apparatus for clinical use. 862.2485 Section 862.2485 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An...

  10. Simple differential detection of Entamoeba histolytica and Entamoeba dispar in fresh stool specimens by sodium acetate-acetic acid-formalin concentration and PCR.

    PubMed Central

    Troll, H; Marti, H; Weiss, N

    1997-01-01

    Amoebiasis is caused by two distinct species, a pathogenic form (Entamoeba histolytica) and a nonpathogenic form (Entamoeba dispar), which are morphologically identical. Although the distinction between these two species is of great clinical importance, the methods developed for this purpose either are very time-consuming or involve laborious procedures for isolation of the DNA. We report here a simple PCR method starting with fresh stool specimen that allows for the sensitive and reliable distinction between E. histolytica and E. dispar. After initial concentration by the sodium acetate-acetic acid-formalin (SAF) method and digestion with proteinase K, a 0.88-kb sequence of the multicopy 16S rRNA gene served as a target for PCR amplification. The method starting with unpreserved specimens proved to be very sensitive and was not influenced by the quick exposure to SAF fixative during the initial concentration step. However, storage in SAF fixative prior to testing resulted in a decreased sensitivity within 2 days. The detection limit of the method was as low as one copy of the 16S rRNA gene. No cross-reactivity was observed with other common intestinal protozoa. Mixed infections involving both E. histolytica and E. dispar could easily be detected at a ratio of 1:10,000 by agarose gel electrophoresis or a DNA hybridization immunoassay. PMID:9196177

  11. Novel absorption detection techniques for capillary electrophoresis

    SciTech Connect

    Xue, Y.

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the {mu}M level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  12. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, J.W.; Carrano, A.V.; Davidson, J.C.; Koo, J.C.

    1998-05-05

    A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate. 4 figs.

  13. Electrophoresis in nanochannels: brief review and speculation

    PubMed Central

    Baldessari, Fabio; Santiago, Juan G

    2006-01-01

    The relevant physical phenomena that dominate electrophoretic transport of ions and macromolecules within long, thin nanochannels are reviewed, and a few papers relevant to the discussion are cited. Sample ion transport through nanochannels is largely a function of their interaction with electric double layer. For small ions, this coupling includes the net effect of the external applied field, the internal field of the double layer, and the non-uniform velocity of the liquid. Adsorption/desorption kinetics and the effects of surface roughness may also be important in nanochannel electrophoresis. For macromolecules, the resulting motion is more complex as there is further coupling via steric interactions and perhaps polarization effects. These complex interactions and coupled physics represent a valuable opportunity for novel electrophoretic and chromatographic separations. PMID:17116262

  14. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, Richard D. [Richland, WA; Udseth, Harold R. [Richland, WA; Olivares, Jose A. [Los Alamos, NM

    1994-10-18

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit.

  15. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, R.D.; Udseth, H.R.; Olivares, J.A.

    1994-10-18

    A system and method for analyzing molecular constituents of a composition sample include: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g.,{+-}2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit. 21 figs.

  16. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, Richard P.; Udseth, Harold R.; Olivares, Jose A.

    1989-01-01

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit.

  17. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, R.P.; Udseth, H.R.; Olivares, J.A.

    1989-12-05

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit. 21 figs.

  18. Diode array detection in capillary electrophoresis.

    PubMed

    Heiger, D N; Kaltenbach, P; Sievert, H J

    1994-10-01

    Diode array detection (DAD) in capillary electrophoresis (CE) offers similar advantages over single-wavelength detection as it does in high performance liquid chromatography (HPLC). Thus, confirmation of compound identity and establishment of peak purity are critical issues in CE, necessitating sensitive and specific detection. With an optimized optical system, DAD yields sensitivity comparable to that of single or variable wavelength detectors. Sensitivity can be further improved three to five times by use of expanded pathlength capillaries employing the so-called bubble cell. Optimization of optical design, as well as maintenance of spectral fidelity, will be discussed in this work. A variety of applications of CE, and specifically of micellar electrokinetic capillary chromatography (MEKC), with emphasis on quantitative analysis, sensitivity, linearity, spectral identification, and peak purity verification will be presented. The use of spectral information for peak tracking in MEKC method development and for the assessment of purity of electrodistorted peaks will also be illustrated. PMID:7895713

  19. [Chiral separation of dipeptides by capillary electrophoresis].

    PubMed

    Cheng, Yan; Bai, Min; Wang, Xinmei; Ming, Yongfei; You, Jinmao

    2006-03-01

    Peptides are increasingly used as pharmaceutical agents. Many small peptides are the essential compounds in biological systems. Direct chiral separation of dipeptide derivatives using 9-(2-carbazole) ethyl chloroformate (CEOC) as the derivatizing agent by capillary electrophoresis (CE) with beta-cyclodextrin (beta-CD) and sodium deoxycholate (SDC) as chiral selectors has been developed. It has been well recognized that the combination of the binary selectors can enhance the selectivity and resolution instead of either beta-CD or SDC alone. The molar ratio of the binary chiral selectors, the buffer concentration and pH of Tris-H3PO4, organic modifier were studied and optimized. Complete chiral separations for 14 dipeptide derivatives using beta-CD and SDC as binary chiral selectors were obtained. The results indicated that each pair of D/L chiral resolution was more than 3.63, and the highest resolution for Gly-Ala was 43.14. PMID:16830473

  20. Dating silk by capillary electrophoresis mass spectrometry.

    PubMed

    Moini, Mehdi; Klauenberg, Kathryn; Ballard, Mary

    2011-10-01

    A new capillary electrophoresis mass spectrometry (CE-MS) technique is introduced for age estimation of silk textiles based on amino acid racemization rates. With an L to D conversion half-life of ~2500 years for silk (B. mori) aspartic acid, the technique is capable of dating silk textiles ranging in age from several decades to a few-thousand-years-old. Analysis required only ~100 μg or less of silk fiber. Except for a 2 h acid hydrolysis at 110 °C, no other sample preparation is required. The CE-MS analysis takes ~20 min, consumes only nanoliters of the amino acid mixture, and provides both amino acid composition profiles and D/L ratios for ~11 amino acids. PMID:21913691

  1. DNA sequencing using capillary array electrophoresis

    SciTech Connect

    Huang, X.C.; Quesada, M.A.; Mathies, R.A.

    1992-09-15

    A DNA sequencing method is presented that utilizes capillary array electrophoresis, two-color fluorescence detection, and a two-dye labeling protocol. Sanger DNA sequencing fragments are separated on an array of capillaries and detected on-column using a two-color, laser-excited, confocal-fluorescence scanner. The four set of DNA sequencing fragments are separated in a single capillary and then distinguished by using a binary coding scheme where each fragment set is labeled with a characteristic ratio of two dye-labeled primers. Since only two dye-labeled primers are required, it is possible to select dyes that have identical mobility shifts. It is also shown that the ratio of the signal in the two detection channels provides a reliable identification of the sequencing fragment. DNA sequencing results on a 25-capillary array are presented. 30 refs., 6 figs, 1 tab.

  2. High resolution detection system of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Li Qiang; Shi, Yan; Zheng, Hua; Lu, Zu Kang

    2007-12-01

    The capillary electrophoresis (CE) with laser induced fluorescence detection (LIFD) system was founded according to confocal theory. The 3-D adjustment of the exciting and collecting optical paths was realized. The photomultiplier tube (PMT) is used and the signals are processed by a software designed by ourselves. Under computer control, high voltage is applied to appropriate reservoirs and to inject and separate DNA samples respectively. Two fluorescent dyes Thiazole Orange (TO) and SYBR Green I were contrasted. With both of the dyes, high signals-to-noise images were obtained with the CE-LIFD system. The single-bases can be distinguished from the electrophoretogram and high resolution of DNA sample separation was obtained.

  3. DNA Electrophoresis on Micro-Patterned Surfaces

    NASA Astrophysics Data System (ADS)

    Petersen, Eric; Li, Bingquan; Samuilov, Vladimir; Rafailovich, Miriam; Sokolov, Jonathan

    2004-03-01

    Surface electrophoresis of DNA on two-dimensional chemical micropatterns was studied. Micropatterns of alternating gold and silicon strips were stamped onto silicon wafers by the Whitesides microcontact printing method [1]. The mobility of DNA across the patterned surfaces with an electric field oriented normal and parallel to the strips in the plane of the surface was measured via laser induced fluorescence detection. The interaction of DNA with the surface was imaged with a confocal microscope in laser scanning mode with a CCD camera. Results suggest the measured mobility of DNA on a chemically micropatterned surface depends on the period size of the gold striped pattern relative to the natural chain length of the DNA molecule. The effect of two-dimensional patterning will be discussed. 1. A. Kumar and G.M. Whitesides, Appl. Phys. Lett. 63, 2002 (1993).

  4. Flow structure in continuous flow electrophoresis chambers

    NASA Technical Reports Server (NTRS)

    Deiber, J. A.; Saville, D. A.

    1982-01-01

    There are at least two ways that hydrodynamic processes can limit continiuous flow electrophoresis. One arises from the sensitivity of the flow to small temerature gradients, especially at low flow rates and power levels. This sensitivity can be suppressed, at least in principle, by providing a carefully tailored, stabilizing temperature gradient in the cooling system that surrounds the flow channel. At higher power levels another limitation arises due to a restructuring of the main flow. This restructuring is caused by buoyancy, which is in turn affected by the electro-osmotic crossflow. Approximate solutions to appropriate partial differential equations have been computed by finite difference methods. One set of results is described here to illustrate the strong coupling between the structure of the main (axial) flow and the electro-osmotic flow.

  5. Two-dimensional Gel Electrophoresis (2DE)

    NASA Astrophysics Data System (ADS)

    Kłodzińska, Ewa; Buszewski, Bogusław

    The chemical compounds, which are present in the environment, increasingly cause bad effects on health. The most serious effects are tumors and various mutations at the cellular level. Such compounds, from the analytical point of view, can serve the function of biomarkers, constituting measurable changes in the organism's cells and biochemical processes occurring therein. The challenge of the twenty-first century is therefore searching for effective and reliable methods of identification of biomarkers as well as understanding bodily functions, which occur in living organisms at the molecular level. The irreplaceable tool for these examinations is proteomics, which includes both quality and quantity analysis of proteins composition, and also makes it possible to learn their functions and expressions. The success of proteomics examinations lies in the usage of innovative analytical techniques, such as electromigration technique, two-dimensional electrophoresis in polyacrylamide gel (2D PAGE), liquid chromatography, together with high resolution mass spectrometry and bio-informatical data analysis. Proteomics joins together a number of techniques used for analysis of hundreds or thousands of proteins. Its main task is not the examination of proteins inside the particular tissue but searching for the differences in the proteins' profile between bad and healthy tissues. These differences can tell us a lot regarding the cause of the sickness as well as its consequences. For instance, using the proteomics analysis it is possible to find relatively fast new biomarkers of tumor diseases, which in the future will be used for both screening and foreseeing the course of illness. In this chapter we focus on two-dimensional electrophoresis because as it seems, it may be of enormous importance when searching for biomarkers of cancer diseases.

  6. Investigations of the inhibitory effects of tocopherol (vitamin E) on free radical deterioration of cellular membranes

    NASA Technical Reports Server (NTRS)

    Richardson, D.

    1975-01-01

    The inhibitory effects are investigated of d,1-alpha-tocopherol and d,1-alpha-tocopheryl acetate on the free radical deterioration of cellular membranes. The level of toxicity of d,1-alpha-tocopherol and d,1-alpha-tocopheryl acetate in mice is determined.

  7. Nonaqueous capillary electrophoresis with laser-induced fluorescence detection: a case study of comparison with aqueous media.

    PubMed

    Zhou, Lei; Wang, Weiping; Wang, Shumin; Hui, Yang; Luo, Zhi; Hu, Zhide

    2008-03-24

    A novel method based on separation by nonaqueous capillary electrophoresis (NACE) combined with laser-induced fluorescence (LIF) detection was developed and compared with classic aqueous modes of electrophoresis in terms of resolution of solutes of interest and sensitivity of the fluorescence detection. Catecholamines derivatized with 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) were chosen as test analytes for their subtle fluorescence properties. In aqueous systems, capillary zone electrophoresis (CZE) was not suitable for the analysis of test analytes due to complete fluorescence quenching of NBD-labeled catecholamines in neat aqueous buffer. The addition of micelles or microemulsion droplets into aqueous running buffer can dramatically improve the fluorescence response, and the enhancement seems to be comparable for micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC). As another alternative, NACE separation was advantageous when performing the analysis under the optimum separation condition of 20mM sodium tetraborate, 20mM sodium dodecyl sulfate (SDS), 0.1% (v/v) glacial acetic acid, 20% (v/v) acetonitrile (ACN) in methanol medium after derivatization in ACN/dimethyl sulfoxide (DMSO) (3:2, v/v) mixed aprotic solvents containing 20mM ammonium acetate. Compared with derivatization and separation in aqueous media, NACE-LIF procedure was proved to be superior, providing high sensitivity and short migration time. Under respective optimum conditions, the NACE procedure offered the best fluorescence response with 5-24 folds enhancement for catecholamines compared to aqueous procedures. In addition, the mechanisms of derivatization and separation in nonaqueous media were elucidated in detail. PMID:18328323

  8. Relaxometry, luminescence measurements, electrophoresis, and animal biodistribution of lanthanide(III) complexes of some polyaza macrocyclic acetates containing pyridine

    SciTech Connect

    Kim, W.D.; Sherry, A.D.; Kiefer, G.E.; McMillan, K.; Maton, F.; Muller, R.N.

    1995-04-12

    Four Gd{sup 3+} complexes [Gd(BP2A){sup +}, Gd(PC2A){sup +}, Gd(PCTA){sup 0}, and Gd(BPO4A){sup {minus}}] with polyazamacrocyclic ligands that contain a pyridine moiety were prepared and examined for possible use as MRI contrast enhancement agents. The authors estimated the number of inner sphere water molecules (q{sub Gd}) for the Gd{sup 3+} complexes from the values of q found for the Tb{sup 3+} and/or Eu{sup 3+} complexes by luminescence lifetime measurements. It was estimated that q{sub Gd} = 3.5, 3.3, 2.4, and 0.2 for Gd(BP2A){sup +}, Gd(PC2A){sup +}, Gd(PCTA){sup 0}, and Gd(BPO4A){sup {minus}}, respectively. The inner sphere relaxivities (r{sub 1,inner}) of these tetraaza macrocyclic complexes were higher than that of Gd(DOTA){sup {minus}} [i.e. 6.79 for Gd(BP2A){sup +}, 6.21 for Gd(PC2A){sup +}, and 4.60 for Gd(PCTA){sup 0} mM{sup {minus}1}s{sup {minus}1} at 40 MHz and 25{degrees}C], but the normalized relaxivities per q{sub Gd} (1.94, 1.88, and 1.92 mM{sup {minus}1}s{sup {minus}1}, respectively) were comparable to that of Gd(DOTA){sup {minus}}. A quantitative treatment of the NMRD profiles based on Solomon-Bloembergen-Morgan theory, using the NMRD profile of Gd(BPO4A){sup {minus}} to correct for an outer sphere contribution, showed that the complexes exhibit characteristics similar to that of Gd(DOTA){sup {minus}} but with shorter electronic relaxation times. Tissue biodistribution results using radioactive {sup 153}Sm and {sup 159}Gd complexes in rats indicate that the cationic [{sup 153}Sm-(BP2A){sup +} and {sup 153}Sm(PC2A){sup +}] complexes accumulate preferably in the bone tissue while the neutral [{sup 153}Sm-(PCTA){sup 0}] and anionic [{sup 153}Sm(BPO4A){sup {minus}}] complexes appear to have renal clearances similar to those of other low molecular weight contrast agents [i.e. Gd(DTPA){sup 2{minus}} and Gd(DOTA){sup {minus}}].

