Science.gov

Sample records for acetic acid bacteria

  1. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22g/L, and improve acetic acid production to 25.88g/L, with food wastes as substrate. In contrast, only 12.81g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid. PMID:25416587

  2. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided. PMID:25575804

  3. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    PubMed

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frbort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. PMID:25485864

  4. Acetic acid bacteria, newly emerging symbionts of insects.

    PubMed

    Crotti, Elena; Rizzi, Aurora; Chouaia, Bessem; Ricci, Irene; Favia, Guido; Alma, Alberto; Sacchi, Luciano; Bourtzis, Kostas; Mandrioli, Mauro; Cherif, Ameur; Bandi, Claudio; Daffonchio, Daniele

    2010-11-01

    Recent research in microbe-insect symbiosis has shown that acetic acid bacteria (AAB) establish symbiotic relationships with several insects of the orders Diptera, Hymenoptera, Hemiptera, and Homoptera, all relying on sugar-based diets, such as nectars, fruit sugars, or phloem sap. To date, the fruit flies Drosophila melanogaster and Bactrocera oleae, mosquitoes of the genera Anopheles and Aedes, the honey bee Apis mellifera, the leafhopper Scaphoideus titanus, and the mealybug Saccharicoccus sacchari have been found to be associated with the bacterial genera Acetobacter, Gluconacetobacter, Gluconobacter, Asaia, and Saccharibacter and the novel genus Commensalibacter. AAB establish symbiotic associations with the insect midgut, a niche characterized by the availability of diet-derived carbohydrates and oxygen and by an acidic pH, selective factors that support AAB growth. AAB have been shown to actively colonize different insect tissues and organs, such as the epithelia of male and female reproductive organs, the Malpighian tubules, and the salivary glands. This complex topology of the symbiosis indicates that AAB possess the keys for passing through body barriers, allowing them to migrate to different organs of the host. Recently, AAB involvement in the regulation of innate immune system homeostasis of Drosophila has been shown, indicating a functional role in host survival. All of these lines of evidence indicate that AAB can play different roles in insect biology, not being restricted to the feeding habit of the host. The close association of AAB and their insect hosts has been confirmed by the demonstration of multiple modes of transmission between individuals and to their progeny that include vertical and horizontal transmission routes, comprising a venereal one. Taken together, the data indicate that AAB represent novel secondary symbionts of insects. PMID:20851977

  5. Isolation, characterization and optimization of indigenous acetic acid bacteria and evaluation of their preservation methods

    PubMed Central

    Sharafi, SM; Rasooli, I; Beheshti-Maal, K

    2010-01-01

    Background and Objectives Acetic acid bacteria (AAB) are useful in industrial production of vinegar. The present study aims at isolation and identification of acetic acid bacteria with characterization, optimization, and evaluation of their acetic acid productivity. Materials and Methods Samples from various fruits were screened for presence of acetic acid bacteria on glucose, yeast extract, calcium carbonate (GYC) medium. Carr medium supplemented with bromocresol green was used for distinguishing Acetobacter from Gluconobacter. The isolates were cultured in basal medium to find the highest acetic acid producer. Biochemical tests followed by 16S rRNA and restriction analyses were employed for identification of the isolate and phylogenic tree was constructed. Bacterial growth and acid production conditions were optimized based on optimal inoculum size, pH, temperature, agitation, aeration and medium composition. Results Thirty-seven acetic acid bacteria from acetobacter and gluconobacter members were isolated. Acetic acid productivity yielded 4 isolates that produced higher amounts of acid. The highest producer of acid (10.03%) was selected for identification. The sequencing and restriction analyses of 16S rRNA revealed a divergent strain of Acetobacter pasteurianus (Gene bank accession number#GU059865). The optimum condition for acid production was a medium composed of 2% glucose, 2% yeast extract, 3% ethanol and 3% acid acetic at inoculum size of 4% at 3L/Min aeration level in the production medium. The isolate was best preserved in GYC medium at 12C for more than a month. Longer preservation was possible at ?70C. Conclusion The results are suggestive of isolation of an indigenous acetic acid bacteria. Pilot plan is suggested to study applicability of the isolated strain in acetic acid production. PMID:22347549

  6. The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions

    PubMed Central

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik

    2014-01-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present. PMID:24837393

  7. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    PubMed

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria. PMID:26704949

  8. Acetic Acid Bacteria and the Production and Quality of Wine Vinegar

    PubMed Central

    Torija, María Jesús; García-Parrilla, María del Carmen; Troncoso, Ana María

    2014-01-01

    The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either “fast” or “traditional”), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties. PMID:24574887

  9. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    PubMed

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. PMID:26779817

  10. Comparison of d-gluconic acid production in selected strains of acetic acid bacteria.

    PubMed

    Sainz, F; Navarro, D; Mateo, E; Torija, M J; Mas, A

    2016-04-01

    The oxidative metabolism of acetic acid bacteria (AAB) can be exploited for the production of several compounds, including d-gluconic acid. The production of d-gluconic acid in fermented beverages could be useful for the development of new products without glucose. In the present study, we analyzed nineteen strains belonging to eight different species of AAB to select those that could produce d-gluconic acid from d-glucose without consuming d-fructose. We tested their performance in three different media and analyzed the changes in the levels of d-glucose, d-fructose, d-gluconic acid and the derived gluconates. d-Glucose and d-fructose consumption and d-gluconic acid production were heavily dependent on the strain and the media. The most suitable strains for our purpose were Gluconobacter japonicus CECT 8443 and Gluconobacter oxydans Po5. The strawberry isolate Acetobacter malorum (CECT 7749) also produced d-gluconic acid; however, it further oxidized d-gluconic acid to keto-d-gluconates. PMID:26848948

  11. Evolution of Acetic Acid Bacteria During Fermentation and Storage of Wine

    PubMed Central

    Joyeux, A.; Lafon-Lafourcade, S.; Ribreau-Gayon, P.

    1984-01-01

    Acetic acid bacteria were present at all stages of wine making, from the mature grape through vinification to conservation. A succession of Gluconobacter oxydans, Acetobacter pasteurianus, and Acetobacter aceti during the course of these stages was noted. Low levels of A. aceti remained in the wine; they exhibited rapid proliferation on short exposure of the wine to air and caused significant increases in the concentration of acetic acid. Higher temperature of wine storage and higher wine pH favored the development and metabolism of these species. PMID:16346581

  12. Apparent antifungal activity of several lactic acid bacteria against Penicillium discolor is due to acetic acid in the medium.

    PubMed

    Cabo, M L; Braber, A F; Koenraad, P M F J

    2002-08-01

    Fifty-six dairy bacteria belonging to the genera Lactococcus, Lactobacillus, Pediococcus, Propionibacterium, Streptococcus, Enterococcus, Leuconostoc, and Brevibacterium were screened for antifungal activity against four species of fungi relevant to the cheese industry (Penicillium discolor, Penicillium commune, Penicillium roqueforti, and Aspergillus vesicolor). Most of the active strains belonged to the genus Lactobacillus, whereas Penicillium discolor was found to be the most sensitive of the four fungi investigated. Further studies on P. discolor showed antifungal activity only below pH 5. This effect of pH suggests that organic acids present in the culture could be involved in the detected activity. Determination of acid composition revealed lactic acid production for active dairy strains and the presence of acetic acid in active as well as inactive strains. It was demonstrated that the undissociated acetic acid originates from the bacterial growth medium. The synergistic effect of the acetic acid present and the lactic acid produced was likely the main factor responsible for the antifungal properties of the selected bacteria. These results could explain some discrepancies in reports of the antifungal properties of lactic acid bacteria, since the role of acetic acid has not been considered in previous studies. PMID:12182485

  13. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    PubMed

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5%. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44C, respectively. At 30C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10L fermentor, AAB4 produced 42.0g/L acetic acid at 37C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF. PMID:26712629

  14. Flecainide acetate acetic acid solvates.

    PubMed

    Veldre, Kaspars; Acti?s, Andris; Eglite, Zane

    2011-02-01

    Flecainide acetate forms acetic acid solvates with 0.5 and 2 acetic acid molecules. Powder X-ray diffraction, differential thermal analysis/thermogravimetric, infrared, and potentiometric titration were used to determine the composition of solvates. Flecainide acetate hemisolvate with acetic acid decomposes to form a new crystalline form of flecainide acetate. This form is less stable than the already known polymorphic form at all temperatures, and it is formed due to kinetic reasons. Both flecainide acetate nonsolvated and flecainide acetate hemisolvate forms crystallize in monoclinic crystals, but flecainide triacetate forms triclinic crystals. Solvate formation was not observed when flecainide base was treated with formic acid, propanoic acid, and butanoic acid. Only nonsolvated flecainide salts were obtained in these experiments. PMID:21249720

  15. Growth inhibitory effect of grape phenolics against wine spoilage yeasts and acetic acid bacteria.

    PubMed

    Pastorkova, E; Zakova, T; Landa, P; Novakova, J; Vadlejch, J; Kokoska, L

    2013-02-15

    This paper investigates the in vitro antimicrobial potential of 15 grape phenolic compounds of various chemical classes (phenolic acids, stilbenes and flavonoids) using the broth microdilution method against yeasts and acetic acid bacteria frequently occurring in deteriorated wine. Pterostilbene (MICs=32-128 ?g/mL), resveratrol (MICs=256-512 ?g/mL) and luteolin (MICs=256-512 ?g/mL) are among six active compounds that possessed the strongest inhibitory effects against all microorganisms tested. In the case of phenolic acids, myricetin, p-coumaric and ferulic acids exhibited selective antimicrobial activity (MICs=256-512 ?g/mL), depending upon yeasts and bacteria tested. In comparison with potassium metabisulphite, all microorganisms tested were more susceptible to the phenolics. The results revealed the antibacterial and antiyeast effects against wine spoilage microorganisms of several highly potent phenolics naturally occurring in grapes. These findings also provide arguments for further investigation of stilbenes as prospective compounds reducing the need for the use of sulphites in winemaking. PMID:23334100

  16. Combination spray washes of saponin with water or acetic acid to reduce aerobic and pathogenic bacteria on lean beef surfaces.

    PubMed

    Cutter, C N

    1999-03-01

    Saponins are naturally occurring compounds known as triterpenoid glycosides found in a variety of plant species. Saponins are approved for use in the food industry as foaming agents. When combined with water or organic acid in spray treatments, saponins' foaming property may improve carcass decontamination. In the first experiment of this study, lean beef carcass surfaces were experimentally inoculated with a fecal slurry containing antibiotic-resistant Escherichia coli O157:H7 and Salmonella Typhimurium. Spray-washing treatments with 1% saponin followed by a water wash, or 1% saponin followed by 2% acetic acid, were more effective for reducing aerobic bacteria than saponin, water, or 2% acetic acid washes alone. However, 1% saponin followed by a either a water or 2% acetic acid wash was no more effective than a 2% acetic acid wash for reducing populations of E. coli O157:H7 or Salmonella Typhimurium. In the second experiment, experimentally inoculated beef surfaces were subjected to spray treatments with water followed by another water wash, water followed by a 2% acetic acid wash, 1% saponin followed by a water wash, or 1% saponin followed by a 2% acetic acid wash. When examined for effectiveness against all bacterial populations, 1% saponin followed by a water wash and 1% saponin followed by a 2% acetic acid wash were as effective as two water washes or a water wash followed by 2% acetic acid for reducing aerobic bacteria, E. coli O157:H7, and Salmonella Typhimurium from beef surfaces. Under the conditions described, reductions associated with combination spray washes may be attributed to the physical removal of bacteria during the spraying process, not to any specific action of saponin. PMID:10090249

  17. Acetic Acid Bacteria Genomes Reveal Functional Traits for Adaptation to Life in Insect Guts

    PubMed Central

    Chouaia, Bessem; Gaiarsa, Stefano; Crotti, Elena; Comandatore, Francesco; Degli Esposti, Mauro; Ricci, Irene; Alma, Alberto; Favia, Guido; Bandi, Claudio; Daffonchio, Daniele

    2014-01-01

    Acetic acid bacteria (AAB) live in sugar rich environments, including food matrices, plant tissues, and the gut of sugar-feeding insects. By comparing the newly sequenced genomes of Asaia platycodi and Saccharibacter sp., symbionts of Anopheles stephensi and Apis mellifera, respectively, with those of 14 other AAB, we provide a genomic view of the evolutionary pattern of this bacterial group and clues on traits that explain the success of AAB as insect symbionts. A specific pre-adaptive trait, cytochrome bo3 ubiquinol oxidase, appears ancestral in AAB and shows a phylogeny that is congruent with that of the genomes. The functional properties of this terminal oxidase might have allowed AAB to adapt to the diverse oxygen levels of arthropod guts. PMID:24682158

  18. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    SciTech Connect

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-06-17

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263+-0.02 g cellulose L{sup -1} for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  19. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-06-01

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L-1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  20. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa.

    PubMed

    Visintin, Simonetta; Alessandria, Valentina; Valente, Antonio; Dolci, Paola; Cocolin, Luca

    2016-01-01

    Yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) populations, isolated from cocoa bean heap and box fermentations in West Africa, have been investigated. The fermentation dynamicswere determined by viable counts, and 106 yeasts, 105 LAB and 82 AAB isolateswere identified by means of rep-PCR grouping and sequencing of the rRNA genes. During the box fermentations, the most abundant species were Saccharomyces cerevisiae, Candida ethanolica, Lactobacillus fermentum, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii, while S. cerevisiae, Schizosaccharomyces pombe, Hanseniaspora guilliermondii, Pichia manshurica, C. ethanolica, Hanseniaspora uvarum, Lb. fermentum, Lb. plantarum, A. pasteurianus and Acetobacter lovaniensis were identified in the heap fermentations. Furthermore, the most abundant species were molecularly characterized by analyzing the rep-PCR profiles. Strains grouped according to the type of fermentations and their progression during the transformation process were also highlighted. The yeast, LAB and AAB isolates were physiologically characterized to determine their ability to grow at different temperatures, as well as at different pH, and ethanol concentrations, tolerance to osmotic stress, and lactic acid and acetic acid inhibition. Temperatures of 45 C, a pH of 2.5 to 3.5, 12% (v/v) ethanol and high concentrations of lactic and acetic acid have a significant influence on the growth of yeasts, LAB and AAB. Finally, the yeastswere screened for enzymatic activity, and the S. cerevisiae, H. guilliermondii, H. uvarumand C. ethanolica species were shown to possess several enzymes that may impact the quality of the final product. PMID:26425801

  1. Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile.

    PubMed

    Ordez, J L; Sainz, F; Callejn, R M; Troncoso, A M; Torija, M J; Garca-Parrilla, M C

    2015-07-01

    This paper studies the amino acid profile of beverages obtained through the fermentation of strawberry pure by a surface culture using three strains belonging to different acetic acid bacteria species (one of Gluconobacter japonicus, one of Gluconobacter oxydans and one of Acetobacter malorum). An HPLC-UV method involving diethyl ethoxymethylenemalonate (DEEMM) was adapted and validated. From the entire set of 21 amino acids, multiple linear regressions showed that glutamine, alanine, arginine, tryptophan, GABA and proline were significantly related to the fermentation process. Furthermore, linear discriminant analysis classified 100% of the samples correctly in accordance with the microorganism involved. G. japonicus consumed glucose most quickly and achieved the greatest decrease in amino acid concentration. None of the 8 biogenic amines were detected in the final products, which could serve as a safety guarantee for these strawberry gluconic fermentation beverages, in this regard. PMID:25704705

  2. A diverse assemblage of indole-3-acetic acid producing bacteria associate with unicellular green algae.

    PubMed

    Bagwell, Christopher E; Piskorska, Magdalena; Soule, Tanya; Petelos, Angela; Yeager, Chris M

    2014-08-01

    Microalgae have tremendous potential as a renewable feedstock for the production of liquid transportation fuels. In natural waters, the importance of physical associations and biochemical interactions between microalgae and bacteria is generally well appreciated, but the significance of these interactions to algal biofuels production have not been investigated. Here, we provide a preliminary report on the frequency of co-occurrence between indole-3-acetic acid (IAA)-producing bacteria and green algae in natural and engineered ecosystems. Growth experiments with unicellular algae, Chlorella and Scenedesmus, revealed IAA concentration-dependent responses in chlorophyll content and dry weight. Importantly, discrete concentrations of IAA resulted in cell culture synchronization, suggesting that biochemical priming of cellular metabolism could vastly improve the reliability of high density cultivation. Bacterial interactions may have an important influence on algal growth and development; thus, the preservation or engineered construction of the algal-bacterial assembly could serve as a control point for achieving low input, reliable production of algal biofuels. PMID:24879600

  3. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana.

    PubMed

    Camu, Nicholas; De Winter, Tom; Verbrugghe, Kristof; Cleenwerck, Ilse; Vandamme, Peter; Takrama, Jemmy S; Vancanneyt, Marc; De Vuyst, Luc

    2007-03-01

    The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as "Weissella ghanaensis," was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named "Acetobacter senegalensis" (A. tropicalis-like) and "Acetobacter ghanaensis" (A. syzygii-like). PMID:17277227

  4. Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria.

    PubMed

    Papalexandratou, Zoi; Vrancken, Gino; De Bruyne, Katrien; Vandamme, Peter; De Vuyst, Luc

    2011-10-01

    Spontaneous organic cocoa bean box fermentations were carried out on two different farms in Brazil. Physical parameters, microbial growth, bacterial species diversity [mainly lactic acid bacteria (LAB) and acetic acid bacteria (AAB)], and metabolite kinetics were monitored, and chocolates were produced from the fermented dry cocoa beans. The main end-products of the catabolism of the pulp substrates (glucose, fructose, and citric acid) by yeasts, LAB, and AAB were ethanol, lactic acid, mannitol, and/or acetic acid. Lactobacillus fermentum and Acetobacter pasteurianus were the predominating bacterial species of the fermentations as revealed through (GTG)(5)-PCR fingerprinting of isolates and PCR-DGGE of 16S rRNA gene PCR amplicons of DNA directly extracted from fermentation samples. Fructobacillus pseudoficulneus, Lactobacillus plantarum, and Acetobacter senegalensis were among the prevailing species during the initial phase of the fermentations. Also, three novel LAB species were found. This study emphasized the possible participation of Enterobacteriaceae in the cocoa bean fermentation process. Tatumella ptyseos and Tatumella citrea were the prevailing enterobacterial species in the beginning of the fermentations as revealed by 16S rRNA gene-PCR-DGGE. Finally, it turned out that control over a restricted bacterial species diversity during fermentation through an ideal post-harvest handling of the cocoa beans will allow the production of high-quality cocoa and chocolates produced thereof, independent of the fermentation method or farm. PMID:21839382

  5. Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation.

    PubMed

    Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc

    2010-12-01

    The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a selection of strains was made out of a pool of strains of these LAB and AAB species, obtained from previous studies, based on their fermentation kinetics in PSM. Also, various concentrations of citric acid in the presence of glucose and/or fructose (PSM-LAB) and of lactic acid in the presence of ethanol (PSM-AAB) were tested. These data could explain the competitiveness of particular cocoa-specific strains, namely, L. plantarum 80 (homolactic and acid tolerant), L. fermentum 222 (heterolactic, citric acid fermenting, mannitol producing, and less acid tolerant), and A. pasteurianus 386B (ethanol and lactic acid oxidizing, acetic acid overoxidizing, acid tolerant, and moderately heat tolerant), during the natural cocoa bean fermentation process. For instance, it turned out that the capacity to use citric acid, which was exhibited by L. fermentum 222, is of the utmost importance. Also, the formation of mannitol was dependent not only on the LAB strain but also on environmental conditions. A mixture of L. plantarum 80, L. fermentum 222, and A. pasteurianus 386B can now be considered a mixed-strain starter culture for better controlled and more reliable cocoa bean fermentation processes. PMID:20889778

  6. Kinetic Analysis of Strains of Lactic Acid Bacteria and Acetic Acid Bacteria in Cocoa Pulp Simulation Media toward Development of a Starter Culture for Cocoa Bean Fermentation ▿

    PubMed Central

    Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc

    2010-01-01

    The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a selection of strains was made out of a pool of strains of these LAB and AAB species, obtained from previous studies, based on their fermentation kinetics in PSM. Also, various concentrations of citric acid in the presence of glucose and/or fructose (PSM-LAB) and of lactic acid in the presence of ethanol (PSM-AAB) were tested. These data could explain the competitiveness of particular cocoa-specific strains, namely, L. plantarum 80 (homolactic and acid tolerant), L. fermentum 222 (heterolactic, citric acid fermenting, mannitol producing, and less acid tolerant), and A. pasteurianus 386B (ethanol and lactic acid oxidizing, acetic acid overoxidizing, acid tolerant, and moderately heat tolerant), during the natural cocoa bean fermentation process. For instance, it turned out that the capacity to use citric acid, which was exhibited by L. fermentum 222, is of the utmost importance. Also, the formation of mannitol was dependent not only on the LAB strain but also on environmental conditions. A mixture of L. plantarum 80, L. fermentum 222, and A. pasteurianus 386B can now be considered a mixed-strain starter culture for better controlled and more reliable cocoa bean fermentation processes. PMID:20889778

  7. Cellulose production and cellulose synthase gene detection in acetic acid bacteria.

    PubMed

    Valera, Maria Jos; Torija, Maria Jess; Mas, Albert; Mateo, Estibaliz

    2015-02-01

    The ability of acetic acid bacteria (AAB) to produce cellulose has gained much industrial interest due to the physical and chemical characteristics of bacterial cellulose. The production of cellulose occurs in the presence of oxygen and in a glucose-containing medium, but it can also occur during vinegar elaboration by the traditional method. The vinegar biofilm produced by AAB on the air-liquid interface is primarily composed of cellulose and maintains the cells in close contact with oxygen. In this study, we screened for the ability of AAB to produce cellulose using different carbon sources in the presence or absence of ethanol. The presence of cellulose in biofilms was confirmed using the fluorochrome Calcofluor by microscopy. Moreover, the process of biofilm formation was monitored under epifluorescence microscopy using the Live/Dead BacLight Kit. A total of 77 AAB strains belonging to 35 species of Acetobacter, Komagataeibacter, Gluconacetobacter, and Gluconobacter were analysed, and 30 strains were able to produce a cellulose biofilm in at least one condition. This cellulose production was correlated with the PCR amplification of the bcsA gene that encodes cellulose synthase. A total of eight degenerated primers were designed, resulting in one primer pair that was able to detect the presence of this gene in 27 AAB strains, 26 of which formed cellulose. PMID:25381910

  8. Effect of yeast mannoproteins and grape polysaccharides on the growth of wine lactic acid and acetic acid bacteria.

    PubMed

    Diez, Lorena; Guadalupe, Zenaida; Ayestarn, Beln; Ruiz-Larrea, Fernanda

    2010-07-14

    Polysaccharides constitute one of the main groups of wine macromolecules, and the difficulty in separating and purifying them has resulted in them being less studied than other wine macromolecules. In this study, the biological activity of a number of polysaccharide fractions obtained from yeast lees, must, and wine has been analyzed against a large collection of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) of enological origin. Results showed that a high proportion of AAB strains (60-88%) was inhibited by concentrations lower than 50 mg/L polysaccharide fractions containing intermediate- (6-22 kD) and small-molecular-weight (<6 kD) mannoproteins and oligosaccharide fragments derived from cellulose and hemicelluloses. Results also showed that, in contrast, yeast mannoproteins in concentrations up to 200 mg/L activated the growth of 23-48% of the studied LAB strains when ethanol was present in the culture broth. Specially, yeast commercial mannoproteins of intermediate molecular weight (6-22 kD) were active in increasing Oenococcus oeni growth (81.5% of the studied O. oeni strains) in the presence of ethanol in the culture broth. These effects of wine polysaccharides on bacterial growth provide novel and useful information for microbiological control of wines and winemaking biotechnology. PMID:20553034

  9. Effective Trapping of Fruit Flies with Cultures of Metabolically Modified Acetic Acid Bacteria

    PubMed Central

    Ishii, Yuri; Akasaka, Naoki; Goda, Itsuko; Sakoda, Hisao

    2015-01-01

    Acetoin in vinegar is an attractant to fruit flies when combined with acetic acid. To make vinegar more effective in attracting fruit flies with increased acetoin production, Komagataeibacter europaeus KGMA0119 was modified by specific gene disruption of the acetohydroxyacid isomeroreductase gene (ilvC). A previously constructed mutant lacking the putative ligand-sensing region in the leucine-responsive regulatory protein (KeLrp, encoded by Kelrp) was also used. The ilvC and Kelrp disruptants (KGMA5511 and KGMA7203, respectively) produced greater amounts of acetoin (KGMA5511, 0.11%; KGMA7203, 0.13%) than the wild-type strain KGMA0119 (0.069%). KGMA7203 produced a trace amount of isobutyric acid (0.007%), but the other strains did not. These strains produced approximately equal amounts of acetic acid (0.7%). The efficiency of fruit fly attraction was investigated with cultured Drosophila melanogaster. D. melanogaster flies (approximately 1,500) were released inside a cage (2.5 m by 2.5 m by 1.5 m) and were trapped with a device containing vinegar and a sticky sheet. The flies trapped on the sticky sheet were counted. The cell-free supernatant from KGMA7203 culture captured significantly more flies (19.36 to 36.96% of released flies) than did KGMA0119 (3.25 to 11.40%) and KGMA5511 (6.87 to 21.50%) cultures. Contrastingly, a 0.7% acetic acid solution containing acetoin (0.13%) and isobutyric acid (0.007%), which mimicked the KGMA7203 supernatant, captured significantly fewer flies (0.88 to 4.57%). Furthermore, the KGMA0119 supernatant with additional acetoin (0.13%) and isobutyric acid (0.007%) captured slightly more flies than the original KGMA0119 supernatant but fewer than the KGMA7203 supernatant, suggesting that the synergistic effects of acetic acid, acetoin, isobutyric acid, and unidentified metabolites achieved the efficient fly trapping of the KGMA7203 supernatant. PMID:25595769

  10. Dynamics and species diversity of communities of lactic acid bacteria and acetic acid bacteria during spontaneous cocoa bean fermentation in vessels.

