Sample records for acetic acid bacteria

  1. Isolation of acetic acid bacteria from honey

    Microsoft Academic Search

    Kanlaya Kappeng; Wasu Pathom-aree

    Four thermotolerant acetic acid bacteria designated as CMU1, CMU2, CMU3 and CMU4 were isolated from six honey samples produced by three native bee species in northern Thailand, namely the dwarf honey bee (Apis florea), Asian honey bee (A. cerena) and giant honey bee (A. dorsata). All isolates were tested for their tolerance to acetic acid and ethanol at 30?C and

  2. Adaptation and tolerance of bacteria against acetic acid.

    PubMed

    Tr?ek, Janja; Mira, Nuno Pereira; Jarboe, Laura R

    2015-08-01

    Acetic acid is a weak organic acid exerting a toxic effect to most microorganisms at concentrations as low as 0.5 wt%. This toxic effect results mostly from acetic acid dissociation inside microbial cells, causing a decrease of intracellular pH and metabolic disturbance by the anion, among other deleterious effects. These microbial inhibition mechanisms enable acetic acid to be used as a preservative, although its usefulness is limited by the emergence of highly tolerant spoilage strains. Several biotechnological processes are also inhibited by the accumulation of acetic acid in the growth medium including production of bioethanol from lignocellulosics, wine making, and microbe-based production of acetic acid itself. To design better preservation strategies based on acetic acid and to improve the robustness of industrial biotechnological processes limited by this acid's toxicity, it is essential to deepen the understanding of the underlying toxicity mechanisms. In this sense, adaptive responses that improve tolerance to acetic acid have been well studied in Escherichia coli and Saccharomyces cerevisiae. Strains highly tolerant to acetic acid, either isolated from natural environments or specifically engineered for this effect, represent a unique reservoir of information that could increase our understanding of acetic acid tolerance and contribute to the design of additional tolerance mechanisms. In this article, the mechanisms underlying the acetic acid tolerance exhibited by several bacterial strains are reviewed, with emphasis on the knowledge gathered in acetic acid bacteria and E. coli. A comparison of how these bacterial adaptive responses to acetic acid stress fit to those described in the yeast Saccharomyces cerevisiae is also performed. A systematic comparison of the similarities and dissimilarities of the ways by which different microbial systems surpass the deleterious effects of acetic acid toxicity has not been performed so far, although such exchange of knowledge can open the door to the design of novel approaches aiming the development of acetic acid-tolerant strains with increased industrial robustness in a synthetic biology perspective. PMID:26142387

  3. Organisms Associated with Acetic Acid Bacteria in Vinegar Production

    Microsoft Academic Search

    Sandra Rainieri; Carlo Zambonelli

    Vinegars are the product of scalar fermentations carried out by several groups of microorganisms acting at different moments\\u000a in time. The initial phase is generally represented by an alcoholic fermentation commonly carried out by yeasts. Lactic acid\\u000a bacteria (LAB) can also play a role in releasing ethanol and acetic acid from heterofermentative lactic acid fermentations.\\u000a Depending on the nature of

  4. Acetic Acid Bacteria Taxonomy from Early Descriptions to Molecular Techniques

    Microsoft Academic Search

    Maria Gullo; Paolo Giudici

    The exploitation of acetic acid bacteria (AAB) has a long history in fermentation processes and now represents an emerging\\u000a field in biotechnological applications, especially with regard to the biosynthesis of useful chemicals with a potentially\\u000a high economic value and, in food science, through the standardization of microbiological processes for the manufacture of\\u000a both vinegar and other fermented beverages.

  5. Recent advances in nitrogen-fixing acetic acid bacteria.

    PubMed

    Pedraza, Raúl O

    2008-06-30

    Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance. PGPB belong to diverse genera, including Azospirillum, Azotobacter, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Gluconacetobacter, among others. They are capable of promoting plant growth through different mechanisms including (in some cases), the biological nitrogen fixation (BNF), the enzymatic reduction of the atmospheric dinitrogen (N(2)) to ammonia, catalyzed by nitrogenase. Aerobic bacteria able to oxidize ethanol to acetic acid in neutral or acid media are candidates of belonging to the family Acetobacteraceae. At present, this family has been divided into ten genera: Acetobacter, Gluconacetobacter, Gluconobacter, Acidomonas, Asaia, Kozakia, Saccharibacter, Swaminathania, Neoasaia, and Granulibacter. Among them, only three genera include N(2)-fixing species: Gluconacetobacter, Swaminathania and Acetobacter. The first N(2)-fixing acetic acid bacterium (AAB) was described in Brazil. It was found inside tissues of the sugarcane plant, and first named as Acetobacter diazotrophicus, but then renamed as Gluconacetobacter diazotrophicus. Later, two new species within the genus Gluconacetobacter, associated to coffee plants, were described in Mexico: G. johannae and G. azotocaptans. A salt-tolerant bacterium named Swaminathania salitolerans was found associated to wild rice plants. Recently, N(2)-fixing Acetobacter peroxydans and Acetobacter nitrogenifigens, associated with rice plants and Kombucha tea, respectively, were described in India. In this paper, recent advances involving nitrogen-fixing AAB are presented. Their natural habitats, physiological and genetic aspects, as well as their association with different plants and contribution through BNF are described as an overview. PMID:18177965

  6. Acetic Acid Bacteria, Newly Emerging Symbionts of Insects?

    PubMed Central

    Crotti, Elena; Rizzi, Aurora; Chouaia, Bessem; Ricci, Irene; Favia, Guido; Alma, Alberto; Sacchi, Luciano; Bourtzis, Kostas; Mandrioli, Mauro; Cherif, Ameur; Bandi, Claudio; Daffonchio, Daniele

    2010-01-01

    Recent research in microbe-insect symbiosis has shown that acetic acid bacteria (AAB) establish symbiotic relationships with several insects of the orders Diptera, Hymenoptera, Hemiptera, and Homoptera, all relying on sugar-based diets, such as nectars, fruit sugars, or phloem sap. To date, the fruit flies Drosophila melanogaster and Bactrocera oleae, mosquitoes of the genera Anopheles and Aedes, the honey bee Apis mellifera, the leafhopper Scaphoideus titanus, and the mealybug Saccharicoccus sacchari have been found to be associated with the bacterial genera Acetobacter, Gluconacetobacter, Gluconobacter, Asaia, and Saccharibacter and the novel genus Commensalibacter. AAB establish symbiotic associations with the insect midgut, a niche characterized by the availability of diet-derived carbohydrates and oxygen and by an acidic pH, selective factors that support AAB growth. AAB have been shown to actively colonize different insect tissues and organs, such as the epithelia of male and female reproductive organs, the Malpighian tubules, and the salivary glands. This complex topology of the symbiosis indicates that AAB possess the keys for passing through body barriers, allowing them to migrate to different organs of the host. Recently, AAB involvement in the regulation of innate immune system homeostasis of Drosophila has been shown, indicating a functional role in host survival. All of these lines of evidence indicate that AAB can play different roles in insect biology, not being restricted to the feeding habit of the host. The close association of AAB and their insect hosts has been confirmed by the demonstration of multiple modes of transmission between individuals and to their progeny that include vertical and horizontal transmission routes, comprising a venereal one. Taken together, the data indicate that AAB represent novel secondary symbionts of insects. PMID:20851977

  7. The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions

    PubMed Central

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik

    2014-01-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present. PMID:24837393

  8. The key to acetate: metabolic fluxes of acetic acid bacteria under cocoa pulp fermentation-simulating conditions.

    PubMed

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik; Wittmann, Christoph

    2014-08-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present. PMID:24837393

  9. Change in the plasmid copy number in acetic acid Bacteria in response to growth phase and acetic acid Concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria. PMID:25575969

  10. Recent advances in nitrogen-fixing acetic acid bacteria

    Microsoft Academic Search

    Raúl O. Pedraza

    2008-01-01

    Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance.PGPB belong to diverse genera, including Azospirillum, Azotobacter,

  11. Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts.

    PubMed

    Chouaia, Bessem; Gaiarsa, Stefano; Crotti, Elena; Comandatore, Francesco; Degli Esposti, Mauro; Ricci, Irene; Alma, Alberto; Favia, Guido; Bandi, Claudio; Daffonchio, Daniele

    2014-04-01

    Acetic acid bacteria (AAB) live in sugar rich environments, including food matrices, plant tissues, and the gut of sugar-feeding insects. By comparing the newly sequenced genomes of Asaia platycodi and Saccharibacter sp., symbionts of Anopheles stephensi and Apis mellifera, respectively, with those of 14 other AAB, we provide a genomic view of the evolutionary pattern of this bacterial group and clues on traits that explain the success of AAB as insect symbionts. A specific pre-adaptive trait, cytochrome bo3 ubiquinol oxidase, appears ancestral in AAB and shows a phylogeny that is congruent with that of the genomes. The functional properties of this terminal oxidase might have allowed AAB to adapt to the diverse oxygen levels of arthropod guts. PMID:24682158

  12. Acetic Acid Bacteria Genomes Reveal Functional Traits for Adaptation to Life in Insect Guts

    PubMed Central

    Chouaia, Bessem; Gaiarsa, Stefano; Crotti, Elena; Comandatore, Francesco; Degli Esposti, Mauro; Ricci, Irene; Alma, Alberto; Favia, Guido; Bandi, Claudio; Daffonchio, Daniele

    2014-01-01

    Acetic acid bacteria (AAB) live in sugar rich environments, including food matrices, plant tissues, and the gut of sugar-feeding insects. By comparing the newly sequenced genomes of Asaia platycodi and Saccharibacter sp., symbionts of Anopheles stephensi and Apis mellifera, respectively, with those of 14 other AAB, we provide a genomic view of the evolutionary pattern of this bacterial group and clues on traits that explain the success of AAB as insect symbionts. A specific pre-adaptive trait, cytochrome bo3 ubiquinol oxidase, appears ancestral in AAB and shows a phylogeny that is congruent with that of the genomes. The functional properties of this terminal oxidase might have allowed AAB to adapt to the diverse oxygen levels of arthropod guts. PMID:24682158

  13. Dynamics and Biodiversity of Populations of Lactic Acid Bacteria and Acetic Acid Bacteria Involved in Spontaneous Heap Fermentation of Cocoa Beans in Ghana?

    PubMed Central

    Camu, Nicholas; De Winter, Tom; Verbrugghe, Kristof; Cleenwerck, Ilse; Vandamme, Peter; Takrama, Jemmy S.; Vancanneyt, Marc; De Vuyst, Luc

    2007-01-01

    The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as “Weissella ghanaensis,” was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named “Acetobacter senegalensis” (A. tropicalis-like) and “Acetobacter ghanaensis” (A. syzygii-like). PMID:17277227

  14. Diversity of acetic acid bacteria present in healthy grapes from the Canary Islands.

    PubMed

    Valera, Maria José; Laich, Federico; González, Sara S; Torija, Maria Jesús; Mateo, Estibaliz; Mas, Albert

    2011-11-15

    The identification of acetic acid bacteria (AAB) from sound grapes from the Canary Islands is reported in the present study. No direct recovery of bacteria was possible in the most commonly used medium, so microvinifications were performed on grapes from Tenerife, La Palma and Lanzarote islands. Up to 396 AAB were isolated from those microvinifications and identified by 16S rRNA gene sequencing and phylogenetic analysis. With this method, Acetobacter pasteurianus, Acetobacter tropicalis, Gluconobacter japonicus and Gluconacetobacter saccharivorans were identified. However, no discrimination between the closely related species Acetobacter malorum and Acetobacter cerevisiae was possible. As previously described, 16S-23S rRNA gene internal transcribed spacer (ITS) region phylogenetic analysis was required to classify isolates as one of those species. These two species were the most frequently occurring, accounting for more than 60% of the isolates. For typing the AAB isolates, both the Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR and (GTG)5-PCR techniques gave similar resolution. A total of 60 profiles were identified. Thirteen of these profiles were found in more than one vineyard, and only one profile was found on two different islands (Tenerife and La Palma). PMID:21903289

  15. A diverse assemblage of indole-3-acetic acid producing bacteria associate with unicellular green algae.

    PubMed

    Bagwell, Christopher E; Piskorska, Magdalena; Soule, Tanya; Petelos, Angela; Yeager, Chris M

    2014-08-01

    Microalgae have tremendous potential as a renewable feedstock for the production of liquid transportation fuels. In natural waters, the importance of physical associations and biochemical interactions between microalgae and bacteria is generally well appreciated, but the significance of these interactions to algal biofuels production have not been investigated. Here, we provide a preliminary report on the frequency of co-occurrence between indole-3-acetic acid (IAA)-producing bacteria and green algae in natural and engineered ecosystems. Growth experiments with unicellular algae, Chlorella and Scenedesmus, revealed IAA concentration-dependent responses in chlorophyll content and dry weight. Importantly, discrete concentrations of IAA resulted in cell culture synchronization, suggesting that biochemical priming of cellular metabolism could vastly improve the reliability of high density cultivation. Bacterial interactions may have an important influence on algal growth and development; thus, the preservation or engineered construction of the algal-bacterial assembly could serve as a control point for achieving low input, reliable production of algal biofuels. PMID:24879600

  16. Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria.

    PubMed

    Papalexandratou, Zoi; Vrancken, Gino; De Bruyne, Katrien; Vandamme, Peter; De Vuyst, Luc

    2011-10-01

    Spontaneous organic cocoa bean box fermentations were carried out on two different farms in Brazil. Physical parameters, microbial growth, bacterial species diversity [mainly lactic acid bacteria (LAB) and acetic acid bacteria (AAB)], and metabolite kinetics were monitored, and chocolates were produced from the fermented dry cocoa beans. The main end-products of the catabolism of the pulp substrates (glucose, fructose, and citric acid) by yeasts, LAB, and AAB were ethanol, lactic acid, mannitol, and/or acetic acid. Lactobacillus fermentum and Acetobacter pasteurianus were the predominating bacterial species of the fermentations as revealed through (GTG)(5)-PCR fingerprinting of isolates and PCR-DGGE of 16S rRNA gene PCR amplicons of DNA directly extracted from fermentation samples. Fructobacillus pseudoficulneus, Lactobacillus plantarum, and Acetobacter senegalensis were among the prevailing species during the initial phase of the fermentations. Also, three novel LAB species were found. This study emphasized the possible participation of Enterobacteriaceae in the cocoa bean fermentation process. Tatumella ptyseos and Tatumella citrea were the prevailing enterobacterial species in the beginning of the fermentations as revealed by 16S rRNA gene-PCR-DGGE. Finally, it turned out that control over a restricted bacterial species diversity during fermentation through an ideal post-harvest handling of the cocoa beans will allow the production of high-quality cocoa and chocolates produced thereof, independent of the fermentation method or farm. PMID:21839382

  17. Gluconobacter as Well as Asaia Species, Newly Emerging Opportunistic Human Pathogens among Acetic Acid Bacteria ? †

    PubMed Central

    Alauzet, Corentine; Teyssier, Corinne; Jumas-Bilak, Estelle; Gouby, Anne; Chiron, Raphael; Rabaud, Christian; Counil, François; Lozniewski, Alain; Marchandin, Hélène

    2010-01-01

    Acetic acid bacteria (AAB) are broadly used in industrial food processing. Among them, members of the genera Asaia, Acetobacter, and Granulibacter were recently reported to be human opportunistic pathogens. We isolated AAB from clinical samples from three patients and describe here the clinical and bacteriological features of these cases. We report for the first time (i) the isolation of a Gluconobacter sp. from human clinical samples; (ii) the successive isolation of different AAB, i.e., an Asaia sp. and two unrelated Gluconobacter spp., from a cystic fibrosis patient; and (iii) persistent colonization of the respiratory tract by a Gluconobacter sp. in this patient. We reviewed the main clinical features associated with AAB isolation identified in the 10 documented reports currently available in the literature. Albeit rare, infections as well as colonization with AAB are increasingly reported in patients with underlying chronic diseases and/or indwelling devices. Clinicians as well as medical microbiologists should be aware of these unusual opportunistic pathogens, which are difficult to detect during standard medical microbiological investigations and which are multiresistant to antimicrobial agents. Molecular methods are required for identification of genera of AAB, but the results may remain inconclusive for identification to the species level. PMID:20826638

  18. Antibacterial activity of hen egg white lysozyme modified by heat and enzymatic treatments against oenological lactic acid bacteria and acetic acid bacteria.

    PubMed

    Carrillo, W; García-Ruiz, A; Recio, I; Moreno-Arribas, M V

    2014-10-01

    The antimicrobial activity of heat-denatured and hydrolyzed hen egg white lysozyme against oenological lactic acid and acetic acid bacteria was investigated. The lysozyme was denatured by heating, and native and heat-denatured lysozymes were hydrolyzed by pepsin. The lytic activity against Micrococcus lysodeikticus of heat-denatured lysozyme decreased with the temperature of the heat treatment, whereas the hydrolyzed lysozyme had no enzymatic activity. Heat-denatured and hydrolyzed lysozyme preparations showed antimicrobial activity against acetic acid bacteria. Lysozyme heated at 90°C exerted potent activity against Acetobacter aceti CIAL-106 and Gluconobacter oxydans CIAL-107 with concentrations required to obtain 50% inhibition of growth (IC50) of 0.089 and 0.013 mg/ml, respectively. This preparation also demonstrated activity against Lactobacillus casei CIAL-52 and Oenococcus oeni CIAL-91 (IC50, 1.37 and 0.45 mg/ml, respectively). The two hydrolysates from native and heat-denatured lysozyme were active against O. oeni CIAL-96 (IC50, 2.77 and 0.3 mg/ml, respectively). The results obtained suggest that thermal and enzymatic treatments increase the antibacterial spectrum of hen egg white lysozyme in relation to oenological microorganisms. PMID:25285490

  19. Molecular Structure of Acetic acid

    NSDL National Science Digital Library

    2003-06-02

    Acetic Acid commonly associated with vinegar; it is the most commercially important organic acid and is used to manufacture a wide range of chemical products, such as plastics and insecticides. Acetic acid is produced naturally by Aceto bacteria but, except for making vinegar, is usually made through synthetic processes. Ethanoic acid is used as herbicide, as a micro-biocide, as a fungicide and for pH adjustment.

  20. Antibiofilm Properties of Acetic Acid

    PubMed Central

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup; Nielsen, Anne K.; Johansen, Helle Krogh; Homøe, Preben; Høiby, Niels; Givskov, Michael; Kirketerp-Møller, Klaus

    2015-01-01

    Bacterial biofilms are known to be extremely tolerant toward antibiotics and other antimicrobial agents. These biofilms cause the persistence of chronic infections. Since antibiotics rarely resolve these infections, the only effective treatment of chronic infections is surgical removal of the infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram-negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms. PMID:26155378

  1. Systematic profiling of indole-3-acetic acid biosynthesis in bacteria using LC-MS/MS.

    PubMed

    Lin, Guang-Huey; Chang, Chung-Yu; Lin, Huei-Ru

    2015-04-15

    Indole-3-acetic acid (IAA) is produced from tryptophan through five synthesis pathways. A comprehensive method for the quantification of IAA and biosynthesis-related intermediates in a culture medium was developed. Sample preparation was simple with protein precipitation. The analytes were separated on a superficially porous C18 silica column and detected by electrospray ionization-tandem mass spectrometry in the positive ion multiple reaction monitoring mode. The limit of detection was 0.05 ?M, and the lower limits of quantification ranged from 0.05 to 2 ?M. The intra-day and inter-day precision and accuracy were less than 13.96%. Ion suppression was observed, and the deuterated internal standards were used to compensate for the matrix effect. The method was applied to analyze changes in tryptophan catabolism in a culture medium of Pseudomonas putida. The proposed method is robust and suitable for the systematic profiling of IAA biosynthesis in culture supernatant. PMID:25746752

  2. Conversion of acetic acid to methane: thermophilic bacteria and their symbiotic interactions

    SciTech Connect

    Lee, M.J.

    1987-01-01

    A thermophilic (60/sup 0/C), anaerobic coculture conspired of an acetate-oxidizing eubacterial rod (AOR) and a H/sub 2/-using methanogen, Methanobacterium sp. strain THF, was studied. The AOR was isolated from the coculture by dilution into medium, with ethylene glycol. It grew on ethylene glycol, 1,2 propanediol, formate, pyruvate, glycinebetaine, and H/sub 2/-CO/sub 2/, usually forming acetate as the main product. Evidence was obtained consistent with the hypothesis that the AOR oxidized acetate via a series of reactions resembling the reversal of the acetyl CoA acetogenesis pathway. Two key enzymes were present in high activity; carbon monoxide dehydrogenase (CODH) and formate dehydrogenase (FDH), although formyltetrahydrofolate synthetase was not detectable. Tetrahydrofolate, an important C/sub 1/ carrier in acetogens, was not detectable indirectly via enzyme assays, inhibitor studies, or fluorescence spectra, suggesting an alternate carries in the AOR. Anaerobic activity stains for CODH in native polyacrylamide gels showed a novel major band in the coculture not detected in the component organisms, suggesting regulation of this enzyme and the reversal of the pathway. Enzyme assays also indicated regulate of CODH and FDH in Methanobacterium. THF.

  3. Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants.

    PubMed

    Fuentes-Ramírez, L E; Bustillos-Cristales, R; Tapia-Hernández, A; Jiménez-Salgado, T; Wang, E T; Martínez-Romero, E; Caballero-Mellado, J

    2001-07-01

    Diazotrophic bacteria were isolated, in two different years, from the rhizosphere and rhizoplane of coffee (Coffea arabica L.) plants cultivated in Mexico; they were designated as type DOR and type SAd isolates. They showed characteristics of the family Acetobacteraceae, having some features in common with Gluconacetobacter (formerly Acetobacter) diazotrophicus, the only known N2-fixing species of the acetic acid bacteria, but they differed from this species with regard to several characteristics. Type DOR isolates can be differentiated phenotypically from type SAd isolates. Type DOR isolates and type SAd isolates can both be differentiated from Gluconacetobacter diazotrophicus by their growth features on culture media, their use of amino acids as nitrogen sources and their carbon-source usage. These results, together with the electrophoretic mobility patterns of metabolic enzymes and amplified rDNA restriction analysis, suggested that the type DOR and type SAd isolates represent two novel N2-fixing species. Comparative analysis of the 16S rRNA sequences revealed that strains CFN-Cf55T (type DOR isolate) and CFN-Ca54T (type SAd isolate) were closer to Gluconacetobacter diazotrophicus (both strains had sequence similarities of 98.3%) than to Gluconacetobacter liquefaciens, Gluconacetobacter sacchari (similarities < 98%) or any other acetobacteria. Strain CFN-Cf55T exhibited low levels of DNA-DNA reassociation with type SAd isolates (mean 42%) and strain CFN-Ca54T exhibited mean DNA-DNA reassociation of 39.5% with type DOR isolates. Strains CFN-Cf55T and CFN-Ca54T exhibited very low DNA reassociation levels, 7-21%, with other closely related acetobacterial species. On the basis of these results, two novel N2-fixing species are proposed for the family Acetobacteraceae, Gluconacetobacter johannae sp. nov. (for the type DOR isolates), with strain CFN-Cf55T (= ATCC 700987T = DSM 13595T) as the type strain, and Gluconacetobacter azotocaptans sp. nov. (for the type SAd isolates), with strain CFN-Ca54T (= ATCC 70098ST = DSM 13594T) as the type strain. PMID:11491326

  4. Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium.

    PubMed Central

    Kobayashi, M; Suzuki, T; Fujita, T; Masuda, M; Shimizu, S

    1995-01-01

    The occurrence of a hitherto unknown pathway involving the action of two enzymes, a nitrile hydratase and an amidase for the biosynthesis of indole-3-acetic acid was discovered in phytopathogenic bacteria Agrobacterium tumefaciens and in leguminous bacteria Rhizobium. The nitrile hydratase acting on indole-3-acetonitrile was purified to homogeneity through only two steps from the cell-free extract of A. tumefaciens. The molecular mass of the purified enzyme estimated by HPLC was about 102 kDa, and the enzyme consisted of four subunits identical in molecular mass. The enzyme exhibited a broad absorption spectrum in the visible range with absorption maxima at 408 nm and 705 nm, and it contained cobalt and iron. The enzyme stoichiometrically catalyzed the hydration of indole-3-acetonitrile into indole-3-acetamide with a specific activity of 13.7 mol per min per mg and a Km of 7.9 microM. Images Fig. 1 PMID:11607511

  5. Replacement of a terminal cytochrome c oxidase by ubiquinol oxidase during the evolution of acetic acid bacteria.

    PubMed

    Matsutani, Minenosuke; Fukushima, Kota; Kayama, Chiho; Arimitsu, Misato; Hirakawa, Hideki; Toyama, Hirohide; Adachi, Osao; Yakushi, Toshiharu; Matsushita, Kazunobu

    2014-10-01

    The bacterial aerobic respiratory chain has a terminal oxidase of the heme-copper oxidase superfamily, comprised of cytochrome c oxidase (COX) and ubiquinol oxidase (UOX); UOX evolved from COX. Acetobacter pasteurianus, an ?-Proteobacterial acetic acid bacterium (AAB), produces UOX but not COX, although it has a partial COX gene cluster, ctaBD and ctaA, in addition to the UOX operon cyaBACD. We expressed ctaB and ctaA genes of A. pasteurianus in Escherichia coli and demonstrated their function as heme O and heme A synthases. We also found that the absence of ctaD function is likely due to accumulated mutations. These COX genes are closely related to other ?-Proteobacterial COX proteins. However, the UOX operons of AAB are closely related to those of the ?/?-Proteobacteria (?-type UOX), distinct from the ?/?-Proteobacterial proteins (?-type UOX), but different from the other ?-type UOX proteins by the absence of the cyoE heme O synthase. Thus, we suggest that A. pasteurianus has a functional ?-type UOX but has lost the COX genes, with the exception of ctaB and ctaA, which supply the heme O and A moieties for UOX. Our results suggest that, in AAB, COX was replaced by ?/?-Proteobacterial UOX via horizontal gene transfer, while the COX genes, except for the heme O/A synthase genes, were lost. PMID:24862920

  6. Lactic Acid Bacteria

    NSDL National Science Digital Library

    This on-line exercise is focused on lactic acid bacteria, a group of related bacteria that produce lactic acid as a result of carbohydrate fermentation. It includes a protocol for the enrichment of lactic acid bacteria from enriched samples (like yogurt, sauerkraut, decaying plant matter, and tooth plaque). Three parameters are measured: growth, culture diversity, and pH. The exercise also includes instructions for the isolation of some of these bacteria by using the streak-plate method.

  7. pH-Triggered Controllable Release of Silver-Indole-3 Acetic Acid Complexes from Mesoporous Silica Nanoparticles (IBN-4) for Effectively Killing Malignant Bacteria.

    PubMed

    Kuthati, Yaswanth; Kankala, Ranjith Kumar; Lin, Shi-Xiang; Weng, Ching-Feng; Lee, Chia-Hung

    2015-07-01

    An efficient approach for the antimicrobial agent delivery specifically at acidic pH has been proposed. At the outset, functionalized mesoporous nanoparticles (NPs) were examined to verify the success of synthesis while considering the structural properties by various characterizations. The NPs were immobilized with silver-indole-3 acetic acid hydrazide (IAAH-Ag) complexes via a pH-sensitive hydrazone bond, which functioned as a model drug. When the transitional metal complexes with IBN-4-IAAH-Ag were exposed to acidic pH (near pH 5.0), the silver ions were preferentially released (70%) in a controlled manner up to 12 h by pH-sensitive denial of hydrazone bonds. In contrary, a low drug release (about 25%) was seen in physiological buffer (pH 7.4) demonstrating the pH sensitive release of this drug. Furthermore, the antibacterial efficacy of this unique structured sample was tested against the planktonic cells and biofilms of Gram-positive and Gram-negative bacteria with field emission scanning electron microscope in turn measuring the growth curves, formation of lethal reactive oxygen species, protein leakage, and DNA damage. The synthesized pH-sensitive IAAH-Ag complex was found to have high antimicrobial efficacy against multidrug resistant clinical isolates both in planktonic and biofilm states. Going forward, the synthesized nanoconjugates proved a good in vivo efficacy in treating the bacterial infection of mice. These new metal complex-conjugated NPs through a pH-sensitive hydrazone bond opened up a new avenue for the design and synthesis of the next generation antibacterial agents, which would act as an alternative to antibiotics. PMID:25996616

  8. Effects of Growth Medium on Matrix-Assisted Laser Desorption–Ionization Time of Flight Mass Spectra: a Case Study of Acetic Acid Bacteria

    PubMed Central

    Wieme, Anneleen D.; Spitaels, Freek; Aerts, Maarten; De Bruyne, Katrien; Van Landschoot, Anita

    2014-01-01

    The effect of the growth medium used on the matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectra generated and its consequences for species and strain level differentiation of acetic acid bacteria (AAB) were determined by using a set of 25 strains. The strains were grown on five different culture media that yielded a total of more than 600 mass spectra, including technical and biological replicates. The results demonstrate that the culture medium can have a profound effect on the mass spectra of AAB as observed in the presence and varying signal intensities of peak classes, in particular when culture media do not sustain optimal growth. The observed growth medium effects do not disturb species level differentiation but strongly affect the potential for strain level differentiation. The data prove that a well-constructed and robust MALDI-TOF mass spectrometry identification database should comprise mass spectra of multiple reference strains per species grown on different culture media to facilitate species and strain level differentiation. PMID:24362425

  9. Effects of acetic acid\\/acetic anhydride ratios on the properties of corn starch acetates

    Microsoft Academic Search

    Cherif Ibrahima Khalil Diop; Hai Long Li; Bi Jun Xie; John Shi

    2011-01-01

    Corn starch was pre-treated with acetic acid and then acetylated by acetic anhydride under microwave irradiation. The effects of molar ratios of these two reagents on the acetylation of starch were investigated. Starch acetate with a high degree of substitution (DS, 2.93) was obtained at a molar ratio (acetic acid\\/acetic anhydride) of 1:1. However, the DS should tend to decrease

  10. Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs

    Microsoft Academic Search

    Sadaf Shahab; Nuzhat Ahmed; Nasreen S. Khan

    2009-01-01

    Indigenous soil samples were tested for Phosphate solubilization. Efficient phosphate solubilizng bacteria were isolated. Effect of four different media on phosphate solubilization were determined. Auxin production by these bacteria were determined via bioassay and high performance liquid chromatography by the bacteria in liquid culture. Indole acetic acid and indole butyric acid were produced by these bacteria in varying concentration with

  11. Anaerobic thermophilic fermentation for acetic acid production from milk permeate.

    PubMed

    Talabardon, M; Schwitzguébel, J P; Péringer, P

    2000-01-01

    Fermentation of milk permeate to produce acetic acid under anaerobic thermophilic conditions (approximately 60 degrees C) was studied. Although none of the known thermophilic acetogenic bacteria can ferment lactose, it has been found that one strain can use galactose and two strains can use lactate. Moorella thermoautotrophica DSM 7417 and M. thermoacetica DSM 2955 were able to convert lactate to acetate at thermophilic temperatures with a yield of approximately 0.93 g g(-1). Among the strains screened for their abilities to produce acetate and lactate from lactose, Clostridium thermolacticum DSM 2910 was found precisely to produce large amounts of lactate and acetate. However, it also produced significant amounts of ethanol, CO2 and H2. The lactate yield was affected by cell growth. During the exponential phase, acetate, ethanol, CO2 and H2 were the main products of fermentation with an equimolar acetate/ethanol ratio, whereas during the stationary phase, only lactic acid was produced with a yield of 4 mol per mol lactose, thus reaching the maximal theoretical value. When this bacterium was co-cultured with M. thermoautotrophica, lactose was first converted mainly to lactic acid, then to acetic acid, with a zero residual lactic acid concentration and an overall yield of acetate around 80%. Under such conditions, only 13% of the fermented lactose was converted to ethanol by C. thermolacticum. PMID:10784299

  12. Acetic Acid Off Gassing in Clamshell Enclosures

    E-print Network

    Brewer, Allison

    2013-01-01

    . This presentation will investigate the use of acid detection strips (A-D strips) to study acetic acid off gassing occurring in custom-made, cloth covered book boxes constructed and used by conservators in research libraries....

  13. Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and CO/sub 2/ to methanogenesis in cattle waste at 40 and 60/sup 0/C

    SciTech Connect

    Mackie, R.I.; Bryant, M.P.

    1981-06-01

    The quantitative contribution of fatty acids and CO/sub 2/ to methanogenesis was studied by using stirred, 3-liter bench-top digestors fed on a semicontinuous basis with cattle waste. The fermentations were carried out at 40 and 60/sup 0/C under identical loading conditions. In the thermophilic digestor, acetate turnover increased from a prefeeding level of 16 ..mu..M/min to a peak (49 ..mu..M/min. Acetate turnover in the mesophilic digester increased fron 15 to 40 ..mu..M/min. Propionate turnover ranged from 2 to 5.2 and 1.5 to 4.5 ..mu..M/min in the thermophilic and mesophilic digestors, respectively. Butyrate turnover (0.7 to 1.2 ..mu..M/min) was similar in both digestors. The proportion of CH/sub 4/ produced via the methyl group of acetate varied with time after feeding and ranged from 72 to 75% in the mesophilic digestor and 75 to 86% in the thermophilic digestor. The contribution from CO/sub 2/ reduction was 24 to 19% and 19 to 27%, respectively. Propionate and butyrate turnover accounted for 20% of the total CH/sub 4/ produced. Counts of fatty acid-degrading bacteria were related to their turnover activity.

  14. Disinfection of mung bean seed with gaseous acetic acid.

    PubMed

    Delaquis, P J; Sholberg, P L; Stanich, K

    1999-08-01

    Mung bean seed inoculated with Salmonella Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes (3 to 5 log CFU/g) was exposed to gaseous acetic acid in an aluminum fumigation chamber. Salmonella Typhimurium and E. coli O157:H7 were not detected by enrichment of seeds treated with 242 microl of acetic acid per liter of air for 12 h at 45 degrees C. L. monocytogenes was recovered by enrichment from two of 10 25-g seed samples treated in this manner. Fumigation with gaseous acetic acid was also lethal to indigenous bacteria and fungi on mung bean seed. The treatment did not significantly reduce seed germination rates, and no differences in surface microstructure were observed between treated and untreated seed viewed by scanning electron microscopy. PMID:10456753

  15. Metabolic Activity of Fatty Acid-Oxidizing Bacteria and the Contribution of Acetate, Propionate, Butyrate, and CO(2) to Methanogenesis in Cattle Waste at 40 and 60 degrees C.

    PubMed

    Mackie, R I; Bryant, M P

    1981-06-01

    The quantitative contribution of fatty acids and CO(2) to methanogenesis was studied by using stirred, 3-liter bench-top digestors fed on a semicontinuous basis with cattle waste. The fermentations were carried out at 40 and 60 degrees C under identical loading conditions (6 g of volatile solids per liter of reactor volume per day, 10-day retention time). In the thermophilic digestor, acetate turnover increased from a prefeeding level of 16 muM/min to a peak (49 muM/min) 1 h after feeding and then gradually decreased. Acetate turnover in the mesophilic digestor increased from 15 to 40 muM/min. Propionate turnover ranged from 2 to 5.2 and 1.5 to 4.5 muM/min in the thermophilic and mesophilic digestors, respectively. Butyrate turnover (0.7 to 1.2 muM/min) was similar in both digestors. The proportion of CH(4) produced via the methyl group of acetate varied with time after feeding and ranged from 72 to 75% in the mesophilic digestor and 75 to 86% in the thermophilic digestor. The contribution from CO(2) reduction was 24 to 29% and 19 to 27%, respectively. Propionate and butyrate turnover accounted for 20% of the total CH(4) produced. Acetate synthesis from CO(2) was greatest shortly after feeding and was higher in the thermophilic digestor (0.5 to 2.4 muM/min) than the mesophilic digestor (0.3 to 0.5 muM/min). Counts of fatty acid-degrading bacteria were related to their turnover activity. PMID:16345789

  16. Auxin, Gibberellin, Cytokinin and Abscisic Acid Production in Some Bacteria

    Microsoft Academic Search

    A. Karadeniz; ?. F. Topcuo?lu; S. ?nan

    2006-01-01

    Summary  In this study, auxin (indole-3-acetic acid), gibberellin, cytokinin (zeatin) and abscisic acid production were investigated in the culture medium of the bacteria Proteus mirabilis, P. vulgaris, Klebsiella pneumoniae, Bacillus megaterium, B. cereus, Escherichia coli. To determine the levels of these plant growth regulators, high performance liquid chromatography (HPLC) technique was used. Our findings show that the bacteria used in this

  17. The effect of lactic acid bacteria on cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences in sensory rankings. It was concluded that lactic acid bacteria may not be necessary for successful cocoa fermentation. PMID:25889523

  18. Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents

    PubMed Central

    Etesami, Hassan; Alikhani, Hossein Ali; Hosseini, Hossein Mirseyed

    2015-01-01

    Plants select plant growth promoting rhizobacteria (PGPR) that are competitively fit to occupy compatible niches without causing pathological stress on them. However, when screening bacteria for plant growth promoting (PGP) agents, it is better to select bacteria for achieving the most promising isolates having suitable colonization and PGP traits. In most researches, it has been seen that following incubation, bacterial flora are taken at random from petri dishes for further study. However, this type of selection may remove some superior bacteria in terms of PGP traits and high colonization ability. Therefore, it is essential to study all the isolated bacteria in an economic way and select the best bacteria in terms of PGP traits and high colonization rate. A simple screening method to detect endophytic and rhizosphere bacteria, isolated from the plants in rotation with rice, for rice PGP agents based on a root colonization bioassay and a PGP trait is characterized. • Selected bacterial isolates based on their IAA producing trait have the potential for more PGP and colonization of rice plant. • IAA may be the first PGP trait for screening bacteria isolated from plant rotated with rice for rice PGP agents. • The screening procedure appears to be very effective and less time consuming. PMID:26150974

  19. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  20. Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and COâ to methanogenesis in cattle waste at 40 and 60°C

    Microsoft Academic Search

    R. I. Mackie; M. P. Bryant

    1981-01-01

    The quantitative contribution of fatty acids and COâ to methanogenesis was studied by using stirred, 3-liter bench-top digestors fed on a semicontinuous basis with cattle waste. The fermentations were carried out at 40 and 60°C under identical loading conditions. In the thermophilic digestor, acetate turnover increased from a prefeeding level of 16 ..mu..M\\/min to a peak (49 ..mu..M\\/min. Acetate turnover

  1. Atmospheric formic and acetic acids in Venezuela

    NASA Astrophysics Data System (ADS)

    Sanhueza, Eugenio; Figueroa, Luis; Santana, Magaly

    Gas, phase and rain concentrations of HCOOH and CH 3COOH have been measured at various sites in the savannah climatic region, a cloud forest site and a coastal site in Venezuela. Gas phase and rain water were sampled using the aqueous scrubber technique and a wet only collector, respectively. Analyses were made by ion chromatography. The results indicate that formic and acetic acids are important components of the Venezuelan atmosphere. They are homogeneously distributed, suggesting a widespread source. Boundary layer concentrations during the dry season (HCOOH, 1.8 ppbv; CH 3COOH, 1.25 ppbv) are higher than in the wet season (HCOOH, 1.0 ppbv; CH 3COOH, 0.7 ppbv), mainly due to a longer lifetime of the acid during the dry season (˜6 days) compared with the wet season (˜2 days). The overall concentrations in rain are 7.0 and 4.0 ?M for formic and acetic acids, respectively. The estimated annual total depositions are: HCOOH, 17 mmol m -2 yr -1 and CH 3COOH,10 mmol m -2 yr -1; around half of the acids are removed by dry deposition. It is established that a larger source (˜1.8 times) of both acids is present during the wet season. We speculate that atmospheric oxidation of hydrocarbons should be the main source of HCOOH and CH 3COOH in the Venezuelan atmosphere; soil emissions could make a significant contribution during the dry season.

  2. Original article Ethanol and acetic-acid tolerance

    E-print Network

    Paris-Sud XI, Université de

    Original article Ethanol and acetic-acid tolerance in Indian geographical populations of Drosophila clines of ethanol toler- ance (1.5-4.2%) and acetic-acid tolerance (2.9-4.9%) were observed in adult individuals of 4 geographical populations of Drosophila immigrans. Thus, both ethanol and acetic

  3. Development of an Amperometric Acetic Acid Sensor in Organic System

    Microsoft Academic Search

    Shin Lin; Tse-Chuan Chou

    An amperometric method was developed by using a lead working electrode in acetonitrile organic solution for detecting acetic acid. The mechanisms of electrochemical reaction were corresponding to the reduction of acetic ions in acetonitrile organic solution. The steady state amperometric current resulted from the reduction of acetic ions to produce the aldehyde in a two-electron process. In the organic sensing

  4. Acetic Acid Acts as a Volatile Signal To Stimulate Bacterial Biofilm Formation

    PubMed Central

    Chen, Yun; Gozzi, Kevin; Yan, Fang

    2015-01-01

    ABSTRACT Volatiles are small air-transmittable chemicals with diverse biological activities. In this study, we showed that volatiles produced by the bacterium Bacillus subtilis had a profound effect on biofilm formation of neighboring B. subtilis cells that grew in proximity but were physically separated. We further demonstrated that one such volatile, acetic acid, is particularly potent in stimulating biofilm formation. Multiple lines of genetic evidence based on B. subtilis mutants that are defective in either acetic acid production or transportation suggest that B. subtilis uses acetic acid as a metabolic signal to coordinate the timing of biofilm formation. Lastly, we investigated how B. subtilis cells sense and respond to acetic acid in regulating biofilm formation. We showed the possible involvement of three sets of genes (ywbHG, ysbAB, and yxaKC), all encoding putative holin-antiholin-like proteins, in cells responding to acetic acid and stimulating biofilm formation. All three sets of genes were induced by acetate. A mutant with a triple mutation of those genes showed a severe delay in biofilm formation, whereas a strain overexpressing ywbHG showed early and robust biofilm formation. Results of our studies suggest that B. subtilis and possibly other bacteria use acetic acid as a metabolic signal to regulate biofilm formation as well as a quorum-sensing-like airborne signal to coordinate the timing of biofilm formation by physically separated cells in the community. PMID:26060272

  5. The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines

    Microsoft Academic Search

    Alice Vilela-Moura; Dorit Schuller; Arlete Mendes-Faia; Rui D. Silva; Susana R. Chaves; Maria João Sousa; Manuela Côrte-Real

    2011-01-01

    Acetic acid is the main component of the volatile acidity of grape musts and wines. It can be formed as a by-product of alcoholic\\u000a fermentation or as a product of the metabolism of acetic and lactic acid bacteria, which can metabolize residual sugars to\\u000a increase volatile acidity. Acetic acid has a negative impact on yeast fermentative performance and affects the

  6. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  7. Original article Ethanol and acetic-acid tolerances

    E-print Network

    Paris-Sud XI, Université de

    Original article Ethanol and acetic-acid tolerances in Drosophila melanogaster: similar maternal) Summary - Ethanol and acetic-acid tolerances were studied in a cross between 2 geo- graphic races disappeared in the F2. Further investigations demonstrated that for ethanol tolerance, the large difference

  8. A Specialized Citric Acid Cycle Requiring Succinyl-Coenzyme A (CoA):Acetate CoA-Transferase (AarC) Confers Acetic Acid Resistance on the Acidophile Acetobacter aceti? †

    PubMed Central

    Mullins, Elwood A.; Francois, Julie A.; Kappock, T. Joseph

    2008-01-01

    Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO2 loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels. PMID:18502856

  9. A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti.

    PubMed

    Mullins, Elwood A; Francois, Julie A; Kappock, T Joseph

    2008-07-01

    Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO(2) loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels. PMID:18502856

  10. Micelles Protect and Concentrate Activated Acetic Acid

    NASA Astrophysics Data System (ADS)

    Todd, Zoe; House, C.

    2014-01-01

    As more and more exoplanets are discovered and the habitability of such planets is considered, one can turn to searching for the origin of life on Earth in order to better understand what makes a habitable planet. Activated acetic acid, or methyl thioacetate, has been proposed to be central to the origin of life on Earth, and also as an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about three orders of magnitude faster (K = 0.00663 s^-1; 100°C, pH 7.5, concentration = 0.33mM) than published rates for its catalyzed production making it unlikely to accumulate under prebiotic conditions. However, we also observed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. We found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid micelles. Thus, the hydrophobic regions of prebiotic micelles and early cell membranes could have offered a refuge for this energetic molecule increasing its lifetime in close proximity to the reactions for which it would be needed. Methyl thioacetate could thus be important for the origin of life on Earth and perhaps for better understanding the potential habitability of other planets.

  11. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  12. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  13. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Acetic acid; exemption from the requirement...From Tolerances § 180.1258 Acetic acid; exemption from the requirement...residues of the biochemical pesticide acetic acid when used as a...

  14. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Acetic acid; exemption from the requirement...From Tolerances § 180.1258 Acetic acid; exemption from the requirement...residues of the biochemical pesticide acetic acid when used as a...

  15. Computerized image analysis for acetic acid induced intraepithelial lesions

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.

    2008-03-01

    Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.

  16. The effect of acetic acid and acetate on CO2 corrosion of carbon steel

    Microsoft Academic Search

    Dong Liu; ZhenYu Chen; XingPeng Guo

    2008-01-01

    Purpose – The purpose of this paper is to consider the effect of acetic acid and acetate on the anodic and cathodic reactions of carbon steel present in CO2 corrosion. Design\\/methodology\\/approach – The corrosion behaviour of carbon steel (N80) in CO2-saturated 1% NaCl solution at 50°C and 0.1 MPa was investigated by using weight-loss tests, electrochemical methods (polarization curves and

  17. Purification of Acetic Acid Wastewater using Layer Melt Crystallization

    Microsoft Academic Search

    Kwang-Joo Kim

    2008-01-01

    Ice crystalline layers were prepared from a binary eutectic mixture of acetic acid and water using layer melt crystallization. The crystalline layers were obtained under the conditions of the cooling temperature at 269, 268, and 267 K, the feed compositions of 0.5, 1.0, and 5.0 wt% acetic acid, and the cooling rates of 0.1, 0.5, and 1.0 K\\/min. After crystallization, sweating operations were

  18. Degradation by acetic acid for crystalline Si photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Masuda, Atsushi; Uchiyama, Naomi; Hara, Yukiko

    2015-04-01

    The degradation of crystalline Si photovoltaic modules during damp-heat test was studied using some test modules with and without polymer film insertion by observing electrical and electroluminescence properties and by chemical analyses. Acetic acid generated by the hydrolysis decomposition of ethylene vinyl acetate used as an encapsulant is the main origin of degradation. The change in electroluminescence images is explained on the basis of the corrosion of electrodes by acetic acid. On the other hand, little change was observed at the pn junction even after damp-heat test for a long time. Therefore, carrier generation occurs even after degradation; however, such generated carriers cannot be collected owing to corrosion of electrodes. The guiding principle that module structure and module materials without saving acetic acid into the modules was obtained.

  19. Inhibition of citrus fungal pathogens by using lactic acid bacteria.

    PubMed

    Gerez, C L; Carbajo, M S; Rollán, G; Torres Leal, G; Font de Valdez, G

    2010-08-01

    The effect of lactic acid bacteria (LAB) on pathogenic fungi was evaluated and the metabolites involved in the antifungal effect were characterized. Penicillium digitatum (INTA 1 to INTA 7) and Geotrichum citri-aurantii (INTA 8) isolated from decayed lemon from commercial packinghouses were treated with imazalil and guazatine to obtain strains resistant to these fungicides. The most resistant strains (4 fungal strains) were selected for evaluating the antifungal activity of 33 LAB strains, among which only 8 strains gave positive results. The antifungal activity of these LAB strains was related to the production of lactic acid, acetic acid, and phenyllactic acid (PLA). A central composite design and the response surface methodology were used to evaluate the inhibitory effect of the organic acids produced by the LAB cultures. The antifungal activity of lactic acid was directly related to its concentration; however, acetic acid and PLA showed a peak of activity at 52.5 and 0.8 mM, respectively, with inhibition rates similar to those obtained with Serenade((R)) (3.0 ppm) imazalil (50 ppm) and guazatine (50 ppm). Beyond the peak of activity, a reduction in effectiveness of both acetic acid and PLA was observed. Comparing the inhibition rate of the organic acids, PLA was about 66- and 600-fold more effective than acetic acid and lactic acid, respectively. This study presents evidences on the antifungal effect of selected LAB strains and their end products. Studies are currently being undertaken to evaluate the effectiveness in preventing postharvest diseases on citrus fruits. PMID:20722936

  20. Growth, Induction, and Substrate Specificity of Dehydroabietic Acid-Degrading Bacteria Isolated from a Kraft Mill Effluent Enrichment

    Microsoft Academic Search

    P. A. BICHO; V. MARTIN; N. SADDLER

    1995-01-01

    We investigated resin acid degradation infive bacteria isolated from a bleach kraft mill effluent enrichment. All of the bacteria grew on dehydroabietic acid (DHA), a resin acid routinely detected in pulping effluents, or glycerol as the sole carbon source. None of the strains grew on acetate or methanol. Glycerol-grown, high- density, resting-cell suspensions were found to undergo a lag for

  1. Tetrazole acetic acid: Tautomers, conformers, and isomerization

    NASA Astrophysics Data System (ADS)

    Araujo-Andrade, C.; Reva, I.; Fausto, R.

    2014-02-01

    Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively. The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0-8 kJ mol-1 energy range and should be appreciably populated at the sublimation temperature (˜330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol-1) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol-1). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm-1, where the first OH stretching overtone vibrations of 1ccc and 2pcc occur. The reverse transformations could be induced by irradiations at 7010 and 7030 cm-1, transforming 1cct and 2pct back to 1ccc and 2pcc, also selectively. Besides the NIR-induced transformations, the photogenerated 1cct and 2pct forms also decay in N2 matrices back to 1ccc and 2pcc spontaneously, with characteristic decay times of hours (1H) and tens of minutes (2H). The decay mechanism is rationalized in terms of the proton tunneling. In crystals, TAA exists exclusively as 1H-tautomer. By contrast, the tautomeric composition of the matrix-isolated monomers was found to consist of both 1H- and 2H-tautomers, in comparable amounts. A mechanistic discussion of the tautomerization process occurring during sublimation, accounting also for the observed minor decomposition of TAA leading to CO2 and 5-methyl-tetrazole, is proposed.

  2. THE ANTIMICROBIAL ACTIVITY OF GREEN TEA (Camellia sinensis) ON Staphylococcus aureus IN COMBINATION WITH ASCORBIC ACID, ACETIC ACID, AND SODIUM CHLORIDE

    Microsoft Academic Search

    Timothy Barnum; Steven Castellano; Annie Chen; Neha Jariwala; Andrew Jung; Christina Sedberry; Heather Tynan; Charles Zou; Rachel Sandler; Danielle Cusmano

    Green tea contains polyphenolic catechins that have been demonstrated to effectively inhibit Staphylococcus aureus and related bacteria. This study aimed to determine if home-brewed green tea could inhibit S. aureus through paper disk diffusion and minimum inhibitory concentration experiments. It was hypothesized that green tea brewed for varying periods of time in solutions with ascorbic acid, acetic acid, and sodium

  3. Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates

    Microsoft Academic Search

    Elena Sergeeva; Danielle L. M. Hirkala; Louise M. Nelson

    2007-01-01

    The production of auxins, such as indole-3-acetic acid (IAA), by rhizobacteria has been associated with plant growth promotion,\\u000a especially root initiation and elongation. Six indole-producing bacteria isolated from the rhizosphere of legumes grown in\\u000a Saskatchewan soils and identified as Pantoea agglomerans spp. were examined for their ability to promote the growth of canola, lentil and pea under gnotobiotic conditions and

  4. Photodissociation spectroscopy of the Mg{sup +}-acetic acid complex

    SciTech Connect

    Abate, Yohannes; Kleiber, P. D. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242 (United States)

    2006-11-14

    We have studied the structure and photodissociation of Mg{sup +}-acetic acid clusters. Ab initio calculations suggest four relatively strongly bound ground state isomers for the [MgC{sub 2}H{sub 4}O{sub 2}]{sup +} complex. These isomers include the cis and trans forms of the Mg{sup +}-acetic acid association complex with Mg{sup +} bonded to the carbonyl O atom of acetic acid, the Mg{sup +}-acetic acid association complex with Mg{sup +} bonded to the hydroxyl O atom of acetic acid, or to a Mg{sup +}-ethenediol association complex. Photodissociation through the Mg{sup +}-based 3p<-3s absorption bands in the near UV leads to direct (nonreactive) and reactive dissociation products: Mg{sup +}, MgOH{sup +}, Mg(H{sub 2}O){sup +}, CH{sub 3}CO{sup +}, and MgCH{sub 3}{sup +}. At low energies the dominant reactive quenching pathway is through dehydration to Mg(H{sub 2}O){sup +}, but additional reaction channels involving C-H and C-C bond activation are also open at higher energies.

  5. Liquid-liquid equilibria of the ternary systems water + acetic acid + ethyl acetate and water + acetic acid + isophorene (3,5,5-trimethyl-2-cyclohexen-1-one)

    SciTech Connect

    Colombo, A.; Battilana, P.; Ragaini, V.; Bianchi, C.L. [Milan Univ. (Italy). Dept. of Physical Chemistry and Electrochemistry] [Milan Univ. (Italy). Dept. of Physical Chemistry and Electrochemistry; Carvoli, G. [Chemial S.p.A., Cavaglia (Italy)] [Chemial S.p.A., Cavaglia (Italy)

    1999-01-01

    Liquid-liquid equilibria for the ternary systems water + acetic acid + ethyl acetate and water + acetic acid + isophorone (3,5,5-trimethyl-2-cyclohexen-1-one) were measured over the temperature range (283 to 313) K. The results were used to estimate the interaction parameters between each of the three compounds of the systems studied for the NRTL and UNIQUAC models. The estimated interaction parameters were successfully used to predict the equilibrium compositions by the two models; experimental data were successfully reproduced. The UNIQUAC model was the most accurate in correlating the overall equilibrium composition of the studied systems. Also the NRTL model satisfactorily predicted the equilibrium composition. Isophorone experimentally resulted in a better extraction capacity for acetic acid and in a lower miscibility with water.

  6. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  7. CARCINOGENICITY OF THE CHLORINATED ACETIC ACIDS

    EPA Science Inventory

    Dichloroacetic Acid (DCAA) and trichloroacetic acid (TCAA) comprise a major fraction of the reaction products formed when water containing a variety of precursor humic materials is chlorinated. Both DCAA and TCAA administered in the drinking water increased the incidence of hepat...

  8. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties

    Microsoft Academic Search

    Carla Luciana Gerez; Maria Ines Torino; Graciela Rollán

    2009-01-01

    The ability of lactic acid bacteria (LAB) to inhibit Aspergillus, Fusarium, and Penicillium, the main contaminants in bread, was evaluated. Only four strains (Lactobacillus plantarum CRL 778, Lactobacillus reuteri CRL 1100, and Lactobacillus brevis CRL 772 and CRL 796) from 95 strains tested displayed antifungal activity. The major antifungal compounds were acetic and phenyllactic acids. The fermentation quotient (FQ=2.0) and

  9. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation of carbohydrates or by organic synthesis. The principal synthetic methods currently employed are oxidation of...

  10. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation of carbohydrates or by organic synthesis. The principal synthetic methods currently employed are oxidation of...

  11. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation of carbohydrates or by organic synthesis. The principal synthetic methods currently employed are oxidation of...