  9. Recent advances in 2D electrophoresis: an array of possibilities.

    PubMed

    Van den Bergh, Gert; Arckens, Lutgarde

    2005-04-01

    2D electrophoresis is currently the most widespread technique used for performing functional proteomics (i.e., the large-scale analysis of alterations in protein expression levels). Nevertheless, several limitations inherent to this technology have restricted the full potential of this protein differential display methodology for years. This has even led to the abandonment of 2D electrophoresis by several groups that switched to performing gel-free functional proteomics analyses based on liquid chromatography and mass spectrometry. Meanwhile, important recent advances in 2D electrophoresis, such as the introduction of fluorescent 2D difference gel electrophoresis and numerous protein prefractionation techniques, have thoroughly modernized 2D electrophoresis, making it again one of the preferred methods for the analysis of protein expression differences in many laboratories. PMID:15892568

  10. Membrane Processes.

    PubMed

    Pellegrin, Marie-Laure; Sadler, Mary E; Greiner, Anthony D; Aguinaldo, Jorge; Min, Kyungnan; Zhang, Kai; Arabi, Sara; Burbano, Marie S; Kent, Fraser; Shoaf, Robert

    2015-10-01

    This review, for literature published in 2014, contains information related to membrane processes for municipal and industrial applications. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following topics: pretreatment, membrane bioreactor (MBR) configuration, design, nutrient removal, operation, industrial treatment, fixed film and anaerobic membrane systems, reuse, microconstituents removal, membrane technology advances, membrane fouling, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include: Biological Fixed-Film Systems, Activated Sludge and Other Aerobic Suspended Culture Processes, Anaerobic Processes, Water Reclamation and Reuse. The following sections might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants. PMID:26420079

  11. Multicomponent membranes

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  12. Observations on Membranes of Mycoplasma laidlawii Strain B

    PubMed Central

    Smith, P. F.; Koostra, W. L.; Mayberry, W. R.

    1969-01-01

    The cytoplasmic membrane of Mycoplasma laidlawii strain B is solubilized by anionic and nonionic detergents, succinylation, phospholipase A, alkaline phosphatase, trypsin, and chymotrypsin. Cationic detergents are without effect, as are chelating agents, even in the presence of high concentrations of monovalent cation. The detergent-solubilized membrane exhibits one peak in the analytical ultracentrifuge, but the sedimentation coefficient is dependent upon concentration of detergent. Simple dialysis does not remove all of the sodium dodecylsulfate except from lipid-depleted membrane particles. Membranes bind sodium dodecylsulfate but acetone powders of membranes do not. Sulfated alcohols with chain lengths of C14 and C16 are more tightly bound than dodecylsulfate. A constant amount of di- and trivalent cation is bound by the membrane upon aggregation. Only a portion of this cation is removable with chelating agents. No chelating agent is bound by these aggregates. A portion of the lipid-depleted membrane particles is solubilized by negatively charged lipids and detergents, giving rise to aggregates in the presence of divalent cation. Fractionations of detergent-solubilized membranes by preparative gel electrophoresis and ammonium sulfate were inconclusive. Density gradient centrifugation of succinylated membranes yielded at least five fractions which exhibited homogeneity by ultracentrifugation. Analytical gel electrophoresis of these fractions demonstrated heterogeneity. The composition of these five fractions suggested separation of protein from lipid. PMID:5361209

  13. Analysis of the Microbial Community in an Acidic Hollow-Fiber Membrane Biofilm Reactor (Hf-MBfR) Used for the Biological Conversion of Carbon Dioxide to Methane

    PubMed Central

    Jeon, Byoung Seung; Choi, Okkyoung; Kim, Hyun Wook; Um, Youngsoon; Lee, Dong-Hoon; Sang, Byoung-In

    2015-01-01

    Hydrogenotrophic methanogens can use gaseous substrates, such as H2 and CO2, in CH4 production. H2 gas is used to reduce CO2. We have successfully operated a hollow-fiber membrane biofilm reactor (Hf-MBfR) for stable and continuous CH4 production from CO2 and H2. CO2 and H2 were diffused into the culture medium through the membrane without bubble formation in the Hf-MBfR, which was operated at pH 4.5–5.5 over 70 days. Focusing on the presence of hydrogenotrophic methanogens, we analyzed the structure of the microbial community in the reactor. Denaturing gradient gel electrophoresis (DGGE) was conducted with bacterial and archaeal 16S rDNA primers. Real-time qPCR was used to track changes in the community composition of methanogens over the course of operation. Finally, the microbial community and its diversity at the time of maximum CH4 production were analyzed by pyrosequencing methods. Genus Methanobacterium, related to hydrogenotrophic methanogens, dominated the microbial community, but acetate consumption by bacteria, such as unclassified Clostridium sp., restricted the development of acetoclastic methanogens in the acidic CH4 production process. The results show that acidic operation of a CH4 production reactor without any pH adjustment inhibited acetogenic growth and enriched the hydrogenotrophic methanogens, decreasing the growth of acetoclastic methanogens. PMID:26694756

  14. Analysis of the Microbial Community in an Acidic Hollow-Fiber Membrane Biofilm Reactor (Hf-MBfR) Used for the Biological Conversion of Carbon Dioxide to Methane.

    PubMed

    Shin, Hyun Chul; Ju, Dong-Hun; Jeon, Byoung Seung; Choi, Okkyoung; Kim, Hyun Wook; Um, Youngsoon; Lee, Dong-Hoon; Sang, Byoung-In

    2015-01-01

    Hydrogenotrophic methanogens can use gaseous substrates, such as H2 and CO2, in CH4 production. H2 gas is used to reduce CO2. We have successfully operated a hollow-fiber membrane biofilm reactor (Hf-MBfR) for stable and continuous CH4 production from CO2 and H2. CO2 and H2 were diffused into the culture medium through the membrane without bubble formation in the Hf-MBfR, which was operated at pH 4.5-5.5 over 70 days. Focusing on the presence of hydrogenotrophic methanogens, we analyzed the structure of the microbial community in the reactor. Denaturing gradient gel electrophoresis (DGGE) was conducted with bacterial and archaeal 16S rDNA primers. Real-time qPCR was used to track changes in the community composition of methanogens over the course of operation. Finally, the microbial community and its diversity at the time of maximum CH4 production were analyzed by pyrosequencing methods. Genus Methanobacterium, related to hydrogenotrophic methanogens, dominated the microbial community, but acetate consumption by bacteria, such as unclassified Clostridium sp., restricted the development of acetoclastic methanogens in the acidic CH4 production process. The results show that acidic operation of a CH4 production reactor without any pH adjustment inhibited acetogenic growth and enriched the hydrogenotrophic methanogens, decreasing the growth of acetoclastic methanogens. PMID:26694756

  15. Synthesis of Cellulose Acetate from Cotton Byproducts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton burr and cottonseed hull are relatively inexpensive cotton byproducts. In an effort to derive greater value out of these natural renewable materials, we have succeeded in converting part of them into cellulose acetate without prior chemical breakdown or physical separation of cellulose, ligni...

  16. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium acetate. 184.1185 Section 184.1185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS §...

  17. Advanced Colloids Experiment (ACE-T1)

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ron; Brown, Dan; Eustace, John

    2015-01-01

    Increment 45 - 46 Science Symposium presentation of Advanced Colloids Experiment (ACE-T1) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  18. 21 CFR 173.228 - Ethyl acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl acetate. 173.228 Section 173.228 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Solvents, Lubricants, Release Agents and...

  19. 21 CFR 173.228 - Ethyl acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethyl acetate. 173.228 Section 173.228 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Solvents, Lubricants, Release Agents and...

  20. 21 CFR 173.228 - Ethyl acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethyl acetate. 173.228 Section 173.228 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Solvents, Lubricants, Release Agents and...

  1. 21 CFR 173.228 - Ethyl acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethyl acetate. 173.228 Section 173.228 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Solvents, Lubricants, Release Agents and...

  2. Process for the preparation of vinyl acetate

    DOEpatents

    Tustin, Gerald Charles (Kingsport, TN); Zoeller, Joseph Robert (Kingsport, TN); Depew, Leslie Sharon (Kingsport, TN)

    1998-01-01

    This invention pertains to the preparation of vinyl acetate by contacting within a contact zone a mixture of ketene and acetaldehyde with an acid catalyst at about one bar pressure and between about 85.degree. and 200.degree. C. and removing the reaction products from the contact zone.

  3. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS §...

  4. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives §...

  5. Heat Bonding of Irradiated Ethylene Vinyl Acetate

    NASA Technical Reports Server (NTRS)

    Slack, D. H.

    1986-01-01

    Reliable method now available for joining parts of this difficult-tobond material. Heating fixture encircles ethylene vinyl acetate multiplesocket part, providing heat to it and to tubes inserted in it. Fixtures specially designed to match parts to be bonded. Tube-and-socket bonds made with this technique subjected to tensile tests. Bond strengths of 50 percent that of base material obtained consistently.

  6. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  7. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  8. Process for the preparation of vinyl acetate

    DOEpatents

    Tustin, G.C.; Zoeller, J.R.; Depew, L.S.

    1998-02-17

    This invention pertains to the preparation of vinyl acetate by contacting within a contact zone a mixture of ketene and acetaldehyde with an acid catalyst at about one bar pressure and between about 85 and 200 C and removing the reaction products from the contact zone.

  9. 21 CFR 522.533 - Deslorelin acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Deslorelin acetate. 522.533 Section 522.533 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS §...

  10. 21 CFR 556.380 - Melengestrol acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Melengestrol acetate. 556.380 Section 556.380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS TOLERANCES FOR RESIDUES OF NEW ANIMAL DRUGS IN FOOD...

  11. 21 CFR 556.380 - Melengestrol acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Melengestrol acetate. 556.380 Section 556.380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS TOLERANCES FOR RESIDUES OF NEW ANIMAL DRUGS IN FOOD...

  12. Peptide mapping of basic proteins by proteolysis in acetic acid/urea-minislab polyacrylamide gels.

    PubMed

    Davie, J R

    1985-02-01

    A method to obtain peptide maps of basic proteins on acetic acid/urea (AU) -polyacrylamide minislab gels is presented. Basic proteins such as the histones are digested with Staphylococcus aureus V8 protease in the stacking gel (pH 4) of an AU-polyacrylamide minislab gel. As the peptides are resolved in the AU minislab gel on the basis of charge and size, it is possible to separate peptides containing modified amino acids from the unmodified, parent peptide. The peptide(s) containing the modified residue may be identified following electrophoresis on a second-dimension sodium dodecyl sulfate-polyacrylamide minislab gel. This procedure will be useful for comparing histone variants and for the study of histone modifications. PMID:3887981

  13. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, K.D.; Chu, T.J.; Pitt, W.G.

    1992-05-12

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through amino groups contained on the surface. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to the target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membranes may be reprobed numerous times. No Drawings

  14. Phenyl Acetate Preparation from Phenol and Acetic Acid: Reassessment of a Common Textbook Misconception.

    ERIC Educational Resources Information Center

    Hocking, M. B.

    1980-01-01

    Reassesses a common textbook misconception that "...phenols cannot be esterified directly." Results of experiments are discussed and data tables provided of an effective method for the direct preparation of phenyl acetate. (CS)

  15. Extended length microchannels for high density high throughput electrophoresis systems

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  16. Redox options in two-dimensional electrophoresis.

    PubMed

    Wait, R; Begum, S; Brambilla, D; Carabelli, A M; Conserva, F; Rocco Guerini, A; Eberini, I; Ballerio, R; Gemeiner, M; Miller, I; Gianazza, E

    2005-05-01

    Two-dimensional electrophoresis is usually run on fully reduced samples. Under these conditions even covalently bound oligomers are dissociated and individual polypeptide chains may be fully unfolded by both, urea and SDS, which maximizes the number of resolved components and allows their pI and M(r) to be most accurately evaluated. However, various electrophoretic protocols for protein structure investigation require a combination of steps under varying redox conditions. We review here some of the applications of these procedures. We also present some original data about a few related samples -- serum from four species: Homo sapiens, Mus musculus, Rattus norvegicus, Bos taurus -- which we run under fully unreduced and fully reduced conditions as well as with reduction between first and second dimension. We demonstrate that in many cases the unreduced proteins migrate with a better resolution than reduced proteins, mostly in the crowded 'alpha-globulin' area of pI 4.5-6 and M(r) 50-70 kDa. PMID:15744479

  17. Contact charge electrophoresis: experiment and theory.

    PubMed

    Drews, Aaron M; Cartier, Charles A; Bishop, Kyle J M

    2015-04-01

    Contact charge electrophoresis (CCEP) uses steady electric fields to drive the continuous, oscillatory motion of conductive particles and droplets between two or more electrodes. These rapid oscillations can be rectified to direct the motion of objects within microfluidic environments using low-power, dc voltage. Here, we compare high precision experimental measurements of CCEP within a microfluidic system to equally detailed theoretical predictions on the motion of a conductive particle between parallel electrodes. We use a simple, capillary microfluidic platform that combines high-speed imaging with precision electrical measurements to enable the synchronized acquisition of both the particle location and the electric current due to particle motion. The experimental results are compared to those of a theoretical model, which relies on a Stokesian dynamics approach to accurately describe both the electrostatic and hydrodynamic problems governing particle motion. We find remarkable agreement between theory and experiment, suggesting that particle motion can be accurately captured by a combination of classical electrostatics and low-Reynolds number hydrodynamics. Building on this agreement, we offer new insight into the charge transfer process that occurs when the particle nears contact with an electrode surface. In particular, we find that the particle does not make mechanical contact with the electrode but rather that charge transfer occurs at finite surface separations of >0.1 μm by means of an electric discharge through a thin lubricating film. We discuss the implications of these findings on the charging of the particle and its subsequent dynamics. PMID:25785396

  18. Simulating Electrophoresis with Discrete Charge and Drag

    NASA Astrophysics Data System (ADS)

    Mowitz, Aaron J.; Witten, Thomas A.

    A charged asymmetric rigid cluster of colloidal particles in saline solution can respond in exotic ways to an electric field: it may spin or move transversely. These distinctive motions arise from the drag force of the neutralizing countercharge surrounding the cluster. Because of this drag, calculating the motion of arbitrary asymmetric objects with nonuniform charge is impractical by conventional methods. Here we present a new method of simulating electrophoresis, in which we replace the continuous object and the surrounding countercharge with discrete point-draggers, called Stokeslets. The balance of forces imposes a linear, self-consistent relation among the drag and Coulomb forces on the Stokeslets, which allows us to easily determine the object's motion via matrix inversion. By explicitly enforcing charge+countercharge neutrality, the simulation recovers the distinctive features of electrophoretic motion to few-percent accuracy using as few as 1000 Stokeslets. In particular, for uniformly charged objects, we observe the characteristic Smoluchowski independence of mobility on object size and shape. We then discuss electrophoretic motion of asymmetric objects, where our simulation method is particularly advantageous. This work is supported by a Grant from the US-Israel Binational Science Foundation.

  19. Determination of acarbose by capillary zone electrophoresis.

    PubMed

    Lachmann, B; Noe, C R

    2013-07-01

    Acarbose (Glucobay, Bayer AG) acts as a potent alpha-glucosidase-inhibitor, which delays the intestinal starch digestion resulting in a reduction of postprandial blood glucose and insulin levels. Acarbose is a pseudo-tetrasaccharide, with two D-glucose units linked via an alpha 1-->4 glycosidic bond to acarviosin, which is a N-glycoside composed of an unsaturated cyclitol and 4-amino-4,6-dideoxy-alpha-D-glucopyranose. Several methods for the determination of acarbose by capillary electrophoresis can be found in literature. They are based either on the derivatisation with 7-aminonaphthalene-1,3-disulfonic acid (ANDS) or on the detection of the unsaturated cyclitol at wavelengths below 200 nm. The aim of our work was the determination of acarbose making use of a previously developed method based on reductive amination with S-phenylethylamine. The aminoalditols generated in the reaction formed differently charged borate-complexes depending on the configuration of the sugar. After successful method optimisation we were able to separate two potential impurities of acarbose, D-maltose und D-glucose. For the quantitation of acarbose in Glucobay tablets an additional borate-buffer system was established, reducing the total time of analysis to less than 10 min. PMID:23923633

  20. Microfab-less Microfluidic Capillary Electrophoresis Devices

    PubMed Central

    Segato, Thiago P.; Bhakta, Samir A.; Gordon, Matthew; Carrilho, Emanuel; Willis, Peter A.; Jiao, Hong; Garcia, Carlos D.