    PubMed

    Lefeber, Timothy; Gobert, William; Vrancken, Gino; Camu, Nicholas; De Vuyst, Luc

    2011-05-01

    To speed up research on the usefulness and selection of bacterial starter cultures for cocoa bean fermentation, a benchmark cocoa bean fermentation process under natural fermentation conditions was developed successfully. Therefore, spontaneous fermentations of cocoa pulp-bean mass in vessels on a 20 kg scale were tried out in triplicate. The community dynamics and kinetics of these fermentations were studied through a multiphasic approach. Microbiological analysis revealed a limited bacterial species diversity and targeted community dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation, as was the case during cocoa bean fermentations processes carried out in the field. LAB isolates belonged to two main (GTG)(5)-PCR clusters, namely Lactobacillus plantarum and Lactobacillus fermentum, with Fructobacillus pseudofilculneus occurring occasionally; one main (GTG)(5)-PCR cluster, composed of Acetobacter pasteurianus, was found among the AAB isolates, besides minor clusters of Acetobacter ghanensis and Acetobacter senegalensis. 16S rRNA-PCR-DGGE revealed that L. plantarum and L. fermentum dominated the fermentations from day two until the end and Acetobacter was the only AAB species present at the end of the fermentations. Also, species of Tatumella and Pantoea were detected culture-independently at the beginning of the fermentations. Further, it was shown through metabolite target analyses that similar substrate consumption and metabolite production kinetics occurred in the vessels compared to spontaneous cocoa bean fermentation processes. Current drawbacks of the vessel fermentations encompassed an insufficient mixing of the cocoa pulp-bean mass and retarded yeast growth. PMID:21356451

  11. Tryptophan Biosynthesis from Indole-3-Acetic Acid by Anaerobic Bacteria from the Rumen

    PubMed Central

    Allison, Milton J.; Robinson, I. M.; Baetz, A. L.

    1974-01-01

    Microbes in ruminal contents incorporated 14C into cells when they were incubated in vitro in the presence of [14C]carboxyl-labeled indole-3-acetic acid (IAA). Most of the cellular 14C was found to be in tryptophan from the protein fractions of the cells. Pure cultures of several important ruminal species did not incorporate labeled IAA, but all four strains of Ruminococcus albus tested utilized IAA for tryptophan synthesis. R. albus did not incorporate 14C into tryptophan during growth in medium containing either labeled serine or labeled shikimic acid. The mechanism of tryptophan biosynthesis from IAA is not known but appears to be different from any described biosynthetic pathway. We propose that a reductive carboxylation, perhaps involving a low-potential electron donor such as ferredoxin, is involved. PMID:4855566

  12. A gaseous acetic acid treatment to disinfect fenugreek seeds and black pepper inoculated with pathogenic and spoilage bacteria.

    PubMed

    Nei, Daisuke; Enomoto, Katsuyoshi; Nakamura, Nobutaka

    2015-08-01

    Contamination of spices by pathogenic and/or spoilage bacteria can be deleterious to consumer's health and cause deterioration of foods, and inactivation of such bacteria is necessary for the food industry. The present study examined the effect of gaseous acetic acid treatment in reducing Escherichia coli O157:H7, Salmonella Enteritidis and Bacillus subtilis populations inoculated on fenugreek seeds and black pepper. Treatment with gaseous acetic acid at 0.3 mmol/L, 0.6 mmol/L and 4.7 mmol/L for 1-3 h significantly reduced the populations of E. coli O157:H7 and Salmonella Enteritidis on black pepper and fenugreek seeds at 55 °C (p < 0.05). The gas treatments at 4.7 mmol/L were more effective in inactivating the pathogens than the treatment at 0.3 mmol/L. An approximately 5.0 log reduction was obtained after 3 h of treatment with 4.7 mmol/L acetic acid. No significant reductions in the population of B. subtilis spores inoculated on fenugreek seeds and black pepper were obtained after the gas treatments at 0.3 mmol/L or 0.6 mmol/L (p > 0.05). However, the gas treatment at 4.7 mmol/L significantly reduced B. subtilis spores (p < 0.05), and 4.0 log CFU/g and 3.5 log CFU/g reductions on fenugreek seeds and black pepper, respectively, were obtained after 3 h of treatment. PMID:25846935

  13. Antibiofilm Properties of Acetic Acid

    PubMed Central

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup; Nielsen, Anne K.; Johansen, Helle Krogh; Homøe, Preben; Høiby, Niels; Givskov, Michael; Kirketerp-Møller, Klaus

    2015-01-01

    Bacterial biofilms are known to be extremely tolerant toward antibiotics and other antimicrobial agents. These biofilms cause the persistence of chronic infections. Since antibiotics rarely resolve these infections, the only effective treatment of chronic infections is surgical removal of the infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram-negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms. PMID:26155378

  14. Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana.

    PubMed

    Camu, Nicholas; Gonzlez, Angel; De Winter, Tom; Van Schoor, Ann; De Bruyne, Katrien; Vandamme, Peter; Takrama, Jemmy S; Addo, Solomon K; De Vuyst, Luc

    2008-01-01

    The influence of turning and environmental contamination on six spontaneous cocoa bean heap fermentations performed in Ghana was studied through a multiphasic approach, encompassing both microbiological (culture-dependent and culture-independent techniques) and metabolite target analyses. A sensory analysis of chocolate made from the fermented, dried beans was performed as well. Only four clusters were found among the isolates of acetic acid bacteria (AAB) identified: Acetobacter pasteurianus, Acetobacter ghanensis, Acetobacter senegalensis, and a potential new Acetobacter lovaniensis-like species. Two main clusters were identified among the lactic acid bacteria (LAB) isolated, namely, Lactobacillus plantarum and Lactobacillus fermentum. No differences in biodiversity of LAB and AAB were seen for fermentations carried out at the farm and factory sites, indicating the cocoa pod surfaces and not the general environment as the main inoculum for spontaneous cocoa bean heap fermentation. Turning of the heaps enhanced aeration and increased the relative population size of AAB and the production of acetic acid. This in turn gave a more sour taste to chocolate made from these beans. Bitterness was reduced through losses of polyphenols and alkaloids upon fermentation and cocoa bean processing. PMID:17993565

  15. Influence of Turning and Environmental Contamination on the Dynamics of Populations of Lactic Acid and Acetic Acid Bacteria Involved in Spontaneous Cocoa Bean Heap Fermentation in Ghana?

    PubMed Central

    Camu, Nicholas; Gonzlez, ngel; De Winter, Tom; Van Schoor, Ann; De Bruyne, Katrien; Vandamme, Peter; Takrama, Jemmy S.; Addo, Solomon K.; De Vuyst, Luc

    2008-01-01

    The influence of turning and environmental contamination on six spontaneous cocoa bean heap fermentations performed in Ghana was studied through a multiphasic approach, encompassing both microbiological (culture-dependent and culture-independent techniques) and metabolite target analyses. A sensory analysis of chocolate made from the fermented, dried beans was performed as well. Only four clusters were found among the isolates of acetic acid bacteria (AAB) identified: Acetobacter pasteurianus, Acetobacter ghanensis, Acetobacter senegalensis, and a potential new Acetobacter lovaniensis-like species. Two main clusters were identified among the lactic acid bacteria (LAB) isolated, namely, Lactobacillus plantarum and Lactobacillus fermentum. No differences in biodiversity of LAB and AAB were seen for fermentations carried out at the farm and factory sites, indicating the cocoa pod surfaces and not the general environment as the main inoculum for spontaneous cocoa bean heap fermentation. Turning of the heaps enhanced aeration and increased the relative population size of AAB and the production of acetic acid. This in turn gave a more sour taste to chocolate made from these beans. Bitterness was reduced through losses of polyphenols and alkaloids upon fermentation and cocoa bean processing. PMID:17993565

  16. [Identification of new conserved and variable regions in the 16S rRNA gene of acetic acid bacteria and acetobacteraceae family].

    PubMed

    Chakravorty, S; Sarkar, S; Gachhui, R

    2015-01-01

    The Acetobacteraceae family of the class Alpha Proteobacteria is comprised of high sugar and acid tolerant bacteria. The Acetic Acid Bacteria are the economically most significant group of this family because of its association with food products like vinegar, wine etc. Acetobacteraceae are often hard to culture in laboratory conditions and they also maintain very low abundances in their natural habitats. Thus identification of the organisms in such environments is greatly dependent on modern tools of molecular biology which require a thorough knowledge of specific conserved gene sequences that may act as primers and or probes. Moreover unconserved domains in genes also become markers for differentiating closely related genera. In bacteria, the 16S rRNA gene is an ideal candidate for such conserved and variable domains. In order to study the conserved and variable domains of the 16S rRNA gene of Acetic Acid Bacteria and the Acetobacteraceae family, sequences from publicly available databases were aligned and compared. Near complete sequences of the gene were also obtained from Kombucha tea biofilm, a known Acetobacteraceae family habitat, in order to corroborate the domains obtained from the alignment studies. The study indicated that the degree of conservation in the gene is significantly higher among the Acetic Acid Bacteria than the whole Acetobacteraceae family. Moreover it was also observed that the previously described hypervariable regions V1, V3, V5, V6 and V7 were more or less conserved in the family and the spans of the variable regions are quite distinct as well. PMID:26510592

  17. Unifying bacteria from decaying wood with various ubiquitous Gibbsiella species as G. acetica sp. nov. based on nucleotide sequence similarities and their acetic acid secretion.

    PubMed

    Geider, Klaus; Gernold, Marina; Jock, Susanne; Wensing, Annette; Völksch, Beate; Gross, Jürgen; Spiteller, Dieter

    2015-12-01

    Bacteria were isolated from necrotic apple and pear tree tissue and from dead wood in Germany and Austria as well as from pear tree exudate in China. They were selected for growth at 37°C, screened for levan production and then characterized as Gram-negative, facultatively anaerobic rods. Nucleotide sequences from 16S rRNA genes, the housekeeping genes dnaJ, gyrB, recA and rpoB alignments, BLAST searches and phenotypic data confirmed by MALDI-TOF analysis showed that these bacteria belong to the genus Gibbsiella and resembled strains isolated from diseased oaks in Britain and Spain. Gibbsiella-specific PCR primers were designed from the proline isomerase and the levansucrase genes. Acid secretion was investigated by screening for halo formation on calcium carbonate agar and the compound identified by NMR as acetic acid. Its production by Gibbsiella spp. strains was also determined in culture supernatants by GC/MS analysis after derivatization with pentafluorobenzyl bromide. Some strains were differentiated by the PFGE patterns of SpeI digests and by sequence analyses of the lsc and the ppiD genes, and the Chinese Gibbsiella strain was most divergent. The newly investigated bacteria as well as Gibbsiella querinecans, Gibbsiella dentisursi and Gibbsiella papilionis, isolated in Britain, Spain, Korea and Japan, are taxonomically related Enterobacteriaceae, tolerate and secrete acetic acid. We therefore propose to unify them in the species Gibbsiella acetica sp. nov. PMID:26071988

  18. Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium.

    PubMed Central

    Kobayashi, M; Suzuki, T; Fujita, T; Masuda, M; Shimizu, S

    1995-01-01

    The occurrence of a hitherto unknown pathway involving the action of two enzymes, a nitrile hydratase and an amidase for the biosynthesis of indole-3-acetic acid was discovered in phytopathogenic bacteria Agrobacterium tumefaciens and in leguminous bacteria Rhizobium. The nitrile hydratase acting on indole-3-acetonitrile was purified to homogeneity through only two steps from the cell-free extract of A. tumefaciens. The molecular mass of the purified enzyme estimated by HPLC was about 102 kDa, and the enzyme consisted of four subunits identical in molecular mass. The enzyme exhibited a broad absorption spectrum in the visible range with absorption maxima at 408 nm and 705 nm, and it contained cobalt and iron. The enzyme stoichiometrically catalyzed the hydration of indole-3-acetonitrile into indole-3-acetamide with a specific activity of 13.7 mol per min per mg and a Km of 7.9 microM. Images Fig. 1 PMID:11607511

  19. Updates on quick identification of acetic acid bacteria with a focus on the 16S-23S rRNA gene internal transcribed spacer and the analysis of cell proteins by MALDI-TOF mass spectrometry.

    PubMed

    Tr?ek, Janja; Barja, Franois

    2015-03-01

    Acetic acid bacteria have attracted much attention over the past few years, due mainly to their metabolic traits that are of interest to the biotechnology industry. In addition, it turns out that their ecological habitats are almost unlimited since they have been found as symbionts in different insects and also as emerging opportunistic human pathogens. Very surprising is the finding that they colonize niches considered anaerobic, disproving the generalized statement that they are strict aerobes. Since they have taken on different biological roles in our environment, more and more people are charged with the task of identifying them. However, this turns out to be not always easy, especially if we are using phenotypic approaches for identification. A substantial step forward in making the identification of acetic acid bacteria easier was made possible using molecular biological methods, which have been extensively tested since 2000. However, some molecular methods require expensive machines and experienced staff, and moreover the level of their discrimination varies. All these factors must be considered when selecting the most appropriate approach for identifying acetic acid bacteria. With this objective in mind, this review article discusses the benefits and drawbacks of molecular biological methods for identification of acetic acid bacteria, with a focus on the 16S-23S rRNA gene ITS regions and the recently described alternative method for identification of acetic acid bacteria, MALDI-TOF MS. PMID:25589227

  20. Metabolic Activity of Fatty Acid-Oxidizing Bacteria and the Contribution of Acetate, Propionate, Butyrate, and CO2 to Methanogenesis in Cattle Waste at 40 and 60C

    PubMed Central

    Mackie, Roderick I.; Bryant, Marvin P.

    1981-01-01

    The quantitative contribution of fatty acids and CO2 to methanogenesis was studied by using stirred, 3-liter bench-top digestors fed on a semicontinuous basis with cattle waste. The fermentations were carried out at 40 and 60C under identical loading conditions (6 g of volatile solids per liter of reactor volume per day, 10-day retention time). In the thermophilic digestor, acetate turnover increased from a prefeeding level of 16 ?M/min to a peak (49 ?M/min) 1 h after feeding and then gradually decreased. Acetate turnover in the mesophilic digestor increased from 15 to 40 ?M/min. Propionate turnover ranged from 2 to 5.2 and 1.5 to 4.5 ?M/min in the thermophilic and mesophilic digestors, respectively. Butyrate turnover (0.7 to 1.2 ?M/min) was similar in both digestors. The proportion of CH4 produced via the methyl group of acetate varied with time after feeding and ranged from 72 to 75% in the mesophilic digestor and 75 to 86% in the thermophilic digestor. The contribution from CO2 reduction was 24 to 29% and 19 to 27%, respectively. Propionate and butyrate turnover accounted for 20% of the total CH4 produced. Acetate synthesis from CO2 was greatest shortly after feeding and was higher in the thermophilic digestor (0.5 to 2.4 ?M/min) than the mesophilic digestor (0.3 to 0.5 ?M/min). Counts of fatty acid-degrading bacteria were related to their turnover activity. PMID:16345789

  1. The low photo-inactivation rate of bacteria in human plasma II. Inhibition of methylene blue bleaching in plasma and effective bacterial destruction by the addition of dilute acetic acid to human plasma.

    PubMed

    Chen, Jie; Cesario, Thomas C; Li, Runze; Er, Ali O; Rentzepis, Peter M

    2015-10-01

    Methylene blue (MB) and other photo-sensitizer molecules have been recognized as effective means for the inactivation of bacteria and other pathogens owing to their ability to photo-generate reactive oxygen species (ROS) including singlet oxygen. These reactive species react with the membrane of the bacteria causing their destruction. However, the efficiency of MB to destroy bacteria in plasma is very low because the MB 660 nm absorption band, that is responsible for the ROS generation, is bleached. The bleaching of MB, in plasma, is caused by the attachment of a hydrogen atom to the central ring nitrogen of MB, which destroys the ring conjugation and forms Leuco-MB which does not absorb in the 600 nm region. In this paper we show that addition of dilute acetic acid, ?10(-4) M, to human plasma, prevents H-atom attachment to MB, allowing MB to absorb at 660 nm, generates singlet oxygen and thus inactivates bacteria. The mechanism proposed, for preventing MB bleaching in plasma, is based on the oxidation of cysteine to cystine, by reaction with added dilute acetic acid, thus eliminating the availability of the thiol hydrogen atom which attaches to the MB nitrogen. It is expected that the addition of acetic acid to plasma will be effective in the sterilization of plasma and killing of bacteria in wounds and burns. PMID:26222263

  2. Phosphate solubilizing and indole-3-acetic acid producing bacteria from the soil of Garhwal Himalaya aimed to improve the growth of rice.

    PubMed

    Gusain, Yogendra Singh; Kamal, Ranveer; Mehta, C M; Singh, U S; Sharma, A K

    2015-01-01

    In the present study, soil bacteria from rainfed agriculture field of Garhwal Himalaya, just prior to sowing of summer crop, were isolated and initially tested for solubilization of inorganic phosphate, production of indole acetic acid (IAA) and siderophore. Two bacterial isolates, having efficient P- solubilizing activity in solid medium, were identified using 16S rRNA sequence analysis as Pseudomonas koreensis strainYB1 Arthrobacter nitroguajacolicus strainYB3 and three bacterial isolates, producing high amount of IAA in liquid medium, were identified as Klebsiella oxytoca strainYB2 and two strain of Arthrobacter nitroguajacolicus, strainYB4 and YB5, respectively. In culture medium supplemented with L-Tryptophan, Klebsiella oxytoca produced high amount of IAA (337.44 ?g l(-1)). The selected five bacterial strains were further tested for tricalcium phosphate (TCP) solubilizing abilities at three different incubation temperature viz., 4 degrees C, 10 degrees C and 28 degrees C, under in vitro conditions. At 28 degrees C, three bacterial strains Pseudomonas koreensis, Arthrobacter nitroguajacolicus strainYB4 and Klebsiella oxytoca solubilized the phosphate efficiently. At 10 degrees C only two strains, Pseudomonas koreensis and Arthrobacter nitroguajacolicus strainYB4 solubilized phosphate efficiently as compared to other strains. These five bacterial strains were tested for nitrogen, catalase activity, starch and cellulose hydrolysis as well as growth promotion activity on rice, under controlled conditions. All the five bacterial strains efficiently increased the biomass and phosphorus uptake in Swama and Swarna sub1 varieties of rice. PMID:26536808

  3. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It...

  4. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  5. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  6. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1005 Acetic acid. (a) Product. Acetic acid....

  7. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  8. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  9. Pyruvate-associated acid resistance in bacteria.

    PubMed

    Wu, Jianting; Li, Yannan; Cai, Zhiming; Jin, Ye

    2014-07-01

    Glucose confers acid resistance on exponentially growing bacteria by repressing formation of the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and consequently activating acid resistance genes. Therefore, in a glucose-rich growth environment, bacteria are capable of resisting acidic stresses due to low levels of cAMP-CRP. Here we reveal a second mechanism for glucose-conferred acid resistance. We show that glucose induces acid resistance in exponentially growing bacteria through pyruvate, the glycolysis product. Pyruvate and/or the downstream metabolites induce expression of the small noncoding RNA (sncRNA) Spot42, and the sncRNA, in turn, activates expression of the master regulator of acid resistance, RpoS. In contrast to glucose, pyruvate has little effect on levels of the cAMP-CRP complex and does not require the complex for its effects on acid resistance. Another important difference between glucose and pyruvate is that pyruvate can be produced by bacteria. This means that bacteria have the potential to protect themselves from acidic stresses by controlling glucose-derived generation of pyruvate, pyruvate-acetate efflux, or reversion from acetate to pyruvate. We tested this possibility by shutting down pyruvate-acetate efflux and found that the resulting accumulation of pyruvate elevated acid resistance. Many sugars can be broken into glucose, and the subsequent glycolysis generates pyruvate. Therefore, pyruvate-associated acid resistance is not confined to glucose-grown bacteria but is functional in bacteria grown on various sugars. PMID:24795365

  10. Extractive fermentation of acetic acid

    SciTech Connect

    Busche, R.M.

    1991-12-31

    In this technoeconomic evaluation of the manufacture of acetic acid by fermentation, the use of the bacterium: Acetobacter suboxydans from the old vinegar process was compared with expected performance of the newer Clostridium thermoaceticum bacterium. Both systems were projected to operate as immobilized cells in a continuous, fluidized bed bioreactor, using solvent extraction to recover the product. Acetobacter metabolizes ethanol aerobically to produce acid at 100 g/L in a low pH medium. This ensures that the product is in the form of a concentrated extractable free acid, rather than as an unextractable salt. Unfortunately, yields from glucose by way of the ethanol fermentation are poor, but near the biological limits of the organisms involved. Conversely, C. thermoaceticum is a thermophilic anaerobe that operates at high fermentation rates on glucose at neutral pH to produce acetate salts directly in substantially quantitative yields. However, it is severely inhibited by product, which restricts concentration to a dilute 20 g/L. An improved Acetobacter system operating with recycled cells at 50 g/L appears capable of producing acid at $0.38/lb, as compared with a $0.29/lb price for synthetic acid. However, this system has only a limited margin for process improvement. The present Clostridium system cannot compete, since the required selling price would be $0.42/lb. However, if the organism could be adapted to tolerate higher product concentrations at acid pH, selling price could be reduced to $0.22/lb, or about 80% of the price of synthetic acid.

  11. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  12. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  13. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  14. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  15. Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin.

    PubMed

    Tsavkelova, Elena A; Cherdyntseva, Tatiana A; Klimova, Svetlana Yu; Shestakov, Andrey I; Botina, Svetlana G; Netrusov, Alexander I

    2007-12-01

    Germination of orchid seeds is a complex process. In this paper we focus on interactions between the host-plant and its bacterial partners via indole-3-acetic acid (IAA). Originally isolated from the roots of the epiphytic orchid Dendrobium moschatum, the strains of Rhizobium, Microbacterium, Sphingomonas, and Mycobacterium genera were among the most active IAA producers. Addition of exogenous tryptophan significantly enhanced auxin formation both in mineral and complex media. The presence of IAA and indole-3-acetaldehyde was confirmed by HPLC. Indole-3-pyruvic and indole-3-lactic acids were also detected in supernatants of culture filtrates of Sphingomonas sp., Rhizobium sp., and Microbacterium sp., while indole-3-acetamide was identified only in Mycobacterium sp. Some concentration- and strain-dependent effects of exogenous IAA on bacterial development were also established. Treatment of the cultures with 10 and 100 microg/ml of auxin resulted in an increase in microbial yield. None of the investigated strains was able to utilize IAA as a source of carbon and energy. Furthermore, inoculation of D. moschatum seeds with Sphingomonas sp. and Mycobacterium sp. resulted in considerable enhancement of orchid seeds germination. This growth-promoting activity was observed in the absence of any plant growth stimulators or mycorrhizal fungi, usually required for orchid germination. PMID:17687544

  16. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    PubMed

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation. PMID:26253254

  17. Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate.

    PubMed

    Goevert, Dennis; Conrad, Ralf

    2008-11-01

    Acetate is a key intermediate in the anaerobic degradation of organic matter. In anoxic environments, available acetate is a competitive substrate for sulfate-reducing bacteria (SRB) and methane-producing archaea. Little is known about the fractionation of carbon isotopes by sulfate reducers. Therefore, we determined carbon isotope compositions in cultures of three acetate-utilizing SRB, Desulfobacter postgatei, Desulfobacter hydrogenophilus, and Desulfobacca acetoxidans. We found that these species showed strong differences in their isotope enrichment factors (epsilon) of acetate. During the consumption of acetate and sulfate, acetate was enriched in 13C by 19.3% per hundred in Desulfobacca acetoxidans. By contrast, both D. postgatei and D. hydrogenophilus showed a slight depletion of 13C resulting in epsilon(ac)-values of 1.8 and 1.5% per hundred, respectively. We suggest that the different isotope fractionation is due to the different metabolic pathways for acetate oxidation. The strongly fractionating Desulfobacca acetoxidans uses the acetyl-CoA/carbon monoxide dehydrogenase pathway, which is also used by acetoclastic methanogens that show a similar fractionation of acetate (epsilon(ac) = -21 to -27% per hundred). In contrast, Desulfobacter spp. oxidize acetate to CO2 via the tricarboxylic acid (TCA) cycle and apparently did not discriminate against 13C. Our results suggestthat carbon isotope fractionation in environments with sulfate reduction will strongly depend on the composition of the sulfate-reducing bacterial community oxidizing acetate. PMID:19031865

  18. Dynamic Protonation Equilibrium of Solvated Acetic Acid

    SciTech Connect

    Gu, Wei; Frigato, Tomaso; Straatsma, TP; Helms, Volkhard H.