  12. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    NASA Technical Reports Server (NTRS)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  13. Thermodynamic analysis of acetic acid steam reforming for hydrogen production

    NASA Astrophysics Data System (ADS)

    Goicoechea, Saioa; Ehrich, Heike; Arias, Pedro L.; Kockmann, Norbert

    2015-04-01

    A thermodynamic analysis of hydrogen generation by acetic acid steam reforming has been carried out with respect to applications in solid oxide fuel cells. The effect of operating parameters on equilibrium composition has been examined focusing especially on hydrogen and carbon monoxide production, which are the fuels in this type of fuel cell. The temperature, steam to acetic acid ratio, and to a lesser extent pressure affect significantly the equilibrium product distribution due to their influence on steam reforming, thermal decomposition and water-gas shift reaction. The study shows that steam reforming of acetic acid with a steam to acetic acid ratio of 2 to 1 is thermodynamically feasible with hydrogen, carbon monoxide and water as the main products at the equilibrium at temperatures higher than 700 °C, and achieving CO/CO2 ratios higher than 1. Thus, it can be concluded that within the operation temperature range of solid oxide fuel cells - between 700 °C and 1000 °C - the production of a gas rich in hydrogen and carbon monoxide is promoted.

  14. Condensation of acetol and acetic acid vapor with sprayed liquid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cellulose-derived fraction of biomass pyrolysis vapor was simulated by evaporating acetol and acetic acid (AA) from flasks on a hot plate. The liquid in the flasks was infused with heated nitrogen. The vapor/nitrogen stream was superheated in a tube oven and condensed by contact with a cloud of ...

  15. Evolutionary Genomics of Lactic Acid Bacteria

    Microsoft Academic Search

    Kira S. Makarova; Eugene V. Koonin

    2007-01-01

    The lactic acid bacteria (LAB) might be the most numerous group of bacteria linked to humans. They are naturally asso- ciated with mucosal surfaces, particularly the gastrointestinal tract, and are also indigenous to food-related habitats, includ- ing plant (fruits, vegetables, and cereal grains), wine, milk, and meat environments (60, 61). The LAB include both important pathogens, e.g., several Streptococcus species,

  16. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids

    Microsoft Academic Search

    Friedrich Widdel; Norbert Pfennig

    1981-01-01

    Three strains (2ac9, 3ac10 and 4ac11) of oval to rodshaped, Gram negative, nonsporing sulfate-reducing bacteria were isolated from brackish water and marine mud samples with acetate as sole electron donor. All three strains grew in simple defined media supplemented with biotin and 4-aminobenzoic acid as growth factors. Acetate was the only electron donor utilized by strain 2ac9, while the other

  17. Reduction by Molecular Hydrogen of Acetoacetate to Butyrate by Butyric Acid Bacteria

    Microsoft Academic Search

    Georges N. Cohen; Germaine Cohen-Bazire

    1950-01-01

    Stadtman and Barker1,2, working with extracts of Cl. kluyveri, and Cohen and Cohen-Bazire3-5, using suspensions of butyric acid bacteria, found that acetoacetate is split into two C2-carbon residues. These workers found acetate from acetoacetate, whereas Stadtman and Barker observed a phosphoroclastic splitting of acetoacetate to acetate and acetyl phosphate. It should be noted that the suspensions utilized by Cohen and

  18. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...DEVICES Clinical Chemistry Test Systems § 862.1390 5-Hydroxyindole...acetic acid/serotonin test system. (a) Identification...acetic acid/serotonin test system is a device intended to...treatment of carcinoid tumors of endocrine tissue. (b)...

  19. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...DEVICES Clinical Chemistry Test Systems § 862.1390 5-Hydroxyindole...acetic acid/serotonin test system. (a) Identification...acetic acid/serotonin test system is a device intended to...treatment of carcinoid tumors of endocrine tissue. (b)...

  20. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...DEVICES Clinical Chemistry Test Systems § 862.1390 5-Hydroxyindole...acetic acid/serotonin test system. (a) Identification...acetic acid/serotonin test system is a device intended to...treatment of carcinoid tumors of endocrine tissue. (b)...

  1. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...DEVICES Clinical Chemistry Test Systems § 862.1390 5-Hydroxyindole...acetic acid/serotonin test system. (a) Identification...acetic acid/serotonin test system is a device intended to...treatment of carcinoid tumors of endocrine tissue. (b)...

  2. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...DEVICES Clinical Chemistry Test Systems § 862.1390 5-Hydroxyindole...acetic acid/serotonin test system. (a) Identification...acetic acid/serotonin test system is a device intended to...treatment of carcinoid tumors of endocrine tissue. (b)...

  3. Acetic Acid Bacterial Biota of the Pink Sugar Cane Mealybug, Saccharococcus sacchari, and Its Environs

    PubMed Central

    Ashbolt, Nicholas J.; Inkerman, Peter A.

    1990-01-01

    Saccharococcus sacchari is the primary colonizer of the developing “sterile” tissue between the leaf sheath and stem of sugar cane. The honeydew secreted by the mealybugs is acidic (about pH 3) and supports an atypical epiphytic microbiota dominated by acetobacter-like bacteria and acidophilic yeast species. However, Erwinia and Leuconostoc species predominate within the leaf sheath pocket region when the mealybugs die out. The unidentified acetobacters were readily isolated from S. sacchari throughout its life cycle and from other genera of mealybugs on sugar cane and various other plants, both above and below ground. No other insect present on sugar cane was a significant vector of acetic acid bacteria. The major factors restricting microbial diversity within the environs of mealybugs were considered to be yeast activity along with bacterial production of acetic acid, ketogluconic acids, and gamma-pyrones, in association with their lowering of pH. The microbial products may aid in suppressing the attack by the parasitic mold Aspergillus parasiticus on mealybugs but could act as attractants for the predatory fruit fly Cacoxenus perspicax. PMID:16348144

  4. CLA production from ricinoleic acid by lactic acid bacteria

    Microsoft Academic Search

    Akinori Ando; Jun Ogawa; Shigenobu Kishino; Sakayu Shimizu

    2003-01-01

    The ability to produce CLA from ricinoleic acid is widely distributed in lactic acid bacteria. Washed cells of Lactobacillus plantarum JCM 1551 were selected as a potential catalyst for CLA production from ricinoleic acid. Cells cultivated in medium supplemented\\u000a with a mixture of ?-linolenic acid and linoleic acid showed enhanced CLA productivity. Under optimal reaction conditions,\\u000a with the free acid

  5. The proteolytic system of lactic acid bacteria.

    PubMed

    Mayo, B

    1993-12-01

    Lactic acid bacteria are widely used throughout the world, empirically or deliberately, in the manufacturing of several food and feed stuffs, including milk products (such as cheese, butter, yoghurt, buttermilk, etc.), fermented vegetables (pickles, olives and sauerkraut), sausages, sourdough bread and silage, due to their ability to convert sugars into lactic acid. Of these, dairy products are of outstanding economic importance. Starter cultures used in the dairy industry are mixtures of carefully selected lactic acid bacteria which are added to the milk to fulfil the desired fermentation. Dairy starter cultures must reach high densities in milk in order to produce lactic acid at the required rates for manufacturing. Under these conditions, amino acids supply becomes limitant due to their scarce concentration in milk and to the auxotrophies shown by many starter bacteria. This implies the necessity of a proteolytic system, able to degrade the most abundant protein in milk, casein, into assimilable amino acids and peptides. Casein degradation and utilization require the concerted action of proteinases, peptidases and amino acid and peptide uptake systems. This whole set of enzymes constitutes the proteolytic system. In this article an overview of the recent biochemical and genetic data on the proteolytic system of lactic acid bacteria will be presented. PMID:8172695

  6. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2009-04-01 true Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350... § 175.350 Vinyl acetate/crotonic acid copolymer. A copolymer of vinyl acetate and crotonic acid may be safely used as a coating or...

  7. 75 FR 52269 - Acetic Acid Ethenyl Ester, Polymer With Oxirane; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...EPA-HQ-OPP-2010-0429; FRL-8841-2] Acetic Acid Ethenyl Ester, Polymer With Oxirane...requirement of a tolerance for residues of acetic acid ethenyl ester, polymer with oxirane...permissible level for residues of acetic acid ethenyl ester, polymer with oxirane...

  8. Photocatalytic oxidation and decomposition of acetic acid on titanium silicalite.

    PubMed

    Lee, G D; Tuan, V A; Falconer, J L

    2001-03-15

    Transient reaction of adsorbed monolayers of acetic acid was used to characterize the photocatalytic properties of titanium silicalite zeolites (TS-1). The TS-1 zeolites having Si/Ti ratios of 5, 12.5, and 50 are effective catalysts at room temperature for both photocatalytic oxidation (PCO) and decomposition (PCD) of acetic acid. The rates of PCO are higher than the rates of PCD for each catalyst. Acetic acid oxidized photocatalytically in 0.2% O2 to form gas-phase CO2 and CH4 and adsorbed H2O on the TS-1 catalysts, whereas no CH4 formed on Degussa P25 TiO2. Isotope labeling showed that, on both TiO2 and TS-1 catalysts, the alpha-carbon formed CO2 whereas the beta-carbon formed CH4 and CO2. The rates of oxidation of the two carbons have different dependencies on UV intensity. The catalysts with higher Si/Ti ratios adsorbed significantly more acetic acid, and the PCO rates per gram of titanium are highest on the TS-1 catalyst with the lowest Ti content, apparently because a larger fraction of the Ti atoms are surface atoms on this catalyst. During PCD in an inert atmosphere, CO2, CH4, and C2H6 formed on TiO2 and on the catalyst with a Si/Ti ratio of 5, but C2H6 was not detected on the other catalysts. The CO2/CH4 selectivity during PCD increased with increasing Si/Ti ratio. The first step in PCO and PCD on TS-1 catalysts appears to be similar and involves formation of a CH3 radical. PMID:11347941

  9. Inhibition of C4 photosynthesis by (benzamidooxy)acetic acid.

    PubMed

    Nakamoto, H; Ku, M S; Edwards, G E

    1982-12-01

    (Benzamidooxy)acetic acid (common name benzadox) which has herbicidal properties was evaluated as a potential inhibitor of photosynthesis in C4 plants. Among enzymes of the C4 pathway, it was a relatively strong inhibitor of alanine aminotransferase in in vitro experiments at concentrations of 5mM. In benzadox treated leaves of Panicum miliaceum, a NAD-malic enzyme type C4 species, there was strong inhibition of both alanine and aspartate aminotransferase and of photosynthetic O2 evolution within one hour. Consistent with the inhibition of these enzymes of the C4 cycle, the pool sizes of metabolites of the cycle was altered: the aspartate level was increased two fold, while the levels of other metabolites such as pyruvate, alanine, oxalacetate and malate were decreased. Kinetic studies with partially purified alanine aminotransferase showed that benzadox is a competitive inhibitor with respect to alanine and a noncompetitive inhibitor with respect to 2-oxoglutarate. Comparisons between the structures and inhibitory actions of benzadox and (aminooxy)acetic acid, the latter a potent inhibitor of alanine and aspartate aminotransferases, suggest that in vivo, benzadox may exert its effect through metabolism to (aminooxy)acetic acid. PMID:24458342

  10. Antagonism of Lactic Acid Bacteria against Phytopathogenic Bacteria

    PubMed Central

    Visser, Ronèl; Holzapfel, Wilhelm H.; Bezuidenhout, Johannes J.; Kotzé, Johannes M.

    1986-01-01

    A variety of lactic acid bacteria, isolated from plant surfaces and plant-associated products, were found to be antagonistic to test strains of the phytopathogens Xanthomonas campestris, Erwinia carotovora, and Pseudomonas syringae. Effective “in vitro” inhibition was found both on agar plates and in broth cultures. In pot trials, treatment of bean plants with a Lactobacillus plantarum strain before inoculation with P. syringae caused a significant reduction of the disease incidence. Images PMID:16347150

  11. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria.

    PubMed

    Vlková, Eva; Salmonová, Hana; Bunešová, V?ra; Geigerová, Martina; Rada, Vojt?ch; Musilová, Šárka

    2015-08-01

    Various culture media have been proposed for the isolation and selective enumeration of bifidobacteria. Mupirocin is widely used as a selective factor along with glacial acetic acid. TOS (transgalactosylated oligosaccharides) medium supplemented with mupirocin is recommended by the International Dairy Federation for the detection of bifidobacteria in fermented milk products. Mupirocin media with acetic acid are also reliable for intestinal samples in which bifidobacteria predominate. However, for complex samples containing more diverse microbiota, the selectivity of mupirocin media is limited. Resistance to mupirocin has been demonstrated by many anaerobic bacteria, especially clostridia. The objective was to identify an antibiotic that inhibits the growth of clostridia and allows the growth of bifidobacteria, and to use the identified substance to develop a selective cultivation medium for bifidobacteria. The susceptibility of bifidobacteria and clostridia to 12 antibiotics was tested on agar using the disk diffusion method. Only norfloxacin inhibited the growth of clostridia and did not affect the growth of bifidobacteria. Using both pure cultures and faecal samples from infants, adults, calves, lambs, and piglets, the optimal concentration of norfloxacin in solid cultivation media was determined to be 200 mg/L. Our results showed that solid medium containing norfloxacin (200 mg/L) in combination with mupirocin (100 mg/L) and glacial acetic acid (1 mL/L) is suitable for the enumeration and isolation of bifidobacteria from faecal samples of different origins. PMID:25865525

  12. Genetics of Lactic Acid Bacteria

    Microsoft Academic Search

    Monique Zagorec; Jamila Anba-Mondoloni; Anne-Marie Crutz-Le Coq; Marie-Christine Champomier-Vergès

    2008-01-01

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally\\u000a contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation\\u000a of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer\\u000a addition of

  13. A new method to clean industrial water from acetic acid via esterification

    Microsoft Academic Search

    C. L. Bianchi; V. Ragaini; C. Pirola; G. Carvoli

    2003-01-01

    The valorisation of very low concentration of acetic acid (6%, w\\/w) was investigated by reacting with n-butanol and 2-ethyl-1-hexanol taking advantage of the different solubilities of acetic acid and acetic ester in water. The esterification of very diluted solution of acetic acid with alcohol is a reversible reaction and the conversion is greatly restricted by equilibrium limitation. Therefore, the peculiarity

  14. Inhibition of the methanogenic fermentation of p-toluic acid (4-methylbenzoic acid) by acetate

    Microsoft Academic Search

    Hervé Macarie; Jean-Pierre Guyot

    1992-01-01

    The potential inhibitory effect of acetate on p-toluic acid methanogenic fermentation was studied during the continuous operation at 5.3 days hydraulic retention time of an upflow anaerobic sludge blanket reactor fed with a synthetic waste-water containing 3.67 mmp-toluic acid as sole carbon and energy source. In the absence of acetate, a chemical oxygen demand removal efficiency of 56.8% and an

  15. Effects of acetic acid, ethanol, and SO 2 on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains

    Microsoft Academic Search

    Alice Vilela-Moura; Dorit Schuller; Arlete Mendes-Faia; Manuela Côrte-Real

    2010-01-01

    Herein, we report the influence of different combinations of initial concentration of acetic acid and ethanol on the removal\\u000a of acetic acid from acidic wines by two commercial Saccharomyces cerevisiae strains S26 and S29. Both strains reduced the volatile acidity of an acidic wine (1.0 g?l?1 acetic acid and 11% (v\\/v) ethanol) by 78% and 48%, respectively. Acetic acid removal by

  16. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    PubMed Central

    Ozuolmez, Derya; Na, Hyunsoo; Lever, Mark A.; Kjeldsen, Kasper U.; Jørgensen, Bo B.; Plugge, Caroline M.

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria. PMID:26074892

  17. Binding behavior of amino acid conjugates of indole-3-acetic acid to immobilized human serum albumin

    Microsoft Academic Search

    Ana Tomaši?; Branimir Bertoša; Sanja Tomi?; Milan Šoški?; Volker Magnus

    2007-01-01

    The affinity of indole-3-acetic acid (IAA), indole-3-propionic acid, indole-3-butyric acid and 24 of their amino acid conjugates to immobilized human serum albumin, as expressed by the retention factor k (determined by HPLC), was dependent on (1) lipophilicity, (2) chirality and (3) functional groups in the amino acid moiety; in some cases conformation plays an additional role. Two lipophilicity-related parameters afforded

  18. Direct Determination of Citric Acid in Milk with an Improved Pyridine-Acetic Anhydride Method

    Microsoft Academic Search

    J. R. Marier; M. Boulet

    1958-01-01

    SUMMARY The determination of citric acid with pyridine and acetic anhydride has been in- vestigated at reaction temperatures from 17 to 60 ° C. The optimum proportions of pyridine, acetic anhydride, water, and acetic acid for maximum color intensity and stability are given for each temperature. The procedure has been modified to eliminate the violent nature of the reaction, even

  19. First insights into the syntrophic acetate-oxidizing bacteria – a genetic study

    PubMed Central

    Müller, Bettina; Sun, Li; Schnürer, Anna

    2013-01-01

    Syntrophic acetate-oxidizing bacteria have been identified as key organisms for efficient biogas production from protein-rich materials. They normally grow as lithotrophs or heterotrophs, producing acetate through the Wood–Ljungdahl pathway, but when growing in syntrophy with methanogens, they reportedly reverse this pathway and oxidize acetate to hydrogen and carbon dioxide. However, the biochemical and regulatory mechanisms behind the shift and the way in which the bacteria regain energy remain unknown. In a genome-walking approach, starting with degenerated primers, we identified those gene clusters in Syntrophaceticus schinkii, Clostridium ultunense, and Tepidanaerobacter acetatoxydans that comprise the formyltetrahydrofolate synthetase gene (fhs), encoding a key enzyme of the Wood–Ljungdahl pathway. We also discovered that the latter two harbor two fhs alleles. The fhs genes are phylogenetically separated and in the case of S. schinkii functionally linked to sulfate reducers. The T. acetatoxydans fhs1 cluster combines features of acetogens, sulfate reducers, and carbon monoxide oxidizers and is organized as a putative operon. The T. acetatoxydans fhs2 cluster encodes Wood–Ljungdahl pathway enzymes, which are also known to be involved in C1 carbon metabolism. Isolation of the enzymes illustrated that both formyltetrahydrofolate synthetases of T. acetatoxydans were functionally active. However, only fhs1 was expressed, confirming bidirectional usage of the pathway. PMID:23239474

  20. Biosynthesis of bacteriocins in lactic acid bacteria

    Microsoft Academic Search

    Ingolf F. Nes; Dzung Bao Diep; Leiv Sigve Håvarstein; May Bente Brurberg; Vincent Eijsink; Helge Holo

    1996-01-01

    A large number of new bacteriocins in lactic acid bacteria (LAB) has been characterized in recent years. Most of the new bacteriocins belong to the class II bacteriocins which are small (30–100 amino acids) heat-stable and commonly not post-translationally modified. While most bacteriocin producers synthesize only one bacteriocin, it has been shown that several LAB produce multiple bacteriocins (2–3 bacteriocins).

  1. Discovering lactic acid bacteria by genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on 20 different species, with each overview discussing the organisms fundamental and practical significance, environmental habitat, and its role in fermentati...

  2. Discovering lactic acid bacteria by genomics

    Microsoft Academic Search

    Todd Klaenhammer; Eric Altermann; Fabrizio Arigoni; Alexander Bolotin; Fred Breidt; Jeffrey Broadbent; Raul Cano; Stephane Chaillou; Josef Deutscher; Mike Gasson; Maarten van de Gutche; Jean Guzzo; Axel Hartke; Trevor Hawkins; Pascal Hols; Robert W. Hutkins; Michiel Kleerebezem; Jan Kok; Oscar Kuipers; Mark Lubbers; Emanuelle Maguin; Larry McKay; David Mills; Arjen Nauta; Ross Overbeek; Herman Pel; David Pridmore; Milton Saier; Douwe van Sinderen; Alexei Sorokin; James Steele; Daniel OSullivan; Willem de Vos; Bart Weimer; Monique Zagorec; Roland Seizen

    2002-01-01

    This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, environmental habitat, and its role in fermentation, bioprocessing, or probiotics. For those projects where genome sequence data were available by March 2002, summaries include a listing

  3. Anchoring of proteins to lactic acid bacteria

    Microsoft Academic Search

    Girbe Buist; Kees Leenhouts; Jan Kok

    1999-01-01

    The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell

  4. Food phenolics and lactic acid bacteria

    Microsoft Academic Search

    Héctor Rodríguez; José Antonio Curiel; José María Landete; Blanca de las Rivas; Félix López de Felipe; Carmen Gómez-Cordovés; José Miguel Mancheño; Rosario Muñoz

    2009-01-01

    Phenolic compounds are important constituents of food products of plant origin. These compounds are directly related to sensory characteristics of foods such as flavour, astringency, and colour. In addition, the presence of phenolic compounds on the diet is beneficial to health due to their chemopreventive activities against carcinogenesis and mutagenesis, mainly due to their antioxidant activities. Lactic acid bacteria (LAB)

  5. Anaerobic Degradation of Uric Acid by Gut Bacteria of Termites †

    PubMed Central

    Potrikus, C. J.; Breznak, John A.

    1980-01-01

    A study was done of anaerobic degradation of uric acid (UA) by representative strains of uricolytic bacteria isolated from guts of Reticulitermes flavipes termites. Streptococcus strain UAD-1 degraded UA incompletely, secreting a fluorescent compound into the medium, unless formate (or a formicogenic compound) was present as a cosubstrate. Formate functioned as a reductant, and its oxidation to CO2 by formate dehydrogenase provided 2H+ + 2e? needed to drive uricolysis to completion. Uricolysis by Streptococcus UAD-1 thus corresponded to the following equation: 1UA + 1formate ? 4CO2 + 1acetate + 4NH3. Urea did not appear to be an intermediate in CO2 and NH3 formation during uricolysis by strain UAD-1. Formate dehydrogenase and uricolytic activities of strain UAD-1 were inducible by growth of cells on UA. Bacteroides termitidis strain UAD-50 degraded UA as follows: 1UA ? 3.5 CO2 + 0.75acetate + 4NH3. Exogenous formate was neither required for nor stimulatory to uricolysis by strain UAD-50. Studies of UA catabolism by Citrobacter strains were limited, because only small amounts of UA were metabolized by cells in liquid medium. Uricolytic activity of such bacteria in situ could be important to the carbon, nitrogen, and energy economy of R. flavipes. PMID:16345588

  6. Adaptation to alcoholic fermentation in Drosophila: a parallel selection imposed by environmental ethanol and acetic acid.

    PubMed Central

    Chakir, M; Peridy, O; Capy, P; Pla, E; David, J R

    1993-01-01

    Besides ethanol, acetic acid is produced in naturally fermenting sweet resources and is a significant environmental stress for fruit-breeding Drosophila populations and species. Although not related to the presence of an active alcohol dehydrogenase, adult acetic acid tolerance was found to correlate with ethanol tolerance when sensitive (Afrotropical) and resistant (European) natural populations of Drosophila melanogaster were compared. The same correlation was found when comparing various Drosophila species. Tolerance to acetic acid also correlated with the tolerance to longer aliphatic acids of three, four, or five carbons but did not correlate with the tolerance to inorganic acids (i.e., hydrochloric and sulfuric acids). These observations suggest that acetic acid is detoxified by the conversion of acetate into acetyl-CoA, a metabolic step also involved in ethanol detoxification. Future investigations on the adaptation of Drosophila to fermenting resources should consider selective effects of both ethanol and acetic acid. PMID:8475110

  7. Emission of formic and acetic acids from tropical Savanna soils

    NASA Astrophysics Data System (ADS)

    Sanhueza, Eugenio; Andreae, Meinrat O.

    1991-09-01

    Fluxes of formic (HCOOH) and acetic (CH3COOH) acids between soils and the atmosphere were measured in a scrub-grass savanna and a semideciduous forest of Venezuela. High emissions of both acids were observed from savanna soils during daytime, with a daily contribution to the atmospheric boundary layer of about 0.15 ppb HCOOH and 0.07 ppb CH3COOH. Soil watering, simulating rainfall, produces a significant increase in CH3COOH emissions. Forest soils consumed these acids, with deposition velocities of 0.21 and 0.16 cm s-1. Savanna soils appear to be a significant source of HCOOH and CH3COOH to the tropical savanna atmosphere.

  8. Effect of host diet on production of organic acids and methane by cockroach gut bacteria.

    PubMed Central

    Kane, M D; Breznak, J A

    1991-01-01

    The effect of high-fiber diets on microbial populations and processes in cockroach guts was investigated by feeding American cockroaches (Periplaneta americana) milled cereal leaves, milled corn cob, or commercial bran-type breakfast cereal in place of the commonly used laboratory diet of dog chow. The activities and numbers of specific gut bacteria varied significantly with the insect's diet and developmental stage. Acetate and lactate were the principal organic acids present in the gut fluid of adult cockroaches and occurred at concentrations of up to 17 and 8 mM, respectively. These acids were most abundant in the gut fluid of dog chow-fed insects, and the greatest amounts were generally found in the foregut and midgut regions. Foreguts of dog chow-fed cockroaches contained an abundant population of lactic acid bacteria that formed acetate and lactate from endogenous hexoses present in the foregut. When adult cockroaches were fed dog chow amended with antibacterial drugs, (i) the concentrations of acetate, lactate, and total hexoses in gut fluid decreased significantly, (ii) the numbers of lactic acid bacteria in the foregut also decreased significantly, and (iii) the production of acetate and lactate by foregut homogenates was suppressed. It was estimated that acetate and lactate produced by bacteria in the foregut of dog chow-fed adult P. americana could support up to 14% of the insect's respiratory requirement if taken up and used by the animal. When insects were fed high-fiber diets of bran cereal, cereal leaves, or corn cob, bacterial production of acetate and lactate in the foregut diminished.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:1662936

  9. Kinetic Modeling of Esterification of Ethylene Glycol with Acetic Acid

    SciTech Connect

    Yadav, Vishnu P.; Maity, Sunil K. [Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Ordnance Factory Estate, Yeddumailiram-502205, Andhra Pradesh (India); Mukherjee, Rudra Palash [Department of Chemical Engineering, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, West Bengal (India); Bantraj, Kandi [Department of Chemical Engineering, National Institute of Technology, Rourkela-769008, Orissa (India)

    2010-10-26

    The reaction kinetics of the esterification of ethylene glycol with acetic acid in the presence of cation exchange resin has been studied and kinetic models based on empirical and Langmuir approach has been developed. The Langmuir based model involving eight kinetic parameters fits experimental data much better compared to empirical model involving four kinetic parameters. The effect of temperature and catalyst loading on the reaction system has been analyzed. Further, the activation energy and frequency factor of the rate constants for Langmuir based model has been estimated.

  10. Detonation failure diameters and detonation velocities of nitric acid, acetic acid and water mixtures

    Microsoft Academic Search

    P. Vidal; H. N. Presles; J. L. Gustin; J. Calzia

    1993-01-01

    Detonation failure experiments and detonation velocity measurements were carried out with homogeneous liquid compositions of nitric acid, acetic acid and water contained in steel tubes with different diameters. The criterion for failure or propagation of detonation was based upon the type of damage exhibited by the tubes after the experiments. Mixtures with the same critical diameter were determined by varying

  11. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by etiolated and green corn tissues

    SciTech Connect

    Reinecke, D. (Michigan State Univ., East Lansing (USA))

    1989-04-01

    Etiolated corn tissues oxidase indole-3-acetic acid (IAA) to oxindole-3-acetic acid (OxIAA). This oxidation results in loss of auxin activity and may plant a role in regulating IAA-stimulated growth. The enzyme has been partially purified and characterized and shown to require O{sub 2}, and a heat-stable lipid-soluble corn factor which can be replaced by linolenic or linoleic acids in the oxidation of IAA. Corn oil was tested as a cofactor in the IAA oxidation reaction. Corn oil stimulated enzyme activity by 30% while trilinolein was inactive. The capacity of green tissue to oxidize IAA was examined by incubating leaf sections from 2 week old light-grown corn seedlings with {sup 14}C-IAA. OxIAA and IAA were separated from other IAA metabolites on a 3 ml anion exchange column. Of the IAA taken up by the sections, 13% was oxidized to OxIAA. This is the first evidence that green tissue of corn may also regulate IAA levels by oxidizing IAA to OxIAA.

  12. Precision genome engineering in lactic acid bacteria.

    PubMed

    van Pijkeren, Jan Peter; Britton, Robert A

    2014-08-29

    Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety. PMID:25185700

  13. Hydroxycinnamic Acids Used as External Acceptors of Electrons: an Energetic Advantage for Strictly Heterofermentative Lactic Acid Bacteria

    PubMed Central

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria

    2014-01-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD+/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD+/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons. PMID:25261518

  14. Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria.

    PubMed

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria; Di Cagno, Raffaella

    2014-12-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD(+)/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD(+)/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons. PMID:25261518

  15. Nanoporous In2O3-based cataluminescence sensor for acetic acid vapor

    Microsoft Academic Search

    Xiaoan Cao; Yanqin Hu; Ying Tao

    2008-01-01

    In the present paper, we reported a cataluminescence (CTL) sensor using nanoporous In2O3 as sensing material to determine trace acetic acid in air. The proposed sensor showed high sensitivity and selectivity to acetic acid at optimal temperature of 293degC. Quantitative analysis was performed at a wavelength of 440 nm. The linear range of CTL intensity versus concentration of acetic acid

  16. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis

    Microsoft Academic Search

    Justine Criquet; Nathalie Karpel Vel Leitner

    2009-01-01

    The photolysis of S2O82- was studied for the removal of acetic acid in aqueous solution and compared with the H2O2\\/UV system. The SO4- radicals generated from the UV irradiation of S2O82- ions yield a greater mineralization of acetic acid than the OH radicals. Acetic acid is oxidized by SO4- radicals without significant formation of intermediate by-products. Increasing system pH results

  17. Freeze-drying of lactic acid bacteria.

    PubMed

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery. PMID:25428024

  18. Development of Acetic Acid Removal Technology for the UREX+Process

    SciTech Connect

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  19. Leaching of spent lead acid battery paste components by sodium citrate and acetic acid.

    PubMed

    Zhu, Xinfeng; He, Xiong; Yang, Jiakuan; Gao, Linxia; Liu, Jianwen; Yang, Danni; Sun, Xiaojuan; Zhang, Wei; Wang, Qin; Kumar, R Vasant

    2013-04-15

    A sustainable method, with minimal pollution and low energy cost in comparison with the conventional smelting methods, is proposed for treating components of spent lead-acid battery pastes in aqueous organic acid(s). In this study, PbO, PbO2, and PbSO4, the three major components in a spent lead paste, were individually reacted with a mixture of aqueous sodium citrate and acetic acid solution. Pure lead citrate precursor of Pb3(C6H5O7)2 · 3H2O is the only product crystallized in each leaching experiment. Conditions were optimized for individual lead compounds which were then used as the basis for leaching real industrial spent paste. In this work, efficient leaching process is achieved and raw material cost is reduced by using aqueous sodium citrate and acetic acid, instead of aqueous sodium citrate and citric acid as reported in a pioneering hydrometallurgical method earlier. Acetic acid is not only cheaper than citric acid but is also more effective in aiding dissolution of the lead compounds thus speeding up the leaching process in comparison with citric acid. Lead citrate is readily crystallized from the aqueous solution due to its low solubility and can be combusted to directly produce leady oxide as a precursor for making new battery pastes. PMID:23500418

  20. Clostridium strain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, J.L.

    1997-01-14

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  1. Clostridium stain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, James L. (2207 Tall Oaks Dr., Fayetteville, AR 72703)

    1997-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  2. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.

    PubMed

    Lee, Yeji; Nasution, Olviyani; Choi, Eunyong; Choi, In-Geol; Kim, Wankee; Choi, Wonja

    2015-08-01

    Acetic acid inhibits the metabolic activities of Saccharomyces cerevisiae. Therefore, a better understanding of how S. cerevisiae cells acquire the tolerance to acetic acid is of importance to develop robust yeast strains to be used in industry. To do this, we examined the transcriptional changes that occur at 12 h post-exposure to acetic acid, revealing that 56 and 58 genes were upregulated and downregulated, respectively. Functional categorization of them revealed that 22 protein synthesis genes and 14 stress response genes constituted the largest portion of the upregulated and downregulated genes, respectively. To evaluate the association of the regulated genes with acetic acid tolerance, 3 upregulated genes (DBP2, ASC1, and GND1) were selected among 34 non-protein synthesis genes, and 54 viable mutants individually deleted for the downregulated genes were retrieved from the non-essential haploid deletion library. Strains overexpressing ASC1 and GND1 displayed enhanced tolerance to acetic acid, whereas a strain overexpressing DBP2 was sensitive. Fifty of 54 deletion mutants displayed enhanced acetic acid tolerance. Three chosen deletion mutants (hsps82?, ato2?, and ssa3?) were also tolerant to benzoic acid but not propionic and sorbic acids. Moreover, all those five (two overexpressing and three deleted) strains were more efficient in proton efflux and lower in membrane permeability and internal hydrogen peroxide content than controls. Individually or in combination, those physiological changes are likely to contribute at least in part to enhanced acetic acid tolerance. Overall, information of our transcriptional profile was very useful to identify molecular factors associated with acetic acid tolerance. PMID:26062532

  3. Extraction of rare earths using mixtures of sec -octylphenoxy acetic acid and organophosphorus acids

    Microsoft Academic Search

    Naizhong Song; Xiaowei Zhao; Qiong Jia; Weihong Zhou; Wuping Liao

    2010-01-01

    The extraction of rare earths from nitrate medium using three organophosphorus acids, 2-ethylhexyl phosphonic acid mono-2-ethylhexyl\\u000a ester (HEHEHP), di-(2-ethylhexyl) phosphoric acid (D2EHPA), bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex272), and their\\u000a mixtures with sec-octylphenoxy acetic acid (CA12) has been studied in detail. The mixtures have different extraction effects on various rare\\u000a earths. Synergistic extraction effects are only found when light rare earths and

  4. Binding behavior of amino acid conjugates of indole-3-acetic acid to immobilized human serum albumin.

    PubMed

    Tomasi?, Ana; Bertosa, Branimir; Tomi?, Sanja; Soski?, Milan; Magnus, Volker

    2007-06-22

    The affinity of indole-3-acetic acid (IAA), indole-3-propionic acid, indole-3-butyric acid and 24 of their amino acid conjugates to immobilized human serum albumin, as expressed by the retention factor k (determined by HPLC), was dependent on (1) lipophilicity, (2) chirality and (3) functional groups in the amino acid moiety; in some cases conformation plays an additional role. Two lipophilicity-related parameters afforded quantitative correlations with k: retention on a C18 reversed-phase column (experimental approach) and the distance between the hydrophilic and hydrophobic poles of the molecules (in silico approach). Most compounds examined are possible metabolic precursors of IAA, an experimental tumor therapeutic. PMID:17459401

  5. Inflammatory cells’ role in acetic acid-induced colitis

    PubMed Central

    Sanei, Mohammad H.; Hadizadeh, Fatemeh; Adibi, Peyman; Alavi, Sayyed Ali

    2014-01-01

    Background: Free radicals are the known mechanisms responsible for inducing colitis with two origins: Inflammatory cells and tissues. Only the inflammatory cells can be controlled by corticosteroids. Our aim was to assess the importance of neutrophils as one of the inflammatory cells in inducing colitis and to evaluate the efficacy of corticosteroids in the treatment of inflammatory bowel disease (IBD). Materials and Methods: Thirty-six mice were divided into six groups of six mice each. Colitis was induced in three groups by exposing them to acetic acid through enema (group 1), ex vivo (group 3), and enema after immune suppression (group 5). Each group had one control group that was exposed to water injection instead of acetic acid. Tissue samples were evaluated and compared based on macroscopic damages and biochemical and pathological results. Results: Considering neutrophilic infiltration, there were significant differences between groups 1, 3, 5, and the control of group 1. Groups 3, 5, and their controls, and group 1 and the control of group 3 had significant differences in terms of goblet depletion. Based on tissue originated H2O2, we found significant differences between group 1 and its control and group 3, and also between groups 5 and the control of group 3. All the three groups were significantly different from their controls based on Ferric Reducing Ability of Plasma (FRAP) and such differences were also seen between group 1 with two other groups. Conclusion: Neutrophils may not be the only cause of oxidation process in colitis, and also makes the effectiveness of corticosteroids in the treatment of this disease doubtful. PMID:25337523

  6. Esters of Indole-3-Acetic Acid from Avena Seeds 1

    PubMed Central

    Percival, Frank W.; Bandurski, Robert S.

    1976-01-01

    The present studies showed that about 80% of the indole-3-acetic acid extractable from Avena kernels by aqueous acetone was esterified to polymers precipitable by ammonium sulfate and ethanol or acetone. The polymers were positively charged, being adsorbed to cation exchange columns at a pH of 3, or below, and eluted at a pH greater than 4. The polymers were heterogeneous with respect to size, about 5,000 to 20,000 daltons, and charge, exhibiting apparent pKa values of 4.2 and 4.7. The polymer fractions contained esterified IAA, anthrone-reactive material that liberated glucose upon acid hydrolysis, phenolic compounds, and peptidic material with a high proportion of hydrophobic amino acids. Since the esterified IAA was unstable, establishing polymer purity was not possible, and the designation IAA-glucoprotein fraction was adopted. Dehusked Avena kernels contained 8 mg/kg total IAA of which 5.5% was free and 94.5% esterified. IAA bound through a peptidic linkage was present, but in only trace amounts. PMID:16659621

  7. High efficiency recombineering in lactic acid bacteria.

    PubMed

    van Pijkeren, Jan-Peter; Britton, Robert A

    2012-05-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lactic acid bacteria. Mutations were incorporated in the chromosome of Lactobacillus reuteri and Lactococcus lactis without selection at frequencies ranging between 0.4% and 19%. Whole genome sequence analysis showed that ssDNA recombineering is specific and not hypermutagenic. To highlight the utility of ssDNA recombineering we reduced the intrinsic vancomymycin resistance of L. reuteri >100-fold. By creating a single amino acid change in the D-Ala-D-Ala ligase enzyme we reduced the minimum inhibitory concentration for vancomycin from >256 to 1.5?µg/ml, well below the clinically relevant minimum inhibitory concentration. Recombineering thus allows high efficiency mutagenesis in lactobacilli and lactococci, and may be used to further enhance beneficial properties and safety of strains used in medicine and industry. We expect that this work will serve as a blueprint for the adaptation of ssDNA recombineering to other gram-positive bacteria. PMID:22328729

  8. Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1

    Microsoft Academic Search

    A. Corsetti; M. Gobbetti; J. Rossi; P. Damiani

    1998-01-01

    Sourdough lactic acid bacteria, cultivated in wheat flour hydrolysate, produced antimould compounds. The antimould activity\\u000a varied greatly among the strains and was mainly detected within obligately heterofermentative Lactobacillus spp. Among these, Lb. sanfrancisco CB1 had the largest spectrum. It inhibited moulds related to bread spoilage such as Fusarium, Penicillium, Aspergillus and Monilia. A mixture of acetic, caproic, formic, propionic, butyric

  9. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    PubMed Central

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

  10. Utilization of the Plant Hormone Indole-3-Acetic Acid for Growth by Pseudomonas putida Strain 1290†

    PubMed Central

    Leveau, Johan H. J.; Lindow, Steven E.

    2005-01-01

    We have isolated from plant surfaces several bacteria with the ability to catabolize indole-3-acetic acid (IAA). One of them, isolate 1290, was able to utilize IAA as a sole source of carbon, nitrogen, and energy. The strain was identified by its 16S rRNA sequence as Pseudomonas putida. Activity of the enzyme catechol 1,2-dioxygenase was induced during growth on IAA, suggesting that catechol is an intermediate of the IAA catabolic pathway. This was in agreement with the observation that the oxygen uptake by IAA-grown P. putida 1290 cells was elevated in response to the addition of catechol. The inability of a catR mutant of P. putida 1290 to grow at the expense of IAA also suggests a central role for catechol as an intermediate in IAA metabolism. Besides being able to destroy IAA, strain 1290 was also capable of producing IAA in media supplemented with tryptophan. In root elongation assays, P. putida strain 1290 completely abolished the inhibitory effect of exogenous IAA on the elongation of radish roots. In fact, coinoculation of roots with P. putida 1290 and 1 mM concentration of IAA had a positive effect on root development. In coinoculation experiments on radish roots, strain 1290 was only partially able to alleviate the inhibitory effect of bacteria that in culture overproduce IAA. Our findings imply a biological role for strain 1290 as a sink or recycler of IAA in its association with plants and plant-associated bacteria. PMID:15870323

  11. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    PubMed

    Subari?, Drago; A?kar, Dur?ica; Babi?, Jurislav; Saka?, Nikola; Jozinovi?, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications. PMID:25328203

  12. Anodic oxidation of 3,4-dihydroxyphenylacetic acid on carbon electrodes in acetic acid solutions

    Microsoft Academic Search

    Slawomir Michalkiewicz; Agata Skorupa

    2010-01-01

    The electrochemical oxidation of 3,4-dihydroxyphenylacetic acid (DOPAC) on a carbon fiber microelectrode (CF) and a glassy carbon macroelectrode (GC) in glacial acetic acid solutions was investigated using voltammetric techniques. Voltammograms recorded at these electrodes show well-defined single waves or peaks. The proposed mechanism of the anodic oxidation of DOPAC consists of two successive one-electron one-proton steps. The loss of the

  13. The feeding value of water and acetic acid reconstituted sorghum grain for lactating dairy cows 

    E-print Network

    Bade, David Heinie

    1972-01-01

    (both molar percent and concentrat1on); not in an increase in ruminal propionic acid. This study ind1cates that the addition of 1. 5, 2. 0 and 2. 5X acetic acid to reconstituted grain results in a rumi nal acetic:propi oni c acid ratio similar... in total volatile fatty acid production from reconstitution have been reported in vitro (12) and 1n vivo (12, 31, 34). A more narrow acetic:propionic acid ratio was reported by Helm (12) in vitro and in vi vo from reconstituted sorghum gra1n compared...

  14. Vinegar as a burn-down herbicide: Acetic acid concentrations, application volumes, and adjuvants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acetic acid acts as a contact herbicide, injuring and killing plants by first destroying the cell membranes, which causes the rapid desiccation of the plant tissues. Vinegars with acetic acid concentrations of 11% or greater can burn the skin and cause serious to severe eye injury, including blindn...

  15. High Pressure CO2 Corrosion Electrochemistry and the Effect of Acetic Acid

    Microsoft Academic Search

    Srdjan SNesic; Keith George; Shihuai Wang

    2004-01-01

    The carbon dioxide corrosion electrochemistry of mild steel has been studied in the presence of high CO2 partial pressures and acetic acid (HAc). Potentiodynamic sweeps, linear polarization resistance (LPR) and weight loss (WL) experiments have been conducted to investigate the effects of flow velocity, CO2 partial pressure, and acetic acid concentration on the corrosion rate of mild steel. Electrochemical impedance

  16. Cancer chemopreventive effects of lactic acid bacteria.

    PubMed

    Kim, Jong-Eun; Kim, Ji Yeon; Lee, Ki Won; Lee, Hyong Joo

    2007-08-01

    Lactic acid bacteria (LAB) provide several potential health and nutritional benefits, including improving the nutritional value of food, controlling serum cholesterol levels, and controlling some types of cancer. Numerous in vitro, in vivo, human, and epidemiological studies have provided evidence of the chemopreventive effects of LAB on colon, bladder, liver, breast, and gastric cancers. These effects act via diverse mechanisms, including alteration of the gastrointestinal microflora, enhancement of the host's immune response, and antioxidative and antiproliferative activities. This review discusses the recent progresses on the chemopreventive effects of LAB on specific cancer types and the underlying molecular mechanisms. PMID:18051589

  17. Acetic acid induces pH-independent cellular energy depletion in Salmonella enterica.

    PubMed

    Tan, Sin Mei; Lee, Sui Mae; Dykes, Gary A

    2015-03-01

    Weak organic acids are widely used as preservatives and disinfectants in the food industry. Despite their widespread use, the antimicrobial mode of action of organic acids is still not fully understood. This study investigated the effect of acetic acid on the cell membranes and cellular energy generation of four Salmonella strains. Using a nucleic acid/protein assay, it was established that acetic acid did not cause leakage of intracellular components from the strains. A scanning electron microscopy study further confirmed that membrane disruption was not the antimicrobial mode of action of acetic acid. Some elongated Salmonella cells observed in the micrographs indicated a possibility that acetic acid may inhibit DNA synthesis in the bacterial cells. Using an ATP assay, it was found that at a neutral pH, acetic acid caused cellular energy depletion with an ADP/ATP ratio in the range between 0.48 and 2.63 (p<0.05) that was apparent for the four Salmonella strains. We suggest that this effect was probably due solely to the action of undissociated acid molecules. The antimicrobial effect of acetic acid was better under acidic conditions (ADP/ATP ratio of 5.56 ± 1.27; p<0.05), where the role of both pH and undissociated acid molecules can act together. We concluded that the inhibitory effect of acetic acid is not solely attributable to acidic pH but also to undissociated acid molecules. This finding has implication for the use of acetic acid as an antimicrobial against Salmonella on food products, such as chicken meat, which can buffer its pH. PMID:25562466

  18. Putative ABC Transporter Responsible for Acetic Acid Resistance in Acetobacter aceti

    Microsoft Academic Search

    Shigeru Nakano; Masahiro Fukaya; Sueharu Horinouchi

    2006-01-01

    Two-dimensional gel electrophoretic analysis of the membrane fraction of Acetobacter aceti revealed the presence of several proteins that were produced in response to acetic acid. A 60-kDa protein, named AatA, which was mostly induced by acetic acid, was prepared; aatA was cloned on the basis of its NH2-terminal amino acid sequence. AatA, consisting of 591 amino acids and containing ATP-binding

  19. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids

    SciTech Connect

    Omil, F. [Agricultural Univ. of Wageningen (Netherlands). Dept. of Environmental Technology] [Agricultural Univ. of Wageningen (Netherlands). Dept. of Environmental Technology; [Univ. of Santiago de Compostela (Spain). Dept. of Chemical Engineering; Lens, P.; Visser, A.; Hulshoff Pol, L.W.; Lettinga, G. [Agricultural Univ. of Wageningen (Netherlands). Dept. of Environmental Technology] [Agricultural Univ. of Wageningen (Netherlands). Dept. of Environmental Technology

    1998-03-20

    The competition between acetate utilizing methane-producing bacteria (MB) and sulfate-reducing bacteria (SRB) was studied in mesophilic (30 C) upflow anaerobic sludge bed (UASB) reactors treating volatile fatty acids and sulfate. The UASB reactors treated a VFA mixture (with an acetate:propionate:butyrate ratio of 5:3:2 on COD basis) or acetate as the sole substrate at different COD:sulfate ratios. The outcome of the competition was evaluated in terms of conversion rates and specific methanogenic and sulfidogenic activities. The COD:sulfate ratio was a key factor in the partitioning of acetate utilization between MB and SRB. In excess of sulfate, SRB became predominant over MB after prolonged reactor operation: 250 and 400 days were required to increase the amount of acetate used by SRB from 50 to 90% in the reactor treating, respectively, the VFA mixture or acetate as the sole substrate. The competition for acetate was further studied by dynamic simulations using a mathematical model based on the Monod kinetic parameters of acetate utilizing SRB and MB. The simulations confirmed the long term nature of the competition between these acetotrophs. A high reactor pH ({+-}8), a short solid retention time (<150 days), and the presence of a substantial SRB population in the inoculum may considerably reduce the time required for acetate-utilizing SRB to outcompete MB.

  20. Biosynthesis of the 7-mercaptoheptanoic acid subunit of component B of methanogenic bacteria

    SciTech Connect

    White, R.H. (Virginia Polytechnic Institute and State Univ., Blacksburg (USA))

    1989-01-24

    Deuterium- and {sup 13}C-labeled precursors were used to establish the pathway for the biosynthesis of the 7-mercaptoheptanoic acid moiety of component B in methanogenic bacteria. The extent and position of the label incorporated into 7-mercaptoheptanoic acid were measured from the molecular and fragment ions in the mass spectrum of the methyl ester methylthiol derivative of the 7-mercaptoheptanoic acid. Deuterium from (2,2,2-{sup 2}H{sub 3})acetate was found to be incorporated into four separate positions of 7-mercaptoheptanoic acid. One deuterium was equally distributed between the C-2 and the C-3 of the 7-mercaptoheptanoic acid, and the remaining three were at carbons 4-6. The extent of incorporation of the C-2 and C-3 positions was the same as that observed for the incorporation of (2,2,2-{sup 2}H{sub 3})acetate into the {alpha}-ketoglutarate produced by the cells. (1,2-{sup 13}C{sub 2})Acetate was incorporated into four separate sites of the 7-mercaptoheptanoic acid molecule. On the basis of this and additional information, it is concluded that 7-mercaptoheptanoic acid is biosynthesized from {alpha}-ketosuberate, which arises from {alpha}-ketoglutarate by repeated {alpha}-keto acid chain elongation. The mechanism for the conversion of {alpha}-ketosuberate to a thiol appears to be analogous to that for the conversion of sulfopyruvate to coenzyme M (2-mercaptoethanesulfonic acid).

  1. Phenyl Acetate Preparation from Phenol and Acetic Acid: Reassessment of a Common Textbook Misconception.

    ERIC Educational Resources Information Center

    Hocking, M. B.

    1980-01-01

    Reassesses a common textbook misconception that "...phenols cannot be esterified directly." Results of experiments are discussed and data tables provided of an effective method for the direct preparation of phenyl acetate. (CS)

  2. Exopolysaccharides from sourdough lactic acid bacteria.

    PubMed

    Galle, Sandra; Arendt, Elke K

    2014-01-01

    The use of sourdough improves the quality and increases the shelf life of bread. The positive effects are associated with metabolites produced by lactic acid bacteria (LAB) during sourdough fermentation, including organic acids, exopolysaccharides (EPS), and enzymes. EPS formed during sourdough fermentation by glycansucrase activity from sucrose influence the viscoelastic properties of the dough and beneficially affect the texture and shelf life (in particular, starch retrogradation) of bread. Accordingly, EPS have the potential to replace hydrocolloids currently used as bread improvers and meet so the consumer demands for a reduced use of food additives. In this review, the current knowledge about the functional aspects of EPS formation by sourdough LAB especially in baking applications is summarized. PMID:24499068

  3. Synergistic effect of gibberellic acid and indole-3-acetic acid on rooting in stem cuttings of Abelmoschus esculentus Moench

    Microsoft Academic Search

    Sheila Bhattacharya; N. C. Bhattacharya; C. P. Malik

    1978-01-01

    Indole-3-acetic acid (IAA) and gibberellic acid (GA3) enhanced the formation of roots on the stem cuttings of Abelmoschus esculentus. The effect increased considerably when both IAA and GA3 were applied together.

  4. Metabolic engineering of sugar catabolism in lactic acid bacteria

    Microsoft Academic Search

    Willem M. Vos

    1996-01-01

    Lactic acid bacteria are characterized by a relatively simple sugar fermentation pathway that, by definition, results in the formation of lactic acid. The extensive knowledge of traditional pathways and the accumulating genetic information on these and novel ones, allows for the rerouting of metabolic processes in lactic acid bacteria by physiological approaches, genetic methods, or a combination of these two.

  5. Antagonistic activity in plant-associated lactic acid bacteria

    Microsoft Academic Search

    Thomas Müller; Undine Behrendt; Marina Müller

    1996-01-01

    A total of 256 strains of lactic acid bacteria isolated from forage grasses were screened for antagonistic activities under conditions where the effects of organic acids and hydrogen peroxide were minimised. Thirty seven strains were shown to inhibit the growth of other lactic acid bacteria in the agar spot test with viable cells. Cell free supernatants from 16 of these

  6. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4) Moderate ammonia flux. The advantages of producing acetic acid by fermentation include its appropriateness for small-scale production, lower cost feedstocks, low energy membrane-based purification, and lower temperature and pressure requirements. Potential energy savings of using fermentation are estimated to be approximately 14 trillion Btu by 2020 from a reduction in natural gas use. Decreased transportation needs with regional plants will eliminate approximately 200 million gallons of diesel consumption, for combined savings of 45 trillion Btu. If the fermentation process captures new acetic acid production, savings could include an additional 5 trillion Btu from production and 7 trillion Btu from transportation energy.

  7. Preparation and characterization of manganese(IV) in aqueous acetic acid.

    PubMed

    Jee, Joo-Eun; Pestovsky, Oleg; Bakac, Andreja

    2010-12-28

    Mn(IV) acetate was generated in acetic acid solutions and characterized by UV-vis spectroscopy, magnetic susceptibility, and chemical reactivity. All of the data are consistent with a mononuclear manganese(IV) species. Oxidation of several substrates was studied in glacial acetic acid (HOAc) and in 95:5 HOAc-H(2)O. The reaction with excess Mn(OAc)(2) produces Mn(OAc)(3) quantitatively with mixed second-order kinetics, k (25.0 °C) = 110 ± 4 M(-1) s(-1) in glacial acetic acid, and 149 ± 3 M(-1) s(-1) in 95% AcOH, ?H(‡) = 55.0 ± 1.2 kJ mol(-1), ?S(‡) = -18.9 ± 4.1 J mol(-1) K(-1). Sodium bromide is oxidized to bromine with mixed second order kinetics in glacial acetic acid, k = 220 ± 3 M(-1) s(-1) at 25 °C. In 95% HOAc, saturation kinetics were observed. PMID:21046054

  8. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2007-03-27

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  9. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2004-06-22

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  10. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.

    PubMed

    An, Jieun; Kwon, Hyeji; Kim, Eunjung; Lee, Young Mi; Ko, Hyeok Jin; Park, Hongjae; Choi, In-Geol; Kim, Sooah; Kim, Kyoung Heon; Kim, Wankee; Choi, Wonja

    2015-03-01

    Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252. Stress- and protein synthesis-related transcription factors were predominantly enriched in the upregulated and downregulated genes respectively. Eight deletion mutants for some of the highly downregulated genes were acetic acid-tolerant. The level of intracellular reactive oxygen species was considerably lessened in MRRC 3252 and 3253 upon exposure to acetic acid. Metabolome profile analysis revealed that intracellular concentrations of 5 and 102 metabolites were increased and decreased, respectively, in MRRC 3252, featuring a large increase of urea and a significant decrease of amino acids. The dur1/2?mutant, in which the urea degradation gene DUR1/2 is deleted, displayed enhanced tolerance to acetic acid. Enhanced tolerance to acetic acid was also observed on the medium containing a low concentration of amino acids. Taken together, this study identified two SPT15 alleles, nine gene deletions and low concentration of amino acids in the medium that confer enhanced tolerance to acetic acid. PMID:24761971

  11. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 ���± 0.7% and 8.8 ���± 3.2% w/w, respectively, which were lower than the control (17.8 ���± 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 ���± 0.6% w/w for 2 g L -1 acetic acid and 4.2 ���± 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  12. Phase Preference by Active, Acetate-Utilizing Bacteria at the Rifle, CO Integrated Field Research Challenge Site

    SciTech Connect

    Kerkhof, L.; Williams, K.H.; Long, P.E.; McGuinness, L.

    2011-02-21

    Previous experiments at the Rifle, Colorado Integrated Field Research Challenge (IFRC) site demonstrated that field-scale addition of acetate to groundwater reduced the ambient soluble uranium concentration. In this report, sediment samples collected before and after acetate field addition were used to assess the active microbes via {sup 13}C acetate stable isotope probing on 3 phases [coarse sand, fines (8-approximately 150 {micro}m), groundwater (0.2-8 {micro}m)] over a 24-day time frame. TRFLP results generally indicated a stronger signal in {sup 13}C-DNA in the 'fines' fraction compared to the sand and groundwater. Before the field-scale acetate addition, a Geobacter-like group primarily synthesized {sup 13}C-DNA in the groundwater phase, an alpha Proteobacterium primarily grew on the fines/sands, and an Acinetobacter sp. and Decholoromonas-like OTU utilized much of the {sup 13}C acetate in both groundwater and particle-associated phases. At the termination of the field-scale acetate addition, the Geobacter-like species was active on the solid phases rather than the groundwater, while the other bacterial groups had very reduced newly synthesized DNA signal. These findings will help to delineate the acetate utilization patterns of bacteria in the field and can lead to improved methods for stimulating distinct microbial populations in situ.