    2013-01-01

    Compared to conventional bench-top instruments, microfluidic devices possess advantageous characteristics including great portability potential, reduced analysis time (minutes), and relatively inexpensive production, putting them on the forefront of modern analytical chemistry. Fabrication of these devices, however, often involves polymeric materials with less-than-ideal surface properties, specific instrumentation, and cumbersome fabrication procedures. In order to overcome such drawbacks, a new hybrid platform is proposed. The platform is centered on the use of 5 interconnecting microfluidic components that serve as the injector or reservoirs. These plastic units are interconnected using standard capillary tubing, enabling in-channel detection by a wide variety of standard techniques, including capacitively-coupled contactless conductivity detection (C4D). Due to the minimum impact on the separation efficiency, the plastic microfluidic components used for the experiments discussed herein were fabricated using an inexpensive engraving tool and standard Plexiglas. The presented approach (named 52-platform) offers a previously unseen versatility: enabling the assembly of the platform within minutes using capillary tubing that differs in length, diameter, or material. The advantages of the proposed design are demonstrated by performing the analysis of inorganic cations by capillary electrophoresis on soil samples from the Atacama Desert. PMID:23585815

  1. Differentiation of enantiomers by capillary electrophoresis.

    PubMed

    Scriba, Gerhard K E

    2013-01-01

    Capillary electrophoresis (CE) has matured to one of the major liquid phase enantiodifferentiation techniques since the first report in 1985. This can be primarily attributed to the flexibility as well as the various modes available including electrokinetic chromatography (EKC), micellar electrokinetic chromatography (MEKC), and microemulsion electrokinetic chromatography (MEEKC). In contrast to chromatographic techniques, the chiral selector is mobile in the background electrolyte. Furthermore, a large variety of chiral selectors are available that can be easily combined in the same separation system. In addition, the migration order of the enantiomers can be adjusted by a number of approaches. In CE enantiodifferentiations the separation principle is comparable to chromatography while the principle of the movement of the analytes in the capillary is based on electrophoretic phenomena. The present chapter will focus on mechanistic aspects of CE enantioseparations including enantiomer migration order and the current understanding of selector-selectand structures. Selected examples of the basic enantioseparation modes EKC, MEKC, and MEEKC will be discussed. PMID:23666080

  2. Nonlinear electrophoresis of ideally polarizable particles

    NASA Astrophysics Data System (ADS)

    Figliuzzi, Bruno; Chan, Wai Hong Ronald; Buie, Cullen R.

    2013-11-01

    We focus in this presentation on the nonlinear electrophoresis of ideally polarizable particles. At high applied voltages, significant ionic exchanges occur between the EDL which surrounders the particle and the bulk solution. In this situation, the velocity field, the electric potential and the ionic concentration at the immediate vicinity of the particle are described by a complicated set of coupled nonlinear partial differential equations. These equations are classically considered in the limit of a weak applied field, which enables further analytical progress (Khair and Squires, Phys. Fluids, 2010). However, in the general case, the equation governing the electrophoretic motion of the particle must be solved numerically. In this study, we rely on a numerical approach to determine the electric potential, ionic concentration and velocity field in the bulk solution surrounding the particle. The numerical simulations use a pseudo-spectral which was used successfully by Chu and Bazant to determine the electric potential and the ionic concentration around an ideally polarizable metallic sphere (Physical Review E, 2006). Our numerical model also incorporates the steric model developed by Kilic et al. in 2007 to account for crowding effects in the electric double layer.

  3. Capillary electrophoresis for total glycosaminoglycan analysis.

    PubMed

    Ucakturk, Ebru; Cai, Chao; Li, Lingyun; Li, Guoyun; Zhang, Fuming; Linhardt, Robert J

    2014-07-01

    A capillary zone electrophoresis-laser-induced fluorescence detection (CZE-LIF) method was developed for the simultaneous analysis of disaccharides derived from heparan sulfate, chondroitin sulfate/dermatan sulfate, hyaluronan, and keratan sulfate. Glycosaminoglycans (GAGs) were first depolymerized with the mixture of GAG lyases (heparinase I, II, III and chondroitinase ABC and chondroitinase AC II) and GAG endohydrolase (keratinase II) and the resulting disaccharides were derivatized by reductive amination with 2-aminoacridone. Nineteen fluorescently labeled disaccharides were separated using 50 mM phosphate buffer (pH 3.3) under reversed polarity at 25 kV. Using these conditions, all the disaccharides examined were baseline separated in less then 25 min. This CZE-LIF method gave good reproducibility for both migration time (≤1.03% for intraday and ≤4.4% for interday) and the peak area values (≤5.6% for intra- and ≤8.69% for interday). This CZE-LIF method was used for profiling and quantification of GAG derivative disaccharides in bovine cornea. The results show that the current CZE-LIF method offers fast, simple, sensitive, reproducible determination of disaccharides derived from total GAGs in a single run. PMID:24817364

  4. Capillary electrophoresis for total glycosaminoglycan analysis

    PubMed Central

    Ucakturk, Ebru; Cai, Chao; Li, Lingyun; Li, Guoyun; Zhang, Fuming; Linhardt, Robert J.

    2014-01-01

    A capillary zone electrophoresis-laser induced fluorescence detection (CZE-LIF) method was developed for the simultaneous analysis of disaccharides derived from heparan sulfate, chondroitin sulfate/dermatan sulfate, hyaluronan and keratan sulfate. Glycosaminoglycans (GAGs) were first depolymerized with the mixture of GAG lyases (heparinase I, II, III and chondroitinase ABC and chondroitinase AC II) and GAG endohydrolase (keratinase II) and the resulting disaccharides were derivatized by reductive amination with 2-aminoacridone. Nineteen fluorescently labeled disaccharides were separated using 50 mM phosphate buffer (pH 3.3) under reversed polarity at 25 kV. Using these conditions, all the disaccharides examined were baseline-separated in less then 25 min. This CZE-LIF method gave good reproducibility both migration time (≤ 1.03% for intra-day and ≤ 4.4% for inter-day) and the peak area values (≤ 5.6% for intra- and ≤ 8.69% for inter-day). This CZE-LIF method was used for profiling and quantification of GAG derivative disaccharides in bovine cornea. The results shows that the current CZE-LIF method offers fast, simple, sensitive, reproducible determination of disaccharides derived from total GAGs in a single run. PMID:24817364

  5. Analytical instrument qualification in capillary electrophoresis.

    PubMed

    Cianciulli, Claudia; Wätzig, Hermann

    2012-06-01

    Capillary electrophoresis (CE) is a well-established and frequently used technique in the pharmaceutical industry. Therefore an appropriate analytical instrument qualification (AIQ) is required for quality assurance. AIQ forms the basis of a quality management followed by analytical method validation, system suitability tests (SSTs) and quality control checks. Two parts of the AIQ, namely the operational qualification (OQ) and the performance qualification (PQ) are of particular interest in the daily routine of the laboratory. A new concept for OQ and PQ was developed to assure the correct function of a CE system. The significance of each parameter, possible test methods as well as acceptance criteria will be presented and discussed in detail. Especially temperature adjustment by the cooling system and the voltage supply must be tested for accurate and precise operation. The detector noise, wavelength accuracy and detector linearity have to be checked as well. Finally, the injection linearity, accuracy and precision need to be qualified. The proposed set of qualification procedures is easy to implement and was already tested on five CE instruments from three different manufacturers. A time- and cost-saving continuous PQ was derived, using results from method-specific SSTs and some additional experiments. This holistic concept continuously surveys the most relevant parameters, hence assuring the suitability of the used instruments and decreasing their downtimes. PMID:22736350

  6. Unexpected surface chemistry in capillaries for electrophoresis.

    PubMed

    Kaupp, S; Bubert, H; Baur, L; Nelson, G; Wätzig, H

    2000-10-13

    Good and reproducible capillary quality is needed to develop robust methods and to facilitate method transfer in CE. Physical surface defects no longer play a major role in variability of fused-silica capillaries. Nevertheless, problems are frequently being reported when buffers in the pH range between 4 and 7 are used. Thus the surface chemistry has been studied by X-ray photoelectron spectroscopy. Silicon-carbon bindings have been found on inner capillary surfaces for electrophoresis. This binding type is not completely removed by pre-conditioning with 1 M NaOH for 30 min. This corresponds to the result, that capillaries provide more stable migration times, especially in the pH range 4-7, when they are pre-conditioned for longer than 1 h. The origin of this Si-C bond is still not quite clear. They could be caused by graphite which is used during the fabrication of the raw cylinders prior to capillary drawing. Further investigations are intended in order to understand if there are any differences in surface carbon content from batch to batch and if this can influence experimental results in CE. A better understanding of the surface chemistry should not only improve robustness in CE, but also help to facilitate and accelerate capillary pre-conditioning and rinsing procedures to remove strongly adsorbed analytes or matrices. PMID:11100849

  7. Improving the sensitivity in chiral capillary electrophoresis.

    PubMed

    Snchez-Lpez, Elena; Marina, Mara Luisa; Crego, Antonio L

    2016-01-01

    CE is known for being one of the most powerful analytical techniques when performing enantioseparations due to its numerous advantages such as excellent separation efficiency and extremely low solvents and reagents consumption, all of them derived from the capillary small dimensions. Moreover, it is worth highlighting that unlike in chromatographic techniques, in CE the chiral selector is generally within the separation medium instead of being attached to the separation column which makes the method optimization a more versatile task. Despite its numerous advantages, when using UV-Vis detection, CE lacks of sensitivity detection due to its short optical path length derived from the narrow separation capillary. This issue can be overcome by means of different approaches, either by sample treatment procedures or by in-capillary preconcentration techniques or even by employing detection systems more sensitive than UV-Vis, such as LIF or MS. The present review assembles the latest contributions regarding improvements of sensitivity in chiral CE published from June 2013 until May 2015, which follows the works included in a previous review reported by Snchez-Hernndez etal. [Electrophoresis 2014, 35, 12-27]. PMID:26434566

  8. Strongly nonlinear waves in capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Ghosal, Sandip

    2012-05-01

    In capillary electrophoresis, sample ions migrate along a microcapillary filled with a background electrolyte under the influence of an applied electric field. If the sample concentration is sufficiently high, the electrical conductivity in the sample zone could differ significantly from the background. Under such conditions, the local migration velocity of sample ions becomes concentration-dependent, resulting in a nonlinear wave that exhibits shocklike features. If the nonlinearity is weak, the sample concentration profile, under certain simplifying assumptions, can be shown to obey Burgers’ equation [Ghosal and Chen, Bull. Math. Biol.BMTBAP0092-824010.1007/s11538-010-9527-2 72, 2047 (2010)], which has an exact analytical solution for arbitrary initial condition. In this paper, we use a numerical method to study the problem in the more general case where the sample concentration is not small in comparison to the concentration of background ions. In the case of low concentrations, the numerical results agree with the weakly nonlinear theory presented earlier, but at high concentrations, the wave evolves in a way that is qualitatively different.

  9. Micro-size polyacrylamide gel electrophoresis system

    NASA Astrophysics Data System (ADS)

    Hinson, W. G.; Pipkin, J. L.; Anson, J. F.; Casciano, D. A.; Burns, E. R.

    1987-09-01

    The development and characterization of a micro-size two-dimensional polyacrylamide gel electrophoresis system is described. Some of the techniques which have evolved with use of the system are also discussed. This apparatus has unique features which provide advantages over other small scale units. Up to ten first- and second-dimension gels can be processed simultaneously with excellent resolution of protein regions. Consistent reproducibility is possible from protein samples as small as 400 ng and individual protein regions as small as 1 pg can be visualized by silver staining of the two-dimensional gels. Similar sensitivities are achieved in autoradiographs of 3H-labeled proteins extracted from the nuclei of cultured cells. The application of this system in conjunction with flow cytometric examination of nuclear DNA and electrostatic cell sorting of specific cell nuclei to provide homogeneous sample populations, allows subtle variations in isotope incorporation in proteins to be detected; whereas many times in generalized tissue samples these changes are masked. Also, these techniques elucidate the effects of external stimuli (chemicals, drugs, or environment) on protein synthesis and phosphorylation for analyses and comparison. Fabrication drawings are available upon request.

  10. Contactless conductivity detector array for capillary electrophoresis.

    PubMed

    Stojkovic, Marko; Koenka, Israel Joel; Thormann, Wolfgang; Hauser, Peter C

    2014-02-01

    A CE system featuring an array of 16 contactless conductivity detectors was constructed. The detectors were arranged along 70 cm length of a capillary with 100 cm total length and allow the monitoring of separation processes. As the detectors cannot be accommodated on a conventional commercial instrument, a purpose built set-up employing a sequential injection manifold had to be employed for automation of the fluid handling. Conductivity measurements can be considered universal for electrophoresis and thus any changes in ionic composition can be monitored. The progress of the separation of Na(+) and K(+) is demonstrated. The potential of the system to the study of processes in CZE is shown in two examples. The first demonstrates the differences in the developments of peaks originating from a sample plug with a purely aqueous background to that of a plug containing the analyte ions in the buffer. The second example visualizes the opposite migration of cations and anions from a sample plug that had been placed in the middle of the capillary. PMID:24285496

  11. Integrated polymerase chain reaction/electrophoresis instrument

    DOEpatents

    Andresen, Brian D.

    2000-01-01

    A new approach and instrument for field identification of micro-organisms and DNA fragments using a small and disposable device containing integrated polymerase chain reaction (PCR) enzymatic reaction wells, attached capillary electrophoresis (CE) channels, detectors, and read-out all on/in a small hand-held package. The analysis instrument may be made inexpensively, for example, of plastic, and thus is disposable, which minimizes cross contamination and the potential for false positive identification between samples. In addition, it is designed for multiple users with individual applications. The integrated PCR/CE is manufactured by the PCR well and CE channels are "stamped" into plastic depressions where conductive coatings are made in the wells and ends of the CE microchannels to carry voltage and current to heat the PCR reaction mixtures and simultaneously draw DNA bands up the CE channels. Light is transmitted through the instrument at appropriate points and detects PCR bands and identifies DNA fragments by size (retention time) and quantifies each by the amount of light generated as each phototransistor positioned below each CE channel detects a passing band. The instrument is so compact that at least 100 PCR/CE reactions/analyses can be performed easily on one detection device.

  12. Amperometric detector designs for capillary electrophoresis microchips.

    PubMed

    Castao-Alvarez, Mario; Fernndez-Abedul, M Teresa; Costa-Garca, Agustn

    2006-03-24

    Electrochemical (EC) detection is a sensitive and miniaturisable detection mode for capillary electrophoresis (CE) microchips. Detection cell design is very important in order to ensure electrical isolation from the high separation voltage. Amperometric detectors with different designs have been developed for coupling EC detection to CE-microchips. Different working electrode alignment: in-channel or end-channel has been tested in conjunction with several materials: gold, platinum or carbon. The end-channel detector was based on a platinum or gold wire manually aligned at the exit of the separation channel. Thick- (screen-printed carbon electrode) and thin-film (sputtered gold film) electrodes have also been employed with this configuration, but with a different design that allowed the rapid replacement of the electrode. The in-channel detector was based on a gold film within the separation channel. A gold-based dual electrode detector, which combined for the first time in- and end-channel detection, has been also tested. These amperometric detectors have been evaluated in combination to poly(methylmethacrylate) (PMMA) and Topas (thermoplastic olefin polymer of amorphous structure) CE-microchips. Topas is a new and promising cyclic olefin copolymer with high chemical resistance. Relevant parameters of the polymer microchip separation such as precision, efficiency or resolution and amperometric detection were studied with the different detector designs using p-aminophenol and L-ascorbic acid as model analytes in Tris-based buffer pH 9.0. PMID:16472530

  13. Basement membranes.

    PubMed Central

    Kramer, James M

    2005-01-01

    Basement membranes are thin, specialized extracellular matrices surrounding most tissues in all metazoans. The compositions and functions of basement membranes have generally been well conserved throughout the subkingdom. Genetic analyses of basement membrane components in C. elegans have provided insights into their assembly and functions during development. Immuno- or GFP-tagged localization studies have shown that basement membranes on different tissues, or even sub-regions of tissues, contain different sets of proteins or alternatively spliced isoforms of them. Several components, including laminin, perlecan, type IV collagen and possibly osteonectin/SPARC, are essential for completion of embryogenesis, being necessary for tissue organization and structural integrity. In contrast, type XVIII collagen and nidogen are not required for viability but primarily influence organization of the nervous system. All of these proteins, with the exception of nidogen and the addition of fibulin, have roles of varying degree in morphogenesis of the gonad. A major family of cellular receptors for basement membrane proteins, the integrins, have also been characterized in C. elegans. As one might expect, integrins have been shown to function in many of the same processes as their potential ligands, the basement membrane components. While much remains to be explored, studies of basement membranes in C. elegans have been highly informative and hold great promise for improving our understanding of how these structures are assembled and how they function in development. PMID:18050423

  14. Cathepsin D protects colorectal cancer cells from acetate-induced apoptosis through autophagy-independent degradation of damaged mitochondria.