    2007-04-13

    For the first time, the dynamic protonation equilibrium between an amino acid side chain analogue and bulk water as well as the diffusion properties of the excess proton were successfully reproduced through unbiased computer simulations. During a 50 ns Q-HOP MD simulation, two different regimes of proton transfer were observed. Extended phases of frequent proton swapping between acetic acid and nearby water were separated by phases where the proton freely diffuses in the simulation box until it is captured again by acetic acid. The pKa of acetic acid was calculated around 3.0 based on the relative population of protonated and deprotonated states and the diffusion coefficient of excess proton was computed from the average mean squared displacement in the simulation. Both calculated values agree well with the experimental measurements.

  19. The effect of lactic acid bacteria on cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences in sensory rankings. It was concluded that lactic acid bacteria may not be necessary for successful cocoa fermentation. PMID:25889523

  20. Hydrogen production by fermentation using acetic acid and lactic acid.

    PubMed

    Matsumoto, Mitsufumi; Nishimura, Yasuhiko

    2007-03-01

    Microbial hydrogen production from sho-chu post-distillation slurry solution (slurry solution) containing large amounts of organic acids was investigated. The highest hydrogen producer, Clostridium diolis JPCC H-3, was isolated from natural environment and produced hydrogen at 6.03+/-0.15 ml from 5 ml slurry solution in 30 h. Interestingly, the concentration of acetic acid and lactic acid in the slurry solution decreased during hydrogen production. The substrates for hydrogen production by C. diolis JPCC H-3, in particular organic acids, were investigated in an artificial medium. No hydrogen was produced from acetic acid, propionic acid, succinic acid, or citric acid on their own. Hydrogen and butyric acid were produced from a mixture of acetic acid and lactic acid, showing that C. diolis. JPCC H-3 could produce hydrogen from acetic acid and lactic acid. Furthermore, calculation of the Gibbs free energy strongly suggests that this reaction would proceed. In this paper, we describe for the first time microbial hydrogen production from acetic acid and lactic acid by fermentation. PMID:17434426

  1. Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents

    PubMed Central

    Etesami, Hassan; Alikhani, Hossein Ali; Hosseini, Hossein Mirseyed

    2015-01-01

    Plants select plant growth promoting rhizobacteria (PGPR) that are competitively fit to occupy compatible niches without causing pathological stress on them. However, when screening bacteria for plant growth promoting (PGP) agents, it is better to select bacteria for achieving the most promising isolates having suitable colonization and PGP traits. In most researches, it has been seen that following incubation, bacterial flora are taken at random from petri dishes for further study. However, this type of selection may remove some superior bacteria in terms of PGP traits and high colonization ability. Therefore, it is essential to study all the isolated bacteria in an economic way and select the best bacteria in terms of PGP traits and high colonization rate. A simple screening method to detect endophytic and rhizosphere bacteria, isolated from the plants in rotation with rice, for rice PGP agents based on a root colonization bioassay and a PGP trait is characterized. Selected bacterial isolates based on their IAA producing trait have the potential for more PGP and colonization of rice plant. IAA may be the first PGP trait for screening bacteria isolated from plant rotated with rice for rice PGP agents. The screening procedure appears to be very effective and less time consuming. PMID:26150974

  2. Effects of acetic acid/acetic anhydride ratios on the properties of corn starch acetates.

    PubMed

    Diop, Cherif Ibrahima Khalil; Li, Hai Long; Xie, Bi Jun; Shi, John

    2011-06-15

    Corn starch was pre-treated with acetic acid and then acetylated by acetic anhydride under microwave irradiation. The effects of molar ratios of these two reagents on the acetylation of starch were investigated. Starch acetate with a high degree of substitution (DS, 2.93) was obtained at a molar ratio (acetic acid/acetic anhydride) of 1:1. However, the DS should tend to decrease with a change of this ratio. The FT-IR analysis indicated characteristic absorption peaks, with increasing DS materialised by an increase of the carbonyl CO group and a decrease of the hydroxyl O-H group, at about 1750cm(-1) and 3450cm(-1), respectively. The X-ray diffraction patterns of acetylated starch showed an amorphous structure. Degree of crystallinity, surface morphology, water solubility and water absorption index of corn starch were also affected by the changes in reagent ratios. The glass transition (Tg) and melting (Tm) temperatures of acetylated starches also decreased after acetylation. PMID:25213942

  3. Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene.

    PubMed

    Trcek, Janja

    2005-10-01

    Acetic acid bacteria (AAB) are well known for oxidizing different ethanol-containing substrates into various types of vinegar. They are also used for production of some biotechnologically important products, such as sorbose and gluconic acids. However, their presence is not always appreciated since certain species also spoil wine, juice, beer and fruits. To be able to follow AAB in all these processes, the species involved must be identified accurately and quickly. Because of inaccuracy and very time-consuming phenotypic analysis of AAB, the application of molecular methods is necessary. Since the pairwise comparison among the 16S rRNA gene sequences of AAB shows very high similarity (up to 99.9%) other DNA-targets should be used. Our previous studies showed that the restriction analysis of 16S-23S rDNA internal transcribed spacer region is a suitable approach for quick affiliation of an acetic acid bacterium to a distinct group of restriction types and also for quick identification of a potentially novel species of acetic acid bacterium (Trcek & Teuber 2002; Trcek 2002). However, with the exception of two conserved genes, encoding tRNAIle and tRNAAla, the sequences of 16S-23S rDNA are highly divergent among AAB species. For this reason we analyzed in this study a gene encoding PQQ-dependent ADH as a possible DNA-target. First we confirmed the expression of subunit I of PQQ-dependent ADH (AdhA) also in Asaia, the only genus of AAB which exhibits little or no ADH-activity. Further we analyzed the partial sequences of adhA among some representative species of the genera Acetobacter, Gluconobacter and Gluconacetobacter. The conserved and variable regions in these sequences made possible the construction of A. acetispecific oligonucleotide the specificity of which was confirmed in PCR-reaction using 45 well-defined strains of AAB as DNA-templates. The primer was also successfully used in direct identification of A. aceti from home made cider vinegar as well as for revealing the misclassification of strain IFO 3283 into the species A. aceti. PMID:16261863

  4. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  5. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The

  6. Validation of the (GTG)(5)-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans.

    PubMed

    De Vuyst, Luc; Camu, Nicholas; De Winter, Tom; Vandemeulebroecke, Katrien; Van de Perre, Vincent; Vancanneyt, Marc; De Vos, Paul; Cleenwerck, Ilse

    2008-06-30

    Amplification of repetitive bacterial DNA elements through the polymerase chain reaction (rep-PCR fingerprinting) using the (GTG)(5) primer, referred to as (GTG)(5)-PCR fingerprinting, was found a promising genotypic tool for rapid and reliable speciation of acetic acid bacteria (AAB). The method was evaluated with 64 AAB reference strains, including 31 type strains, and 132 isolates from Ghanaian, fermented cocoa beans, and was validated with DNA:DNA hybridization data. Most reference strains, except for example all Acetobacter indonesiensis strains and Gluconacetobacter liquefaciens LMG 1509, grouped according to their species designation, indicating the usefulness of this technique for identification to the species level. Moreover, exclusive patterns were obtained for most strains, suggesting that the technique can also be used for characterization below species level or typing of AAB strains. The (GTG)(5)-PCR fingerprinting allowed us to differentiate four major clusters among the fermented cocoa bean isolates, namely A. pasteurianus (cluster I, 100 isolates), A. syzygii- or A. lovaniensis-like (cluster II, 23 isolates), and A. tropicalis-like (clusters III and IV containing 4 and 5 isolates, respectively). A. syzygii-like and A. tropicalis-like strains from cocoa bean fermentations were reported for the first time. Validation of the method and indications for reclassifications of AAB species and existence of new Acetobacter species were obtained through 16S rRNA sequencing analyses and DNA:DNA hybridizations. Reclassifications refer to A. aceti LMG 1531, Ga. xylinus LMG 1518, and Ga. xylinus subsp. sucrofermentans LMG 18788(T). PMID:17920717

  7. Atmospheric formic and acetic acids in Venezuela

    NASA Astrophysics Data System (ADS)

    Sanhueza, Eugenio; Figueroa, Luis; Santana, Magaly

    Gas, phase and rain concentrations of HCOOH and CH 3COOH have been measured at various sites in the savannah climatic region, a cloud forest site and a coastal site in Venezuela. Gas phase and rain water were sampled using the aqueous scrubber technique and a wet only collector, respectively. Analyses were made by ion chromatography. The results indicate that formic and acetic acids are important components of the Venezuelan atmosphere. They are homogeneously distributed, suggesting a widespread source. Boundary layer concentrations during the dry season (HCOOH, 1.8 ppbv; CH 3COOH, 1.25 ppbv) are higher than in the wet season (HCOOH, 1.0 ppbv; CH 3COOH, 0.7 ppbv), mainly due to a longer lifetime of the acid during the dry season (˜6 days) compared with the wet season (˜2 days). The overall concentrations in rain are 7.0 and 4.0 μM for formic and acetic acids, respectively. The estimated annual total depositions are: HCOOH, 17 mmol m -2 yr -1 and CH 3COOH,10 mmol m -2 yr -1; around half of the acids are removed by dry deposition. It is established that a larger source (˜1.8 times) of both acids is present during the wet season. We speculate that atmospheric oxidation of hydrocarbons should be the main source of HCOOH and CH 3COOH in the Venezuelan atmosphere; soil emissions could make a significant contribution during the dry season.

  8. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii.

    PubMed

    Lindahl, Lina; Genheden, Samuel; Eriksson, Leif A; Olsson, Lisbeth; Bettiga, Maurizio

    2016-04-01

    Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic-acid-tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo-lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin-treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress. Biotechnol. Bioeng. 2016;113: 744-753. © 2015 Wiley Periodicals, Inc. PMID:26416641

  9. Tested Demonstrations: Buffer Capacity of Various Acetic Acid-Sodium Acetate Systems: A Lecture Experiment.

    ERIC Educational Resources Information Center

    Donahue, Craig J.; Panek, Mary G.

    1985-01-01

    Background information and procedures are provided for a lecture experiment which uses indicators to illustrate the concept of differing buffer capacities by titrating acetic acid/sodium acetate buffers with 1.0 molar hydrochloric acid and 1.0 molar sodium hydroxide. A table with data used to plot the titration curve is included. (JN)

  10. Temperature effect on acetate and propionate consumption by sulfate-reducing bacteria in saline wastewater.

    PubMed

    van den Brand, T P H; Roest, K; Brdjanovic, D; Chen, G H; van Loosdrecht, M C M

    2014-05-01

    Seawater toilet flushing, seawater intrusion in the sewerage, and discharge of sulfate-rich industrial effluents elevates sulfate content in wastewater. The application of sulfate-reducing bacteria (SRB) in wastewater treatment is very beneficial; as for example, it improves the pathogen removal and reduces the volume of waste sludge, energy requirement and costs. This paper evaluates the potential to apply biological sulfate reduction using acetate and propionate to saline sewage treatment in moderate climates. Long-term biological sulfate reduction experiments at 10 and 20 °C were conducted in a sequencing batch reactor with synthetic saline domestic wastewater. Subsequently, acetate and propionate (soluble organic carbon) conversion rate were determined in both reactors, in the presence of either or both fatty acids. Both acetate and propionate consumption rates by SRB were 1.9 times lower at 10 °C than at 20 °C. At 10 °C, propionate was incompletely oxidized to acetate. At 10 °C, complete removal of soluble organic carbon requires a significantly increased hydraulic retention time as compared to 20 °C. The results of the study showed that biological sulfate reduction can be a feasible and promising process for saline wastewater treatment in moderate climate. PMID:24463759

  11. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  12. Acetic Acid Acts as a Volatile Signal To Stimulate Bacterial Biofilm Formation

    PubMed Central

    Chen, Yun; Gozzi, Kevin; Yan, Fang

    2015-01-01

    ABSTRACT Volatiles are small air-transmittable chemicals with diverse biological activities. In this study, we showed that volatiles produced by the bacterium Bacillus subtilis had a profound effect on biofilm formation of neighboring B. subtilis cells that grew in proximity but were physically separated. We further demonstrated that one such volatile, acetic acid, is particularly potent in stimulating biofilm formation. Multiple lines of genetic evidence based on B. subtilis mutants that are defective in either acetic acid production or transportation suggest that B. subtilis uses acetic acid as a metabolic signal to coordinate the timing of biofilm formation. Lastly, we investigated how B. subtilis cells sense and respond to acetic acid in regulating biofilm formation. We showed the possible involvement of three sets of genes (ywbHG, ysbAB, and yxaKC), all encoding putative holin-antiholin-like proteins, in cells responding to acetic acid and stimulating biofilm formation. All three sets of genes were induced by acetate. A mutant with a triple mutation of those genes showed a severe delay in biofilm formation, whereas a strain overexpressing ywbHG showed early and robust biofilm formation. Results of our studies suggest that B. subtilis and possibly other bacteria use acetic acid as a metabolic signal to regulate biofilm formation as well as a quorum-sensing-like airborne signal to coordinate the timing of biofilm formation by physically separated cells in the community. PMID:26060272

  13. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride.

    PubMed

    Costa, Cristiane N; Teixeira, Viviane G; Delpech, Marcia C; Souza, Josefa Virginia S; Costa, Marcos A S

    2015-11-20

    A viscometric study was carried out at 25C to assess the physical-chemical behavior in solution and the mean viscometric molar mass (Mv) of chitosan solutions with different deacetylation degrees, in two solvent mixtures: medium 1-acetic acid 0.3mol/L and sodium acetate 0.2mol/L; and medium 2-acetic acid 0.1mol/L and sodium chloride 0.2mol/L. Different equations were employed, by graphical extrapolation, to calculate the intrinsic viscosities [?] and the viscometric constants, to reveal the solvent's quality: Huggins (H), Kraemer (K) and Schulz-Blaschke (SB). For single-point determination, the equations used were SB, Solomon-Ciuta (SC) and Deb-Chanterjee (DC), resulting in a faster form of analysis. The values of ?Mv were calculated by applying the equation of Mark-Houwink-Sakurada. The SB and SC equations were most suitable for single-point determination of [?] and ?Mv and the Schulz-Blachke constant (kSB), equal to 0.28, already utilized for various systems, can also be employed to analyze chitosan solutions under the conditions studied. PMID:26344278

  14. Micelles Protect and Concentrate Activated Acetic Acid

    NASA Astrophysics Data System (ADS)

    Todd, Zoe; House, C.

    2014-01-01

    As more and more exoplanets are discovered and the habitability of such planets is considered, one can turn to searching for the origin of life on Earth in order to better understand what makes a habitable planet. Activated acetic acid, or methyl thioacetate, has been proposed to be central to the origin of life on Earth, and also as an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about three orders of magnitude faster (K = 0.00663 s^-1; 100C, pH 7.5, concentration = 0.33mM) than published rates for its catalyzed production making it unlikely to accumulate under prebiotic conditions. However, we also observed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. We found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid micelles. Thus, the hydrophobic regions of prebiotic micelles and early cell membranes could have offered a refuge for this energetic molecule increasing its lifetime in close proximity to the reactions for which it would be needed. Methyl thioacetate could thus be important for the origin of life on Earth and perhaps for better understanding the potential habitability of other planets.

  15. Predicting total soil lead from an acetic acid-sodium acetate buffered solution

    SciTech Connect

    Nicklow, C.W.; Norvell, W.A.; Spittler, T.

    1981-01-01

    Total soil lead was predicted satisfactorily from the lead extracted by the Standard Morgan soil testing solution (sodium acetate with acetic acid, pH 4.8). A modified Morgan solution, utilizing EDTA as a chelating agent, extracted greater than 3 times as much lead as the regular Morgan's solution, but was no better in predicting total lead.

  16. Investigation of the molecular ion structure for aldononitrile acetate derivatized muramic acid.

    PubMed

    Liang, Chao; Zhang, Xudong; Wei, Liping; He, Hongbo; Higbee, Alan J; Balser, Teri C

    2011-08-01

    The muramic acid assay is a powerful tool for detecting both intact bacteria and bacterial debris. Past use of aldononitrile acetate derivatization for determining muramic acid in complex samples by gas chromatography/mass spectrometry met detection needs in many instances; however, questions have been raised regarding the interpretation of the derivative structure and its electron ionization fragments. In this study, we applied different methods and proved that the aldononitrile acetate derivatized muramic acid yields a molecular weight of 398, associated with a lactam structure. We also presented evidence that the structure of aldononitrile acetate derivatized muramic acid is acetylated at four positions, 3 O-acetylations and 1N-acetylation. In practical manner, this communication provides a comprehensive reference to researchers using ?(13)C value or ion fragments of the muramic acid marker in biogeochemical studies. PMID:21621564

  17. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  18. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  19. Computerized image analysis for acetic acid induced intraepithelial lesions

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.

    2008-03-01

    Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.

  20. Genetics of Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergs, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  1. Acetic Acid, the Active Component of Vinegar, Is an Effective Tuberculocidal Disinfectant

    PubMed Central

    Cortesia, Claudia; Vilchèze, Catherine; Bernut, Audrey; Contreras, Whendy; Gómez, Keyla; de Waard, Jacobus; Jacobs, William R.; Kremer, Laurent; Takiff, Howard

    2014-01-01

    ABSTRACT Effective and economical mycobactericidal disinfectants are needed to kill both Mycobacterium tuberculosis and non-M. tuberculosis mycobacteria. We found that acetic acid (vinegar) efficiently kills M. tuberculosis after 30 min of exposure to a 6% acetic acid solution. The activity is not due to pH alone, and propionic acid also appears to be bactericidal. M. bolletii and M. massiliense nontuberculous mycobacteria were more resistant, although a 30-min exposure to 10% acetic acid resulted in at least a 6-log10 reduction of viable bacteria. Acetic acid (vinegar) is an effective mycobactericidal disinfectant that should also be active against most other bacteria. These findings are consistent with and extend the results of studies performed in the early and mid-20th century on the disinfectant capacity of organic acids. IMPORTANCE  Mycobacteria are best known for causing tuberculosis and leprosy, but infections with nontuberculous mycobacteria are an increasing problem after surgical or cosmetic procedures or in the lungs of cystic fibrosis and immunosuppressed patients. Killing mycobacteria is important because Mycobacterium tuberculosis strains can be multidrug resistant and therefore potentially fatal biohazards, and environmental mycobacteria must be thoroughly eliminated from surgical implements and respiratory equipment. Currently used mycobactericidal disinfectants can be toxic, unstable, and expensive. We fortuitously found that acetic acid kills mycobacteria and then showed that it is an effective mycobactericidal agent, even against the very resistant, clinically important Mycobacterium abscessus complex. Vinegar has been used for thousands of years as a common disinfectant, and if it can kill mycobacteria, the most disinfectant-resistant bacteria, it may prove to be a broadly effective, economical biocide with potential usefulness in health care settings and laboratories, especially in resource-poor countries. PMID:24570366

  2. Acetic acid oxidation and hydrolysis in supercritical water

    SciTech Connect

    Meyer, J.C.; Marrone, P.A.; Tester, J.W.

    1995-09-01

    Acetic acid (CH{sub 3}COOH) hydrolysis and oxidation in supercritical water were examined from 425--600 C and 246 bar at reactor residence times of 4.4 to 9.8 s. Over the range of conditions studied, acetic acid oxidation was globally 0.72 {+-} 0.15 order in acetic acid and 0.27 {+-} 0.15 order in oxygen to a 95% confidence level, with an activation energy of 168 {+-} 21 kJ/mol, a preexponential factor of 10{sup 9.9{+-}1.7}, and an induction time of about 1.5 s at 525 C. Isothermal kinetic measurements at 550 C over the range 160 to 263 bar indicated that pressure or density did not affect the rate of acetic acid oxidation as much as was previously observed in the oxidation of hydrogen or carbon monoxide in supercritical water. Major products of acetic acid oxidation in supercritical water are carbon dioxide, carbon monoxide, methane, and hydrogen. Trace amounts of propenoic acid were occasionally detected. Hydrolysis or hydrothermolysis in the absence of oxygen resulted in approximately 35% conversion of acetic acid at 600 C, 246 bar, and 8-s reactor residence time. Regression of the limited hydrolysis runs assuming a reaction rate first-order in organic gave a global rate expression with a preexponential factor of 10{sup 4.4{+-}1.1} and an activation energy of 94 {+-} 17 kJ/mol.

  3. SOLVENT EXTRACTION OF WASTEWATERS FROM ACETIC-ACID MANUFACTURE

    EPA Science Inventory

    Solvent extraction was evaluated as a potential treatment method for wastewaters generated during the manufacture of acetic acid. Possible goals for an extraction process were considered. For the wastewater samples studied, extraction appeared to be too expensive to be practical ...

  4. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-01

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively. PMID:18968850

  5. Potential antibacterial activity of coumarin and coumarin-3-acetic acid derivatives.

    PubMed

    Chattha, Fauzia Anjum; Munawar, Munawar Ali; Nisa, Mehrun; Ashraf, Mohammad; Kousar, Samina; Arshad, Shafia

    2015-05-01

    Coumarin and coumarin-3-acetic acid derivatives were synthesized by reacting phenols with malic acid, ethyl acetoacetate and ethyl acetylsuccinate in appropriate reaction conditions. All synthesized compounds were subjected to test for their antimicrobial activities against variety of gram positive (Bacillus subtilis, Staphylococcus aureus) and gram negative bacterial stains (Shigella sonnei, Escherichia coli) by agar dilution method. Several of them exhibited appreciable good antibacterial activity against the different strains of gram positive and gram negative bacteria. These findings suggest a great potential of these compounds for screening and use as antibacterial agents for further studies with a battery of bacteria. PMID:26004713

  6. Degradation by acetic acid for crystalline Si photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Masuda, Atsushi; Uchiyama, Naomi; Hara, Yukiko

    2015-04-01

    The degradation of crystalline Si photovoltaic modules during damp-heat test was studied using some test modules with and without polymer film insertion by observing electrical and electroluminescence properties and by chemical analyses. Acetic acid generated by the hydrolysis decomposition of ethylene vinyl acetate used as an encapsulant is the main origin of degradation. The change in electroluminescence images is explained on the basis of the corrosion of electrodes by acetic acid. On the other hand, little change was observed at the pn junction even after damp-heat test for a long time. Therefore, carrier generation occurs even after degradation; however, such generated carriers cannot be collected owing to corrosion of electrodes. The guiding principle that module structure and module materials without saving acetic acid into the modules was obtained.

  7. Tetrazole acetic acid: Tautomers, conformers, and isomerization

    SciTech Connect

    Araujo-Andrade, C.; Department of Chemistry, University of Coimbra, 3004-535 Coimbra ; Reva, I. Fausto, R.

    2014-02-14

    Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively. The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0–8 kJ mol{sup −1} energy range and should be appreciably populated at the sublimation temperature (∼330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol{sup −1}) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol{sup −1}). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm{sup −1}, where the first OH stretching overtone vibrations of 1ccc and 2pcc occur. The reverse transformations could be induced by irradiations at 7010 and 7030 cm{sup −1}, transforming 1cct and 2pct back to 1ccc and 2pcc, also selectively. Besides the NIR-induced transformations, the photogenerated 1cct and 2pct forms also decay in N{sub 2} matrices back to 1ccc and 2pcc spontaneously, with characteristic decay times of hours (1H) and tens of minutes (2H). The decay mechanism is rationalized in terms of the proton tunneling. In crystals, TAA exists exclusively as 1H-tautomer. By contrast, the tautomeric composition of the matrix-isolated monomers was found to consist of both 1H- and 2H-tautomers, in comparable amounts. A mechanistic discussion of the tautomerization process occurring during sublimation, accounting also for the observed minor decomposition of TAA leading to CO{sub 2} and 5-methyl-tetrazole, is proposed.

  8. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but sp...