  13. Modeling the Effects of Sodium Chloride, Acetic Acid, and Intracellular pH on Survival of Escherichia coli O157:H7 ? †

    PubMed Central

    Hosein, Althea M.; Breidt, Frederick; Smith, Charles E.

    2011-01-01

    Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primary antimicrobial compounds in these products are acetic acid and NaCl, which can alter the intracellular physiology of E. coli O157:H7, leading to cell death. For combinations of acetic acid and NaCl at pH 3.2 (a pH value typical for non-heat-processed acidified vegetables), survival curves were described by using a Weibull model. The data revealed a protective effect of NaCl concentration on cell survival for selected acetic acid concentrations. The intracellular pH of an E. coli O157:H7 strain exposed to acetic acid concentrations of up to 40 mM and NaCl concentrations between 2 and 4% was determined. A reduction in the intracellular pH was observed for increasing acetic acid concentrations with an external pH of 3.2. Comparing intracellular pH with Weibull model predictions showed that decreases in intracellular pH were significantly correlated with the corresponding times required to achieve a 5-log reduction in the number of bacteria. PMID:21115706

  14. Selection of a Bifidobacterium animalis subsp. lactis strain with a decreased ability to produce acetic acid.

    PubMed

    Margolles, Abelardo; Sánchez, Borja

    2012-05-01

    We have characterized a new strain, Bifidobacterium animalis subsp. lactis CECT 7953, obtained by random UV mutagenesis, which produces less acetic acid than the wild type (CECT 7954) in three different experimental settings: De Man-Rogosa-Sharpe broth without sodium acetate, resting cells, and skim milk. Genome sequencing revealed a single Phe-Ser substitution in the acetate kinase gene product that seems to be responsible for the strain's reduced acid production. Accordingly, acetate kinase specific activity was lower in the low acetate producer. Strain CECT 7953 produced less acetate, less ethanol, and more yoghourt-related volatile compounds in skim milk than the wild type did. Thus, CECT 7953 shows promising potential for the development of dairy products fermented exclusively by a bifidobacterial strain. PMID:22389372

  15. Indole-3-Acetic Acid Biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene

    PubMed Central

    Robinson, M.; Riov, J.; Sharon, A.

    1998-01-01

    We characterized the biosynthesis of indole-3-acetic acid by the mycoherbicide Colletotrichum gloeosporioides f. sp. aeschynomene. Auxin production was tryptophan dependent. Compounds from the indole-3-acetamide and indole-3-pyruvic acid pathways were detected in culture filtrates. Feeding experiments and in vitro assay confirmed the presence of both pathways. Indole-3-acetamide was the major pathway utilized by the fungus to produce indole-3-acetic acid in culture. PMID:9835603

  16. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl...Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl...chemical substance identified as acetic acid, 2-chloro-,...

  17. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl...Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl...chemical substance identified as acetic acid, 2-chloro-,...

  18. Biosynthesis of the Halogenated Auxin, 4-Chloroindole-3-Acetic Acid1[W][OA

    PubMed Central

    Tivendale, Nathan D.; Davidson, Sandra E.; Davies, Noel W.; Smith, Jason A.; Dalmais, Marion; Bendahmane, Abdelhafid I.; Quittenden, Laura J.; Sutton, Lily; Bala, Raj K.; Le Signor, Christine; Thompson, Richard; Horne, James; Reid, James B.; Ross, John J.

    2012-01-01

    Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea. PMID:22573801

  19. Exploiting expolysaccharides from lactic acid bacteria.

    PubMed

    Jolly, Laure; Vincent, Sébastien J F; Duboc, Philippe; Neeser, Jean-Richard

    2002-08-01

    Microbial exopolysaccharides (EPSs) synthesized by lactic acid bacteria (LAB) play a major role in the manufacturing of fermented dairy products. EPS production is characterized by a large variety in terms of quantity, chemical composition, molecular size, charge, type of sidechains and rigidity of the molecules. Monosaccharide unit's composition, linkages, charge and size determine the EPS' intrinsic properties and their interactions with other milk constituents. EPSs contribute to texture, mouthfeel, taste perception and stability of the final product. Furthermore, it was reported that EPS from food grade organisms, particularly LAB, have potential as food additives and as functional food ingredients with both health and economic benefits. A better understanding of structure-function relationships of EPS in a dairy food matrix and of EPS biosynthesis remain two major challenges for further applications of EPS and the engineering of functional polysaccharides. PMID:12369204

  20. Anaerobic Conversion of Lactic Acid to Acetic Acid and 1,2-Propanediol by Lactobacillus buchneri

    PubMed Central

    Oude Elferink, Stefanie J. W. H.; Krooneman, Janneke; Gottschal, Jan C.; Spoelstra, Sierk F.; Faber, Folkert; Driehuis, Frank

    2001-01-01

    The degradation of lactic acid under anoxic conditions was studied in several strains of Lactobacillus buchneri and in close relatives such as Lactobacillus parabuchneri, Lactobacillus kefir, and Lactobacillus hilgardii. Of these lactobacilli, L. buchneri and L. parabuchneri were able to degrade lactic acid under anoxic conditions, without requiring an external electron acceptor. Each mole of lactic acid was converted into approximately 0.5 mol of acetic acid, 0.5 mol of 1,2-propanediol, and traces of ethanol. Based on stoichiometry studies and the high levels of NAD-linked 1,2-propanediol-dependent oxidoreductase (530 to 790 nmol min?1 mg of protein?1), a novel pathway for anaerobic lactic acid degradation is proposed. The anaerobic degradation of lactic acid by L. buchneri does not support cell growth and is pH dependent. Acidic conditions are needed to induce the lactic-acid-degrading capacity of the cells and to maintain the lactic-acid-degrading activity. At a pH above 5.8 hardly any lactic acid degradation was observed. The exact function of anaerobic lactic acid degradation by L. buchneri is not certain, but some results indicate that it plays a role in maintaining cell viability. PMID:11133436

  1. Lactic acid bacteria of meat and meat products.

    PubMed

    Egan, A F

    1983-09-01

    When the growth of aerobic spoilage bacteria is inhibited, lactic acid bacteria may become the dominant component of the microbial flora of meats. This occurs with cured meats and with meats packaged in films of low gas permeability. The presence of a flora of psychrotrophic lactic acid bacteria on vacuum-packaged fresh chilled meats usually ensures that shelf-life is maximal. When these organisms spoil meats it is generally by causing souring, however other specific types of spoilage do occur. Some strains cause slime formation and greening of cured meats, and others may produce hydrogen sulphide during growth on vacuum-packaged beef. The safety and stability of fermented sausages depends upon fermentation caused by lactic acid bacteria. Overall the presence on meats of lactic acid bacteria is more desirable than that of the types of bacteria they have replaced. PMID:6354082

  2. The lactic acid bacteria metabolite phenyllactic acid inhibits both radial growth and sporulation of filamentous fungi

    PubMed Central

    2013-01-01

    Background Food spoilage caused by molds is a severe problem. In food and feed, e.g. dairy products, sourdough bread and silage, lactic acid bacteria are used as starter cultures. Besides lactic and acetic acid, some strains produce other low molecular weight compounds with antifungal activities. One of these metabolites is phenyllactic acid (PLA), well known for its antifungal effect. The inhibitory effect of PLA has only partially been investigated, and the objective of this study was to elucidate in detail the antifungal properties of PLA. Results We investigated the outgrowth of individual conidia from Aspergillus niger, Cladosporium cladosporioides and Penicillium roqueforti, and observed the morphologies of resulting colonies on solid media using different acid concentrations. We found that PLA inhibits molds similar to weak acid preservatives. Furthermore, it has an additional activity: at sub-inhibitory concentrations, fungal colonies displayed slower radial growth and inhibited sporulation. The L isoform of PLA is a more potent inhibitor than the D form. Increased expression of phiA was observed during PLA treatment. This gene was initially identified as being induced by Streptomyces-produced macrolide antibiotics, and is shown to be a structural protein in developed cells. This suggests that PhiA may act as a general stress protectant in fungi. Conclusion From a food protection perspective, the results of this study support the usage of lactic acid bacteria strains synthesizing PLA as starter cultures in food and feed. Such starter cultures could inhibit spore synthesis, which would be beneficial as many food borne fungi are spread by airborne spores. PMID:24229396

  3. Lactic acid bacteria of foods and their current taxonomy

    Microsoft Academic Search

    Michael E. Stiles; Wilhelm H. Holzapfel

    1997-01-01

    Application of molecular genetic techniques to determine the relatedness of food-associated lactic acid bacteria has resulted in significant changes in their taxonomic classification. During the 1980s the genus Streptococcus was separated into the three genera Enterococcus, Lactococcus and Streptococcus. The lactic acid bacteria associated with foods now include species of the genera Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus,

  4. Towards lactic acid bacteria-based biorefineries.

    PubMed

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass. PMID:25087936

  5. Synthesis of 2-acylindole-3-acetic acids: a novel base-mediated indole synthesis

    Microsoft Academic Search

    Kazunari Nakao; Yoshinori Murata; Hiroki Koike; Chikara Uchida; Kiyoshi Kawamura; Sachiko Mihara; Shigeo Hayashi; Rodney W. Stevens

    2003-01-01

    An efficient and expedient synthetic route to 2-acylindole-3-acetic acids is described. This work first demonstrates a one-pot room-temperature indole ring construction via the in situ generation of indoline intermediate.

  6. Analysis of Bacterial Diversity During Acetic Acid Fermentation of Tianjin Duliu Aged Vinegar by 454 Pyrosequencing.

    PubMed

    Peng, Qian; Yang, Yanping; Guo, Yanyun; Han, Ye

    2015-08-01

    The vinegar pei harbors complex bacterial communities. Prior studies revealing the bacterial diversity involved were mainly conducted by culture-dependent methods and PCR-DGGE. In this study, 454 pyrosequencing was used to investigate the bacterial communities in vinegar pei during the acetic acid fermentation (AAF) of Tianjin Duliu aged vinegar (TDAV). The results showed that there were 7 phyla and 24 families existing in the vinegar pei, with 2 phyla (Firmicutes, Protebacteria) and 4 families (Lactobacillaceae, Acetobacteracae, Enterobacteriaceae, Chloroplast) predominating. The genus-level identification revealed that 9 genera were the relatively stable, consistent components in different stages of AAF, including the most abundant genus Lactobacillus followed by Acetobacter and Serratia. Additionally, the bacterial community in the early fermentation stage was more complex than those in the later stages, indicating that the accumulation of organic acids provided an appropriate environment to filter unwanted bacteria and to accelerate the growth of required ones. This study provided basic information of bacterial patterns in vinegar pei and relevant changes during AAF of TDAV, and could be used as references in the following study on the implementation of starter culture as well as the improvement of AAF process. PMID:25903266

  7. Differential effects of the microbial metabolite, acetic acid, on sprouting of aquatic plant propagules

    Microsoft Academic Search

    David F. Spencer; Gregory G. Ksander

    1995-01-01

    Subterranean vegetative propagules are important life cycle stages for some species of rooted aquatic plants. Sediments contain numerous compounds resulting from anaerobic degradation of organic matter, including acetic acid. Tubers, turions, and winter buds of Hydrilla verticillata (L.f.) Royle, Potamogeton gramineus L., and Potamogeton pectinatus L. were exposed to acetic acid concentrations from 0 to 696 mmol l?1 for 1–8

  8. Recovery of dilute acetic acid through esterification in a reactive distillation column

    Microsoft Academic Search

    B. Saha; S. P. Chopade; S. M. Mahajani

    2000-01-01

    The recovery of acetic acid from its dilute aqueous solutions is a major problem in both petrochemical and fine chemical industries. The conventional methods of recovery are azeotropic distillation, simple distillation and liquid–liquid extraction. Physical separations such as distillation and extraction suffer from several drawbacks. The esterification of an aqueous solution (30%) of acetic acid with n-butanol\\/iso-amyl alcohol is a

  9. Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover

    Microsoft Academic Search

    Jian Xu; Mette Hedegaard Thomsen; Anne Belinda Thomsen

    2010-01-01

    Acetic acid (AA)-catalyzed liquid hot water (LHW) pretreatments on raw corn stover (RCS) were carried out at 195 °C at 15 min\\u000a with the acetic acid concentrations between 0 and 400 g\\/kg RCS. After pretreatment, the liquor fractions and water-insoluble\\u000a solids (WIS) were collected separately and tested in terms of the recoveries of glucan and xylan from both the liquor fractions\\u000a and the

  10. Use of titanium in the manufacture of equipment for acetic acid production

    Microsoft Academic Search

    L. M. Pischik; A. I. Tsinman; N. I. Bal'vas

    1983-01-01

    In the production of acetic acid from methanol and carbon monoxide with the use of iodine compounds as the catalyst,tantalu m, zirconium, Hastelloy type alloys, and molybdenumcontaining steels are used for the production of equipment. The production medium for the acid in the stage of synthesis and purification at I00-185~ contains up to 17% water, methyl acetate, methyl iodide, methanol,

  11. Spray-chilling and carcass decontamination systems using lactic and acetic acid

    E-print Network

    Hamby, Patrick Lawrence

    1986-01-01

    OF SCIENCE December 1986 Najor Subject; Food Science and Technology SPRAY-CHILLING AND CARCASS DECONTAMINATION SYSTEMS USING LACTIC AND ACETIC ACID A Thesis by PATRICK LAWRENCE NAMBY Approved as to style and content by: H. R. Cross (Co...-Chairman of Committee) f W. Sa 11 (Co-Chai n Committee) Fred A. Gardner (Member) C. Vanderz t (Member ary C. Smith (Head of Department) December 1986 ABSTRACT Spray-Chilling and Carcass Decontamination Systems Using Lactic and Acetic Acid (December 1986...

  12. Spray-chilling and carcass decontamination systems using lactic and acetic acid 

    E-print Network

    Hamby, Patrick Lawrence

    1986-01-01

    OF SCIENCE December 1986 Najor Subject; Food Science and Technology SPRAY-CHILLING AND CARCASS DECONTAMINATION SYSTEMS USING LACTIC AND ACETIC ACID A Thesis by PATRICK LAWRENCE NAMBY Approved as to style and content by: H. R. Cross (Co...-Chairman of Committee) f W. Sa 11 (Co-Chai n Committee) Fred A. Gardner (Member) C. Vanderz t (Member ary C. Smith (Head of Department) December 1986 ABSTRACT Spray-Chilling and Carcass Decontamination Systems Using Lactic and Acetic Acid (December 1986...

  13. An OmpA Family Protein, a Target of the GinI/GinR Quorum-Sensing System in Gluconacetobacter intermedius, Controls Acetic Acid Fermentation? †

    PubMed Central

    Iida, Aya; Ohnishi, Yasuo; Horinouchi, Sueharu

    2008-01-01

    Via N-acylhomoserine lactones, the GinI/GinR quorum-sensing system in Gluconacetobacter intermedius NCI1051, a gram-negative acetic acid bacterium, represses acetic acid and gluconic acid fermentation. Two-dimensional polyacrylamide gel electrophoretic analysis of protein profiles of strain NCI1051 and ginI and ginR mutants identified a protein that was produced in response to the GinI/GinR regulatory system. Cloning and nucleotide sequencing of the gene encoding this protein revealed that it encoded an OmpA family protein, named GmpA. gmpA was a member of the gene cluster containing three adjacent homologous genes, gmpA to gmpC, the organization of which appeared to be unique to vinegar producers, including “Gluconacetobacter polyoxogenes.” In addition, GmpA was unique among the OmpA family proteins in that its N-terminal membrane domain forming eight antiparallel transmembrane ?-strands contained an extra sequence in one of the surface-exposed loops. Transcriptional analysis showed that only gmpA of the three adjacent gmp genes was activated by the GinI/GinR quorum-sensing system. However, gmpA was not controlled directly by GinR but was controlled by an 89-amino-acid protein, GinA, a target of this quorum-sensing system. A gmpA mutant grew more rapidly in the presence of 2% (vol/vol) ethanol and accumulated acetic acid and gluconic acid in greater final yields than strain NCI1051. Thus, GmpA plays a role in repressing oxidative fermentation, including acetic acid fermentation, which is unique to acetic acid bacteria and allows ATP synthesis via ethanol oxidation. Consistent with the involvement of gmpA in oxidative fermentation, its transcription was also enhanced by ethanol and acetic acid. PMID:18487322

  14. Inactive Methyl Indole-3-Acetic Acid Ester Can Be Hydrolyzed and Activated by Several Esterases Belonging

    E-print Network

    Pichersky, Eran

    Inactive Methyl Indole-3-Acetic Acid Ester Can Be Hydrolyzed and Activated by Several Esterases (salicylic acid binding protein 2) hydrolyzes methyl salicylate to salicylic acid. There are 20 homologs candidate MeIAA esterases that could hydrolyze MeIAA. MeIAA, like IAA, exerts inhibitory activity

  15. Continuous ethanol production with a membrane bioreactor at high acetic Acid concentrations.

    PubMed

    Ylitervo, Päivi; Franzén, Carl Johan; Taherzadeh, Mohammad J

    2014-01-01

    The release of inhibitory concentrations of acetic acid from lignocellulosic raw materials during hydrolysis is one of the main concerns for 2nd generation ethanol production. The undissociated form of acetic acid can enter the cell by diffusion through the plasma membrane and trigger several toxic effects, such as uncoupling and lowered intracellular pH. The effect of acetic acid on the ethanol production was investigated in continuous cultivations by adding medium containing 2.5 to 20.0 g·L-1 acetic acid at pH 5.0, at a dilution rate of 0.5 h-1. The cultivations were performed at both high (~25 g·L-1) and very high (100-200 g·L-1) yeast concentration by retaining the yeast cells inside the reactor by a cross-flow membrane in a membrane bioreactor. The yeast was able to steadily produce ethanol from 25 g·L-1 sucrose, at volumetric rates of 5-6 g·L-1·h-1 at acetic acid concentrations up to 15.0 g·L-1. However, the yeast continued to produce ethanol also at a concentration of 20 g·L-1 acetic acid but at a declining rate. The study thereby demonstrates the great potential of the membrane bioreactor for improving the robustness of the ethanol production based on lignocellulosic raw materials. PMID:25028956

  16. Continuous Ethanol Production with a Membrane Bioreactor at High Acetic Acid Concentrations

    PubMed Central

    Ylitervo, Päivi; Franzén, Carl Johan; Taherzadeh, Mohammad J.

    2014-01-01

    The release of inhibitory concentrations of acetic acid from lignocellulosic raw materials during hydrolysis is one of the main concerns for 2nd generation ethanol production. The undissociated form of acetic acid can enter the cell by diffusion through the plasma membrane and trigger several toxic effects, such as uncoupling and lowered intracellular pH. The effect of acetic acid on the ethanol production was investigated in continuous cultivations by adding medium containing 2.5 to 20.0 g·L?1 acetic acid at pH 5.0, at a dilution rate of 0.5 h?1. The cultivations were performed at both high (~25 g·L?1) and very high (100–200 g·L?1) yeast concentration by retaining the yeast cells inside the reactor by a cross-flow membrane in a membrane bioreactor. The yeast was able to steadily produce ethanol from 25 g·L?1 sucrose, at volumetric rates of 5–6 g·L?1·h?1 at acetic acid concentrations up to 15.0 g·L?1. However, the yeast continued to produce ethanol also at a concentration of 20 g·L?1 acetic acid but at a declining rate. The study thereby demonstrates the great potential of the membrane bioreactor for improving the robustness of the ethanol production based on lignocellulosic raw materials. PMID:25028956

  17. Health and nutritional benefits from lactic acid bacteria.

    PubMed

    Gilliland, S E

    1990-09-01

    There are several potential health or nutritional benefits possible from some species of lactic acid bacteria. Among these are: improved nutritional value of food, control of intestinal infections, improved digestion of lactose, control of some types of cancer, and control of serum cholesterol levels. Some potential benefits may result from growth and action of the bacteria during the manufacture of cultured foods. Some may result from growth and action of certain species of the lactic acid bacteria in the intestinal tract following ingestion of foods containing them. In selecting a culture to produce a specific benefit it is necessary to consider not only the wide variation among species of the lactic acid bacteria but also that among strains within a given species. With the possible exception of improving lactose utilization by persons who are lactose maldigestors, no specific health or nutritional claims can yet be made for the lactic acid bacteria. PMID:2271223

  18. The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Swinnen, Steve; Fernández-Niño, Miguel; González-Ramos, Daniel; van Maris, Antonius J A; Nevoigt, Elke

    2014-06-01

    High acetic acid tolerance of Saccharomyces cerevisiae is a relevant phenotype in industrial biotechnology when using lignocellulosic hydrolysates as feedstock. A screening of 38 S. cerevisiae strains for tolerance to acetic acid revealed considerable differences, particularly with regard to the duration of the latency phase. To understand how this phenotype is quantitatively manifested, four strains exhibiting significant differences were studied in more detail. Our data show that the duration of the latency phase is primarily determined by the fraction of cells within the population that resume growth. Only this fraction contributed to the exponential growth observed after the latency phase, while all other cells persisted in a viable but non-proliferating state. A remarkable variation in the size of the fraction was observed among the tested strains differing by several orders of magnitude. In fact, only 11 out of 10(7)  cells of the industrial bioethanol production strain Ethanol Red resumed growth after exposure to 157 mM acetic acid at pH 4.5, while this fraction was 3.6 × 10(6) (out of 10(7)  cells) in the highly acetic acid tolerant isolate ATCC 96581. These strain-specific differences are genetically determined and represent a valuable starting point to identify genetic targets for future strain improvement. PMID:24645649

  19. Lactic acid bacteria and human health.

    PubMed

    Gorbach, S L

    1990-02-01

    Although claims for health and nutritional benefits have been made for lactic acid bacteria in fermented dairy products for nearly a century, the nutritional and therapeutic value of these organisms is still controversial. This article will review the scientific basis of these claims. There are numerous studies showing fermentation of food with lactobacilli increase the quantity, availability, digestibility, and assimilability of nutrients. The basis for this conclusion comes from direct measurements of vitamin synthesis and from increased feed efficiency when fermented products are fed to animals. There have been a number of studies showing that various fermented dairy products lower serum cholesterol levels in humans and animals. These studies are reviewed and the validity of these findings are assessed. A summary of the evidence indicating that lactase deficient individuals can eat yogurt and the mechanisms involved in this toleration is reviewed. The role of fermented dairy products in inhibiting tumor growth and chemically induced tumors in animals is discussed and the possible mechanisms involved in this protective effect are reviewed. Fermented dairy products and lypholized lactobacilli preparations have been shown to be useful in treating and preventing various intestinal infections including; salmonellosis, shigellosis and antibiotic induced diarrhea. In this context a specific lactobacillus designated GG has been shown to be useful in treating recurring diarrhea caused by a toxin produced by Clostridium difficile. PMID:2109988

  20. Importance of lactic acid bacteria in Asian fermented foods

    PubMed Central

    2011-01-01

    Lactic acid bacteria play important roles in various fermented foods in Asia. Besides being the main component in kimchi and other fermented foods, they are used to preserve edible food materials through fermentation of other raw-materials such as rice wine/beer, rice cakes, and fish by producing organic acids to control putrefactive microorganisms and pathogens. These bacteria also provide a selective environment favoring fermentative microorganisms and produce desirable flavors in various fermented foods. This paper discusses the role of lactic acid bacteria in various non-dairy fermented food products in Asia and their nutritional and physiological functions in the Asian diet. PMID:21995342

  1. Clinical importance of lactic acid bacteria: a short review.

    PubMed

    Kumari, Archana; Catanzaro, Roberto; Marotta, Francesco

    2011-12-01

    Lactic acid bacteria (LAB) were used extensively as starter cultures in food fermentation. Some of the health benefits which have been claimed for lactic acid bacteria as probiotics include the following: improvement of the normal microflora, prevention of infectious diseases and food allergies, reduction of serum cholesterol, anticarcinogenic activity, stabilization of the gut mucosal barrier, immune adjuvant properties, alleviation of intestinal bowel disease symptoms and improvement in the digestion of lactose in intolerant hosts. The present study is aimed to brief review the some clinical importance of lactic acid bacteria (www.actabiomedica.it). PMID:22783712

  2. Primary and secondary reduction products in irradiated acetic, monofluoroacetic and glycolic acid single crystal

    NASA Astrophysics Data System (ADS)

    Awadelkarim, O.; Lund, A.; Samskong, P. O.

    Single crystal of acetic acid, monofluoroacetic acid, and glycolic acid have been irradiated at low temperature and investigated with ESR. The main purpose of the work was to obtain data for the structure and the reactions of the primary reduction products, i.e. the molecular anions. The anions of acetic acid and glycolic acid are stable at 77 K. The monofluoracetic acid anion could not be observed even at 3 K, but a decay product tentatively assigned to the F -… CH 2COOH adduct was detected. The glycolic acid anion decomposes by elimination of water to .CH 2COOH. The radical products .CFH 2 and .C(OH)H 2 were observed in monofluoracetic and glycolic acid, respectively. They are probably formed by decomposition of the molecular cations.

  3. Radiofrequency Thermal Ablation: Increase in Lesion Diameter with Continuous Acetic Acid Infusion

    SciTech Connect

    Lubienski, Andreas [Ruprecht-Karls-University Heidelberg, Department of Diagnostic Radiology (Germany)], E-mail: lubienski@radiologie.uni-luebeck.de; Duex, Markus [Hospital Northwest Frankfurt, Department of Radiology (Germany); Lubienski, Katrin; Grenacher, Lars; Kauffmann, Guenter [Ruprecht-Karls-University Heidelberg, Department of Diagnostic Radiology (Germany)

    2005-12-15

    Purpose. To evaluate the influence of continuous infusion of acetic acid 50% during radiofrequency ablation (RFA) on the size of the thermal lesion produced. Methods. Radiofrequency (RF) was applied to excised bovine liver by using an expandable needle electrode with 10 retractable tines (LeVeen Needle Electrode, RadioTherapeutics, Sunnyvale, CA) connected to a commercially available RF generator (RF 2000, RadioTherapeutics, Sunnyvale, CA). Experiments were performed using three different treatment modalities: RF only (n = 15), RF with continuous saline 0.9% infusion (n = 15), and RF with continuous acetic acid 50% infusion (n = 15). RF duration, power output, tissue impedance, and time to a rapid rise in impedance were recorded. The ablated lesions were evaluated both macroscopically and histologically. Results. The ablated lesions appeared as spherical or ellipsoid, well-demarcated pale areas with a surrounding brown rim with both RF only and RF plus saline 0.9% infusion. In contrast, thermolesions generated with RF in combination with acetic acid 50% infusion were irregular in shape and the central portion was jelly-like. Mean diameter of the coagulation necrosis was 22.3 {+-} 2.1 mm (RF only), 29.2 {+-} 4.8 mm (RF + saline 0.9%) and 30.7 {+-} 5.7 mm (RF + acetic acid 50%), with a significant increase in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Time to a rapid rise in impedance was significantly prolonged in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Conclusions. A combination of RF plus acetic acid 50% infusion is able to generate larger thermolesions than RF only or RF combined with saline 0.9% infusion.

  4. Two-dimensional hydrogen-bonded polymers in the crystal structures of the ammonium salts of phen­oxy­acetic acid, (4-fluoro­phen­oxy)acetic acid and (4-chloro-2-methyl­phen­oxy)acetic acid

    PubMed Central

    Smith, Graham

    2014-01-01

    The structures of the ammonium salts of phen­oxy­acetic acid, NH4 +·C8H6O3 ?, (I), (4-fluoro­phen­oxy)acetic acid, NH4 +·C8H5FO3 ?, (II), and the herbicidally active (4-chloro-2-methyl­phen­oxy)acetic acid (MCPA), NH4 +·C9H8ClO3 ?·0.5H2O, (III) have been determined. All have two-dimensional layered structures based on inter-species ammonium N—H?O hydrogen-bonding associations, which give core substructures consisting primarily of conjoined cyclic motifs. The crystals of (I) and (II) are isomorphous with the core comprising R 1 2(5), R 1 2(4) and centrosymmetric R 4 2(8) ring motifs, giving two-dimensional layers lying parallel to (100). In (III), the water mol­ecule of solvation lies on a crystallographic twofold rotation axis and bridges two carboxyl O atoms in an R 4 4(12) hydrogen-bonded motif, creating two R 4 3(10) rings, which together with a conjoined centrosymmetric R 4 2(8) ring incorporating both ammonium cations, generate two-dimensional layers lying parallel to (100). No ?–? ring associations are present in any of the structures. PMID:25552984

  5. Morphogenic Responses of Debudded Tobacco Plants to Gibberellic Acid and Indole-3-Acetic Acid 1

    PubMed Central

    Skok, John

    1968-01-01

    Stem applications of indole-3-acetic acid (IAA) or gibberellic acid (GA) did not prevent or alter tumor or teratoma formation in debudded tobacco plants (Nicotiana tabacum L., var. One Sucker). The materials produced intense (in case of GA) and moderate (in case of IAA) stem proliferations when applied to debudded plants but were without effect on intact plants. The results suggest that debudding-tumors are probably not related to or a result of an auxin or gibberellin deficit and that total debudding has a marked physiological effect on the plant. The altered physiological condition of the debudded plant, indicated by its responses to IAA and GA, may likely be related to tumor and teratoma formation. Images PMID:16656754

  6. Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111)

    SciTech Connect

    Calaza, Florencia [Max Planck Society, Fritz Haber Institute; Chen, Tsung-Liang [ORNL; Mullins, David R [ORNL; Xu, Ye [Louisiana State University; Overbury, Steven {Steve} H [ORNL

    2015-01-01

    Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO2surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone and acetic acid desorb. DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.

  7. The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii.

    PubMed

    Rodrigues, Fernando; Sousa, Maria João; Ludovico, Paula; Santos, Helena; Côrte-Real, Manuela; Leão, Cecília

    2012-01-01

    Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13)C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13)C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2), C(3) and C(4). The incorporation of [U-(14)C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production. PMID:23285028

  8. Fermentative degradation of dipicolinic acid (pyridine-2,6-dicarboxylic acid) by a defined coculture of strictly anaerobic bacteria.

    PubMed

    Seyfried, B; Schink, B

    1990-01-01

    Degradation of dipicolinic acid (pyridine-2,6-dicarboxylic acid) under strictly anaerobic conditions was studied in enrichment cultures from marine and freshwater sediments. In all cases, dipicolinic acid was completely degraded. From an enrichment culture from a marine sediment, a defined coculture of two bacteria was isolated. The dipicolinic acid-fermenting bacterium was a Gram-negative, non-sporeforming strictly anaerobic short rod which utilized dipicolinic acid as sole source of carbon, energy, and nitrogen, and fermented it to acetate, propionate, ammonia, and 2CO2. No other substrate was fermented. This bacterium could be cultivated only in coculture with another Gram-negative, non-sporeforming rod from the same enrichment culture which oxidized acetate to CO2 with fumarate, malate, or elemental sulfur as electron acceptor, similar to Desulfuromonas acetoxidans. Since this metabolic activity is not important in substrate degradation by the coculture, the basis of the dependence of the dipicolinic acid-degrading bacterium on the sulfur reducer may be sought in the assimilatory metabolism. PMID:1368138

  9. Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose

    PubMed Central

    Macías, Miguel Macías; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo; Chamizo, Juan Carlos Peguero

    2013-01-01

    Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L. PMID:23262483

  10. Comparative functional genomics of amino acid metabolism of lactic acid bacteria

    Microsoft Academic Search

    M. I. Pastink

    2009-01-01

    The amino acid metabolism of lactic acid bacteria used as starters in industrial fermentations has profound effects on the quality of the fermented foods. The work described in this PhD thesis was initiated to use genomics technologies and a comparative approach to link the gene content of some well-known lactic acid bacteria to flavor formation and to increase our general

  11. Metabolite Profiles of Lactic Acid Bacteria in Grass Silage?

    PubMed Central

    Broberg, Anders; Jacobsson, Karin; Ström, Katrin; Schnürer, Johan

    2007-01-01

    The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydroxybenzoic acid, (trans, trans)-3,4-dihydroxycyclohexane-1-carboxylic acid, p-hydrocoumaric acid, vanillic acid, azelaic acid, hydroferulic acid, p-coumaric acid, hydrocaffeic acid, ferulic acid, and caffeic acid. Among these metabolites, the antifungal compounds 3-phenyllactic acid and 3-hydroxydecanoic acid were previously isolated in our laboratory from liquid cultures of the same LAB strains by bioassay-guided fractionation. It was concluded that other metabolites, e.g., p-hydrocoumaric acid, hydroferulic acid, and p-coumaric acid, were released from the grass by the added LAB strains. The antifungal activities of the identified metabolites in 100 mM lactic acid were investigated. The MICs against Pichia anomala, Penicillium roqueforti, and Aspergillus fumigatus were determined, and 3-hydroxydecanoic acid showed the lowest MIC (0.1 mg ml?1 for two of the three test organisms). PMID:17616609

  12. Kinetics of the acid-catalyzed acylation of tert-butyl hydroperoxide by acetic and caproic acids

    Microsoft Academic Search

    V. L. Antonovskii; O. K. Yanaeva

    1981-01-01

    Conclusions 1.Formation of a peroxy ester from tert-butyl hydroperoxide and caproic acid proceeds through rupture of the H-OO bond.2.Rate constants for the formation of peroxy exters from tert-butyl hydroperoxide and acetic and caproic acids in the presence of mineral acids have been determined as a function of the acidity. These relations are explained in terms of the limiting step in

  13. Effect of acetic acid fumigation on soil-borne fungi and cucumber root rot disease under greenhouse conditions

    Microsoft Academic Search

    Farid Abd-El-Kareem

    2009-01-01

    The effect of acetic acid vapour on soil-borne fungi and root rot disease of cucumber plants under greenhouse conditions was studied. Acetic acid vapour at four concentrations was tested against linear growth and spore germination of some soil-borne fungi, in vitro. The most sensitive fungus to acetic acid vapours was Rhizoctonia solani which inhibited at 4 µl l, while Fusarium solani,

  14. Susceptibility of wheat gluten to enzymatic hydrolysis following deamidation with acetic acid and sensory characteristics of the resultant hydrolysates

    Microsoft Academic Search

    Lan Liao; Chao-ying Qiu; Tong-xun Liu; Mou-ming Zhao; Jiao-yan Ren; Hai-feng Zhao

    2010-01-01

    The effect of acetic acid and hydrochloric acid (HCl) deamidation pretreatment on the susceptibility of wheat gluten to enzymatic hydrolysis by Pancreatin and sensory characteristics of the resultant hydrolysates was investigated. At two degrees of deamidation (24% and 60%, with or without moisture-heating, respectively), wheat gluten pretreated by acetic acid deamidation was more susceptible to be hydrolyzed as evaluated by

  15. Acetic Acid-Catalyzed Formation of N-Phenylphthalimide from Phthalanilic Acid: A Computational Study of the Mechanism

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    In glacial acetic acid, phthalanilic acid and its monosubstituents are known to be converted to the corresponding phthalimides in relatively good yields. In this study, we computationally investigated the experimentally proposed two-step (addition-elimination or cyclization-dehydration) mechanism at the second-order Møller-Plesset perturbation (MP2) level of theory for the unsubstituted phthalanilic acid, with an explicit acetic acid molecule included in the calculations. In the first step, a gem-diol tetrahedral intermediate is formed by the nucleophilic attack of the amide nitrogen. The second step is dehydration of the intermediate to give N-phenylphthalimide. In agreement with experimental findings, the second step has been shown to be rate-determining. Most importantly, both of the steps are catalyzed by an acetic acid molecule, which acts both as proton donor and acceptor. The present findings, along with those from our previous studies, suggest that acetic acid and other carboxylic acids (in their undissociated forms) can catalyze intramolecular nucleophilic attacks by amide nitrogens and breakdown of the resulting tetrahedral intermediates, acting simultaneously as proton donor and acceptor. In other words, double proton transfers involving a carboxylic acid molecule can be part of an extensive bond reorganization process from cyclic hydrogen-bonded complexes. PMID:26030675

  16. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid.

    PubMed

    Pencík, Ales; Simonovik, Biljana; Petersson, Sara V; Henyková, Eva; Simon, Sibu; Greenham, Kathleen; Zhang, Yi; Kowalczyk, Mariusz; Estelle, Mark; Zazímalová, Eva; Novák, Ondrej; Sandberg, Göran; Ljung, Karin

    2013-10-01

    The native auxin, indole-3-acetic acid (IAA), is a major regulator of plant growth and development. Its nonuniform distribution between cells and tissues underlies the spatiotemporal coordination of many developmental events and responses to environmental stimuli. The regulation of auxin gradients and the formation of auxin maxima/minima most likely involve the regulation of both metabolic and transport processes. In this article, we have demonstrated that 2-oxindole-3-acetic acid (oxIAA) is a major primary IAA catabolite formed in Arabidopsis thaliana root tissues. OxIAA had little biological activity and was formed rapidly and irreversibly in response to increases in auxin levels. We further showed that there is cell type-specific regulation of oxIAA levels in the Arabidopsis root apex. We propose that oxIAA is an important element in the regulation of output from auxin gradients and, therefore, in the regulation of auxin homeostasis and response mechanisms. PMID:24163311

  17. The effect of indole-3Acetic acid on ethylene formation in wheat seedlings

    Microsoft Academic Search

    Ivana Machá?ková; V. Našinec; Z. Zmrhal

    1980-01-01

    Isoperoxidase B 1 isolated from winter wheat (Triticum aestivum L., cv. Jubilar) seedlings was shown to catalyze ethylene formation from ?-keto, ?-methylmercaptobutyric acid (KMBA). In\\u000a the presence of Mn2+, indole-3-acetic acid (IAA), andp-coumaric acid, the kinetics by isoperoxidase B 1 catalyzed conversion of KMBA into ethylene and other products was similar\\u000a to that of IAA oxidation. The reaction rate was

  18. Effects of humic acids on the growth of bacteria

    NASA Astrophysics Data System (ADS)

    Tikhonov, V. V.; Yakushev, A. V.; Zavgorodnyaya, Yu. A.; Byzov, B. A.; Demin, V. V.

    2010-03-01

    The influence of humic acids of different origins on the growth of bacterial cultures of different taxa isolated from the soil and the digestive tracts of earthworms ( Aporrectodea caliginosa)—habitats with contrasting conditions—was studied. More than half of the soil and intestinal isolates from the 170 tested strains grew on the humic acid of brown coal as the only carbon source. The specific growth rate of the bacteria isolated from the intestines of the earthworms was higher than that of the soil bacteria. The use of humic acids by intestinal bacteria confirms the possibility of symbiotic digestion by earthworms with the participation of bacterial symbionts. Humic acids at a concentration of 0.1 g/l stimulated the growth of the soil and intestinal bacteria strains (66 strains out of 161) on Czapek’s medium with glucose (1 g/l), probably, acting as a regulator of the cell metabolism. On the medium with the humic acid, the intestinal bacteria grew faster than the soil isolates did. The most active growth of the intestinal isolates was observed by Paenibacillus sp., Pseudomonas putida, Delftia acidovorans, Microbacterium terregens, and Aeromonas sp.; among the soil ones were the representatives of the Pseudomonas genus. A response of the bacteria to the influence of humic acids was shown at the strain level using the example of Pseudomonas representatives. The Flexom humin preparation stimulated the growth of the hydrocarbon-oxidizing Acinetobacter sp. bacteria. This effect can be used for creating a new compound with the elevated activity of bacteria that are destroyers of oil and oil products.

  19. Synthesis and characterization of poly(3-thiophene acetic acid)\\/Fe 3O 4 nanocomposite

    Microsoft Academic Search

    M. Ayd?n; Z. Durmus; H. Kavas; B. Esat; H. Sözeri; A. Baykal; F. Y?lmaz; M. S. Toprak

    2011-01-01

    Poly(3-thiophene acetic acid)\\/Fe3O4 nanocomposite is synthesized by the precipitation of Fe3O4 in the presence of poly(3-thiophene acetic acid) (P3TAA). Structural, surface, morphological, thermal properties and conductivity characterization\\/evaluation of the nanocomposite were performed by XRD, FT-IR, TEM, TGA, and conductivity measurements, respectively. The capping of P3TAA around Fe3O4 nanoparticles was confirmed by FT-IR spectroscopy, the interaction being via bridging oxygens of

  20. Development of functional ZnS nanospheres as active material for acetic acid detection

    NASA Astrophysics Data System (ADS)

    Peguit, A. D. M. V.; Candidato, R. T., Jr.; Alguno, A. C.

    2015-06-01

    We have successfully synthesized zinc sulphide (ZnS) nanospheresdeposited on glass and silicon on insulator substrates as an acetic acid sensor. Results show that nanospheresdeposited on silicon on insulator substrate at lower ZnCl2 concentration show better response and good recovery. We found out that the sensitivity of the ZnSnanosphereswere dependent on the surface morphology and that the morphology is affected by the ZnCl2 concentrations and the substrates used. Our results show a promising potential of ZnSnanospheresas an inexpensive alternative sensing material to the existing acetic acid detectors.

  1. The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development.

    PubMed

    González-Lamothe, Rocío; El Oirdi, Mohamed; Brisson, Normand; Bouarab, Kamal

    2012-02-01

    Auxin is a pivotal plant hormone that regulates many aspects of plant growth and development. Auxin signaling is also known to promote plant disease caused by plant pathogens. However, the mechanism by which this hormone confers susceptibility to pathogens is not well understood. Here, we present evidence that fungal and bacterial plant pathogens hijack the host auxin metabolism in Arabidopsis thaliana, leading to the accumulation of a conjugated form of the hormone, indole-3-acetic acid (IAA)-Asp, to promote disease development. We also show that IAA-Asp increases pathogen progression in the plant by regulating the transcription of virulence genes. These data highlight a novel mechanism to promote plant susceptibility to pathogens through auxin conjugation. PMID:22374398

  2. Malolactic activity of lactic acid bacteria during sauerkraut fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The frequency of lactic acid bacteria (LAB) involved in sauerkraut fermentation with (MDC+) or without (MDC-) the ability to decarboxylate malic acid was determined. The MDC+ phenotype was found in >99% of homofermentative LAB isolated from commercial fermentations. In contrast, heterofermentative...

  3. Intermediary Metabolism of Nitrobenzoic Acids by Bacteria

    Microsoft Academic Search

    R. B. Cain

    1960-01-01

    KE et al.1 have recently reported that the aerobic degradation of o-nitrobenzoic acid by a Flavobacterium involves the o-nitroso and o-hydroxylamino compounds. The corresponding amino-derivative, anthranilic acid, was not oxidized, their paper implying on the basis solely of manometric data that it was not a potential metabolite of o-nitrobenzoic acid although they found that cells grown on anthranilic acid could

  4. Acetate induced enhancement of photocatalytic hydrogen peroxide production from oxalic acid and dioxygen.

    PubMed

    Yamada, Yusuke; Nomura, Akifumi; Miyahigashi, Takamitsu; Ohkubo, Kei; Fukuzumi, Shunichi

    2013-05-01

    The addition of acetate ion to an O2-saturated mixed solution of acetonitrile and water containing oxalic acid as a reductant and 2-phenyl-4-(1-naphthyl)quinolinium ion (QuPh(+)-NA) as a photocatalyst dramatically enhanced the turnover number of hydrogen peroxide (H2O2) production. In this photocatalytic H2O2 production, a base is required to facilitate deprotonation of oxalic acid forming oxalate dianion, which acts as an actual electron donor, whereas a Brønsted acid is also necessary to protonate O2(•-) for production of H2O2 by disproportionation. The addition of acetate ion to a reaction solution facilitates both the deprotonation of oxalic acid and the protonation of O2(•-) owing to a pH buffer effect. The quantum yield of the photocatalytic H2O2 production under photoirradiation (? = 334 nm) of an O2-saturated acetonitrile-water mixed solution containing acetate ion, oxalic acid and QuPh(+)-NA was determined to be as high as 0.34, which is more than double the quantum yield obtained by using oxalate salt as an electron donor without acetate ion (0.14). In addition, the turnover number of QuPh(+)-NA reached more than 340. The reaction mechanism and the effect of solvent composition on the photocatalytic H2O2 production were scrutinized by using nanosecond laser flash photolysis. PMID:23631436

  5. Silver nanoparticles in combination with acetic acid and zinc oxide quantum dots for antibacterial activities improvement-A comparative study

    NASA Astrophysics Data System (ADS)

    Sedira, Sofiane; Ayachi, Ahmed Abdelhakim; Lakehal, Sihem; Fateh, Merouane; Achour, Slimane

    2014-08-01

    Due to their remarkable antibacterial/antivirus properties, silver nanoparticles (Ag NPs) and zinc oxide quantum dots (ZnO Qds) have been widely used in the antimicrobial field. The mechanism of action of Ag NPs on bacteria was recently studied and it has been proven that Ag NPs exerts their antibacterial activities mainly by the released Ag+. In this work, Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method, respectively. It was demonstrated that Ag NPs can be oxidized easily in aqueous solution and the addition of acetic acid can increase the Ag+ release which improves the antibacterial activity of Ag NPs. A comparative study between bactericidal effect of Ag NPs/acetic acid and Ag NPs/ZnO Qds on Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus was undertaken using agar diffusion method. The obtained colloids were characterized using UV-vis spectroscopy, Raman spectrometry, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM).

  6. Lipidomic Profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii Reveals Critical Changes in Lipid Composition in Response to Acetic Acid Stress

    PubMed Central

    Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L?1, while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L?1 acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large rearrangements in its lipid profile. PMID:24023914

  7. Barriers to application of genetically modified lactic acid bacteria.

    PubMed

    Verrips, C T; van den Berg, D J

    1996-10-01

    To increase the acceptability of food products containing genetically modified microorganisms it is necessary to provide in an early stage to the consumers that the product is safe and that the product provide a clear benefit to the consumer. To comply with the first requirement a systematic approach to analyze the probability that genetically modified lactic acid bacteria will transform other inhabitants of the gastro- intestinal (G/I) tract or that these lactic acid bacteria will pick up genetic information of these inhabitants has been proposed and worked out to some degree. From this analysis it is clear that reliable data are still missing to carry out complete risk assessment. However, on the basis of present knowledge, lactic acid bacteria containing conjugative plasmids should be avoided. Various studies show that consumers in developed countries will accept these products when they offer to them health or taste benefits or a better keepability. For the developing countries the biggest challenge for scientists is most likely to make indigenous fermented food products with strongly improved microbiological stability due to broad spectra bacteriocins produced by lactic acid bacteria. Moreover, these lactic acid bacteria may contribute to health. PMID:8879412

  8. [Activity of fusidic acid on strictly anaerobic bacteria].

    PubMed

    Canzi, A M; Weber, P; Boussougant, Y

    1987-05-01

    Fusidic acid is a well known antimicrobial agent due to its narrow spectrum of activity against Gram positive bacteria and especially staphylococci. Therefore, it is after used preventively against bacterial infection in traumatology, but the susceptibility of anaerobic bacteria is not well known. We have studied, the in vitro activity of sodium fusidate against 147 strains of anaerobic bacteria. This antibiotic has a moderate activity against Bacteroides, more significant against Clostridium, Peptococcus et Peptostreptococcus; it has no bactericidal activity. Clostridium difficile is different from other anaerobic bacteria because of its slow MIC and its MBC near to its MIC. Fusidic acid could be proposed for the treatment of pseudomembranous and antibiotic-associated colitis induced by Clostridium difficile. PMID:3302863

  9. Removal of dicyclohexyl acetic acid from aqueous solution using ultrasound, ozone and their combination.

    PubMed

    Kumar, Pardeep; Headley, John; Peru, Kerry; Bailey, Jon; Dalai, Ajay

    2014-01-01

    Naphthenic acids are a complex mixture of organic components, some of which include saturated alkyl-substituted cycloaliphatic carboxylic acids and acyclic aliphatic acids. They are naturally found in hydrocarbon deposits like oil sand, petroleum, bitumen and crude oil. In this study, the oxidation of a relatively high molecular weight naphthenic acid (Dicyclohexyl acetic acid) was investigated using ozonation, ultrasonication and hydrogen peroxide alone and their combinations. Effects on oxidation of dicyclohexyl acetic acid (DAA) were measured for different concentrations of ozone ranging between 0.7 to 3.3 mg L(-1) and pH in the range 6 to 10. Ultrasonication and hydrogen peroxide alone were not effective to oxidize dicyclohexyl acetic acid, but combining ultrasonication with H2O2 had a significant effect on oxidation of dicyclohexyl acetic acid with maximum removal reaching to 84 ± 2.2% with 81 ± 2.1% reduction in chemical oxygen demand (COD). Synergistic effects were observed for combining ultrasonication with ozonation and resulted in 100% DAA removal with 98 ± 0.8% reduction in COD within 15 min at 3.3 mg L(-1) ozone concentration and 130 Watts ultrasonication power. The reaction conditions obtained for the maximum oxidation of DAA and COD removal were used for the degradation of naphthenic acids mixture extracted from oil sands process water (OSPW). The percentage oxidation of NAs mixture extracted from OSPW was 89.3 ± 1.1% in ozonation and combined ozonation and ultrasonication, but COD removal observed was 65 ± 1.2% and 78 ± 1.4% for ozonation and combined ozonation and ultrasonication treatments, respectively. PMID:25137539

  10. Conformational equilibria and large-amplitude motions in dimers of carboxylic acids: rotational spectrum of acetic acid-difluoroacetic acid.

    PubMed

    Gou, Qian; Feng, Gang; Evangelisti, Luca; Caminati, Walther

    2014-10-01

    We report the rotational spectra of two conformers of the acetic acid-difluoroacetic acid adduct (CH3COOH-CHF2COOH) and supply information on its internal dynamics. The two conformers differ from each other, depending on the trans or gauche orientation of the terminal -CHF2 group. Both conformers display splittings of the rotational transitions, due to the internal rotation of the methyl group of acetic acid. The corresponding barriers are determined to be V3(trans)=99.8(3) and V3(gauche)=90.5(9) cm(-1) (where V3 is the methyl rotation barrier height). The gauche form displays a further doubling of the rotational transitions, due to the tunneling motion of the -CHF2 group between its two equivalent conformations. The corresponding B2 barrier is estimated to be 108(2) cm(-1). The increase in the distance between the two monomers upon OH?OD deuteration (the Ubbelohde effect) is determined. PMID:25056445

  11. Equations and calculations for fermentations of butyric acid bacteria

    Microsoft Academic Search

    Eleftherios Terry Papoutsakis

    1984-01-01

    Saccharolytic clostridia grow anaerobically on a variety of substrates, can produce a large number of useful prod- uct~,~-~ and thus appear to be very promising bacteria for production of organic chemicals from mono-, oligo-, and polysaccharides. Butyric acid bacteria (clostridia) in par- ticular, can anaerobically ferment a variety of sugars (hex- oses, pentoses, and oligosac~harides )~~~~~ to produce a variety

  12. Perspectives of engineering lactic acid bacteria for biotechnological polyol production

    Microsoft Academic Search

    Vicente Monedero; Gaspar Pérez-Martínez; María J. Yebra

    2010-01-01

    Polyols are sugar alcohols largely used as sweeteners and they are claimed to have several health-promoting effects (low-caloric,\\u000a low-glycemic, low-insulinemic, anticariogenic, and prebiotic). While at present chemical synthesis is the only strategy able\\u000a to assure the polyol market demand, the biotechnological production of polyols has been implemented in yeasts, fungi, and\\u000a bacteria. Lactic acid bacteria (LAB) are a group of

  13. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria.

    PubMed

    Panagou, Efstathios Z; Schillinger, Ulrich; Franz, Charles M A P; Nychas, George-John E

    2008-04-01

    The effect of controlled fermentation processes on the microbial association and biochemical profile of cv. Conservolea naturally black olives processed by the traditional anaerobic method was studied. The different treatments included (a) inoculation with a commercial starter culture of Lactobacillus pentosus, (b) inoculation with a strain of Lactobacillus plantarum isolated from a fermented cassava product and (c) uninoculated spontaneous process. Microbial growth, pH, titratable acidity, organic acids and volatile compounds were monitored throughout the fermentation. The initial microbiota consisted of Gram-negative bacteria, lactic acid bacteria and yeasts. Inhibition of Gram-negative bacteria was evident in all processes. Both starter cultures were effective in establishing an accelerated fermentation process and reduced the survival period of Gram-negative bacteria by 5 days compared with the spontaneous process, minimizing thus the likelihood of spoilage. Higher acidification of the brines was observed in inoculated processes without any significant difference between the two selected starter cultures (113.5 and 117.6mM for L. plantarum and L. pentosus, respectively). L. pentosus was also determined as the major species present during the whole process of spontaneous olive fermentation. It is characteristic that lactic acid fermentation was also initiated rapidly in the spontaneous process, as the conditions of fermentation, mainly the low salt level (6%, w/v) favored the dominance of lactic acid bacteria over yeasts. Lactic, acetic and propionic were the organic acids detected by HPLC in considerable amounts, whereas citric and malic acids were also present at low levels and degraded completely during the processes. Ethanol, methanol, acetaldehyde, ethyl acetate were the major volatile compounds identified by GC. Their concentrations varied among the different treatments, reflecting varying degrees of microbial activity in the brines. The results obtained from this study could help the Greek table olive industry to improve the existing processing schemes in order to increase product consistency and quality expanding the international market for naturally black olives. PMID:18206777

  14. Distribution of Labelled Indolyl3-acetic Acid in Intact Cucumber Plants

    Microsoft Academic Search

    J.-M. Bollag; E. Galun

    1966-01-01

    INDOLYL-3-ACETIC acid (IAA) applied to intact plants may induce specific morphogenetic changes, by affecting the differentiation of certain organs in those parts of the plants to which it is transported. The causal relationship between endogenous and applied growth substances and the sex expression of cucumber plants was extensively studied in this laboratory1. The use of radioactive IAA makes possible an

  15. Aerobic oxidation of indole-3-acetic acid catalysed by anionic and cationic peanut peroxidase

    Microsoft Academic Search

    Irina G Gazaryan; Tatyana A Chubar; Elena A Mareeva; L. Mark Lagrimini; Robert B Van Huystee; Roger N. F Thorneley

    1999-01-01

    The catalytic properties of anionic and cationic peanut peroxidases with regards to the oxidation of indole-3-acetic acid (IAA) by molecular oxygen at low pH have been studied. Transient kinetic studies demonstrate that only cationic peroxidases (peanut and horseradish) but not anionic peroxidases (such as anionic tobacco and anionic peanut peroxidases) form a stable compound III in the course of IAA

  16. Impact of acetic acid concentration of fermented liquid feed on growth performance of piglets

    Microsoft Academic Search

    Nuria Canibe; Anni Øyan Pedersen; Bent Borg Jensen

    2010-01-01

    Feeding fermented liquid feed (FLF) to pigs has proven to benefit gastrointestinal health of the animals. However, growth performance data of piglets and growing pigs fed FLF are variable and often a lower feed intake compared to feeding non-FLF or dry feed has been observed. Accumulation of microbial metabolites, namely acetic acid, possibly in combination with low feed pH, has

  17. Radiation heterogeneous processes of 14 C-acetic acid adsorbed in Na-Montmorillonite

    Microsoft Academic Search

    S. Ramos-Bernal; A. Negrón-Mendoza

    1992-01-01

    This research addresses itself to the study of the mechanism of the acetic acid decarboxylation in Na-Montmorillonite exposed to ionizing radiation. The results obtained indicated that the decarboxylation reaction is enhanced several times by the irradiation. This behavior is probably due to an oxidation reaction at the edges of the clay. Also it is by energy transfer from the clay

  18. Design and optimization of a dividing wall column for debottlenecking of the acetic acid purification process

    Microsoft Academic Search

    Nguyen Van Duc Long; Seunghyun Lee; Moonyong Lee

    2010-01-01

    The dividing wall column (DWC) has gained increasing application in a variety of chemical processes because of its potentiality in energy and capital cost savings in multicomponent separations. The main objective in this work is investigation of its use for removing the bottleneck phenomenon within the column when increasing the throughput of an existing distillation process, particularly, the acetic acid

  19. Pervaporation of acetic acid\\/water mixtures through silicalite filled polydimethylsiloxane membranes

    Microsoft Academic Search

    Shih-Yuan Lu; Chung-Ping Chiu; Hsiang-Yuan Huang

    2000-01-01

    The preferential pervaporation of acetic acid over water is achieved with silicalite filled polydimethylsiloxane (PDMS) membranes. The effect of silicalite addition is not positive at the feed temperature of 25°C, but improves with increasing feed temperature. At a feed temperature of 45°C, silicalite addition enhances not only the separation factor but also the permeation flux of the pervaporation. This improvement

  20. Visualization of Early Events in Acetic Acid Denaturation of HIV-1 Protease: A Molecular Dynamics Study

    PubMed Central

    Borkar, Aditi Narendra; Rout, Manoj Kumar; Hosur, Ramakrishna V.