    PubMed

    Oliveira, C S F; Pereira, H; Alves, S; Castro, L; Baltazar, F; Chaves, S R; Preto, A; Côrte-Real, M

    2015-01-01

    Acetate is a short-chain fatty acid secreted by Propionibacteria from the human intestine, known to induce mitochondrial apoptotic death in colorectal cancer (CRC) cells. We previously established that acetate also induces lysosome membrane permeabilization in CRC cells, associated with release of the lysosomal protease cathepsin D (CatD), which has a well-established role in the mitochondrial apoptotic cascade. Unexpectedly, we showed that CatD has an antiapoptotic role in this process, as pepstatin A (a CatD inhibitor) increased acetate-induced apoptosis. These results mimicked our previous data in the yeast system showing that acetic acid activates a mitochondria-dependent apoptosis process associated with vacuolar membrane permeabilization and release of the vacuolar protease Pep4p, ortholog of mammalian CatD. Indeed, this protease was required for cell survival in a manner dependent on its catalytic activity and for efficient mitochondrial degradation independently of autophagy. In this study, we therefore assessed the role of CatD in acetate-induced mitochondrial alterations. We found that, similar to acetic acid in yeast, acetate-induced apoptosis is not associated with autophagy induction in CRC cells. Moreover, inhibition of CatD with small interfering RNA or pepstatin A enhanced apoptosis associated with higher mitochondrial dysfunction and increased mitochondrial mass. This effect seems to be specific, as inhibition of CatB and CatL with E-64d had no effect, nor were these proteases significantly released to the cytosol during acetate-induced apoptosis. Using yeast cells, we further show that the role of Pep4p in mitochondrial degradation depends on its protease activity and is complemented by CatD, indicating that this mechanism is conserved. In summary, the clues provided by the yeast model unveiled a novel CatD function in the degradation of damaged mitochondria when autophagy is impaired, which protects CRC cells from acetate-induced apoptosis. CatD inhibitors could therefore enhance acetate-mediated cancer cell death, presenting a novel strategy for prevention or therapy of CRC. PMID:26086961

  15. Cathepsin D protects colorectal cancer cells from acetate-induced apoptosis through autophagy-independent degradation of damaged mitochondria

    PubMed Central

    Oliveira, C S F; Pereira, H; Alves, S; Castro, L; Baltazar, F; Chaves, S R; Preto, A; Côrte-Real, M

    2015-01-01

    Acetate is a short-chain fatty acid secreted by Propionibacteria from the human intestine, known to induce mitochondrial apoptotic death in colorectal cancer (CRC) cells. We previously established that acetate also induces lysosome membrane permeabilization in CRC cells, associated with release of the lysosomal protease cathepsin D (CatD), which has a well-established role in the mitochondrial apoptotic cascade. Unexpectedly, we showed that CatD has an antiapoptotic role in this process, as pepstatin A (a CatD inhibitor) increased acetate-induced apoptosis. These results mimicked our previous data in the yeast system showing that acetic acid activates a mitochondria-dependent apoptosis process associated with vacuolar membrane permeabilization and release of the vacuolar protease Pep4p, ortholog of mammalian CatD. Indeed, this protease was required for cell survival in a manner dependent on its catalytic activity and for efficient mitochondrial degradation independently of autophagy. In this study, we therefore assessed the role of CatD in acetate-induced mitochondrial alterations. We found that, similar to acetic acid in yeast, acetate-induced apoptosis is not associated with autophagy induction in CRC cells. Moreover, inhibition of CatD with small interfering RNA or pepstatin A enhanced apoptosis associated with higher mitochondrial dysfunction and increased mitochondrial mass. This effect seems to be specific, as inhibition of CatB and CatL with E-64d had no effect, nor were these proteases significantly released to the cytosol during acetate-induced apoptosis. Using yeast cells, we further show that the role of Pep4p in mitochondrial degradation depends on its protease activity and is complemented by CatD, indicating that this mechanism is conserved. In summary, the clues provided by the yeast model unveiled a novel CatD function in the degradation of damaged mitochondria when autophagy is impaired, which protects CRC cells from acetate-induced apoptosis. CatD inhibitors could therefore enhance acetate-mediated cancer cell death, presenting a novel strategy for prevention or therapy of CRC. PMID:26086961

  16. 21 CFR 582.5892 - a-Tocopherol acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5892 a-Tocopherol acetate. (a) Product. a-Tocopherol acetate. (b) Conditions of use....

  17. 21 CFR 582.5892 - a-Tocopherol acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 582.5892 a-Tocopherol acetate. (a) Product. a-Tocopherol acetate. (b) Conditions of use....

  18. A novel approach to pseudopodia proteomics: excimer laser etching, two-dimensional difference gel electrophoresis, and confocal imaging

    PubMed Central

    Mimae, Takahiro; Ito, Akihiko; Hagiyama, Man; Nakanishi, Jun; Hosokawa, Yoichiroh; Okada, Morihito; Murakami, Yoshinori; Kondo, Tadashi

    2014-01-01

    Pseudopodia are actin-rich ventral cellular protrusions shown to facilitate the migration and metastasis of tumor cells. Here, we present a novel approach to perform pseudopodia proteomics. Tumor cells growing on porous membranes extend pseudopodia into the membrane pores. In our method, cell bodies are removed by horizontal ablation at the basal cell surface with the excimer laser while pseudopodia are left in the membrane pores. For protein expression profiling, whole cell and pseudopodia proteins are extracted with a lysis buffer, labeled with highly sensitive fluorescent dyes, and separated by two-dimensional gel electrophoresis. Proteins with unique expression patterns in pseudopodia are identified by mass spectrometry. The effects of the identified proteins on pseudopodia formation are evaluated by measuring the pseudopodia length in cancer cells with genetically modified expression of target proteins using confocal imaging. This protocol allows global identification of pseudopodia proteins and evaluation of their functional significance in pseudopodia formation within one month. PMID:25309719

  19. Expression of Acetate Permease-like (apl) Genes in Subsurface Communities of Geobacter Species Under Fluctuating Acetate Concentrations

    SciTech Connect

    Elifantz, H; N'Guessan, A L; Mouser, Paula; Williams, Kenneth H; Wilkins, Michael J; Risso, Carla; Holmes, Dawn; Long, Philip E; Lovley, Derek R

    2010-09-01

    The addition of acetate to uranium-contaminated aquifers in order to stimulate the growth and activity of Geobacter species that reduce uranium is a promising in situ bioremediation option. Optimizing this bioremediation strategy requires that sufficient acetate be added to promote Geobacter species growth. We hypothesized that under acetate-limiting conditions, subsurface Geobacter species would increase the expression of either putative acetate symporters genes (aplI and aplII). Acetate was added to a uranium-contaminated aquifer (Rifle, CO) in two continuous amendments separated by 5 days of groundwater flush to create changing acetate concentrations. While the expression of aplI in monitoring well D04 (high acetate) weakly correlated with the acetate concentration over time, the transcript levels for this gene were relatively constant in well D08 (low acetate). At the lowest acetate concentrations during the groundwater flush, the transcript levels of aplII were the highest. The expression of aplII decreased 2–10-fold upon acetate reintroduction. However, the overall instability of acetate concentrations throughout the experiment could not support a robust conclusion regarding the role of apl genes in response to acetate limitation under field conditions, in contrast to previous chemostat studies, suggesting that the function of a microbial community cannot be inferred based on lab experiments alone.

  20. Expression of acetate permease-like (apl) genes in subsurface communities of Geobacter species under fluctuating acetate concentrations

    SciTech Connect

    Elifantz, H.; N'Guessan, L.A.; Mouser, P.J.; Williams, K H.; Wilkins, M J.; Risso, C.; Holmes, D.E.; Long, P.E.; Lovley, D.R.

    2010-03-01

    The addition of acetate to uranium-contaminated aquifers in order to stimulate the growth and activity of Geobacter species that reduce uranium is a promising in situ bioremediation option. Optimizing this bioremediation strategy requires that sufficient acetate be added to promote Geobacter species growth. We hypothesized that under acetate-limiting conditions, subsurface Geobacter species would increase the expression of either putative acetate symporters genes (aplI and aplII). Acetate was added to a uranium-contaminated aquifer (Rifle, CO) in two continuous amendments separated by 5 days of groundwater flush to create changing acetate concentrations. While the expression of aplI in monitoring well D04 (high acetate) weakly correlated with the acetate concentration over time, the transcript levels for this gene were relatively constant in well D08 (low acetate). At the lowest acetate concentrations during the groundwater flush, the transcript levels of aplII were the highest. The expression of aplII decreased 2-10-fold upon acetate reintroduction. However, the overall instability of acetate concentrations throughout the experiment could not support a robust conclusion regarding the role of apl genes in response to acetate limitation under field conditions, in contrast to previous chemostat studies, suggesting that the function of a microbial community cannot be inferred based on lab experiments alone.

  1. Crystalline Membranes

    NASA Technical Reports Server (NTRS)

    Tsapatsis, Michael (Inventor); Lai, Zhiping (Inventor)

    2008-01-01

    In certain aspects, the invention features methods for forming crystalline membranes (e.g., a membrane of a framework material, such as a zeolite) by inducing secondary growth in a layer of oriented seed crystals. The rate of growth of the seed crystals in the plane of the substrate is controlled to be comparable to the rate of growth out of the plane. As a result, a crystalline membrane can form a substantially continuous layer including grains of uniform crystallographic orientation that extend through the depth of the layer.

  2. Free zone electrophoresis simulation of static column electrophoresis in microgravity on shuttle flight STS-3

    NASA Technical Reports Server (NTRS)

    Todd, P. W.; Hjerten, S.

    1985-01-01

    Experiments were designed to replicate, as closely as possible in 1-G, the conditions of the STS-3 red blood cell (RBC) experiments. Free zone electrophoresis was the method of choice, since it minimizes the role of gravity in cell migration. The physical conditions of the STS-3 experiments were used, and human and rabbit RBC's fixed by the same method were the test particles. The effects of cell concentration, electroosmotic mobility, and sample composition were tested in order to seek explanations for the STS-3 results and to provide data on cell concentration effects for future zero-G separation on the continuous-flow zero-G electrophoretics separator.

  3. An Alternating Current Electroosmotic Pump Based on Conical Nanopore Membranes.

    PubMed

    Wu, Xiaojian; Ramiah Rajasekaran, Pradeep; Martin, Charles R

    2016-04-26

    Electroosmotic flow (EOF) is used to pump solutions through microfluidic devices and capillary electrophoresis columns. We describe here an EOF pump based on membrane EOF rectification, an electrokinetic phenomenon we recently described. EOF rectification requires membranes with asymmetrically shaped pores, and conical pores in a polymeric membrane were used here. We show here that solution flow through the membrane can be achieved by applying a symmetrical sinusoidal voltage waveform across the membrane. This is possible because the alternating current (AC) carried by ions through the pore is rectified, and we previously showed that rectified currents yield EOF rectification. We have investigated the effect of both the magnitude and frequency of the voltage waveform on flow rate through the membrane, and we have measured the maximum operating pressure. Finally, we show that operating in AC mode offers potential advantages relative to conventional DC-mode EOF pumps. PMID:27046145

  4. TECHNIQUES WITH POTENTIAL FOR HANDLING ENVIRONMENTAL SAMPLES IN CAPILLARY ELECTROPHORESIS

    EPA Science Inventory

    An assessment of the methods for handling environmental samples prior to capillary electrophoresis (CE) is presented for both aqueous and solid matrices. Sample handling in environmental analyses is the subject of ongoing research at the Environmental Protection Agency's National...

  5. CAPILLARY ELECTROPHORESIS FOR THE CHARACTERIZATION OF HUMIC SUBSTANCES

    EPA Science Inventory

    The potential of high performance capillary electrophoresis (HPCE), especially in the free solution mode (FSCE), is demonstrated for the analysis/characterization of environmental humic substances (HUS). he very high efficiency of HPCE separations allows the production of electro...

  6. A New Electrophoresis Technique to Seperate Microsatellite Alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional agarose and polyacrylamide gel electrophoresis have been used commonly for microsatellite (simple sequence repeats, SSRs) analysis, but they are labor- intensive and not always able to provide accurate sizes for different alleles. Capillary sequencers provide automated analysis and accur...

  7. Microchannel DNA Sequencing by End-Labelled Free Solution Electrophoresis

    SciTech Connect

    Barron, A.

    2005-09-29

    The further development of End-Labeled Free-Solution Electrophoresis will greatly simplify DNA separation and sequencing on microfluidic devices. The development and optimization of drag-tags is critical to the success of this research.

  8. 21 CFR 522.960b - Flumethasone acetate injection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Flumethasone acetate injection. 522.960b Section... § 522.960b Flumethasone acetate injection. (a) Chemical name. 6-alpha,9-alpha-difluoro - 16 - alpha - methylprednisolone 21-acetate. (b) Specifications. Flumethasone injection is sterile and contains per...

  9. 21 CFR 522.960b - Flumethasone acetate injection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Flumethasone acetate injection. 522.960b Section... § 522.960b Flumethasone acetate injection. (a) Chemical name. 6-alpha,9-alpha-difluoro - 16 - alpha - methylprednisolone 21-acetate. (b) Specifications. Flumethasone injection is sterile and contains per...

  10. 21 CFR 522.960b - Flumethasone acetate injection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Flumethasone acetate injection. 522.960b Section... § 522.960b Flumethasone acetate injection. (a) Chemical name. 6-alpha,9-alpha-difluoro - 16 - alpha - methylprednisolone 21-acetate. (b) Specifications. Flumethasone injection is sterile and contains per...

  11. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100 gallons... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ethyl alcohol containing ethyl acetate....

  12. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100 gallons... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ethyl alcohol containing ethyl acetate....

  13. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100 gallons... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ethyl alcohol containing ethyl acetate....

  14. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100 gallons... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ethyl alcohol containing ethyl acetate....

  15. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100 gallons... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl alcohol containing ethyl acetate....

  16. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The

  17. Acetic acid vapor levels associated with facial prosthetics

    SciTech Connect

    McElroy, T.H.; Guerra, O.N.; Lee, S.A.

    1985-01-01

    The use of Silastic Medical Adhesive Type A in the fabrication of facial prostheses may cause health hazards to the patient and the operator because of acetic acid emissions. Caution must be exercised to remove acetic acid vapors from the air and unliberated acetic acid from material applied directly to the skin.

  18. 21 CFR 582.5933 - Vitamin A acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Vitamin A acetate. 582.5933 Section 582.5933 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5933 Vitamin A acetate. (a) Product. Vitamin A acetate. (b) Conditions of use....

  19. 21 CFR 582.5933 - Vitamin A acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Vitamin A acetate. 582.5933 Section 582.5933 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5933 Vitamin A acetate. (a) Product. Vitamin A acetate. (b) Conditions of use....

  20. 21 CFR 582.5933 - Vitamin A acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Vitamin A acetate. 582.5933 Section 582.5933 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5933 Vitamin A acetate. (a) Product. Vitamin A acetate. (b) Conditions of use....

  1. 21 CFR 582.5933 - Vitamin A acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Vitamin A acetate. 582.5933 Section 582.5933 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5933 Vitamin A acetate. (a) Product. Vitamin A acetate. (b) Conditions of use....

  2. 21 CFR 582.5933 - Vitamin A acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Vitamin A acetate. 582.5933 Section 582.5933 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5933 Vitamin A acetate. (a) Product. Vitamin A acetate. (b) Conditions of use....

  3. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  4. Acetate concentrations and oxidation in salt marsh sediments

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Acetate concentrations and rates of acetate oxidation and sulfate reduction were measured in S. alterniflora sediments in New Hampshire and Massachusetts. Pore water extracted from cores by squeezing or centrifugation contained in greater than 0.1 mM acetate and, in some instances, greater than 1.0 mM. Pore water sampled nondestructively contained much less acetate, often less than 0.01 mM. Acetate was associated with roots, and concentrations varied with changes in plant physiology. Acetate turnover was very low whether whole core or slurry incubations were used. Radiotracers injected directly into soils yielded rates of sulfate reduction and acetate oxidation not significantly different from core incubation techniques. Regardless of incubation method, acetate oxidation did not account for a substantial percentage of sulfate reduction. These results differ markedly from data for unvegetated coastal sediments where acetate levels are low, oxidation rate constants are high, and acetate oxication rates greatly exceed rates of sulfate reduction. The discrepancy between rates of acetate oxidation and sulfate reduction in these marsh soils may be due either to the utilization of substrates other than acetate by sulfate reducers or artifacts associated with measurements of organic utilization by rhizosphere bacteria. Care must be taken when interpreting data from salt marsh sediments since the release of material from roots during coring may affect the concentrations of certain compounds as well as influencing results obtained when sediment incubations are employed.

  5. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD... § 170.3(n)(10) of this chapter; 0.5 percent for chewing gum as defined in § 170.3(n)(6) of this...

  6. Calcium magnesium acetate production and cost reduction

    SciTech Connect

    Leuschner, A.P.