  9. Origin and fate of acetate in an acidic fen.

    PubMed

    Hädrich, Anke; Heuer, Verena B; Herrmann, Martina; Hinrichs, Kai-Uwe; Küsel, Kirsten

    2012-08-01

    Acetate is a central intermediate in the anaerobic degradation of organic matter, and the resolution of its metabolism necessitates integrated strategies. This study aims to (1) estimate the contribution of acetogenesis to acetate formation in an acidic fen (pH ~ 4.9), (2) assess the genetic potential for acetogenesis targeting the fhs gene encoding formyltetrahydrofolate synthetase (FTHFS) and (3) unravel the in situ turnover of acetate using stable carbon isotope pore-water analysis. H(2)/CO(2)-supplemented peat microcosms yielded (13)C-depleted acetate (-37.2‰ vs. VPDB (Vienna Peedee belemnite standard) compared with -14.2‰ vs. VPDB in an unamended control), indicating the potential for H(2)-dependent acetogenesis. Molecular analysis revealed a high diversity and depth-dependent distribution of fhs phylotypes with the highest number of operational taxonomic units in 0-20 cm depth, but only few and distant relationships to known acetogens. In pore waters, acetate concentrations (0-170 μM) and δ(13)C-values varied widely (-17.4‰ to -3.4‰ vs. VPDB) and did not indicate acetogenesis, but pointed to a predominance of sinks, which preferentially consumed (12)C-acetate, like acetoclastic methanogenesis. However, depth profiles of methane and δ(13)C(CH4) revealed a temporarily and spatially restricted role of this acetate sink and suggest other processes like sulfate and iron reduction played an important role in acetate turnover. PMID:22404042

  10. Lactic acid bacteria as probiotics.

    PubMed

    Ljungh, Asa; Wadstrm, Torkel

    2006-09-01

    A number of Lactobacillus species, Bifidobacterium sp, Saccharomyces boulardii, and some other microbes have been proposed as and are used as probiotic strains, i.e. live microorganisms as food supplement in order to benefit health. The health claims range from rather vague as regulation of bowel activity and increasing of well-being to more specific, such as exerting antagonistic effect on the gastroenteric pathogens Clostridium difficile, Campylobacter jejuni, Helicobacter pylori and rotavirus, neutralising food mutagens produced in colon, shifting the immune response towards a Th2 response, and thereby alleviating allergic reactions, and lowering serum cholesterol (Tannock, 2002). Unfortunately, most publications are case reports, uncontrolled studies in humans, or reports of animal or in vitro studies. Whether or not the probiotic strains employed shall be of human origin is a matter of debate but this is not a matter of concern, as long as the strains can be shown to survive the transport in the human gastrointestinal (GI) tract and to colonise the human large intestine. This includes survival in the stressful environment of the stomach - acidic pH and bile - with induction of new genes encoding a number of stress proteins. Since the availability of antioxidants decreases rostrally in the GI tract production of antioxidants by colonic bacteria provides a beneficial effect in scavenging free radicals. LAB strains commonly produce antimicrobial substance(s) with activity against the homologous strain, but LAB strains also often produce microbicidal substances with effect against gastric and intestinal pathogens and other microbes, or compete for cell surface and mucin binding sites. This could be the mechanism behind reports that some probiotic strains inhibit or decrease translocation of bacteria from the gut to the liver. A protective effect against cancer development can be ascribed to binding of mutagens by intestinal bacteria, reduction of the enzymes beta-glucuronidase and beta-glucosidase, and deconjugation of bile acids, or merely by enhancing the immune system of the host. The latter has attracted considerable interest, and LAB have been tested in several clinical trials in allergic diseases. Characteristics ascribed to a probiotic strain are in general strain specific, and individual strains have to be tested for each property. Survival of strains during production, packing and storage of a viable cell mass has to be tested and declared. PMID:16875422

  11. Inhibition of citrus fungal pathogens by using lactic acid bacteria.

    PubMed

    Gerez, C L; Carbajo, M S; Rolln, G; Torres Leal, G; Font de Valdez, G

    2010-08-01

    The effect of lactic acid bacteria (LAB) on pathogenic fungi was evaluated and the metabolites involved in the antifungal effect were characterized. Penicillium digitatum (INTA 1 to INTA 7) and Geotrichum citri-aurantii (INTA 8) isolated from decayed lemon from commercial packinghouses were treated with imazalil and guazatine to obtain strains resistant to these fungicides. The most resistant strains (4 fungal strains) were selected for evaluating the antifungal activity of 33 LAB strains, among which only 8 strains gave positive results. The antifungal activity of these LAB strains was related to the production of lactic acid, acetic acid, and phenyllactic acid (PLA). A central composite design and the response surface methodology were used to evaluate the inhibitory effect of the organic acids produced by the LAB cultures. The antifungal activity of lactic acid was directly related to its concentration; however, acetic acid and PLA showed a peak of activity at 52.5 and 0.8 mM, respectively, with inhibition rates similar to those obtained with Serenade((R)) (3.0 ppm) imazalil (50 ppm) and guazatine (50 ppm). Beyond the peak of activity, a reduction in effectiveness of both acetic acid and PLA was observed. Comparing the inhibition rate of the organic acids, PLA was about 66- and 600-fold more effective than acetic acid and lactic acid, respectively. This study presents evidences on the antifungal effect of selected LAB strains and their end products. Studies are currently being undertaken to evaluate the effectiveness in preventing postharvest diseases on citrus fruits. PMID:20722936

  12. Photodissociation spectroscopy of the Mg{sup +}-acetic acid complex

    SciTech Connect

    Abate, Yohannes; Kleiber, P. D.

    2006-11-14

    We have studied the structure and photodissociation of Mg{sup +}-acetic acid clusters. Ab initio calculations suggest four relatively strongly bound ground state isomers for the [MgC{sub 2}H{sub 4}O{sub 2}]{sup +} complex. These isomers include the cis and trans forms of the Mg{sup +}-acetic acid association complex with Mg{sup +} bonded to the carbonyl O atom of acetic acid, the Mg{sup +}-acetic acid association complex with Mg{sup +} bonded to the hydroxyl O atom of acetic acid, or to a Mg{sup +}-ethenediol association complex. Photodissociation through the Mg{sup +}-based 3p<-3s absorption bands in the near UV leads to direct (nonreactive) and reactive dissociation products: Mg{sup +}, MgOH{sup +}, Mg(H{sub 2}O){sup +}, CH{sub 3}CO{sup +}, and MgCH{sub 3}{sup +}. At low energies the dominant reactive quenching pathway is through dehydration to Mg(H{sub 2}O){sup +}, but additional reaction channels involving C-H and C-C bond activation are also open at higher energies.

  13. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  14. Treatment of traumatic myositis ossificans with acetic acid iontophoresis.

    PubMed

    Wieder, D L

    1992-02-01

    The purpose of this case report is to document the treatment of a patient who had traumatic myositis ossificans with acetic acid iontophoresis. A 16-year-old boy developed quadriceps femoris muscle myositis ossificans as a result of a springboard diving accident. A 2% acetic acid solution was administered via iontophoresis into the myositis ossificans, followed by 8 minutes of pulsed ultrasound at 1.5 W/cm2. The treatment was performed three times per week for 3 weeks. At the conclusion of the treatments, radiographic findings indicated a 98.9% decrease in the size of the ossified mass. The patient regained full range of motion and was able to return to pain-free activity. This case report demonstrates the potential for a therapeutic program of acetic acid iontophoresis and ultrasound in eliminating myositis ossificans. PMID:1549634

  15. Comparative genomics of the lactic acid bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacter...

  16. Differential staining of bacteria: acid fast stain.

    PubMed

    Reynolds, Jackie; Moyes, Rita B; Breakwell, Donald P

    2009-11-01

    Acid-fastness is an uncommon characteristic shared by the genera Mycobacterium (Section 10A) and Nocardia. Because of this feature, this stain is extremely helpful in identification of these bacteria. Although Gram positive, acid-fast bacteria do not take the crystal violet into the wall well, appearing very light purple rather than the deep purple of normal Gram-positive bacteria. PMID:19885935

  17. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  18. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  19. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  20. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  1. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  2. Different Protonation Equilibria of 4-Methylimidazole and Acetic Acid

    SciTech Connect

    Gu, Wei; Helms, Volkhard H.

    2007-12-03

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Dynamic protonation equilibria in water of one 4-methylimidazole molecule as well as for pairs and groups consisting of 4- methylimidazole, acetic acid and bridging water molecules are studied using Q-HOP molecular dynamics simulation. We find a qualitatively different protonation behavior of 4-methylimidazole compared to that of acetic acid. On one hand, deprotonated, neutral 4-methylimidazole cannot as easily attract a freely diffusing extra proton from solution. Once the proton is bound, however, it remains tightly bound on a time scale of tens of nanoseconds. In a linear chain composed of acetic acid, a separating water molecule and 4-methylimidazole, an excess proton is equally shared between 4-methylimidazole and water. When a water molecule is linearly placed between two acetic acid molecules, the excess proton is always found on the central water. On the other hand, an excess proton in a 4-methylimidazole-water- 4-methylimidazole chain is always localized on one of the two 4- methylimidazoles. These findings are of interest to the discussion of proton transfer along chains of amino acids and water molecules in biomolecules.

  3. Determination of Formic and Acetic Acid in Chondritic Meteorites

    NASA Astrophysics Data System (ADS)

    Briscoe, J. F.; Moore, C. B.

    1993-07-01

    The concentrations of formic and acetic acid have been determined using ion exclusion chromatography after water extraction from several chondritic meteorite samples. Monocarboxylic acids are of great importance because of their high concentration in meteorites and for their role as precursor molecules in organic synthesis [1]. The concentration of acetic acid has been determined previously using gas chromatography [2,3]. Prior gas chromatographic analyses failed to resolve formic acid and so the results were limited to carboxylic acids having two or more carbons. Alternatively, wet chemical methods for the determination of formic acid, although precise, are lengthy and difficult to reproduce [4]. Ion exclusion chromatography (ICE) is an excellent technique for the simultaneous determination of formic and acetic acids. Using ICE the carboxylic acids can be determined in less time and with minimal sample handling. In most cases the amount of formic acid present is found to be lower than the amount of acetic acid present. This contradicts the accepted synthesis scheme of higher homologs being made from lower members, where the formic acid would be expected to have a higher concentration than acetic acid. Other monocarboxylic acids in the homologous series (C(sub)2-C(sub)7) have been shown to decrease with increasing carbon number as expected [2,3]. This data suggests that either the formic acid may have been preferentially depleted or it may have a different synthesis mechanism as compared with the other monocarboxylic acids present in meteorites. Additionally, there is a relationship between the amount of formic and acetic acid present and the oxidation state of the iron in the chondrites. As the matrix environment becomes more oxidizing, the amount of the two monocarboxylic acids increases comparatively. Furthermore, the ratio of formic to acetic acid starts to increase as the metal phase is more oxidized, suggesting that a more oxidized matrix environment in some way makes the production of higher homologs from lower members more favorable. References: [1] Cronin J. R. et al. (1988) In Meteorites and the Early Solar System (J. F. Kerridge and M. S. Matthews, eds.), 819-857. Univ. of Arizona. [2] Yuen G. U. and Kvenvolden K. A. (1974) Nature, 246, 301-303. [3] Yuen G. et al. (1984) Nature, 307, 252-254. [4] Kimball B. (1988) M.S. thesis, Arizona State Univ. [5] Urey H. C. and Craig H. (1953) GCA, 4, 36-82. [6] Sears D. W. and Dodd R. T. (1988) In Meteorites and the Early Solar System (J. F. Kerridge and M. S. Matthews, eds.), 3-31. Univ. of Arizona. Table 1, which appears here in the hard copy, shows a representative concentration of formic and acetic acid (in ppm) for select chondrites as measured by ion exclusion chromatography.

  4. Improvement of productivity in acetic acid fermentation with Clostridium thermoaceticum

    SciTech Connect

    Shah, M.M.; Cheryan, M.

    1995-12-31

    Production of acetic acid by a mutant strain of Clostridium thermoaceticum was compared in three types of membrane cell-recycle bioreactors. A modified fed-batch bioreactor (where the product is partially removed at the end of fermentation, but the cells are retained), and a two-stage CSTR (with product being removed continuously and the cells being recycled from the second to the first stage) resulted in better performance than a one-stage CSTR or batch fermenter. The difference in performance was greater at higher acetate concentration. With 45 g/L of glucose in the feed, productivity was 0.75-1.12 g/L-h and acetic acid concentrations were 34-38 g/L. This is more than double the batch system. The nutrient supply rate also appeared to have a strong influence on productivity of the microorganism.

  5. Electrosynthesis of anisidines in aqueous sulfuric and acetic acids

    NASA Astrophysics Data System (ADS)

    Lisitsyn, Yu. A.; Grigor'eva, L. V.

    2009-03-01

    The influence of the concentrations of acetic and sulfuric acids on the efficiency of anisole amination by means of hydroxylamine and Ti(IV)/Ti(III) mediator was studied. Ortho- and para-anisidines were obtained with the total yields of about 79% by current and hydroxylamine.

  6. Condensation of acetol and acetic acid vapor with sprayed liquid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cellulose-derived fraction of biomass pyrolysis vapor was simulated by evaporating acetol and acetic acid (AA) from flasks on a hot plate. The liquid in the flasks was infused with heated nitrogen. The vapor/nitrogen stream was superheated in a tube oven and condensed by contact with a cloud of ...

  7. Thermodynamic analysis of acetic acid steam reforming for hydrogen production

    NASA Astrophysics Data System (ADS)

    Goicoechea, Saioa; Ehrich, Heike; Arias, Pedro L.; Kockmann, Norbert

    2015-04-01

    A thermodynamic analysis of hydrogen generation by acetic acid steam reforming has been carried out with respect to applications in solid oxide fuel cells. The effect of operating parameters on equilibrium composition has been examined focusing especially on hydrogen and carbon monoxide production, which are the fuels in this type of fuel cell. The temperature, steam to acetic acid ratio, and to a lesser extent pressure affect significantly the equilibrium product distribution due to their influence on steam reforming, thermal decomposition and water-gas shift reaction. The study shows that steam reforming of acetic acid with a steam to acetic acid ratio of 2 to 1 is thermodynamically feasible with hydrogen, carbon monoxide and water as the main products at the equilibrium at temperatures higher than 700 C, and achieving CO/CO2 ratios higher than 1. Thus, it can be concluded that within the operation temperature range of solid oxide fuel cells - between 700 C and 1000 C - the production of a gas rich in hydrogen and carbon monoxide is promoted.

  8. A lactose fermentation product produced by Lactococcus lactis subsp. lactis, acetate, inhibits the motility of flagellated pathogenic bacteria.

    PubMed

    Nakamura, Shuichi; Morimoto, Yusuke V; Kudo, Seishi

    2015-04-01

    Many strains of lactic acid bacteria have been used for the production of probiotics. Some metabolites produced by lactic acid bacteria impair the motilities of pathogenic bacteria. Because bacterial motility is strongly associated with virulence, the metabolic activities of lactic acid bacteria are effective for suppressing bacterial infections. Here we show that lactose fermentation by Lactococcus lactis subsp. lactis inhibits the motility of Salmonella enterica serovar Typhimurium. A single-cell tracking and rotation assay for a single flagellum showed that the swimming behaviour of Salmonella was severely but transiently impaired through disruption of flagellar rotation on exposure to media cultivated with Lac. lactis. Using a pH-sensitive fluorescent protein, we observed that the intracellular pH of Salmonella was decreased because of some fermentation products of Lac. lactis. We identified acetate as the lactose fermentation product of Lac. lactis triggering the paralysis of Salmonella flagella. The motilities of Pseudomonas, Vibrio and Leptospira strains were also severely disrupted by lactose utilization by Lac. lactis. These results highlight the potential use of Lac. lactis for preventing infections by multiple bacterial species. PMID:25573770

  9. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    NASA Technical Reports Server (NTRS)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  10. [Conversion of acetic acid to methane by thermophiles

    SciTech Connect

    Zinder, S.H.

    1993-01-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH[sub 4]. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  11. Biosynthesis of myristic acid in luminescent bacteria. [Vibrio harveyi

    SciTech Connect

    Byers, D.M.

    1987-05-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with (/sup 14/C) acetate in a nutrient-depleted medium accumulated substantial tree (/sup 14/C)fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with (/sup 14/C)acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition.

  12. [Conversion of acetic acid to methane by thermophiles: Progress report

    SciTech Connect

    Zinder, S.

    1991-12-31

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  13. (Conversion of acetic acid to methane by thermophiles: Progress report)

    SciTech Connect

    Zinder, S.

    1991-01-01

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  14. Crystal structure of febuxostat-acetic acid (1/1).

    PubMed

    Wu, Min; Hu, Xiu-Rong; Gu, Jian-Ming; Tang, Gu-Ping

    2015-05-01

    The asymmetric unit of the title compound [systematic name: 2-(3-cyano-4-iso-butyl-oxyphen-yl)-4-methyl-thia-zole-5-carb-oxy-lic acid-acetic acid (1/1)], C16H16N2O3S·CH3COOH, contains a febuxostat mol-ecule and an acetic acid mol-ecule. In the febuxostat mol-ecule, the thia-zole ring is nearly coplanar with the benzene ring [dihedral angle = 3.24 (2)°]. In the crystal, the febuxostat and acetic acid mol-ecules are linked by O-H⋯O, O-H⋯N hydrogen bonds and weak C-H⋯O hydrogen bonds, forming supra-molecular chains propagating along the b-axis direction. π-π stacking is observed between nearly parallel thia-zole and benzene rings of adjacent mol-ecules; the centroid-to-centroid distances are 3.8064 (17) and 3.9296 (17) Å. PMID:25995912

  15. Acidophilic, Heterotrophic Bacteria of Acidic Mine Waters

    PubMed Central

    Wichlacz, Paul L.; Unz, Richard F.

    1981-01-01

    Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and oxidase positive, strictly aerobic, and capable of growth on citric acid. The bacteria were cultivatable on solid nutrient media only if agarose was employed as the hardening agent. Bacterial densities in natural mine waters ranged from approximately 20 to 250 cells per ml, depending upon source and culture medium. Ferric hydrates and stream vegetation contained from 1,500 to over 7 106 cells per g. Images PMID:16345777

  16. Comparative genomics of the lactic acid bacteria

    SciTech Connect

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J.-H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V,; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O'Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  17. Supported Ag nanoparticles as trace iodide adsorbent from acetic acid

    NASA Astrophysics Data System (ADS)

    Qian, Qingli; Shao, Shouyan; Yan, Fang; Ling, Chen; Yan, Fengwen; Cao, Hongbing; Guo, Cun-Yue; Yuan, Guoqing

    2012-09-01

    Ag nanoparticles (AgNPs) were used as adsorbent to remove trace iodide from acetic acid. Under identical conditions, AgNPs adsorbent with 0.5 wt % Ag has the same performance as commercial adsorbent with 10 wt % Ag+. In addition, Ag loss of AgNPs adsorbent is remarkably lower than that of commercial adsorbent. The Ag content in AgNPs adsorbent affects its adsorption performance, and the optimal content is 1.0 wt %. Saturated AgNPs adsorbent can be regenerated by hydrogen reduction and reused with satisfying performance. The properties of AgNPs adsorbent are based on surface effect of nanoparticles, differing from commercial Ag+ type adsorbents. In a word, AgNPs adsorbent is of high efficiency, low Ag loss and easy recycling, thus making it "green adsorbent" for removing iodide from acetic acid.

  18. Advantages of Zr 705 in the acetic acid industry

    SciTech Connect

    Bird, K.W.; Breig, P.G.; Spence, T.C.

    1995-10-01

    Zirconium 705 (Zr + 2--3% niobium) is finding its way into more acetic acid plants as a replacement for Zirconium 702 (unalloyed Zr). The alloy was first proposed for the Chemical Process Industry (CPI) use in the early 1970s, but has not found wide spread use because of a few problems early in its history. Research revealed that the problems encountered were related to delayed hydride cracking (DHC). However, proper processing of the alloy after welding produces components free of DHC. The main advantage of Zirconium 705 (Zr 705) as compared to Zirconium 702 (Zr 702) is higher tensile and yield strengths. This allows pressure containing components to be rated at higher pressures which can increase plant efficiencies or they can be fabricated with thinner wall sections, thus reducing equipment cost. These advantages of Zr 705 will be reviewed as well as actual plant history of the alloy in acetic acid services.

  19. Photocatalytic oxidation and decomposition of acetic acid on titanium silicalite.

    PubMed

    Lee, G D; Tuan, V A; Falconer, J L

    2001-03-15

    Transient reaction of adsorbed monolayers of acetic acid was used to characterize the photocatalytic properties of titanium silicalite zeolites (TS-1). The TS-1 zeolites having Si/Ti ratios of 5, 12.5, and 50 are effective catalysts at room temperature for both photocatalytic oxidation (PCO) and decomposition (PCD) of acetic acid. The rates of PCO are higher than the rates of PCD for each catalyst. Acetic acid oxidized photocatalytically in 0.2% O2 to form gas-phase CO2 and CH4 and adsorbed H2O on the TS-1 catalysts, whereas no CH4 formed on Degussa P25 TiO2. Isotope labeling showed that, on both TiO2 and TS-1 catalysts, the alpha-carbon formed CO2 whereas the beta-carbon formed CH4 and CO2. The rates of oxidation of the two carbons have different dependencies on UV intensity. The catalysts with higher Si/Ti ratios adsorbed significantly more acetic acid, and the PCO rates per gram of titanium are highest on the TS-1 catalyst with the lowest Ti content, apparently because a larger fraction of the Ti atoms are surface atoms on this catalyst. During PCD in an inert atmosphere, CO2, CH4, and C2H6 formed on TiO2 and on the catalyst with a Si/Ti ratio of 5, but C2H6 was not detected on the other catalysts. The CO2/CH4 selectivity during PCD increased with increasing Si/Ti ratio. The first step in PCO and PCD on TS-1 catalysts appears to be similar and involves formation of a CH3 radical. PMID:11347941

  20. Acetic Acid Bacterial Biota of the Pink Sugar Cane Mealybug, Saccharococcus sacchari, and Its Environs

    PubMed Central

    Ashbolt, Nicholas J.; Inkerman, Peter A.

    1990-01-01

    Saccharococcus sacchari is the primary colonizer of the developing sterile tissue between the leaf sheath and stem of sugar cane. The honeydew secreted by the mealybugs is acidic (about pH 3) and supports an atypical epiphytic microbiota dominated by acetobacter-like bacteria and acidophilic yeast species. However, Erwinia and Leuconostoc species predominate within the leaf sheath pocket region when the mealybugs die out. The unidentified acetobacters were readily isolated from S. sacchari throughout its life cycle and from other genera of mealybugs on sugar cane and various other plants, both above and below ground. No other insect present on sugar cane was a significant vector of acetic acid bacteria. The major factors restricting microbial diversity within the environs of mealybugs were considered to be yeast activity along with bacterial production of acetic acid, ketogluconic acids, and gamma-pyrones, in association with their lowering of pH. The microbial products may aid in suppressing the attack by the parasitic mold Aspergillus parasiticus on mealybugs but could act as attractants for the predatory fruit fly Cacoxenus perspicax. PMID:16348144

  1. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Acetic acid; exemption from the... Exemptions From Tolerances § 180.1258 Acetic acid; exemption from the requirement of a tolerance. (a) An... acetic acid when used as a preservative on post-harvest agricultural commodities intended for animal...

  2. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Acetic acid; exemption from the... Exemptions From Tolerances § 180.1258 Acetic acid; exemption from the requirement of a tolerance. (a) An... acetic acid when used as a preservative on post-harvest agricultural commodities intended for animal...

  3. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Acetic acid; exemption from the... Exemptions From Tolerances § 180.1258 Acetic acid; exemption from the requirement of a tolerance. (a) An... acetic acid when used as a preservative on post-harvest agricultural commodities intended for animal...

  4. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetic acid, hydroxy- methoxy-, methyl... Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  5. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Acetic acid; exemption from the... Exemptions From Tolerances § 180.1258 Acetic acid; exemption from the requirement of a tolerance. An... acetic acid when used as a preservative on post-harvest agricultural commodities intended for animal...

  6. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetic acid, hydroxy- methoxy... Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  7. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Acetic acid; exemption from the... Exemptions From Tolerances § 180.1258 Acetic acid; exemption from the requirement of a tolerance. (a) An... acetic acid when used as a preservative on post-harvest agricultural commodities intended for animal...

  8. Morphological diversity of Blastocystis hominis in sodium acetate-acetic acid-formalin-preserved stool samples stained with iron hematoxylin.

    PubMed Central

    MacPherson, D W; MacQueen, W M

    1994-01-01

    The objective of this investigation was to study the morphological characteristics of Blastocystis hominis in sodium acetate-acetic acid-Formalin-preserved stool samples. Routinely processed samples were examined for morphological detail, including size, shape, nuclear detail, and central body characteristics. Morphological findings revealing the importance of recognizing B. hominis in the diagnostic laboratory are described. PMID:7510311

  9. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    PubMed

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production/degradation and methane generation observed in the laboratory-scale AP reactor. The model was validated with historical data from the full-scale digesters. PMID:22020473

  10. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    PubMed Central

    Ozuolmez, Derya; Na, Hyunsoo; Lever, Mark A.; Kjeldsen, Kasper U.; Jrgensen, Bo B.; Plugge, Caroline M.

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria. PMID:26074892

  11. Efficacy of washing meat surfaces with 2% levulinic, acetic, or lactic acid for pathogen decontamination and residual growth inhibition.