    2011-01-01

    Protein denaturation plays a crucial role in cellular processes. In this study, denaturation of HIV-1 Protease (PR) was investigated by all-atom MD simulations in explicit solvent. The PR dimer and monomer were simulated separately in 9 M acetic acid (9 M AcOH) solution and water to study the denaturation process of PR in acetic acid environment. Direct visualization of the denaturation dynamics that is readily available from such simulations has been presented. Our simulations in 9 M AcOH reveal that the PR denaturation begins by separation of dimer into intact monomers and it is only after this separation that the monomer units start denaturing. The denaturation of the monomers is flagged off by the loss of crucial interactions between the ?-helix at C-terminal and surrounding ?-strands. This causes the structure to transit from the equilibrium dynamics to random non-equilibrating dynamics. Residence time calculations indicate that denaturation occurs via direct interaction of the acetic acid molecules with certain regions of the protein in 9 M AcOH. All these observations have helped to decipher a picture of the early events in acetic acid denaturation of PR and have illustrated that the ?-helix and the ?-sheet at the C-terminus of a native and functional PR dimer should maintain both the stability and the function of the enzyme and thus present newer targets for blocking PR function. PMID:21738569

  1. Adsorption and Thermal Processing of Glycolaldehyde, Methyl Formate, and Acetic Acid on Graphite at 20 K.

    PubMed

    Burke, Daren J; Puletti, Fabrizio; Woods, Paul M; Viti, Serena; Slater, Ben; Brown, Wendy A

    2015-07-01

    We present the first detailed comparative study of the adsorption and thermal processing of the three astrophysically important C2O2H4 isomers glycolaldehyde, methyl formate, and acetic acid adsorbed on a graphitic grain analogue at 20 K. The ability of the individual molecule to form intermolecular hydrogen bonds is extremely important, dictating the growth modes of the ice on the surface and the measured desorption energies. Methyl formate forms only weak intermolecular bonds and hence wets the graphite surface, forming monolayer, bilayer, and multilayer ices, with the multilayer having a desorption energy of 35 kJ mol(-1). In contrast, glycolaldehyde and acetic acid dewet the surface, forming clusters even at the very lowest coverages. The strength of the intermolecular hydrogen bonding for glycolaldehyde and acetic acid is reflected in their desorption energies (46.8 and 55 kJ mol(-1), respectively), which are comparable to those measured for other hydrogen-bonded species such as water. Infrared spectra show that all three isomers undergo structural changes as a result of thermal processing. In the case of acetic acid and glycolaldehyde, this can be assigned to the formation of well-ordered, crystalline, structures where the molecules form chains of hydrogen-bonded moieties. The data reported here are of relevance to astrochemical studies of hot cores and star-forming regions and can be used to model desorption from interstellar ices during the warm up phase with particular importance for complex organic molecules. PMID:26057183

  2. Interaction of acetic acid and phenylacetaldehyde as attractants for trapping pest species of moths (Lepidoptera: Noctuidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenylacetaldehyde is a flower volatile and attractant for many nectar-seeking moths. Acetic acid is a microbial fermentation product that is present in insect sweet baits. It is weakly attractive to some moths and other insects, but can be additive or synergistic with other compounds to make more p...

  3. Hydrogen peroxide is a mediator of indole-3-acetic acid\\/horseradish peroxidase-induced apoptosis

    Microsoft Academic Search

    Dong-Seok Kim; Sang-Eun Jeon; Yun-Mi Jeong; So-Young Kim; Sun-Bang Kwon; Kyoung-Chan Park

    2006-01-01

    Recently, we reported that a combination of indole-3-acetic acid (IAA) and horseradish peroxidase (HRP) induces apoptosis in G361 human melanoma cells. However, the apoptotic mechanism involved has been poorly studied. It is known that when IAA is oxidized by HRP, free radicals are produced, and since oxidative stress can induce apoptosis, we investigated whether reactive oxygen species (ROS) are involved

  4. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  5. TRAP RESPONSE OF MICHIGAN SOCIAL WASPS (HYMENOPTERA: VESPIDAE) TO THE FEEDING ATTRACTANTS ACETIC ACID, ISOBUTANOL, AND HEPTYL BUTYRATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nine Species of social wasps were captured in traps baited with acetic acid, isobutanol, heptyl butyrate and combinations of acetic acid and either isobutanol or heptyl butrate. Three yellowjacket species in the Vespula rufa species group were captured in traps (Vespula acadica (Sladen), Vespula co...

  6. A Study of Polydimethylsiloxane\\/Aromatic Polyamide Laminated Membranes for Separation of Acetic Acid\\/Water Mixtures by Pervaporation Process

    Microsoft Academic Search

    SHENGZHI DENG; S. SOURIRAJAN; T. MATSUURA

    1994-01-01

    Separation of acetic acid\\/water mixtures by pervaporation was attempted over a range of compositions using polydimethylsiloxane (PDMS), aromatic polyamide (PA), and laminated polydimethylsiloxane-aromatic polyamide membranes. PDMS membranes are hydrophobic and acetic acid selective, whereas PA membranes are hydrophilic and water selective. When PDMS and PA membranes were laminated, with PDMS on the top side and in contact with the feed,

  7. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L. (Fayetteville, AR); Clausen, Edgar C. (Fayetteville, AR); Ko, Ching-Whan (Fayetteville, AR); Wade, Leslie E. (Corpus Christi, TX); Wikstrom, Carl V. (Fayetteville, AR)

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  8. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2006-07-11

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  9. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    EPA Science Inventory

    Pervaporation is a potential process for recovering bioethanol produced from biomass fermentation. Fermentation broths contain ethanol, water, and a variety of other compounds, often including carboxylic acids. The effects of acetic acid on long-term pervaporation of aqueous et...

  10. Interaction of ethylene with indole-3-acetic acid in regulation of rooting in pea cuttings

    Microsoft Academic Search

    A.-C. Nordstrom; L. Eliasson

    1993-01-01

    Cuttings of pea (Pisum sativum L. cv Marma) were treated with 1-aminocyclopropane-l-carboxylic acid (ACC). This treatment caused increased ethylene production and reduction of root formation. The effect of 0.1 mM ACC on the level of endogenous indole-3-acetic acid (IAA) in the rooting zone and in the shoot apex was analyzed by gas chromatography-single ion monitoring mass spectrometry or by high

  11. Role of Carbon Dioxide and Acetate in Biosynthesis by Sulphate-reducing Bacteria

    Microsoft Academic Search

    Yu. I. Sorokin

    1966-01-01

    SULPHATE reduction by bacteria is one of the most important biogeochemical processes for which microorganisms are responsible. Sulphate-reducing bacteria obtain energy for biosynthesis from the very small amount released in the reduction of SO4-ions with the participation of easily activated hydrogen of certain organic compounds and with hydrogen gas. Previous work1,2 and my recent experiments have shown that the principal

  12. Analysis of the stable carbon isotope composition of formic and acetic acids.

    PubMed

    Lee, Xinqing; Zhang, Like; Huang, Daikuan; An, Ning; Yang, Fang; Jiang, Wei; Fang, Bin

    2013-05-15

    Formic and acetic acids are ubiquitous in the environment and in many biological processes. Analysis of the stable carbon isotope composition (?(13)C) of formic and acetic acids is important to understanding their biogeochemical cycles. However, it has been faced with poor accuracy and high detection limits due to their low carbon number, high hydrophilicity, and semi-volatility. Here we developed an analytical technique by needle trap and gas chromatography-isotope ratio mass spectrometry (GC-IRMS). The organic acids in aqueous solution were extracted using a NeedlEx needle through purge-and-trap and were analyzed by GC-IRMS for ?(13)C. The procedures incur no isotope fractionation. Defined as the point at which the mean ?(13)C is statistically the same as the given value and the analytical error starts rising, the method's detection limits are 200 and 100 mg/L for formic and acetic acids, respectively, with an uncertainty of approximately 0.5‰ in direct extraction and analysis. They were lowered to 1 mg/L with precision of 0.9‰ after samples were subjected to preconcentration. The method was successfully applied to natural samples as diverse as precipitation, vinegars, ant plasma, and vehicle exhaust, which vary considerably in concentration and matrix of the organic acids. It is applicable to the organic acids in not only aqueous solution but also gaseous phase. PMID:23395975

  13. Preparation of a novel colorimetric luminescence sensor strip for the detection of indole-3-acetic acid

    Microsoft Academic Search

    Yan Liu; Haitao Dong; Wenzhu Zhang; Zhiqiang Ye; Guilan Wang; Jingli Yuan

    2010-01-01

    A novel colorimetric luminescence sensor strip for the detection of indole-3-acetic acid (IAA) has been fabricated by using green emissive quantum dots of cadmium telluride (CdTe QDs) as a background layer and a red emissive europium chelate, [4?-(9-anthryl)-2,2?:6?,2?-terpyridine-6,6?-diyl]bis(methylenenitrilo) tetrakis(acetate)-Eu3+ (ATTA-Eu3+), as a specific sensing layer coated on the surface of glass slide, respectively. The luminescence response of the sensor strip

  14. A nitrilo-tri-acetic-acid/acetic acid route for the deposition of epitaxial cerium oxide films as high temperature superconductor buffer layers

    SciTech Connect

    Thuy, T.T.; Lommens, P.; Narayanan, V.; Van de Velde, N.; De Buysser, K.; Herman, G.G.; Cloet, V. [Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 - S3, 9000 Gent (Belgium); Van Driessche, I., E-mail: Isabel.Vandriessche@UGent.b [Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 - S3, 9000 Gent (Belgium)

    2010-09-15

    A water based cerium oxide precursor solution using nitrilo-tri-acetic-acid (NTA) and acetic acid as complexing agents is described in detail. This precursor solution is used for the deposition of epitaxial CeO{sub 2} layers on Ni-5at%W substrates by dip-coating. The influence of the complexation behavior on the formation of transparent, homogeneous solutions and gels has been studied. It is found that ethylenediamine plays an important role in the gelification. The growth conditions for cerium oxide films were Ar-5% gas processing atmosphere, a solution concentration level of 0.25 M, a dwell time of 60 min at 900 {sup o}C and 5-30 min at 1050 {sup o}C. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), pole figures and spectroscopic ellipsometry were used to characterize the CeO{sub 2} films with different thicknesses. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to determine the carbon residue level in the surface of the cerium oxide film, which was found to be lower than 0.01%. Textured films with a thickness of 50 nm were obtained. - Graphical abstract: Study of the complexation and hydrolysis behavior of Ce{sup 4+} ions in the presence of nitrilo-tri-acetic acid and the subsequent development of an aqueous chemical solution deposition route suited for the processing of textured CeO{sub 2} buffer layers on Ni-W tapes.

  15. Extraction and sorption of acetic acid at pH above pK{sub a} to form calcium magnesium acetate

    SciTech Connect

    Reisinger, H.; King, C.J. [Lawrence Berkeley Lab., CA (United States)

    1995-03-01

    The use of rock salt for deicing roads has many negative effects on automobiles, highway systems, and the environment. Calcium magnesium acetate, hence-forth denoted CMA, has been identified as a more desirable, environmentally benign solid deicer for high-ways, airport runaways, and similar applications. CMA is also of interest as an additive for scavenging sulfur in combustion processes so as to reduce emissions of sulfur oxides and as a catalyst for coal gasification. Different extractants (trioctylphosphine oxide and secondary, tertiary, and quaternary amines) and solid sorbents (tertiary and quaternary amines) were investigated as agents for recovery of acetic acid as part of a process for production of CMA from fermentation acetic acid. The pH and temperature dependencies for uptake of acetic acid by these extractants and sorbents were measured, along with the degrees of regeneration by aqueous suspensions of slaked dolomitic lime. These results enable identification of agents having optimal basicity. Among the extractants, the secondary amine Amberlite LA-2 gave the best combined performance for extraction and regeneration. Among the sorbents, a tertiary amine, Amberlite IRA-35, gave the best performance. Trioctylphosphine oxide does not maintain capacity in the pH range (about 6) most attractive for acetic acid fermentation. Slurred crushed dolomite is not sufficiently basic to accomplish regeneration.

  16. Kinetics of polysaccharide hydrolysis in the acid-catalysed delignification of eucalyptus globulus wood by acetic acid

    Microsoft Academic Search

    G. Vázquez; G. Antorrena; J. González

    1995-01-01

    Summary  The influence of operating conditions (temperature, HCl catalyst concentration and time) on the percentage of xylose solubilized\\u000a in the acid-catalysed delignification of Eucalyptus globulus wood by acetic acid was studied using an incomplete 3 3 3\\u000a factorial design. Regression analysis afforded an equation satisfactorily correlating the experimental results. A kinetic\\u000a model of polysaccharide hydrolysis is proposed which involves two parallel

  17. Azospirillum brasilense Produces the Auxin-Like Phenylacetic Acid by Using the Key Enzyme for Indole3Acetic Acid Biosynthesis

    Microsoft Academic Search

    E. Somers; D. Ptacek; P. Gysegom; M. Srinivasan; J. Vanderleyden

    2005-01-01

    Received 23 August 2004\\/Accepted 28 October 2004 An antimicrobial compound was isolated from Azospirillum brasilense culture extracts by high-performance liquid chromatography and further identified by gas chromatography-mass spectrometry as the auxin-like molecule, phenylacetic acid (PAA). PAA synthesis was found to be mediated by the indole-3-pyruvate decar- boxylase, previously identified as a key enzyme in indole-3-acetic acid (IAA) production in A.

  18. Removal of acetic acid from simulated hemicellulosic hydrolysates by emulsion liquid membrane with organophosphorus extractants.

    PubMed

    Lee, Sang Cheol

    2015-09-01

    Selective removal of acetic acid from simulated hemicellulosic hydrolysates containing xylose and sulfuric acid was attempted in a batch emulsion liquid membrane (ELM) system with organophosphorus extractants. Various experimental variables were used to develop a more energy-efficient ELM process. Total operation time of an ELM run with a very small quantity of trioctylphosphine oxide as the extractant was reduced to about a third of those required to attain almost the same extraction efficiency as obtained in previous ELM works without any extractant. Under specific conditions, acetic acid was selectively separated with a high degree of extraction and insignificant loss of xylose, and its purity and enrichment ratio in the stripping phase were higher than 92% and 6, respectively. Also, reused organic membrane solutions exhibited the extraction efficiency as high as fresh organic solutions did. These results showed that the current ELM process would be quite practical. PMID:26056774

  19. Ulcer healing activity of Mumijo aqueous extract against acetic acid induced gastric ulcer in rats

    PubMed Central

    Shahrokhi, Nader; Keshavarzi, Zakieh; Khaksari, Mohammad

    2015-01-01

    Objective: Gastric ulcer is an important clinical problem, chiefly due to extensive use of some drugs. The aim was to assess the activity of Mumijo extract (which is used in traditional medicine) against acetic acid induced gastric ulcer in rats. Materials and Methods: The aqueous extract of Mumijo was prepared. Animals were randomly (n = 10) divided into four groups: Control, sham-operated group (received 0.2 ml of acetic acid to induce gastric ulcer), Mumijo (100 mg/kg/daily) were given for 4 days postacetic acid administration, and ranitidine group (20 mg/kg). The assessed parameters were pH and pepsin levels (by Anson method) of gastric contents and gastric histopathology. Ranitidine was used as reference anti-ulcer drug. Results: The extract (100 mg/kg/daily, p.o.) inhibited acid acetic-induced gastric ulceration by elevating its pH versus sham group (P < 0.01) and decreasing the pepsin levels compared to standard drug, ranitidine (P < 0.05). The histopathology data showed that the treatment with Mumijo extract had a significant protection against all mucosal damages. Conclusion: Mumijo extract has potent antiulcer activity. Its anti-ulcer property probably acts via a reduction in gastric acid secretion and pepsin levels. The obtained results support the use of this herbal material in folk medicine. PMID:25709338

  20. Soil Bacteria Take Up D-Amino Acids, Protect Plants

    NASA Astrophysics Data System (ADS)

    Sun, H. J.; Zhang, G.

    2011-12-01

    Recently, many groups reported D-amino acid uptake by plant roots, raising the question of whether soil D-amino acids represent a source of nitrogen or a source of toxicity. The discussion needs to be placed in the context of competition with rhizosphere bacteria. To provide this context, we followed the concentrations of D- and L-enantiomers of alanine, glutamic acid, aspartic acid, and leucine after they were added to soils in the laboratory. In all cases, the uptake of L-enantiomer began immediately and proceeded rapidly until exhausted. In contrast, the uptake of D-enantiomer required induction: an initial period of inactivity followed by rapid consumption comparable in rate to L-enantiomer. The induced nature of the D activity was confirmed by the addition of rifampicin, an mRNA synthesis inhibitor. Preventing the synthesis of new enzymes abolished soil flora's ability to consume D-amino acids, but not L-amino acids. These results suggest that inducible special racemase enzymes, which can convert D-amino acids back to their native L-forms, are widespread among soil microorganisms. This finding does not rule out the possibility that some plants may out-compete microorganisms and be able to access D-amino acids. It does suggest, however, that rhizosphere bacteria can shield plants from the toxic effect of D-amino acids.

  1. Enzymological studies of one-carbon reactions in the pathway of acetate utilization by methanogenic bacteria

    SciTech Connect

    Ferry, J.G.

    1991-12-31

    Several enzymes in the pathway of acetate conversion to methane and carbon dioxide have been purified from Methanosarcina thermophila. The mechanisms of these enzymes are under investigation utilizing biochemical, biophysical and molecular genetic approaches. Acetate kinase and phosphotransacetylase catalyzes the activation of acetate to acetyl-CoA. The primary structure of these enzymes will be determined through cloning and sequencing of the genes. Two protein components of the CO dehydrogenase complex are under investigations. The metal centers of each component have been characterized using EPR. Cloning and sequencing of the genes for the two subunits of each component is in progress. Results indicate that the Ni/Fe-S component cleaves the C-C and C-S bonds of acetyl-CoA followed by oxidation of the carbonyl group to carbon dioxide and transfer of the methyl group to the Co/Fe-S component. The enzymes and cofactors involved in transfer of the methyl group from the Co/Fe-S component to coenzyme M will be purified and characterized. Ferredoxin is an electron acceptor for the Ni/Fe-S component and also serves to reductively reactivate methylreductase which catalyzes the demethylation of methyl coenzyme M to methane. This ferredoxin is being characterized utilizing EPR and RR spectroscopic methods to determine the properties of the Fe-S centers. Genes encoding this and other ferredoxins have been cloned and sequenced to determine the primary structures. Carbonic anhydrase is being purified and characterized to determine the function of this enzyme in the pathway.

  2. Enzymological studies of one-carbon reactions in the pathway of acetate utilization by methanogenic bacteria

    SciTech Connect

    Ferry, J.G.

    1991-01-01

    Several enzymes in the pathway of acetate conversion to methane and carbon dioxide have been purified from Methanosarcina thermophila. The mechanisms of these enzymes are under investigation utilizing biochemical, biophysical and molecular genetic approaches. Acetate kinase and phosphotransacetylase catalyzes the activation of acetate to acetyl-CoA. The primary structure of these enzymes will be determined through cloning and sequencing of the genes. Two protein components of the CO dehydrogenase complex are under investigations. The metal centers of each component have been characterized using EPR. Cloning and sequencing of the genes for the two subunits of each component is in progress. Results indicate that the Ni/Fe-S component cleaves the C-C and C-S bonds of acetyl-CoA followed by oxidation of the carbonyl group to carbon dioxide and transfer of the methyl group to the Co/Fe-S component. The enzymes and cofactors involved in transfer of the methyl group from the Co/Fe-S component to coenzyme M will be purified and characterized. Ferredoxin is an electron acceptor for the Ni/Fe-S component and also serves to reductively reactivate methylreductase which catalyzes the demethylation of methyl coenzyme M to methane. This ferredoxin is being characterized utilizing EPR and RR spectroscopic methods to determine the properties of the Fe-S centers. Genes encoding this and other ferredoxins have been cloned and sequenced to determine the primary structures. Carbonic anhydrase is being purified and characterized to determine the function of this enzyme in the pathway.

  3. Functional fermented whey-based beverage using lactic acid bacteria

    Microsoft Academic Search

    Micaela Pescuma; Elvira María Hébert; Fernanda Mozzi

    2010-01-01

    Whey protein concentrate (WPC) is employed as functional food ingredient because of its nutritional value and emulsifying properties. However, the major whey protein ?-lactoglobulin (BLG) is the main cause of milk allergy. The aim of this study was to formulate a fermented whey beverage using selected lactic acid bacteria and WPC35 (WPC containing 35% of proteins) to obtain a fermented

  4. Polyphasic characterization of the lactic acid bacteria in kefir

    Microsoft Academic Search

    Isabelle Mainville; Normand Robert; Byong Lee; Edward R. Farnworth

    2006-01-01

    The lactic acid bacteria of kefir were isolated and characterized using phenotypical, biochemical, and genotypical methods. Polyphasic analyses of results permitted the identification of the microflora to the strain level. The genus Lactobacillus was represented by the species Lb. kefir and Lb. kefiranofaciens. Both subspecies of Lactococcus lactis (lactis and cremoris) were isolated. Leuconostoc mesenteroides subsp. cremoris was also found.The

  5. Phylogenomic reconstruction of lactic acid bacteria: an update

    Microsoft Academic Search

    Zhi-Gang Zhang; Zhi-Qiang Ye; Li Yu; Peng Shi

    2011-01-01

    BACKGROUND: Lactic acid bacteria (LAB) are important in the food industry for the production of fermented food products and in human health as commensals in the gut. However, the phylogenetic relationships among LAB species remain under intensive debate owing to disagreements among different data sets. RESULTS: We performed a phylogenetic analysis of LAB species based on 232 genes from 28

  6. Modelling strategies for the industrial exploitation of lactic acid bacteria

    Microsoft Academic Search

    Eddy J. Smid; Bas Teusink

    2006-01-01

    Lactic acid bacteria (LAB) have a long tradition of use in the food industry, and the number and diversity of their applications has increased considerably over the years. Traditionally, process optimization for these applications involved both strain selection and trial and error. More recently, metabolic engineering has emerged as a discipline that focuses on the rational improvement of industrially useful

  7. Systems solutions by lactic acid bacteria: from paradigms to practice

    PubMed Central

    2011-01-01

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  8. Iron requirement and search for siderophores in lactic acid bacteria

    Microsoft Academic Search

    Ashok Pandey; Françoise Bringel; Jean-Marie Meyer

    1994-01-01

    Twenty-three strains of lactic acid bacteria belonging to the genera Lactobacillus, Lactococcus, Leuconostoc, Pediococcus or Carnobacterium, were studied for growth and siderophore production under controlled iron-starvation conditions. No growth differences were observed in the media either supplemented with or depleted of iron, in agitated (aerobic) or static (microaerophilic) growth conditions, and none of the tested species produced siderophores. Growth studies

  9. Regulation of Acetate Kinase Isozymes and Its Importance for Mixed-Acid Fermentation in Lactococcus lactis

    PubMed Central

    Puri, Pranav; Goel, Anisha; Bochynska, Agnieszka

    2014-01-01

    Acetate kinase (ACK) converts acetyl phosphate to acetate along with the generation of ATP in the pathway for mixed-acid fermentation in Lactococcus lactis. The reverse reaction yields acetyl phosphate for assimilation purposes. Remarkably, L. lactis has two ACK isozymes, and the corresponding genes are present in an operon. We purified both enzymes (AckA1 and AckA2) from L. lactis MG1363 and determined their oligomeric state, specific activities, and allosteric regulation. Both proteins form homodimeric complexes, as shown by size exclusion chromatography and static light-scattering measurements. The turnover number of AckA1 is about an order of magnitude higher than that of AckA2 for the reaction in either direction. The Km values for acetyl phosphate, ATP, and ADP are similar for both enzymes. However, AckA2 has a higher affinity for acetate than does AckA1, suggesting an important role under acetate-limiting conditions despite the lower activity. Fructose-1,6-bisphosphate, glyceraldehyde-3-phosphate, and phospho-enol-pyruvate inhibit the activities of AckA1 and AckA2 to different extents. The allosteric regulation of AckA1 and AckA2 and the pool sizes of the glycolytic intermediates are consistent with a switch from homolactic to mixed-acid fermentation upon slowing of the growth rate. PMID:24464460

  10. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice

    PubMed Central

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFMTM (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of ?-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM. PMID:24717228

  11. Kolbe electrolysis of acetic acid in a polymer electrolyte membrane reactor

    SciTech Connect

    Hicks, M.T.; Fedkiw, P.S. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemical Engineering

    1998-11-01

    A polymer electrolyte membrane (PEM) reactor is described for use in Kolbe electrolysis: the anodic oxidation of an alkyl carboxylic acid with subsequent decarboxylation and coupling to yield a dimer, 2RCOOH {r_arrow} R-R + 2CO{sub 2} + 2e{sup {minus}} + 2H{sup +}. Platinized Nafion 117 is the PEM and functions simultaneously as the electrolyte and separator. Results demonstrating the feasibility of Kolbe electrolysis in a PEM reactor are presented for the oxidation of gaseous acetic acid (in a nitrogen diluent) to ethane and carbon dioxide, with hydrogen evolution at the counter electrode. The investigation includes the following effects on current density, current efficiency, and product selectivity: acetic acid partial pressure (P{sub total} {approx} 1 atm), cell voltage and temperature, phase of the catholyte (liquid water or humidified nitrogen), and the procedure used to prepare the membrane-electrode assembly. Current densities from 0.06 to 0.4 A/cm{sup 2} with Kolbe current efficiencies of 10 to 90% were obtained for cell voltages ranging from 4 to 10 V. The best results were obtained using PEMs platinized by a nonequilibrium impregnation-reduction method; a 75% current efficiency at 0.3 A/cm{sup 1} with a cell voltage of 6 V were measured at the following reaction conditions: 42 C reactor, 58 mm Hg acetic acid (50 C acetic acid dew point), and 42 C liquid water to the cathode. These initial results are encouraging for Kolbe electrolysis in a PEM cell; additional work, however, is needed to determine if the PEM strategy may be employed using a liquid-phase reactant. In addition, optimal reaction conditions and downstream mass-transfer separation requirements remain to be determined, both of which are reactant specific.

  12. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria.

    PubMed

    Nancharaiah, Y V; Francis, A J

    2015-06-01

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Pseudomonas putida. Bacterial growth was stimulated at up to 2.5 g L(-1) and inhibited at >2.5 g L(-1) of [EMIM][Ac]. The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presence of 0.5 g L(-1) [EMIM][Ac]. Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulation of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment. PMID:25703901

  13. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria

    DOE PAGESBeta

    Nancharaiah, Y. V.; Francis, A. J.

    2015-06-01

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L-1 and inhibited at > 2.5 g L-1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L-1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulationmore »of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.« less

  14. Definitive identification of indole-3-acetic acid and abscisic acid in shoots of Coleus blumei by gas chromatography-mass spectrometry

    Microsoft Academic Search

    Clifford E. LaMotte; Xiaoyue Li; William P. Jacobs

    1998-01-01

    Mass spectra provide definitive identification of indole-3-acetic acid and abscisic acid in shoots of Coleus blumei, a species used for studying the hormone control of plant development since the early 1930s.

  15. Journal of Photochemistry and Photobiology A: Chemistry 143 (2001) 1116 Two photon dissociation of acetone, acetaldehyde, and acetic acid at 243

    E-print Network

    Kim, Sang Kyu

    2001-01-01

    of acetone, acetaldehyde, and acetic acid at 243 nm: translational energy releases in the H atom channel, acetaldehyde, and acetic acid at 243 nm have been investigated by detecting H atoms using two photon absorption- sociation of acetone, acetaldehyde, and acetic acid at 243 nm have been investigated. At 243 nm, one photon

  16. Ability of Thermophilic Lactic Acid Bacteria To Produce Aroma Compounds from Amino Acids

    Microsoft Academic Search

    Sandra Helinck; Dominique Le Bars; Daniel Moreau; Mireille Yvon

    2004-01-01

    Although a large number of key odorants of Swiss-type cheese result from amino acid catabolism, the amino acid catabolic pathways in the bacteria present in these cheeses are not well known. In this study, we compared the in vitro abilities of Lactobacillus delbrueckii subsp. lactis, Lactobacillus helveticus, and Streptococcus ther- mophilus to produce aroma compounds from three amino acids, leucine,

  17. Sol-gel processing of yttria-stabilized zirconia films derived from the zirconium n -butoxide-acetic acid-nitric acid-water-isopropanol system

    Microsoft Academic Search

    Seung-Goo Kim; Suk Woo Nam; Sung-Pil Yoon; Sang-Hoon Hyun; Jonghee Han; Tae-Hoon Lim; Seong-Ahn Hong

    2004-01-01

    A stable yttria-stabilized zirconia (YSZ) sol has been synthesized by the controlled hydrolysis of zirconium n-butoxide. Acetic acid and nitric acid were used as chelating agent and catalyst, respectively. The addition of acetic acid and increasing the amount of nitric acids to the system significantly enhanced the sol stability. The viscosity of YSZ sol with the concentration less than 0.80

  18. Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor.

    PubMed

    Huang, Y; Yang, S T

    1998-11-20

    Acetate was produced from whey lactose in batch and fed-batch fermentations using co-immobilized cells of Clostridium formicoaceticum and Lactococcus lactis. The cells were immobilized in a spirally wound fibrous sheet packed in a 0.45-L column reactor, with liquid circulated through a 5-L stirred-tank fermentor. Industrial-grade nitrogen sources, including corn steep liquor, casein hydrolysate, and yeast hydrolysate, were studied as inexpensive nutrient supplements to whey permeate and acid whey. Supplementation with either 2.5% (v/v) corn steep liquor or 1.5 g/L casein hydrolysate was adequate for the cocultured fermentation. The overall acetic acid yield from lactose was 0.9 g/g, and the productivity was 0.25 g/(L h). Both lactate and acetate at high concentrations inhibited the homoacetic fermentation. To overcome these inhibitions, fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentation was 75 g/L, which was the highest acetate concentration ever produced by C. formicoaceticum. Even at this high acetate concentration, the overall productivity was 0.18 g/(L h) based on the total medium volume and 1.23 g/(L h) based on the fibrous-bed reactor volume. The cells isolated from the fibrous-bed bioreactor at the end of this study were more tolerant to acetic acid than the original culture used to seed the bioreactor, indicating that adaptation and natural selection of acetate-tolerant strains occurred. This cocultured fermentation process could be used to produce a low-cost acetate deicer from whey permeate and acid whey. PMID:10099456

  19. Isolation of residual lignin from softwood kraft pulp. Advantages of the acetic acid acidolysis method.

    PubMed

    Lachenal, Dominique; Mortha, Gérard; Sevillano, Rose-Marie; Zaroubine, Michail

    2004-01-01

    Lignin in kraft pulp was extracted by enzymatic hydrolysis of the carbohydrates, acidolysis with dioxane-water-HCl (conventional method), and acidolysis with acetic acid-water-ZnCl2. The latter method was shown to extract lignin with a better yield than for conventional acidolysis and with a much lower content in impurities than for enzymatic hydrolysis. It was confirmed by 13C NMR analysis of the lignin samples that conventional hydrolysis modified the lignin polymer, causing the cleavage of some aryl-ether linkages. The cleavage was also observed on a model compound submitted to the same extraction conditions. In that respect, the acetic acid-water-ZnCl2 method was less damaging and consequently more suitable for analytical purposes. PMID:15587082

  20. Biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid and the determination of the absolute configuration of all isomers.

    PubMed

    Majewska, Paulina

    2015-08-01

    2-Hydroxy-2-(ethoxyphenylphosphinyl)acetic acid, a new type of organophosphorus compound possessing two stereogenic centers, was investigated. Racemic 2-butyryloxy-2-(ethoxyphenylphosphinyl)acetic acid was synthesized and hydrolyzed using four bacterial species as biocatalysts. In all cases the reaction was more or less stereoselective and isomers bearing a phosphorus atom with an (SP)-configuration were hydrolyzed preferentially. The observed (1)H and (31)P NMR chemical shifts of Mosher esters of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid were correlated with the configurations of both stereogenic centers of all four stereoisomers. PMID:26069926

  1. The integration of acetic acid iontophoresis, orthotic therapy and physical rehabilitation for chronic plantar fasciitis: a case study

    PubMed Central

    Costa, Ivano A; Dyson, Anita

    2007-01-01

    A 15-year-old female soccer player presented with chronic plantar fasciitis. She was treated with acetic acid iontophoresis and a combination of rehabilitation protocols, ultrasound, athletic taping, custom orthotics and soft tissue therapies with symptom resolution and return to full activities within a period of 6 weeks. She reported no significant return of symptoms post follow-up at 2 months. Acetic acid iontophoresis has shown promising results and further studies should be considered to determine clinical effectiveness. The combination of acetic acid iontophoresis with conservative treatments may promote recovery within a shorter duration compared to the use of one-method treatment approaches. PMID:17885679

  2. Effect of water-soluble vitamins on the production of indole-3-acetic acid by Azospirillum brasilense.

    PubMed

    Zakharova, E A; Iosipenko, A D; Ignatov, V V

    2000-09-01

    The effects of six water-soluble vitamins on tryptophan-dependent synthesis of indole-3-acetic acid in Azospirillum brasilense were investigated. A multifactorial regression analysis was employed to produce models of indole-3-acetic acid synthesis versus concentrations of tryptophan and the vitamins added to the growth medium. Very low levels of the B-group vitamins added at 10 to 100 microg l(-1) affected production of indole-3-acetic acid in A. brasilense. The largest release of this phytohormone was observed after amendment with pyridoxine and nicotinic acid. Results of the study suggest a role these vitamins may fulfil in the regulation of indole-3-acetic acid synthesis in A. brasilense. PMID:11061189

  3. Bleomycin lung toxicity detected by technetium-99m diethylene triamine penta-acetic acid aerosol scintigraphy

    Microsoft Academic Search

    Ömer Ugur; Biray Caner; M. Derya Balbay; Haluk A. Özen; Dogan Remzi; Nergis Ulutuncel; Coskun Bekdik

    1993-01-01

    In this study we investigated bleomycin-induced pulmonary toxicity in patients with germ-cell tumour by means of technetium-99m diethylene triamine penta-acetic acid aerosol scintigraphy. Twenty untreated patients who had no clinical or radiological evidence of pulmonary disease received four courses of etoposide, cisplatin and bleomycin chemotherapy. Aerosol lung scintigraphy and pulmonary function tests were performed in all patients before bleomycin treatment

  4. Analysis of a two-stage fermentor with cell recycling for continuous acetic acid production

    Microsoft Academic Search

    Akio Nishiwaki

    1997-01-01

    The steady-state performance of a recycle two-stage fermentor with cell separators after each stage is studied numerically for continuous production of acetic acid. This system has two fresh-medium feed streams and the bleed withdrawn from the first stage is supplied to the second fermentor for utilization of the high cell concentration in the bleed. Kinetic expressions and parameter values are

  5. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    PubMed

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-Yong; Wang, Lu-Shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84 % theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89 %. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering. PMID:25935346

  6. Aminomethyl coumarin acetic acid: A new fluorescent labelling agent for proteins

    Microsoft Academic Search

    H. Khalfan; R. Abuknesha; M. Rand-Weaver; R. G. Price; D. Robinson

    1986-01-01

    Summary  A new fluorescent protein labelling agent, 7-amino-4-methyl coumarin-3-acetic acid (AMCA), emits in the blue region (440–460 nm) on activation with UV light (350 nm). The active reagent is theN-hydroxysuccinimide ester which reacts with lysine residues under mild conditions to form photostable amide links.The Stokes shift of 100 nm compared to 30 nm for Fluorescein isothiocyanate (FITC) allows easy filter discrimination

  7. Alkaline pre-treatment of rice hulls for hydrothermal production of acetic acid

    Microsoft Academic Search

    Yamin Hsieh; Yingxun Du; Fangming Jin; Zhouyu Zhou; Heiji Enomoto

    2009-01-01

    To solve the blockage caused by silica during the hydrothermal conversion of rice hulls into acetic acid in a continuous-flow reactor, the removal of silica from rice hulls and the retainment of organics by alkaline extraction were carried out in a range of pH values from 5 to 12 and temperatures from 30 to 85°C. It was found that the

  8. Zinc nutrition and levels of endogenous lndole?3?acetic acid in radish shoots

    Microsoft Academic Search

    Balal Hossain; Norihiro Hirata; Yoshitaka Nagatomo; Masahito Suiko; Hiroshi Takaki

    1998-01-01

    Radish (Raphanus sativus cv. Akamaru?Hatsukadaikon) was grown for several experiments in a glasshouse with zinc (Zn) supply in the nutrient solution. Lack of Zn resulted in stunted growth and reduced leaf of radish shoots were observed. Two?dimensional thin layer chromatography (TLC) and gas chromatography?mass spectrometry (GC?MS) analysis revealed the presence of endogenous indole?3?acetic acid (IAA) in Zn?deficient radish shoots. An

  9. Flavone acetic acid increases the cytotoxicity of mitomycin C when combined with hyperthermia

    Microsoft Academic Search

    Hideya Takeuchi; Hideo Baba; Yoshihiko Maehara; Keizo Sugimachi; Robert A Newman

    1996-01-01

    Flavone acetic acid (FAA, NSC 347512) is known to selectively reduce tumor blood flow. Taking advantage of this pharmacodynamic\\u000a effect, we have previously shown that FAA in combination with hyperthermia (HT) can produce a marked improvement in antitumor\\u000a response in mice. In the present study, we investigated whether FAA could increase the cytotoxicity of mitomycin C (MMC),\\u000a a bioreductive drug

  10. The lifespan-promoting effect of acetic acid and Reishi polysaccharide

    Microsoft Academic Search

    Ming-Hong Chuang; Shyh-Horng Chiou; Chun-Hao Huang; Wen-Bin Yang; Chi-Huey Wong

    2009-01-01

    Using Caenorhabditis elegans as a model organism, various natural substances and commercial health-food supplements were screened to evaluate their effects on longevity. Among the substances tested, acetic acid and Reishi polysaccharide fraction 3 (RF3) were shown to increase the expression of the lifespan and longevity-related transcription factor DAF-16 in C. elegans. We have shown that RF3 activates DAF-16 expression via

  11. Effect of glyphosate on indole-3-acetic acid metabolism in tolerant and susceptible plants

    Microsoft Academic Search

    T. T. Lee; T. Dumas

    1985-01-01

    A comparison study was conducted on the effect of glyphosate (N-[phosphonomethyl]glycine) on indole-3-[2-14C]acetic acid (IAA) metabolism, ethylene production, and growth of 7-day-old seedlings of different plants. The plants tested\\u000a were American germander (Teucrium canadense L.), soybean (Glycine max L. Merr.), pea (Pisum sativum L. cv. Alaska and Little marvel), mungbean (Vigna radiata L.), and buckwheat (Fagopyrum esculentum Moench). A spray

  12. Algicidal effect of 2,4-dichlorophenoxy acetic acid on blue-green alga Cylindrospermum sp

    Microsoft Academic Search

    P. K. Singh

    1974-01-01

    The effect of the herbicide 2,4-Dichlorophenoxy acetic acid generally used in agriculture was studied on the nitrogen fixing blue-green alga Cylindrospermum sp. The alga could tolerate up to 150 µg per ml in liquid culture and 100 µg per ml on agar plates without any inhibitory effect on growth and survival. The maximum tolerance was up to 800 µg per

  13. Lactic acid bacteria in fermented foods in Thailand.

    PubMed

    Tanasupawat, S; Komagata, K

    1995-05-01

    Traditional fermented foods (fish, meat and vegetable products), produced by many different processes, are eaten in many parts of Thailand. Lactic acid bacteria are responsible for the souring and ripening of these foods. Homofermentative strains of Lactobacillus pentosus, L. plantarum and Pediococcus pentosaceus are dominant in foods with low salt concentrations whereas P. halophilus strains are present in foods containing high salt. Strains of Lactobacillus sake, other Lactobacillus spp., P. acidilactici and P. urinaeequi are frequently found. Heterofermentative strains of L. brevis, L. confusus, L. fermentum, L. vaccinostercus, other Lactobacillus spp., and of Leuconostoc spp. are distributed as minor bacteria and strains of Staphylococcus, Enterococcus and Halobacterium are occasionally isolated. PMID:24414643

  14. Exhaled breath concentrations of acetic acid vapour in gastro-esophageal reflux disease.

    PubMed

    Dryahina, Kseniya; Pospíšilová, Veronika; Sovová, Kristýna; Shestivska, Violetta; Kubišta, Ji?í; Spesyvyi, Anatolii; Pehal, František; Turzíková, Jarmila; Votruba, Ji?í; Span?l, Patrik

    2014-09-01

    The objective of this experimental study was to discover volatile metabolites present in exhaled breath that could be used as biomarkers of gastro-esophageal reflux disease, GERD, one of the most common causes of chronic cough. An in vitro model based on pork tissue samples exposed to a challenge by artificial gastric fluid was used to identify specific volatile compounds to be chosen for quantification in directly exhaled breath of GERD patients and controls using selected ion flow tube mass spectrometry, SIFT-MS. GC/MS analyses of the headspace of this in vitro model indicated that the only volatile compound significantly increased was acetic acid. End expiratory concentration of acetic acid measured by SIFT-MS in mouth exhaled breath of 22 GERD patients (median 85 ppbv) was found to be significantly higher than that in breath of a control group (median 48 ppbv). Breath acetic acid may be useful for non-invasive diagnostics of GERD and other conditions resulting in the lowering of pH of the lining of the airways. PMID:25189108

  15. Effects of acetic acid, ethanol, and SO(2) on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains.

    PubMed

    Vilela-Moura, Alice; Schuller, Dorit; Mendes-Faia, Arlete; Côrte-Real, Manuela

    2010-07-01

    Herein, we report the influence of different combinations of initial concentration of acetic acid and ethanol on the removal of acetic acid from acidic wines by two commercial Saccharomyces cerevisiae strains S26 and S29. Both strains reduced the volatile acidity of an acidic wine (1.0 gl(-1) acetic acid and 11% (v/v) ethanol) by 78% and 48%, respectively. Acetic acid removal by strains S26 and S29 was associated with a decrease in ethanol concentration of 0.7 and 1.2% (v/v), respectively. Strain S26 revealed better removal efficiency due to its higher tolerance to stress factors imposed by acidic wines. Sulfur dioxide (SO(2)) in the concentration range 95-170 mg l(-1)inhibits the ability of both strains to reduce the volatile acidity of the acidic wine used under our experimental conditions. Therefore, deacidification should be carried out either in wines stabilized by filtration or in wines with SO(2)concentrations up to 70 mg l(-1). Deacidification of wines with the better performing strain S26 was associated with changes in the concentration of volatile compounds. The most pronounced increase was observed for isoamyl acetate (banana) and ethyl hexanoate (apple, pineapple), with an 18- and 25-fold increment, respectively, to values above the detection threshold. The acetaldehyde concentration of the deacidified wine was 2.3 times higher, and may have a detrimental effect on the wine aroma. Moreover, deacidification led to increased fatty acids concentration, but still within the range of values described for spontaneous fermentations, and with apparently no negative impact on the organoleptical properties. PMID:20390413

  16. Thiazoles as corrosion inhibitors for mild steel in formic and acetic acid solutions

    Microsoft Academic Search

    M. A. Quraishi; H. K. Sharma

    2005-01-01

    2-(N,N-dimethylamino) benzylidene imino-4-(4-methyl phenyl)-1,3-thiazole (DIMPT), 2-benzylidene imino-4-(4-methyl phenyl)-1,3-thiazole (BIMPT), 2-salicylidene imino-4-(4-methyl phenyl)-1,3-thiazole (SIMPT) and 2-cinnamylidene imino-4-(4-methyl phenyl)-1,3-thiazole (CIMPT) were synthesized in the laboratory and their influence on the inhibition of corrosion of mild steel in 20 formic acid and 20 acetic acid was investigated by weight loss and potentiodynamic polarization techniques. The inhibition efficiency of these compounds was found to

  17. Biotechnology of lactic acid bacteria with special reference to bacteriophage resistance

    Microsoft Academic Search

    Charles Daly; Gerald F. Fitzgerald; Ruth Davis

    1996-01-01

    Lactic acid bacteria play an important role in many food and feed fermentations. In recent years major advances have been made in unravelling the genetic and molecular basis of significant industrial traits of lactic acid bacteria. Bacteriophages which can infect and destroy lactic acid bacteria pose a particularly serious threat to dairy fermentations that can result in serious economic losses.

  18. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    Microsoft Academic Search

    Lucila Saavedra; Fernando Sesma

    2011-01-01

    \\u000a The search for new antimicrobial peptides produced by lactic acid ­bacteria and other Gram-positive microorganisms has become\\u000a an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and\\u000a human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic\\u000a host systems makes them attractive candidates for

  19. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris. PMID:25554489

  20. Cell wall structure and function in lactic acid bacteria

    PubMed Central

    2014-01-01

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  1. Cell wall structure and function in lactic acid bacteria.

    PubMed

    Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius

    2014-08-29

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  2. Molecular Biology and Genetics of the Acetate-Utilizing Methanogenic Bacteria

    SciTech Connect

    Robert P. Gunsalus

    2003-07-21

    Methane biosynthesis by the Methanosarcina species, in contrast to other methanogens, occurs from the full range of methanogenic substrates that include acetate, methanol, tri-methyl, di-methyl, and methyl-amine, methyl-sulfides, and in limited instances, H2/CO2. The Methanosarcina are also versatile in their ability to adapt and grow in habitats of varying osmolarity ranging from fresh water environments, marine environments, and to hyper saline environments (ca to 1.2 M NaCl). To facilitate studies that address the biochemistry, molecular biology and physiology of these organisms, we have constructed a whole-genome microarray to identify classes of differentially expressed genes in M. mazei strain Goe1. We propose to further identify and examine how genes and their proteins involved in the synthesis and transport of osmolytes in the cell are regulated. These compounds include N-epsilon-acetyl-beta-lysine, alpha-glutamate, betaine, and potassium whose levels within the cell are modulated in order to provide appropriate osmotic balance. We will identify differentially expressed genes involved in hydrogen and carbon dioxide sequestration since M. mazei strain Goe1 is currently the only practical model for such study. Finally, we will explore the essential roles of two metals, molybdate and tungstate, in methanogen regulation and metabolism of these environmentally essential organsims. The above studies will advance our general understanding of how methanogens respond to their environmental signals, and adapt by adjusting their physiology to thrive in changing anaerobic habitats whether natural or man-made.

  3. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations.

    PubMed

    Plengvidhya, Vethachai; Breidt, Fredrick; Lu, Zhongjing; Fleming, Henry P

    2007-12-01

    Previous studies using traditional biochemical identification methods to study the ecology of commercial sauerkraut fermentations revealed that four species of lactic acid bacteria, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis, were the primary microorganisms in these fermentations. In this study, 686 isolates were collected from four commercial fermentations and analyzed by DNA fingerprinting. The results indicate that the species of lactic acid bacteria present in sauerkraut fermentations are more diverse than previously reported and include Leuconostoc citreum, Leuconostoc argentinum, Lactobacillus paraplantarum, Lactobacillus coryniformis, and Weissella sp. The newly identified species Leuconostoc fallax was also found. Unexpectedly, only two isolates of P. pentosaceus and 15 isolates of L. brevis were recovered during this study. A better understanding of the microbiota may aid in the development of low-salt fermentations, which may have altered microflora and altered sensory characteristics. PMID:17921264

  4. DNA Fingerprinting of Lactic Acid Bacteria in Sauerkraut Fermentations? † ‡

    PubMed Central

    Plengvidhya, Vethachai; Breidt, Fredrick; Lu, Zhongjing; Fleming, Henry P.

    2007-01-01

    Previous studies using traditional biochemical identification methods to study the ecology of commercial sauerkraut fermentations revealed that four species of lactic acid bacteria, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis, were the primary microorganisms in these fermentations. In this study, 686 isolates were collected from four commercial fermentations and analyzed by DNA fingerprinting. The results indicate that the species of lactic acid bacteria present in sauerkraut fermentations are more diverse than previously reported and include Leuconostoc citreum, Leuconostoc argentinum, Lactobacillus paraplantarum, Lactobacillus coryniformis, and Weissella sp. The newly identified species Leuconostoc fallax was also found. Unexpectedly, only two isolates of P. pentosaceus and 15 isolates of L. brevis were recovered during this study. A better understanding of the microbiota may aid in the development of low-salt fermentations, which may have altered microflora and altered sensory characteristics. PMID:17921264

  5. Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression.

    PubMed

    Kochar, Mandira; Upadhyay, Ashutosh; Srivastava, Sheela

    2011-05-01

    Pseudomonas fluorescens is an important biological component of agricultural soils that bestows a number of direct and indirect beneficial attributes to the plants. We analyzed the biocontrol strain P. fluorescens Psd for indole-3-acetic acid (IAA) biosynthesis and studied the effect of its consequent manipulation on its plant-growth-promoting (PGP) potential. While the indole pyruvic acid (IPyA) pathway commonly associated with PGP bacteria was lacking, the indole acetamide (IAM) pathway generally observed in phytopathogens was expressed in strain Psd. Overexpression of IAM pathway genes iaaM-iaaH, from Pseudomonas syringae subsp. savastanoi drastically increased IAA levels and showed a detrimental effect on sorghum root development. On the other hand, heterologous expression of the indole-3-pyruvate decarboxylase/phenylpyruvate decarboxylase gene (ipdC/ppdC) of the IPyA pathway from the PGP bacterium Azospirillum brasilense SM led to enhancement of the IAA level. A more favorable effect of this recombinant strain on sorghum root growth and development suggests that metabolic engineering could be used to generate strains with improved PGP function. PMID:21397014

  6. Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid.

    PubMed

    Harner, Nicole K; Bajwa, Paramjit K; Habash, Marc B; Trevors, Jack T; Austin, Glen D; Lee, Hung

    2014-01-01

    A strain development program was initiated to improve the tolerance of the pentose-fermenting yeast Pachysolen tannophilus to inhibitors in lignocellulosic hydrolysates. Several rounds of UV mutagenesis followed by screening were used to select for mutants of P. tannophilus NRRL Y2460 with improved tolerance to hardwood spent sulfite liquor (HW SSL) and acetic acid in separate selection lines. The wild type (WT) strain grew in 50 % (v/v) HW SSL while third round HW SSL mutants (designated UHW301, UHW302 and UHW303) grew in 60 % (v/v) HW SSL, with two of these isolates (UHW302 and UHW303) being viable and growing, respectively, in 70 % (v/v) HW SSL. In defined liquid media containing acetic acid, the WT strain grew in 0.70 % (w/v) acetic acid, while third round acetic acid mutants (designated UAA301, UAA302 and UAA303) grew in 0.80 % (w/v) acetic acid, with one isolate (UAA302) growing in 0.90 % (w/v) acetic acid. Cross-tolerance of HW SSL-tolerant mutants to acetic acid and vice versa was observed with UHW303 able to grow in 0.90 % (w/v) acetic acid and UAA302 growing in 60 % (v/v) HW SSL. The UV-induced mutants retained the ability to ferment glucose and xylose to ethanol in defined media. These mutants of P. tannophilus are of considerable interest for bioconversion of the sugars in lignocellulosic hydrolysates to ethanol. PMID:24122119

  7. Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in wheat extracts by solid-phase extraction and liquid chromatography–electrospray tandem mass spectrometry

    Microsoft Academic Search

    Shengjie Hou; Jiang Zhu; Mingyu Ding; Guohua Lv

    2008-01-01

    A liquid chromatography–tandem mass spectrometry (LC–MS\\/MS) method was developed for simultaneous determination of three representative phytohormones in plant samples: gibberellic acid (GA3), indole-3-acetic acid (IAA) and abscisic acid (ABA). A solid-phase extraction (SPE) pretreatment method was used to concentrate and purify the three phytohormones of different groups from plant samples. The separation was carried out on a C18 reversed-phase column,

  8. Inhibitory Effect of Curcumin, Chlorogenic Acid, Caffeic Acid, and Ferulic Acid on Tumor Promotion in Mouse Skin by 12-O-Tetradecanoylphorbol-13-acetate

    Microsoft Academic Search

    Mou-Tuan Huang; Robert C. Smart; Ching-Quo Wong; Allan H. Conney

    The effects of topically applied curcumin, chlorogenic acid, caffeic acid, and ferulic acid on 12-O-tetradecanoylphorbol-13-acetate (TPA)- induced epidermal ornithine decarboxylase activity, epidermal DNA syn thesis, and the promotion of skin tumors were evaluated in female CD-I mice. Topical application of 0.5, 1, 3, or 10 iano\\\\ of curcumin inhibited by 31, 46, 84, or 98%, respectively, the induction of epidermal

  9. The effect of water content on the electropolishing behavior of Inconel 718 alloy in perchloric–acetic acid mixtures

    Microsoft Academic Search

    Ching An Huang; Yu Chen Chen

    2009-01-01

    The electropolishing behavior of Inconel 718 alloy was studied in perchloric–acetic acid mixtures using a rotating disc electrode. The electropolishing behavior of an Inconel 718 weld, which was prepared with electron beam welding, was also investigated. A leveled but not brightened surface can be achieved when Inconel 718 alloy is potentiostatically polished in the acid mixture with 20vol.% perchloric acid.

  10. A rapid method to discriminate between free and esterified fatty acids by pyrolytic methylation using tetramethylammonium acetate or hydroxide

    Microsoft Academic Search

    Hanne-Lise Hardell; Nils-Olof Nilvebrant

    1999-01-01

    Tetramethylammonium acetate (TMAAc) was found to be a selective reagent for the methylation of free acids. It was shown that free fatty acids and their salts could be fully derivatised by TMAAc in the presence of esterified fatty acids. This was performed on extracts containing mixtures of wood extractives and directly on pulps containing extractives. The alkaline reagent tetramethylammonium hydroxide

  11. Lactic acid bacteria in a changing legislative environment.

    PubMed

    Feord, Jean

    2002-08-01

    The benefits of using lactic acid bacteria in the food chain, both through direct consumption and production of ingredients, are increasingly recognised by the food industry and consumers alike. The regulatory environment surrounding these products is diverse, covering foods and food ingredients, processing aids, feed additives and dietary supplements. On a global basis, there are different approaches taken by the various regulatory authorities. While in Europe, the national legislation is gradually being harmonized, predominantly through the Novel Foods Regulation, there is still a wide disparity between the stringency of regulation of microbial products fed to animals and the comparatively relaxed approach to 'non-novel' microbial products intended for human consumption. In the United States, the onus is on self-regulation of the manufacturer, with the Generally Recognised As Safe (GRAS) and Dietary Supplement Health Education Act (DSHEA) notification schemes encouraging industry to be more open about the ingredients they market. In Japan, the Foods for Special Health Use system continues to gain recognition as more products are approved, and is a potential model for other countries in regulating functional foods. Despite the different approaches to regulating these products, safety of microorganisms such as lactic acid bacteria in the food chain is paramount in all countries. This paper discusses the regulatory requirements of microbial products, predominantly lactic acid bacteria within the global markets, focusing mainly on the developments in Europe. PMID:12369202

  12. CTAB and acetic acid effect in the nanocrystallite growth of spray deposited CdO thin films

    NASA Astrophysics Data System (ADS)

    Pavithra, S.; Balamurugan, D.; Pandeeswari, R.; Jeyaprakash, B. G.