    1988-02-01

    The New York State Energy Research and Development Authority (Energy Authority), Consolidated Edison Company of New York, Inc. (ConEd), the New York State Department of Transportation (NYSDOT), the New York State Thruway Authority (NYSTA), Chevron Chemical Company, the National Corn Growers Association (NCGA), and the Massachusetts Department of Public Works (MDPW) sponsored a research program to develop technology capable of producing Calcium Magnesium Acetate (CMA), an alternative road deicer, at a quality and cost which will allow its increased use. The objectives of this program were to determine the feasibility of: (1) producing CMA from regionally available waste and low grade organic feedstocks via biochemical engineering technologies; (2) operating the fermentation at concentrated product levels to reduce energy requirements and minimize drying process costs; (3) using this production approach to produce an environmentally acceptable CMA product; and (4) using and adapting an existing facility for a CMA commercial demonstration plant. The experimental program included:(1) selection of microorganisms for their ability to grow in the absence of sodium chloride and to tolerate high concentrations of calcium, magnesium, and acetate ions; (2) analysis of waste feedstocks for their potential conversion to acetate; (3) analysis of waste organic material for impurities in CMA that could carry over into the environment; (4) batch experiments to determine pH tolerance, growth in the absence of sodium chloride (NaCl), tolerance to magnesium, calcium and acetate ions, effect of substrate concentration, acid distribution, and acid production; and (5) semi-continuous laboratory scale anaerobic digestion experiments to determine loading rates, conversion efficiencies, and other design data. 67 refs., 33 figs., 66 tabs.

  7. Biological membranes

    PubMed Central

    Watson, Helen

    2015-01-01

    Biological membranes allow life as we know it to exist. They form cells and enable separation between the inside and outside of an organism, controlling by means of their selective permeability which substances enter and leave. By allowing gradients of ions to be created across them, membranes also enable living organisms to generate energy. In addition, they control the flow of messages between cells by sending, receiving and processing information in the form of chemical and electrical signals. This essay summarizes the structure and function of membranes and the proteins within them, and describes their role in trafficking and transport, and their involvement in health and disease. Techniques for studying membranes are also discussed. PMID:26504250

  8. Access to aldehydo acetals of sugars via palladium-catalyzed oxidation of alpha,beta-unsaturated cyclic acetals.

    PubMed

    Fayet, Catherine; Gelas, Jacques; Danková, Katerina; Yokaris, Alexandre

    2002-11-19

    The palladium(II)-catalyzed oxidation of alpha,beta-unsaturated cyclic acetals derived from mono- and disaccharides leads in appreciable yields to new aldehydo acetals which, overall, results in an anti-Markovnikov addition. PMID:12433496

  9. Co-fermentation of acetate and sugars facilitating microbial lipid production on acetate-rich biomass hydrolysates.

    PubMed

    Gong, Zhiwei; Zhou, Wenting; Shen, Hongwei; Yang, Zhonghua; Wang, Guanghui; Zuo, Zhenyu; Hou, Yali; Zhao, Zongbao K

    2016-05-01

    The process of lignocellulosic biomass routinely produces a stream that contains sugars plus various amounts of acetic acid. As acetate is known to inhibit the culture of microorganisms including oleaginous yeasts, little attention has been paid to explore lipid production on mixtures of acetate and sugars. Here we demonstrated that the yeast Cryptococcus curvatus can effectively co-ferment acetate and sugars for lipid production. When mixtures of acetate and glucose were applied, C. curvatus consumed both substrates simultaneously. Similar phenomena were also observed for acetate and xylose mixtures, as well as acetate-rich corn stover hydrolysates. More interestingly, the replacement of sugar with equal amount of acetate as carbon source afforded higher lipid titre and lipid content. The lipid products had fatty acid compositional profiles similar to those of cocoa butter, suggesting their potential for high value-added fats and biodiesel production. This co-fermentation strategy should facilitate lipid production technology from lignocelluloses. PMID:26874438

  10. Field-portable Capillary Electrophoresis Instrument with Conductivity Detection

    NASA Astrophysics Data System (ADS)

    Zhang, H. F.; Liu, X. W.; Wang, W.; Wang, X. L.; Tian, L.

    2006-10-01

    In this paper a novel capillary electrophoresis chip (CEC) is presented with integrated platinum electrodes and simplified conductivity detector. CEC is fabricated by the method of mechanical modification with probe on organic glass. Capillary electrophoresis chip can rapidly completed ion separation by simulation of concentration distribution and zone-broadening. Detection circuit is simple which can detect pA order current. This system has those advantages such as small volume, low power consumption and linearity, and well suit for field analysis.

  11. Nicked-sleeve interface for two-dimensional capillary electrophoresis

    PubMed Central

    Flaherty, Ryan J.; Huge, Bonnie J.; Bruce, Spencer M.; Dada, Oluwatosin O.; Dovichi, Norman J.

    2013-01-01

    We report an improved interface for two-dimensional capillary electrophoresis. This interface is based on capillary tubing and a Plexiglas chip, both of which were milled using a micro-dicing saw. The interface was evaluated and compared to a traditional interface design for both pseudo one-dimensional and two-dimensional capillary electrophoresis. We observe less than 70% transfer efficiency for the traditional design and greater than 90% transfer efficiency with this new interface. PMID:23702824

  12. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    SciTech Connect

    Russell, J.B. )

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y{sub ATP} (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up ({sup 14}C)acetate and ({sup 14}C)benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

  13. Novel separation and detection methods of DNA fragments in electrophoresis

    SciTech Connect

    Chan, King Cheung

    1993-01-27

    A charge-coupled device (CCD) based electrophoresis system was developed. The system allowed non-destructive, sensitive, and on-line detection of native DNA in slab-gel electrophoresis via ultraviolet absorption measurement. The detection limit of double-stranded DNA fragment was 5 ng per band. Since the amount of DNA used in this experiment was typical, the CCD-based system could be readily implemented in molecular biology. Gel-filled and non-gel sieving capillary electrophoresis was developed for rapid and efficient separation of double-stranded DNA fragments. For the gel-filled CE separation a new gel matrix, the HydroLink gel (HL), was used. The HL capillary gel was easier to cast than the polyacrylamide capillary gel. For the non-gel separation, a GC capillary was used as the separation chamber, and cellulose additive was included in the electrophoresis as the sieving medium. Indirect fluorometry was applied in non-gel and gel electrophoresis for the detection of DNA fragments. This method allowed non-destructive and on-line detection of DNA during electrophoresis. The amount of DNA used with this method was comparable to those obtained with absorption measurement.

  14. Novel separation and detection methods of DNA fragments in electrophoresis

    SciTech Connect

    Chan, K.C.

    1992-01-01

    A charge-coupled device (CCD) based electrophoresis system was developed. The system allowed non-destructive, sensitive, and on-line detection of native DNA in slab-gel electrophoresis via ultraviolet absorption measurement. The detection limit of double-stranded DNA fragment was 5 ng per band. Since the amount of DNA used in this experiment was typical, the CCD-based system could be readily implemented in molecular biology. Gel-filled and non-gel sieving capillary electrophoresis (CE) was developed for rapid and efficient separation of double-stranded DNA fragments. For the gel-filled CE separation a new gel matrix, the HydroLink gel (HL), was used. The HL capillary gel was easier to cast than the polyacrylamide capillary gel. For the non-gel separation, a GC capillary was used as the separation chamber, and cellulose additive was included in the electrophoresis as the sieving medium. Indirect fluorometry was applied in non-gel and gel electrophoresis for the detection of DNA fragments. This method allowed nondestructive and on-line detection of DNA during electrophoresis. The amount of DNA used with this method was comparable to those obtained with absorption measurement.

  15. Nonlinear electrophoresis of ideally polarizable particles

    NASA Astrophysics Data System (ADS)

    Figliuzzi, B.; Chan, W. H. R.; Moran, J. L.; Buie, C. R.

    2014-10-01

    We focus in this paper on the nonlinear electrophoresis of ideally polarizable particles. At high applied voltages, significant ionic exchange occurs between the electric double layer, which surrounds the particle, and the bulk solution. In addition, steric effects due to the finite size of ions drastically modify the electric potential distribution in the electric double layer. In this situation, the velocity field, the electric potential, and the ionic concentration in the immediate vicinity of the particle are described by a complicated set of coupled nonlinear partial differential equations. In the general case, these equations must be solved numerically. In this study, we rely on a numerical approach to determine the electric potential, the ionic concentration, and the velocity field in the bulk solution surrounding the particle. The numerical simulations rely on a pseudo-spectral method which was used successfully by Chu and Bazant [J. Colloid Interface Sci. 315(1), 319-329 (2007)] to determine the electric potential and the ionic concentration around an ideally polarizable metallic sphere. Our numerical simulations also incorporate the steric model developed by Kilic et al. [Phys. Rev. E 75, 021502 (2007)] to account for crowding effects in the electric double layer, advective transport, and for the presence of a body force in the bulk electrolyte. The simulations demonstrate that surface conduction significantly decreases the electrophoretic mobility of polarizable particles at high zeta potential and at high applied electric field. Advective transport in the electric double layer and in the bulk solution is also shown to significantly impact surface conduction.

  16. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, Karin D.; Chu, Tun-Jen; Pitt, William G.

    1992-01-01

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through said smino groups contained on the surface thereof. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to said target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membrances may be reprobed numerous times.

  17. Experimental evidence of an acetate transporter protein and characterization of acetate activation in aceticlastic methanogenesis of Methanosarcina mazei.

    PubMed

    Welte, Cornelia; Kröninger, Lena; Deppenmeier, Uwe

    2014-10-01

    Aceticlastic methanogens metabolize acetate to methane and carbon dioxide. The central metabolism and the electron transport chains of these organisms have already been investigated. However, no particular attention has been paid to the mechanism by which acetate enters the archaeal cell. In our study we investigated Methanosarcina mazei acetate kinase (Ack) and the acetate uptake reaction. At a concentration of 2 mM acetate, the Ack activity in cell extract of M. mazei was not limiting for the methane formation rate. Instead, the methanogenesis rate was controlled by the substrate concentration and increased 10-fold at 10 mM acetate. Subsequently, we analyzed the involvement of the putative acetate permease MM_0903 using a corresponding deletion mutant. At 2 mM acetate, only 25% of the wild-type methane formation rate was measured in the mutant. This indicated that the supply of acetate to Ack was limiting the rate of methane formation. Moreover, the mutant revealed an increased acetate kinase activity compared with the wild type. These results show for the first time that an acetate transporter is involved in aceticlastic methanogenesis and may be an important factor in the acetate threshold concentration for methanogenesis of Methanosarcina spp. PMID:25088360

  18. Missing band 7 membrane protein in two patients with high Na, low K erythrocytes.

    PubMed Central

    Lande, W M; Thiemann, P V; Mentzer, W C

    1982-01-01

    We investigated the erythrocyte membrane proteins of two patients with congenital hemolytic anemia due to increased permeability of the erythrocyte membrane to Na and K (hereditary stomatocytosis and cryohydrocytosis). One-dimensional sodium dodecyl sulfate (SDS) gel electrophoresis resolved the band 7 erythrocyte membrane proteins into three components with approximate molecular weights of 30,000, 28,000, and 26,000. The 28,000-dalton component was decreased in both patients with permeability disorders. Two-dimensional electrophoresis (nonequilibrium pH gradient electrophoresis in the first dimension combined with SDS gel electrophoresis in the first dimension combined with SDS gel electrophoresis in the second dimension) resolved the 28,000-dalton component from normal erythrocyte membranes into two proteins with different isoelectric points, designated 22 x 8 and 60 x 8. In the patients with hereditary stomatocytosis and cryohydrocytosis, 22 x 8 was completely absent, whereas 60 x 8 was detected as usual. In contrast, all the band 7 proteins (including 22 x 8) were invariably present in a survey of normal subjects and reticulocytosis controls. The unique finding of a missing band 7 protein in the patients with hereditary stomatocytosis and cryohydrocytosis raises the possibility that the absence of this protein is responsible for the increased Na and K permeability in these disorders. Images PMID:7174793

  19. Preparation of TiO2 Thin Film Deposited by Electrophoresis Method and Adsorbing Dye Molecules using Electrophoresis Method

    NASA Astrophysics Data System (ADS)

    Sakai, Kenji; Fujimura, Kenji; Yoshikado, Shinzo

    Anatase-type TiO2 thin films for the dye sensitized solar cell are deposited by electrophoresis method. The condition to deposit thin films of high quality is discussed. Ultra fine particles of anatase-type TiO2 thin film is deposited by the constant current or the constant voltage method. TiO2 thin films of the high quality without cracks are obtained without binder using the constant current method compared with the constant voltage method. The optimum conditions of electrophoresis for constant current method are the current density I0 from 0.03 to 0.4 mA/cm2 and the deposition time from 20 to 800 s. The film thickness can be controlled by t or I0 by specifying the concentration of colloidal solution of TiO2. The quality of TiO2 thin film increases for the small constant current and the long deposition time. The dye also can be adsorbed on the TiO2 thin films by electrophoresis method. The values of the open-circuit voltage and the short-circuit current density have increased with decreasing electrophoresis current density and increasing electrophoresis time. It has been found that electrophoresis method for adsorbing dye is effective.

  20. Use of pulsed-field gel electrophoresis to measure DNA damage and repair

    SciTech Connect

    Scicchitano, D.A. New York Univ., New York )

    1991-03-11

    A method is described here for the analysis of single-strand break formation and repair in genomic DNA. The procedure involves exposing cells to a DNA-damaging agent, allowing time for recovery, and embedding the cells in agarose. After lysis and digestion with a protease, the DNA, which remains in the agarose plug, is denatured with glyoxal and separated by pulsed-field gel electrophoresis. The DNA in the gel is then transferred to a support membrane and quantitated with a radioanalytic imaging system to determine the average size of the DNA at each time point of recovery. The results indicate that the repair of methyl-induced breaks in total genomic DNA is approximately 80% complete in 48 hr in CHO B11 and ARL 14 cells exposed to dimethyl sulfate. These results are in agreement with those obtained by using other techniques like alkaline sucrose sedimentation. The method developed and described here has several advantages over existing techniques for repair measurements: It can be used to monitor genotoxic agents that nick DNA, to study the removal of breaks from genomic DNA, and to test for repair of damage in specific domains of chromatin that would be too large to examine by conventional electrophoresis.

  1. [Control of nanoparticles in food and biological objects. Report 2. Filtration, centrifugation, spectral methods and electrophoresis].

    PubMed

    Raspopov, R V; Gmoshinskiĭ, I V; Popov, K I; Rykhtik, O V; Khotimchenko, S A

    2012-01-01

    The large number of the analysis methods of engineered nanoparticles and nanoobjects as a part of disperse systems on the basis of principles of a membrane filtration (micro, ultra- and a nanofiltration) ultracentrifugation, spectral methods, including dynamic and static laser light scattering, Raman light scattering, low-angle X-ray scattering, x-ray techniques, laser decomposition spectroscopy, and other methods are developed. Mass spectrometry with inductively coupled plasma can be successfully used in studying of nanomaterials chemical composition in conditions when there is additional independent information on presence of analyzed substance in a nanoscale form. Methods of electrophoresis in a supportive environment and capillary electrophoresis are beginning to be successfully applied in the study of artificial nanomaterials. However, in terms of the identification of engineered nanoparticles and nanoobjects in complex, multicomponent, heterophase systems, that the objects of the environment and, in particular, food products are, all these methods currently can't compete transmission electron microscopy and atomic force microscopy, specified for purpose of certain particular applications, features of which been described in a previous eport in detail. PMID:22888665

  2. Adaptation and tolerance of bacteria against acetic acid.

    PubMed

    Trček, Janja; Mira, Nuno Pereira; Jarboe, Laura R

    2015-08-01

    Acetic acid is a weak organic acid exerting a toxic effect to most microorganisms at concentrations as low as 0.5 wt%. This toxic effect results mostly from acetic acid dissociation inside microbial cells, causing a decrease of intracellular pH and metabolic disturbance by the anion, among other deleterious effects. These microbial inhibition mechanisms enable acetic acid to be used as a preservative, although its usefulness is limited by the emergence of highly tolerant spoilage strains. Several biotechnological processes are also inhibited by the accumulation of acetic acid in the growth medium including production of bioethanol from lignocellulosics, wine making, and microbe-based production of acetic acid itself. To design better preservation strategies based on acetic acid and to improve the robustness of industrial biotechnological processes limited by this acid's toxicity, it is essential to deepen the understanding of the underlying toxicity mechanisms. In this sense, adaptive responses that improve tolerance to acetic acid have been well studied in Escherichia coli and Saccharomyces cerevisiae. Strains highly tolerant to acetic acid, either isolated from natural environments or specifically engineered for this effect, represent a unique reservoir of information that could increase our understanding of acetic acid tolerance and contribute to the design of additional tolerance mechanisms. In this article, the mechanisms underlying the acetic acid tolerance exhibited by several bacterial strains are reviewed, with emphasis on the knowledge gathered in acetic acid bacteria and E. coli. A comparison of how these bacterial adaptive responses to acetic acid stress fit to those described in the yeast Saccharomyces cerevisiae is also performed. A systematic comparison of the similarities and dissimilarities of the ways by which different microbial systems surpass the deleterious effects of acetic acid toxicity has not been performed so far, although such exchange of knowledge can open the door to the design of novel approaches aiming the development of acetic acid-tolerant strains with increased industrial robustness in a synthetic biology perspective. PMID:26142387