    PubMed

    Carpenter, C E; Smith, J V; Broadbent, J R

    2011-06-01

    We compared spray washing at 55.4 °C with 2% levulinic acid to that with lactic or acetic acid for decontamination of pathogenic bacteria inoculated onto meat surfaces, and their residual protection against later growth of pathogenic bacteria. The model systems included Escherichia coli O157:H7 on beef plate, Salmonella on chicken skin and pork belly, and Listeria monocytogenes on turkey roll. In the decontamination studies, acid washes lowered recoverable numbers of pathogens by 0.6 to 1 log/cm(2) as compared to no-wash controls, and only lactic acid lowered the number of pathogens recovered as compared to the water wash. Washing with levulinic acid at 68.3 or 76.7 °C did not result in additional decontamination of E. coli. Acetic acid prevented residual growth of E. coli and L. monocytogenes, and it reduced numbers of Salmonella on chicken skin to below recoverable levels. Overall, levulinic acid did not provide as effective decontamination as lactic acid nor residual protection as acetic acid. PMID:21251765

  12. Distinct Effects of Sorbic Acid and Acetic Acid on the Electrophysiology and Metabolism of Bacillus subtilis

    PubMed Central

    van Beilen, J. W. A.; Teixeira de Mattos, M. J.; Hellingwerf, K. J.

    2014-01-01

    Sorbic acid and acetic acid are among the weak organic acid preservatives most commonly used to improve the microbiological stability of foods. They have similar pKa values, but sorbic acid is a far more potent preservative. Weak organic acids are most effective at low pH. Under these circumstances, they are assumed to diffuse across the membrane as neutral undissociated acids. We show here that the level of initial intracellular acidification depends on the concentration of undissociated acid and less on the nature of the acid. Recovery of the internal pH depends on the presence of an energy source, but acidification of the cytosol causes a decrease in glucose flux. Furthermore, sorbic acid is a more potent uncoupler of the membrane potential than acetic acid. Together these effects may also slow the rate of ATP synthesis significantly and may thus (partially) explain sorbic acid's effectiveness. PMID:25038097

  13. The effect of oral sodium acetate administration on plasma acetate concentration and acid-base state in horses

    PubMed Central

    Waller, Amanda; Lindinger, Michael I

    2007-01-01

    Aim Sodium acetate (NaAcetate) has received some attention as an alkalinizing agent and possible alternative energy source for the horse, however the effects of oral administration remain largely unknown. The present study used the physicochemical approach to characterize the changes in acid-base status occurring after oral NaAcetate/acetic acid (NAA) administration in horses. Methods Jugular venous blood was sampled from 9 exercise-conditioned horses on 2 separate occasions, at rest and for 24 h following a competition exercise test (CET) designed to simulate the speed and endurance test of 3-day event. Immediately after the CETs horses were allowed water ad libitum and either: 1) 8 L of a hypertonic NaAcetate/acetic acid solution via nasogastric tube followed by a typical hay/grain meal (NAA trial); or 2) a hay/grain meal alone (Control trial). Results Oral NAA resulted in a profound plasma alkalosis marked by decreased plasma [H+] and increased plasma [TCO2] and [HCO3-] compared to Control. The primary contributor to the plasma alkalosis was an increased [SID], as a result of increased plasma [Na+] and decreased plasma [Cl-]. An increased [Atot], due to increased [PP] and a sustained increase in plasma [acetate], contributed a minor acidifying effect. Conclusion It is concluded that oral NaAcetate could be used as both an alkalinizing agent and an alternative energy source in the horse. PMID:18096070

  14. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria.

    PubMed

    Vlková, Eva; Salmonová, Hana; Bunešová, Věra; Geigerová, Martina; Rada, Vojtěch; Musilová, Šárka

    2015-08-01

    Various culture media have been proposed for the isolation and selective enumeration of bifidobacteria. Mupirocin is widely used as a selective factor along with glacial acetic acid. TOS (transgalactosylated oligosaccharides) medium supplemented with mupirocin is recommended by the International Dairy Federation for the detection of bifidobacteria in fermented milk products. Mupirocin media with acetic acid are also reliable for intestinal samples in which bifidobacteria predominate. However, for complex samples containing more diverse microbiota, the selectivity of mupirocin media is limited. Resistance to mupirocin has been demonstrated by many anaerobic bacteria, especially clostridia. The objective was to identify an antibiotic that inhibits the growth of clostridia and allows the growth of bifidobacteria, and to use the identified substance to develop a selective cultivation medium for bifidobacteria. The susceptibility of bifidobacteria and clostridia to 12 antibiotics was tested on agar using the disk diffusion method. Only norfloxacin inhibited the growth of clostridia and did not affect the growth of bifidobacteria. Using both pure cultures and faecal samples from infants, adults, calves, lambs, and piglets, the optimal concentration of norfloxacin in solid cultivation media was determined to be 200 mg/L. Our results showed that solid medium containing norfloxacin (200 mg/L) in combination with mupirocin (100 mg/L) and glacial acetic acid (1 mL/L) is suitable for the enumeration and isolation of bifidobacteria from faecal samples of different origins. PMID:25865525

  15. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  16. A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol.

    SciTech Connect

    Donnelly, M. I.; Millard, C. S.; Clark, D. P.; Chen, M. J.; Rathke, J. W.; Southern Illinois Univ.

    1998-04-01

    Escherichia coli strain NZN111, which is unable to grow fermentatively because of insertional inactivation of the genes encoding pyruvate: formate lyase and the fermentative lactate dehydrogenase, gave rise spontaneously to a chromosomal mutation that restored its ability to ferment glucose. The mutant strain, named AFP111, fermented glucose more slowly than did its wild-type ancestor, strain W1485, and generated a very different spectrum of products. AFP111 produced succinic acid, acetic acid, and ethanol in proportions of approx 2:1:1. Calculations of carbon and electron balances accounted fully for the observed products; 1 mol of glucose was converted to 1 mol of succinic acid and 0.5 mol each of acetic acid and ethanol. The data support the emergence in E.coli of a novel succinic acid:acetic acid:ethanol fermentation pathway.

  17. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula. PMID:25080378

  18. Production of Formic Acid and Acetic Acid by Hydrothermal Oxidation of Alkali Lignin

    NASA Astrophysics Data System (ADS)

    Zeng, Xu; Jin, Fangming; Cao, Jianglin; Yin, Guodong; Zhang, Yalei; Zhao, Jianfu

    2010-11-01

    The production of formic acid and acetic acid by hydrothermal oxidation of alkali lignin, a kind of biomasses, was investigated using a batch reactor with H2O2 oxidant. Experiments were performed over a wide range of conditions with temperature varying from 260 to 320 C, oxygen supply varying from 60% to 120%, and reaction time varying from 30 to 150 s. The highest yield of formic acid was 4.9% at 280 C for 120 s with the additive ratio of H2O2 100%. The highest value of acetic acid was 12.3% at 300 C for 120 s with the additive ratio of H2O2 100%. Based on the intermediate products identified by GC/MS and HPLC, reaction pathways of alkali lignin are discussed. It was found that maleic acid and fumaric acid were two primary unsaturated intermediate products. The production of formic acid and acetic acid were come from the oxidative decomposition of intermediate products in the oxidation process. Increasing the formation of saturated dicarboxylic acids and glutaconic acid would enhance the acetic acid yield.

  19. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    PubMed Central

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-01-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains. PMID:26691589

  20. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  1. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-01-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains. PMID:26691589

  2. Partition coefficients for acetic, propionic, and butyric acids in a crude oil/water system

    SciTech Connect

    Reinsel, M.A.; Borkowski, J.J.; Sears, J.T. . National Science Foundation Engineering Research Center for Biofilm Engineering)

    1994-07-01

    The effects of pH, temperature, and organic acid concentration on the partition coefficients for short-chain organic acids were measured in a crude oil/water system. Acetic, propionic, and butyric acids, as probable substrates for microbial souring of oil reservoirs, were used in conjunction with two types of crude oil. Temperatures of 35--75 C, pH values of 4.0--7.0, and acid concentrations of 10--1,000 mg/L were studied. Initial naturally occurring levels of organic acids in the crude oils were also determined. pH had by far the largest effect on the partition coefficient for all three organic acids for both types oil. At conditions normally seen in an oil reservoir (pH 5--7), the great percentage (85+%) of these acids were dissolved in the aqueous phase. The log of the partition coefficient K increased approximately linearly with the number of carbon atoms in the acid. It was seen that organic acids are readily available carbon sources for sulfate-reducing bacteria (SRB) at normal reservoir conditions, and that crude oil may provide a source of organic acids in a low-pH, water-flooded reservoir.

  3. FIRST ACETIC ACID SURVEY WITH CARMA IN HOT MOLECULAR CORES

    SciTech Connect

    Shiao, Y.-S. Jerry; Looney, Leslie W.; Snyder, Lewis E.; Friedel, Douglas N.; Remijan, Anthony J. E-mail: aremijan@nrao.ed

    2010-06-10

    Acetic acid (CH{sub 3}COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is cospatial within the telescope beam. Previous work has presumed that similar cores with cospatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations of large O- and N-containing molecules become available? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy at 3 mm wavelengths toward G19.61-0.23, G29.96-0.02, and IRAS 16293-2422. We have successfully detected CH{sub 3}COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH{sub 3}COOH is 2.0(1.0) x 10{sup 16} cm{sup -2} and the abundance ratio of CH{sub 3}COOH to methyl formate (HCOOCH{sub 3}) is 2.2(0.1) x 10{sup -1} toward G19.61-0.23. Toward IRAS 16293 A, the determined column density of CH{sub 3}COOH is {approx}1.6 x 10{sup 15} cm{sup -2} and the abundance ratio of CH{sub 3}COOH to methyl formate (HCOOCH{sub 3}) is {approx}1.0 x 10{sup -1}, both of which are consistent with abundance ratios determined toward other hot cores. Finally, we model all known line emission in our passband to determine physical conditions in the regions and introduce a new metric to better reveal weak spectral features that are blended with stronger lines or that may be near the 1{sigma}-2{sigma} detection limit.

  4. Kinetic Modeling of Esterification of Ethylene Glycol with Acetic Acid

    SciTech Connect

    Yadav, Vishnu P.; Maity, Sunil K.; Mukherjee, Rudra Palash; Bantraj, Kandi

    2010-10-26

    The reaction kinetics of the esterification of ethylene glycol with acetic acid in the presence of cation exchange resin has been studied and kinetic models based on empirical and Langmuir approach has been developed. The Langmuir based model involving eight kinetic parameters fits experimental data much better compared to empirical model involving four kinetic parameters. The effect of temperature and catalyst loading on the reaction system has been analyzed. Further, the activation energy and frequency factor of the rate constants for Langmuir based model has been estimated.

  5. (Conversion of acetic acid to methane by thermophiles)

    SciTech Connect

    Zinder, S.H.

    1990-01-01

    The goal of this project is to gain a more complete understanding of the microorganisms converting a lignocellulose waste to methane in a thermophilic (58{degree}C) anaerobic bioreactor. To accomplish this, we have directly examined microbial populations in the bioreactor and have examined the properties of microorganisms isolated from the bioreactor. The primary focus has been on anaerobic thermophiles involved in the formation and degradation of acetic acid, the precursor of two thirds of the methane produced in the bioreactor. Also, novel organisms of fundamental and practical significance have been isolated and characterized. As the project has progressed there has been greater emphasis on the physiology of pure cultures. 7 refs.

  6. Radioiron utilization and gossypol acetic acid in male rats

    SciTech Connect

    Tone, J.N.; Jensen, D.R.

    1985-01-01

    The 24-h incorporation of VZFe into circulating red blood cells, bone marrow, urine, liver, spleen, and skeletal muscle was measured in splenectomized and sham-splenectomized rats which had received a daily, oral dose of gossypol acetic acid (20 mg GAA/kg body wt) for 91 days. A significant decrease in total body weight gain was observed in all GAA treated animals. Splenectomized rats dosed with GAA exhibited a significant decrease in hemoglobin concentration, hematocrit and erythrocyte count. A significant increase in VZFe incorporation by red blood cells and a decrease in hepatic incorporation of VZFe indicate a preferential utilization of iron in erythropoiesis among GAA treated animals.

  7. Kinetic Modeling of Esterification of Ethylene Glycol with Acetic Acid

    NASA Astrophysics Data System (ADS)

    Yadav, Vishnu P.; Mukherjee, Rudra Palash; Bantraj, Kandi; Maity, Sunil K.

    2010-10-01

    The reaction kinetics of the esterification of ethylene glycol with acetic acid in the presence of cation exchange resin has been studied and kinetic models based on empirical and Langmuir approach has been developed. The Langmuir based model involving eight kinetic parameters fits experimental data much better compared to empirical model involving four kinetic parameters. The effect of temperature and catalyst loading on the reaction system has been analyzed. Further, the activation energy and frequency factor of the rate constants for Langmuir based model has been estimated.

  8. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms

    PubMed Central

    Fu, Shih-Feng; Wei, Jyuan-Yu; Chen, Hung-Wei; Liu, Yen-Yu; Lu, Hsueh-Yu; Chou, Jui-Yu

    2015-01-01

    Plants as well as microorganisms, including bacteria and fungi, produce indole-3-acetic acid (IAA). IAA is the most common plant hormone of the auxin class and it regulates various aspects of plant growth and development. Thus, research is underway globally to exploit the potential for developing IAA-producing fungi for promoting plant growth and protection for sustainable agriculture. Phylogenetic evidence suggests that IAA biosynthesis evolved independently in bacteria, microalgae, fungi, and plants. Present studies show that IAA regulates the physiological response and gene expression in these microorganisms. The convergent evolution of IAA production leads to the hypothesis that natural selection might have favored IAA as a widespread physiological code in these microorganisms and their interactions. We summarize recent studies of IAA biosynthetic pathways and discuss the role of IAA in fungal ecology. PMID:26179718

  9. Discovering lactic acid bacteria by genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on 20 different species, with each overview discussing the organisms fundamental and practical significance, environmental habitat, and its role in fermentati...

  10. Why engineering lactic acid bacteria for biobutanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Gram-positive Lactic acid bacteria (LAB) are considered attractive biocatalysts for biomass to biofuels for several reasons. They have GRAS (Generally Recognized As Safe) status that are acceptable in food, feed, and medical applications. LAB are fermentative: selected strains are capable of f...

  11. Acetic acid improves the sensitivity of theophylline analysis by gas chromatography-mass spectrometry.

    PubMed

    Saka, Kanju; Uemura, Koichi; Shintani-Ishida, Kaori; Yoshida, Ken-Ichi

    2007-02-01

    In the analysis of theophylline by gas chromatography-mass spectrometry (GC-MS), we found that the addition of acetic acid to the solvent (ethyl acetate) decreased the adsorption of theophylline to the glass wool packed into the inlet liner. The addition of acetic acid to ethyl acetate improved the sensitivity for theophylline (optimum concentration of 3%). This simple and sensitive method without derivatization can be applied to the quantification of theophylline in serum samples in clinical and toxicological practice. PMID:17011247

  12. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    PubMed

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae. PMID:25698512

  13. Regulation of acetic acid production by homo- and heterofermentative lactobacilli in whole-wheat sour-doughs.

    PubMed

    Martnez-Anaya, M A; Llin, M L; Pilar Macas, M; Collar, C

    1994-09-01

    The efficiency of sour-dough as a possible preservative agent of microbial spoilage of bread depends on its acetic acid content. As a secondary metabolite of sugar fermentation by lactic acid bacteria, acetic acid may be promoted in the presence of O2 or H+ acceptors. This paper studies the influence of O2 and high fructose content products (pure sugar, invert sugar, fructose syrup) addition on acetic acid production by hetero- (Lactobacillus brevis 25a, B-21, L-62; L. sanfrancisco L-99) and homofermentative (L. plantarum B-39) lactobacilli in whole-wheat sour-doughs [280 and 250 dough yield (DY)]. The pH and total titratable acidity (TTA) of sour-doughs after 44 h fermentation varied with DY and strain. As expected, the addition of O2 promoted greater increases in TTA with heterofermentative lactobacilli (15-42%) than with L. plantarum (15%). Fructose addition was only effective for heterofermentative strains, but the overall effects were smaller than those observed for oxygenation. The ability of lactobacilli to produce acetic acid in sour-doughs without treatment varied from 0.16 g/100 g flour at 44 h (B-39, 280, 350 DY) to 0.47-0.65% (L-62, 280, 350 DY). The production of acetic acid was positively promoted by all treatments. Oxygenation was again the most effective way of inducing acetic acid production; increases ranged from 54% (B-21) to 269% (L-99, 350 DY). The addition of H+ acceptors had variable effects.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7975904

  14. Unusal pattern of product inhibition: batch acetic acid fermentation

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  15. Control of acetic acid fermentation by quorum sensing via N-acylhomoserine lactones in Gluconacetobacter intermedius.

    PubMed

    Iida, Aya; Ohnishi, Yasuo; Horinouchi, Sueharu

    2008-04-01

    A number of gram-negative bacteria regulate gene expression in a cell density-dependent manner by quorum sensing via N-acylhomoserine lactones (AHLs). Gluconacetobacter intermedius NCI1051, a gram-negative acetic acid bacterium, produces three different AHLs, N-decanoyl-l-homoserine lactone, N-dodecanoyl-L-homoserine lactone, and an N-dodecanoyl-L-homoserine lactone with a single unsaturated bond in its acyl chain, as determined by liquid chromatography-tandem mass spectrometry. Two genes encoding an AHL synthase and a cognate regulator were cloned from strain NCI1051 and designated ginI and ginR, respectively. Disruption of ginI or ginR abolished AHL production, indicating that NCI1051 contains a single set of quorum-sensing genes. Transcriptional analysis showed that ginI is activated by GinR, which is consistent with the finding that there is an inverted repeat whose nucleotide sequence is similar to the sequence bound by members of the LuxR family at position -45 with respect to the transcriptional start site of ginI. A single gene, designated ginA, located just downstream of ginI is transcribed by read-through from the GinR-inducible ginI promoter. A ginA mutant, as well as the ginI and ginR mutants, grew more rapidly in medium containing 2% (vol/vol) ethanol and accumulated acetic acid at a higher rate with a greater final yield than parental strain NCI1051. In addition, these mutants produced larger amounts of gluconic acid than the parental strain. These data demonstrate that the GinI/GinR quorum-sensing system in G. intermedius controls the expression of ginA, which in turn represses oxidative fermentation, including acetic acid and gluconic acid fermentation. PMID:18245283

  16. Unusual vibrational dynamics of the acetic acid dimer

    NASA Astrophysics Data System (ADS)

    Lim, Manho; Hochstrasser, Robin M.

    2001-10-01

    The vibrational relaxation of the C=O stretching mode of the CH3CO2H cyclic dimer, the CH3CO2D cyclic dimer, and CH3CO2CH3 were measured in CCl4 solution at room temperature. The population relaxation of the v=1 state of the C=O mode is nonexponential, modeled with a biexponential decay having a fast time constant in the subpicosecond regime and a slow time constant of a few picoseconds. For the cyclic dimers of the acetic acids, the fast component dominates the population decay, whereas the slow component dominates the decay of the CH3CO2CH3, the model compound for the monomeric acetic acid. Deuteration of the dimer increases the relaxation time constant. The non-hydrogen-bonding monomer methyl acetate also has a subpicosecond decay constant. The pump-probe anisotropy decay reveals that the orientational dynamics of these molecules also occurs on the subpicosecond time scale and is reasonably well described by rotational diffusion in the slip hydrodynamic limit. Stimulated infrared photon echo decay experiments reveal that the correlation function of the frequency fluctuations of the cyclic acid dimer has a motionally narrowed process described by a 4 ps pure dephasing time and process with a 2.1 ps correlation time, comparable to a solvent response time. The dephasing dynamics is dominated by the population relaxation. In analyzing the photon echo data, the contribution from the rotational diffusion is incorporated by approximating the cyclic acid dimer as a symmetric top diffuser with its transition dipole located in the molecular plane but not parallel to any of the principal axes. General formulas, which will be useful in other applications, for incorporation of the diffusive dynamics of the symmetric top into the third order response functions are obtained. Nonexponential fast vibrational relaxation of C-CO2-X moiety is not adequately described by the anharmonic coupling with the nearby combination and overtone bands. In the regime where the rotational, vibrational, and dephasing times are all comparable, the solvent memory effects may play a role in vibrational dynamics, causing unusually rapid nonexponential population decay.

  17. Precision genome engineering in lactic acid bacteria

    PubMed Central

    2014-01-01

    Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety. PMID:25185700

  18. Freeze-drying of lactic acid bacteria.

    PubMed

    Fonseca, Fernanda; Cenard, Stphanie; Passot, Stphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery. PMID:25428024

  19. Clostridium strain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, J.L.

    1997-01-14

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  20. Clostridium stain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, James L.

    1997-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  1. Development of Acetic Acid Removal Technology for the UREX+Process

    SciTech Connect

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  2. Leaching of spent lead acid battery paste components by sodium citrate and acetic acid.

    PubMed

    Zhu, Xinfeng; He, Xiong; Yang, Jiakuan; Gao, Linxia; Liu, Jianwen; Yang, Danni; Sun, Xiaojuan; Zhang, Wei; Wang, Qin; Kumar, R Vasant

    2013-04-15

    A sustainable method, with minimal pollution and low energy cost in comparison with the conventional smelting methods, is proposed for treating components of spent lead-acid battery pastes in aqueous organic acid(s). In this study, PbO, PbO2, and PbSO4, the three major components in a spent lead paste, were individually reacted with a mixture of aqueous sodium citrate and acetic acid solution. Pure lead citrate precursor of Pb3(C6H5O7)2 · 3H2O is the only product crystallized in each leaching experiment. Conditions were optimized for individual lead compounds which were then used as the basis for leaching real industrial spent paste. In this work, efficient leaching process is achieved and raw material cost is reduced by using aqueous sodium citrate and acetic acid, instead of aqueous sodium citrate and citric acid as reported in a pioneering hydrometallurgical method earlier. Acetic acid is not only cheaper than citric acid but is also more effective in aiding dissolution of the lead compounds thus speeding up the leaching process in comparison with citric acid. Lead citrate is readily crystallized from the aqueous solution due to its low solubility and can be combusted to directly produce leady oxide as a precursor for making new battery pastes. PMID:23500418

  3. Crystal structure of 7,8-benzocoumarin-4-acetic acid

    PubMed Central

    Swamy, R. Ranga; Gowda, Ramakrishna; Gowda, K. V. Arjuna; Basanagouda, Mahantesha

    2015-01-01

    The fused-ring system in the title compound [systematic name: 2-(2-oxo-2H-benzo[h]chromen-4-yl)acetic acid], C15H10O4, is almost planar (r.m.s. deviation = 0.031?) and the CarCC=O (ar = aromatic) torsion angle for the side chain is ?134.4?(3). In the crystal, molecules are linked by OH?O hydrogen bonds, generating [100] C(8) chains, where the acceptor atom is the exocyclic O atom of the fused-ring system. The packing is consolidated by a very weak CH?O hydrogen bond to the same acceptor atom. Together, these interactions lead to undulating (001) layers in the crystal. PMID:26396827

  4. l-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure l-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss. PMID:26168904

  5. Acetic acid and aromatics units planned in China

    SciTech Connect

    Alperowicz, N.

    1993-01-27

    The Shanghai Wujing Chemical Complex (SWCC; Shanghai) is proceeding with construction of an acetic acid plant. The 100,000-m.t./year until will use BP Chemicals carbonylation technology, originally developed by Monsanto. John Brown has been selected by China National Technical Import Corp. (CNTIC) to supply the plant, Chinese sources say. The UK contractor, which competed against Mitsui Engineering Shipbuilding (Tokyo) and Lurgi (Frankfurt), has built a similar plant for BP in the UK, although using different technology. The new plant will require 54,000 m.t./year of methanol, which is available onsite. Carbon monoxide will be delivered from a new plant. The acetic acid unit will joint two other acetic plants in China supplied some time ago by Uhde (Dortmund). SWCC is due to be integrated with two adjacent complexes to form Shanghai Pacific Chemical. Meanwhile, four groups are competing to supply a UOP-process aromatics complex for Jilin Chemical Industrial Corp. They are Toyo Engineering, Lurgi, Lucky/Foster Wheeler, and Eurotechnica. The complex will include plants with annual capacities for 115,000 m.t. of benzene, 90,000 m.t. of ortho-xylene, 93,000 m.t. of mixed xylenes, and 20,000 m.t. of toluene. The plants will form part of a $2-billion petrochemical complex based on a 300,000-m.t./year ethylene plant awarded last year to a consortium of Samsung Engineering and Linde. Downstream plants will have annual capacities for 120,000 m.t. of linear low-density polyethylene, 80,000 m.t. of ethylene oxide, 100,000 m.t. of ethylene glycol, 80,000 m.t. of phenol, 100,000 m.t. of acrylonitrile, 20,000 m.t. of sodium cyanide, 40,000 m.t. of phthalic anhydride, 40,000 m.t. of ethylene propylene rubber, 20,000 m.t. of styrene butadiene styrene, and 30,000 m.t. of acrylic fiber.

  6. Dual mode ratiometric recognition of zinc acetate: nanomolar detection with in vitro tracking of endophytic bacteria in rice root tissue.