    2014-11-01

    CdO thin films were deposited on glass substrates from cadmium acetate dihydrate along with precursor additives, acetic acid and CTAB using home built splay pyrolysis unit. XRD studies imply that the CdO thin films to be preferably oriented in the (1 1 1) plane. The Williamson-Hall plot indicates the presence of microstrain, especially high with acetic acid additive. Surface morphology was found to be closely packed spherical crystallite with precursor additives. Optical studies reveal a considerable change in the transmittance and band gap. Peak position is shifted in the Raman spectra, due to precursor additives.

  13. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts.

    PubMed

    Pérez-Díaz, I M; McFeeters, R F

    2010-05-01

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but spoilage then occurred due to growth of fermentative yeasts, which produced ethanol in the cucumbers. Allyl isothiocyanate (2 mM) prevented growth of Zygosaccharomyces globiformis, which has been responsible for commercial pickle spoilage, as well as the yeasts that were present on fresh cucumbers. However, allyl isothiocyanate did not prevent growth of Lactobacillus plantarum. When these compounds were added in combination to acidified cucumbers, the cucumbers were successfully preserved as indicated by the fact that neither yeasts or lactic acid bacteria increased in numbers nor were lactic acid or ethanol produced by microorganisms when cucumbers were stored at 30 degrees C for at least 2 mo. This combination of 2 naturally occurring preservative compounds may serve as an alternative approach to the use of sodium benzoate or sodium metabisulfite for preservation of acidified vegetables without a thermal process. PMID:20546411

  14. A mutation affecting the synthesis of 4-chloroindole-3-acetic acid.

    PubMed

    Ross, John J; Tivendale, Nathan D; Davidson, Sandra E; Reid, James B; Davies, Noel W; Quittenden, Laura J; Smith, Jason A

    2012-12-01

    Traditionally, schemes depicting auxin biosynthesis in plants have been notoriously complex. They have involved up to four possible pathways by which the amino acid tryptophan might be converted to the main active auxin, indole-3-acetic acid (IAA), while another pathway was suggested to bypass tryptophan altogether. It was also postulated that different plants use different pathways, further adding to the complexity. In 2011, however, it was suggested that one of the four tryptophan-dependent pathways, via indole-3-pyruvic acid (IPyA), is the main pathway in Arabidopsis thaliana, although concurrent operation of one or more other pathways has not been excluded. We recently showed that, for seeds of Pisum sativum (pea), it is possible to go one step further. Our new evidence indicates that the IPyA pathway is the only tryptophan-dependent IAA synthesis pathway operating in pea seeds. We also demonstrated that the main auxin in developing pea seeds, 4-chloroindole-3-acetic acid (4-Cl-IAA), which accumulates to levels far exceeding those of IAA, is synthesized via a chlorinated version of the IPyA pathway. PMID:23073010

  15. Gas- and aqueous-phase formic and acetic acids at a tropical cloud forest site

    NASA Astrophysics Data System (ADS)

    Sanhueza, Eugenio; Santana, Magaly; Hermoso, Mariela

    Atmospheric gas-phase and aqueous-phase (dew and fog) formic and acetic acids were measured over a cloud forest in Venezuela. The gaseous acids showed diurnal cycles, with higher mixing ratios during daytime. Higher concentrations were observed during the dry season (HCOOH 1.7 +/-0.5 ppb; CH 3COOH 1.4+/-0.6 ppb) in comparison with the rainy season (HCOOH 0.79+/-0.24 ppb; CH 3COOH 0.54+/-0.20 ppb). Liquid-phase concentrations in dew and fog are of the same order and range from 8.1 to 69.5 ?M for HCOOH and 4.3 to 15.3 ?M for CH 3COOH. The field-observed Henry's Law coefficients, calculated from the simultaneous measurements of gas- and liquid-phase acids, do not show a significant trend with the pH of the solution, in contrast to theoretical considerations. Dry deposition velocities to the nighttime dew are 1.1+/-0.6 and 0.68+/-0.42 cm s -1 for formic and acetic acids, respectively. A loss of 0.054 ppb HCOOH and 0.022 ppb CH 3COOH from the atmospheric boundary layer to the dew is produced nightly.

  16. Synthesis of  -Aminobutyric Acid by Lactic Acid Bacteria Isolated from a Variety of Italian Cheeses

    Microsoft Academic Search

    S. Siragusa; M. De Angelis; R. Di Cagno; C. G. Rizzello; R. Coda; M. Gobbetti

    2007-01-01

    The concentrations of -aminobutyric acid (GABA) in 22 Italian cheese varieties that differ in several technological traits markedly varied from 0.26 to 391 mg kg1. Presumptive lactic acid bacteria were isolated from each cheese variety (total of 440 isolates) and screened for the capacity to synthesize GABA. Only 61 isolates showed this activity and were identified by partial sequencing of

  17. Quantitative Analysis of Indole-3-Acetic Acid Metabolites in Arabidopsis1

    PubMed Central

    Kowalczyk, Mariusz; Sandberg, Göran

    2001-01-01

    A general gas chromatography/mass spectrometry (MS)-based screen was performed to identify catabolites and conjugates of indole-3-acetic acid (IAA) during vegetative growth of Arabidopsis. This experiment revealed the existence of two new conjugates: N-(indole-3-acetyl)-alfa-alanine (IA-Ala) and N-(indole-3-acetyl)-alfa-leucine (IA-Leu). A method for quantitative analysis of IAA metabolites in plant extracts by liquid chromatography-electrospray tandem MS has been developed. The accuracy and precision of the new method are better than 10% for standards close to the detection limit, and are between 6% and 16% for the entire protocol applied to plant extracts. The low detection limits, 0.02 to 0.1 pmol for the different metabolites, made it possible to use as little as 50 to 100 mg of tissue for quantitative analysis. The analysis was performed on different tissues of an Arabidopsis plant at two stages of development, using heavy labeled internal standards of the catabolite 2-oxoindole-3-acetic acid as well as IAA conjugated to amino acids: aspartate, glutamate, Ala, and Leu. Expanding leaves and roots that generally contain high amounts of the free hormone also contained the highest levels of IA-aspartate, IA-glutamate, and 2-oxoindole-3-acetic acid, supporting their role as irreversible catabolic products. The levels of IA-Leu and IA-Ala did not follow the general distribution of IAA. Interestingly, the level of IA-Leu was highest in roots and IA-Ala in the aerial tissues. PMID:11743128

  18. Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction.

    PubMed

    Pencík, Ales; Rolcík, Jakub; Novák, Ondrej; Magnus, Volker; Barták, Petr; Buchtík, Roman; Salopek-Sondi, Branka; Strnad, Miroslav

    2009-12-15

    An analytical protocol for the isolation and quantification of indole-3-acetic acid (IAA) and its amino acid conjugates was developed. IAA is an important phytohormone and formation of its conjugates plays a crucial role in regulating IAA levels in plants. The developed protocol combines a highly specific immunoaffinity extraction with a sensitive and selective LC-MS/MS analysis. By using internal standards for each of the studied compounds, IAA and seven amino acid conjugates were analyzed in quantities of fresh plant material as low as 30 mg. In seeds of Helleborus niger, physiological levels of these compounds were found to range from 7.5 nmol g(-1) fresh weight (IAA) to 0.44 pmol g(-1) fresh weight (conjugate with Ala). To our knowledge, the identification of IAA conjugates with Gly, Phe and Val from higher plants is reported here for the first time. PMID:19836533

  19. Affinity sensor using 3-aminophenylboronic acid for bacteria detection.

    PubMed

    Wannapob, Rodtichoti; Kanatharana, Proespichaya; Limbut, Warakorn; Numnuam, Apon; Asawatreratanakul, Punnee; Thammakhet, Chongdee; Thavarungkul, Panote

    2010-10-15

    Boronic acid that can reversibly bind to diols was used to detect bacteria through its affinity binding reaction with diol-groups on bacterial cell walls. 3-aminophenylboronic acid (3-APBA) was immobilized on a gold electrode via a self-assembled monolayer. The change in capacitance of the sensing surface caused by the binding between 3-APBA and bacteria in a flow system was detected by a potentiostatic step method. Under optimal conditions the linear range of 1.5×10(2)-1.5×10(6) CFU ml(-1) and the detection limit of 1.0×10(2) CFU ml(-1) was obtained. The sensing surface can be regenerated and reused up to 58 times. The method was used for the analysis of bacteria in several types of water, i.e., bottled, well, tap, reservoir and wastewater. Compared with the standard plate count method, the results were within one standard deviation of each other. The proposed method can save both time and cost of analysis. The electrode modified with 3-APBA would also be applicable to the detection of other cis-diol-containing analytes. The concept could be extended to other chemoselective ligands, offering less expensive and more robust affinity sensors for a wide range of compounds. PMID:20801635

  20. Conversion of unsaturated fatty acids by bacteria isolated from compost.

    PubMed

    Kaneshiro, T; Kuo, T M; Nakamura, L K

    1999-04-01

    A compost mixture amended with soybean oil was enriched in microorganisms that transformed unsaturated fatty acids (UFAs). When oleic acid or 10-ketostearic acid was the selective fatty acid, Sphingobacterium thalpophilum (NRRL B-23206, NRRL B-23208, NRRL B-23209, NRRL B-23210, NRRL B-23211, NRRL B-23212), Acinetobacter spp. (NRRL B-23207, NRRL B-23213), and Enterobacter cloacae (NRRL B-23264, NRRL B-23265, NRRL B-23266) represented isolates that produced either hydroxystearic acid, ketostearic acid, or incomplete decarboxylations. When ricinoleic (12-hydroxy-9-octadecenoic) acid was the selective UFA, Enterobacter cloacae (NRRL B-23257, NRRL B-23267) and Escherichia sp. (NRRL B-23259) produced 12-C and 14-C homologous compounds, and Pseudomonas aeruginosa (NRRL B-23256, NRRL B-23260) converted ricinoleate to a trihydroxyoctadecenoate product. Also, various Enterobacter, Pseudomonas, and Serratia spp. appeared to decarboxylate linoleate substrate incompletely. These saprophytic, compost bacteria were aerobic or facultative anaerobic Gram-negative and decomposed UFAs through decarboxylation, hydroxylation, and hydroperoxidation mechanisms. PMID:10069863

  1. Graft Loss Due to Percutaneous Sclerotherapy of a Lymphocele Using Acetic Acid After Renal Transplantation

    SciTech Connect

    Adani, Gian Luigi, E-mail: adanigl@hotmail.com; Baccarani, Umberto; Bresadola, Vittorio; Lorenzin, Dario [University School of Medicine, Department of Surgery and Transplantation (Italy); Montanaro, Domenico [AOSMM, Sauta Maria della Misericordia Hospital, Division of Nephrology (Italy); Risaliti, Andrea; Terrosu, Giovanni [University School of Medicine, Department of Surgery and Transplantation (Italy); Sponza, Massimo [AOSMM, Sauta Maria della Misericordia Hospital, Department of Radiology (Italy); Bresadola, Fabrizio [University School of Medicine, Department of Surgery and Transplantation (Italy)

    2005-12-15

    Development of lymphoceles after renal transplantation is a well-described complication that occurs in up to 40% of recipients. The gold standard approach for the treatment of symptomatic cases is not well defined yet. Management options include simple aspiration, marsupialization by a laparotomy or laparoscopy, and percutaneous sclerotherapy using different chemical agents. Those approaches can be associated, and they depend on type, dimension, and localization of the lymphocele. Percutaneous sclerotherapy is considered to be less invasive than the surgical approach; it can be used safely and effectively, with low morbidity, in huge, rapidly accumulating lymphoceles. Moreover, this approach is highly successful, and the complication rate is acceptable; the major drawback is a recurrence rate close to 20%. We herewith report a renal transplant case in which the patient developed a symptomatic lymphocele that was initially treated by ultrasound-guided percutaneous sclerotherapy with ethanol and thereafter using acetic acid for early recurrence. A few hours after injection of acetic acid in the lymphatic cavity, the patient started to complain of acute pain localized to the renal graft and fever. An ultrasound of the abdomen revealed thrombosis of the renal vein and artery. The patient was immediately taken to the operating room, where the diagnosis of vascular thrombosis was confirmed and the graft was urgently explanted. In conclusion, we strongly suggest avoiding the use of acetic acid as a slerosating agent for the percutaneous treatment of post-renal transplant lymphocele because, based on our experience, it could be complicated by vascular thrombosis of the kidney, ending in graft loss.

  2. Simultaneous determination of 2-naphthoxyacetic acid and indole-3-acetic acid by first derivation synchronous fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Xiangxiang; Wan, Yiqun

    2013-07-01

    A simple, rapid, sensitive and selective method for simultaneously determining 2-naphthoxyacetic acid (BNOA) and Indole-3-Acetic Acid (IAA) in mixtures has been developed using derivation synchronous fluorescence spectroscopy based on their synchronous fluorescence. The synchronous fluorescence spectra were obtained with ?? = 100 nm in a pH 8.5 NaH2PO4-NaOH buffer solution, and the detected wavelengths of quantitative analysis were set at 239 nm for BNOA and 293 nm for IAA respectively. The over lapped fluorescence spectra were well separated by the synchronous derivative method. Under optimized conditions, the limits of detection (LOD) were 0.003 ?g/mL for BNOA and 0.012 ?g/mL for IAA. This method is simple and expeditious, and it has been successfully applied to the determination of 2-naphthoxyacetic acid and indole-3-acetic acid in fruit juice samples with satisfactory results. The samples were only filtrated through a 0.45 ?m membrane filter, which was free from the tedious separation procedures. The obtaining recoveries were in the range of 83.88-87.43% for BNOA and 80.76-86.68% for IAA, and the relative standard deviations were all less than 5.0%. Statistical comparison of the results with high performance liquid chromatography Mass Spectrometry (HPLC-MS) method revealed good agreement and proved that there were no significant difference in the accuracy and precision between these two methods.

  3. Biosynthesis of Indole-3-Acetic Acid by the Pine Ectomycorrhizal Fungus Pisolithus tinctorius

    PubMed Central

    Frankenberger, W. T.; Poth, M.

    1987-01-01

    Previous work has indicated that anatomical and morphological changes (stunting and dichotomy) in roots of various conifers may be influenced by plant-growth-regulating substances secreted by mycorrhizae. Indole-3-acetic acid (IAA) has been tentatively identified as a major auxin produced by some selected ectomycorrhizae. We report the isolation and detection of IAA as a secondary metabolite from Pisolithus tinctorius by thin-layer chromatography, high-performance liquid chromatography (HPLC), enzyme-linked immunosorbent (monoclonal antibody) assay (ELISA), and unequivocal identification by gas chromatography-mass spectrometry (GC-MS). The thin-layer chromatography methods for auxin isolation described here are novel, with the use of heptane-acetone-glacial acetic acid as the migrating solvent and formaldehyde, H2SO4, and vanadate in detection. The acidic extract of the culture supernatant was methylated with ethereal diazomethane to detect IAA as methyl-3-IAA by HPLC, ELISA, and GC-MS. The quantitative amount of IAA detected ranged from 4 to 5 ?mol liter?1 by HPLC and ELISA. Another unidentified metabolite was detected by GC-MS with a typical indole nucleus (m/z = 130), indicating that it could be an intermediate in auxin metabolism. Plant response (Pseudotsuga menziesii, Douglas fir) was monitored upon inoculation of P. tinctorius and l-tryptophan. There was a consistent increase in plant height and stem diameter as a result of the two treatments, with statistical differences in dry weights of the shoots and roots. Images PMID:16347506

  4. Photodissociation of organic molecules in star-forming regions II: Acetic acid

    E-print Network

    S. Pilling; A. C. F. Santos; H. M. Boechat-Roberty

    2005-12-22

    Fragments from organic molecule dissociation (such as reactive ions and radicals) can form interstellar complex molecules like amino acids. The goal of this work is to experimentally study photoionization and photodissociation processes of acetic acid (CH$_3$COOH), a glycine (NH$_2$CH$_2$COOH) precursor molecule, by soft X-ray photons. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing soft X-ray photons from a toroidal grating monochromator (TGM) beamline (100 - 310 eV). Mass spectra were obtained using the photoelectron photoion coincidence (PEPICO) method. Kinetic energy distribution and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Absolute photoionization and photodissociation cross sections were also determined. We have found, among the channels leading to ionization, that only 4-6% of CH$_3$COOH survive the strong ionization field. CH$_3$CO$^+$, COOH$^+$ and CH$_3^+$ ions are the main fragments, and the presence of the former may indicate that the production-destruction process of acetic acid in hot molecular cores (HMCs) could decrease the H$_2$O abundance since the net result of this process converts H$_2$O into OH + H$^+$. The COOH$^+$ ion plays an important role in ion-molecule reactions to form large biomolecules like glycine.

  5. Benzimidazole as corrosion inhibitor for heat treated 6061 Al- SiCp composite in acetic acid

    NASA Astrophysics Data System (ADS)

    Chacko, Melby; Nayak, Jagannath

    2015-06-01

    6061 Al-SiCpcomposite was solutionizedat 350 °C for 30 minutes and water quenched. It was then underaged at 140 °C (T6 treatment). The aging behaviour of the composite was studied using Rockwell B hardness measurement. Corrosion behaviour of the underaged sample was studied in different concentrations of acetic acid and at different temperatures. Benzimidazole at different concentrations was used for the inhibition studies. Inhibition efficiency of benzimidazole was calculated for different experimental conditions. Thermodynamic parameters were found out which suggested benzimidazole is an efficient inhibitor and it adsorbed on to the surface of composite by mixed adsorption where chemisorption is predominant.

  6. Stability of cross-linked acetic acid lignin-containing polyurethane

    Microsoft Academic Search

    Haihua WangYonghao; Yonghao Ni; M. Sarwar Jahan; Zehua Liu; Thioni Schafer

    2011-01-01

    The thermo-oxidative stability of acetic acid lignin-containing polyurethane (LPU) that contains cross-linking agents, such\\u000a as 1-aminopropyltriethoxy-silane (APTS) and\\/or trimethylolpropane (TMP) was investigated based on the thermogravimetric analysis\\u000a (TGA) method, their kinetic parameters in the thermo-oxidative process was determined. FT-IR certified the occurrence of interaction\\u000a between lignin and polyurethane (PU). It was found that continuous membrane can be formed when lignin

  7. 1-[3-(4-Nitro­phen­yl)propano­yl]urea acetic acid monosolvate

    PubMed Central

    Merzouki, Soraya; Mouats, Chabane; Bendeif, El-Eulmi; Pillet, Sebastien; Bouchouit, Karim

    2011-01-01

    The title compound, C10H11N3O4·C2H4O2, was prepared by an electrochemical technique. In the crystal, acetic acid mol­ecules are involved in hydrogen bonding to two separate propano­ylurea mol­ecules, acting as a donor in an O—H?O inter­action and as an acceptor in two N—H?O inter­actions. The propano­ylurea mol­ecules inter­act with each other via N—H?O hydrogen bonds. C—H?O inter­actions also stabilize the crystal structure. PMID:22219927

  8. Rapid identification, by use of the LTQ Orbitrap hybrid FT mass spectrometer, of antifungal compounds produced by lactic acid bacteria.

    PubMed

    Brosnan, Brid; Coffey, Aidan; Arendt, Elke K; Furey, Ambrose

    2012-07-01

    Fungal contamination of food causes health and economic concerns. Several species of lactic acid bacteria (LAB) have antifungal activity which may inhibit food spoilage fungi. LAB have GRAS (generally recognised as safe) status, allowing them to be safely integrated into food systems as natural food preservatives. A method is described herein that enables rapid screening of LAB cultures for 25 known antifungal compounds associated with LAB. This is the first chromatographic method developed which enables the rapid identification of a wide range of antifungal compounds by a single method with a short analysis time (23 min). Chromatographic separation was achieved on a Phenomenex Gemini C18 100A column (150 mm?×?2.0 mm; 5 ?m) by use of a mobile-phase gradient prepared from (A) water containing acetic acid (0.1%) and (B) acetonitrile containing acetic acid (0.1%), at a flow rate of 0.3 µL min(-1). The gradient involved a progressive ramp from 10-95% acetonitrile over 13 min. The LC was coupled to a hybrid LTQ Orbitrap XL fourier-transform mass spectrometer (FTMS) operated in negative ionisation mode. High mass accuracy data (<3 ppm) obtained by use of high resolution (30,000 K) enabled unequivocal identification of the target compounds. This method allows comprehensive profiling and comparison of different LAB strains and is also capable of the identification of additional compounds produced by these bacteria. PMID:22526638

  9. Development of Mucosal Vaccines Based on Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Bermúdez-Humarán, Luis G.; Innocentin, Silvia; Lefèvre, Francois; Chatel, Jean-Marc; Langella, Philippe

    Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.

  10. Current taxonomy of phages infecting lactic acid bacteria

    PubMed Central

    Mahony, Jennifer; van Sinderen, Douwe

    2013-01-01

    Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp., and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species. PMID:24478767

  11. Techno-economic Analysis for the Thermochemical Conversion of Lignocellulosic Biomass to Ethanol via Acetic Acid Synthesis

    SciTech Connect

    Zhu, Yunhua; Jones, Susanne B.

    2009-04-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). This study performs a techno-economic analysis of the thermo chemical conversion of biomass to ethanol, through methanol and acetic acid, followed by hydrogenation of acetic acid to ethanol. The conversion of syngas to methanol and methanol to acetic acid are well-proven technologies with high conversions and yields. This study was undertaken to determine if this highly selective route to ethanol could provide an already established economically attractive route to ethanol. The feedstock was assumed to be wood chips at 2000 metric ton/day (dry basis). Two types of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. Process models were developed and a cost analysis was performed. The carbon monoxide used for acetic acid synthesis from methanol and the hydrogen used for hydrogenation were assumed to be purchased and not derived from the gasifier. Analysis results show that ethanol selling prices are estimated to be $2.79/gallon and $2.81/gallon for the indirectly-heated gasifier and the directly-heated gasifier systems, respectively (1stQ 2008$, 10% ROI). These costs are above the ethanol market price for during the same time period ($1.50 - $2.50/gal). The co-production of acetic acid greatly improves the process economics as shown in the figure below. Here, 20% of the acetic acid is diverted from ethanol production and assumed to be sold as a co-product at the prevailing market prices ($0.40 - $0.60/lb acetic acid), resulting in competitive ethanol production costs.

  12. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots.

    PubMed

    Kudoyarova, Guzel R; Melentiev, Alexander I; Martynenko, Elena V; Timergalina, Leila N; Arkhipova, Tatiana N; Shendel, Galina V; Kuz'mina, Ludmila Yu; Dodd, Ian C; Veselov, Stanislav Yu

    2014-10-01

    Phytohormone production is one mechanism by which rhizobacteria can stimulate plant growth, but it is not clear whether the bacteria gain from this mechanism. The hypothesis that microbial-derived cytokinin phytohormones stimulate root exudation of amino acids was tested. The rhizosphere of wheat plants was drenched with the synthetic cytokinin trans-zeatin or inoculated with Bacillus subtilis IB-22 (which produces zeatin type cytokinins) or B. subtilis IB-21 (which failed to accumulate cytokinins). Growing plants in a split root system allowed spatial separation of zeatin application or rhizobacterial inoculation to one compartment and analyses of amino acid release from roots (rhizodeposition) into the other compartment (without either microbial inoculation or treatment with exogenous hormone). Supplying B. subtilis IB-22 or zeatin to either the whole root system or half of the roots increased concentrations of amino acids in the soil solution although the magnitude of the increase was greater when whole roots were treated. There was some similarity in amino acid concentrations induced by either bacterial or zeatin treatment. Thus B. subtilis IB-22 increased amino acid rhizodeposition, likely due to its ability to produce cytokinins. Furthermore, B. subtilis strain IB-21, which failed to accumulate cytokinins in culture media, did not significantly affect amino acid concentrations in the wheat rhizosphere. The ability of rhizobacteria to produce cytokinins and thereby stimulate rhizodeposition may be important in enhancing rhizobacterial colonization of the rhizoplane. PMID:25201567

  13. Mechanism of formation of the carboxyl of acetate by acetogenic bacteria

    SciTech Connect

    Ragsdale, S.W.

    1991-01-01

    The final steps in acetyl-CoA synthesis are performed by carbon monoxide dehydrogenase (CODH), a nickel/iron-sulfur protein. Over the past three years, our goal has been to identify the steps leading to the formation of the carbonyl group of acetyl-CoA in Clostridium thermoaceticum. We have studied an EPR- detectible CODH-CO intermediate, called the Ni-Fe-C intermediate. CO, CO{sub 2}, and the carboxyl of pyruvate appear to enter the pathway via the Ni-Fe-C intermediate which serves as the precurser of the carbonyl of acetyl-CoA. Studies of the Ni-Fe-C species by Moessbauer, electron nuclear double resonance (ENDOR), and EPR spectroscopies and controlled potential coulometry, have suggested two possible structures for this center: a(4Fe-4S) center bonded to a nickel complex by a ligand bridge and a (Ni-3Fe-4S) center. The CO is proposed to be bound to either the Ni or Fe components of the complex. As described in detail below, we have studied each step shown and have made progress in elucidating the chemical structures and redox properties of the intermediates. It now seems likely that the Ni-Fe center which binds CO also is the site at which methyl-CODH and acetyl-CODH are formed. In a study of the structure and function of the other Fe-S centers in CODH, we have characterized a (4Fe-4S) cluster, a (Ni-Fe-C) center, and an iron-sulfur center with two oxidation reduction potentials which could be the precurser of the Ni-Fe-C species. In collaboration with Lars Ljungdahl (Univ. of Georgia), we have determined the complete amino acid sequence of CODH. We also have discovered that CODH can reduce nitrous oxide to nitrogen at significant rates. 25 refs., 8 figs.

  14. Electronic spectroscopy of tryptophan analogs in supersonic jets: 3Indole acetic acid, 3-indole propionic acid, tryptamine, and N-acetyl tryptophan ethyl ester

    Microsoft Academic Search

    Young D. Park; Thomas R. Rizzo; Linda A. Peteanu; Donald H. Levy

    1986-01-01

    The electronic spectroscopy of four different tryptophan analogs, 3-indole acetic acid, 3-indole propionic acid, tryptamine, and N-acetyltryptophan ethyl ester (NATE) has been studied in a supersonic molecular beam using laser-induced fluorescence and resonantly enhanced two-photon ionization. The electronic transition to the lowest excited singlet state occurs at 35 039, 34 965, 34 918, and 34 881±2 cm?1 for 3-indole acetic

  15. Temperature dependence of the dielectric permittivity of acetic acid, propionic acid and their methyl esters: a molecular dynamics simulation study.

    PubMed

    Riniker, Sereina; Horta, Bruno A C; Thijssen, Bram; Gupta, Saumya; van Gunsteren, Wilfred F; Hünenberger, Philippe H

    2012-04-10

    For most liquids, the static relative dielectric permittivity is a decreasing function of temperature, because enhanced thermal motion reduces the ability of the molecular dipoles to orient under the effect of an external electric field. Monocarboxylic fatty acids ranging from acetic to octanoic acid represent an exception to this general rule. Close to room temperature, their dielectric permittivity increases slightly with increasing temperature. Herein, the causes for this anomaly are investigated based on molecular dynamics simulations of acetic and propionic acids at different temperatures in the interval 283-363 K, using the GROMOS 53A6(OXY) force field. The corresponding methyl esters are also considered for comparison. The dielectric permittivity is calculated using either the box-dipole fluctuation (BDF) or the external electric field (EEF) methods. The normal and anomalous temperature dependences of the permittivity for the esters and acids, respectively, are reproduced. Furthermore, in the EEF approach, the response of the acids to an applied field of increasing strength is found to present two successive linear regimes before reaching saturation. The low-field permittivity ?, comparable to that obtained using the BDF approach, increases with increasing temperature. The higher-field permittivity ?' is slightly larger, and decreases with increasing temperature. Further analyses of the simulations in terms of radial distribution functions, hydrogen-bonded structures, and diffusion properties suggest that increasing the temperature or the applied field strength both promote a relative population shift from cyclic (mainly dimeric) to extended (chain-like) hydrogen-bonded structures. The lower effective dipole moment associated with the former structures compared to the latter ones provides an explanation for the peculiar dielectric properties of the two acids compared to their methyl esters. PMID:22383366

  16. Fermentative Conversion of Cellulose to Acetic Acid and Cellulolytic Enzyme Production by a Bacterial Mixed Culture Obtained from Sewage Sludge †

    PubMed Central

    Khan, A. W.; Wall, Duncan; van den Berg, L.

    1981-01-01

    A simple procedure that uses a cellulose-enriched culture started from sewage sludge was developed for producing cellulolytic enzymes and converting cellulose to acetic acid rather than CH4 and CO2. In this procedure, the culture which converts cellulose to CH4 and CO2 was mixed with a synthetic medium and cellulose and heated to 80°C for 15 min before incubation. The end products formed were acetic acid, propionic acid, CO2, and traces of ethanol and H2. Supernatants from 6- to 10-day-old cultures contained 16 to 36 mM acetic acid. Cellulolytic enzymes in the supernatant were stable at 2°C under aerobic conditions for up to 4 weeks and had the ability to hydrolyze carboxymethyl cellulose, a microcystalline cellulose, cellobiose, xylan, and filter paper to reducing sugars. PMID:16345772

  17. Intravenous Acetate Elicits a Greater Free Fatty Acid Rebound in Normal than Hyperinsulinaemic Humans

    PubMed Central

    Fernandes, Judlyn; Vogt, Janet; Wolever, Thomas MS

    2014-01-01

    Background/Objectives Colonic fermentation of dietary fiber may improve insulin sensitivity via the metabolic effects of short chain fatty acids (SCFA) in reducing free fatty acids (FFA). The main objectives of this study were to compare peripheral uptake of acetate (AC) in participants with normal (< 40pmol/L, NI) and high (? 40pmol/L, HI) plasma-insulin and the ability of AC to reduce FFA in both groups. Subject/Methods Overnight fasted NI (n = 9) and HI (n = 9) participants were given an intravenous (IV) infusion of 140 mmol/L sodium acetate at 3 different rates over 90 minutes. The total amount of AC infused was 51.85 mmols. Results Acetate clearance in NI participants was not significantly different than that in HI participants (2.11 ± 0.23 vs 2.09 ± 0.24 ml/min). FFA fell in both groups, but rebounded to a greater extent in NI than HI participants (time × group interaction, P = 0.001). Significant correlations between insulin resistance (IR) indices (HOMA-IR, Matsuda and Insulinogenic Index) vs FFA rebound during IV AC infusion were also observed. Conclusions These findings suggest that AC uptake is similar in both groups. Participants with lower plasma insulin and lower IR indices had a greater FFA rebound. These results support the hypothesis that increasing AC concentrations in the systemic circulation may reduce lipolysis and plasma FFA concentrations and thus improve insulin sensitivity. More in-depth studies are needed to look at the effects of SCFA on FFA metabolism in insulin resistant participants. PMID:22828730

  18. Comparison of a gene probe with classical methods for detecting 2,4-dichlorophenoxyacetic acid (2,4-D)-biodegrading bacteria in natural waters

    Microsoft Academic Search

    Penny S. Amy; Michael V. Staudaher; Ramon J. Seidler

    1990-01-01

    Colony hybridizations with a gene probe for enumeration of 2,4-dichlorophenoxy-acetic acid (2,4-D)-degrading bacteria were compared with classical enrichment and radiolabel most-probable-number (MPN) assay methods. Two natural water samples (rivers) and raw sewage were tested by each method. UV scans of enrichment cultures revealed 2,4-D degradation with raw sewage occurred in 4–11 days, 4–>22 days with Mary's River water, and 5–>22

  19. Wall Teichoic Acids of Gram-Positive Bacteria

    PubMed Central

    Brown, Stephanie; Santa Maria, John P.; Walker, Suzanne

    2013-01-01

    The peptidoglycan layers of many gram-positive bacteria are densely functionalized with anionic glycopolymers called wall teichoic acids (WTAs). These polymers play crucial roles in cell shape determination, regulation of cell division, and other fundamental aspects of gram-positive bacterial physiology. Additionally, WTAs are important in pathogenesis and play key roles in antibiotic resistance. We provide an overview of WTA structure and biosynthesis, review recent studies on the biological roles of these polymers, and highlight remaining questions. We also discuss prospects for exploiting WTA biosynthesis as a target for new therapies to overcome resistant infections. PMID:24024634

  20. Recombinant lactic acid bacteria as mucosal biotherapeutic agents.

    PubMed

    Daniel, Catherine; Roussel, Yvonne; Kleerebezem, Michiel; Pot, Bruno

    2011-10-01

    The safety status of lactic acid bacteria (LAB) and their capacity to survive the passage through the gastrointestinal tract (GI tract) have rendered them excellent candidates for the production of therapeutic proteins and their delivery in situ to the GI tract. During the past two decades, major health benefits of mucosally administered recombinant LAB have been successfully demonstrated, predominantly using animal models. However, the field has recently moved into the era of human clinical trials. In this review, we provide a timely update on the recent important advances made in this field, and outline the potential of recombinant LAB as therapeutic tools for their safe and efficient use in human health. PMID:21665301

  1. Production, recovery and purification of bacteriocins from lactic acid bacteria

    Microsoft Academic Search

    E. Parente; A. Ricciardi

    1999-01-01

    Bacteriocins produced by lactic acid bacteria are a heterogeneous group of peptide inhibitors which include lantibiotics\\u000a (class I, e.g. nisin), small heat-stable peptides (class II, e.g. pediocin AcH\\/PA1) and large heat-labile proteins (class\\u000a III, e.g. helveticin J). Many bacteriocins belonging to the first two groups can be successfully used to inhibit undesirable\\u000a microorganisms in foods, but only nisin is produced

  2. Acetal-linked branched poly(dimethyl-aminoethyl methacrylate) as an acid cleavable gene vector with reduced cytotoxicity.

    PubMed

    Cao, H L; Dong, Y X; Aied, A; Zhao, T Y; Chen, X; Wang, W X; Pandit, A

    2014-12-21

    An acid labile branched PDMAEMA/acetal copolymer with amino group was synthesized by the DE-ATRP and followed by Michael addition. The degradation of the polymer was strongly pH-dependent. High nucleic acid transfection efficiency with low cytotoxicity was observed compared to its non-degradable copolymer counterpart. PMID:25358033

  3. Azithromycin and erythromycin ameliorate the extent of colonic damage induced by acetic acid in rats

    SciTech Connect

    Mahgoub, Afaf [Department of Pharmacology, College of Medicine, King Saud University, Riyadh 11461 (Saudi Arabia)]. E-mail: afaf_mahgoub@yahoo.com; El-Medany, Azza [Department of Pharmacology, College of Medicine, King Saud University, Riyadh 11461 (Saudi Arabia); Mustafa, Ali [Department of Pharmacology, College of Medicine, King Saud University, Riyadh 11461 (Saudi Arabia); Arafah, Maha [Department of Pathology, College of Medicine, King Saud University, Riyadh 11461 (Saudi Arabia); Moursi, Mahmoud [Central Laboratories, Ministry of Health, Riyadh (Saudi Arabia)

    2005-05-15

    Ulcerative colitis is a common inflammatory bowel disease (IBD) of unknown etiology. Recent studies have revealed the role of some microorganisms in the initiation and perpetuation of IBD. The role of antibiotics in the possible modulation of colon inflammation is still uncertain. In this study, we evaluated the effects of two macrolides, namely azithromycin and erythromycin, at different doses on the extent and severity of ulcerative colitis caused by intracolonic administration of 3% acetic acid in rats. The lesions and the inflammatory response were assessed by histology and measurement of myeloperoxidase (MPO) activity, nitric oxide synthetase (NOS) and tumor necrosis factor alpha (TNF{alpha}) in colonic tissues. Inflammation following acetic acid instillation was characterized by oedema, diffuse inflammatory cell infiltration and necrosis. Increase in MPO, NOS and TNF{alpha} was detected in the colonic tissues. Administration of either azithromycin or erythromycin at different dosage (10, 20 and 40 mg/kg orally, daily for 5 consecutive days) significantly (P < 0.05) reduced the colonic damage, MPO and NOS activities as well as TNF{alpha} level. This reduction was highly significant with azithromycin when given at a dose of 40 mg/kg. It is concluded that azithromycin and erythromycin may have a beneficial therapeutic role in ulcerative colitis.

  4. Euphorbia escula L. Root and Root Bud Indole-3-Acetic Acid Levels at Three Phenologic Stages.

    PubMed

    Nissen, S J; Foley, M E

    1987-06-01

    Endogenous indoleacetic acid (IAA) levels of Euphorbia esula L. primary root and root buds were examined at three phenologic stages. High performance liquid chromatography coupled with fluorescence detection and gas chromatography-mass spectrometry, using (13)C(6)[benzene ring]-indole-3-acetic acid as internal standard, were used to measure root bud free and bound IAA levels in vegetative, full flower, and post-flower plants. Highest levels of free IAA (103 nanograms per gram fresh weight) were found in root buds during full flower. Esterified and amide IAA increased significantly in root buds of full flower and post-flower plants, but were not detectable in root buds of vegetative plants. Primary rootfree IAA was highest in vegetative and full flower plants (34.5 nanograms per gram fresh weight) and decreased by 50% in post-flower plants. PMID:16665432

  5. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process.

    PubMed

    Snelders, Jeroen; Dornez, Emmie; Benjelloun-Mlayah, Bouchra; Huijgen, Wouter J J; de Wild, Paul J; Gosselink, Richard J A; Gerritsma, Jort; Courtin, Christophe M

    2014-03-01

    To assess the potential of acetic and formic acid organosolv fractionation of wheat straw as basis of an integral biorefinery concept, detailed knowledge on yield, composition and purity of the obtained streams is needed. Therefore, the process was performed, all fractions extensively characterized and the mass balance studied. Cellulose pulp yield was 48% of straw dry matter, while it was 21% and 27% for the lignin and hemicellulose-rich fractions. Composition analysis showed that 67% of wheat straw xylan and 96% of lignin were solubilized during the process, resulting in cellulose pulp of 63% purity, containing 93% of wheat straw cellulose. The isolated lignin fraction contained 84% of initial lignin and had a purity of 78%. A good part of wheat straw xylan (58%) ended up in the hemicellulose-rich fraction, half of it as monomeric xylose, together with proteins (44%), minerals (69%) and noticeable amounts of acids used during processing. PMID:24508905

  6. Decarboxylation of Substituted Cinnamic Acids by Lactic Acid Bacteria Isolated during Malt Whisky Fermentation

    PubMed Central

    van Beek, Sylvie; Priest, Fergus G.

    2000-01-01

    Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation. PMID:11097909

  7. Inhibitory effect of theophylline, theophylline-7-acetic acid, ambroxol and ambroxol-theophylline-7-acetate on rat lung cAMP phosphodiesterase isoenzymes.

    PubMed

    Ferretti, C; Coppi, G; Blengio, M; Genazzani, E

    1992-01-01

    It is assumed that theophylline (THEO) and its xanthinic derivatives inhibit lung phosphodiesterase (PDE) and block adenosine receptors in the induction of bronchodilatation. Since the theophyllinic compound ambroxol-theophylline-7-acetic acid (ATA) has been shown in vivo to be a sound bronchodilator, this paper compares the action of ambroxol-theophylline-7-acetate (ATA), its two components, theophylline-7-acetic acid (TAA) and ambroxol (AMB), and theophylline (THEO) on the hydrolytic activity of three rat-lung cAMP PDE (types I, III and IV) and on striatal adenosine receptors. THEO inhibited all three isoenzymes with equal intensity, whereas ATA was as powerful but inhibited types III and IV only, on which AMB and TAA also showed lower effects. Lastly, unlike THEO, ATA and its two components were unable to antagonize adenosine receptors. Taken as a whole, these results suggest that the bronchodilating activity of ATA is the result of specific inhibition of particular forms of PDE and is thus more specific than that of THEO alone. PMID:1328102

  8. Production of probiotic cabbage juice by lactic acid bacteria.

    PubMed

    Yoon, Kyung Young; Woodams, Edward E; Hang, Yong D

    2006-08-01

    Research was undertaken to determine the suitability of cabbage as a raw material for production of probiotic cabbage juice by lactic acid bacteria (Lactobacillus plantarum C3, Lactobacillus casei A4, and Lactobacillus delbrueckii D7). Cabbage juice was inoculated with a 24-h-old lactic culture and incubated at 30 degrees C. Changes in pH, acidity, sugar content, and viable cell counts during fermentation under controlled conditions were monitored. L. casei, L. delbrueckii, and L. plantarum grew well on cabbage juice and reached nearly 10x10(8) CFU/mL after 48 h of fermentation at 30 degrees C. L. casei, however, produced a smaller amount of titratable acidity expressed as lactic acid than L. delbrueckii or L. plantarum. After 4 weeks of cold storage at 4 degrees C, the viable cell counts of L. plantarum and L. delbrueckii were still 4.1x10(7) and 4.5x10(5) mL(-1), respectively. L. casei did not survive the low pH and high acidity conditions in fermented cabbage juice and lost cell viability completely after 2 weeks of cold storage at 4 degrees C. Fermented cabbage juice could serve as a healthy beverage for vegetarians and lactose-allergic consumers. PMID:16125381

  9. Spray-drying of bacteriocin-producing lactic acid bacteria.

    PubMed

    Mauriello, G; Aponte, M; Andolfi, R; Moschetti, G; Villani, F

    1999-07-01

    Cell survival, cellular damage, and antagonistic activity were investigated after spray-drying of four bacteriocin-producing strains of lactic acid bacteria: Lactococcus lactis subsp. lactis 140, isolated from natural whey culture and producing a narrow-inhibitory spectrum bacteriocin); L. lactis subsp. lactis G35, isolated from pizza dough and producing nisin; Lactobacillus curvatus 32Y and Lactobacillus sp. 8Z, isolated from dry sausages. Trials were performed with bacteria suspended in skimmed milk or directly grown in whey. Three air temperatures at the inlet of the drier (160, 180, and 200 degrees C) and three flow rates (10, 13, and 17 ml/min) were assayed. Cell viability and bacteriocin activity of the dried materials were determined immediately after the process and after 5, 15, 30, and 60 days of storage at 4 degrees C. There was no significant difference between the two feeding suspensions in cell survival, always decreasing with the increase of inlet-air temperature. No loss of bacteriocin activity was detected in reconstituted powders, nor was any loss of ability to produce bacteriocin found after drying. Investigations of sensitivity to NaCl revealed only temporary damage to dried bacteria. During storage for 2 months at 4 degrees C, all samples, but mainly the lactococcal strains, displayed a gradual decrease in cell survival. Bacteriocin activity remained at the same level, allowing powders to be considered as effective biopreservatives. PMID:10419271

  10. Crystal structure of an indole-3-acetic acid amido synthetase from grapevine involved in auxin homeostasis.

    PubMed

    Peat, Thomas S; Böttcher, Christine; Newman, Janet; Lucent, Del; Cowieson, Nathan; Davies, Christopher

    2012-11-01

    Auxins are important for plant growth and development, including the control of fruit ripening. Conjugation to amino acids by indole-3-acetic acid (IAA)-amido synthetases is an important part of auxin homeostasis. The structure of the auxin-conjugating Gretchen Hagen3-1 (GH3-1) enzyme from grapevine (Vitis vinifera), in complex with an inhibitor (adenosine-5'-[2-(1H-indol-3-yl)ethyl]phosphate), is presented. Comparison with a previously published benzoate-conjugating enzyme from Arabidopsis thaliana indicates that grapevine GH3-1 has a highly similar domain structure and also undergoes a large conformational change during catalysis. Mutational analyses and structural comparisons with other proteins have identified residues likely to be involved in acyl group, amino acid, and ATP substrate binding. Vv GH3-1 is a monomer in solution and requires magnesium ions solely for the adenlyation reaction. Modeling of IAA and two synthetic auxins, benzothiazole-2-oxyacetic acid (BTOA) and 1-naphthaleneacetic acid (NAA), into the active site indicates that NAA and BTOA are likely to be poor substrates for this enzyme, confirming previous enzyme kinetic studies. This suggests a reason for the increased effectiveness of NAA and BTOA as auxins in planta and provides a tool for designing new and effective auxins. PMID:23136372

  11. Determination of rate constants for the reactions of H, OH and eaq with indole-3-acetic acid and other plant hormones

    Microsoft Academic Search

    R. S. Shetiya; K. N. Rao; J. Shankar

    1972-01-01

    In the radiolysis of aqueous solutions of indole, indole-3-acetic acid, indole-3-propionic acid, 1-naphthylacetic acid and phenylacetic acid, the absolute rate constants of their reactions with H and OH have been determined by competition kinetics using 2-propanol as the competitor. Hydrated electron reaction rate constants have been determined for indoie, indole-3-acetic acid and indole-3-propionic acid at pH = 11 using the

  12. Acetic acid recovery from a hybrid biological-hydrothermal treatment process of sewage sludge - a pilot plant study.

    PubMed

    Andrews, J; Dare, P; Estcourt, G; Gapes, D; Lei, R; McDonald, B; Wijaya, N

    2015-03-01

    A two-stage process consisting of anaerobic fermentation followed by sub-critical wet oxidation was used to generate acetic acid from sewage sludge at pilot scale. Volatile fatty acids, dominated by propionic acid, were produced over 4-6 days in the 2,000 L fermentation reactor, which also achieved 31% solids reduction. Approximately 96% of the carbon was retained in solution over the fermentation stage. Using a 200 L wet oxidation reactor operating in batch mode, the second stage achieved 98% volatile suspended solids (VSS) destruction and 67% total chemical oxygen demand (tCOD) destruction. Acetic acid produced in this stage was recalcitrant to further degradation and was retained in solution. The gross yield from VSS was 16% for acetic acid and 21% for volatile fatty acids across the process, higher than reported yields for wet oxidation alone. The pilot plant results showed that 72% of the incoming phosphorus was retained in the solids, 94% of the nitrogen became concentrated in solution and 41% of the carbon was converted to a soluble state, in a more degradable form. Acetic acid produced from the process has the potential to be used to offset ethanol requirements in biological nutrient removal plants. PMID:25768220

  13. First European report of social wasps trapped in response to acetic acid, isobutanol, 2-methyl-2-propanol and heptyl butyrate in tests conducted in Hungary

    Microsoft Academic Search

    Peter J. LANDOLT; Miklos TÓTH; Júlia JÓSVAI

    Five species of social wasps were captured in trapping tests in Budapest (Hungary) that evaluated the attractiveness of acetic acid, isobutanol, 2-methyl-2-propanol, and heptyl butyrate. Both Vespula vulgaris (L.) and Vespula germanica (F.), were captured in traps baited with isobutanol, the combination of acetic acid and isobutanol, and the combination of acetic acid and 2-methyl-2- propanol. V. germanica did not

  14. Comparative Studies of Class IIa Bacteriocins of Lactic Acid Bacteria

    PubMed Central

    Eijsink, Vincent G. H.; Skeie, Marianne; Middelhoven, P. Hans; Brurberg, May Bente; Nes, Ingolf F.

    1998-01-01

    Four class IIa bacteriocins (pediocin PA-1, enterocin A, sakacin P, and curvacin A) were purified to homogeneity and tested for activity toward a variety of indicator strains. Pediocin PA-1 and enterocin A inhibited more strains and had generally lower MICs than sakacin P and curvacin A. The antagonistic activity of pediocin-PA1 and enterocin A was much more sensitive to reduction of disulfide bonds than the antagonistic activity of sakacin P and curvacin A, suggesting that an extra disulfide bond that is present in the former two may contribute to their high levels of activity. The food pathogen Listeria monocytogenes was among the most sensitive indicator strains for all four bacteriocins. Enterocin A was most effective in inhibiting Listeria, having MICs in the range of 0.1 to 1 ng/ml. Sakacin P had the interesting property of being very active toward Listeria but not having concomitant high levels of activity toward lactic acid bacteria. Strains producing class IIa bacteriocins displayed various degrees of resistance toward noncognate class IIa bacteriocins; for the sakacin P producer, it was shown that this resistance is correlated with the expression of immunity genes. It is hypothesized that variation in the presence and/or expression of such immunity genes accounts in part for the remarkably large variation in bacteriocin sensitivity displayed by lactic acid bacteria. PMID:9726871

  15. Diversity of amino acid converting enzymes in wild lactic acid bacteria

    Microsoft Academic Search

    P. Fernández de Palencia; M. de la Plaza; F. Amárita; T. Requena; C. Peláez

    2006-01-01

    A total of 156 lactic acid bacteria isolates belonging to the genera Lactococcus, Lactobacillus and Leuconostoc were analysed for the amino acid converting enzymes aminotransferases, glutamate dehydrogenase, and ?-ketoisovalerate decarboxylase. All isolates showed aminotransferase activity towards phenylalanine (substrate for the aromatic aminotransferase AraT) and isoleucine (substrate for the branched-chain aminotransferase BcaT). Although there was a high variability inter- and intra-species,

  16. Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol.

    PubMed

    Kenealy, W R; Cao, Y; Weimer, P J

    1995-12-01

    Ruminal cellulolytic bacteria (Fibrobacter succinogenes S85 or Ruminococcus flavefaciens FD-1) were combined with the non-ruminal bacterium Clostridium kluyveri and grown together on cellulose and ethanol. Succinate and acetate produced by the cellulolytic organisms were converted to butyrate and caproate only when the culture medium was supplemented with ethanol. Ethanol (244 mM) and butyrate (30 mM at pH 6.8) did not inhibit cellulose digestion or product formation by S85 or FD-1; however caproate (30 mM at pH 6.8) was moderately inhibitory to FD-1. Succinate consumption and caproate production were sensitive to culture pH, with more caproic acid being produced when the culture was controlled at a pH near neutrality. In a representative experiment under conditions of controlled pH (at 6.8) 6.0 g cellulose l-1 and 4.4 g ethanol l-1 were converted to 2.6 g butyrate l-1 and 4.6 g caproate l-1. The results suggest that bacteria that efficiently produce low levels of ethanol and acetate or succinate from cellulose should be useful in cocultures for the production of caproic acid, a potentially useful industrial chemical and bio-fuel precursor. PMID:8597554

  17. Core Fluxome and Metafluxome of Lactic Acid Bacteria under Simulated Cocoa Pulp Fermentation Conditions

    PubMed Central

    Adler, Philipp; Bolten, Christoph Josef; Dohnt, Katrin; Hansen, Carl Erik

    2013-01-01

    In the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive 13C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel 13C studies with [13C6]glucose, [1,2-13C2]glucose, and [13C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains of L. fermentum and L. plantarum revealed major differences in their fluxes. The L. fermentum strains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas only L. fermentum NCC 575 used fructose to form mannitol. In contrast, L. plantarum strains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of different L. fermentum and L. plantarum strains indicated a dominant (96%) contribution of L. fermentum NCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures. L. fermentum NCC 575 might be one candidate due to its superior performance in flux activity. PMID:23851099

  18. Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria

    Microsoft Academic Search

    Mengjin Liu; Arjen Nauta; Christof Francke; Roland J. Siezen

    2008-01-01

    Lactic acid bacteria (LAB) have been widely used as starter or nonstarter cultures in the dairy industry for over a thousand years. They play an essential role in flavor formation during the fermentation of dairy products. Several metabolic routes can lead to the formation of flavor compounds when LAB are growing in milk. One of the main precursors for flavor

  19. Hepatoprotective effect of lactic acid bacteria, inhibitors of ?-glucuronidase production against intestinal microflora

    Microsoft Academic Search

    Song-Yi Han; Chul-Sung Huh; Young-Tae Ahn; Kwang-Sei Lim; Young-Jin Baek; Dong-Hyun Kim

    2005-01-01

    The hepatoprotective activity of lactic acid bacteria (Lactobacillus brevis HY7401,Lactobacillus acidophilus CSG andBifidobacterium longum HY8001), which inhibited ?-glucuronidase productivity of intestinal microflora, ont-BHP- or CCI4-induced hepatotoxicity of mice were evaluated. These oral administration of lactic acid bacteria lowered ?-glucuronidase\\u000a production of intestinal microflora as well asEscherichia coli HGU-3. When lactic acid bacteria at a dose of 0.5 or 2 g

  20. Association and liquid structure of pyridine-acetic acid mixtures determined from neutron scattering using a 'free proton' EPSR simulation model.

    PubMed

    McCune, Jade A; Turner, Adam H; Coleman, Fergal; White, Caithlin M; Callear, Samantha K; Youngs, Tristan G A; Swad?ba-Kwa?ny, Ma?gorzata; Holbrey, John D

    2015-03-14

    The liquid structure of pyridine-acetic acid mixtures have been investigated using neutron scattering at various mole fractions of acetic acid, ?HOAc = 0.33, 0.50, and 0.67 and compared to the structures of neat pyridine and acetic acid. Data has been modelled using empirical potential structure refinement (EPSR) with a 'free proton' reference model, which has no prejudicial weighting towards either the existence of molecular or ionised species. Analysis of the neutron scattering results shows the existence of hydrogen-bonded acetic acid chains with pyridine inclusions, rather than the formation of an ionic liquid by proton transfer. PMID:25670622

  1. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    NASA Technical Reports Server (NTRS)

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  2. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, J.L.

    1998-09-15

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 5 figs.

  3. Identification of abscisic acid, indole-3-acetic acid, jasmonic acid, indole-3-acetonitrile, methyl jasmonate and gibberellins in developing, dormant and stratified seeds of ash ( Fraxinus excelsior )

    Microsoft Academic Search

    Patrick S. Blake; June M. Taylor; William E. Finch-Savage

    2002-01-01

    Abscisic acid (ABA), indole-3-acetic acid (IAA), indole-3-acetonitrile(IAN), jasmonic acid (JA), methyl jasmonate (MeJA) and gibberellins (GAs);GA1, GA3, GA8, GA9,GA12,GA15, GA17, GA19, GA20,GA24, GA29, GA44, GA51 andGA53, were identified in seeds of ash (Fraxinusexcelsior L.) by combined gas chromatography–massspectrometry.The presence of ABA, IAA, IAN, JA and MeJA was confirmed in developing, dormantand stratified seeds by comparison of Kovat's retention indices (KRI)

  4. 27 CFR 21.107 - Ethyl acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...acetate. (a) 85 percent ester: (1) Acidity (as acetic acid). Not more than 0.015 percent by weight. (2...C. (b) 100 percent ester: (1) Acidity (as acetic acid). Not more than 0.010 percent by weight....

  5. 27 CFR 21.107 - Ethyl acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...acetate. (a) 85 percent ester: (1) Acidity (as acetic acid). Not more than 0.015 percent by weight. (2...C. (b) 100 percent ester: (1) Acidity (as acetic acid). Not more than 0.010 percent by weight....