  3. Novel cationic polyelectrolyte coatings for capillary electrophoresis.

    PubMed

    Duša, Filip; Witos, Joanna; Karjalainen, Erno; Viitala, Tapani; Tenhu, Heikki; Wiedmer, Susanne K

    2016-01-01

    The use of bare fused silica capillary in CE can sometimes be inconvenient due to undesirable effects including adsorption of sample or instability of the EOF. This can often be avoided by coating the inner surface of the capillary. In this work, we present and characterize two novel polyelectrolyte coatings (PECs) poly(2-(methacryloyloxy)ethyl trimethylammonium iodide) (PMOTAI) and poly(3-methyl-1-(4-vinylbenzyl)-imidazolium chloride) (PIL-1) for CE. The coated capillaries were studied using a series of aqueous buffers of varying pH, ionic strength, and composition. Our results show that the investigated polyelectrolytes are usable as semi-permanent (physically adsorbed) coatings with at least five runs stability before a short coating regeneration is necessary. Both PECs showed a considerably decreased stability at pH 11.0. The EOF was higher using Good's buffers than with sodium phosphate buffer at the same pH and ionic strength. The thickness of the PEC layers studied by quartz crystal microbalance was 0.83 and 0.52 nm for PMOTAI and PIL-1, respectively. The hydrophobicity of the PEC layers was determined by analysis of a homologous series of alkyl benzoates and expressed as the distribution constants. Our result demonstrates that both PECs had comparable hydrophobicity, which enabled separation of compounds with log Po/w > 2. The ability to separate cationic drugs was shown with β-blockers, compounds often misused in doping. Both coatings were also able to separate hydrolysis products of the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-ene acetate at highly acidic conditions, where bare fused silica capillaries failed to accomplish the separation. PMID:26464098

  4. Characterization of copolymer latexes by capillary electrophoresis.

    PubMed

    Anik, Nadia; Airiau, Marc; Labeau, Marie-Pierre; Bzducha, Wojciech; Cottet, Hervé

    2010-02-01

    Latexes are widely used for industrial applications, including decorative paints, binders for the papermaking industry, and drilling fluids for oil-field applications. In this work, the interest of capillary zone electrophoresis (CE) for the characterization of hydrophobic block copolymer latexes obtained by the conventional emulsion polymerization technique consisting of a core of polystyrene (PS) surrounded by a layer of poly(ethyl acrylate) (PEA) has been investigated. The PEA part of the copolymer can be partially hydrolyzed in poly(acrylic acid) (PAA) leading to PS-PEA-AA water-soluble amphiphilic copolymer having high viscosifying properties. The main purpose of this work was to evaluate the potential of CE for the characterization of the latexes at the different stages of the synthesis (PS core, PS-PEA diblock latex, and hydrolyzed PS-PEA-AA gel). The main analytical issues were to state (i) if there was free PS or PEA homopolymer latexes in the PS-PEA latex sample and (ii) if there was free PS, PEA, PS-PEA latexes, or free PAA chains in the PS-PEA-AA gel. Within this scope, this work describes the optimization of the selectivity of the separation between the different species (PS, PEA particles in the not hydrolyzed diblock latex and PS, PEA, PS-PEA particles as well as the polymer PAA chains in the PS-PEA-AA diblock gel sample obtained by latter latex hydrolysis). For that purpose, several experimental parameters were investigated such as pH and ionic strength of the background electrolyte (BGE) or the concentration of neutral surfactant added in the BGE. A challenging issue was to overcome the high viscosity of the PS-PEA-AA gel. This was resolved by the addition of 10 mM neutral surfactant in the gel sample and in the BGE. Finally, it is demonstrated that, within the detection limits, CE is a suitable analytical tool for controlling and monitoring the syntheses of these latexes and for intrinsically characterizing the distribution in charge density of the final PS-PEA-AA gel at different hydrolysis rates. PMID:19873976

  5. System zones in capillary zone electrophoresis.

    PubMed

    Beckers, J L; Gebauer, P; Bocek, P

    2001-10-01

    This paper brings an overview of system zones (SZs) in capillary zone electrophoresis (CZE) and their effects upon the migration of zones of analytes. It is shown that the formation and migration of SZs is an inherent feature of CZE, and that it depends predominantly on the composition of an actual background electrolyte (BGE). One can distinguish between stationary SZs and migrating SZs. Stationary SZs, which move due to the electroosmotic flow only, are induced in any BGE by sample injection. Migrating SZs may be induced by a sample injection in BGEs which show at least one of the following features: (i) BGE contains two or more co-ions, (ii) BGE has low or high pH whereby H+ or OH- act as the second co-ion, and (iii) BGE contains multivalent weak acids or bases. SZs do not contain any analyte and show always BGE-like composition. They contain components of the BGE only and the concentrations of these components are different from their values in the original BGE. Providing that some of the ionic components of the BGE are visible by the detector, the migrating SZs can be detected and they are present as system peaks/dips in the electropherogram. It is shown that a migrating SZ may be characterized by its mobility, and examples are given how this mobility can depend on the composition of the BGE. Further, the effects of the migrating SZs (either visible or not visible by the detector) upon the zones of analytes are presented and the typical disturbances of the peaks (extra broadening, zig-zag form, schizophrenic behavior) are exemplified and discussed. Finally, some conclusions are presented how to cope with the SZs in practice. The proposed procedure is based on the theoretical predictions and/or measurements of the mobilities of SZs and on the so-called unsafe region. Then, such operational conditions should be selected where the unsafe region is outside of the required analytical window. PMID:11699902

  6. Utilization of pyrolytic substrate by microalga Chlamydomonas reinhardtii: cell membrane property change as a response of the substrate toxicity.

    PubMed

    Zhao, Xuefei; Jarboe, Laura; Wen, Zhiyou

    2016-05-01

    Acetic acid derived from fast pyrolysis of lignocellulosic biomass is a promising substrate for microalgae fermentation for producing lipid-rich biomass. However, crude pyrolytic acetic acid solution contains various toxic compounds inhibiting algal growth. It was hypothesized that such an inhibition was mainly due to the cell membrane damage. In this work, the cell membrane property of algal cells was evaluated at various conditions to elucidate the mechanisms of inhibition caused by the pyrolytic substrate solution. It was found that acetic acid itself served a carbon source for boosting algal cell growth but also caused cell membrane leakage. The acetic acid concentration for highest cell density was 4 g/L. Over-liming treatment of crude pyrolytic acetic acid increased the algal growth with a concurrent reduction of cell membrane leakage. Directed evolution of algal strain enhanced cell membrane integrity and thus increased its tolerance to the toxicity of the crude substrate. Statistical analysis shows that there was a significant correlation between the cell growth performance and the cell membrane integrity (leakage) but not membrane fluidity. The addition of cyto-protectants such as Pluronic F68 and Pluronic F127 enhanced the cell membrane integrity and thus, resulted in enhanced cell growth. The transmission electron microscopy (TEM) of algal cells visually confirmed the cell membrane damage as the mechanism of the pyrolytic substrate inhibition. Collectively, this work indicates that the cell membrane is one major reason for the toxicity of pyrolytic acetic acid when being used for algal culture. To better use this pyrolytic substrate, cell membrane of the microorganism needs to be strengthened through either strain improvement or addition of membrane protectant reagents. PMID:26995605

  7. Hydrogel plug for independent sample and buffer handling in continuous microchip capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Puchberger-Enengl, Dietmar; Bipoun, Mireille; Smolka, Martin; Krutzler, Christian; Keplinger, Franz; Vellekoop, Michael J.

    2013-05-01

    In microchip capillary electrophoresis most frequently electrokinetic sample injection is utilized, which does not allow pressure driven sample handling and is sensitive for pressure drops due to different reservoir levels. For efficient field tests a multitude of samples have to be processed with the least amount of external equipment. We present the use of a hydrogel plug to separate the sample from clean buffer to enable independent sample change and buffer refreshment. In-situ polymerization of the gel does away with complex membrane fabrication techniques. The sample is electrokinetically injected through the gel and subsequently separated by a voltage between the second gel inlet and the buffer outlet. By blocking of disturbing flows by the gel barrier a well-defined ion plug is obtained. After each experiment, the sample and the separation channel can be flushed independently, allowing for a continuous operation mode in order to process multiple samples.

  8. Characterization of the microdialysis junction interface for capillary electrophoresis/microelectrospray ionization mass spectrometry

    SciTech Connect

    Severs, J.C.; Smith, R.D.

    1997-06-01

    A capillary electrophoresis/electrospray ionization mass spectrometry (CE/ESI-MS) interface, based on an electric circuit across a microdialysis membrane surrounding a short capillary segment closely connected to the separation capillary terminus, is demonstrated to be sensitive, efficient, and rugged. A microspray type ionization emitter produces a stable electrospray at the low flow rates provided by CE and thus avoids both the need for a makeup liquid flow provided by liquid junction or sheath flow interfaces and the subsequent dilution and reduction in sensitivity. Reproducibility studies and comparisons with CE/UV and the CE/sheath flow interface with ESI-MS are presented. Additionally, postrun acidification via the microdialysis junction interface is demonstrated and shown to be capable of denaturing the holomyoglobin protein noncovalent complex while maintaining separation efficiency. 21 refs., 7 figs., 1 tab.

  9. Analysis of Mitochondrial Respiratory Chain Supercomplexes Using Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE).

    PubMed

    Jha, Pooja; Wang, Xu; Auwerx, Johan

    2016-01-01

    Mitochondria are cellular organelles that harvest energy in the form of ATP through a process termed oxidative phosphorylation (OXPHOS), which occurs via the protein complexes of the electron transport chain (ETC). In recent years it has become unequivocally clear that mitochondrial complexes of the ETC are not static entities in the inner mitochondrial membrane. These complexes are dynamic and in mammals they aggregate in different stoichiometric combinations to form supercomplexes (SCs) or respirasomes. It has been proposed that the net respiration is more efficient via SCs than via isolated complexes. However, it still needs to be determined whether the activity of a particular SC is associated with a disease etiology. Here we describe a simplified method to visualize and assess in-gel activity of SCs and the individual complexes with good resolution using blue native polyacrylamide gel electrophoresis (BN-PAGE). © 2016 by John Wiley & Sons, Inc. PMID:26928661

  10. Optimization of in-line fritless solid-phase extraction for capillary electrophoresis-mass spectrometry.

    PubMed

    Tak, Yvonne H; Toraño, Javier Sastre; Somsen, Govert W; de Jong, Gerhardus J

    2012-12-01

    In this study, in-line frit-free solid-phase extraction (SPE) has been studied for the preconcentration of analytes prior to analysis by capillary electrophoresis-mass spectrometry (CE-MS). The mixed-mode sorbent Oasis HLB was selected for the trapping of compounds of different polarity. Using 2-ethylidene-1,5-dimethyl-3,3-diphenylpirrolidine (EDDP), dihydrocodeine and codeine as test compounds, SPE parameters such as the pH of the sample and composition of the washing and elution solvent were optimized. Trapping of the analytes was optimal at pH 8.0 or higher. For efficient elution of the SPE micro column, 85% of methanol in water with 2% (v/v) acetic acid was used, which also prevented current break down in subsequent CE analysis. CE resolution of the test compounds was highest for background electrolytes (BGEs) with a pH above 8. For optimal analysis, samples were 1:1 diluted with carbonate buffer (1M, pH 8.0) prior to analysis, BGE was 60mM ammonium acetate buffer (pH 10.0), and the injected sample volume was 60 μl (i.e., 30 capillary volumes). Good recoveries were found: 101% for EDDP, 88% for codeine and 90% for dihydrocodeine. Intraday RSDs for migration time and peak areas were below 0.56% and 15%, respectively. Peak widths at half height obtained with SPE-CE-MS were 12s for EDDP, 3.7s for dihydrocodeine and 7.4s for codeine, and were comparable to those for CE-MS. LODs were 0.22 pg/ml for EDDP, 2.1 pg/ml for dihydrocodeine and 24 pg/ml for codeine. It is concluded that the applied fritless in-line preconcentration construct proved to be highly useful for improving the sensitivity of CE while maintaining separation. PMID:22959866

  11. Combining C(4) D and MS as a dual detection approach for capillary electrophoresis.

    PubMed

    Beutner, Andrea; Cunha, Rafael Rodrigues; Richter, Eduardo Mathias; Matysik, Frank-Michael

    2016-04-01

    The hyphenation of two detectors in combination with separation techniques is a powerful tool to enhance the analytical information. In this work, we present for the first time the coupling of two important detectors for capillary electrophoresis (CE), namely capacitively coupled contactless conductivity detection (C(4) D) and electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). The elaborated experimental protocol took into account the requirements of separation aspects and the compatibility with both detectors. ESI-TOF-MS requires background electrolytes (BGE) containing only volatile components such as ammonium acetate or formate. These, however, exhibit a rather high conductivity, which is disadvantageous for C(4) D. Thus, the selection of the BGE in an appropriate concentration was undertaken for the determination of various phenolic compounds serving as a model system. The chosen BGE was a 10 mM ammonium acetate/ammonia buffer with a pH of 9. This BGE was a compromise concerning the detection performance of both detectors. The LODs for m-cresol, m- and p-nitrophenol, and 2,4-dinitrophenol were 3.1 μM (C(4) D), 0.8 μM (MS), 0.8 μM (MS), and 1.5 μM (MS), respectively. Moreover, the overall separation efficiency was excellent illustrating that detector-induced band broadening can be neglected in the CE-C(4) D/MS system. The analytical characteristics for the determination of phenolic compounds show the suitability of this dual detection approach and demonstrate the complementary use of C(4) D and MS detection. PMID:27060023

  12. Analysis of diterpenoic compounds in natural resins applied as binders in museum objects by capillary electrophoresis.

    PubMed

    Findeisen, Anna; Kolivoska, Viliam; Kaml, Isabella; Baatz, Wolfgang; Kenndler, Ernst

    2007-07-20

    The exudates of conifers consist mainly of diterpenoic acids of the abietane and pimarane type (abietic, neoabietic, dehydroabietic, palustric, pimaric, isopimaric, levopimaric and sandaracopimaric acid) and larixol acetate. These natural resins were used as adhesives, coatings, varnishes or plasticizers in artistic and historic works since ancient times. For the purpose of conservation and restoration and for art historic examination of such museum objects the identification of the binding media used is undoubtedly of paramount importance. In the present paper, the characterization of these resins based on the pattern of their diterpenoid constituents is carried out by capillary electrophoresis. For separation a background electrolyte which has been initially introduced for the analysis of chlorinated and natural resin acids in waste water was modified and the experimental conditions were adjusted in terms of resolution and analysis time. Separation was carried out in borate buffer at pH 9.25 (ionic strength 20 mmol L(-1)) with methyl-beta-cyclodextrin and sulfobutylether-beta-cyclodextrin as additives to increase selectivity and enhance the solubility of the analytes. With this electrophoretic system the resin acids of interest and larixol acetate--all as anionic cyclodextrin complexes--were separated within 5 min and detected at 200, 250 and 270 nm with a diode array detector. The electrophoretic patterns served for the characterisation of the relevant diterpenoic resins, balsams and copals. Sample pre-treatment was limited to sonication in methanol at 55 degrees C for 30 min. This enables the identification of the resins in mixtures with other binders like plant gums, animal glues or drying oils, even when these media are present in excess. Colophony was identified as resinous constituent of a modelling mass for gilded frames originating from the 19th century. PMID:17521659

  13. Can Palladium Acetate Lose Its "Saltiness"? Catalytic Activities of the Impurities in Palladium Acetate.

    PubMed

    Carole, William A; Bradley, Jonathan; Sarwar, Misbah; Colacot, Thomas J

    2015-11-01

    Commercially available palladium acetate often contains two major impurities, whose presence can impact the overall catalytic efficacy. This systematic study provides a comparison of the differences in catalytic activity of pure palladium acetate, Pd3(OAc)6, with the two impurities: Pd3(OAc)5(NO2) and polymeric [Pd(OAc)2]n in a variety of cross-coupling reactions. The solid state (13)C NMR spectra of all three compounds in conjunction with DFT calculations confirm their reported geometries. PMID:26507318

  14. EVALUATION OF MEMBRANE PERFORMANCE AND FOULING BY PYROLYSIS-GC/MS

    EPA Science Inventory

    Pyrolysis-GC/MS is used to evaluate the organic foulants found on two types of membranes for three natural waters. olyamide and cellulose acetate membranes are used. aters from Manatee Lake, Harsha Lake, and the Ohio River are used as feed waters. he pyrolysis fragments are class...

  15. Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation

    PubMed Central

    Reisenauer, Chris J.; Bhatt, Dhaval P.; Mitteness, Dane J.; Slanczka, Evan R.; Gienger, Heidi M.; Watt, John A.; Rosenberger, Thad A.