    PubMed

    Ghosh, Abhijit; Ta, Sabyasachi; Ghosh, Milan; Karmakar, Subhajit; Banik, Avishek; Dangar, Tushar Kanti; Mukhopadhyay, Subhra Kanti; Das, Debasis

    2015-12-22

    Several naphthalene-based aldazine derivatives were developed as efficient colorimetric and fluorescence probes for selective ratiometric recognition of traces of zinc acetate. The derivative structures were characterized by single-crystal X-ray diffraction. The probes were used for in vitro tracking of zinc acetate in endophytic bacteria within rice root tissue and to image zinc acetate in human breast cancer cells (MCF7) by normal and fluorescence microscopy. Density functional theoretical studies were in close agreement with the experimental findings. PMID:26612775

  7. Hydroxycinnamic Acids Used as External Acceptors of Electrons: an Energetic Advantage for Strictly Heterofermentative Lactic Acid Bacteria

    PubMed Central

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria

    2014-01-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD+/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD+/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons. PMID:25261518

  8. Anti-virulence potential of eugenyl acetate against pathogenic bacteria of medical importance.

    PubMed

    Musthafa, Khadar Syed; Voravuthikunchai, Supayang Piyawan

    2015-03-01

    Considering the role of virulence factors in bacterial pathogenicity, interfering with the virulence factor production could afford a novel way for the treatment of infections caused by pathogenic bacteria. In the present study, an effect of eugenyl acetate (EA), a well-known phytochemical from Syzygium aromaticum (clove bud) was assessed for its anti-virulence potential against both Gram-negative and Gram-positive pathogens. Eugenyl acetate at 150 µg/ml, significantly inhibited virulence factor production such as pyocyanin and pyoverdin by Pseudomonas aeruginosa ATCC 27853 up to 9.4 (P < 0.01) and 3.7 fold (P < 0.01), respectively. In addition, protease activity of P. aeruginosa was significantly reduced upon treatment with EA (P < 0.05). The test compound (150 µg/ml) lowered haemolytic activity of Staphylococcus aureus ATCC 29213 up to tenfold (P < 0.01). Furthermore, a decrease in staphyloxanthin pigment production was observed when S. aureus cells were treated with increasing concentrations of EA (37.5-150 µg/ml). The test compound at 75 µg/ml exhibited quorum sensing inhibitory potential in inhibiting violacein production by Chromobacterium violaceum DMST 21761 up to 27.7 fold (P < 0.01). Thus, results of the present work reveal the potential of EA as an alternative candidate to control pathogenicity of both Gram-negative and Gram-positive organisms. PMID:25613850

  9. Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate site

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Beecher, K. M.; Harriss, R. C.; Cofer, R. W., III

    1988-01-01

    Tropospheric concentrations of formic and acetic acids in the gas, the aerosol, and the rainwater phases were determined in samples collected 1-2 m above ground level at an open field site in eastern Virginia. These acids were found to occur principally (98 percent or above) in the gas phase, with a marked annual seasonality, averaging 1890 ppt for formate and 1310 ppt for acetate during the growing season, as compared to 695 ppt and 700 ppt, respectively, over the nongrowing season. The data support the hypothesis that biogenic emissions from vegatation are important sources of atmospheric formic and acetic acid during the local growing season. The same time trends were observed for precipitation, although with less defined seasonality. The relative increase of the acetic acid/formic acid ratio during the nongrowing season points to the dominance of anthropogenic inputs of acetic acid from motor vehicles and biomass combustion in the wintertime.

  10. Phenyl Acetate Preparation from Phenol and Acetic Acid: Reassessment of a Common Textbook Misconception.

    ERIC Educational Resources Information Center

    Hocking, M. B.

    1980-01-01

    Reassesses a common textbook misconception that "...phenols cannot be esterified directly." Results of experiments are discussed and data tables provided of an effective method for the direct preparation of phenyl acetate. (CS)

  11. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    PubMed Central

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

  12. Utilization of the Plant Hormone Indole-3-Acetic Acid for Growth by Pseudomonas putida Strain 1290

    PubMed Central

    Leveau, Johan H. J.; Lindow, Steven E.

    2005-01-01

    We have isolated from plant surfaces several bacteria with the ability to catabolize indole-3-acetic acid (IAA). One of them, isolate 1290, was able to utilize IAA as a sole source of carbon, nitrogen, and energy. The strain was identified by its 16S rRNA sequence as Pseudomonas putida. Activity of the enzyme catechol 1,2-dioxygenase was induced during growth on IAA, suggesting that catechol is an intermediate of the IAA catabolic pathway. This was in agreement with the observation that the oxygen uptake by IAA-grown P. putida 1290 cells was elevated in response to the addition of catechol. The inability of a catR mutant of P. putida 1290 to grow at the expense of IAA also suggests a central role for catechol as an intermediate in IAA metabolism. Besides being able to destroy IAA, strain 1290 was also capable of producing IAA in media supplemented with tryptophan. In root elongation assays, P. putida strain 1290 completely abolished the inhibitory effect of exogenous IAA on the elongation of radish roots. In fact, coinoculation of roots with P. putida 1290 and 1 mM concentration of IAA had a positive effect on root development. In coinoculation experiments on radish roots, strain 1290 was only partially able to alleviate the inhibitory effect of bacteria that in culture overproduce IAA. Our findings imply a biological role for strain 1290 as a sink or recycler of IAA in its association with plants and plant-associated bacteria. PMID:15870323

  13. Evidence for a Complex Between Thf and Acetic Acid from Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Bittner, Dror M.; Mullaney, John Connor; Stephens, Susanna L.; King, Adrian; Habgood, Matthew; Walker, Nick

    2015-06-01

    Evidence for a complex between tetrahydrofuran (THF) and acetic acid from broadband rotational spectroscopy will be presented. Transitions believed to belong to the complex were first identified in a gas mixture containing small amounts of THF, triethyl borane, and acetic acid balanced in argon. Ab initio calculations suggest a complex between THF and acetic acid is more likely to form compared to the analogous acetic acid complex with triethyl borane, the initial target. The observed rotational constants are also more similar to those predicted for a complex formed between THF and acetic acid, than for those of a complex formed between triethyl borane and acetic acid. Subsequently, multiple isotopologues of acetic acid have been measured, confirming its presence in the structure. No information has yet been obtained through isotopic substitution within the THF sub-unit. Ab initio calculations predict the most likely structure is one where the acetic acid subunit coordinates over the ring creating a "bridge" between the THF oxygen, the carboxylic O-H, and the carbonyl oxygen to a hydrogen atom on the back of the ring.

  14. Improved isolation of zein from corn gluten meal using acetic acid as solvent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop new uses for corn zein, an improved means of isolating zein is needed. We have evaluated the ability of acetic acid to remove zein from corn gluten meal, distillers dried grains and ground corn. Acetic acid removed zein more quickly, at lower temperatures and in higher yields when compa...

  15. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies. PMID:26314018

  16. CRYSTAL AND MOLECULAR STRUCTURE OF 6,6-DIMETHOXY-GOSSYPOL:ACETIC ACID (1:1)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By crystallization from dilute solutions of acetic acid (2-4%) in diethyl ether, acetone, or methyl ethyl ketone, 6,6-dimethoxy-gossypol forms an inclusion complex with acetic acid in a one-to-one molar ratio. The compound crystallizes in the triclinic P1bar1space group and has unit cell dimensio...

  17. Additive postprandial blood glucose-attenuating and satiety-enhancing effect of cinnamon and acetic acid.

    PubMed

    Mettler, Samuel; Schwarz, Isaline; Colombani, Paolo C

    2009-10-01

    Cinnamon and vinegar or acetic acid were reported to reduce the postprandial blood glucose response. We hypothesized that the combination of these substances might result in an additive effect. Therefore, we determined the 2-hour postprandial blood glucose and satiety response to a milk rice meal supplemented with either cinnamon or acetic acid on their own or in combination. Subjects (n = 27) consumed the meal on 4 occasions as either pure (control trial), with 4 g cinnamon, 28 mmol acetic acid, or the combination of cinnamon + acetic acid. Blood glucose and satiety were assessed before eating and 15, 30, 45, 60, 90, and 120 minutes postprandially. At 15 minutes, the combination of cinnamon + acetic acid resulted in a significantly reduced blood glucose concentration compared with the control meal (P = .021). The incremental area under the blood glucose response curve over 120 minutes did, however, not differ between the trials (P = .539). The satiety score of the cinnamon + acetic acid trial was significantly higher than that in the control trial at 15 (P = .024) and 30 minutes (P = .024), but the incremental area under the curve of the satiety response did not differ (P = .116) between the trials. In conclusion, the significant effect of the combination of cinnamon and acetic acid on blood glucose and satiety immediately after meal intake indicated an additive effect of the 2 substances. Whether larger doses of cinnamon and acetic acid may result in a more substantial additive effect on blood glucose or satiety remains to be investigated. PMID:19917452

  18. Vinegar as a burn-down herbicide: Acetic acid concentrations, application volumes, and adjuvants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acetic acid acts as a contact herbicide, injuring and killing plants by first destroying the cell membranes, which causes the rapid desiccation of the plant tissues. Vinegars with acetic acid concentrations of 11% or greater can burn the skin and cause serious to severe eye injury, including blindn...

  19. Microbiological preservation of cucumbers for bulk storage by the use of acetic acid and food preservatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial growth did not occur when cucumbers were preserved without a thermal process by storage in solutions containing acetic acid, sodium benzoate, and calcium chloride to maintain tissue firmness. The concentrations of acetic acid and sodium benzoate required to assure preservation were low en...

  20. Development of xylose-fermenting yeasts for ethanol production at high acetic acid concentrations

    SciTech Connect

    Mohandas, D.V.; Whelan, D.R.; Panchal, C.J.

    1995-12-31

    Mutants resistant to comparatively high levels of acetic acid were isolated from the xylose-fermenting yeasts Candida shehatae and Pichia Stipitis by adapting these cultures to increasing concentrations of acetic acid grown in shake-flask cultures. These mutants were tested for their ability to ferment xylose in presence of high acetic acid concentrations, in acid hydrolysates of wood, and in hardwood spent sulfite liquor, and compared with their wild-type counterparts and between themselves. The P. stipitis mutant exhibited faster fermentation times, better tolerance to acid hydrolysates, and tolerance to lower pH.

  1. Acetic acid induces pH-independent cellular energy depletion in Salmonella enterica.

    PubMed

    Tan, Sin Mei; Lee, Sui Mae; Dykes, Gary A

    2015-03-01

    Weak organic acids are widely used as preservatives and disinfectants in the food industry. Despite their widespread use, the antimicrobial mode of action of organic acids is still not fully understood. This study investigated the effect of acetic acid on the cell membranes and cellular energy generation of four Salmonella strains. Using a nucleic acid/protein assay, it was established that acetic acid did not cause leakage of intracellular components from the strains. A scanning electron microscopy study further confirmed that membrane disruption was not the antimicrobial mode of action of acetic acid. Some elongated Salmonella cells observed in the micrographs indicated a possibility that acetic acid may inhibit DNA synthesis in the bacterial cells. Using an ATP assay, it was found that at a neutral pH, acetic acid caused cellular energy depletion with an ADP/ATP ratio in the range between 0.48 and 2.63 (p<0.05) that was apparent for the four Salmonella strains. We suggest that this effect was probably due solely to the action of undissociated acid molecules. The antimicrobial effect of acetic acid was better under acidic conditions (ADP/ATP ratio of 5.56 ± 1.27; p<0.05), where the role of both pH and undissociated acid molecules can act together. We concluded that the inhibitory effect of acetic acid is not solely attributable to acidic pH but also to undissociated acid molecules. This finding has implication for the use of acetic acid as an antimicrobial against Salmonella on food products, such as chicken meat, which can buffer its pH. PMID:25562466

  2. Exopolysaccharides from sourdough lactic acid bacteria.

    PubMed

    Galle, Sandra; Arendt, Elke K

    2014-01-01

    The use of sourdough improves the quality and increases the shelf life of bread. The positive effects are associated with metabolites produced by lactic acid bacteria (LAB) during sourdough fermentation, including organic acids, exopolysaccharides (EPS), and enzymes. EPS formed during sourdough fermentation by glycansucrase activity from sucrose influence the viscoelastic properties of the dough and beneficially affect the texture and shelf life (in particular, starch retrogradation) of bread. Accordingly, EPS have the potential to replace hydrocolloids currently used as bread improvers and meet so the consumer demands for a reduced use of food additives. In this review, the current knowledge about the functional aspects of EPS formation by sourdough LAB especially in baking applications is summarized. PMID:24499068

  3. Genomic organization of lactic acid bacteria.

    PubMed

    Davidson, B E; Kordias, N; Dobos, M; Hillier, A J

    1996-10-01

    Current knowledge of the genomes of the lactic acid bacteria, Lactococcus lactis and Streptococcus thermophilus, and members of the genera Lactobacillus, Leuconostoc, Pediococcus and Carnobacterium, is reviewed. The genomes contain a chromosome within the size range of 1.8 to 3.4 Mbp. Plasmids are common in Lactococcus lactis (most strains carry 4-7 different plasmids), some of the lactobacilli and pediococci, but they are not frequently present in S. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus or the intestinal lactobacilli. Five IS elements have been found in L. lactis and most strains carry multiple copies of at least two of them; some strains also carry a 68-kbp conjugative transposon. IS elements have been found in the genera Lactobacillus and Leuconostoc, but not in S. thermophilus. Prophages are also a normal component of the L. lactis genome and lysogeny is common in the lactobacilli, however it appears to be rare in S. thermophilus. Physical and genetic maps for two L. lactis subsp. lactis strains, two L. lactis subsp. cremoris strains and S. thermophilus A054 have been constructed and each reveals the presence of six rrn operons clustered in less than 40% of the chromosome. The L. lactis subsp. cremoris MG1363 map contains 115 genetic loci and the S. thermophilus map has 35. The maps indicate significant plasticity in the L. lactis subsp. cremoris chromosome in the form of a number of inversions and translocations. The cause(s) of these rearrangements is (are) not known. A number of potentially powerful genetic tools designed to analyse the L. lactis genome have been constructed in recent years. These tools enable gene inactivation, gene replacement and gene recovery experiments to be readily carried out with this organism, and potentially with other lactic acid bacteria and Gram-positive bacteria. Integration vectors based on temperate phage attB sites and the random insertion of IS elements have also been developed for L. lactis and the intestinal lactobacilli. In addition, a L. lactis sex factor that mobilizes the chromosome in a manner reminiscent to that seen with Escherichia coli Hfr strains has been discovered and characterized. With the availability of this new technology, research into the genome of the lactic acid bacteria is poised to undertake a period of extremely rapid information accrual. PMID:8879406

  4. Metabolic regulation of the plant hormone indole-3-acetic acid

    SciTech Connect

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  5. Radioimmunoassay of 5-hydroxyindole acetic acid using an iodinated derivative

    SciTech Connect

    Puizillout, J.J.; Delaage, M.A.

    1981-06-01

    A radioimmunoassay for the main catabolite of serotonin, 5-hydroxyindole acetic acid (5-HIAA), was developed by using specific antibodies and iodinated derivative. The synthesis of a /sup 125/I-iodinated analog was performed by coupling 5-HIAA to (125I-)glycyl-tyrosine without any contact between 5-HIAA and iodine or chloramine T. It was purified on a G25 Sephadex column and diluted in citrate buffer up to 2.5 X 10(5) cpm/ml. Antibodies were obtained by coupling 5-HIAA to human serum albumin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and tested by equilibrium dialysis. After the third immunogen injection, the four rabbits gave antisera capable of binding 50% of iodinated 5-HIIA-glycyl-tyrosine at 1/2000 final dilution. A chemical conversion of the biological samples gives to the antigen molecules a better resemblance to the immunogen, thus conferring a 100-fold gain in specificity and sensitivity. This assay allows 5-HIAA to be determined in small amounts of tissue, blood, cerebrospinal fluid or perfusate without purification with a sensitivity threshold below 0.1 ng. Some applications in cat and rat are presented.

  6. Design, Synthesis, and Antimycobacterial Activity of Novel Theophylline-7-Acetic Acid Derivatives With Amino Acid Moieties.

    PubMed

    Stavrakov, Georgi; Valcheva, Violeta; Voynikov, Yulian; Philipova, Irena; Atanasova, Mariyana; Konstantinov, Spiro; Peikov, Plamen; Doytchinova, Irini

    2016-03-01

    The theophylline-7-acetic acid (7-TAA) scaffold is a promising novel lead compound for antimycobacterial activity. Here, we derive a model for antitubercular activity prediction based on 14 7-TAA derivatives with amino acid moieties and their methyl esters. The model is applied to a combinatorial library, consisting of 40 amino acid and methyl ester derivatives of 7-TAA. The best three predicted compounds are synthesized and tested against Mycobacterium tuberculosis H37Rv. All of them are stable, non-toxic against human cells and show antimycobacterial activity in the nanomolar range being 60 times more active than ethambutol. PMID:26502828

  7. Improving the quality of regenerated acetic acid in the production of polyvinyl alcohol

    SciTech Connect

    Derevyanko, R.S.; Kulik, V.N.; Isakov, N.S.; Seryi, Y.I.; Novikov, A.I.

    1983-02-01

    Impurities in acetic acid used for synthesis of vinyl acetate adversely affect the quality of the latter. The most undesirable admixture is crotonaldehyde, the concentration of which in acetic acid regeneration from methanol distillates varies over wide limits, reaching 0.5%. According to requirements placed on acetic acid to be used for vinyl acetate synthesis, it must not exceed 0.1%. The reasons for formation and accumulation of crotonaldehyde in the acetic acid regeneration step were identified and the condition of its redistribution between the distillate of column 5 and the acetic acid taken from this column were determined. Analysis allowed optimum conditions to be recommended for operation of the extractive regeneration column: temperature in the middle part of the column 105-110/sup 0/C (instead of 98-104/sup 0/C) and benzene consumption rate 9-10 m/sup 3//hr (instead of 5-6 m/sup 3//hr). The amount of crotonaldehyde in acetic acid produced under the recommended conditions does not exceed 0.04%.

  8. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids

    SciTech Connect

    Omil, F.; Lens, P.; Visser, A.; Hulshoff Pol, L.W.; Lettinga, G.

    1998-03-20

    The competition between acetate utilizing methane-producing bacteria (MB) and sulfate-reducing bacteria (SRB) was studied in mesophilic (30 C) upflow anaerobic sludge bed (UASB) reactors treating volatile fatty acids and sulfate. The UASB reactors treated a VFA mixture (with an acetate:propionate:butyrate ratio of 5:3:2 on COD basis) or acetate as the sole substrate at different COD:sulfate ratios. The outcome of the competition was evaluated in terms of conversion rates and specific methanogenic and sulfidogenic activities. The COD:sulfate ratio was a key factor in the partitioning of acetate utilization between MB and SRB. In excess of sulfate, SRB became predominant over MB after prolonged reactor operation: 250 and 400 days were required to increase the amount of acetate used by SRB from 50 to 90% in the reactor treating, respectively, the VFA mixture or acetate as the sole substrate. The competition for acetate was further studied by dynamic simulations using a mathematical model based on the Monod kinetic parameters of acetate utilizing SRB and MB. The simulations confirmed the long term nature of the competition between these acetotrophs. A high reactor pH ({+-}8), a short solid retention time (<150 days), and the presence of a substantial SRB population in the inoculum may considerably reduce the time required for acetate-utilizing SRB to outcompete MB.

  9. Phase Preference by Active, Acetate-Utilizing Bacteria at the Rifle, CO Integrated Field Research Challenge Site

    SciTech Connect

    Kerkhoff, Lee; Williams, Kenneth H.; Long, Philip E.; McGuinness, L.

    2011-02-15

    Uranium contaminated groundwaters are a legacy concern for the U.S. Department of Energy. Previous experiments at the Rifle, Colorado Integrated Field Challenge (IFC) site have demonstrated that field-scale addition of acetate to groundwater reduces the ambient soluable uranium concentration, sequestering the radionuclide as uraninite. However, questions remain regarding which microorganism(s) are consuming this acetate and if active groundwater microorganisms are different from active particle-associated bacteria. In this report, 13-C acetate was used to assess the active microbes that synthesize DNA on 3 size fractions [coarse sand, fines (8-approximately 150 micron), groundwater (0.2-8 micron)] over a 24 -day time frame. Results indicated a stronger signal from 13-C acetate associated with the fines fraction compared with smaller amounts of 13-C uptake on the sand fraction and groundwater samples during the SIP incubations. TRFLP analysis of this 13-C-labeled DNA, indicated 31+ 9 OTU's with 6 peaks dominating the active profiles (166, 187, 210, 212, and 277 bp peaks using MnlI). Cloning/sequencing of the amplification products indicated a Geobacter-like group (187, 210, 212 bp) primarily synthesized DNA from acetate in the groundwater phase, an alpha Proteobacterium (166 bp) primarily grew on the fines/sands, and an Acinetobacter sp. (277 bp) utilized much of the 13C acetate in both groundwater and particle-associated phases. These findings will help to delineate the acetate utilization patterns of bacteria during field-scale acetate addition and can lead to improved methods for stimulating distinct microbial populations in situ.

  10. Phase Preference by Active, Acetate-Utilizing Bacteria at the Rifle, CO Integrated Field Research Challenge Site

    SciTech Connect

    Kerkhof, L.; Williams, K.H.; Long, P.E.; McGuinness, L.

    2011-02-21

    Previous experiments at the Rifle, Colorado Integrated Field Research Challenge (IFRC) site demonstrated that field-scale addition of acetate to groundwater reduced the ambient soluble uranium concentration. In this report, sediment samples collected before and after acetate field addition were used to assess the active microbes via {sup 13}C acetate stable isotope probing on 3 phases [coarse sand, fines (8-approximately 150 {micro}m), groundwater (0.2-8 {micro}m)] over a 24-day time frame. TRFLP results generally indicated a stronger signal in {sup 13}C-DNA in the 'fines' fraction compared to the sand and groundwater. Before the field-scale acetate addition, a Geobacter-like group primarily synthesized {sup 13}C-DNA in the groundwater phase, an alpha Proteobacterium primarily grew on the fines/sands, and an Acinetobacter sp. and Decholoromonas-like OTU utilized much of the {sup 13}C acetate in both groundwater and particle-associated phases. At the termination of the field-scale acetate addition, the Geobacter-like species was active on the solid phases rather than the groundwater, while the other bacterial groups had very reduced newly synthesized DNA signal. These findings will help to delineate the acetate utilization patterns of bacteria in the field and can lead to improved methods for stimulating distinct microbial populations in situ.

  11. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4) Moderate ammonia flux. The advantages of producing acetic acid by fermentation include its appropriateness for small-scale production, lower cost feedstocks, low energy membrane-based purification, and lower temperature and pressure requirements. Potential energy savings of using fermentation are estimated to be approximately 14 trillion Btu by 2020 from a reduction in natural gas use. Decreased transportation needs with regional plants will eliminate approximately 200 million gallons of diesel consumption, for combined savings of 45 trillion Btu. If the fermentation process captures new acetic acid production, savings could include an additional 5 trillion Btu from production and 7 trillion Btu from transportation energy.

  12. Absorption cross section for the 5νOH stretch of acetic acid and peracetic acid

    NASA Astrophysics Data System (ADS)

    Begashaw, I. G.; Collingwood, M.; Bililign, S.

    2009-12-01

    We report measurements of the absorption cross sections for the vibrational O-H stretch (5νOH) overtone transitions in glacial acetic acid and peracetic acid. The photochemistry that results from overtone excitation has been shown to lead to OH radical production in molecules containing O-H (HNO3, H2O2). In addition the overtone excitation has been observed to result in light initiated chemical reaction. A Cavity ring-down spectroscopy (CRDS) instrument comprising of an Nd:YAG pumped dye laser and 620nm high reflectivity mirrors (R=99.995%) was used to measure the cross sections. The dye laser wavelength was calibrated using water vapor spectrum and the HITRAN 2008 database. The instrument’s minimum detectable absorption is αmin =4.5 *10-9cm-1 Hz-1/2 at 2σ noise level near the peak of the absorption feature. This measurement is the first for acetic acid at this excitation level. Preliminary results for acetic acid show the peak occurs near 615nm. Procedures for separating the monomer and dimer contribution will be presented. We would like to acknowledge support from NSF award #0803016 and NOAA-EPP award #NA06OAR4810187.

  13. Biosynthesis of the 7-mercaptoheptanoic acid subunit of component B of methanogenic bacteria

    SciTech Connect

    White, R.H. )

    1989-01-24

    Deuterium- and {sup 13}C-labeled precursors were used to establish the pathway for the biosynthesis of the 7-mercaptoheptanoic acid moiety of component B in methanogenic bacteria. The extent and position of the label incorporated into 7-mercaptoheptanoic acid were measured from the molecular and fragment ions in the mass spectrum of the methyl ester methylthiol derivative of the 7-mercaptoheptanoic acid. Deuterium from (2,2,2-{sup 2}H{sub 3})acetate was found to be incorporated into four separate positions of 7-mercaptoheptanoic acid. One deuterium was equally distributed between the C-2 and the C-3 of the 7-mercaptoheptanoic acid, and the remaining three were at carbons 4-6. The extent of incorporation of the C-2 and C-3 positions was the same as that observed for the incorporation of (2,2,2-{sup 2}H{sub 3})acetate into the {alpha}-ketoglutarate produced by the cells. (1,2-{sup 13}C{sub 2})Acetate was incorporated into four separate sites of the 7-mercaptoheptanoic acid molecule. On the basis of this and additional information, it is concluded that 7-mercaptoheptanoic acid is biosynthesized from {alpha}-ketosuberate, which arises from {alpha}-ketoglutarate by repeated {alpha}-keto acid chain elongation. The mechanism for the conversion of {alpha}-ketosuberate to a thiol appears to be analogous to that for the conversion of sulfopyruvate to coenzyme M (2-mercaptoethanesulfonic acid).