  6. Methanogenesis from acetate: a nonmethanogenic bacterium from an anaerobic acetate enrichment.

    PubMed

    Ward, D M; Mah, R A; Kaplan, I R

    1978-06-01

    A methanogenic acetate enrichment was initiated by inoculation of an acetate-mineral salts medium with domestic anaerobic digestor sludge and maintained by weekly transfer for 2 years. The enrichment culture contained a Methanosarcina and several obligately anaerobic nonmethanogenic bacteria. These latter organisms formed varying degrees of association with the Methanosarcina, ranging from the nutritionally fastidious gram-negative rod called the satellite bacterium to the nutritionally nonfastidious Eubacterium limosum. The satellite bacterium had growth requirements for amino acids, a peptide, a purine base, vitamin B12, and other B vitamins. Glucose, mannitol, starch, pyruvate, cysteine, lysine, leucine, isoleucine, arginine, and asparagine stimulated growth and hydrogen production. Acetate was neither incorporated nor metabolized by the satellite organism. Since acetate was the sole organic carbon source in the enrichment culture, organism(s) which metabolize acetate (such as the Methanosarcina) must produce substrates and growth factors for associated organisms which do not metabolize acetate. PMID:677881

  7. Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Cronin, J. R.; Blair, N. E.; Desmarais, D. J.; Chang, S.

    1991-01-01

    Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources.

  8. Study of polydimethylsiloxane/aromatic polyamide laminated membranes for separation of acetic acid/water mixtures by pervaporation process

    SciTech Connect

    Deng, S.; Sourirajan, S.; Matsuura, T. (Univ. of Ottawa (Canada))

    1994-06-01

    Separation of acetic acid/water mixtures by pervaporation was attempted over a range of compositions using polydimethylsiloxane (PDMS), aromatic polyamide (PA), and laminated polydimethylsiloxane-aromatic polyamide membranes. PDMS membranes are hydrophobic and acetic acid selective, whereas PA membranes are hydrophilic and water selective. When PDMS and PA membranes were laminated, with PDMS on the top side and in contact with the feed, water selectivity of the bottom PA membrane was intensified. On the other hand, when the PA membrane was on the top side and in contact with the feed, the selectivity was lowered. 10 refs., 4 figs.

  9. Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash

    Microsoft Academic Search

    Tara Graves; Neelakantam V. Narendranath; Karl Dawson; Ronan Power

    2006-01-01

    The effects of lactic and acetic acids on ethanol production by Saccharomyces cerevisiae in corn mash, as influenced by pH and dissolved solids concentration, were examined. The lactic and acetic acid concentrations utilized were 0, 0.5, 1.0, 2.0, 3.0 and 4.0% w\\/v, and 0, 0.1, 0.2, 0.4, 0.8 and 1.6% w\\/v, respectively. Corn mashes (20, 25 and 30% dry solids)

  10. Copper nitrate\\/acetic acid as an efficient synergistic catalytic system for the chemoselective tetrahydropyranylation of alcohols and phenols

    Microsoft Academic Search

    Min Wang; Zhi-Guo Song; Hong Gong; Heng Jiang

    2009-01-01

    \\u000a Abstract  Tetrahydropyranylation of alcohols and phenols was accomplished successfully using copper nitrate and acetic acid as a synergistic\\u000a catalyst at room temperature under solvent-free condition. Compared with other synergistic catalytic systems, copper nitrate\\/acetic\\u000a acid proved to be the most efficient. Both alcohols (primary, secondary, tertiary, benzylic, cyclic, allyl, cinnamyl, and\\u000a furyl) and phenols reacted smoothly in high yields.\\u000a \\u000a \\u000a \\u000a Graphical abstract  

  11. Characterization of lactic acid bacteria and other gut bacteria in pigs by a macroarraying method.

    PubMed

    Thanantong, Narut; Edwards, Sandra; Sparagano, Olivier A E

    2006-10-01

    Lactic acid bacteria (LAB) consist of many genera, Gram-positive, and nonspore-forming micro-organisms; some members being used as probiotics while some others have negative effects on pig health. Bacterial species in the gastrointestinal tract can produce antibacterial substances, reduce serum cholesterol in their host, or can be responsible for growth reduction, diarrhea, and intestinal epithelial damage. It is therefore important for the pig industry to evaluate the impact of food and farm management on the presence of "good" or "bad" bacteria and the risk for consumers. This articles focuses on the molecular identification of gut microflora species following different diets given to pigs in UK and correlating the data on growth, health, and welfare. First of all, pig feces were individually collected from sows before and after farrowing and also from piglets before and after weaning over several months. Bacteria colonies were grown on MRS agar plates from feces and DNA was extracted (QIAamp DNA stool kit) and amplified using 16S rDNA (27f and 519r) primers. DNA sequencing and sequence alignment allowed us to identify species-specific zones, which were used as probes in a macroarray system also known as reverse line blot hybridization. Some probes were found to be species specific for the following species: Lactobacillus acidophilus, L. animalis, L. gallinarum, L. kitasanotis, L salivarius, Streptococcus alactolyticus, S. hyointestinalis, and Sarcina ventriculi. Actual studies are now focusing on the impact of diets of the microflora in different gut parts and at different stages of the animal's life. PMID:17135526

  12. Effect of different concentrations of acetic, citric, and propionic acid dipping solutions on bacterial contamination of raw chicken skin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial contamination of raw, processed poultry may include spoilage bacteria and foodborne pathogens. We evaluated different combinations of organic acid (OA) wash solutions for their ability to reduce bacterial contamination of raw chicken skin and to inhibit growth of spoilage bacteria and path...

  13. Amino acid profiles of lactic acid bacteria, isolated from kefir grains and kefir starter made from them

    Microsoft Academic Search

    Emilina Simova; Zhelyasko Simov; Dora Beshkova; Ginka Frengova; Zhechko Dimitrov; Zdravko Spasov

    2006-01-01

    The characteristics of cell growth, lactic acid production, amino acid release and consumption by single-strain cultures of lactic acid bacteria (isolated from kefir grains), and by a multiple-strain kefir starter prepared from them, were studied. The change in the levels of free amino acids was followed throughout the kefir process: single-strain kefir bacteria and the kefir starter (Lactococcus lactis C15–1%+Lactobacillus

  14. Vapor phase ketonization of acetic acid on ceria based metal oxides

    SciTech Connect

    Liu, Changjun; Karim, Ayman M.; Lebarbier, Vanessa MC; Mei, Donghai; Wang, Yong

    2013-12-01

    The activities of CeO2, Mn2O3-CeO2 and ZrO2-CeO2 were measured for acetic acid ketonization under reaction conditions relevant to pyrolysis vapor upgrading. We show that the catalyst ranking changed depending on the reaction conditions. Mn2O3-CeO2 was the most active catalyst at 350 oC, while ZrO2 - CeO2 was the most active catalyst at 450 oC. Under high CO2 and steam concentration in the reactants, Mn2O3-CeO2 was the most active catalyst at 350 and 450 °C. The binding energies of steam and CO2 with the active phase were calculated to provide the insight into the tolerance of Mn2O3-CeO2 to steam and CO2.

  15. [Aminomethyl derivatives of (benzisothiazolin-3-one-2-yl)acetic acid amides and 2-(1,2-benzisothiazoline-3-one-2-yl)propionic acid amides].

    PubMed

    S?awik, T

    1991-11-01

    In the search for pharmacological active new derivatives of 1,2-benzisothiazolin-3-on amides of (3-oxo-1,2-benzisothiazolin-2-yl)acetic acid and 3-(3-oxo-1,2-benzisothiazolin-2-yl)propionic acid were obtained. In the reaction of these amides with formaldehyde and various second aryl amines the title compounds are formed. Morpholinmethylamide of (3-oxo-1,2-benzisothiazolin-2-yl)acetic acid showed activity against Trichomonas vaginalis. In the reaction of ethyl esters of (3-oxo-1,2-benzisothiazolin-2-yl) acetic- and -propionic acids with hydrazine hydrate products of ring-opening of isothiazole-2,2'-dithio-bis [N- (ethoxycarbonylmethyl)benzamide] and 2,2'-dithio-bis[N-(ethoxycarbonylethyl)benzamide are formed. PMID:1811228

  16. THE USE OF ACETIC ACID IONTOPHORESIS IN THE MANAGEMENT OF A SOFT TISSUE INJURY

    PubMed Central

    Ebaugh, David

    2010-01-01

    Background: Contusions are common injuries that occur in athletics. If repeated, complications like myositis ossificans can occur. This case describes the examination and treatment of an athlete with an acute soft tissue injury. Objective: To describe the treatment approach used with a hockey player who sustained a soft tissue injury in his upper extremity. Case Description: A 19 year old male sustained a soft tissue injury to his upper arm while playing hockey. The athlete complained of pain rated a 2-3 out of 10. He had a well circumscribed, firm, 8 by 5 centimeter palpable mass present along the lateral arm, and was able to passively flex his elbow from 56° to 135°, demonstrating a 56° loss of elbow extension. Functionally, he was able to perform most activities of daily living, but he was unable to play hockey. Over 29 days, the athlete was treated one time with pulsed ultrasound and ice and nine times with iontophoresis using a 2% acetic acid solution. Additionally, the athlete performed pain-free active range of motion exercises for the elbow. Outcome: Following treatment, the athlete's pain resolved, the palpable mass disappeared, and his passive range of motion at the elbow was 0° to 135°. Most importantly, the athlete was able to resume playing hockey. Discussion: Acetic acid iontophoresis may be a successful intervention for soft tissue injuries of the upper extremity. In this case, it appeared helpful in decreasing the athlete's impairments and contributed to quicker resumption of all functional activities in less time than previously reported in the literature using traditional treatment interventions. PMID:21655380

  17. ANTIFUNGAL AND SPROUT REGULATORY BIOACTIVITIES OF PHENYLACETIC ACID, INDOLE-3-ACETIC ACID, AND TYROSOL ISOLATED FROM THE POTATO DRY ROT SUPPRESSIVE BACTERIUM ENTEROBACTER CLOACAE S11:T:07

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterobacter cloacae S11:T:07 (NRRL B-21050) is a promising biological control agent which has significantly reduced both fungal dry rot disease and sprouting in lab and pilot potato storages. The metabolites phenylacetic acid (PAA), indole-3-acetic acid (IAA), and tyrosol (TSL) were isolated from ...

  18. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  19. [Enhanced phytoextraction of heavy metal contaminated soil by chelating agents and auxin indole-3-acetic acid].

    PubMed

    Zhou, Jian-min; Dang, Zhi; Chen, Neng-chang; Xu, Sheng-guang; Xie, Zhi-yi

    2007-09-01

    The environmental risk of chelating agents such as EDTA application to the heavy metals polluted soils and the stress on plant roots due to the abrupt increase metals concentration limit the wide commercial use of chelate-induced phytoextraction. Chelating agent ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) and auxin indole-3-acetic acid (IAA) were used for enhancing heavy metals uptake from soils by Zea mays L. (corn) in pot experiments. The metals content in plant tissues was quantified using an inductively coupled plasma mass spectrometer (ICP-MS). The results showed that the combination of IAA and EDTA increased the biomass by about 40.0% and the contents of Cu, Zn, Cd and Pb in corn shoots by 27.0%, 26.8%, 27.5% and 32.8% respectively, as compared to those in EDTA treatment. While NTA&IAA treatment increased the biomass by about 29.9% and the contents of Cu, Zn, Cd and Pb in corn shoots by 31.8%, 27.6%, 17.0% and 26.9% respectively, as compared to those in NTA treatment. These results indicated that corn growth was promoted, and the biomass and the accumulation of heavy metals in plant shoots were increased significantly with the addition of IAA, which probably helps to change the cell membrane properties and the biomass distribution, resulting in the alleviation of the phytotoxicity of metals and the chelating agents. PMID:17990562

  20. Lactic acid bacteria convert human fibroblasts to multipotent cells.

    PubMed

    Ohta, Kunimasa; Kawano, Rie; Ito, Naofumi

    2012-01-01

    The human gastrointestinal tract is colonized by a vast community of symbionts and commensals. Lactic acid bacteria (LAB) form a group of related, low-GC-content, gram-positive bacteria that are considered to offer a number of probiotic benefits to general health. While the role of LAB in gastrointestinal microecology has been the subject of extensive study, little is known about how commensal prokaryotic organisms directly influence eukaryotic cells. Here, we demonstrate the generation of multipotential cells from adult human dermal fibroblast cells by incorporating LAB. LAB-incorporated cell clusters are similar to embryoid bodies derived from embryonic stem cells and can differentiate into endodermal, mesodermal, and ectodermal cells in vivo and in vitro. LAB-incorporated cell clusters express a set of genes associated with multipotency, and microarray analysis indicates a remarkable increase of NANOG, a multipotency marker, and a notable decrease in HOX gene expression in LAB-incorporated cells. During the cell culture, the LAB-incorporated cell clusters stop cell division and start to express early senescence markers without cell death. Thus, LAB-incorporated cell clusters have potentially wide-ranging implications for cell generation, reprogramming, and cell-based therapy. PMID:23300571

  1. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation.

    PubMed

    Ventimiglia, Giusi; Alfonzo, Antonio; Galluzzo, Paola; Corona, Onofrio; Francesca, Nicola; Caracappa, Santo; Moschetti, Giancarlo; Settanni, Luca

    2015-10-01

    Fifteen sourdoughs produced in western Sicily (southern Italy) were analysed by classical methods for their chemico-physical characteristics and the levels of lactic acid bacteria (LAB). pH and total titratable acidity (TTA) were mostly in the range commonly reported for similar products produced in Italy, but the fermentation quotient (FQ) of the majority of samples was above 4.0, due to the low concentration of acetic acid estimated by high performance liquid chromatography (HPLC). Specific counts of LAB showed levels higher than 10(8) CFU g(-1) for many samples. The colonies representing various morphologies were isolated and, after the differentiation based on phenotypic characteristics, divided into 10 groups. The most numerous group was composed of facultative heterofermentative isolates, indicating a relevance of this bacterial group during fermentation. The genetic analysis by randomly amplified polymorphic DNA (RAPD)-PCR, 16S rRNA gene sequencing and species-specific PCRs identified 33 strains as Lactobacillus plantarum, Lactobacillus curvatus and Lactobacillus graminis. Due to the consistent presence of L. plantarum, it was concluded that this species codominates with obligate heterofermentative LAB in sourdough production in this geographical area. In order to evaluate the performances at the basis of their fitness, the 29 L. plantarum strains were investigated for several technological traits. Twelve cultures showed good acidifying abilities in vitro and L. plantarum PON100148 produced the highest concentrations of organic acids. Eleven strains were positive for extracellular protease activity. Bacteriocin-like inhibitory substances (BLIS) production and antifungal activity was scored positive for several strains, included L. plantarum PON100148 which was selected as starter for experimental sourdough production. The characteristics of the sourdoughs and the resulting breads indicated that the best productions were obtained in presence of L. plantarum PON100148. PMID:26187828

  2. Competitive Oxidation of Volatile Fatty Acids by Sulfate- and Nitrate-Reducing Bacteria from an Oil Field in Argentina? †

    PubMed Central

    Grigoryan, Aleksandr A.; Cornish, Sabrina L.; Buziak, Brenton; Lin, Shiping; Cavallaro, Adriana; Arensdorf, Joseph J.; Voordouw, Gerrit

    2008-01-01

    Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquén Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3 mM each) and excess sulfate, SRB first used propionate and butyrate for the production of acetate, which reached concentrations of up to 12 mM prior to being used as an electron donor for sulfate reduction. In contrast, hNRB used all three organic acids with similar kinetics, while reducing nitrate to nitrite and nitrogen. Transient inhibition of VFA-utilizing SRB was observed with 0.5 mM nitrite and permanent inhibition with concentrations of 1 mM or more. The addition of nitrate to medium flowing into an upflow, packed-bed bioreactor with an established VFA-oxidizing SRB consortium led to a spike of nitrite up to 3 mM. The nitrite-mediated inhibition of SRB led, in turn, to the transient accumulation of up to 13 mM of acetate. The complete utilization of nitrate and the incomplete utilization of VFA, especially propionate, and sulfate indicated that SRB remained partially inhibited. Hence, in addition to lower sulfide concentrations, an increase in the concentration of acetate in the presence of sulfate in waters produced from an oil field subjected to nitrate injection may indicate whether the treatment is successful. The microbial community composition in the bioreactor, as determined by culturing and culture-independent techniques, indicated shifts with an increasing fraction of nitrate. With VFA and sulfate, the SRB genera Desulfobotulus, Desulfotignum, and Desulfobacter as well as the sulfur-reducing Desulfuromonas and the NR-SOB Arcobacter were detected. With VFA and nitrate, Pseudomonas spp. were present. hNRB/NR-SOB from the genus Sulfurospirillum were found under all conditions. PMID:18502934

  3. The Conjugated Auxin Indole-3-Acetic Acid–Aspartic Acid Promotes Plant Disease Development[C][W

    PubMed Central

    González-Lamothe, Rocío; El Oirdi, Mohamed; Brisson, Normand; Bouarab, Kamal

    2012-01-01

    Auxin is a pivotal plant hormone that regulates many aspects of plant growth and development. Auxin signaling is also known to promote plant disease caused by plant pathogens. However, the mechanism by which this hormone confers susceptibility to pathogens is not well understood. Here, we present evidence that fungal and bacterial plant pathogens hijack the host auxin metabolism in Arabidopsis thaliana, leading to the accumulation of a conjugated form of the hormone, indole-3-acetic acid (IAA)-Asp, to promote disease development. We also show that IAA-Asp increases pathogen progression in the plant by regulating the transcription of virulence genes. These data highlight a novel mechanism to promote plant susceptibility to pathogens through auxin conjugation. PMID:22374398

  4. Prevalence and impact of single-strain starter cultures of lactic acid bacteria on metabolite formation in sourdough.

    PubMed

    Ravyts, Frédéric; De Vuyst, Luc

    2011-09-01

    Flavour of type II sourdoughs is influenced by the ingredients, processing conditions, and starter culture composition. It is, however, not fully clear to what extent different sourdough lactic acid bacteria (LAB) contribute to flavour. Therefore, two types of flour (rye and wheat) and different LAB starter culture strains were used to prepare sourdoughs, thereby leaving the yeast microbiota uncontrolled. All LAB starter culture strains tested were shown to be prevalent and to acidify the flour/water mixture to pH values between 3.1 and 3.9 after 24h of fermentation. Multiple aldehydes, alcohols, ketones, and carboxylic acids were produced by the sourdough-associated microbiota throughout the fermentation period. Based on the organoleptic evaluation of breads produced with these sourdoughs, five LAB strains were selected to perform prolonged wheat and rye fermentations as to their capacity to result in an acidic (Lactobacillus fermentum IMDO 130101, Lactobacillus plantarum IMDO 130201, and Lactobacillus crustorum LMG 23699), buttermilk-like (Lactobacillus amylovorus DCE 471), or fruity flavour (Lactobacillus sakei CG1). Upon prolonged fermentation, higher metabolite concentrations were produced. For instance, L. sakei CG1 produced the highest amounts of 3-methyl-1-butanol, which was further converted into 3-methylbutyl acetate. The latter compound resulted in a fruity banana flavour after 48h of fermentation, probably due to yeast interference. Rye fermentations resulted in sourdoughs richer in volatiles than wheat, including 3-methyl-1-butanol, 2-phenylethanol, and ethyl acetate. PMID:21645811

  5. Production of acetic acid by hydrothermal two-step process of vegetable wastes for use as a road deicer

    NASA Astrophysics Data System (ADS)

    Jin, F.; Watanabe, Y.; Kishita, A.; Enomoto, H.; Kishida, H.

    2008-07-01

    This study aimed to produce acetic acid from vegetable wastes by a new hydrothermal two-step process. A continuous flow reaction system with a maximum treatment capacity of 2 kg/h of dry biomass developed by us was used. Five kinds of vegetables of carrots, white radish, chinese cabbage, cabbage and potato were selected as the representation of vegetable wastes. First, batch experiments with the selected vegetables were performed under the condition of 300°C, 1 min for the first step, and 300°C, 1 min and 70% oxygen supply for the second step, which is the optimum condition for producing acetic acid in the case of using starch as test material. The highest yields of acetic acid from five vegetables were almost the same as those obtained from starch. Subsequently, similar the highest yield of acetic acid and experimental conditions from vegetables were also obtained successfully using the continuous flow reaction system. These results should be useful for developing an industrial scale process.

  6. 2Aryl(pyrrolidin-4-yl)acetic acids are potent agonists of sphingosine-1-phosphate (S1P) receptors

    Microsoft Academic Search

    Lin Yan; Richard Budhu; Pei Huo; Christopher L. Lynch; Jeffrey J. Hale; Sander G. Mills; Richard Hajdu; Carol A. Keohane; Mark J. Rosenbach; James A. Milligan; Gan-Ju Shei; Gary Chrebet; James Bergstrom; Deborah Card; Suzanne M. Mandala

    2006-01-01

    A series of 2-aryl(pyrrolidin-4-yl)acetic acids were synthesized and their biological activities were evaluated as agonists of S1P receptors. These analogs were able to induce lowering of lymphocyte counts in the peripheral blood of mice and were found to have good overall pharmacokinetic properties in rat.

  7. The application of AC impedance to study the performance of lacquered aluminium specimens in acetic acid solution

    Microsoft Academic Search

    J. D Scantlebury; K Gali?

    1997-01-01

    Aluminium tubes with single and double coat solvent based and water based lacquers, based on epoxy-phenolic resins, were analysed. To determine the electrochemical parameters to correlate with the actual behaviour of a collapsible tube, impedance spectroscopy was used. The measurements were performed in 3% (v\\/v) acetic acid, at room temperature. After impedance measurements specimens surface were analysed by scanning electron

  8. Indole-3-acetic acid biosynthesis in isolated axes from germinating bean seeds: The effect of wounding on the biosynthetic pathway

    E-print Network

    Cooke, Todd J.

    Indole-3-acetic acid biosynthesis in isolated axes from germinating bean seeds: The effect pathways were analyzed in isolated axes of germinating bean seedlings at various times after cotyledon excision. Unlabeled tryptophan suppressed [14 C]anthranilate conversion into IAA in isolated axes

  9. Metal-organic coordination architectures of azole heterocycle ligands bearing acetic acid groups: Synthesis, structure and magnetic properties

    SciTech Connect

    Hu Bowen; Zhao Jiongpeng; Yang Qian; Hu Tongliang; Du Wenping [Department of Chemistry, Nankai University, Tianjin 300071 (China); Bu Xianhe, E-mail: buxh@nankai.edu.c [Department of Chemistry, Nankai University, Tianjin 300071 (China)

    2009-10-15

    Four new coordination complexes with azole heterocycle ligands bearing acetic acid groups, [Co(L{sup 1}){sub 2}]{sub n} (1), [CuL{sup 1}N{sub 3}]{sub n} (2), [Cu(L{sup 2}){sub 2}.0.5C{sub 2}H{sub 5}OH.H{sub 2}O]{sub n} (3) and [Co(L{sup 2}){sub 2}]{sub n} (4) (here, HL{sup 1}=1H-imidazole-1-yl-acetic acid, HL{sup 2}=1H-benzimidazole-1-yl-acetic acid) have been synthesized and structurally characterized. Single-crystal structure analysis shows that 3 and 4 are 2D complexes with 4{sup 4}-sql topologies, while another 2D complex 1 has a (4{sup 3}){sub 2}(4{sup 6})-kgd topology. And 2 is a 3D complex composed dinuclear mu{sub 1,1}-bridging azido Cu{sup II} entities with distorted rutile topology. The magnetic properties of 1 and 2 have been studied. - Graphical Abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with azole heterocycle ligands bearing acetic acid groups are reported.

  10. GC-MS QUANTIFICATION OF THE METHANOL AND ACETIC ACID CONTENT OF PECTIN USING HEADSPACE SOLID-PHASE MICROEXTRACTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple, fast, and direct procedure was developed for the simultaneous determination of the methanol and acetic acid present as esters in the plant cell wall polysaccharide pectin. After base-hydrolysis of esters and acidification of pectin samples, headspace solid-phase microextraction was perfor...

  11. Resolving the electrospinnability zones and diameter prediction for the electrospinning of the gelatin/water/acetic acid system.

    PubMed

    Erencia, Marisa; Cano, Francisco; Tornero, Jose A; Macanás, Jorge; Carrillo, Fernando

    2014-06-24

    The development of suitable biomimetic scaffolds is a fundamental requirement of tissue engineering. Although electrospinning has emerged as an effective method for producing such scaffolds of nanometer-sized fibers, the influence of solution characteristics on the morphology of the resulting nanofibers depends on each polymer solution system. In this study, gelatin nanofibers and microfibers were prepared via electrospinning using mixtures of water and acetic acid at different ratios as solvents. The viscosities of gelatin solutions before electrospinning were analyzed and two different behaviors were found as a function of the solvent composition, taking into account classic models of polymer science. A power law relationship between viscosity and gelatin concentration was found for each solvent system, and an empirical model including the influence of acetic acid was obtained for aqueous systems. Moreover, a ternary diagram considering gelatin, water, and acetic acid mass fractions was constructed as a tool to establish the electrospinnability domains in terms of fiber occurrence and morphology. Also, the isodiametric curves were defined in the fibers region. Finally, in order to correlate the diameter of electrospun nanofibers and the electrospinnability zones, the Berry number was used. However, as its only allows the range of electrospinnability to be established for a fixed solvent composition, a new dimensionless parameter (Bemod) was suggested to take into account all the acetic acid aqueous solutions as a single solvent. PMID:24870557

  12. INFLUENCE OF DILUTE ACETIC ACID TREATMENTS ON SURVIVAL OF AMERICAN PONDWEED WINTER BUDS IN THE NEVADA IRRIGATION DISTRICT, CALIFORNIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    American pondweed (Potamogeton nodosus Poir.) is commonly found in northern California irrigation canals. The purpose of this study was to test the hypothesis that exposure of American pondweed winter buds to dilute acetic acid under field conditions would result in reduced survivorship and subsequ...

  13. Acetic Acid Sclerotherapy for Treatment of a Bile Leak from an Isolated Bile Duct After Laparoscopic Cholecystectomy

    SciTech Connect

    Choi, Gibok, E-mail: choigibok@yahoo.co.kr; Eun, Choong Ki, E-mail: ilovegod@chollian.net [Inje University, Department of Radiology, Haeundae Paik Hospital, College of Medicine (Korea, Republic of); Choi, HyunWook, E-mail: gdkid92@daum.net [Maryknoll Medical Center, Department of Radiology (Korea, Republic of)

    2011-02-15

    Bile leak after laparoscopic cholecystectomy is not uncommon, and it mainly occurs from the cystic duct stump and can be easily treated by endoscopic techniques. However, treatment for leakage from an isolated bile duct can be troublesome. We report a successful case of acetic acid sclerotherapy for bile leak from an isolated bile duct after laparoscopic cholecystectomy.

  14. Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose.

    PubMed

    Ismail, Ku Syahidah Ku; Sakamoto, Takatoshi; Hasunuma, Tomohisa; Zhao, Xin-Qing; Kondo, Akihiko

    2014-12-01

    Lignocellulosic biomass is a potential substrate for ethanol production. However, pretreatment of lignocellulosic materials produces inhibitory compounds such as acetic acid, which negatively affect ethanol production by Saccharomyces cerevisiae. Supplementation of the medium with three metal ions (Zn(2+) , Mg(2+) , and Ca(2+) ) increased the tolerance of S. cerevisiae toward acetic acid compared to the absence of the ions. Ethanol production from xylose was most improved (by 34%) when the medium was supplemented with 2 mM Ca(2+) , followed by supplementation with 3.5 mM Mg(2+) (29% improvement), and 180 ?M Zn(2+) (26% improvement). Higher ethanol production was linked to high cell viability in the presence of metal ions. Comparative transcriptomics between the supplemented cultures and the control suggested that improved cell viability resulted from the induction of genes controlling the cell wall and membrane. Only one gene, FIT2, was found to be up-regulated in common between the three metal ions. Also up-regulation of HXT1 and TKL1 might enhance xylose consumption in the presence of acetic acid. Thus, the addition of ionic nutrients is a simple and cost-effective method to improve the acetic acid tolerance of S. cerevisiae. PMID:24924214

  15. Immuno-cytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos

    Microsoft Academic Search

    Clément Thomas; Roberte Bronner; Jean Molinier; Els Prinsen; Harry van Onckelen; Günther Hahne

    2002-01-01

    Immature zygotic embryos of sunflower (Helianthus annuus L.) produce somatic embryos when cultured on medium supplemented with a cytokinin as the sole source of exogenous growth regulators. The timing of the induction phase and subsequent morphogenic events have been well characterized in previous work. We address here the question of the role of endogenous indole-3-acetic acid (IAA), since auxins are

  16. Re-characterisation of Saccharomyces cerevisiae Ach1p: fungal CoA-transferases are involved in acetic acid detoxification.

    PubMed

    Fleck, Christian B; Brock, Matthias

    2009-01-01

    Saccharomyces cerevisiae and Neurospora crassa mutants defective in the so-called acetyl-CoA hydrolases Ach1p and Acu-8, respectively, display a severe growth defect on acetate, which is most strongly pronounced under acidic conditions. Acetyl-CoA hydrolysis is an energy wasting process and therefore denoted as a biochemical conundrum. Acetyl-CoA hydrolases show high sequence identity to the CoA-transferase CoaT from Aspergillus nidulans. Therefore, we extensively re-characterised the yeast enzyme. Ach1p showed highest specific activity for the CoASH transfer from succinyl-CoA to acetate and only a minor acetyl-CoA-hydrolase activity. Complementation of an ach1 mutant with the coaT gene reversed the growth defect on acetate confirming the in vivo function of Ach1p as a CoA-transferase. Our results imply that Ach1p is involved in mitochondrial acetate detoxification by a CoASH transfer from succinyl-CoA to acetate. Thereby, Ach1p does not perform the energy wasting hydrolysis of acetyl-CoA but conserves energy by the detoxification of mitochondrial acetate. PMID:19298859

  17. Analysis of picogram quantities of indole-3-acetic acid by gas chromatography with fused silica column and flameless nitrogen selective detector

    Microsoft Academic Search

    Einar Jensen; Arild Ernstsen; Göran Sandberg

    1986-01-01

    Use of a gas chromatograph equipped with a fused silica capillary column and a nitrogen-phosphorus detector permits selective detection of indole-3-acetic acid and other indoles at the low picogram level. The applicability of the method is demonstrated by the analysis of endogenous indole-3-acetic acid from shoots of Salix pentandra L.

  18. Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast

    Microsoft Academic Search

    M. E. Pampulha; M. C. Loureiro-Dias

    1989-01-01

    The internal pH of Saccharomyces cerevisiae IGC 3507 III (a respiratory-deficient mutant) was measured by the distribution of [14C]propionic acid, when the yeast was fermenting glucose at pH 3.5, 4.5 and 5.5 in the presence of several concentrations of acetic acid and ethanol. Good correlation was obtained between fermentation rates and internal pH. For all external pH values tested, the

  19. Biodiversity of lactic acid bacteria in Romanian dairy products.

    PubMed

    Zamfir, Medana; Vancanneyt, Marc; Makras, Lefteris; Vaningelgem, Frederik; Lefebvre, Karen; Pot, Bruno; Swings, Jean; De Vuyst, Luc

    2006-09-01

    Traditionally fermented dairy products are still a very important part of the daily food in Romania, especially for people living in the countryside. To study the biodiversity of lactic acid bacterium strains of these products, 110 samples (raw and fermented milk, sour cream, and cheese) were collected from farm houses, monasteries, and local markets throughout Romania. Lactic acid bacteria (LAB) were isolated using six different cultivation conditions. All 599 isolates were tested for their Gram reaction, catalase activity, and morphology. A rep-PCR fingerprinting technique with the (GTG)5 primer and, in some cases SDS-PAGE of total cell proteins and 16S rRNA gene sequencing were used to cluster and/or identify the LAB. The biodiversity of the isolated strains was correlated with the type of product and/or technology applied. The most frequent LAB found in Romanian raw milk and fermented dairy products were Lactococcus lactis, Leuconostoc spp., and Enterococcus spp. Among the latter, a new species E. saccharominimus was found. PMID:16919730

  20. Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops

    Microsoft Academic Search

    Sudhansu S. Pal

    1998-01-01

    Phosphate solubilizing bacteria (PSB) were isolated from sixty soil samples of various soil classes and cropping histories in Himalayan regions of Uttar Pradesh, India by enrichment culture techniques. Phosphate solubilization and acid tolerance of each strain was estimated. A strain (PAS-2) isolated froma pasture and waste land of pH 4.8, organic matter 2.6% available N 265kg ha-1, available P2O5(Bray's II)

  1. Efficacy of Single-Session Percutaneous Drainage and 50% Acetic Acid Sclerotherapy for Treatment of Simple Renal Cysts

    SciTech Connect

    Kwon, Se Hwan; Oh, Joo Hyeong [Kyung Hee University Hospital, Department of Diagnostic Radiology (Korea, Republic of)], E-mail: ohjh6108@hanmail.net; Seo, Tae-Seok [Korea University Guro Hospital, Department of Radiology (Korea, Republic of); Park, Ho Chul [Kyung Hee University Hospital, Department of Surgery (Korea, Republic of)

    2007-11-15

    Purpose. To evaluate the efficacy and long-term results of single-session 50% acetic acid sclerotherapy for the treatment of simple renal cysts, and to compare the therapeutic results of 5 and 20 min sclerosant dwell techniques. Methods. During the past 9 years, 50% acetic acid sclerotherapy was performed on 67 cysts in 66 patients. An acetic acid volume corresponding to a mean of 23% of the aspirated cyst volume was injected into the cysts. A 20 min dwell time with position changes was performed in 32 cysts (31 patients; group I) and 8% of volume for a 5 min dwell time in 35 cysts (35 patients; group II). Three- and 6-month sonographic or CT follow-up was performed for a minimum of 1 year. Complete regression was defined as no remaining cyst measurable on sonography with or without a scar at the renal cortex. Partial regression was defined as a decreased cyst volume compared with that before sclerotherapy. The Mann-Whitney U-test was used to compare the therapeutic results between the two groups. Results. For 67 simple renal cysts, complete regression on follow-up was observed in 21 of 32 cysts (66%; group I) and 22 of 35 cysts (63%; group II); the remaining 24 cysts all showed partial regression. The partial reduction rate of the cyst's volume was 97.4% (91.3-99.4%) in group I and 96.9% (90.8-99.5 %) in group II. There were no procedure-related major complications, and no statistically significant differences in the complete regression and partial volume reduction rates between the two groups (p > 0.05). Conclusion. Fifty percent acetic acid is an effective and safe sclerosing agent for simple renal cysts. Fifty percent acetic acid sclerotherapy with a 5 min sclerosant dwell time, using a volume of about 10% of the aspirated volume, is sufficient for satisfactory results of simple renal cyst sclerotherapy.

  2. Optimal design and experimental validation of a simulated moving bed chromatography for continuous recovery of formic acid in a model mixture of three organic acids from Actinobacillus bacteria fermentation.

    PubMed

    Park, Chanhun; Nam, Hee-Geun; Lee, Ki Bong; Mun, Sungyong

    2014-10-24

    The economically-efficient separation of formic acid from acetic acid and succinic acid has been a key issue in the production of formic acid with the Actinobacillus bacteria fermentation. To address this issue, an optimal three-zone simulated moving bed (SMB) chromatography for continuous separation of formic acid from acetic acid and succinic acid was developed in this study. As a first step for this task, the adsorption isotherm and mass-transfer parameters of each organic acid on the qualified adsorbent (Amberchrom-CG300C) were determined through a series of multiple frontal experiments. The determined parameters were then used in optimizing the SMB process for the considered separation. During such optimization, the additional investigation for selecting a proper SMB port configuration, which could be more advantageous for attaining better process performances, was carried out between two possible configurations. It was found that if the properly selected port configuration was adopted in the SMB of interest, the throughout and the formic-acid product concentration could be increased by 82% and 181% respectively. Finally, the optimized SMB process based on the properly selected port configuration was tested experimentally using a self-assembled SMB unit with three zones. The SMB experimental results and the relevant computer simulation verified that the developed process in this study was successful in continuous recovery of formic acid from a ternary organic-acid mixture of interest with high throughput, high purity, high yield, and high product concentration. PMID:25240652

  3. Lactic acid bacteria: promising supplements for enhancing the biological activities of kombucha.

    PubMed

    Nguyen, Nguyen Khoi; Dong, Ngan Thi Ngoc; Nguyen, Huong Thuy; Le, Phu Hong

    2015-01-01

    Kombucha is sweetened black tea that is fermented by a symbiosis of bacteria and yeast embedded within a cellulose membrane. It is considered a health drink in many countries because it is a rich source of vitamins and may have other health benefits. It has previously been reported that adding lactic acid bacteria (Lactobacillus) strains to kombucha can enhance its biological functions, but in that study only lactic acid bacteria isolated from kefir grains were tested. There are many other natural sources of lactic acid bacteria. In this study, we examined the effects of lactic acid bacteria from various fermented Vietnamese food sources (pickled cabbage, kefir and kombucha) on kombucha's three main biological functions: glucuronic acid production, antibacterial activity and antioxidant ability. Glucuronic acid production was determined by high-performance liquid chromatography-mass spectrometry, antibacterial activity was assessed by the agar-well diffusion method and antioxidant ability was evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. Four strains of food-borne pathogenic bacteria were used in our antibacterial experiments: Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028 and Bacillus cereus ATCC 11778. Our findings showed that lactic acid bacteria strains isolated from kefir are superior to those from other sources for improving glucuronic acid production and enhancing the antibacterial and antioxidant activities of kombucha. This study illustrates the potential of Lactobacillus casei and Lactobacillus plantarum isolated from kefir as biosupplements for enhancing the bioactivities of kombucha. PMID:25763303

  4. Studies on the growth and indole-3-acetic acid and abscisic acid content of Zea mays seedlings grown in microgravity

    NASA Technical Reports Server (NTRS)

    Schulze, A.; Jensen, P. J.; Desrosiers, M.; Buta, J. G.; Bandurski, R. S.

    1992-01-01

    Measurements were made of the fresh weight, dry weight, dry weight-fresh weight ratio, free and conjugated indole-3-acetic acid, and free and conjugated abscisic acid in seedlings of Zea mays grown in darkness in microgravity and on earth. Imbibition of the dry kernels was 17 h prior to launch. Growth was for 5 d at ambient orbiter temperature and at a chronic accelerational force of the order of 3 x 10(-5) times earth gravity. Weights and hormone content of the microgravity seedlings were, with minor exceptions, not statistically different from seedlings grown in normal gravity. The tissues of the shuttle-grown plants appeared normal and the seedlings differed only in the lack of orientation of roots and shoots. These findings, based upon 5 d of growth in microgravity, cannot be extrapolated to growth in microgravity for weeks, months, and years, as might occur on a space station. Nonetheless, it is encouraging, for prospects of bioregeneration of the atmosphere and food production in a space station, that no pronounced differences in the parameters measured were apparent during the 5 d of plant seedling growth in microgravity.

  5. Genome-Scale Model of Streptococcus thermophilus LMG18311 for Metabolic Comparison of Lactic Acid Bacteria

    Microsoft Academic Search

    Margreet I. Pastink; Bas Teusink; Pascal Hols; Sanne Visser; Vos de W. M; Jeroen Hugenholtz

    2009-01-01

    In this report we describe amino acid-metabolism and amino acid-dependency of the dairy bacterium Streptococcus thermophilus LMG18311 and compare that with two other characterized lactic acid bacteria, Lactococcus lactis and Lactobacillus plantarum. Through the construction of a genome-scale metabolic model of S. thermophilus, the metabolic differences between the three bacteria were visualized by direct projection on a metabolic map. The

  6. Exchange of atmospheric formic and acetic acids with trees and crop plants under controlled chamber and purified air conditions

    NASA Astrophysics Data System (ADS)

    Kesselmeier, J.; Bode, K.; Gerlach, C.; Jork, E.-M.

    We investigated the exchange of formic and acetic acids between the atmosphere and various tree species such as beech ( Fagus sylvatica L.), ash ( Fraxinus excelsior L.), spruce ( Picea abies L.) Karst, holm oak ( Quercus ilex L.), and birch ( Betula pendula L.). and some crop-plant species such as corn ( Zea mays, var. Banjo), pea ( Pisum sativum, var. Solara), barley ( Hordeum vulgare, var. Igri) and oat (Avena sativa, var. Wiesel). All experiments were done with dynamic enclosures flushed with purified oxidant-free air, containing only low or controlled amounts of the two acids. Significant and light-triggered emission of both acids from all tree species was observed. For one tree species (ash) a seasonal large increase in fall due to early leaf decomposition was found. The standard emission factors (30°C and PAR=1000 ?mol m 2 s -1) given as (nmol m -2 min -1) for acetic and formic acids, respectively, were 8.1 and 29.7 (ash, autumn), 1.0 and 3.3 (ash, summer), 0.9 and 1.4 (beech), 0.7 and 1.45 (spruce), 1.9 and 2.4 (Holm oak) and 1.7 and 6.7 (birch). Rough estimation of global annual emissions range between 20 and 130 Gmol formic acid and 10 and 33 Gmol acetic acid. These numbers reflect a 15-30% contribution by forest emissions to the continental organic acid budget. As compared to the global total NMHC emissions low molecular weight organic acids are of minor importance. In contrast to the trees, none of the crop-plant species investigated showed an emission, but always a clear deposition of both acids. Both emission from trees as well as uptake by the agricultural plants could be related to transpiration rates and leaf conductances.

  7. Canine intestinal lactic acid bacteria agglutinated with concanavalin A.

    PubMed

    Kim, So-Young; Ogawa, Yasuki; Adachi, Yoshikazu

    2006-12-01

    Twenty-six out of 46 representative lactic acid bacteria (LAB) that we isolated from 36 dogs in a previous study were agglutinated by concanavalin A (ConA) at a concentration of 0.1563 mg/ml, while isolates did not agglutinate without the addition of ConA. Amongst the isolates, L. reuteri, L. mucosae, and E. canintestini agglutinated strongly, while L. gallinarum, L. kitasatonis, L. acidophilus, L. saerimneri, B. animalis ssp. animalis, P. acidilactici, and E. hirae did not agglutinate. ConA-agglutination of LAB was specifically inhibited by D-glucose, D-galactose, and D-mannose at a concentration of 1.563 mg/ml. Among the sugars, ConA-agglutination was strongly inhibited by D-mannose, while the inhibition level by D-glucose and D-galactose were lower than that of D-mannose. ConA- agglutination of all the LAB isolates was inhibited by D-mannose, except for L. reuteri (one species) and L. mucosae (two species). ConA-agglutination of Bifidobacterium spp. was inhibited by only D-mannose. Based on our results, ConA-agglutination of LAB seems to be strain-specific, but not species-specific. PMID:17213708

  8. Passive abatement of acid rock drainage by sulfate reducing bacteria

    SciTech Connect

    Thompson, D.N.; Sayer, R.L.; Noah, K.S. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-10-01

    Passive treatment systems for Acid Rock Drainage (ARD) using wetland technology have been in development at eastern coal mines since the mid 1980s. Due to the high altitudes, remoteness, lack of large flat areas, and/or heavy metal levels at western mine sites, application of this technology has been lacking. This research explored whether pine sawdust can be used as sole carbon source in a smaller volume system for ARD remediation which can handle high throughputs. The technology utilizes sulfate reducing bacteria (SRB) to precipitate metal sulfides from their sulfates, while raising pH due to net consumption of H{sup +}. Laboratory results indicate that indigenous SRB are present in mud obtained from a northern Idaho mine site. With partially degraded lodgepole pine sawdust as carbon source, 50-99% reduction of various metals, and pH increases from 3 to about 7 were attained in ARD collected from mine seeps. Thus, this system appears promising as a long term, low cost/maintenance technology for ARD remediation at remote western mines.

  9. Antihepatocarcinoma activity of lactic acid bacteria fermented Panax notoginseng.

    PubMed

    Lin, Yu-Wei; Mou, Yu-Chen; Su, Chen-Chiang; Chiang, Been-Huang

    2010-08-11

    Panax notoginseng was used as the medium for lactic acid bacteria fermentation to manufacture product with antihepatocarcinoma activity. The fermentation broth prepared in a 250 mL Erlenmeyer flask was found to possess antiproliferation activity against hepatoma Hep3B cells. At the dosage of 500 microg/mL, the viability of hepatoma Hep3B cells was approximately 2.2%. When the fermentation was scaled up to a 6.6 L fermenter, it was found that the fermentation broth produced at 37 degrees C for 2 days showed the highest antihepatoma activity. Animal study revealed that when Hep3B implanted SCID mice were treated with 1000 mg/kg BW/day of the fermentation broth, tumor volume and tumor weight were reduced approximately 60% as compared to the negative control group. HPLC analyses showed that saponins in P. notoginseng including notoginsenoside R(1) and ginsenosides Rg(1), Rb(1), Rd, and Rh(4) decreased, but ginsenosides Rh(1) and Rg(3) increased during fermentation. LC-MS/MS revealed that the minor saponins ginsenoside F(1), protopanaxatriol, and notoginseng R(2) also exist in the fermentation product. It appears that ginsenoside Rg(3), ginsenoside Rh(1), and protopanaxatriol are possibly responsible for the enhanced antihepatocarcinoma activity of the P. notoginseng fermentation broth. PMID:20681639

  10. Mucosal vaccination and therapy with genetically modified lactic acid bacteria.

    PubMed

    Wells, Jerry

    2011-01-01

    Lactic acid bacteria (LAB) have proved to be effective mucosal delivery vehicles that overcome the problem of delivering functional proteins to the mucosal tissues. By the intranasal route, both live and killed LAB vaccine strains have been shown to elicit mucosal and systemic immune responses that afford protection against infectious challenges. To be effective via oral administration, frequent dosing over several weeks is required but new targeting and adjuvant strategies have clearly demonstrated the potential to increase the immunogenicity and protective immunity of LAB vaccines. Oral administration of Lactococcus lactis has been shown to induce antigen-specific oral tolerance (OT) to secreted recombinant antigens. LAB delivery is more efficient at inducing OT than the purified antigen, thus avoiding the need for purification of large quantities of antigen. This approach holds promise for new therapeutic interventions in allergies and antigen-induced autoimmune diseases. Several clinical and research reports demonstrate considerable progress in the application of genetically modified L. lactis for the treatment of inflammatory bowel disease (IBD). New medical targets are on the horizon, and the approval by several health authorities and biosafety committees of a containment system for a genetically modified L. lactis that secretes Il-10 should pave the way for new LAB delivery applications in the future. PMID:22129390

  11. Removal of Paralytic Shellfish Toxins by Probiotic Lactic Acid Bacteria

    PubMed Central

    Vasama, Mari; Kumar, Himanshu; Salminen, Seppo; Haskard, Carolyn A.

    2014-01-01

    Paralytic shellfish toxins (PSTs) are non-protein neurotoxins produced by saltwater dinoflagellates and freshwater cyanobacteria. The ability of Lactobacillus rhamnosus strains GG and LC-705 (in viable and non-viable forms) to remove PSTs (saxitoxin (STX), neosaxitoxin (neoSTX), gonyautoxins 2 and 3 (GTX2/3), C-toxins 1 and 2 (C1/2)) from neutral and acidic solution (pH 7.3 and 2) was examined using HPLC. Binding decreased in the order of STX ~ neoSTX > C2 > GTX3 > GTX2 > C1. Removal of STX and neoSTX (77%–97.2%) was significantly greater than removal of GTX3 and C2 (33.3%–49.7%). There were no significant differences in toxin removal capacity between viable and non-viable forms of lactobacilli, which suggested that binding rather than metabolism is the mechanism of the removal of toxins. In general, binding was not affected by the presence of other organic molecules in solution. Importantly, this is the first study to demonstrate the ability of specific probiotic lactic bacteria to remove PSTs, particularly the most toxic PST-STX, from solution. Further, these results warrant thorough screening and assessment of safe and beneficial microbes for their usefulness in the seafood and water industries and their effectiveness in vivo. PMID:25046082

  12. Antagonism of Helicobacter pylori by bacteriocins of lactic acid bacteria.

    PubMed

    Kim, Tae-Seok; Hur, Ji-Woon; Yu, Myeong-Ae; Cheigh, Chan-Ick; Kim, Kyung-Nam; Hwang, Jae-Kwan; Pyun, Yu-Ryang

    2003-01-01

    Antimicrobial activity of seven bacteriocins produced by lactic acid bacteria against Helicobacter pylori strains (ATCC 43504, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH [DSM] 4867, DSM 9691, and DSM 10242) was investigated in vitro using a broth microdilution assay. The bacteriocins chosen for the study were nisin A; lacticins A164, BH5, JW3, and NK24; pediocin PO2; and leucocin K. Antimicrobial activity of the bacteriocins varied among the H. pylori strains tested, of which strain ATCC 43504 was the most tolerant. Among the bacteriocins tested, lacticins A164 and BH5 produced by Lactococcus lactis subsp. lactis A164 and L. lactis BH5, respectively, showed the strongest antibacterial activity against H. pylori strains. MICs of the lacticins against H. pylori strains, when assessed by the critical dilution micromethod, ranged from 0.097 to 0.390 mg/liter (DSM strains) or from 12.5 to 25 mg/liter (ATCC 43504), supporting the strain-dependent sensitivity of the pathogen. Pediocin PO2 was less active than the lacticins against four strains of H. pylori, and leucocin K was the least active peptide, with no inhibition toward H. pylori ATCC 43504. Anti-Helicobacter activity of lacticin A164 was dependent on initial inoculum size as well as concentration of the bacteriocin added. PMID:12540174

  13. Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants.

    PubMed

    Lin, Lan; Xu, Xudong

    2013-08-01

    Plant-associated actinobacteria are rich sources of bioactive compounds including indole-derived molecules such as phytohormone indole-3-acetic acid (IAA). In view of few investigations concerning the biosynthesis of IAA by endophytic actinobacteria, this study evaluated the potential of IAA production in endophytic streptomycete isolates sourced from medicinal plant species Taxus chinensis and Artemisia annua. By HPLC analysis of IAA combined with molecular screening approach of iaaM, a genetic determinant of streptomycete IAA synthesis via indole-3-acetamide (IAM), our data showed the putative operation of IAM-mediated IAA biosynthesis in Streptomyces sp. En-1 endophytic to Taxus chinensis. Furthermore, using the co-cultivation system of model plant Arabidopsis thaliana and streptomycete, En-1 was found to be colonized intercellularly in the tissues of Arabidopsis, an alternative host, and the effects of endophytic En-1 inoculation on the model plant were also assayed. The phytostimulatory effects of En-1 inoculation suggest that IAA-producing Streptomyces sp. En-1 of endophytic origin could be a promising candidate for utilization in growth improvement of plants of economic and agricultural value. PMID:23512121

  14. Sequential induction of the ethylene biosynthetic enzymes by indole-3-acetic acid in etiolated peas.

    PubMed

    Peck, S C; Kende, H

    1995-05-01

    Ethylene induced an increase in the accumulation of 1-aminocyclopropane-1-carboxylate (ACC) oxidase transcript level and enzyme activity in the first internode of 5- to 6-day-old etiolated pea (Pisum sativum L.) seedlings. Indole-3-acetic acid (IAA), which stimulates ethylene production by enhancing ACC synthase activity, also caused an increase in ACC oxidase transcript and activity levels. The IAA-induced increase in ACC oxidase mRNA level and enzyme activity was blocked by 2,5-norbornadiene (NBD), a competitive inhibitor of ethylene action. This indicates that IAA induced ACC oxidase through the action of ethylene. The level of ACC synthase mRNA and enzyme activity started to increase less than 1 h after the start of IAA treatment, whereas ACC oxidase activity and transcript levels began to rise after 2 h of IAA treatment. These results indicate that the enzymes of ethylene biosynthesis are sequentially induced after treatment of intact pea seedlings with IAA. The increase in ACC synthase activity leads to the production of ACC, which is converted by the low constitutive level of ACC oxidase activity to ethylene. Through a positive feedback loop, ethylene promotes the accumulation of ACC oxidase mRNA and the increase in ACC oxidase activity. PMID:7599314

  15. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide).

    PubMed

    Duan, Bin; Dong, Cunhai; Yuan, Xiaoyan; Yao, Kangde

    2004-01-01

    Electrospinning of chitosan solutions with poly(ethylene oxide) (PEO) in an aqueous solution of 2 wt% acetic acid was studied. The properties of the chitosan/PEO solutions, including conductivity, surface tension and viscosity, were measured. Morphology of the electrospun chitosan/PEO was observed by using scanning electron micrographs. Results showed that the ultrafine fibers could be generated after addition of PEO in 2:1 or 1:1 mass ratios of chitosan to PEO from 4-6 wt% chitosan/PEO solutions at 15 kV voltage, 20 cm capillary-collector distance and flow rate 0.1 ml/h. During electrospinning of the chitosan/PEO solutions, ultrafine fibers with diameters from 80 nm to 180 nm were obtained, while microfibers with visually thicker diameters could be formed as well. Results of X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and differential scanning calorimeter exhibited the larger electrospun microfibers were almost entirely made from PEO, while the electrospun ultrafine fibers mainly contained chitosan. PMID:15255527

  16. Intraperitoneal administration of butyrate prevents the severity of acetic acid colitis in rats

    PubMed Central

    Malago, Joshua J.; Sangu, Catherine L.

    2015-01-01

    Intrarectal infusion of butyrate improves colorectal disorders including ulcerative colitis (UC). However, it is not established whether systemically administered butyrate benefits such patients. The current study aimed at exploring and comparing the potential of intraperitoneally, intrarectally, and orally administered butyrate against acetic acid (AA)-induced UC in rats. Intrarectal administration of 2 ml of 50% AA was done after or without prior treatment of rats for 7 consecutive days with 100 mg/kg sodium butyrate (SB) intraperitoneally, intrarectally, or orally. Rats were sacrificed after 48 h of AA-treatment. Subsequently, colon sections were processed routinely for histopathological examination. We clinically observed diarrhea, loose stools, and hemoccult-positive stools, and histologically, epithelial loss and ulceration, crypt damage, goblet cell depletion, hemorrhage, and mucosal infiltration of inflammatory cells. The changes were significantly reduced by intraperitoneal, intrarectal, or oral butyrate, with intraperitoneal butyrate exhibiting the highest potency. It is concluded that intraperitoneal administration of butyrate abrogates the lesions of AA-induced UC and its potency surpasses that of intrarectal or oral butyrate. PMID:25743124

  17. Diurnal cycles of formic and acetic acids in the northern part of the Guayana Shield, Venezuela

    NASA Astrophysics Data System (ADS)

    Hartmann, W. R.; Andreae, M. O.; Santana, M.; Hermoso, M.; Sanhueza, E.

    1991-07-01

    Formic and acetic acids were measured in a scrub-grass savanna and in a nearby semideciduous forest. Gaseous HCOOH and CH3COOH were collected using the mist-scrubber technique, and were determined using ion chromatography. A strong diurnal cycle was observed at both sites, with higher mixing ratios during daytime. Concentrations in the savanna were always higher than in the forest. Most of the time HCOOH/CH3COOH ratios greater than one were recorded at the savanna site, and ratios less than one at the forest site. Boundary-layer mixing ratios in the savanna region, derived from measurements during midday, are 1.3 +/- 0.4 ppbv and 0.7 +/- 0.3 ppbv for HCOOH and dCH3COOH. Dry depositions velocities between 0.5 and 1 cm sq were estimated for the savanna region. Atmospheric residence times of less than 3 days and greater than 5 days were estimated for the rainy and dry season, respectively.