    2011-01-01

    Glyceryl triacetate (GTA), a compound effective at increasing circulating and tissue levels of acetate was used to treat rats subjected to a continual 28 day intra-ventricular infusion of bacterial lipopolysaccharide (LPS). This model produces a neuroinflammatory injury characterized by global neuroglial activation and a decrease in choline acetyltransferase immunoreactivity in the basal forebrain. During the LPS infusion, rats were given a daily treatment of either water or GTA at a dose of 6g/kg by oral gavage. In parallel experiments free-CoA and acetyl-CoA levels were measured in microwave fixed brains and flash frozen heart, liver, kidney and muscle following a single oral dose of GTA. We found that a single oral dose of GTA significantly increased plasma acetate levels by 15 min and remained elevated for up to 4 hr. At 30 min the acetyl-CoA levels in microwave-fixed brain and flash frozen heart and liver were increased at least 2.2-fold. The concentrations of brain acetyl-CoA was significantly increased between 30 and 45 min following treatment and remained elevated for up to 4 hr. The concentration of free-CoA in brain was significantly decreased compared to controls at 240 min. Immunohistochemical and morphological analysis demonstrated that a daily treatment with GTA significantly reduced the percentage of reactive GFAP-positive astrocytes and activated CD11b-positive microglia by 40–50% in rats subjected to LPS-induced neuroinflammation. Further, in rats subjected to neuroinflammation, GTA significantly increased the number of ChAT-positive cells by 40% in the basal forebrain compared to untreated controls. These data suggest that acetate supplementation increases intermediary short chain acetyl-CoA metabolism and that treatment is potentially anti-inflammatory and neuroprotective with regards to attenuating neuroglial activation and increasing ChAT immunoreactivity in this model. PMID:21272004

  16. Recent Developments in Instrumentation for Capillary Electrophoresis and Microchip-Capillary Electrophoresis

    PubMed Central

    Felhofer, Jessica L.; Blanes, Lucas; Garcia, Carlos D.

    2010-01-01

    Over the last years there has been an explosion in the number of developments and applications of capillary electrophoresis (CE) and microchip-CE. In part, this growth has been the direct consequence of recent developments in instrumentation associated with CE. This review, which is focused on contributions published in the last five years, is intended to complement the papers presented in this special issue dedicated to Instrumentation and to provide an overview on the general trend and some of the most remarkable developments published in the areas of high voltage power supplies, detectors, auxiliary components, and compact systems. It also includes few examples of alternative uses of and modifications to traditional CE instruments. PMID:20665910

  17. Metalless electrodes for capacitively coupled contactless conductivity detection on electrophoresis microchips.

    PubMed

    Duarte Junior, Gerson F; Fracassi da Silva, José Alberto; Mendonça Francisco, Kelliton José; do Lago, Claudimir Lucio; Carrilho, Emanuel; Coltro, Wendell K T

    2015-08-01

    This paper describes the use of ionic solutions as sensing electrodes for capacitively coupled contactless conductivity detection on electrophoresis microchips. Initially, two channels were engraved in a PMMA holder by using a CO2 laser system and sealed with a thin adhesive membrane. PDMS electrophoresis chips were fabricated by soft lithography and reversibly sealed against the polymer membrane. Different ionic solutions were investigated as metalless electrodes. The electrode channels were filled with KCl solutions prepared in conductivity values from approximately 10 to 40 S/m. The best analytical response was achieved using the KCl solution with 21.9 S/m conductivity (2 mol/L). Besides KCl, we also tested NaCl and LiCl solutions for actuating as detection electrodes. Taking into account the same electrolyte concentration (2 mol/L), the best response was recorded with KCl solution due to its higher ionic conductivity. The optimum operating frequency (400 kHz) and the best sensing electrode (2 mol/L KCl) were used to monitor electrophoretic separations of a mixture containing K(+) , Na(+) , and Li(+) . The use of liquid solutions as sensing electrodes for capacitively coupled contactless conductivity detection measurements has revealed great performance to monitor separations on chip-based devices, avoiding complicated fabrication schemes to include metal deposition and encapsulation of electrodes. The LOD values were estimated to be 28, 40, and 58 μmol/L for K(+) , Na(+) , and Li(+) , respectively, what is comparable to that of conventional metal electrodes. When compared to the use metal electrodes, the proposed approach offers advantages regarding the easiness of fabrication, simplicity, and lower cost per device. PMID:25809443

  18. Two-dimensional electrophoresis with cationic detergents, a powerful tool for the proteomic analysis of myelin proteins. Part 1: technical aspects of electrophoresis.

    PubMed

    Yamaguchi, Yoshihide; Miyagi, Yudai; Baba, Hiroko

    2008-03-01

    The analysis of proteins in damaged myelin is crucial to clarify the mechanisms of dysmyelination and demyelination. In the present study, proteomic analysis of myelin using a modified two-dimensional electrophoresis (2-DE) method was carried out to obtain a better understanding of myelin biology. Although standard 2-DE (immobilized pH gradient isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis; IPG/SDS-PAGE) methods of analysis provide high resolutions of soluble proteins with isoelectric focusing points in the pH range of 4-8, major myelin components include highly basic proteins are compacted at the basic edge of the 2-DE gels and are not sufficiently separated for satisfactory analysis. In an attempt to improve the separation of these proteins, an alternative 2-DE method using the cationic detergents was applied. In part 1 of this study, we describe technical aspects of conditioning 2-DE using cationic detergent. In the accompanying paper (part 2), practical 2-DE analysis using cationic detergents is described to identify proteins in the purified CNS myelin fraction. We carried out benzyldimethyl-n-hexadecylammonium chloride (16-BAC)/SDS-PAGE 2-DE and tested 2-DE with four other cationic detergents. We found that 16-BAC was the most effective agent for separation of myelin proteins and that hexadecyltrimethylammonium bromide (cetyltrimethylammonium bromide; CTAB) was the most effective agent for solubilization of myelin proteins. The combination of 16-BAC/SDS-PAGE and CTAB/SDS-PAGE is a powerful tool for the analysis of myelin proteins, including highly basic, high-MW (MW > 100K), and integral membrane proteins. PMID:17960830

  19. Electrophoresis: the march of pennies, the march of dimes.

    PubMed

    Righetti, Pier Giorgio

    2005-06-24

    The present review encompasses ca. 65 years of history of developments in electrokinetic separations, taking as a starting point the year 1937, i.e. the official launching of Tiselius' moving boundary electrophoresis (MBE). The 1950s have been particularly rich in introducing novel methodologies in zone electrophoresis (ZE), thus bringing about the decline of MBE. Among them of extraordinary importance was the development of electrophoresis on agar gels coupled to immuno-diffusion at right angles, which brought a big revolution not only in biochemistry but also in clinical chemistry. Also the by now forgotten paper electrophoresis was a landmark in separation science, in that it implemented, in its "fingerprinting" version, the first genuine two-dimensional (2D) map, coupling orthogonally a charge to a hydrophobic scale separation, while permitting for the first time the detection of spot mutations, i.e. single amino acid replacements in a polypeptide chain, that paved the way to modern genetic analysis. Equally important was the introduction of starch-block electrophoresis, that brought about the notion of sieving and the first discontinuous buffers, refined, in the 1960s, by Ornstein and Davies with their classical papers combining multiphasic buffer systems to polyacrylamide gels, that went down to history as disc-electrophoresis. The 1960s also contributed with two fundamental techniques, isoelectric focusing (IEF) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) that permitted to discriminate proteins solely on the basis of surface charge and molecular mass, respectively. The 1970s gave other fundamental contributions, such as isotachophoresis, the first example of a fully instrumental approach to electrophoresis, both in its analytical and preparative version (Tachophor and Tachofrac), 2D maps combining IEF to SDS-PAGE at right angles and silver staining techniques, that incremented sensitivity by 3 orders of magnitude. The 1980s generated immobilized pH gradients and capillary zone electrophoresis (CZE), two big players that dominated the electrokinetic horizon for all the 1990s and still in vigorous use in present days. The review terminates with a glimpse, in the third millennium, onto microchip technology and hyphenated techniques, notably direct interfacing of various electrophoretic separation methods with mass spectrometry (MS). PMID:16038288

  20. Effect of acetate on hypoglycemic seizures in mice.

    PubMed

    Urion, D; Vreman, H J; Weiner, M W

    1979-11-01

    In order to determine the effects of acetate on signs and symptoms of hypoglycemic seizures, Swiss Webster albino mice were injected intraperitoneally with solutions of NaCl, NaHCO3, NH4Cl, Na-acetate, or NH4-acetate, followed by subcutaneous injection of 7 U of insulin/kg body wt. Administration of Na- or NH4-acetate delayed and reduced the incidence of hypoglycemic reactions. Reinjection with Na-acetate or repeated injections with NH4-acetate caused a return to normal behavior patterns for 60 and 75%, respectively, of the affected hypoglycemic experimental animals. Injections of control animals with NaHCO3 or NH4Cl showed that the results were not due to alkalosis or acidosis. Acetate administration significantly increased plasma acetate and citrate, but not glucose, lactate, beta-hydroxybutyrate, or acetoacetate concentrations. The results indicate that intraperitoneal administration of acetate directly acted to prevent signs of hypoglycemia from occurring and reversed its manifestations when they were present. The protective effect of acetate suggests that it may serve as a fuel for the brain. PMID:488541

  1. Analytical characterization of beet root vacuole membrane

    SciTech Connect

    Marty, F.; Branton, D.

    1980-10-01

    Vacuoles from beet root (Beta vulgaris L. var. esculenta Gurke) isolated by a mechanical procedure were osmotically lysed to separate the membrane and sap components for analysis. Approximately 62% of the vacuole proteins, 70% of the nondialyzable carbohydrates and almost all of the phospholipids and sterols were recovered in the membrane fraction. The vacuole membrane had a phospholipid:protein ratio of 0.68 and a sterol:phospholipid ratio of 0.21. Seventeen complex polar lipids including phosphatides ad glycolipids have been tentatively identified. Phosphatidylcholine (54%) and phosphatidylethanolamine (24%) were the most prominant phosphoglycerides besides phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, and phosphatidic acid (1, 4, 5, and 12%, respectively. A putative sulfoglycoside and two major ceramide glycoside-like lipids, resembling those of animal lysosomes, were identified by thin-layer chromatography. High-resolution SDS-acrylamide gel electrophoresis of the polypeptides from the vacuole revealed 15 major bands with apparent molecular weights ranging from 91,000 to 12,000. Selective elution experiments delineated those polypeptides that were peripheral membrane proteins or sap proteins adsorbed to the membrane, and those that exhibited hydrophobic interaction with the lipid core. Lectin labeling results indicated that most of the polypeptides from the membrane and from the sap were glycoproteins probably of the high-mannose type characteristic of lysosomal enzymes that have undergone several stages of posttranslational modification.

  2. Differential membrane proteome analysis reveals novel proteins involved in the degradation of aromatic compounds in Geobacter metallireducens.

    PubMed

    Heintz, Dimitri; Gallien, Sébastien; Wischgoll, Simon; Ullmann, Anja Kerstin; Schaeffer, Christine; Kretzschmar, Antje Karen; van Dorsselaer, Alain; Boll, Matthias

    2009-09-01

    Aromatic compounds comprise a large class of natural and man-made compounds, many of which are of considerable concern for the environment and human health. In aromatic compound-degrading anaerobic bacteria the central intermediate of aromatic catabolism, benzoyl coenzyme A, is attacked by dearomatizing benzoyl-CoA reductases (BCRs). An ATP-dependent BCR has been characterized in facultative anaerobes. In contrast, a previous analysis of the soluble proteome from the obligately anaerobic model organism Geobacter metallireducens identified genes putatively coding for a completely different dearomatizing BCR. The corresponding BamBCDEFGHI complex is predicted to comprise soluble molybdenum or tungsten, selenocysteine, and FeS cluster-containing components. To elucidate key processes involved in the degradation of aromatic compounds in obligately anaerobic bacteria, differential membrane protein abundance levels from G. metallireducens grown on benzoate and acetate were determined by the MS-based spectral counting approach. A total of 931 proteins were identified by combining one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with liquid chromatography-tandem mass spectrometry. Several membrane-associated proteins involved in the degradation of aromatic compounds were newly identified including proteins with similarities to modules of NiFe/heme b-containing and energy-converting hydrogenases, cytochrome bd oxidases, dissimilatory nitrate reductases, and a tungstate ATP-binding cassette transporter system. The transcriptional regulation of differentially expressed genes was analyzed by quantitative reverse transcription-PCR; in addition benzoate-induced in vitro activities of hydrogenase and nitrate reductase were determined. The results obtained provide novel insights into the poorly understood degradation of aromatic compounds in obligately anaerobic bacteria. PMID:19497847

  3. Differential Membrane Proteome Analysis Reveals Novel Proteins Involved in the Degradation of Aromatic Compounds in Geobacter metallireducens*

    PubMed Central

    Heintz, Dimitri; Gallien, Sébastien; Wischgoll, Simon; Ullmann, Anja Kerstin; Schaeffer, Christine; Kretzschmar, Antje Karen; van Dorsselaer, Alain; Boll, Matthias

    2009-01-01

    Aromatic compounds comprise a large class of natural and man-made compounds, many of which are of considerable concern for the environment and human health. In aromatic compound-degrading anaerobic bacteria the central intermediate of aromatic catabolism, benzoyl coenzyme A, is attacked by dearomatizing benzoyl-CoA reductases (BCRs). An ATP-dependent BCR has been characterized in facultative anaerobes. In contrast, a previous analysis of the soluble proteome from the obligately anaerobic model organism Geobacter metallireducens identified genes putatively coding for a completely different dearomatizing BCR. The corresponding BamBCDEFGHI complex is predicted to comprise soluble molybdenum or tungsten, selenocysteine, and FeS cluster-containing components. To elucidate key processes involved in the degradation of aromatic compounds in obligately anaerobic bacteria, differential membrane protein abundance levels from G. metallireducens grown on benzoate and acetate were determined by the MS-based spectral counting approach. A total of 931 proteins were identified by combining one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with liquid chromatography-tandem mass spectrometry. Several membrane-associated proteins involved in the degradation of aromatic compounds were newly identified including proteins with similarities to modules of NiFe/heme b-containing and energy-converting hydrogenases, cytochrome bd oxidases, dissimilatory nitrate reductases, and a tungstate ATP-binding cassette transporter system. The transcriptional regulation of differentially expressed genes was analyzed by quantitative reverse transcription-PCR; in addition benzoate-induced in vitro activities of hydrogenase and nitrate reductase were determined. The results obtained provide novel insights into the poorly understood degradation of aromatic compounds in obligately anaerobic bacteria. PMID:19497847

  4. Membrane magic

    SciTech Connect

    Buecker, B.

    2005-09-01

    The Kansas Power and Light Co.'s La Cyne generating station has found success with membrane filtration water pretreatment technology. The article recounts the process followed in late 2004 to install a Pall Aria 4 microfilter in Unit 1 makeup water system at the plant to produce cleaner water for reverse osmosis feed. 2 figs., 2 photos.