  14. Selection of a Bifidobacterium animalis subsp. lactis Strain with a Decreased Ability To Produce Acetic Acid

    PubMed Central

    Margolles, Abelardo

    2012-01-01

    We have characterized a new strain, Bifidobacterium animalis subsp. lactis CECT 7953, obtained by random UV mutagenesis, which produces less acetic acid than the wild type (CECT 7954) in three different experimental settings: De Man-Rogosa-Sharpe broth without sodium acetate, resting cells, and skim milk. Genome sequencing revealed a single Phe-Ser substitution in the acetate kinase gene product that seems to be responsible for the strain's reduced acid production. Accordingly, acetate kinase specific activity was lower in the low acetate producer. Strain CECT 7953 produced less acetate, less ethanol, and more yoghourt-related volatile compounds in skim milk than the wild type did. Thus, CECT 7953 shows promising potential for the development of dairy products fermented exclusively by a bifidobacterial strain. PMID:22389372

  15. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 ± 0.7% and 8.8 ± 3.2% w/w, respectively, which were lower than the control (17.8 ± 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 ± 0.6% w/w for 2 g L -1 acetic acid and 4.2 ± 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  16. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    SciTech Connect

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2004-06-22

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  17. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    SciTech Connect

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2007-03-27

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  18. Acetic acid-water complex: The first observation of structures containing the higher-energy acetic acid conformer

    NASA Astrophysics Data System (ADS)

    Lopes, Susy; Fausto, Rui; Khriachtchev, Leonid

    2016-02-01

    Non-covalent interaction of acetic acid (AA) and water is studied experimentally by IR spectroscopy in a nitrogen matrix and theoretically at the MP2 and coupled-cluster with single and double and perturbative triple excitations [CCSD(T)]/6-311++G(2d,2p) levels of theory. This work is focused on the first preparation and characterization of complexes of higher-energy (cis) conformer of AA with water. The calculations show three 1:1 structures for the trans-AA⋯H2O complexes and three 1:1 structures for the cis-AA⋯H2O complexes. Two trans-AA⋯H2O and two cis-AA⋯H2O complexes are found and structurally assigned in the experiments. The two cis-AA⋯ ṡ H2O complexes are obtained by annealing of a matrix containing water and cis-AA molecules prepared by selective vibrational excitation of the ground-state trans form. The less stable trans-AA⋯H2O complex is obtained by vibrational excitation of the less stable cis-AA⋯H2O complex. In addition, the 1:2 complexes of trans-AA and cis-AA with water molecules are studied computationally and the most stable forms of the 1:2 complexes are experimentally identified.

  19. Indole-3-Acetic Acid Biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene

    PubMed Central

    Robinson, M.; Riov, J.; Sharon, A.

    1998-01-01

    We characterized the biosynthesis of indole-3-acetic acid by the mycoherbicide Colletotrichum gloeosporioides f. sp. aeschynomene. Auxin production was tryptophan dependent. Compounds from the indole-3-acetamide and indole-3-pyruvic acid pathways were detected in culture filtrates. Feeding experiments and in vitro assay confirmed the presence of both pathways. Indole-3-acetamide was the major pathway utilized by the fungus to produce indole-3-acetic acid in culture. PMID:9835603

  20. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria.

    PubMed

    Wang, Han; Fotidis, Ioannis A; Angelidaki, Irini

    2015-11-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate-oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic-cultivated strains of SAOB and hydrogenotrophic methanogens was tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleu thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation were assessed under 0.26, 3, 5 and 7 g NH4 (+)-N L(-1). The results showed that some hydrogenotrophic methanogens were equally, or in some cases, more tolerant to high ammonia levels compared to SAOB. Furthermore, a mesophilic hydrogenotrophic methanogen was more sensitive to ammonia toxicity compared to thermophilic methanogens tested in the study, which is contradicting to the general belief that thermophilic methanogens are more vulnerable to high ammonia loads compared to mesophilic. This unexpected finding underlines the fact that the complete knowledge of ammonia inhibition effect on hydrogenotrophic methanogens is still absent. PMID:26490748

  1. Plasminogen activation by lactic acid bacteria.

    PubMed

    Nomura, Masaru

    2012-01-01

    Plasminogen was incubated with lactic acid bacteria and the plasmin activity in the mixture was measured. Three of 15 strains tested revealed significant plasminogen activation ability. Lactococcus lactis subsp. lactis biovar diacetylactis NIAI C59 showed the highest activity. The strain activated not only human plasminogen but also bovine plasminogen. The activity demonstrated a high level of thermal stability within a range of pH 3.0-9.0. The plasminogen activator activity in strain C59 increased after 15 h of cultivation, and reached a plateau after 21 h. A remarkable amount of activity was transferred to the solution when C59 cells were incubated in buffer solutions at pH 9.0 and above. PMID:22878187

  2. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  3. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  4. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  5. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  6. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  7. Biosynthesis of the Halogenated Auxin, 4-Chloroindole-3-Acetic Acid1[W][OA

    PubMed Central

    Tivendale, Nathan D.; Davidson, Sandra E.; Davies, Noel W.; Smith, Jason A.; Dalmais, Marion; Bendahmane, Abdelhafid I.; Quittenden, Laura J.; Sutton, Lily; Bala, Raj K.; Le Signor, Christine; Thompson, Richard; Horne, James; Reid, James B.; Ross, John J.

    2012-01-01

    Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea. PMID:22573801

  8. Modulation of endogenous indole-3-acetic acid biosynthesis in bacteroids within Medicago sativa nodules.

    PubMed

    Bianco, C; Senatore, B; Arbucci, S; Pieraccini, G; Defez, R

    2014-07-01

    To evaluate the dose-response effects of endogenous indole-3-acetic acid (IAA) on Medicago plant growth and dry weight production, we increased the synthesis of IAA in both free-living and symbiosis-stage rhizobial bacteroids during Rhizobium-legume symbiosis. For this purpose, site-directed mutagenesis was applied to modify an 85-bp promoter sequence, driving the expression of iaaM and tms2 genes for IAA biosynthesis. A positive correlation was found between the higher expression of IAA biosynthetic genes in free-living bacteria and the increased production of IAA under both free-living and symbiotic conditions. Plants nodulated by RD65 and RD66 strains, synthetizing the highest IAA concentration, showed a significant (up to 73%) increase in the shoot fresh weight and upregulation of nitrogenase gene, nifH, compared to plants nodulated by the wild-type strain. When these plants were analyzed by confocal microscopy, using an anti-IAA antibody, the strongest signal was observed in bacteroids of Medicago sativa RD66 (Ms-RD66) plants, even when they were located in the senescent nodule zone. We show here a simple system to modulate endogenous IAA biosynthesis in bacteria nodulating legumes suitable to investigate which is the maximum level of IAA biosynthesis, resulting in the maximal increase of plant growth. PMID:24814784

  9. Modulation of Endogenous Indole-3-Acetic Acid Biosynthesis in Bacteroids within Medicago sativa Nodules

    PubMed Central

    Bianco, C.; Senatore, B.; Arbucci, S.; Pieraccini, G.

    2014-01-01

    To evaluate the dose-response effects of endogenous indole-3-acetic acid (IAA) on Medicago plant growth and dry weight production, we increased the synthesis of IAA in both free-living and symbiosis-stage rhizobial bacteroids during Rhizobium-legume symbiosis. For this purpose, site-directed mutagenesis was applied to modify an 85-bp promoter sequence, driving the expression of iaaM and tms2 genes for IAA biosynthesis. A positive correlation was found between the higher expression of IAA biosynthetic genes in free-living bacteria and the increased production of IAA under both free-living and symbiotic conditions. Plants nodulated by RD65 and RD66 strains, synthetizing the highest IAA concentration, showed a significant (up to 73%) increase in the shoot fresh weight and upregulation of nitrogenase gene, nifH, compared to plants nodulated by the wild-type strain. When these plants were analyzed by confocal microscopy, using an anti-IAA antibody, the strongest signal was observed in bacteroids of Medicago sativa RD66 (Ms-RD66) plants, even when they were located in the senescent nodule zone. We show here a simple system to modulate endogenous IAA biosynthesis in bacteria nodulating legumes suitable to investigate which is the maximum level of IAA biosynthesis, resulting in the maximal increase of plant growth. PMID:24814784

  10. Amino acid derived heterocycles: lewis acid catalyzed and radical cyclizations from peptide acetals.

    PubMed

    Todd, Matthew H; Ndubaku, Chudi; Bartlett, Paul A

    2002-06-14

    Bicyclization of peptide acetals via nucleophilic attack of a phenyl group on an endocyclic acyliminium ion 4 was explored as a route to novel amino acid derived heterocycles and peptidomimetic scaffolds. In the presence of protic acid, bridged structures such as 6 are formed readily from phenylalanine derivatives, but the fused-ring analogues 5 could not be obtained in good yield. In contrast, radical cyclization of the bromophenyl dihydropyrazinone 7 provides an effective alternative for the synthesis of 5 (n = 0, 1, 2). Additional versatility in this process was demonstrated by efficient synthesis of a different fused ring system, represented by the antihelmintic praziquantel, 8. PMID:12054930

  11. The Binding of Indole-3-acetic Acid and 3-Methyleneoxindole to Plant Macromolecules

    PubMed Central

    Basu, P. S.; Tuli, V.

    1972-01-01

    Homogenates of pea (Pisum sativum L., var. Alaska) seedlings exposed to 14C-indole-3-acetic acid or 14C-3-methyleneoxindole, an oxidation product of indole-3-acetic acid, were extracted with phenol. In both cases 90% of the bound radioactivity was found associated with the protein fraction and 10% with the water-soluble, ethanol-insoluble fraction. The binding of radioactivity from 14C-indole-3-acetic acid is greatly reduced by the addition of unlabeled 3-methyleneoxindole as well as by chlorogenic acid, an inhibitor of the oxidation of indole-3-acetic acid to 3-methyleneoxindole. Chlorogenic acid does not inhibit the binding of 14C-3-methyleneoxindole. The labeled protein and water-soluble, ethanol-insoluble fractions of the phenol extract were treated with an excess of 2-mercaptoethanol. Independently of whether the seedlings had been exposed to 14C-indole-3-acetic acid or 14C-3-methyleneoxindole, the radioactivity was recovered from both fractions in the form of a 2-mercaptoethanol-3-methyleneoxindole adduct. These findings indicate that 3-methyleneoxindole is an intermediate in the binding of indole-3-acetic acid to macromolecules. PMID:16658206

  12. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    SciTech Connect

    Miller, M.J.; Zhang, x.J.; Gu, x.A.; Clark, D.A. )

    1991-07-01

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of {sup 51}Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in {sup 51}Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal {sup 51}Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol.

  13. Glycerol metabolism and bitterness producing lactic acid bacteria in cidermaking.

    PubMed

    Garai-Ibabe, G; Ibarburu, I; Berregi, I; Claisse, O; Lonvaud-Funel, A; Irastorza, A; Dueas, M T

    2008-02-10

    Several lactic acid bacteria were isolated from bitter tasting ciders in which glycerol was partially removed. The degradation of glycerol via glycerol dehydratase pathway was found in 22 out of 67 isolates. The confirmation of glycerol degradation by this pathway was twofold: showing their glycerol dehydratase activity and detecting the presence of the corresponding gene by a PCR method. 1,3-propanediol (1,3-PDL) and 3-hydroxypropionic acid (3-HP) were the metabolic end-products of glycerol utilization, and the accumulation of the acrolein precursor 3-hydroxypropionaldehyde (3-HPA) was also detected in most of them. The strain identification by PCR-DGGE rpoB showed that Lactobacillus collinoides was the predominant species and only 2 belonged to Lactobacillus diolivorans. Environmental conditions conducting to 3-HPA accumulation in cidermaking were studied by varying the fructose concentration, pH and incubation temperature in L. collinoides 17. This strain failed to grow with glycerol as sole carbon source and the addition of fructose enhanced both growth and glycerol degradation. Regarding end-products of glycerol metabolism, 1,3-PDL was always the main end-product in all environmental conditions assayed, the only exception being the culture with 5.55 mM fructose, where equimolar amounts of 1,3-PDL and 3-HP were found. The 3-HPA was transitorily accumulated in the culture medium under almost all culture conditions, the degradation rate being notably slower at 15 degrees C. However, no disappearance of 3-HPA was found at pH 3.6, a usual value in cider making. After sugar exhaustion, L. collinoides 17 oxidated lactic acid and/or mannitol to obtain energy and these oxidations were accompanied by the removal of the toxic 3-HPA increasing the 1,3-PDL, 3-HP and acetic acid contents. PMID:18180066

  14. Towards lactic acid bacteria-based biorefineries.

    PubMed

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass. PMID:25087936

  15. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop.

    PubMed

    Li, Leilei; Praet, Jessy; Borremans, Wim; Nunes, Olga C; Manaia, Célia M; Cleenwerck, Ilse; Meeus, Ivan; Smagghe, Guy; De Vuyst, Luc; Vandamme, Peter

    2015-01-01

    In the frame of a bumble bee gut microbiota study, acetic acid bacteria (AAB) were isolated using a combination of direct isolation methods and enrichment procedures. MALDI-TOF MS profiling of the isolates and a comparison of these profiles with profiles of established AAB species identified most isolates as Asaia astilbis or as 'Commensalibacter intestini', except for two isolates (R-52486 and LMG 28161(T)) that showed an identical profile. A nearly complete 16S rRNA gene sequence of strain LMG 28161(T) was determined and showed the highest pairwise similarity to Saccharibacter floricola S-877(T) (96.5%), which corresponded with genus level divergence in the family Acetobacteraceae. Isolate LMG 28161(T) was subjected to whole-genome shotgun sequencing; a 16S-23S rRNA internal transcribed spacer (ITS) sequence as well as partial sequences of the housekeeping genes dnaK, groEL and rpoB were extracted for phylogenetic analyses. The obtained data confirmed that this isolate is best classified into a new genus in the family Acetobacteraceae. The DNA G+C content of strain LMG 28161(T) was 54.9 mol%. The fatty acid compositions of isolates R-52486 and LMG 28161(T) were similar to those of established AAB species [with C18:1ω7c (43.1%) as the major component], but the amounts of fatty acids such as C19:0 cyclo ω8c, C14:0 and C14:0 2-OH enabled to differentiate them. The major ubiquinone was Q-10. Both isolates could also be differentiated from the known genera of AAB by means of biochemical characteristics, such as their inability to oxidize ethanol to acetic acid, negligible acid production from melibiose, and notable acid production from d-fructose, sucrose and d-mannitol. In addition, they produced 2-keto-d-gluconate, but not 5-keto-d-gluconate from d-glucose. Therefore, the name Bombella intestini gen nov., sp. nov. is proposed for this new taxon, with LMG 28161(T) ( =DSM 28636(T) =R-52487(T)) as the type strain of the type species. PMID:25336723

  16. Laboratory and field measurements to constrain atmospheric sources of acetic and formic acids

    NASA Astrophysics Data System (ADS)

    Baasandorj, M.; Hu, L.; Mitroo, D.; Martinez, R.; Walker, M.; Williams, B. J.; Millet, D. B.

    2013-12-01

    Acetic and formic acids are the most abundant organic acids in the atmosphere. They play an important role in atmospheric aqueous chemistry as they can influence the acidity of precipitation, cloud droplets, and atmospheric aerosols. Sources of these acids are highly uncertain, but include secondary production from VOC oxidation, direct emissions, and possibly organic aerosol aging. Here we present measurements of formic and acetic acid, along with a suite of other gas and particle phase species, from a field study in St. Louis during summer 2013. Calibration procedures and results are discussed, and we interpret the ambient formic and acetic acid measurements in terms of patterns of variability and implied constraints on sources. Finally, we present results from oxidative aging experiments on both ambient and test organic aerosol designed to assess the importance of this mechanism as a source of gas-phase carboxylic acids.

  17. Dehydration of acetic acid-water mixtures with near critical and supercritical fluid solvents

    SciTech Connect

    McCully, M.A.; Mullins, J.C.; Thies, M.C.; Hartley, I.J.

    1988-10-01

    Equilibrium tie lines and phase densities are presented for acetic acid-water mixtures with near critical propane at 361K and 52 bar. Experimental measurements were obtained with a static technique; the equilibrium phases were directly sampled with high-pressure liquid sample injection valves at the temperature and pressure of interest. The data obtained in this work indicate that near critical propane can be used to facilitate the production of glacial acetic acid from dilute acetic acid-water solutions. Both these experimental data and the authors earlier results for acetic acid-water mixtures with supercritical carbon dioxide have been used to test an equation of state which has recently been developed by Grenzheuser and Gmehling for systems which contain associating fluids. Results indicate that the equation's pure component parameters need to be refitted to represent the critical region more accurately.

  18. The comparison of fluorescent spectra on acetic acid and ethanol solutions

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Lan, Xiufeng; Gao, Shumei; Shen, Zhonghua; Lu, Jian; Ni, Xiao-Wu

    2003-12-01

    Acetic acid and ethanol solutions can emit fluorescence when induced by 253.7nm UV-light. In this paper, fluorescence spectral characteristics of acetic acid and ethanol solutions are analyzed and studied in theory and in experiment. The results indicate that both acetic acid and ethanol can emit two fluorescence spectral bands, one is from 330nm to 493nm and the other is from 534nm to 665nm. The emitting fluorescence intensity is very sensitive to the solutions concentrations, and fluorescence quenching occurs in some solutions of the two samples. Furthermore, the physical mechanism of fluorescence emission of acetic acid and ethanol molecules is analyzed based on the theory of molecule orbital structure, and the quenching mechanism are studied by the dynamic process. Investigation on the native fluorescence spectrum of the two solvent and their characteristics will contribute to the study of the fluorescence spectra when they serve as solute, hydrolysis catalyst and food additive.

  19. Percutaneous Sclerotherapy Using Acetic Acid After Failure of Alcohol Ablation in an Intra-abdominal Lymphangioma

    SciTech Connect

    Park, Sang Woo Cha, In Ho; Kim, Kyeong Ah; Hong, Suk Joo; Park, Cheol Min; Chung, Hwan Hoon

    2004-09-15

    We report a case of percutaneous sclerotherapy using acetic acid in a 22-year-old woman with an intra-abdominal cystic lymphangioma who was not successfully treated with ethanol despite multiple trials.

  20. Asaia lannaensis sp. nov., a new acetic acid bacterium in the Alphaproteobacteria.

    PubMed

    Malimas, Taweesak; Yukphan, Pattaraporn; Takahashi, Mai; Kaneyasu, Mika; Potacharoen, Wanchern; Tanasupawat, Somboon; Nakagawa, Yasuyoshi; Tanticharoen, Morakot; Yamada, Yuzo

    2008-03-01

    Asaia lannaensis sp. nov. was described for two strains isolated from flowers of the spider lily collected in Chiang Mai, Thailand. The isolates produced acetic acid from ethanol on ethanol/calcium carbonate agar, differing from the type strains of Asaia bogorensis, Asaia siamensis, and Asaia krungthepensis, but did not grow in the presence of 0.35% acetic acid (v/v). The new species is the fourth of the genus Asaia, the family Acetobacteraceae. PMID:18323663

  1. The lactic acid bacteria metabolite phenyllactic acid inhibits both radial growth and sporulation of filamentous fungi

    PubMed Central

    2013-01-01

    Background Food spoilage caused by molds is a severe problem. In food and feed, e.g. dairy products, sourdough bread and silage, lactic acid bacteria are used as starter cultures. Besides lactic and acetic acid, some strains produce other low molecular weight compounds with antifungal activities. One of these metabolites is phenyllactic acid (PLA), well known for its antifungal effect. The inhibitory effect of PLA has only partially been investigated, and the objective of this study was to elucidate in detail the antifungal properties of PLA. Results We investigated the outgrowth of individual conidia from Aspergillus niger, Cladosporium cladosporioides and Penicillium roqueforti, and observed the morphologies of resulting colonies on solid media using different acid concentrations. We found that PLA inhibits molds similar to weak acid preservatives. Furthermore, it has an additional activity: at sub-inhibitory concentrations, fungal colonies displayed slower radial growth and inhibited sporulation. The L isoform of PLA is a more potent inhibitor than the D form. Increased expression of phiA was observed during PLA treatment. This gene was initially identified as being induced by Streptomyces-produced macrolide antibiotics, and is shown to be a structural protein in developed cells. This suggests that PhiA may act as a general stress protectant in fungi. Conclusion From a food protection perspective, the results of this study support the usage of lactic acid bacteria strains synthesizing PLA as starter cultures in food and feed. Such starter cultures could inhibit spore synthesis, which would be beneficial as many food borne fungi are spread by airborne spores. PMID:24229396

  2. Analysis of Bacterial Diversity During Acetic Acid Fermentation of Tianjin Duliu Aged Vinegar by 454 Pyrosequencing.

    PubMed

    Peng, Qian; Yang, Yanping; Guo, Yanyun; Han, Ye

    2015-08-01

    The vinegar pei harbors complex bacterial communities. Prior studies revealing the bacterial diversity involved were mainly conducted by culture-dependent methods and PCR-DGGE. In this study, 454 pyrosequencing was used to investigate the bacterial communities in vinegar pei during the acetic acid fermentation (AAF) of Tianjin Duliu aged vinegar (TDAV). The results showed that there were 7 phyla and 24 families existing in the vinegar pei, with 2 phyla (Firmicutes, Protebacteria) and 4 families (Lactobacillaceae, Acetobacteracae, Enterobacteriaceae, Chloroplast) predominating. The genus-level identification revealed that 9 genera were the relatively stable, consistent components in different stages of AAF, including the most abundant genus Lactobacillus followed by Acetobacter and Serratia. Additionally, the bacterial community in the early fermentation stage was more complex than those in the later stages, indicating that the accumulation of organic acids provided an appropriate environment to filter unwanted bacteria and to accelerate the growth of required ones. This study provided basic information of bacterial patterns in vinegar pei and relevant changes during AAF of TDAV, and could be used as references in the following study on the implementation of starter culture as well as the improvement of AAF process. PMID:25903266

  3. Dissimilation of Carbon Monoxide to Acetic Acid by Glucose-Limited Cultures of Clostridium thermoaceticum

    PubMed Central

    Martin, Douglas R.; Misra, Arun; Drake, Harold L.

    1985-01-01

    Clostridium thermoaceticum was cultivated in glucose-limited media, and the dissimilation of CO to acetic acid was evaluated. We found that cultures catalyzed the rapid dissimilation of CO to acetic acid and CO2, with the stoichiometry obtained for conversion approximating that predicted from the following reaction: 4CO + 2H2O ? CH3CO2H + 2CO2. Growing cultures formed approximately 50 mmol (3 g) of CO-derived acetic acid per liter of culture, with the rate of maximal consumption approximating 9.1 mmol of CO consumed/h per liter of culture. In contrast, resting cells were found not to dissimilate CO to acetic acid. 14CO was incorporated, with equal distribution between the carboxyl and methyl carbons of acetic acid when the initial cultivation gas phase was 100% CO, whereas 14CO2 preferentially entered the carboxyl carbon when the initial gas phase was 100% CO2. Significantly, in the presence of saturating levels of CO, 14CO2 preferentially entered the methyl carbon, whereas saturating levels of CO2 yielded 14CO-derived labeling predominantly in the carboxyl carbon. These findings are discussed in relation to the path of carbon flow to acetic acid. PMID:16346807

  4. Amperometric determination of acetic acid with a trienzyme/poly(dimethylsiloxane)-bilayer-based sensor.

    PubMed

    Mizutani, F; Sawaguchi, T; Sato, Y; Yabuki, S; Lijima, S

    2001-12-01

    A trienzyme sensor for the amperometric determination of acetic acid was prepared by immobilizing acetate kinase (AK), pyruvate kinase (PK), and pyruvate oxidase (PyOx) on a poly(dimethylsiloxane) (PDMS)-coated electrode. AK catalyzes the phospho-transferring reaction between acetic acid and ATP to form ADP; PK, the phospho-transferring reaction between ADP and phosphoenolpyruvate to form pyruvic acid; and PyOx, the oxidation of pyruvic acid with oxygen. The oxygen consumption could be monitored by using the PDMS-coated electrode without interference from the PyOx reaction product, hydrogen peroxide. Thus, the concentration of acetic acid (5 microM-0.5 mM) could be determined from the decrease in the cathodic current at -0.4 V vs Ag/AgCl. This is the first example of a biosensor that can be used for the determination of acetic acid in ethanol-containing food samples. The acetate-sensing electrode could be used for more than one month. PMID:11774915

  5. Continuous Ethanol Production with a Membrane Bioreactor at High Acetic Acid Concentrations

    PubMed Central

    Ylitervo, Päivi; Franzén, Carl Johan; Taherzadeh, Mohammad J.