  18. Dissociation of water and Acetic acid on PbS from first principles

    NASA Astrophysics Data System (ADS)

    Satta, Alessandra; Ruggerone, Paolo; de Giudici, Giovanni

    2008-03-01

    The adsorption of complex molecules at mineral surfaces are crucial ingredients for understanding the mechanisms that rule the interaction between minerals and the biosphere and for predicting both the stability and the reactivity of minerals. The present work focuses mainly on the early stages of different adsorption reactions occurring at both the cleavage surface and a high-index vicinal surface of galena (PbS). We have studied the dissociation mechanism of water and acetic acid on the galena surfaces by means of ab initio calculations within the framework of the density functional theory in the generalized gradient approximation and of pseudopotential approach. The calculated adsorption energies of the molecules indicate the stepped surface as the most reactive, as expected. The free energy surface during the reaction process has been explored via metadynamics[1]. The optimized configurations of both reactants and products obtained, were then used to accurately calculate the dissociation energy via the Nudge Elastic Band method[2]. [1] A. Laio and M. Parrinello, PNAS 99, 12562 (2002). [2] G. Mills and H. Jonsson, Phys. Rev. Lett. 72, 1124 (1994).

  19. Hydrogen peroxide is a mediator of indole-3-acetic acid/horseradish peroxidase-induced apoptosis.

    PubMed

    Kim, Dong-Seok; Jeon, Sang-Eun; Jeong, Yun-Mi; Kim, So-Young; Kwon, Sun-Bang; Park, Kyoung-Chan

    2006-02-20

    Recently, we reported that a combination of indole-3-acetic acid (IAA) and horseradish peroxidase (HRP) induces apoptosis in G361 human melanoma cells. However, the apoptotic mechanism involved has been poorly studied. It is known that when IAA is oxidized by HRP, free radicals are produced, and since oxidative stress can induce apoptosis, we investigated whether reactive oxygen species (ROS) are involved in IAA/HRP-induced apoptosis. Our results show that IAA/HRP-induced free radical production is inhibited by catalase, but not by superoxide dismutase or sodium formate. Furthermore, catalase was found to prevent IAA/HRP-induced apoptotic cell death, indicating that IAA/HRP-produced hydrogen peroxide (H2O2) may be involved in the apoptotic process. Moreover, the antiapoptotic effect of catalase is potentiated by NADPH, which is known to protect catalase. On further investigating the IAA/HRP-mediated apoptotic pathway, we found that the IAA/HRP reaction leads to caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, which was also blocked by catalase. Additionally, we found that IAA/HRP produces H2O2 and induces peroxiredoxin (Prx) sulfonylation. Consequently, our results suggest that H2O2 plays a major role in IAA/HRP-induced apoptosis. PMID:16460736

  20. Light-activated indole-3-acetic acid induces apoptosis in g361 human melanoma cells.

    PubMed

    Kim, Dong-Seok; Kim, So-Young; Jeong, Yun-Mi; Jeon, Sang-Eun; Kim, Myo-Kyoung; Kwon, Sun-Bang; Na, Jung-Im; Park, Kyoung-Chan

    2006-12-01

    Indole-3-acetic acid (IAA) activation by horseradish peroxidase (HRP) has been suggested as a new cancer therapy. Interestingly, we found that ultraviolet B UVB radiation also can activate IAA and produce free radicals in a dose-dependent manner. In this study, we attempted to identify the free radicals generated by UVB-irradiated IAA (IAAUVB), and to determine whether IAAUVB can induce the apoptosis of G361 human melanoma cells. Since IAA/HRP produces reactive oxygen species (ROS), we examined whether IAAUVB-generated radicals include ROS. Our results show that IAAUVB-induced free radical production is not inhibited by catalase, superoxide dismutase, or sodium formate, indicating that ROS are not generated by IAAUVB. On the other hand, IAAUVB caused lipid peroxidation, and this was blocked by Trolox, a water-soluble vitamin E derivative. Moreover, we found that IAAUVB caused apoptotic cell death and that this was inhibited by a low temperature. We further investigated IAAUVB-mediated apoptotic pathways, and found that IAAUVB causes caspase-8, Bid, caspase-3 activation, and poly (ADP-ribose) polymerase (PARP) cleavage. In addition, these apoptotic pathways were also blocked by low temperature. From these results, we propose that IAAUVB-induced free radicals cause human melanoma cell apoptosis via a death receptor-mediated apoptotic pathway. PMID:17142972

  1. Transport of indole-3-butyric acid and indole-3-acetic acid in Arabidopsis hypocotyls using stable isotope labeling.

    PubMed

    Liu, Xing; Barkawi, Lana; Gardner, Gary; Cohen, Jerry D

    2012-04-01

    The polar transport of the natural auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) has been described in Arabidopsis (Arabidopsis thaliana) hypocotyls using radioactive tracers. Because radioactive assays alone cannot distinguish IBA from its metabolites, the detected transport from applied [3H]IBA may have resulted from the transport of IBA metabolites, including IAA. To test this hypothesis, we used a mass spectrometry-based method to quantify the transport of IBA in Arabidopsis hypocotyls by following the movement of [13C1]IBA and the [13C1]IAA derived from [13C1]IBA. We also assayed [13C6]IAA transport in a parallel control experiment. We found that the amount of transported [13C1]IBA was dramatically lower than [13C6]IAA, and the IBA transport was not reduced by the auxin transport inhibitor N-1-naphthylphthalamic acid. Significant amounts of the applied [13C1]IBA were converted to [13C1]IAA during transport, but [13C1]IBA transport was independent of IBA-to-IAA conversion. We also found that most of the [13C1]IBA was converted to ester-linked [13C1]IBA at the apical end of hypocotyls, and ester-linked [13C1]IBA was also found in the basal end at a level higher than free [13C1]IBA. In contrast, most of the [13C6]IAA was converted to amide-linked [13C6]IAA at the apical end of hypocotyls, but very little conjugated [13C6]IAA was found in the basal end. Our results demonstrate that the polar transport of IBA is much lower than IAA in Arabidopsis hypocotyls, and the transport mechanism is distinct from IAA transport. These experiments also establish a method for quantifying the movement of small molecules in plants using stable isotope labeling. PMID:22323783

  2. Fatty acid and hydroxy acid adaptation in three gram-negative hydrocarbon-degrading bacteria in relation to carbon source

    Microsoft Academic Search

    Mohamed Soltani; Pierre Metzger; Claude Largeau

    2005-01-01

    The lipids of three gram-negative bacteria, Acineto-bacter calcoaceticus, Marinobacter aquaeolei, and Pseudomonas oleovorans grown on mineral media supplemented with ammonium acetate or hydrocarbons, were isolated, purified, and their structures\\u000a determined. Three pools of lipids were isolated according to a sequential procedure: unbound lipids extracted with organic\\u000a solvents, comprising metabolic lipids and the main part of membrane lipids, OH?-labile lipids (mainly

  3. Location of Transported Auxin in Etiolated Maize Shoots Using 5-Azidoindole-3-Acetic Acid 1

    PubMed Central

    Jones, Alan M.

    1990-01-01

    A study was undertaken using the photoaffinity labeling agent, tritiated 5-azidoindole-3-acetic acid ([3H],5-N3IAA), to identify cells in the etiolated maize (Zea mays L.) shoot which transport auxin. Transport of [3H],5-N3IAA was shown to be polar, inhibited by 2,3,5-triiodobenzoic acid (TIBA) and essentially freely mobile. There was no detectable radiodecomposition of [3H],5-N3IAA within tissue kept in darkness for 4 hours. Shoot tissue which had taken up [3H],5-N3IAA was irradiated with ultraviolet light to covalently fix the photoaffinity labeling agent within cells that contained it at the time of photolysis. Subsequent microautoradiography showed that all cells contained radioactivity; however, the amount of radioactivity varied among different cell types. Epidermal cells contained the most radioactivity per area, approximately twofold more than other cells. Parenchyma cells in the mature stelar region contained the next largest amount and cortical cells, sieve tube cells, tracheary cells, and all cells in the leaf base contained the least amount of the radioactive label. Two observations suggest that the auxin within the epidermal cells is transported in a polar manner: (a) the amount of auxin in the epidermal cells is greatly reduced in the presence of TIBA, and (b) auxin accumulates on the apical side of a wound in the epidermis and is absent on the basal side. While these results indicate that auxin in the epidermis is polarly transported, this tissue cannot be the only pathway since the epidermis is only a small fraction of the shoot volume. The greater than twofold difference between the concentration of auxin in the epidermal and subtending cells demonstrates that physiological differences in the concentration of auxin can occur between adjacent cells. Images Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:16667572

  4. [Conversion of acetic acid to methane by thermophiles]. Annual progress report

    SciTech Connect

    Zinder, S.H.

    1994-02-01

    Acetate is the precursor of approximately two-thirds of the methane produced by anaerobic bioreactors and many other methanogenic habitats. Besides their intrinsic interest, thermophilic acetotrophic methanogenic cultures usually grow at least twice as fast as their mesophilic counterparts, making them more amenable to study. In recent years, attention has been mainly focused on the thermophilic acetate utilizing methanogen Methanothrix strain CALS-1. Methanothrix, also called Methanosaeta, is one of only two methanogenic genera known to convert acetate to methane, the other being Methanosarcina. The faster-growing more versatile Methanosarcina has been better studied. However, when one examines anaerobic digestor contents, Methanothrix is often the dominant acetate-utilizing methanogen. As described in previous progress reports, the authors have achieved methanogenesis from acetate in cell-free extracts of Methanothrix strain CALS-1 grown in a pH auxostat. Using these cell extracts, specific activities for methanogenesis from acetate and ATP of 100--300 nmol/min were routinely obtained, levels comparable to the rate in whole cells, which is not usually the case in methanogenic extracts. Recently obtained results are given and discussed for the following: Methanogenesis in crude extracts; Role of the cell membrane in methanogenesis from acetate; Carbon monoxide dehydrogenase; Novel thermophilic cultures converting acetate to methane; and Methanol-utilizing methanogen.

  5. Inhibition of the Indole3-acetic acid-induced Epinastic Curvature in Tobacco Leaf Strips by 2,4-Dichlorophenoxyacetic Acid

    Microsoft Academic Search

    NAKAKO K AWANO; T OMONORI K AWANO; FREDERIC L APEYRIE

    It has been reported that auxin induces an epinastic growth response in plant leaf tissues. Leaf strips of tobacco (Nicotiana tabacum L. 'Bright Yellow 2') were used to study the effects of indole-3-acetic acid (IAA), the prin- cipal form of auxin in higher plants, and a synthetic auxin, 2,4-dichlorophenoxyacetic acid (2,4-D), on epinastic leaf curvature. Incubation of leaf strips with

  6. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN.

    PubMed

    Zúñiga, Ana; Poupin, María Josefina; Donoso, Raúl; Ledger, Thomas; Guiliani, Nicolás; Gutiérrez, Rodrigo A; González, Bernardo

    2013-05-01

    Although not fully understood, molecular communication in the rhizosphere plays an important role regulating traits involved in plant-bacteria association. Burkholderia phytofirmans PsJN is a well-known plant-growth-promoting bacterium, which establishes rhizospheric and endophytic colonization in different plants. A competent colonization is essential for plant-growth-promoting effects produced by bacteria. Using appropriate mutant strains of B. phytofirmans, we obtained evidence for the importance of N-acyl homoserine lactone-mediated (quorum sensing) cell-to-cell communication in efficient colonization of Arabidopsis thaliana plants and the establishment of a beneficial interaction. We also observed that bacterial degradation of the auxin indole-3-acetic acid (IAA) plays a key role in plant-growth-promoting traits and is necessary for efficient rhizosphere colonization. Wildtype B. phytofirmans but not the iacC mutant in IAA mineralization is able to restore promotion effects in roots of A. thaliana in the presence of exogenously added IAA, indicating the importance of this trait for promoting primary root length. Using a transgenic A. thaliana line with suppressed auxin signaling (miR393) and analyzing the expression of auxin receptors in wild-type inoculated plants, we provide evidence that auxin signaling in plants is necessary for the growth promotion effects produced by B. phytofirmans. The interplay between ethylene and auxin signaling was also confirmed by the response of the plant to a 1-aminocyclopropane-1-carboxylate deaminase bacterial mutant strain. PMID:23301615

  7. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue

    NASA Technical Reports Server (NTRS)

    Chisnell, J. R.

    1984-01-01

    Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.

  8. Decontamination of aquatic vegetable leaves by removing trace toxic metals during pickling process with acetic acid solution.

    PubMed

    Wu, Wenbiao; Yang, Yixing

    2011-01-01

    The heavy-metal content of aquatic plants is mainly dependent upon their ecological system. This study indicated that although the toxic heavy-metal contents could be above the recommended maximum levels depending upon their concentrations in growing water, they can be decontaminated by pickling with 5% acetic acid solution. Almost all Cd, Hg, Ba, or Sb and 99.5% Pb, 96.7% Ag, or 97.1% Al were removed from Water Spinach leaves by soaking in acetic acid solution. For Water-Shield leaves, almost all Cd, Hg, Pb, Ba, or Sb and 95.0% Ag or 96.1% Al were removed. For Watercress leaves, almost all Cd, Hg, Ba, or Sb and 99.0% Pb or 99.7% Ag were removed. For Water Hyacinth leaves, almost all Cd, Ba, or Sb and 99.0% Hg, 98.5% Pb, 95.0% Ag, or 98.7% Al were removed. PMID:21888602

  9. Simultaneous Utilization of Cellobiose, Xylose, and Acetic Acid from Lignocellulosic Biomass for Biofuel Production by an Engineered Yeast Platform.

    PubMed

    Wei, Na; Oh, Eun Joong; Million, Gyver; Cate, Jamie H D; Jin, Yong-Su

    2015-06-19

    The inability of fermenting microorganisms to use mixed carbon components derived from lignocellulosic biomass is a major technical barrier that hinders the development of economically viable cellulosic biofuel production. In this study, we integrated the fermentation pathways of both hexose and pentose sugars and an acetic acid reduction pathway into one Saccharomyces cerevisiae strain for the first time using synthetic biology and metabolic engineering approaches. The engineered strain coutilized cellobiose, xylose, and acetic acid to produce ethanol with a substantially higher yield and productivity than the control strains, and the results showed the unique synergistic effects of pathway coexpression. The mixed substrate coutilization strategy is important for making complete and efficient use of cellulosic carbon and will contribute to the development of consolidated bioprocessing for cellulosic biofuel. The study also presents an innovative metabolic engineering approach whereby multiple substrate consumption pathways can be integrated in a synergistic way for enhanced bioconversion. PMID:25587748

  10. Characterization of lactic acid bacteria isolated from Algerian arid zone raw goats' milk

    Microsoft Academic Search

    Bettache GUESSAS; Mebrouk KIHAL

    Diversity and density of lactic acid bacteria isolated from Algerian raw goats' milk in arid zones were studied by determination of morphological, cultural, physiological and biochemical characteristics. 206 lactic acid bacterial strains were isolated, with 115 of them belonging to lactic acid cocci and others to the genus, Lactobacillus. The representative species of the total cocci were Lactococcus sp. (76.16%),

  11. Effects of indole-3-acetic acid on Botrytis cinerea isolates obtained from potted plants.

    PubMed

    Martínez, J A; Valdés, R; Gómez-Bellot, M J; Bañón, S

    2011-01-01

    We study the growth of different isolates of Botrytis cinerea collected from potted plants which were affected by Botrytis blight in southern Spain during recent years. These isolates, which show widely phenotypic differences when grown in vitro, are differentially affected by growth temperature, gibberellic acid applications and paclobutrazol, an efficient plant growth retardant and fungicide at the same time. In this work, we have evaluated the effect of the auxin indole-3-acetic acid (IAA) dose (0, 1, 10, and 100 mg/plate) on the growth of the collection of B. cinerea isolates obtained from the following potted plants: Cyclamen persicum, Hydrangea macrophylla, Lantona camara, and Lonicera japonica. B. cinerea produces indolacetic acid, but so far the precise biosynthetic pathway and some effects on this fungal species are still unclear, although recent studies have revealed an antifungal activity of IAA on several fungi, including B. cinerea isolated from harvested fruits. Mycelial growth curves and growth rates assessed from difference in colony areas during the both linear and deceleration phase, conidiation (measured as time of appearance), conidia length (microm), and sclerotia production (number/plate) were evaluated in the isolates, which were grown at 26 degrees C on Petri dishes containing potato dextrose agar for up to 35 days. Mycelial growth curves fitted a typical kinetic equation of fungi grown on solid media. B. cinerea isolates showed a high degree of variability in their growth kinetics, depending on the isolate and auxin dose. This plant growth substance delayed mycelial growth during the linear phase in an isolate-dependent manner, thus isolates from C. persicum, H. macrophylla and L. camara were more affected by IAA than L. japonica. On the other hand, 100 mg of IAA was the critical dose to significantly reduce the growth rate in all isolates and to promote brown-striped hyphae development, especially in isolate from C. persicum. 10 and 100 mg IAA delayed conidiation in isolates from H. macrophylla but scarcely effects were found in the conidia length. The sclerotia production process was blocked at IAA doses of 100 mg in isolates from L. camara and L. japonica, and was reduced in isolate from H. macrophylla. However, dose of 100 mg IAA had no effect on sclerotia production in isolate from C. persicum. It was concluded that the effect of IAA on B. cinerea growth depends on the isolate, thus isolates from H. macrophylla and L. camara were the most affected by IAA. B. cinerea reduced its development under IAA applications, depending on the isolate and dose. These results confirm those recently published on the inhibitory effect of IAA on Botrytris species growth. PMID:22702183

  12. Pretreatment of Gymnema sylvestre revealed the protection against acetic acid-induced ulcerative colitis in rats

    PubMed Central

    2014-01-01

    Background Overproduction of free radicals and decreased antioxidant capacity are well-known risk factors for inflammatory bowel diseases. Gymnema sylvestre (GS) leaves extract is distinguished for its anti-diabetic, antioxidant and anti-inflammatory properties. Present study is designed to evaluate the preventative activities of GS against acetic acid (AA)-induced ulcerative colitis in Wistar rats. Methods Experimentally ulcerative colitis (UC) was induced by AA in animals pretreated with three different doses of GS leaves extract (50, 100, 200 mg/kg/day) and a single dose of mesalazine (MES, 300 mg/kg/day) for seven days. Twenty four hours later, animals were sacrificed and the colonic tissues were collected. Colonic mucus content was determined using Alcian blue dye binding technique. Levels of thiobarbituric acid reactive substances (TBARS), total glutathione sulfhydryl group (T-GSH) and non-protein sulfhydryl group (NPSH) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were estimated in colon tissues. Colonic nucleic acids (DNA and RNA) and total protein (TP) concentrations were also determined. Levels of pro-inflammatory cytokines including interleukin-1 beta (IL-1?), tumor necrosis factor-alpha (TNF-?) and interleukin-6 (IL-6) as well as prostaglandin E2 (PGE2) and nitric oxide (NO) were estimated in colonic tissues. The histopathological changes of the colonic tissues were also observed. Results In AA administered group TBARS levels were increased, while colonic mucus content, T-GSH and NP-SH, SOD and CAT were reduced in colon. Pretreatment with GS inhibited TBARS elevation as well as mucus content, T-GSH and NP-SH reduction. Enzymatic activities of SOD and CAT were brought back to their normal levels in GS pretreated group. A significant reduction in DNA, RNA and TP levels was seen following AA administration and this inhibition was significantly eliminated by GS treatment. GS pretreatment also inhibited AA-induced elevation of pro-inflammatory cytokines, PGE2 and NO levels in colon. The apparent UC protection was further confirmed by the histopathological screening. Conclusion The GS leaves extract showed significant amelioration of experimentally induced colitis, which may be attributed to its anti-inflammatory and antioxidant property. PMID:24507431

  13. Intradialytic Changes of Plasma Amino Acid Levels: Effect of Hemodiafiltration with Endogenous Reinfusion versus Acetate-Free Biofiltration

    Microsoft Academic Search

    S. Borrelli; R. Minutolo; L. De Nicola; P. Zamboli; C. Iodice; A. De Paola; E. De Simone; B. Zito; P. Guastaferro; F. Nigro; V. Apperti; G. Iulianiello; O. Credendino; G. Iacono; A. Di Serafino; L. D’Apice; C. Saviano; A. Sarti; M. Capuano; R. Genualdo; M. Auricchio; M. Merola; G. Conte

    2010-01-01

    During hemodialysis, amino acids (AA) are lost in the ultrafiltrate with consequent modification of their plasma profile. The aim of this cross-sectional study was to evaluate intradialytic changes of plasma AA levels during a single session of hemodiafiltration with endogenous reinfusion (HFR) versus acetate-free biofiltration (AFB). 48 patients chronically treated with HFR or AFB were matched 1:1 for age, gender,

  14. Structure-activity relationships (SAR) and structure-kinetic relationships (SKR) of pyrrolopiperidinone acetic acids as CRTh2 antagonists.

    PubMed

    Andrés, Miriam; Buil, Maria Antonia; Calbet, Marta; Casado, Oscar; Castro, Jordi; Eastwood, Paul R; Eichhorn, Peter; Ferrer, Manel; Forns, Pilar; Moreno, Imma; Petit, Silvia; Roberts, Richard S

    2014-11-01

    Pyrrolopiperidinone acetic acids (PPAs) were identified as highly potent CRTh2 receptor antagonists. In addition, many of these compounds displayed slow-dissociation kinetics from the receptor. Structure-kinetic relationship (SKR) studies allowed optimisation of the kinetics to give potent analogues with long receptor residence half-lives of up to 23 h. Low permeability was a general feature of this series, however oral bioavailability could be achieved through the use of ester prodrugs. PMID:25437503

  15. Adsorption of Cu 2+ and Cd 2+ from aqueous solution by mercapto-acetic acid modified orange peel

    Microsoft Academic Search

    Liang Sha; Guo Xueyi; Feng Ningchuan; Tian Qinghua

    2009-01-01

    The present article describes the adsorption behaviors of Cu2+ and Cd2+ on mercapto-acetic acid modified orange peel. The prepared adsorbents were characterized using Malvern Zetasizer, infrared spectrophotometer and infrared C–S analyzer. The effect of various parameters like solution pH, contact time, and initial metal ion concentration on adsorption efficiencies of these two metals were studied systematically by batch experiments. Adsorption

  16. Improved monitoring of female codling moth (Lepidoptera: Tortricidae) with pear ester plus acetic acid in sex pheromone-treated orchards.

    PubMed

    Knight, Alan

    2010-08-01

    The performance of clear delta traps baited with 3.0 mg of pear ester, ethyl (E,Z)-2,4-decadienoate, and 5.0 ml of acetic acid in separate lures was compared with orange delta traps baited with a single lure containing 3.0 mg of both pear ester and the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone) for codling moth, Cydia pomonella (L.), in apple, Malus domestica (Borkhausen). Residual analyses and field tests demonstrated that both the pear ester and acetic acid lures were effective for at least 8 wk. The two trap-lure combinations caught a similar number of total moths in an orchard treated with sex pheromone dispensers during short-term trials in 2008. However, the mean catch of female moths was significantly higher and male moths significantly lower in clear traps baited with pear ester and acetic acid versus orange traps baited with pear ester and codlemone. Season-long studies were conducted with these two trap-lure combinations in orchards treated with (n = 6) and without (n = 7) sex pheromone dispensers during 2009. The two trap-lure combinations caught similar numbers of moths in dispenser-treated orchards. In contrast, total catch was significantly higher (>2-fold) in the orange compared with the clear traps in untreated orchards. The clear caught >6-fold more females than the orange trap in both types of orchards. These studies suggest that deploying clear delta traps baited with pear ester and acetic acid can be an effective monitoring tool for female codling moth and an alternative to codlemone-baited traps in sex pheromone-treated orchards. PMID:22127179

  17. Competitive fragmentation pathways of acetic acid dimer explored by synchrotron VUV photoionization mass spectrometry and electronic structure calculations

    SciTech Connect

    Guan Jiwen; Hu Yongjun; Zou Hao [MOE Key laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Cao Lanlan; Liu Fuyi; Shan Xiaobin; Sheng Liusi [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China)

    2012-09-28

    In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH{sub 3}COOH){sub n}{center_dot}H{sup +}, the feature related to the fragment ions (CH{sub 3}COOH)H{sup +}{center_dot}COO (105 amu) via {beta}-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH{sub 3}COOH){center_dot}H{sup +} and (CH{sub 3}COOH)H{sup +}{center_dot}COO are obtained. With the aid of theoretical calculations, seven fragmentation channels of acetic acid dimer cations were discussed, where five cation isomers of acetic acid dimer are involved. While four of them are found to generate the protonated species, only one of them can dissociate into a C-C bond cleavage product (CH{sub 3}COOH)H{sup +}{center_dot}COO. After surmounting the methyl hydrogen-transfer barrier 10.84 {+-} 0.05 eV, the opening of dissociative channel to produce ions (CH{sub 3}COOH){sup +} becomes the most competitive path. When photon energy increases to 12.4 eV, we also found dimer cations can be fragmented and generate new cations (CH{sub 3}COOH){center_dot}CH{sub 3}CO{sup +}. Kinetics, thermodynamics, and entropy factors for these competitive dissociation pathways are discussed. The present report provides a clear picture of the photoionization and dissociation processes of the acetic acid dimer in the range of the photon energy 9-15 eV.

  18. Synthesis, anti-tubercular activity and 3D-QSAR study of coumarin-4-acetic acid benzylidene hydrazides

    Microsoft Academic Search

    Atul Manvar; Alpeshkumar Malde; Jitender Verma; Vijay Virsodia; Arun Mishra; Kuldip Upadhyay; Hrishikesh Acharya; Evans Coutinho; Anamik Shah

    2008-01-01

    A set of 25 coumarin-4-acetic acid benzylidene hydrazides were synthesized and characterized by NMR, IR and mass spectroscopic techniques. The compounds were evaluated for their anti-tubercular activity against Mycobacterium tuberculosis H37Rv strain using the BACTEC 460 system to determine percentage inhibition. To understand the relationship between structure and activity, a 3D-QSAR analysis has been carried out by Comparative Molecular Field

  19. Stability of the Acetic Acid-Induced Bladder Irritation Model in Alpha Chloralose-Anesthetized Female Cats

    PubMed Central

    Kullmann, F. Aura; Wells, Grace I.; Langdale, Christopher L.; Zheng, Jihong; Thor, Karl B.

    2013-01-01

    Time- and vehicle-related variability of bladder and urethral rhabdosphincter (URS) activity as well as cardiorespiratory and blood chemistry values were examined in the acetic acid-induced bladder irritation model in ?-chloralose-anesthetized female cats. Additionally, bladder and urethra were evaluated histologically using Mason trichrome and toluidine blue staining. Urodynamic, cardiovascular and respiratory parameters were collected during intravesical saline infusion followed by acetic acid (0.5%) to irritate the bladder. One hour after starting acetic acid infusion, a protocol consisting of a cystometrogram, continuous infusion-induced rhythmic voiding contractions, and a 5 min “quiet period” (bladder emptied without infusion) was precisely repeated every 30 minutes. Administration of vehicle (saline i.v.) occurred 15 minutes after starting each of the first 7 cystometrograms and duloxetine (1mg/kg i.v.) after the 8th. Acetic acid infusion into the bladder increased URS-EMG activity, bladder contraction frequency, and decreased contraction amplitude and capacity, compared to saline. Bladder activity and URS activity stabilized within 1 and 2 hours, respectively. Duloxetine administration significantly decreased bladder contraction frequency and increased URS-EMG activity to levels similar to previous reports. Cardiorespiratory parameters and blood gas levels remained consistent throughout the experiment. The epithelium of the bladder and urethra were greatly damaged and edema and infiltration of neutrophils in the lamina propria of urethra were observed. These data provide an ample evaluation of the health of the animals, stability of voiding function and appropriateness of the model for testing drugs designed to evaluate lower urinary tract as well as cardiovascular and respiratory systems function. PMID:24040064

  20. EFFECT OF ACETIC ACID ON CO2 CORROSION OF CARBON STEEL IN VAPOR-WATER TWO-PHASE HORIZONTAL FLOW

    Microsoft Academic Search

    P. C. Okafor; S. Nesic

    2007-01-01

    The effect of acetic acid on the corrosion behavior of X 65 and C 1018 carbon steel in vapor-water two-phase stratified flow (Vsg: 2 m\\/s; Vsl: 0.1 m\\/s) at 2 bars total pressure, 1.54 bars CO2 partial pressure, pH 5.5, and 80°C was studied in a low pressure-high temperature multiphase flow horizontal loop using electrochemical and mass loss techniques. The liquid phase

  1. Functional genomic analysis of the AUXIN\\/INDOLE3ACETIC ACID gene family members in Arabidopsis thaliana

    Microsoft Academic Search

    Paul J. Overvoorde; Yoko Okushima; Jose M. Alonso

    2005-01-01

    Auxin regulates various aspects of plant growth and development. The AUXIN\\/INDOLE-3-ACETIC ACID (Aux\\/IAA) genes encode short-lived transcriptional repressors that are targeted by the TRANSPORT INHIBITOR RESPONSE1\\/AUXIN RECEPTOR F-BOX proteins. The Aux\\/IAA proteins regulate auxin-mediated gene expression by interacting with members of the AUXIN RESPONSE FACTOR protein family. Aux\\/IAA function is poorly understood; herein, we report the identification and characterization of

  2. Development of a novel enzyme\\/prodrug combination for gene therapy of cancer: horseradish peroxidase\\/indole-3-acetic acid

    Microsoft Academic Search

    Olga Greco; Lisa K Folkes; Peter Wardman; Gillian M Tozer; Gabi U Dachs

    2000-01-01

    This paper demonstrates the potential for utilizing the plant enzyme, horseradish peroxidase (HRP), in a gene-directed enzyme prodrug therapy context. Human T24 bladder carcinoma cells transfected with a mammalian expression vector containing the HRP cDNA were selectively sensitized to the nontoxic plant hormone, indole-3-acetic acid (IAA). The HRP\\/IAA-induced cell kill was effective in normoxic and anoxic conditions. The activated drug

  3. A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue

    Microsoft Academic Search

    Lana S. Barkawi; Yuen-Yee Tam; Julie A. Tillman; Ben Pederson; Jessica Calio; Hussein Al-Amier; Michael Emerick; Jennifer Normanly; Jerry D. Cohen

    2008-01-01

    To investigate novel pathways involved in auxin biosynthesis, transport, metabolism, and response, we have developed a high-throughput screen for indole-3-acetic acid (IAA) levels. Historically, the quantitative analysis of IAA has been a cumbersome and time-consuming process that does not lend itself to the screening of large numbers of samples. The method described here can be performed with or without an

  4. Fabrication of titania nanocoatings on ZnS-type phosphors using titanium precursor modified by glacial acetic acid

    Microsoft Academic Search

    Jiongliang Yuan; Dadi Chen; Miaomiao Yang; Pan Yue

    2007-01-01

    In order to suppress fast degradation of ZnS-type phosphors applied in field emission displays (FEDs), the surface coating and encapsulation are expected to be an effective way. The titania nanocoatings are obtained by a sol–gel route using tetrabutyl titanate (TBT) as the precursor in this paper. With the addition of the glacial acetic acid (HAc), due to the formation of

  5. Oxidation of indole-3-acetic acid by horseradish peroxidase induces apoptosis in G361 human melanoma cells

    Microsoft Academic Search

    Dong-Seok Kim; Sang-Eun Jeon; Kyoung-Chan Park

    2004-01-01

    The combination of indole-3-acetic acid (IAA) and horseradish peroxidase (HRP) has recently been proposed as a novel cancer therapy. However, the mechanism underlying the cytotoxic effect involved is substantially unknown. Here, we show that IAA\\/HRP treatment induces apoptosis in G361 human melanoma cells, whereas IAA or HRP alone have no effect. It is known that IAA produces free radicals when

  6. Ecosystem-scale compensation points of formic and acetic acid in the central Amazon

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Yañez Serrano, A.; Arneth, A.; Abrell, L.; Jardine, A.; Artaxo, P.; Alves, E.; Kesselmeier, J.; Taylor, T.; Saleska, S.; Huxman, T.

    2011-12-01

    Organic acids, central to terrestrial carbon metabolism and atmospheric photochemistry, are ubiquitous in the troposphere in the gas, particle, and aqueous phases. As the dominant organic acids in the atmosphere, formic acid (FA, HCOOH) and acetic acid (AA, CH3COOH) control precipitation acidity in remote regions and may represent a critical link between the terrestrial carbon and water cycles by acting as key intermediates in plant carbon and energy metabolism and aerosol-cloud-precipitation interactions. However, our understanding of the exchange of these acids between terrestrial ecosystems and the atmosphere is limited by a lack of field observations, the existence of biogenic and anthropogenic primary and secondary sources whose relative importance is unclear, and the fact that vegetation can act as both a source and a sink. Here, we first present data obtained from the tropical rainforest mesocosm at Biosphere 2 which isolates primary vegetation sources. Strong light and temperature dependent emissions enriched in FA relative to AA were simultaneously observed from individual branches (FA/AA = 3.0 ± 0.7) and mesocosm ambient air (FA/AA = 1.4 ± 0.3). We also present long-term observations of vertical concentration gradients of FA and AA within and above a primary rainforest canopy in the central Amazon during the 2010 dry and 2011 wet seasons. We observed a seasonal switch from net ecosystem-scale deposition during the dry season to net emissions during the wet season. This switch was associated with reduced ambient concentrations in the wet season (FA < 1.3 nmol mol-1, AA < 2.0 nmol mol-1) relative to the dry season (FA up to 3.3 nmol mol-1, AA up to 6.0 nmol mol-1), and a simultaneous increase in the FA/AA ambient concentration ratios from 0.3-0.8 in the dry season to 1.0-2.1 in the wet season. These observations are consistent with a switch between a biomass burning dominated source in the dry season (FA/AA < 1.0) to a vegetation dominated source in the wet season (FA/AA > 1.0). Our observations provide the first ecosystem-scale evidence of bidirectional FA and AA exchange between a forest canopy and the atmosphere controlled by ambient concentrations and ecosystem scale compensation points (estimated to be 1.3 ± 0.3 nmol mol-1: FA, and 2.1 ± 0.4 nmol mol-1: AA). These results suggest the need for a fundamental change in how future biosphere-atmosphere exchange models should treat FA and AA with a focus on factors that influence net exchange rates (ambient concentrations and ecosystem compensation points) rather than treating emissions and deposition separately.

  7. Ecosystem-scale compensation points of formic and acetic acid in the central Amazon

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Yañez Serrano, A.; Arneth, A.; Abrell, L.; Jardine, A.; Artaxo, P.; Alves, E.; Kesselmeier, J.; Taylor, T.; Saleska, S.; Huxman, T.

    2011-09-01

    Organic acids, central to terrestrial carbon metabolism and atmospheric photochemistry, are ubiquitous in the troposphere in the gas, particle, and aqueous phases. As the dominant organic acids in the atmosphere, formic acid (FA, HCOOH) and acetic acid (AA, CH3COOH) control precipitation acidity in remote regions and may represent a critical link between the terrestrial carbon and water cycles by acting as key intermediates in plant carbon and energy metabolism and aerosol-cloud-precipitation interactions. However, our understanding of the exchange of these acids between terrestrial ecosystems and the atmosphere is limited by a lack of field observations, the existence of biogenic and anthropogenic primary and secondary sources whose relative importance is unclear, and the fact that vegetation can act as both a source and a sink. Here, we first present data obtained from the tropical rainforest mesocosm at Biosphere 2 which isolates primary vegetation sources. Strong light and temperature dependent emissions enriched in FA relative to AA were simultaneously observed from individual branches (FA/AA = 2.1 ± 0.6) and mesocosm ambient air (FA/AA = 1.4 ± 0.3). We also present long-term observations of vertical concentration gradients of FA and AA within and above a primary rainforest canopy in the central Amazon during the 2010 dry and 2011 wet seasons. We observed a seasonal switch from net ecosystem-scale deposition during the dry season to net emissions during the wet season. This switch was associated with reduced ambient concentrations in the wet season (FA < 1.3 nmol mol-1, AA < 2.0 nmol mol-1) relative to the dry season (FA up to 3.3 nmol mol-1, AA up to 6.0 nmol mol-1), and a simultaneous increase in the FA/AA ambient concentration ratios from 0.3-0.8 in the dry season to 1.0-2.1 in the wet season. These observations are consistent with a switch between a biomass burning dominated source in the dry season (FA/AA < 1.0) to a vegetation dominated source in the wet season (FA/AA > 1.0). Our observations provide the first ecosystem-scale evidence of bidirectional FA and AA exchange between a forest canopy and the atmosphere controlled by ambient concentrations and ecosystem scale compensation points (estimated to be 1.3 nmol mol-1: FA, and 2.1 nmol mol-1: AA). These results suggest the need for a fundamental change in how future biosphere-atmosphere exchange models should treat FA and AA with a focus on factors that influence net exchange rates (ambient concentrations and ecosystem compensation points) rather than treating emissions and deposition separately.

  8. Ecosystem-Scale Compensation Point Analysis of Formic and Acetic Acid in the Central Amazon

    NASA Astrophysics Data System (ADS)

    Yanez-Serrano, A. M.; Jardine, K. J.; Arneth, A.; Abrell, L.; Jardine, A. B.; Artaxo, P.; Gomes, E.; Kesselmeier, J.; Saleska, S. R.; Huxman, T. E.

    2011-12-01

    Organic acids, central to terrestrial carbon metabolism and atmospheric photochemistry, are ubiquitous in the troposphere in the gas, particle, and aqueous phases. As the dominant organic acids in the atmosphere, formic acid (FA, HCOOH) and acetic acid (AA, CH3COOH) control precipitation acidity in remote regions and may represent a critical link between the terrestrial carbon and water cycles by acting as key intermediates in plant carbon and energy metabolism and aerosol-cloud-precipitation interactions. However, our understanding of the exchange of these acids between terrestrial ecosystems and the atmosphere is limited by a lack of field observations, the existence of biogenic and anthropogenic primary and secondary sources whose relative importance is unclear, and the fact that vegetation can act as both a source and a sink. Here, we present results from the tropical rainforest mescosom at Biosphere 2 which isolates primary vegetation sources. Strong light and temperature dependent emissions of FA and AA were simultaneously observed from individual branches and mesocosm ambient air with a strong enrichment in FA (FA/AA = 1.4 +/- 0.3, R2 of 0.89 +/- 0.10). We also present long-term observations of vertical concentration gradients of FA and AA within and above a primary rainforest canopy in central Amazonia during the 2010 dry and 2011 wet seasons. We observed a seasonal switch from net ecosystem-scale deposition during the dry season to net emissions during the wet season. This switch was associated with reduced ambient concentrations in the wet season (FA < 1.3 ppbv, AA < 2.0 ppbv) relative to the dry season (FA up to 3.3 ppbv, AA up to 6.0 ppbv), and a simultaneous increase in the FA/AA ambient concentration ratios from 0.3-0.8 in the dry season to 1.0-2.1 in the wet season. These observations are consistent with a switch between a biomass burning dominated source in the dry season (FA/AA < 1.0) to a vegetation dominated source in the wet season and call into question the view that secondary production of FA and AA from biogenic precursors like isoprene are the largest atmospheric source. Our observations provide the first ecosystem-scale evidence of bidirectional FA and AA exchange between a forest canopy and the atmosphere controlled by ambient concentrations and ecosystem scale compensation points (estimated to be 1.3 ppbv: FA, and 2.1 ppbv: AA). These results suggest the need for a fundamental change in how future biosphere-atmosphere exchange models should treat FA and AA with a focus on factors that influence net exchange rates (ambient concentrations and ecosystem compensation points) rather than treating emissions and deposition separately.

  9. [Identification of industrial strains of lactic acid bacteria by methods of molecular genetic typing].

    PubMed

    Botina, S G; Tsygankov, Iu D; Sukhodolets, V V

    2006-12-01

    Various methods currently used in microbiology for determining taxonomic state of bacteria are discussed. The main focus is aimed at identifying and gene typing of lactic acid bacteria, used as starter cultures for industrial process of production of sour milk products, meat products, and probiotics. PMID:17326382

  10. Study of the Possible Mechanisms Involved in the Mucosal Immune System Activation by Lactic Acid Bacteria

    Microsoft Academic Search

    G. Perdigón; E. Vintiñi; S. Alvarez; M. Medina; M. Medici

    1999-01-01

    The induction of a mucosal immune response is not easy due to the development of oral tolerance, but under some conditions, bacteria can activate this im- mune system. Antigens administered orally can inter- act with M cells of Peyer's patches or bind to the epithelial cells. We have demonstrated that certain lactic acid bacteria are able to induce specific secre-

  11. Comparative genomics of lactic acid bacteria reveals a niche-specific gene set

    Microsoft Academic Search

    Orla O'Sullivan; John O'Callaghan; Amaia Sangrador-Vegas; Olivia McAuliffe; Lydia Slattery; Pawel Kaleta; Michael Callanan; Gerald F Fitzgerald; R Paul Ross; Tom Beresford

    2009-01-01

    BACKGROUND: The recently sequenced genome of Lactobacillus helveticus DPC4571 1 revealed a dairy organism with significant homology (75% of genes are homologous) to a probiotic bacteria Lb. acidophilus NCFM 2. This led us to hypothesise that a group of genes could be determined which could define an organism's niche. RESULTS: Taking 11 fully sequenced lactic acid bacteria (LAB) as our

  12. PRODUCTION OF VOLATILE FATTY ACIDS BY STRICTLY ANAEROBIC BACTERIA IN THE DIGESTIVE TRACT OF GNOTOXENIC MICE.

    E-print Network

    Paris-Sud XI, Université de

    SUMMARY PRODUCTION OF VOLATILE FATTY ACIDS BY STRICTLY ANAEROBIC BACTERIA IN THE DIGESTIVE TRACT OF « GNOTOXENIC » MICE. INHIBITORY EFFECT ON SHIGELLA FLEXNERI Various strains of strictly anaerobic bacteria of holoxenic animals, were implanted in the digestive tract of axenic mice. The in vivo production of VFA

  13. Short communication Metatranscriptome analysis of lactic acid bacteria during kimchi fermentation with

    E-print Network

    Bae, Jin-Woo

    Short communication Metatranscriptome analysis of lactic acid bacteria during kimchi fermentation microbial diversity and biological activity during the fermentation of kimchi, a traditional Korean. Metagenomic analysis revealed 23 LAB related to kimchi fermentation [defined as bacteria with more than a 1

  14. Strong Synergy between a Eukaryotic Antimicrobial Peptide and Bacteriocins from Lactic Acid Bacteria

    Microsoft Academic Search

    Torben Luders; Gunn Alice Birkemo; Gunnar Fimland; Jon Nissen-Meyer; Ingolf F. Nes

    2003-01-01

    The antimicrobial effect obtained upon combining the prokaryotic antimicrobial peptides (AMPs; more commonly referred to as bacteriocins) pediocin PA-1, sakacin P, and curvacin A (all produced by lactic acid bacteria (LAB)) with the eukaryotic AMP pleurocidin (from fish) has been investigated. The three LAB AMPs alone were active against gram-positive Listeria ivanovii bacteria at nanomolar concentrations, whereas they were inactive

  15. Density Functional Investigation of the Adsorption of Isooctane, Ethanol, and Acetic Acid on a Water-Covered Fe(100) Surface

    PubMed Central

    2014-01-01

    The presence of water in biofuels poses the question of how it affects the frictional performance of additives in fuels containing organic substances. To investigate the effect of water on the adsorption of molecules present in fuel and its additives we simulated within the framework of density functional theory the adsorption of ethanol, isooctane (2,2,4-trimethylpentane), and acetic acid on a bare and a water-covered Fe(100) surface. Van der Waals interactions are taken into account in our computations. In those molecules, where dispersion forces contribute significantly to the binding mechanism, the water layer has a stronger screening effect. Additionally, this effect can be enhanced by the presence of polar functional groups in the molecule. Thus, with the introduction of a water layer, the adsorption energy of isooctane and ethanol is reduced but it is increased in the case of the acetic acid. The adsorption configuration of ethanol is changed, while the one of acetic acid is moderately, and for isooctane only very slightly altered. Therefore, the effect of a water layer in the adsorption of organic molecules on an Fe(100) surface strongly depends on the type of bond and consequently, so do the tribological properties. PMID:25243045

  16. Density Functional Investigation of the Adsorption of Isooctane, Ethanol, and Acetic Acid on a Water-Covered Fe(100) Surface.

    PubMed

    Bedolla, Pedro O; Feldbauer, Gregor; Wolloch, Michael; Gruber, Christoph; Eder, Stefan J; Dörr, Nicole; Mohn, Peter; Redinger, Josef; Vernes, András

    2014-09-18

    The presence of water in biofuels poses the question of how it affects the frictional performance of additives in fuels containing organic substances. To investigate the effect of water on the adsorption of molecules present in fuel and its additives we simulated within the framework of density functional theory the adsorption of ethanol, isooctane (2,2,4-trimethylpentane), and acetic acid on a bare and a water-covered Fe(100) surface. Van der Waals interactions are taken into account in our computations. In those molecules, where dispersion forces contribute significantly to the binding mechanism, the water layer has a stronger screening effect. Additionally, this effect can be enhanced by the presence of polar functional groups in the molecule. Thus, with the introduction of a water layer, the adsorption energy of isooctane and ethanol is reduced but it is increased in the case of the acetic acid. The adsorption configuration of ethanol is changed, while the one of acetic acid is moderately, and for isooctane only very slightly altered. Therefore, the effect of a water layer in the adsorption of organic molecules on an Fe(100) surface strongly depends on the type of bond and consequently, so do the tribological properties. PMID:25243045

  17. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid.

    PubMed

    Abubackar, Haris Nalakath; Veiga, María C; Kennes, Christian

    2015-06-01

    Fermentation of CO or syngas offers an attractive route to produce bioethanol. However, during the bioconversion, one of the challenges to overcome is to reduce the production of acetic acid in order to minimize recovery costs. Different experiments were done with Clostridium autoethanogenum. With the addition of 0.75?M tungsten, ethanol production from carbon monoxide increased by about 128% compared to the control, without such addition, in batch mode. In bioreactors with continuous carbon monoxide supply, the maximum biomass concentration reached at pH 6.0 was 109% higher than the maximum achieved at pH 4.75 but, interestingly, at pH 4.75, no acetic acid was produced and the ethanol titer reached a maximum of 867mg/L with minor amounts of 2,3-butanediol (46mg/L). At the higher pH studied (pH 6.0) in the continuous gas-fed bioreactor, almost equal amounts of ethanol and acetic acid were formed, reaching 907.72mg/L and 910.69mg/L respectively. PMID:25812815

  18. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  19. Succession of Selected Strains of Acetobacter pasteurianus and Other Acetic Acid Bacteria in Traditional Balsamic Vinegar

    Microsoft Academic Search

    Maria Gullo; Luciana De Vero; Paolo Giudici

    2009-01-01

    The application of a selected Acetobacter pasteurianus strain for traditional balsamic vinegar production was assessed. Genomic DNA was extracted from biofilms after enrichment cultures on GYC medium (10% glucose, 1.0% yeast extract, 2.0% calcium carbonate) and used for PCR\\/denaturing gradient gel electrophoresis, 16S rRNA gene sequencing, and enterobacterial repetitive intergenic consensus\\/PCR sequencing. Results suggested that double-culture fermentation is suitable for

  20. Dietary supplementation with tributyrin alleviates intestinal injury in piglets challenged with intrarectal administration of acetic acid.

    PubMed

    Hou, Yongqing; Wang, Lei; Yi, Dan; Ding, Binying; Chen, Xing; Wang, Qingjing; Zhu, Huiling; Liu, Yulan; Yin, Yulong; Gong, Joshua; Wu, Guoyao

    2014-05-28

    Tributyrin (TBU) is a good dietary source of butyrate and has beneficial effects on the maintenance of normal intestinal morphology. The present study tested the hypothesis that dietary TBU supplementation could alleviate intestinal injury in the acetic acid (ACA)-induced porcine model of colitis. A total of eighteen piglets (25 d old) were randomly allocated to one of three treatment groups (control, ACA and TBU). The control and ACA groups were fed a basal diet and the TBU group was fed the basal diet supplemented with 0·1 % TBU. On day 15 of the trial, under anaesthesia, a soft catheter was inserted into the rectum of piglets (20-25 cm from the anus), followed by administration of either saline (control group) or ACA (10 ml of 10 % ACA solution for ACA and TBU groups). On day 22 of the trial, after venous blood samples were collected, piglets were killed to obtain mid-ileum and mid-colon mucosae. Compared with the control group, the ACA group exhibited an increase (P< 0·05) in lymphocyte counts, creatinine, PGE2, and malondialdehyde concentrations and diamine oxidase and inducible NO synthase activities in the plasma and lymphocyte density in the colon and a decrease in insulin concentrations and glutathione peroxidase activity, ileal villus height:crypt depth ratios and goblet cell numbers in the colon. These adverse effects of ACA were attenuated by TBU supplementation. Moreover, TBU prevented the ACA-induced increase in caspase-3 levels while enhancing claudin-1 protein and epidermal growth factor receptor (EGFR) mRNA expression in the colonic mucosa. Collectively, these results indicate that dietary supplementation with 0·1 % TBU alleviates ACA-induced intestinal injury possibly by inhibiting apoptosis, promoting tight-junction formation and activating EGFR signalling. PMID:24506942

  1. Transcriptional regulation of the iac locus from Acinetobacter baumannii by the phytohormone indole-3-acetic acid.

    PubMed

    Shu, Hung-Yu; Lin, Ling-Chun; Lin, Tze-Kang; Chen, Hao-Ping; Yang, Hsueh-Hui; Peng, Kou-Cheng; Lin, Guang-Huey

    2015-05-01

    The iac locus is involved in indole-3-acetic acid (IAA) catabolism in Acinetobacter baumannii. Nine structural genes of iac are transcribed in the same direction, whereas iacR, which encodes a MarR-type transcriptional regulator, is transcribed in the opposite direction. The IacA protein, which is encoded by the second structural gene of the iac locus, is expressed in an IAA-dependent manner. Here, we characterized gene expression from this locus in wild type A. baumannii and in an iacR mutant; this revealed that the iacH promoter is negatively regulated by IacR. The transcriptional site of iacH was determined by using 5' rapid amplification of cDNA ends; one IacR-binding site was identified between positions -35 and +28 of the iacH promoter. Sequence analysis and an electrophoretic mobility shift assay indicated that recombinant IacR binds specifically to a sequence with dyad symmetry in the iacR-iacH overlapping promoters in the absence of IAA. In addition, a two-plasmid expression system in Escherichia coli showed that IAA probably serves as a ligand that binds to IacR and releases it from the iacH promoter, thereby allowing RNA polymerase to transcribe iac. Thus, iac is expressed in order to promote IAA degradation, whereas free IacR is required for iac repression. We conclude that IacR serves as a key regulator of IAA degradation in A. baumannii in the rhizosphere. These results provide new insights into the possible role of A. baumannii in the environment. PMID:25726082

  2. Evaluation of adsorption effects on measurements of ammonia, acetic acid, and methanol

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Christian, T. J.; Bertschi, I. T.; Hao, W. M.

    2003-10-01

    We examined how adsorption and desorption of gases from inlets and a cell could affect the accuracy of closed-cell FTIR measurements of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nitric oxide (NO), nitrogen dioxide (NO2), methanol (CH3OH), acetic acid (CH3COOH), and ammonia (NH3). When standards were delivered to the cell through a stainless steel inlet, temporarily reduced transmission was observed for CH3OH and NH3. However, a halocarbon wax coated inlet (normally used on the system) had excellent transmission (comparable to room temperature Teflon) for both CH3OH and NH3, even at temperatures as low as 5°C. Thus the wax is valuable for coating sampling system components that cannot be fashioned from Teflon. The instrument had a delayed response (˜10-40 s) for NH3 only, which was attributed to passivation of the Pyrex multipass cell. To determine sampling artifacts that could arise from the complex sample matrix presented by smoke, the closed-cell FTIR system was intercompared with an open-path FTIR system (which is immune to sampling artifacts) in well-mixed smoke. A similar cell passivation delay for NH3 was the only artifact found in this test. Overall, the results suggest that ˜10 s is sufficient to detect >80% of an NH3/CO ratio sampled by our fast-flow, closed-cell system. Longer sampling times or consecutive samples return better results. In field campaigns the closed-cell system sampling times were normally 10 to >100 s so NH3 was probably underestimated by 5-15%.

  3. Inactivation of Listeria monocytogenes on frankfurters by monocaprylin alone or in combination with acetic acid.

    PubMed

    Garcia, Marilyn; Amalaradjou, Mary Anne Roshni; Nair, Manoj Kumar Mohan; Annamalai, Thirunavukkarasu; Surendranath, Suman; Lee, Seok; Hoagland, Thomas; Dzurec, David; Faustman, Cameron; Venkitanarayanan, Kumar

    2007-07-01

    The antilisterial activity of monocaprylin (MC) and its combination with acetic acid (AA) on frankfurters was investigated. Each frankfurter was surface inoculated with a three-strain mixture of Listeria monocytogenes to obtain an inoculation level of 4.0 log CFU per frankfurter, and then dipped for 35 s in sterile deionized water (45 or 50 degrees C) containing 1% ethanol (control), 50 mM MC plus 1% ethanol, 1% AA plus 1% ethanol, or 50 mM MC plus 1% AA plus 1% ethanol. Samples were vacuum packaged, stored at 4 degrees C for 77 days, and analyzed for L. monocytogenes. Sensory odor and color of frankfurters were evaluated using a 9-point hedonic scale. Color was also objectively measured using the Minolta Chroma Meter. From day 0 to day 77, population counts of L. monocytogenes on frankfurters dipped in antimicrobial solutions at 50 degrees C were consistently lower than the control counts. Similar results were observed for samples treated at 45 degrees C. However, L. monocytogenes grew readily on control samples at both temperatures. Dipping of frankfurters in antimicrobial solutions (45 or 50 degrees C) significantly reduced (P < 0.05) the populations of L. monocytogenes. After 70 days of storage, L. monocytogenes was completely killed in samples dipped in MC+AA solution at 50 degrees C. The antimicrobial treatments did not affect the odor or color of the samples (P > 0.05). Overall, results indicated that dipping of frankfurters with MC reduced L. monocytogenes, and inclusion of AA further enhanced MC antilisterial activity, without any negative effect on odor or color. PMID:17685330

  4. The biosynthesis and conjugation of indole-3-acetic acid in germinating seed and seedlings of Dalbergia dolichopetala

    Microsoft Academic Search

    A. M. Monteiro; A. Crozier; G. Sandberg

    1988-01-01

    Germinating seed ofDalbergia dolichopetala converted both [2H5]l-tryptophan and [2H5]indole-3-ethanol to [2H5]indole-3-acetic acid (IAA). Metabolism of [2'-14C]IAA resulted in the production of indole-3-acetylaspartic acid (IAAsp), as well as several unidentified components, referred to as metabolites I, II, IV and V. Re-application of [14C]IAAsp to the germinating seed led to the accumulation of the polar, water-soluble compound, metabolite V, as the major

  5. A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue.

    PubMed

    Barkawi, Lana S; Tam, Yuen-Yee; Tillman, Julie A; Pederson, Ben; Calio, Jessica; Al-Amier, Hussein; Emerick, Michael; Normanly, Jennifer; Cohen, Jerry D

    2008-01-15

    To investigate novel pathways involved in auxin biosynthesis, transport, metabolism, and response, we have developed a high-throughput screen for indole-3-acetic acid (IAA) levels. Historically, the quantitative analysis of IAA has been a cumbersome and time-consuming process that does not lend itself to the screening of large numbers of samples. The method described here can be performed with or without an automated liquid handler and involves purification solely by solid-phase extraction in a 96-well format, allowing the analysis of up to 96 samples per day. In preparation for quantitative analysis by selected ion monitoring-gas chromatography-mass spectrometry, the carboxylic acid moiety of IAA is derivatized by methylation. The derivatization of the IAA described here was also done in a 96-well format in which up to 96 samples can be methylated at once, minimizing the handling of the toxic reagent, diazomethane. To this end, we have designed a custom diazomethane generator that can safely withstand high flow and accommodate larger volumes. The method for IAA analysis is robust and accurate over a range of plant tissue weights and can be used to screen for and quantify other indolic auxins and compounds including indole-3-butyric acid, 4-chloro-indole-3-acetic acid, and indole-3-propionic acid. PMID:17889819

  6. Significance of pantothenate for glucose fermentation by Oenococcus oeni and for suppression of the erythritol and acetate production

    Microsoft Academic Search

    Hanno Richter; Dorina Vlad; Gottfried Unden

    2001-01-01

    The heterofermentative lactic acid bacterium Oenococcus oeni requires pantothenic acid for growth. In the presence of sufficient pantothenic acid, glucose was converted by heterolactic fermentation stoichiometrically to lactate, ethanol and CO2. Under pantothenic acid limitation, substantial amounts of erythritol, acetate and glycerol were produced by growing and resting bacteria. Production of erythritol and glycerol was required to compensate for the

  7. Recovering/concentrating of hemicellulosic sugars and acetic acid by nanofiltration and reverse osmosis from prehydrolysis liquor of kraft based hardwood dissolving pulp process.