  5. Platinum acetate blue: synthesis and characterization.

    PubMed

    Cherkashina, Natalia V; Kochubey, Dmitry I; Kanazhevskiy, Vladislav V; Zaikovskii, Vladimir I; Ivanov, Vladimir K; Markov, Alexander A; Klyagina, Alla P; Dobrokhotova, Zhanna V; Kozitsyna, Natalia Yu; Baranovsky, Igor B; Ellert, Olga G; Efimov, Nikolai N; Nefedov, Sergei E; Novotortsev, Vladimir M; Vargaftik, Michael N; Moiseev, Ilya I

    2014-08-18

    Platinum acetate blue (PAB) of the empirical formula Pt(OOCMe)2.5±0.25, a byproduct in the synthesis of crystalline platinum(II) acetate Pt4(OOCMe)8, is an X-ray amorphous substance containing platinum in the oxidation state between (II) and (III). Typical PAB samples were studied with X-ray diffraction, differential thermal analysis-thermogravimetric, extended X-ray absorption fine structure, scanning electron microscopy, transmission electron microscopy, magnetochemistry, and combined quantum chemical density functional theory-molecular mechanics modeling to reveal the main structural features of the PAB molecular building blocks. The applicability of PAB to the synthesis of platinum complexes was demonstrated by the preparation of the new homo- and heteronuclear complexes Pt(II)(dipy)(OOCMe)2 (1), Pt(II)(μ-OOCMe)4Co(II)(OH2) (2), and Pt(III)2(OOCMe)4(O3SPhMe)2 (3) with the use of PAB as starting material. PMID:25102316

  6. Phytogenic biosynthesis and emission of methyl acetate.

    PubMed

    Jardine, Kolby; Wegener, Frederik; Abrell, Leif; van Haren, Joost; Werner, Christiane

    2014-02-01

    Acetylation of plant metabolites fundamentally changes their volatility, solubility and activity as semiochemicals. Here we present a new technique termed dynamic (13) C-pulse chasing to track the fate of C1-3 carbon atoms of pyruvate into the biosynthesis and emission of methyl acetate (MA) and CO2 . (13) C-labelling of MA and CO2 branch emissions respond within minutes to changes in (13) C-positionally labelled pyruvate solutions fed through the transpiration stream. Strong (13) C-labelling of MA emissions occurred only under pyruvate-2-(13) C and pyruvate-2,3-(13) C feeding, but not pyruvate-1-(13) C feeding. In contrast, strong (13) CO2 emissions were only observed under pyruvate-1-(13) C feeding. These results demonstrate that MA (and other volatile and non-volatile metabolites) derive from the C2,3 atoms of pyruvate while the C1 atom undergoes decarboxylation. The latter is a non-mitochondrial source of CO2 in the light generally not considered in studies of CO2 sources and sinks. Within a tropical rainforest mesocosm, we also observed atmospheric concentrations of MA up to 0.6 ppbv that tracked light and temperature conditions. Moreover, signals partially attributed to MA were observed in ambient air within and above a tropical rainforest in the Amazon. Our study highlights the potential importance of acetyl coenzyme A (CoA) biosynthesis as a source of acetate esters and CO2 to the atmosphere. PMID:23862653

  7. Immunotoxicity of trenbolone acetate in Japanese quail

    USGS Publications Warehouse

    Quinn, M.J.; McKernan, M.; Lavoie, E.T.; Ottinger, M.A.

    2007-01-01

    Trenbolone acetate is a synthetic androgen that is currently used as a growth promoter in many meat-exporting countries. Despite industry laboratories classifying trenbolone as nonteratogenic, data showed that embryonic exposure to this androgenic chemical altered development of the immune system in Japanese quail. Trenbolone is lipophilic, persistent, and released into the environment in manure used as soil fertilizer. This is the first study to date to assess this chemical's immunotoxic effects in an avian species. A one-time injection of trenbolone into yolks was administered to mimic maternal deposition, and subsequent effects on the development and function of the immune system were determined in chicks and adults. Development of the bursa of Fabricius, an organ responsible for development of the humoral arm of the immune system, was disrupted, as indicated by lower masse, and smaller and fewer follicles at day 1 of hatch. Morphological differences in the bursas persisted in adults, although no differences in either two measures of immune function were observed. Total numbers of circulating leukocytes were reduced and heterophil-lymphocyte ratios were elevated in chicks but not adults. This study shows that trenbolone acetate is teratogenic and immunotoxic in Japanese quail, and provides evidence that the quail immune system may be fairly resilient to embryonic endocrine-disrupting chemical-induced alterations following no further exposure posthatch.

  8. Immunotoxicity of trenbolone acetate in Japanese quail.

    PubMed

    Quinn, Michael James; McKernan, Moira; Lavoie, Emma T; Ottinger, Mary Ann

    2007-01-01

    Trenbolone acetate is a synthetic androgen that is currently used as a growth promoter in many meat-exporting countries. Despite industry laboratories classifying trenbolone as nonteratogenic, data showed that embryonic exposure to this androgenic chemical altered development of the immune system in Japanese quail. Trenbolone is lipophilic, persistent, and released into the environment in manure used as soil fertilizer. This is the first study to date to assess this chemical's immunotoxic effects in an avian species. A one-time injection of trenbolone into yolks was administered to mimic maternal deposition, and subsequent effects on the development and function of the immune system were determined in chicks and adults. Development of the bursa of Fabricius, an organ responsible for development of the humoral arm of the immune system, was disrupted, as indicated by lower masse, and smaller and fewer follicles at day 1 of hatch. Morphological differences in the bursas persisted in adults, although no differences in either two measures of immune function were observed. Total numbers of circulating leukocytes were reduced and heterophil-lymphocyte ratios were elevated in chicks but not adults. This study shows that trenbolone acetate is teratogenic and immunotoxic in Japanese quail, and provides evidence that the quail immune system may be fairly resilient to embryonic endocrine-disrupting chemical-induced alterations following no further exposure posthatch. PMID:17162502

  9. Atmospheric formic and acetic acids in Venezuela

    NASA Astrophysics Data System (ADS)

    Sanhueza, Eugenio; Figueroa, Luis; Santana, Magaly

    Gas, phase and rain concentrations of HCOOH and CH 3COOH have been measured at various sites in the savannah climatic region, a cloud forest site and a coastal site in Venezuela. Gas phase and rain water were sampled using the aqueous scrubber technique and a wet only collector, respectively. Analyses were made by ion chromatography. The results indicate that formic and acetic acids are important components of the Venezuelan atmosphere. They are homogeneously distributed, suggesting a widespread source. Boundary layer concentrations during the dry season (HCOOH, 1.8 ppbv; CH 3COOH, 1.25 ppbv) are higher than in the wet season (HCOOH, 1.0 ppbv; CH 3COOH, 0.7 ppbv), mainly due to a longer lifetime of the acid during the dry season (˜6 days) compared with the wet season (˜2 days). The overall concentrations in rain are 7.0 and 4.0 μM for formic and acetic acids, respectively. The estimated annual total depositions are: HCOOH, 17 mmol m -2 yr -1 and CH 3COOH,10 mmol m -2 yr -1; around half of the acids are removed by dry deposition. It is established that a larger source (˜1.8 times) of both acids is present during the wet season. We speculate that atmospheric oxidation of hydrocarbons should be the main source of HCOOH and CH 3COOH in the Venezuelan atmosphere; soil emissions could make a significant contribution during the dry season.

  10. Analysis of Common Household Cleaner-Disinfectants by Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Gardner, William P.; Girard, James E.

    2000-10-01

    The use of capillary electrophoresis (CE) as an analytical technique in research, industrial, and commercial laboratories is growing rapidly. It is therefore very important to expose undergraduate instrumental analysis students to capillary electrophoresis. In this report we describe the CE analysis for benzalkonium compounds in common household cleaners and disinfectants. The surfactant nature of the benzalkonium compounds is the key consideration in performing the analysis, and modifications to the CE running buffer must be performed in order to successfully analyze the products. This experiment also illustrates the importance of (i) using peak areas corrected for variations in migration time to improve accuracy and (ii) using internal standards to improve the precision of capillary electrophoresis results.

  11. Synchrotron radiation for direct analysis of metalloproteins on electrophoresis gels.

    PubMed

    Ortega, Richard

    2009-03-01

    Metalloproteomics requires analytical techniques able to assess and quantify the inorganic species in metalloproteins. The most widely used methods are hyphenated techniques, based on the coupling of a high resolution chromatographic method with a high sensitivity method for metal analysis in solution. An alternative approach is the use of methods for solid sample analysis, combining metalloprotein separation by gel electrophoresis and direct analysis of the gels. Direct methods are based on beam analysis, such as lasers, ion beams or synchrotron radiation beams. The aim of this review article is to present the main features of synchrotron radiation based methods and their applications for metalloprotein analysis directly on electrophoresis gels. Synchrotron radiation X-ray fluorescence has been successfully employed for sensitive metal identification, and X-ray absorption spectroscopy for metal local structure speciation in proteins. Synchrotron based methods will be compared to ion beam and mass spectrometry for direct analysis of metalloproteins in electrophoresis gels. PMID:21305106

  12. Joule heating effects on peak broadening in capillary zone electrophoresis

    NASA Astrophysics Data System (ADS)

    Xuan, Xiangchun; Li, Dongqing

    2004-08-01

    Based on Taylor-Aris dispersion theory, a general analytical formula was derived for the theoretical plate height in capillary zone electrophoresis with the consideration of Joule heating effects. During the electrophoresis, the Joule heating causes a temperature rise and temperature gradients in the buffer solution. The temperature variations can affect the molecular diffusion, electroosmotic flow and electrophoretic flow via the temperature-dependent diffusion coefficient, dynamic viscosity and electrical conductivity. All these factors contribute to the peak broadening and are considered simultaneously in the present general model. The general formula derived in this paper is employed to discuss quantitatively the peak broadening in the presence of Joule heating effects. This formula can be easily extended to capillary zone electrophoresis with higher zeta potentials, if an approximate solution to Poisson-Boltzmann equation is employed.

  13. Bag Model for DNA Migration During Pulsed-Field Electrophoresis

    NASA Astrophysics Data System (ADS)

    Chu, Gilbert

    1991-12-01

    A model for pulsed-field electrophoresis was developed by picturing large DNA as a deformable "bag" that (i) moves with limiting mobility in a continuous electric field, (ii) adopts an orientation aligned with the field direction, and (iii) reorients after a change in field direction in a size-dependent manner. The model correctly predicted the resolution of large DNA in a pulsed field including the surprising phenomena of mobility inversion, lateral band spreading, and improved resolution for obtuse angles. A simple parametrization agreed with observations of two completely different aspects of DNA behavior: bulk mobility as measured during gel electrophoresis and molecular reorientation as measured by linear dichroism. The model also provides quantitative guidelines for setting experimental parameters in pulsed-field electrophoresis experiments.

  14. Preparative cell electrophoresis at 1 and 0 gravity

    NASA Technical Reports Server (NTRS)

    Van Oss, C. J.; Bronson, P. M.

    1979-01-01

    It is attempted to show that the use of heavy water (D2O) as starting cushion for the cells combines the advantages of the required density difference, with no lasting biochemical or physiochemical influence on the cells. Phosphate buffers of low ionic strength were prepared in distilled water or heavy water. A vertical starch gel electrophoresis was used to support a cylindrical polystyrene electrophoresis tube used for lymphocyte separations, 25 cm in length and 0.75 cm I.D., prepared from a 10 ml disposable pipet. Erythrocyte separations were carried out in a jacketed rectangular plexiglas chamber. It is pointed out that the described preparative D2O gradient electrophoresis method cannot be readily used for the measurement of electrophoretic mobilities for analytical purposes. However, for the preparative separation of cells with only slightly different electrokinetic properties the method appears promising, simple, and entirely inocuous to the cells.

  15. THERMAL DETECTION OF DNA AND PROTEINS DURING GEL ELECTROPHORESIS

    SciTech Connect

    R. JOHNSTON

    2000-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to try to detect unstained, untagged, unlabeled DNA bands in real-time during gel electrophoresis using simple thermal measurements. The technical and ES&H advantages to this approach could potentially be quite significant, especially given the extreme importance of gel electrophoresis to a wide variety of practical and research fields. The project was unable to demonstrate sufficient thermal sensitivity to detect DNA bands. It is clear that we still do not understand the gel electrophoresis phenomenon very well. The temperature control techniques developed during the course of this project have other useful applications.

  16. Enantiomeric resolution of multiple chiral centres racemates by capillary electrophoresis.

    PubMed

    Ali, Imran; Suhail, Mohd; Al-Othman, Zeid A; Alwarthan, Abdulrahman; Aboul-Enein, Hassan Y

    2016-05-01

    Enantiomeric resolution of multichiral centre racemates is an important area as some multichiral centre racemates are of great medicinal importance. However, enantioseparation of such types of racemates is a challenging task. Amongst many analytical techniques, capillary electrophoresis is a powerful technique and may be used to resolve such racemates. Only few papers are available describing enantiomeric resolution of such racemates. Therefore, efforts have been made to describe the enantiomeric resolution of multichiral centre racemates by capillary electrophoresis. This article discusses the importance of multichiral racemates, the need for capillary electrophoresis in enantiomeric resolution and chiral resolution of multichiral centre racemates using various chiral selectors. Further, attempts have been made to discuss the future challenges and prospects of enantiomeric resolution of multichiral racemates. The various chiral selectors used for the purpose are chiral crown ether, cyclodextrins, polysaccharides, macrocyclic glycopeptide antibiotics and ligand exchange. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26840015

  17. Capillary and microchip electrophoresis: challenging the common conceptions.

    PubMed

    Breadmore, Michael C

    2012-01-20

    Capillary electrophoresis (CE) has long been regarded as a powerful analytical separation technique that is an alternative to more traditional methods such as gel electrophoresis (GE) and liquid chromatography (LC). It is often touted as having a number of advantages over both of these, such as speed, flexibility, portability, sample and reagent requirements and cost, but also a number of disadvantages such as reproducibility and sensitivity. Microchip electrophoresis (ME), the next evolutionary step, miniaturised CE further providing improvements in speed and sample requirements as well as the possibility to perform more complex and highly integrated analyses. CE and ME are seen as a viable alternative to GE, but are often considered to be inferior to LC. This review will consider the strengths and weaknesses of both CE and ME and will challenge the common conceptions held about these. PMID:22000781

  18. Preparation of pervaporation membranes. Final report on Phase 1. Report for 1 January-31 October 1989

    SciTech Connect

    Baker, R.W.; Athayede, A.L.; Castro, R.

    1989-10-15

    The goal of the Phase 1 program was to prepare improved pervaporation membranes for the separation of polar solvents from water. Membranes were prepared from modified polysiloxanes and other rubbery materials. These membranes were tested with ethanol/water and ethyl acetate/water mixtures to determine their performance in a pervaporation test loop. Polydimethylsiloxane with polyamide blocks was the most selective material for ethanol/water separation. Polybutadiene membranes were preferred for ethyl acetate/water separation. The performance of the polydimethysiloxane-polyamide block copolymer demonstrates that the inclusion of hydrophilic groups into polydimethylsiloxane increases the ethanol/water selectivity, but the improvement is not significant. Testing of polyvinylmethylsiloxane membranes indicated that the degree of cross-linking in a polysiloxane membrane has a significant effect on ethanol/water selectivity. A highly cross-linked siloxane has a much lower ethanol/water selectivity than a less cross-linked material.

  19. Application of an external contactless conductivity detector for the analysis of beverages by microchip capillary electrophoresis.

    PubMed

    Kubán, Pavel; Hauser, Peter C

    2005-08-01

    Quantitative total ionic analysis of alcoholic and nonalcoholic beverages was performed by microchip capillary electrophoresis with external contactless conductivity detection. An electrolyte solution consisting of 10.5 mM histidine, 50 mM acetic acid, and 2 mM 18-crown-6 at pH 4.1 was used for the determination of NH(4) (+), K(+), Ca(2+), Na(+), and Mg(2+). Fast analysis of Cl(-), NO(3) (-), and SO(4) (2-) was achieved in 20 mM 2-(N-morpholino)ethanesulfonic acid /histidine electrolyte solution at pH 6.0 and the simultaneous separation of up to 12 inorganic and organic anions was performed in a solution containing 10 mM His and 7 mM glutamic acid at pH 5.75. Limits of detection ranged from 90 to 250 mug/L for inorganic cations and anions, and from 200 to 2000 mug/L for organic anions and phosphate. Calibration curves showed linear dependencies over one to two orders of magnitude when the stacking effect was minimized by injecting standard solutions prepared in background electrolyte solutions. Total analysis times of 35 and 90 s were achieved for the determination of 5 inorganic cations and for the simultaneous determination of 12 inorganic and organic anions, respectively, which represents a considerable reduction of analysis time compared to conventional separation methods used in food analysis. PMID:16047312

  20. Determination of biogenic amines in beer and wine by capillary electrophoresis-tandem mass spectrometry.

    PubMed

    Daniel, Daniela; Dos Santos, Vagner Bezerra; Vidal, Denis Tadeu Rajh; do Lago, Claudimir Lucio

    2015-10-16

    A capillary electrophoresis-tandem mass spectrometry (CE-MS/MS) method for the simultaneous assessment of nine biogenic amines (spermine, spermidine, putrescine, cadaverine, histamine, phenylethylamine, tryptamine, tyramine, and urocanic acid) in commercial samples of beer and wine is introduced. The samples were submitted to a simple clean-up step with poly(vinylpolypyrrolidone) followed by filtration. Electrophoretic separation in a polyvinyl alcohol (PVA)-coated capillary using 0.5 mol L(-1) acetic acid (pH 2.5) as background electrolyte and detection by electrospray-tandem mass spectrometry was employed. The range of the correlation coefficients of the calibration curves of the analyzed compounds was 0.996-0.999, and the limits of detection and limits of quantification were in the range of 1-2 μg L(-1) and 3-8 μg L(-1), respectively. The recovery values for samples spiked at three concentration levels (0.2, 0.5, and 1.0 mg L(-1)) ranged from 87 to 113% with standard deviation not greater than 5.8%. The use of a PVA-coated silica capillary allows suppressing the electroosmotic flow and, consequently, increasing of the separation efficiency. The method was successfully used to determine biogenic amines in commercial samples of beer and wine. PMID:26362807