    PubMed

    Ahsan, Laboni; Jahan, M Sarwar; Ni, Yonghao

    2014-03-01

    This work investigated the feasibility of recovering and concentrating sugars and acetic acid (HAc) from prehydrolysis liquor (PHL) of the kraft-based dissolving pulp process prior to fermentation of hemicellulosic sugars, by the combination of activated carbon adsorption, nanofiltration (NF) and reverse osmosis (RO) processes. To reduce the fouling PHL was subjected to adsorption on activated carbon, then the treated PHL (TPHL) passed through a nanofiltration (NF DK) membrane to retain the sugars, and the permeate of acetic acid rich solution was passed through a reverse osmosis membrane (RO SG). It was found that for NF process sugars were concentrated from 48 to 227g/L at a volume reduction factor (VRF) of 5 while 80 to 90% of acetic acid was permeated. For the reverse osmosis process, 68% of acetic acid retention was achieved at pH 4.3 and 500 psi pressure and the HAc concentration increased from 10 to 50g/L. PMID:24434701

  8. Nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria with C2/C3 fatty acid in upflow anaerobic sludge blanket reactors.

    PubMed

    Liang, Yuhai; Li, Dong; Zhang, Xiaojing; Zeng, Huiping; Yang, Yin; Zhang, Jie

    2015-10-01

    In anaerobic ammonium oxidation (Anammox) process, a harsh ratio of nitrite to ammonia in influent was demanded, and the max nitrogen removal efficiency could only achieve to 89%, both of which limited the development of Anammox. The aim of this work was to study the nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria (AAOB) with C2/C3 fatty acid in upflow anaerobic sludge blanket (UASB) reactors. In this study, organotrophic AAOB was successfully enriched by adding acetate and propionate with the total organic carbon to nitrogen (TOC/N) ratio of 0.1. In the condition of low substrate, the TN removal efficiency reached 90%, with the effluent TN of around 11.8mgL(-1). After the addition of acetate and propionate, the predominant species in Anammox granular sludge transformed to Candidatus Jettenia that belonging to organotrophic AAOB from the Candidatus Kuenenia relating to general AAOB. PMID:26151852

  9. Rumen bacteria capable of growth on peptides and amino acids as sole source of energy : numbers and their

    E-print Network

    Paris-Sud XI, Université de

    Rumen bacteria capable of growth on peptides and amino acids as sole source of energy : numbers of the present experiments were to enumerate the latter group of bacteria in the sheep rumen and to assess 20 mg/ml Trypticase or amino acids with or without 5 pM monensin. Bacteria growing on Trypticase

  10. The Aerobic Oxidation of Bromide to Dibromine Catalyzed by Homogeneous Oxidation Catalysts and Initiated by Nitrate in Acetic Acid

    SciTech Connect

    Partenheimer, Walt; Fulton, John L.; Sorensen, Christina M.; Pham, Van Thai; Chen, Yongsheng

    2014-06-01

    A small amount of nitrate, ~0.002 molal, initiates the Co/Mn catalyzed aerobic oxidation of bromide compounds (HBr,NaBr,LiBr) to dibromine in acetic acid at room temperature. At temperatures 40oC or less , the reaction is autocatalytic. Co(II) and Mn(II) themselves and mixed with ionic bromide are known homogeneous oxidation catalysts. The reaction was discovered serendipitously when a Co/Br and Co/Mn/Br catalyst solution was prepared for the aerobic oxidation of methyaromatic compounds and the Co acetate contained a small amount of impurity i.e. nitrate. The reaction was characterized by IR, UV-VIS, MALDI and EXAFS spectroscopies and the coordination chemistry is described. The reaction is inhibited by water and its rate changed by pH. The change in these variables, as well as others, are identical to those observed during homogeneous, aerobic oxidation of akylaromatics. A mechanism is proposed. Accidental addition of a small amount of nitrate compound into a Co/Mn/Br/acetic acid mixture in a large, commercial feedtank is potentially dangerous.

  11. Aerobic Heterotrophic Bacteria Indigenous to pH 2.8 Acid Mine Water: Microscopic Examination of Acid Streamers

    PubMed Central

    Dugan, Patrick R.; MacMillan, Carol B.; Pfister, Robert M.

    1970-01-01

    Acid streamers” found in acid coal mine drainage consist of bacteria trapped within an extracellular fibrillar polymer network. Inorganic compounds also precipitate within the polymer network. Several bacteria which appear to be different and are presumed to be different species are associated in the slimy mass of the “acid streamers.” The “streamers” contain individual microcolonies or microcosms that can be recognized by a selective polysaccharide stain, which suggests that the slime streamer is a conglomeration of polymers produced by more than one species. Images PMID:4191322

  12. Antibacterial Activity of Some Lactic Acid Bacteria Isolated from an Algerian Dairy Product

    PubMed Central

    Mezaini, Abdelkader; Chihib, Nour-Eddine; Dilmi Bouras, Abdelkader; Nedjar-Arroume, Naima; Hornez, Jean Pierre

    2009-01-01

    In the present study, the antibacterial effect of 20 lactic acid bacteria isolates from a traditional cheese was investigated. 6 isolates showed antibacterial effect against Gram positive bacteria. Streptococcus thermophilus T2 strain showed the wide inhibitory spectrum against the Gram positive bacteria. Growth and bacteriocin production profiles showed that the maximal bacteriocin production, by S. thermophilus T2 cells, was measured by the end of the late-log phase (90 AU ml?1) with a bacteriocine production rate of 9.3 (AU ml?1) h?1. In addition, our findings showed that the bacteriocin, produced by S. thermophilus T2, was stable over a wide pH range (4–8); this indicates that such bacteriocin may be useful in acidic as well as nonacidic food. This preliminarily work shows the potential application of autochthonous lactic acid bacteria to improve safety of traditional fermented food. PMID:20041021

  13. Conversion of biomass to organic acid using the rumen bacteria Bacteroides succinogenes 

    E-print Network

    Lo, Tsuey-er

    1992-01-01

    solution was added and the procedure previously described for neutral- detergent was conducted. Lignin was oxidized with an excess of acetic acid buffered 30 by a potassium permanganate solution. After washing the sample with a demineralizing solution... or lignin, can be digested by acid-detergent, its amount in the cell can be determined on the basis of this solubility. The exact nature of hemicellulose has not been elucidated; however, it is a mixture of unmodified glycans, coinposed of pentose...

  14. Metabolite changes during natural and lactic acid bacteria fermentations in pastes of soybeans and soybean-maize blends.

    PubMed

    Ng'ong'ola-Manani, Tinna Austen; Ostlie, Hilde Marit; Mwangwela, Agnes Mbachi; Wicklund, Trude

    2014-11-01

    The effect of natural and lactic acid bacteria (LAB) fermentation processes on metabolite changes in pastes of soybeans and soybean-maize blends was studied. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and were fermented by lactic acid bacteria (LFP). LAB fermentation processes were facilitated through back-slopping using a traditional fermented gruel, thobwa as an inoculum. Naturally fermented pastes were designated 100S, 90S, and 75S, while LFP were designated 100SBS, 90SBS, and 75SBS. All samples, except 75SBS, showed highest increase in soluble protein content at 48 h and this was highest in 100S (49%) followed by 90SBS (15%), while increases in 100SBS, 90S, and 75S were about 12%. Significant (P < 0.05) increases in total amino acids throughout fermentation were attributed to cysteine in 100S and 90S; and methionine in 100S and 90SBS. A 3.2% increase in sum of total amino acids was observed in 75SBS at 72 h, while decreases up to 7.4% in 100SBS at 48 and 72 h, 6.8% in 100S at 48 h and 4.7% in 75S at 72 h were observed. Increases in free amino acids throughout fermentation were observed in glutamate (NFP and 75SBS), GABA and alanine (LFP). Lactic acid was 2.5- to 3.5-fold higher in LFP than in NFP, and other organic acids detected were acetate and succinate. Maltose levels were the highest among the reducing sugars and were two to four times higher in LFP than in NFP at the beginning of the fermentation, but at 72 h, only fructose levels were significantly (P < 0.05) higher in LFP than in NFP. Enzyme activities were higher in LFP at 0 h, but at 72 h, the enzyme activities were higher in NFP. Both fermentation processes improved nutritional quality through increased protein and amino acid solubility and degradation of phytic acid (85% in NFP and 49% in LFP by 72 h). PMID:25493196

  15. Protective effects of N-acetylcysteine on acetic acid-induced colitis in a porcine model

    PubMed Central

    2013-01-01

    Background Ulcerative colitis is a chronic inflammatory disease and involves multiple etiological factors. Acetic acid (AA)-induced colitis is a reproducible and simple model, sharing many characteristics with human colitis. N-acetylcysteine (NAC) has been widely used as an antioxidant in vivo and in vitro. NAC can affect several signaling pathways involving in apoptosis, angiogenesis, cell growth and arrest, redox-regulated gene expression, and inflammatory response. Therefore, NAC may not only protect against the direct injurious effects of oxidants, but also beneficially alter inflammatory events in colitis. This study was conducted to investigate whether NAC could alleviate the AA-induced colitis in a porcine model. Methods Weaned piglets were used to investigate the effects of NAC on AA-induced colitis. Severity of colitis was evaluated by colon histomorphology measurements, histopathology scores, tissue myeloperoxidase activity, as well as concentrations of malondialdehyde and pro-inflammatory mediators in the plasma and colon. The protective role of NAC was assessed by measurements of antioxidant status, growth modulator, cell apoptosis, and tight junction proteins. Abundances of caspase-3 and claudin-1 proteins in colonic mucosae were determined by the Western blot method. Epidermal growth factor receptor, amphiregulin, tumor necrosis factor-alpha (TNF-?), and toll-like receptor 4 (TLR4) mRNA levels in colonic mucosae were quantified using the real-time fluorescent quantitative PCR. Results Compared with the control group, AA treatment increased (P?

  16. Oleanolic acid acetate inhibits atopic dermatitis and allergic contact dermatitis in a murine model

    SciTech Connect

    Choi, Jin Kyeong [CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Oh, Hyun-Mee [Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Lee, Soyoung [CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Park, Jin-Woo [Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Khang, Dongwoo [School of Nano and Advanced Materials Science and Engineering, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Lee, Seung Woong; Lee, Woo Song [Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Rho, Mun-Chual, E-mail: rho-m@kribb.re.kr [Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Kim, Sang-Hyun, E-mail: shkim72@knu.ac.kr [CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)

    2013-05-15

    Atopic dermatitis (AD) and allergic contact dermatitis (ACD) are common allergic and inflammatory skin diseases caused by a combination of eczema, scratching, pruritus, and cutaneous sensitization with allergens. This paper examines whether oleanolic acid acetate (OAA) modulates AD and ACD symptoms by using an existing AD model based on the repeated local exposure of mite extract (Dermatophagoides farinae extract, DFE) and 2,4-dinitrochlorobenzene to the ears of BALB/c mice. In addition, the paper uses a 2,4-dinitrofluorobenzene-sensitized local lymph node assay (LLNA) for the ACD model. The oral administration of OAA over a four-week period attenuated AD symptoms in terms of decreased skin lesions, epidermal thickness, the infiltration of immune cells (CD4{sup +} cells, eosinophils, and mast cells), and serum IgE, IgG2a, and histamine levels. The gene expression of Th1, Th2, Th17, and Th22 cytokines was reduced by OAA in the lymph node and ear tissue, and the LLNA verified that OAA suppressed ACD. The oral administration of OAA over a three-day period attenuated ACD symptoms in terms of ear thickness, lymphocyte proliferation, and serum IgG2a levels. The gene expression of Th1, Th2, and Th17 cytokines was reduced by OAA in the thymus and ear tissue. Finally, to define the underlying mechanism, this paper uses a TNF-?/IFN-?-activated human keratinocyte (HaCaT) model. OAA inhibited the expression of cytokines and chemokines through the downregulation of NF-?B and MAPKs in HaCaT cells. Taken together, the results indicate that OAA inhibited AD and ACD symptoms, suggesting that OAA may be effective in treating allergic skin disorders. - Highlights: • OAA reduced both acute and chronic AD symptoms. • OAA had a controlling effect on the immune reaction for ACD. • The effect of OAA on allergic skin disorders was comparable to the cyclosporine A. • OAA might be a candidate for the treatment of allergic skin disorders.

  17. Effect of acetic acid repeated treatments on post-harvest quality of "Taloppo" table grape.

    PubMed

    Venditti, T; Dore, A; Molinu, M G; D'Hallewin, G

    2012-01-01

    The most important pathogen for table grapes is Botrytis cinerea which causes a rapid deterioration of fruit. Postharvest losses are controlled with SO2 fumigations carried out every 7 or 10 days, but the use of this gas is becoming more difficult to justify because of undesirable effects on the fruit and the increasing concern for human health. Acetic acid, classified as a GRAS compound, can be employed with no restriction as preservative and represents a possible substitute to sulphur dioxide. The aims of the present work were: (1) to evaluate if repeated treatments with AAC during storage preserve table grapes fruit quality; (2) to verify the effectiveness of 3 different concentrations and time intervals between each treatment and compare the effects with SO2 treatment; The amounts of AAC used in each fumigation, performed for 15 minutes, were 30, 50 and 75 microL/L, and treatments were carried out 5, 3 and 2 times respectively during storage, in order to have the same final concentration (150 microL/L). Table grapes were also fumigated with SO2. Fruit was stored for 8 weeks at 5 degrees C and 95% of RH, followed by 4 days of a simulated shelf-life (SSL) at 20 degrees C and 85% RH. At the end of experiment decay, weight loss and visual assessment were evaluated. After eight weeks of storage the incidence of grey mould, with respect to untreated fruit, was reduced in all treatments. The comparison among the different treatments did not show significant differences between the fumigations performed 3 and 2 times, with 24.9% and 27.2% of rots respectively. A better decay control was achieved with 5 fumigations carried out every 2 weeks, (18.1% of rots), while decay in fruit treated with SO2 was 26.2%. During the SSL period no particular differences were observed among all treatments. None of the treatments affected weight loss, as well as no differences were found in the score attributed for the external quality (rachis browning and berries appearance). The results showed that a good control of grey mould could be achieved on table grapes by repeated fumigations during storage. AAC could be a promising compound to be used as alternative to SO2 in keeping fruit quality. PMID:23878976

  18. Comparative distribution, pharmacokinetics and placental permeabilities of all- trans -retinoic acid, 13- cis -retinoic acid, all- trans -4-oxo-retinoic acid, retinyl acetate and 9- cis -retinal in hamsters

    Microsoft Academic Search

    W. Brian Howard; Calvin C. Willhite; R. P. Sharma

    1989-01-01

    Pregnant hamsters were given a single oral dose (35 µmol\\/kg) of all-trans-retinoic acid, 13-cis-retinoic acid, all-trans-4-oxo-retinoic acid, 9-cis-retinal or all-trans-retinyl acetate during the early primitive streak stage of development. The radioactivity associated with the acidic retinoids was distributed to all tissues sampled (including placenta and fetus), with the largest accumulation in the liver and the least accumulation in fat. Radioactivity

  19. Evaluation of Immunomodulatory Effects of Lactic Acid Bacteria in Turbot (Scophthalmus maximus)

    Microsoft Academic Search

    L. Villamil; C. Tafalla; A. Figueras; B. Novoa

    2002-01-01

    In the present work, the effects of several lactic acid bacteria on the immune response of turbot (Scophthal- mus maximus) macrophages have been studied both in vitro and in vivo. Out of six lactic acid bacterial strains tested, only heat-killed Lactococcus lactis significantly increased the turbot head kidney macrophage chemilu- minescent (CL) response after 24 h of incubation. Nitric oxide

  20. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality

    Microsoft Academic Search

    L O’Sullivan; R. P Ross; C Hill

    2002-01-01

    Lactic acid bacteria (LAB) have been used for centuries in the fermentation of a variety of dairy products. The preservative ability of LAB in foods is attributed to the production of anti-microbial metabolites including organic acids and bacteriocins. Bacteriocins generally exert their anti-microbial action by interfering with the cell wall or the membrane of target organisms, either by inhibiting cell

  1. An evaluation of chelex-based DNA purification protocols for the typing of lactic acid bacteria

    Microsoft Academic Search

    Giorgio Giraffa; Lia Rossetti; Erasmo Neviani

    2000-01-01

    An easy and rapid protocol to extract DNA to be used as template for polymerase chain reaction (PCR) fingerprinting experiments from cultivable lactic acid bacteria (LAB) is proposed. Different procedures for rapid extraction of DNA by chelex (iminodiacetid acid) ionic resin were compared. Factors affecting the quality and reproducibility of PCR fingerprinting profiles were also investigated. Two out of three

  2. Use of Nucleic-Acid Homologies in the Taxonomy of Anaerobic Bacteria

    Microsoft Academic Search

    JOHN L. JOHNSON

    1973-01-01

    Nucleic acid homology studies are providing a common base for establishing bacterial groups. Few phenotypic characteristics have consistently correlated with homology data among the various groups of organisms that we have investigated. However, there are correlations that are specific for a given group of bacteria such that nucleic-acid homology data can be used to select those phenotypic properties that will

  3. The Benefits of Lactic Acid Bacteria in Yogurt on the Gastrointestinal Function and Health

    Microsoft Academic Search

    Ayman Suliman Mazahreh; Omer Turki Mamdoh Ershidat

    2009-01-01

    2 Abstract: The nutritional value of yogurt and Lactic Acid-producing Bacteria (LAB) on the gastrointestinal health and function, have been investigated in this study. Both Lactobacillus bulgaricus and Streptococcus thermophilus (LAB) species, contribute to the formation of yogurt as a result of anaerobic fermentation of lactic acid in the milk. The present study focuses on the effect of yogurt consumption

  4. Modification of Acid Attack on Enamel Surfaces in vitro by Aggregations of Bacteria

    Microsoft Academic Search

    J. M. Hardie; L. M. Silverstone; G. H. Bowden

    1971-01-01

    When enamel is exposed to dilute lactic acid in vitro the surface of the tissue is rapidly etched, unlike that seen in caries. Experiments have been carried out to see whether enamel surface deposits, produced by bacteria in vitro, could modify simple acid attack on the tissue. Results show that by growing deposits of dextran-producing strains of Streptococcus sanguis and

  5. Fermentation of high-protein plant biomass by introduction of lactic acid bacteria

    Microsoft Academic Search

    R. A. Shurkhno; R. G. Gareev; A. G. Abul’khanov; Sh. Z. Validov; A. M. Boronin; R. P. Naumova

    2005-01-01

    Lactic acid bacteria displaying increased ability to produce lactic acid, medium proteolytic activity, and tolerance to osmotic stress were isolated under selective conditions from phyllosphere and rhizosphere of registered and raised cultivars of legumes. Lactic fermentation of poorly ensilable leguminous plants (red clover and Caucasian goat’s rue) was performed by introduction of rifampin-resistant homofermenting representatives of the genus Lactobacillus (selected

  6. Comparison of Deoxyribonucleic Acid Homologies of Six Strains of Ammonia-Oxidizing Bacteria

    Microsoft Academic Search

    MARK S. DODSON; JERROME MANGAN

    We assessed polynucleotide sequence homologies among representative strains from four genera of ammonia-oxidizing bacteria, including three morphological types of the genus Nitrosomonas, by deoxyribonucleic acid-deoxyribonucleic acid hybridization. Our results indicate that there is little homology among the four genera which we examined. Furthermore, the low degree of homology among the morphological types of Nitrosomonas suggests that each type should be

  7. Application of organolithium and related reagents in synthesis. Part 25: Novel specific synthesis of the 4-arylisochroman-3-acetic acids via conversion of benzoic acids

    Microsoft Academic Search

    Adam Bieniek; Jan Epsztajn; Justyna A Kowalska; Zbigniew Malinowski

    2001-01-01

    The transformation of the benzanilides 1 into 4-arylisochroman-3-acetic acids 8 applying the following sequence of reactions is described. At first, the 3-arylphthalides 3 were obtained via metallation [n-BuLi] of benzanilides 1 and subsequent treatment of the generated bis-lithiated anilides 2 with aromatic aldehydes. Next, the 3-arylphthalides 3 were reduced [LiBH4] to phthalanes 5 and then, via reductive metallation [Li\\/C10H8] and

  8. The Biodiversity of Lactic Acid Bacteria in Greek Traditional Wheat Sourdoughs Is Reflected in Both Composition and Metabolite Formation

    PubMed Central

    De Vuyst, Luc; Schrijvers, Vincent; Paramithiotis, Spiros; Hoste, Bart; Vancanneyt, Marc; Swings, Jean; Kalantzopoulos, George; Tsakalidou, Effie; Messens, Winy

    2002-01-01

    Lactic acid bacteria (LAB) were isolated from Greek traditional wheat sourdoughs manufactured without the addition of baker's yeast. Application of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cell protein, randomly amplified polymorphic DNA-PCR, DNA-DNA hybridization, and 16S ribosomal DNA sequence analysis, in combination with physiological traits such as fructose fermentation and mannitol production, allowed us to classify the isolated bacteria into the species Lactobacillus sanfranciscensis, Lactobacillus brevis, Lactobacillus paralimentarius, and Weissella cibaria. This consortium seems to be unique for the Greek traditional wheat sourdoughs studied. Strains of the species W. cibaria have not been isolated from sourdoughs previously. No Lactobacillus pontis or Lactobacillus panis strains were found. An L. brevis-like isolate (ACA-DC 3411 t1) could not be identified properly and might be a new sourdough LAB species. In addition, fermentation capabilities associated with the LAB detected have been studied. During laboratory fermentations, all heterofermentative sourdough LAB strains produced lactic acid, acetic acid, and ethanol. Mannitol was produced from fructose that served as an additional electron acceptor. In addition to glucose, almost all of the LAB isolates fermented maltose, while fructose as the sole carbohydrate source was fermented by all sourdough LAB tested except L. sanfranciscensis. Two of the L. paralimentarius isolates tested did not ferment maltose; all strains were homofermentative. In the presence of both maltose and fructose in the medium, induction of hexokinase activity occurred in all sourdough LAB species mentioned above, explaining why no glucose accumulation was found extracellularly. No maltose phosphorylase activity was found either. These data produced a variable fermentation coefficient and a unique sourdough metabolite composition. PMID:12450829

  9. Diversity of Sulfur Compound Production in Lactic Acid Bacteria1

    Microsoft Academic Search

    K. E. Seefeldt; B. C. Weimer

    2000-01-01

    Volatile sulfur compounds such as methanethiol, di- methyl disulfide, dimethyl trisulfide, and hydrogen sul- fide constitute an important fraction of Cheddar cheese flavor. These compounds are products of the catabolism of methionine and cysteine by bacteria in the cheese matrix. The objectives of this study were to examine the levels and types of volatile sulfur compounds produced from methionine by

  10. Photochemistry and Photobiology. 1996. 63(5): Optically Pumped Chemiluminescence of Indole-3-Acetic Acid

    E-print Network

    Krylov, Sergey

    Photochemistry and Photobiology. 1996. 63(5): Optically Pumped Chemiluminescence of Indole-3-Acetic January 1996 ABSTRACT the main ~ource of al. (4) have ~hown Optically pumped chemiluminescence of indole-3-sen- sitized photooxidation of luminal is a prospective technique for the creation of a new chemiluminescent

  11. Origin of Epilachnapaenulata defensive alkaloids: incorporation of [1-13C]-sodium acetate and [methyl-2H3]-stearic acid.

    PubMed

    Camarano, S; González, A; Rossini, C

    2012-01-01

    Ladybird beetles produce a large number of defensive alkaloids. Previous studies suggest that the structural diversity of these endogenous alkaloids can be traced to a common biosynthetic route based on the condensation of several acetate units. In this study, adults of Epilachna paenulata, a phytophagous neotropical species, were fed on diet enriched with potential precursors (sodium acetate, fatty acids and the amino acids lysine and ornithine) labeled with stable isotopes ((13)C, (2)H and (15)N). Labeled acetate was incorporated into the structurally related homotropane and piperidine alkaloids. The later also showed incorporation of [methyl-(2)H3] stearic acid. Our results hence support a fatty acid pathway for the biosynthesis of E. paenulata alkaloids. To our knowledge, this is the first report on the incorporation of a labeled fatty acid into a defensive piperidine alkaloid in insects. PMID:22062684

  12. Ethanol and Acetic Acid Production from Carbon Monoxide in a Clostridium Strain in Batch and Continuous Gas-Fed Bioreactors

    PubMed Central

    Nalakath Abubackar, Haris; Veiga, María C.; Kennes, Christian

    2015-01-01

    The effect of different sources of nitrogen as well as their concentrations on the bioconversion of carbon monoxide to metabolic products such as acetic acid and ethanol by Clostridium autoethanogenum was studied. In a first set of assays, under batch conditions, either NH4Cl, trypticase soy broth or yeast extract (YE) were used as sources of nitrogen. The use of YE was found statistically significant (p < 0.05) on the product spectrum in such batch assays. In another set of experiments, three bioreactors were operated with continuous CO supply, in order to estimate the effect of running conditions on products and biomass formation. The bioreactors were operated under different conditions, i.e., EXP1 (pH = 5.75, YE 1g/L), EXP2 (pH = 4.75, YE 1 g/L) and EXP3 (pH = 5.75, YE 0.2 g/L). When compared to EXP2 and EXP3, it was found that EXP1 yielded the maximum biomass accumulation (302.4 mg/L) and products concentrations, i.e., acetic acid (2147.1 mg/L) and ethanol (352.6 mg/L). This can be attributed to the fact that the higher pH and higher YE concentration used in EXP1 stimulated cell growth and did, consequently, also enhance metabolite production. However, when ethanol is the desired end-product, as a biofuel, the lower pH used in EXP2 was more favourable for solventogenesis and yielded the highest ethanol/acetic acid ratio, reaching a value of 0.54. PMID:25608591

  13. Effect of ethanolic extract of leaves of Paederia foetida Linn. on acetic acid induced colitis in albino rats

    PubMed Central

    Das, Swarnamoni; Kanodia, Lalit; Mukherjee, Apurba; Hakim, Abdul

    2013-01-01

    Objectives: To evaluate the effect of ethanolic extract of leaves of Paederia foetida on acetic acid induced colitis in albino rats. Materials and Methods: Ethanolic extract of Paederia foetida (EEPF) was prepared by percolation method. Acute toxicity test was done by using Organization for Economic Cooperation and Development guidelines. Albino rats were divided into four groups of five animals each. Groups A and B received 3% gum acacia. Groups C and D received EEPF 500 mg/kg body weight (BW) and 5-aminosalisylic acid 100 mg/kg BW respectively. Colitis was induced by transrectal administration of 4% acetic acid on 5th day. All animals were sacrificed after 48 h of colitis induction and distal 10 cm of the colon was dissected. Colon was weighed for disease activity index (DAI) and scored macroscopically and microscopically. Biochemical assessment of tissue myeloperoxidase (MPO), catalase (CAT) and superoxide dismutase (SOD) was done in colonic tissue homogenate and malondialdehyde (MDA) was estimated in serum. Results: P. foetida showed significant (P < 0.05) reduction in DAI, macroscopic and microscopic lesion score as well as significant (P < 0.05) improvement in MPO, MDA, CAT, and SOD level as compared to Group B. Conclusions: The ethanolic extract of leaves of P. foetida showed significant amelioration of experimentally induced colitis, which may be attributed to its anti-inflammatory and antioxidant property. PMID:24130378

  14. Wet deposition and related atmospheric chemistry in the São Paulo metropolis, Brazil: Part 2—contribution of formic and acetic acids

    NASA Astrophysics Data System (ADS)

    Fornaro, Adalgiza; Gutz, Ivano G. R.

    Wet-only deposition samples were collected at a site in the urban area of the São Paulo metropolis between February (end of the rainy summer) and October (beginning of spring) 2000, an atypical period due to rainfall 40% below the 30-year average. The majority ions in rainwater were measured by capillary zone electrophoresis with contactless conductivity detection, CZE-CCD, applied for the first time to the organic anions acetate and formate. The volume weight mean (VWM) concentrations of the majority anions NO 3-, SO 42- and Cl - were, respectively, 15.6, 9.5 and 4.7 ?mol l -1. The VWM concentration of HCOO -t, (HCOO -+HCOOH) was 17.0 ?mol l -1, about twice the 8.9 ?mol l -1 of CH 3COO -t. The VWM concentration of free H + was low ( 16.9 ?mol l -1), corresponding to pH 4.77. This denotes the relevance of species like ammonia, analyzed as NH4+ ( VWM=27.9 ?mol l -1), and calcium carbonate ( VWM=5.3 ?mol l -1 Ca2+) as partial neutralizers of the acidity. By hypothetically assuming that H + is the only counterion of the non-sea-salt fraction of the dissociated anions, their contribution to the total potential acidity would decrease in the following order: sulfate (29%), formate (29%), nitrate (26%), acetate (15%) and chloride (1%). The 44% potential participation of the carboxylic acids reveals their importance to the acidity of São Paulo's rainwater during the study period. Direct vehicular emission of lower carboxylic acids and aldehydes (in particular, acetic acid and acetaldehyde) is singularly high in the metropolis due to the extensive use of ethanol and gasohol (containing ˜20% of ethanol) as fuels of the light fleet of 5.5 million cars; in addition, regional atmospheric conditions favor the photochemical formation of the acids, since concentrations of ozone and aldehydes are high and solar irradiation is intense at the 23°34'S latitude. The presence of higher concentrations of HCOOH than CH 3COOH indicates a prevalence of its photochemical production by H 2CO oxidation in the atmosphere.

  15. Diaminopimelic Acid Content of Feeds and Rumen Bacteria and Its Usefulness as a Rumen Bacterial Marker1

    Microsoft Academic Search

    G. S. Dufva; E. E. Bartley; M. J. Arambel; T. G. Nagaraja; S. M. Dennis; S. J. Galitzer; A. D. Dayton

    1982-01-01

    Several feeds were examined and most were devoid of diaminopimelic acid. Small amounts of diaminopimelic acid were in corn silage, sorghum silage, beet pulp, and two samples of alfalfa hay. Nine strains of rumen bacteria were grown in pure culture in rumen fluid media containing three concentrations of carbohydrate. After incubation, bacteria were harvested and analyzed for di- aminopimelic acid

  16. Synergistic extraction of rare earths by mixture of bis(2,4,4-trimethylpentyl)phosphinic acid and Sec-nonylphenoxy acetic acid

    Microsoft Academic Search

    Xiaobo Sun; Jinping Wang; Deqian Li; Hongfei Li

    2006-01-01

    Synergistic extraction of trivalent rare earths (RE=Sc, Y, La, Gd, Yb) from hydrochloride medium using mixture of bis(2,4,4-trimethylpentyl)phosphinic acid (HL, Cyanex272) and Sec-nonylphenoxy acetic acid (HA, CA-100) in n-heptane has been studied. The synergistic enhancement coefficients were observed for La (1.30), Gd (1.97), Y (3.59), Yb (8.21) and Sc (14.41). The results indicated yttrium was extracted into n-heptane as YH5A4L4

  17. Solvent extraction of rare earth elements with mixtures of sec-octylphenoxy acetic acid and bis(2,4,4-trimethylpentyl) dithiophosphinic acid

    Microsoft Academic Search

    Qiong Jia; Shanshan Tong; Zhiying Li; Weihong Zhou; Hongfei Li; Shulan Meng

    2009-01-01

    The synergistic solvent extraction of samarium (III) with mixtures of sec-octylphenoxy acetic acid (CA12, H2A2) and bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex301, H2B2) in n-heptane has been investigated from chloride medium. The methods of slope analysis and constant mole are used for the determination of the reaction. Samarium (III) is extracted with the mixture as SmH2Cl2AB2 instead of SmA3·HA or SmB3·HB when

  18. A Simple Purification of Indole-3-Acetic Acid and Abscisic Acid for GC-SIM-MS Analysis by Microfiltration of Aqueous Samples through Nylon

    PubMed Central

    Dunlap, James R.; Guinn, Gene

    1989-01-01

    A simple procedure was developed for the partial purification of plant tissue samples to be analyzed simultaneously for indole-3-acetic acid (IAA) and abscisic acid (ABA). The procedure relies on removal of contaminants by filtration through nylon and partitioning into dichloromethane. This procedure successfully purified both IAA and ABA from muskmelon, cotton, and broccoli tissue. Twenty individual samples can be purified and methylated in 8 h for analysis of free IAA and ABA with gas chromatography-selected ion monitoring-mass spectrometry. The use of microfiltration of aqueous samples through nylon offers new opportunities for improving the efficiency of existing sample purification procedures. PMID:16666735

  19. Selective response inversion to NO2 and acetic acid in ZnO and CdS nanocomposite gas sensor

    NASA Astrophysics Data System (ADS)

    Calestani, D.; Villani, M.; Mosca, R.; Lazzarini, L.; Coppedè, N.; Dhanabalan, S. C.; Zappettini, A.

    2014-09-01

    High sensitivity zinc oxide (ZnO) tetrapods (TPs) have been functionalized by nucleating cadmium sulphide (CdS) nanoparticles (NPs) directly on their surface with a spotted coverage thanks to an optimized synthesis in dimethylformamide (DMF). The obtained hybrid coupled material has been used to realize a gas sensing device with a highly porous nanostructured network, in which the proper alternation of ZnO-TPs and CdS-NPs gives rise to unconventional chemoresistive behaviours. Among the different tested gases and vapours, the sensor showed a unique fingerprint response-inversion between 300 °C and 400 °C only for nitrogen dioxide (NO2) and acetic acid (CH3COOH).

  20. Indole-3-acetic Acid Levels of Plant Tissue as Determined by a New High Performance Liquid Chromatographic Method 1

    PubMed Central

    Sweetser, Philip B.; Swartzfager, Dennis G.

    1978-01-01

    A method for the analysis of indole-3-acetic acid (IAA) in plant extracts has been developed based on high performance liquid chromatography separation of IAA on a microparticulate strong anion exchange column followed by quantitation with two selective detectors: an electrochemical, carbon paste amperometric detector and/or a fluorescence detector. The detection limit for IAA is less than 1 nanogram with the fluorescence detector and less than 50 picograms with the electrochemical detector. The IAA levels are reported for various tissues of wheat, pinto beans, soybeans, cotton, and corn. PMID:16660271

  1. Synthesis and antibacterial activities of copper(II) with [(2-hydroxy-3,5-diiodo-benzylidene)-amino]-acetic acid

    Microsoft Academic Search

    Suo-Ping Xu; Lei Shi; Yuan Pei; Ying Yang; Guo Xu; Hai-Liang Zhu

    2010-01-01

    A new tridentate ligand, [(2-hydroxy-3,5-diiodo-benzylidene)-amino]-acetic acid (HDBA), has been synthesized from 3,5-diiodosalicylaldehyde and glycine in ethanol. A 1-D coordination polymer has been synthesized by reaction of HDBA with Cu(Ac)2 · H2O in ethanol–water. The complex was characterized by UV, IR, ESI–MS, elemental analyses, and X-ray crystallography. The central copper(II) is five-coordinate by one nitrogen and two oxygens from HDBA, one

  2. Tumor apoptosis by indole-3-acetic acid\\/light in B16F10 melanoma-implanted nude mice

    Microsoft Academic Search

    So-Young Kim; Myo-Kyoung Kim; Sun-Bang Kwon; Jung-Im Na; Kyoung-Chan Park; Dong-Seok Kim

    2009-01-01

    Recently, we reported that UVB-activated indole-3-acetic acid (IAA) induces the apoptosis of G361 human melanoma cells. In\\u000a the present study, we used IAA and visible light combinations to treat B16F10 melanoma-implanted nude mice using an experimental\\u000a intense pulsed light (IPL) therapy model. We first investigated whether activated IAA by horseradish peroxidase (HRP) or UVB\\u000a causes apoptosis of B16F10 melanoma cells.

  3. Electronic spectroscopy of tryptophan analogs in supersonic jets: 3-Indole acetic acid, 3-indole propionic acid, tryptamine, and N-acetyl tryptophan ethyl ester

    NASA Astrophysics Data System (ADS)

    Park, Young D.; Rizzo, Thomas R.; Peteanu, Linda A.; Levy, Donald H.

    1986-06-01

    The electronic spectroscopy of four different tryptophan analogs, 3-indole acetic acid, 3-indole propionic acid, tryptamine, and N-acetyltryptophan ethyl ester (NATE) has been studied in a supersonic molecular beam using laser-induced fluorescence and resonantly enhanced two-photon ionization. The electronic transition to the lowest excited singlet state occurs at 35 039, 34 965, 34 918, and 34 881±2 cm-1 for 3-indole acetic acid, 3-propionic acid, tryptamine, and NATE, respectively. The relatively small differences in the electronic origin transition frequencies suggests that the lowest excited singlet state for all of these moelcules is the 1Lb state. The spectra reveal that each of these molecules have stable conformers in the gas phase, analogous to our previously reported studies of tryptophan. A low frequency vibrational mode has been observed in 3-indole propionic acid, tryptamine, NATE, and tryptophan which involves motion of the side chain against the indole ring. We have observed that forming a van der Waals complex between tryptamine and a single methanol molecule causes the spectral features due to different conformers of the free molecule to collapse to a single line, suggesting that one particular conformer becomes the most stable species. This emphasizes the importance of including solvent interactions in any attempt to model the behavior of these molecules in solution.

  4. Treatment of plantar fasciitis by LowDye taping and iontophoresis: short term results of a double blinded, randomised, placebo controlled clinical trial of dexamethasone and acetic acid

    PubMed Central

    Osborne, H R; Allison, G T

    2006-01-01

    Objectives To determine if, in the short term, acetic acid and dexamethasone iontophoresis combined with LowDye (low?Dye) taping are effective in treating the symptoms of plantar fasciitis. Methods A double blinded, randomised, placebo controlled trial of 31 patients with medial calcaneal origin plantar fasciitis recruited from three sports medicine clinics. All subjects received six treatments of iontophoresis to the site of maximum tenderness on the plantar aspect of the foot over a period of two weeks, continuous LowDye taping during this time, and instructions on stretching exercises for the gastrocnemius/soleus. They received 0.4% dexamethasone, placebo (0.9% NaCl), or 5% acetic acid. Stiffness and pain were recorded at the initial session, the end of six treatments, and the follow up at four weeks. Results Data for 42 feet from 31 subjects were used in the study. After the treatment phase, all groups showed significant improvements in morning pain, average pain, and morning stiffness. However for morning pain, the acetic acid/taping group showed a significantly greater improvement than the dexamethasone/taping intervention. At the follow up, the treatment effect of acetic acid/taping and dexamethasone/taping remained significant for symptoms of pain. In contrast, only acetic acid maintained treatment effect for stiffness symptoms compared with placebo (p ?=? 0.031) and dexamethasone. Conclusions Six treatments of acetic acid iontophoresis combined with taping gave greater relief from stiffness symptoms than, and equivalent relief from pain symptoms to, treatment with dexamethasone/taping. For the best clinical results at four weeks, taping combined with acetic acid is the preferred treatment option compared with taping combined with dexamethasone or saline iontophoresis. PMID:16488901

  5. Mercury methylation by sulphate-reducing bacteria from sediments of an acid stressed lake

    Microsoft Academic Search

    Alison Kerry; Pamela M. Welbourn; Betsy Prucha; Greg Miede

    1991-01-01

    The role of freshwater sulphate-reducing bacteria in McHg production was examined by adding specific microbial inhibitors\\u000a to anoxic lake sediments spiked with 203HgCl2 and measuring net methylation. The effect of increased sulphate (such as would arise from acid deposition in the area) on\\u000a the activity of sulphate-reducing bacteria both in terms of sulphate reduction rate and methylation of Hg was

  6. Bacteriophages of lactic acid bacteria and their impact on milk fermentations

    PubMed Central

    2011-01-01

    Every biotechnology process that relies on the use of bacteria to make a product or to overproduce a molecule may, at some time, struggle with the presence of virulent phages. For example, phages are the primary cause of fermentation failure in the milk transformation industry. This review focuses on the recent scientific advances in the field of lactic acid bacteria phage research. Three specific topics, namely, the sources of contamination, the detection methods and the control procedures will be discussed. PMID:21995802

  7. Radiosensitivity of Escherichia coli B bacteria containing different amounts of nucleic acids and proteins

    Microsoft Academic Search

    Milena Vízdalová; B. Liška

    1966-01-01

    Escherichia coli B bacteria cultivated under aerobic and anaerobic conditions were irradiated with X-rays at different phases of growth of\\u000a the culture (at the outset and end of the logarithmic phase and in the stationary phase). Changes in the nucleic acid and\\u000a protein content and in the number of nuclear equivalents per cell were determined in irradiated bacteria. The extrapolation

  8. Misidentification of soil bacteria by fatty acid methyl ester (FAME) and BIOLOG analyses

    Microsoft Academic Search

    N. Oka; P. G. Hartel; O. Finlay-Moore; J. Gagliardi; D. A. Zuberer; J. J. Fuhrmann; J. S. Angle; H. D. Skipper

    2000-01-01

    Fatty acid methyl ester (FAME) analysis is commonly used by soil scientists as a sole method for identifying soil bacteria.\\u000a We observed discrepancies with this method for identifying certain species of bacteria. Therefore, we used carbon substrate\\u000a oxidation patterns (BIOLOG) and some simple physical and chemical tests to determine the extent of these discrepancies. Identification\\u000a with FAME profiles gave false

  9. Inhibitory effect of echinocystic acid on 12-O-tetradecanoylphorbol-13-acetate-induced dermatitis in mice.

    PubMed

    Joh, Eun-Ha; Jeong, Jin-Ju; Kim, Dong-Hyun

    2014-02-01

    The rhizome of Codonopsis lanceolata (family Campanulaceae), which contains lancemaside A as a main constituent, is frequently used in the traditional Chinese medicine for the treatment of inflammatory diseases. Lancemaside A exhibits anti-inflammatory effect in vitro and in vivo. However, orally administered lancemaside A is metabolized to echinocystic acid by the intestinal microflora and the metabolite is absorbed into the blood. Therefore, to understand whether echinocystic acid is effective against skin inflammatory diseases, we assessed its inhibitory effect against 12-O-tetra decanoylphorbol-13-acetate (TPA)-induced ear inflammation in mice. Topically administered echinocystic acid potently suppressed TPA-induced ear swelling. The suppression rates at 0.05 and 0.10 % concentrations were 65 and 73 %, respectively. Echinocystic acid also inhibited TPA-induced myeloperoxidase activity, as well as COX-2, iNOS, TNF-? and IL-1? expressions. Echinocystic acid inhibited NF-?B in TPA-treated mouse ears, as well as in lipopolysaccharide-stimulated peritoneal macrophages. Its potency is comparable with that of dexamethasone. These findings indicate that echinocystic acid may ameliorate inflammatory diseases, such as dermatitis. PMID:23515933

  10. The Acid Hydrolysis Mechanism of Acetals Catalyzed by a Supramolecular Assembly in Basic Solution

    SciTech Connect

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2008-09-24

    A self-assembled supramolecular host catalyzes the hydrolysis of acetals in basic aqueous solution. The mechanism of hydrolysis is consistent with the Michaelis-Menten kinetic model. Further investigation of the rate limiting step of the reaction revealed a negative entropy of activation ({Delta}S{double_dagger} = -9 cal mol{sup -1}K{sup -1}) and an inverse solvent isotope effect (k(H{sub 2}O)/k(D{sub 2}O) = 0.62). These data suggest that the mechanism of hydrolysis that takes place inside the assembly proceeds through an A-2 mechanism, in contrast to the A-1 mechanism operating in the uncatalyzed reaction. Comparison of the rates of acetal hydrolysis in the assembly with the rate of the reaction of unencapsulated substrates reveals rate accelerations of up to 980 over the background reaction for the substrate diethoxymethane.

  11. Cancer Preventive Potential of Kimchi Lactic Acid Bacteria (Weissella cibaria, Lactobacillus plantarum)

    PubMed Central

    Kwak, Shin-Hye; Cho, Young-Mi; Noh, Geon-Min; Om, Ae-Son

    2014-01-01

    The number of death due to cancer has been increasing in Korea. Chemotherapy is known to cause side effects because it damages not only cancerous cells but healthy cells. Recently, attention has focused on food-derived chemopreventive and anti-tumor agents or formulations with fewer side effects. Kimchi, most popular and widely consumed in Korea, contains high levels of lactic acid bacteria and has been shown to possess chemopreventive effects. This review focuses on Weissella cibaria and Lactobacillus plantarum, the representatives of kimchi lactic acid bacteria, in terms of their abilities to prevent cancer. Further studies are needed to understand the mechanisms by which lactic acid bacteria in kimchi prevent carcinogenic processes and improve immune functions. PMID:25574459

  12. Cancer Preventive Potential of Kimchi Lactic Acid Bacteria (Weissella cibaria, Lactobacillus plantarum).

    PubMed

    Kwak, Shin-Hye; Cho, Young-Mi; Noh, Geon-Min; Om, Ae-Son

    2014-12-01

    The number of death due to cancer has been increasing in Korea. Chemotherapy is known to cause side effects because it damages not only cancerous cells but healthy cells. Recently, attention has focused on food-derived chemopreventive and anti-tumor agents or formulations with fewer side effects. Kimchi, most popular and widely consumed in Korea, contains high levels of lactic acid bacteria and has been shown to possess chemopreventive effects. This review focuses on Weissella cibaria and Lactobacillus plantarum, the representatives of kimchi lactic acid bacteria, in terms of their abilities to prevent cancer. Further studies are needed to understand the mechanisms by which lactic acid bacteria in kimchi prevent carcinogenic processes and improve immune functions. PMID:25574459

  13. Isolation of 4-Chloroindolyl-3-acetic Acid from Immature Seeds of Pisum sativum

    Microsoft Academic Search

    Singo Marumo; Hiroyuki Hattori; Hiroshi Abe; Katsura Munakata

    1968-01-01

    METHANOL extracts of immature seeds of Pisum sativum exhibited fairly strong auxin-like activity when assayed by hypocotyl swelling of Phaseolus mungo1. We isolated an active principle from the neutral fraction of immature seeds2; it was identified as methyl 4-chloroindolyl-3-acetate by synthesis. Preliminary examination showed that its auxin activity against Avena first internode and section tests was comparable with that of

  14. The protective effect of Echinacea spp. (Echinacea angustifolia and Echinacea purpurea) in a rat colitis model induced by acetic acid.

    PubMed

    Dogan, Zeynal; Ergul, Bilal; Sarikaya, Murat; Filik, Levent; Gonulta?, Mehmet Alparslan; Hucumenoglu, Sema; Can, Murat

    2014-11-01

    Ulcerative colitis (UC) is a chronic disease that causes an inflammatory condition in the colon. Several cytokines, including tumor necrosis factor alpha (TNF-?), interleukin 1 beta (IL-1?) and transforming growth factor beta (TGF-?) are crucial components of these inflammatory pathways. New therapeutic strategies are needed for improved clinical outcomes in UC and with less adverse effects. That is why alternative therapies such as herbal remedies are increasingly being used with favorable effects in the treatment of UC. Hence, in the present study, we aimed to evaluate the protective effect of Echinacea spp in an experimental rat colitis model induced by acetic acid (AA). Acetic acid was given via a rectal route to induce acute colitis in rats. Rats were placed in four groups: control, Echinacea, Echinacea-colitis and colitis. Tumor necrosis factor alpha, IL-1? and TGF-? levels were measured. Histopathological comparison of the groups was also performed. The disease activity index (DAI) was significantly higher in the colitis group compared to the control, Echinacea and Echinacea-colitis groups (p<0.001). There was no significant difference between the DAI of control, Echinacea and Echinacea-colitis groups (p>0.07). The inflammatory mediators IL-1? and TNF-? were significantly elevated in the colitis group compared to the other groups (p<0.007, <0.001 respectively). Therefore, Echinacea spp. may likely have some therapeutic favorable effects in the management of UC. PMID:25362606

  15. Rabbit gastric ulcer models: comparison and evaluation of acetic acid-induced ulcer and mucosectomy-induced ulcer

    PubMed Central

    Maeng, Jin Hee; Lee, Eunhye

    2013-01-01

    In this study, we examined rabbit gastric ulcer models that can serve as more clinically relevant models. Two types of ulcer model were studied: acetic acid-induced ulcers (AAU) and mucosal resection-induced ulcers (MRU). For AAU, rabbit gastric mucosa was exposed by median laparotomy and treated with bottled acetic acid. MRU was examined as a model for endoscopic mucosal resection (EMR). Normal saline was injected into the submucosal layer and the swollen mucosa was resected with scissors. Endoscopic mucosal resection (EMR) is frequently performed for treatment of early gastric cancers. This procedure inevitably leads to ulcers and bleeding. Bleeding control is the major concern in endoscopic mucosectomy, and some endoscopic hemostatic agents are currently under clinical and preclinical studies. MRU was developed as a model for these induced ulcers and the evaluation of the healing process. The clinical relevancy of those models was compared with that of rat models. Progressive healing was observed for 7 days based on histology. Rabbit models demonstrate round, deep ulcers with clear margins and well-defined healing stages that were difficult to define in rat models. PMID:23825482

  16. Sulphydryl groups and iodo-(/sup 3/H)acetic acid labeling in proteolipids from Torpedo electroplax

    SciTech Connect

    Criado, M.; Aguilar, J.S.; De Robertis, E.

    1983-05-01

    Several fractions of proteolipids from Torpedo electroplax were separated by DEAE-cellulose chromatography in organic solvents, and the sulphydryl groups were determined by a spectrophotometric method. On the same fractions the covalent labeling with iodo-(/sup 3/H)acetic acid to sulphydryl groups was studied. In total proteolipids there were 30.3 nmol/mg protein of sulphydryl groups of which 20.6 nmoles were in the form of disulfide bonds and 10.9 nmol as free--SH groups. The highest content of sulphydryl groups (36.7 nmol/mg protein) was found in fraction II; while fraction I, that binds the cholinergic ligands, has a lower content (23.7 nmol/mg protein). The 42 Kdaltons polypeptide, which is the major band in Fraction II, has the strongest labeling with iodo-(/sup 3/H)acetic acid, while the 39 Kdaltons cholinergic polypeptide shows a lower labeling. The importance of proteolipids as channel-forming macromolecules is discussed in connection with the possible significance of the 42 Kdaltons polypeptide.

  17. Effect of retinyl acetate, ascorbic acid and tocopherol supplementation of the feed on egg vitamin A content in Japanese quail.

    PubMed

    Bárdos, L; Sótér, G; Karchesz, K

    1996-01-01

    The ration fed to laying Japanese quails was supplemented either with retinyl acetate (RA) (50 x 10(3) IU/kg, group A), ascorbic acid (500 mg/kg, group C), or with both substances in combination with each other (group AC) and with tocopheryl acetate (37.8 IU/kg; groups AE and ACE). On days 1, 8, 14, 20 and 28, some quantitative parameters of eggs (mass of egg-shell, albumen and egg yolk, retinoid content of egg yolk) were measured. The egg production parameters were not significantly affected by the supplementations. By the end of the second week, the total vitamin A (retinyl esters + retinol) concentrations of the egg yolk were significantly higher in the groups receiving supplemented feed (AC, AE and AEC) than in the control group. Two weeks later (on day 28), the vitamin A levels were elevated significantly in all groups except the group treated with ascorbic acid. From the point of view of vitamin A fortification of the egg yolk, the combined supplementations (groups AC, AE, AEC) seem to be more effective. The results indicate that vitamin A content of the egg yolk can be increased by a short-term RA supplementation of the laying ration. The retinoids present in the natural substances of eggs could possibly be a good source of vitamin A for humans. PMID:8908745

  18. Ultrafast photodissociation studies of acetyl cyanide and acetic acid and unimolecular decomposition rates of the acetyl radical products

    NASA Astrophysics Data System (ADS)

    Owrutsky, J. C.; Baronavski, A. P.

    1999-10-01

    Unimolecular decomposition rates for acetyl radical following the photodissociation of acetyl cyanide and acetic acid near 193 nm have been studied using ultrafast mass-resolved photoionization spectroscopy. In both cases, the parent decays with an instrumentally limited lifetime, while the acetyl radical behaves in a manner consistent with an RRKM mechanism, in contrast to our previous results on acetone. It is necessary to convolute the population distribution with the microcanonical RRKM rates in order to achieve this agreement. We have also undertaken an ab initio study of the excited states of acetyl cyanide to clarify the assignments of these states. The state excited at 193 nm arises from a ???* transition with a calculated transition velocity dipole moment oriented at an angle of 57° with respect to the C-C?N bond, resulting in an anisotropy parameter of -0.22. This is in reasonable agreement with the previous data of North et al. [J. Phys. Chem. A 101, 9224 (1997)]. The apparent RRKM behavior of the acetyl radical formed by the photodissociation of acetic acid and acetyl cyanide indicates that acetyl radical produced by the photodissociation of acetone at 193 nm may exhibit "extrinsic non-RRKM" effects, i.e., dynamic bottlenecks or mode specific effects.

  19. Phenotypic and genotypic characterization of lactic acid bacteria isolated from raw goat milk and effect of farming practices on the dominant species of lactic acid bacteria.

    PubMed

    Tormo, Hélène; Ali Haimoud Lekhal, Djamila; Roques, C

    2015-10-01

    Lactic acid bacteria, in particular Lactococcus lactis, play a decisive role in the cheese making process and more particularly in lactic cheeses which are primarily produced on goat dairy farms. The objective of this study was therefore to identify the main lactic acid bacteria found in raw goats' milk from three different regions in France and evaluate if certain farming practices have an effect on the distribution of species of lactic acid bacteria in the various milk samples. Identification at genus or species level was carried out using phenotypic tests and genotypic methods including repetitive element REP-PCR, species-specific PCR and 16S rRNA gene sequencing. The distribution of the main bacterial species in the milk samples varied depending on farms and their characteristics. Out of the 146 strains identified, L. lactis was the dominant species (60% of strains), followed by Enterococcus (38%) of which Enterococcus faecalis and Enterococcus faecium. Within the species L. lactis, L. lactis subsp lactis was detected more frequently than L. lactis subsp cremoris (74% vs. 26%). The predominance of L. lactis subsp cremoris was linked to geographical area studied. It appears that the animals' environment plays a role in the balance between the dominance of L. lactis and enterococci in raw goats' milk. The separation between the milking parlor and the goat shed (vs no separation) and only straw in the bedding (vs straw and hay) seems to promote L. lactis in the milk (vs enterococci). PMID:26082325

  20. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments

    PubMed Central

    Cui, Yanhua; Hu, Tong; Qu, Xiaojun; Zhang, Lanwei; Ding, Zhongqing; Dong, Aijun

    2015-01-01

    Plasmids are widely distributed in different sources of lactic acid bacteria (LAB) as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research. PMID:26068451