    2014-01-01

    The release of inhibitory concentrations of acetic acid from lignocellulosic raw materials during hydrolysis is one of the main concerns for 2nd generation ethanol production. The undissociated form of acetic acid can enter the cell by diffusion through the plasma membrane and trigger several toxic effects, such as uncoupling and lowered intracellular pH. The effect of acetic acid on the ethanol production was investigated in continuous cultivations by adding medium containing 2.5 to 20.0 g·L−1 acetic acid at pH 5.0, at a dilution rate of 0.5 h−1. The cultivations were performed at both high (~25 g·L−1) and very high (100–200 g·L−1) yeast concentration by retaining the yeast cells inside the reactor by a cross-flow membrane in a membrane bioreactor. The yeast was able to steadily produce ethanol from 25 g·L−1 sucrose, at volumetric rates of 5–6 g·L−1·h−1 at acetic acid concentrations up to 15.0 g·L−1. However, the yeast continued to produce ethanol also at a concentration of 20 g·L−1 acetic acid but at a declining rate. The study thereby demonstrates the great potential of the membrane bioreactor for improving the robustness of the ethanol production based on lignocellulosic raw materials. PMID:25028956

  6. Lactic acid bacteria and human health.

    PubMed

    Gorbach, S L

    1990-02-01

    Although claims for health and nutritional benefits have been made for lactic acid bacteria in fermented dairy products for nearly a century, the nutritional and therapeutic value of these organisms is still controversial. This article will review the scientific basis of these claims. There are numerous studies showing fermentation of food with lactobacilli increase the quantity, availability, digestibility, and assimilability of nutrients. The basis for this conclusion comes from direct measurements of vitamin synthesis and from increased feed efficiency when fermented products are fed to animals. There have been a number of studies showing that various fermented dairy products lower serum cholesterol levels in humans and animals. These studies are reviewed and the validity of these findings are assessed. A summary of the evidence indicating that lactase deficient individuals can eat yogurt and the mechanisms involved in this toleration is reviewed. The role of fermented dairy products in inhibiting tumor growth and chemically induced tumors in animals is discussed and the possible mechanisms involved in this protective effect are reviewed. Fermented dairy products and lypholized lactobacilli preparations have been shown to be useful in treating and preventing various intestinal infections including; salmonellosis, shigellosis and antibiotic induced diarrhea. In this context a specific lactobacillus designated GG has been shown to be useful in treating recurring diarrhea caused by a toxin produced by Clostridium difficile. PMID:2109988

  7. Lactic acid bacteria from fermented table olives.

    PubMed

    Hurtado, Albert; Reguant, Cristina; Bordons, Albert; Rozs, Nicolas

    2012-08-01

    Tableolives are one of the main fermented vegetables in the world. Olives can be processed as treated or natural. Both have to be fermented but treated green olives have to undergo an alkaline treatment before they are placed in brine to start their fermentation. It has been generally established that lactic acid bacteria (LAB) are responsible for the fermentation of treated olives. However, LAB and yeasts compete for the fermentation of natural olives. Yeasts play a minor role in some cases, contributing to the flavour and aroma of table olives and in LAB development. The main microbial genus isolated in table olives is Lactobacillus. Other genera of LAB have also been isolated but to a lesser extent. Lactobacillus plantarum and Lactobacillus pentosus are the predominant species in most fermentations. Factors influencing the correct development of fermentation and LAB, such as pH, temperature, the amount of NaCl, the polyphenol content or the availability of nutrients are also reviewed. Finally, current research topics on LAB from table olives are reviewed, such as using starters, methods of detection and identification of LAB, their production of bacteriocins, and the possibility of using table olives as probiotics. PMID:22475936

  8. Pretreatment of corn stover with diluted acetic acid for enhancement of acidogenic fermentation.

    PubMed

    Zhao, Xu; Wang, Lijuan; Lu, Xuebin; Zhang, Shuting

    2014-04-01

    A Box-Behnken design of response surface method was used to optimize acetic acid-catalyzed hydrothermal pretreatment of corn stover, in respect to acid concentration (0.05-0.25%), treatment time (5-15 min) and reaction temperature (180-210C). Acidogenic fermentations with different initial pH and hydrolyzates were also measured to evaluate the optimal pretreatment conditions for maximizing acid production. The results showed that pretreatment with 0.25% acetic acid at 191C for 7.74 min was found to be the most optimal condition for pretreatment of corn stover under which the production of acids can reach the highest level. Acidogenic fermentation with the hydrolyzate of pretreatment at the optimal condition at the initial pH=5 was shown to be butyric acid type fermentation, producing 21.84 g acetic acid, 7.246 g propionic acid, 9.170 butyric acid and 1.035 g isovaleric acid from 100g of corn stover in 900 g of water containing 2.25 g acetic acid. PMID:24583209

  9. Thermal decarboxylation of acetic acid: Implications for origin of natural gas

    USGS Publications Warehouse

    Kharaka, Y.K.; Carothers, W.W.; Rosenbauer, R.J.

    1983-01-01

    Laboratory experiments on the thermal decarboxylation of solutions of acetic acid at 200??C and 300??C were carried out in hydrothermal equipment allowing for on-line sampling of both the gas and liquid phases for chemical and stable-carbon-isotope analyses. The solutions had ambient pH values between 2.5 and 7.1; pH values and the concentrations of the various acetate species at the conditions of the experiments were computed using a chemical model. Results show that the concentrations of acetic acid, and not total acetate in solution, control the reaction rates which follow a first order equation based on decreasing concentrations of acetic acid with time. The decarboxylation rates at 200??C (1.81 ?? 10-8 per second) and 300??C (8.17 ?? 10-8 per second) and the extrapolated rates at lower temperatures are relatively high. The activation energy of decarboxylation is only 8.1 kcal/mole. These high decarboxylation rates, together with the distribution of short-chained aliphatic acid anions in formation waters, support the hypothesis that acid anions are precursors for an important portion of natural gas. Results of the ??13C values of CO2, CH4, and total acetate show a reasonably constant fractionation factor of about 20 permil between CO2 and CH4 at 300??C. The ??13C values of CO2 and CH4 are initially low and become higher as decarboxylation increases. ?? 1983.

  10. Performance of dairy cows fed high levels of acetic acid or ethanol.

    PubMed

    Daniel, J L P; Amaral, R C; S Neto, A; Cabezas-Garcia, E H; Bispo, A W; Zopollatto, M; Cardoso, T L; Spoto, M H F; Santos, F A P; Nussio, L G

    2013-01-01

    Ethanol and acetic acid are common end products from silages. The main objective of this study was to determine whether high concentrations of ethanol or acetic acid in total mixed ration would affect performance in dairy cows. Thirty mid-lactation Holstein cows were grouped in 10 blocks and fed one of the following diets for 7 wk: (1) control (33% Bermuda hay + 67% concentrates), (2) ethanol [control diet + 5% ethanol, dry matter (DM) basis], or (3) acetic acid (control diet + 5% acetic acid, DM basis). Ethanol and acetic acid were diluted in water (1:2) and sprayed onto total mixed rations twice daily before feeding. An equal amount of water was mixed with the control ration. To adapt animals to these treatments, cows were fed only half of the treatment dose during the first week of study. Cows fed ethanol yielded more milk (37.9 kg/d) than those fed the control (35.8 kg/d) or acetic acid (35.3 kg/d) diets, mainly due to the higher DM intake (DMI; 23.7, 22.2, and 21.6 kg/d, respectively). The significant diet week interaction for DMI, mainly during wk 2 and 3 (when acetic acid reached the full dose), was related to the decrease in DMI observed for the acetic acid treatment. There was a diet week interaction in excretion of milk energy per DMI during wk 2 and 3, due to cows fed acetic acid sustained milk yield despite lower DMI. Energy efficiency was similar across diets. Blood metabolites (glucose, insulin, nonesterified fatty acids, ethanol, and ?-glutamyl transferase activity) and sensory characteristics of milk were not affected by these treatments. Animal performance suggested similar energy value for the diet containing ethanol compared with other diets. Rumen conversion of ethanol to acetate and a concomitant increase in methane production might be a plausible explanation for the deviation of the predicted energy value based on the heat of combustion. Therefore, the loss of volatile compounds during the drying process in the laboratory should be considered when calculating energy content of fermented feedstuffs. PMID:23141834

  11. Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea hydrothermal systems.

    PubMed

    Winkel, Matthias; Pjevac, Petra; Kleiner, Manuel; Littmann, Sten; Meyerdierks, Anke; Amann, Rudolf; Mumann, Marc

    2014-12-01

    Diffuse hydrothermal fluids often contain organic compounds such as hydrocarbons, lipids, and organic acids. Microorganisms consuming these compounds at hydrothermal sites are so far only known from cultivation-dependent studies. To identify potential heterotrophs without prior cultivation, we combined microbial community analysis with short-term incubations using (13)C-labeled acetate at two distinct hydrothermal systems. We followed cell growth and assimilation of (13)C into single cells by nanoSIMS combined with fluorescence in situ hybridization (FISH). In 55 C-fluids from the Menez Gwen hydrothermal system/Mid-Atlantic Ridge, a novel epsilonproteobacterial group accounted for nearly all assimilation of acetate, representing the first aerobic acetate-consuming member of the Nautiliales. In contrast, Gammaproteobacteria dominated the (13) C-acetate assimilation in incubations of 37 C-fluids from the back-arc hydrothermal system in the Manus Basin/Papua New Guinea. Here, 16S rRNA gene sequences were mostly related to mesophilic Marinobacter, reflecting the high content of seawater in these fluids. The rapid growth of microorganisms upon acetate addition suggests that acetate consumers in diffuse fluids are copiotrophic opportunists, which quickly exploit their energy sources, whenever available under the spatially and temporally highly fluctuating conditions. Our data provide first insights into the heterotrophic microbial community, catalyzing an under-investigated part of microbial carbon cycling at hydrothermal vents. PMID:25244359

  12. Adsorptive Membranes vs. Resins for Acetic Acid Removal from Biomass Hydrolysates

    SciTech Connect

    Han, B.; Carvalho, W.; Canilha, L.; da Silva, S. S.; e Silva, J. B. A.; McMillan, J. D.; Wickramasinghe, S. R.

    2006-01-01

    Acetic acid is a compound commonly found in hemicellulosic hydrolysates. This weak acid strongly influences the bioconversion of sugar containing hydrolysates. Previous investigators have used anion exchange resins for acetic acid removal from different hemicellulosic hydrolysates. In this study, the efficiency of an anion exchange membrane was compared to that of an anion exchange resin, for acetic acid removal from a DI water solution and an acidic hemicellulose hydrolysate pretreated using two different methods. Ion exchange membranes and resins have very different geometries. Here the performance of membranes and resins is compared using two dimensionless parameters, the relative mass throughput and chromatographic bed number. The relative mass throughput arises naturally from the Thomas solution for ion exchange. The results show that the membrane exhibit better performance in terms of capacity, and loss of the desired sugars. In addition acetic acid may be eluted at a higher concentration from the membrane thus leading to the possibility of recovery and re-use of the acetic acid.

  13. Microbiological preservation of cucumbers for bulk storage using acetic acid and food preservatives.

    PubMed

    Prez-Daz, I M; McFeeters, R F

    2008-08-01

    Microbial growth did not occur when cucumbers were preserved without a thermal process by storage in solutions containing acetic acid, sodium benzoate, and calcium chloride to maintain tissue firmness. The concentrations of acetic acid and sodium benzoate required to ensure preservation were low enough so that stored cucumbers could be converted to the finished product without the need to wash out and discard excess acid or preservative. Since no thermal process was required, this method of preservation would be applicable for storing cucumbers in bulk containers. Acid tolerant pathogens died off in less than 24 h with the pH, acetic acid, and sodium benzoate concentrations required to assure the microbial stability of cucumbers stored at 30 degrees C. Potassium sorbate as a preservative in this application was not effective. Yeast growth was observed when sulfite was used as a preservative. PMID:19241560

  14. Conductometric simultaneous determination of acetic acid, monochloroacetic acid and trichloroacetic acid using orthogonal signal correction-partial least squares.

    PubMed

    Ghorbani, R; Ghasemi, J; Abdollahi, B

    2006-04-17

    A simultaneous conductometric titration method for determination of mixtures of acetic acid, monochloroacetic acid and trichloroacetic acid based on the multivariate calibration partial least squares is proposed. It is possible to obtain an adjustable model to relate squared concentration values of the mixtures used in the calibration range by conductance. The effect of orthogonal signal correction (OSC) as a preprocessing technique used to remove the information unrelated to the target variables is studied. The calibration model was build using conductometric titrations data of 16 mixtures of three acids. The concentration matrix was designed by a orthogonal design. The root mean squares error of prediction (RMSEP) for acetic acid, monochloroacetic acid and trichloroacetic acid with and without OSC were 0.08, 0.30 and 0.08, and 0.15, 0.40 and 0.18, respectively. The results obtained by OSC-PLS are better than the PLS and this indicate the successful application of the OSC filter as a good preprocessing method in multivariate calibration methods. The proposed procedure allows the simultaneous determination of these acids, in the synthetic mixtures. PMID:16236436

  15. Microwave Spectroscopy and Proton Transfer Dynamics in the Formic Acid-Acetic Acid Dimer

    NASA Astrophysics Data System (ADS)

    Howard, B. J.; Steer, E.; Page, F.; Tayler, M.; Ouyang, B.; Leung, H. O.; Marshall, M. D.; Muenter, J. S.

    2012-06-01

    The rotational spectrum of the doubly hydrogen-bonded {hetero} dimer formed between formic acid and acetic acid has been recorded between 4 and 18 GHz using a pulsed-nozzle Fourier transform microwave spectrometer. Each rigid-molecule rotational transition is split into four as a result of two concurrent tunnelling motions, one being proton transfer between the two acid molecules, and the other the torsion/rotation of the methyl group within the acetic acid. We present a full assignment of the spectrum for {J} = 1 to {J} = 7 for these four torsion/tunnelling states. Spectra have been observed for the main isotopic species, with deuterium substitution at the C of the formic acid and all 13C species in natural abundance, The observed transitions are fitted to within a few kilohertz using a molecule-fixed effective rotational Hamiltonian for the separate {A} and {E} vibrational species of the G12 permutation-inversion group which is applicable to this complex. To reduce the effects of internal angular momentum, a non-principal axis system is used throughout. Interpretation of the internal motion uses an internal-vibration and overall rotation scheme, and full sets of rotational and centrifugal distortion constants are determined. The proton tunnelling rates and the internal angular momentum of the methyl group in the {E} states is interpreted in terms of a dynamical model which involves coupled proton transfer and internal rotation. The resulting potential energy surface not only describes these internal motions, but can also explain the observed shifts in rotational constants between {A} and {E} species, and the deviations of the tunnelling frequencies from the expected 2:1 ratio. It also permits the determination of spectral constants free from the contamination effects of the internal dynamics. M.C.D. Tayler, B. Ouyang and B.J. Howard, J. Chem. Phys., {134}, 054316 (2011).

  16. Radiofrequency Thermal Ablation: Increase in Lesion Diameter with Continuous Acetic Acid Infusion

    SciTech Connect

    Lubienski, Andreas Duex, Markus; Lubienski, Katrin; Grenacher, Lars; Kauffmann, Guenter

    2005-12-15

    Purpose. To evaluate the influence of continuous infusion of acetic acid 50% during radiofrequency ablation (RFA) on the size of the thermal lesion produced. Methods. Radiofrequency (RF) was applied to excised bovine liver by using an expandable needle electrode with 10 retractable tines (LeVeen Needle Electrode, RadioTherapeutics, Sunnyvale, CA) connected to a commercially available RF generator (RF 2000, RadioTherapeutics, Sunnyvale, CA). Experiments were performed using three different treatment modalities: RF only (n = 15), RF with continuous saline 0.9% infusion (n = 15), and RF with continuous acetic acid 50% infusion (n = 15). RF duration, power output, tissue impedance, and time to a rapid rise in impedance were recorded. The ablated lesions were evaluated both macroscopically and histologically. Results. The ablated lesions appeared as spherical or ellipsoid, well-demarcated pale areas with a surrounding brown rim with both RF only and RF plus saline 0.9% infusion. In contrast, thermolesions generated with RF in combination with acetic acid 50% infusion were irregular in shape and the central portion was jelly-like. Mean diameter of the coagulation necrosis was 22.3 {+-} 2.1 mm (RF only), 29.2 {+-} 4.8 mm (RF + saline 0.9%) and 30.7 {+-} 5.7 mm (RF + acetic acid 50%), with a significant increase in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Time to a rapid rise in impedance was significantly prolonged in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Conclusions. A combination of RF plus acetic acid 50% infusion is able to generate larger thermolesions than RF only or RF combined with saline 0.9% infusion.

  17. Two-dimensional hydrogen-bonded polymers in the crystal structures of the ammonium salts of phenoxyacetic acid, (4-fluorophenoxy)acetic acid and (4-chloro-2-methylphenoxy)acetic acid

    PubMed Central

    Smith, Graham

    2014-01-01

    The structures of the ammonium salts of phenoxyacetic acid, NH4 +C8H6O3 ?, (I), (4-fluorophenoxy)acetic acid, NH4 +C8H5FO3 ?, (II), and the herbicidally active (4-chloro-2-methylphenoxy)acetic acid (MCPA), NH4 +C9H8ClO3 ?0.5H2O, (III) have been determined. All have two-dimensional layered structures based on inter-species ammonium NH?O hydrogen-bonding associations, which give core substructures consisting primarily of conjoined cyclic motifs. The crystals of (I) and (II) are isomorphous with the core comprising R 1 2(5), R 1 2(4) and centrosymmetric R 4 2(8) ring motifs, giving two-dimensional layers lying parallel to (100). In (III), the water molecule of solvation lies on a crystallographic twofold rotation axis and bridges two carboxyl O atoms in an R 4 4(12) hydrogen-bonded motif, creating two R 4 3(10) rings, which together with a conjoined centrosymmetric R 4 2(8) ring incorporating both ammonium cations, generate two-dimensional layers lying parallel to (100). No ?? ring associations are present in any of the structures. PMID:25552984

  18. A case report of a chemical burn due to the misuse of glacial acetic acid.

    PubMed

    Yoo, Jun-Ho; Roh, Si-Gyun; Lee, Nae-Ho; Yang, Kyung-Moo; Moon, Ji-Hyun

    2010-12-01

    As young and elastic skin is what everyone dreams of, various measures have been implemented including chemical, laser resurfacing and dermabrasion to improve the condition of ageing skin. However, the high cost of these procedures prevents the poor from having access to treatment. Glacial acetic acid is widely used as a substitute for chemical peeling because it is readily easily available and affordable. However, its use can result in a number of serious complications. A 28-year-old female patient was admitted to our hospital with deep second-degree chemical burns on her face caused by the application of a mixture of glacial acetic acid and flour for chemical peeling. During a 6-month follow-up, hypertrophic scarring developed on the both nasolabial folds despite scar management. Glacial acetic acid is a concentrated form of the organic acid, which gives vinegar its sour taste and pungent smell, and it is also an important reagent during the production of organic compounds. Unfortunately, misleading information regarding the use of glacial acetic acid for chemical peeling is causing serious chemical burns. Furthermore, there is high possibility of a poor prognosis, which includes inflammation, hypertrophic scar formation and pigmentation associated with its misuse. Therefore, we report a case of facial chemical burning, due to the misuse of glacial acetic acid, and hope that this report leads to a better understanding regarding the use of this reagent. PMID:20708991

  19. Laboratory Studies of the Tropospheric Loss Processes for Acetic and Peracetic Acid

    NASA Astrophysics Data System (ADS)

    Orlando, J. J.; Tyndall, G. S.

    2002-12-01

    Organic acids are ubiquitous components of tropospheric air and contribute to acid precipitation, particularly in remote regions. These species are present in the troposphere as the result of direct emissions from anthropogenic and biogenic sources, and as the result of photochemical processing of hydrocarbons. Production of organic acids can occur following ozonolysis of unsaturated hydrocarbons, while both organic acids and peroxyacids are formed from the reactions of HO2 with acylperoxy radicals. For example, both acetic and peracetic acid are known products of the reaction of HO2 with acetylperoxy radicals. In this paper, data relevant to the gas-phase tropospheric destruction of both acetic and peracetic acid are reported, including studies of their UV absorption spectra and of their rate coefficients for reaction with OH radicals. The data, the first of their kind for peracetic acid, show that the gas-phase lifetime of this species will be on the order of 10 days, with OH reaction occurring more rapidly than photolysis. Data on the rate coefficient for reaction of OH with acetic acid appear to resolve some conflicting data in the previous literature, and show 1) that reaction of OH with the acetic acid dimer is slow compared to the monomer and 2) that the rate coefficient possesses a negative temperature dependence near room temperature.

  20. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria

    PubMed Central

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-01-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 106 acetate-utilizing manganese-reducing cells cm−3 in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments. PMID:22572639

  1. Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111)

    SciTech Connect

    Calaza, Florencia; Chen, Tsung-Liang; Mullins, David R; Xu, Ye; Overbury, Steven {Steve} H

    2015-01-01

    Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO2surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone and acetic acid desorb. DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.

  2. Importance of lactic acid bacteria in Asian fermented foods.

    PubMed

    Rhee, Sook Jong; Lee, Jang-Eun; Lee, Cherl-Ho

    2011-08-30

    Lactic acid bacteria play important roles in various fermented foods in Asia. Besides being the main component in kimchi and other fermented foods, they are used to preserve edible food materials through fermentation of other raw-materials such as rice wine/beer, rice cakes, and fish by producing organic acids to control putrefactive microorganisms and pathogens. These bacteria also provide a selective environment favoring fermentative microorganisms and produce desirable flavors in various fermented foods. This paper discusses the role of lactic acid bacteria in various non-dairy fermented food products in Asia and their nutritional and physiological functions in the Asian diet. PMID:21995342

  3. Importance of lactic acid bacteria in Asian fermented foods

    PubMed Central

    2011-01-01

    Lactic acid bacteria play important roles in various fermented foods in Asia. Besides being the main component in kimchi and other fermented foods, they are used to preserve edible food materials through fermentation of other raw-materials such as rice wine/beer, rice cakes, and fish by producing organic acids to control putrefactive microorganisms and pathogens. These bacteria also provide a selective environment favoring fermentative microorganisms and produce desirable flavors in various fermented foods. This paper discusses the role of lactic acid bacteria in various non-dairy fermented food products in Asia and their nutritional and physiological functions in the Asian diet. PMID:21995342

  4. The Fate of Acetic Acid during Glucose Co-Metabolism by the Spoilage Yeast Zygosaccharomyces bailii

    PubMed Central

    Rodrigues, Fernando; Sousa, Maria Joo; Ludovico, Paula; Santos, Helena; Crte-Real, Manuela; Leo, Ceclia

    2012-01-01

    Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo 13C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2?13C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C2, C3 and C4. The incorporation of [U-14C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production. PMID:23285028

  5. The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii.

    PubMed

    Rodrigues, Fernando; Sousa, Maria Joo; Ludovico, Paula; Santos, Helena; Crte-Real, Manuela; Leo, Ceclia

    2012-01-01

    Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13)C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13)C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2), C(3) and C(4). The incorporation of [U-(14)C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production. PMID:23285028

  6. [Azospirillum brasilense SP245 mutants in production of anthranilic and indolyl-3-acetic acids].

    PubMed

    Brodnikova, N A; Katsy, E I; Egorenkov, D A; Panasenko, V I

    1992-01-01

    The mutants of Azospirillum brasilense Sp245 altered in the production of anthranilic (Ant) and indolyl-3-acetic (IAA) acids were selected after the chemical or transposon facilitated mutagenesis and divided into the following three classes: Ant+IAA+, Ant+IAA- and Ant-IAA-. A hypothesis on the existence of a pattern for tryptophan conversion to anthranilate that is different from the classic pattern, and on the connection of the indolyl-3-acetic synthesis with this process is suggested. PMID:1298884

  7. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    SciTech Connect

    Russell, J.B. )

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y{sub ATP} (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up ({sup 14}C)acetate and ({sup 14}C)benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

  8. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations.

    PubMed

    Rantsiou, Kalliopi; Dolci, Paola; Giacosa, Simone; Torchio, Fabrizio; Tofalo, Rosanna; Torriani, Sandra; Suzzi, Giovanna; Rolle, Luca; Cocolin, Luca

    2012-03-01

    In this study we investigated the possibility of using Candida zemplinina, as a partner of Saccharomyces cerevisiae, in mixed fermentations of must with a high sugar content, in order to reduce its acetic acid production. Thirty-five C. zemplinina strains, which were isolated from different geographic regions, were molecularly characterized, and their fermentation performances were determined. Five genetically different strains were selected for mixed fermentations with S. cerevisiae. Two types of inoculation were carried out: coinoculation and sequential inoculation. A balance between the two species was generally observed for the first 6 days, after which the levels of C. zemplinina started to decrease. Relevant differences were observed concerning the consumption of sugars, the ethanol and glycerol content, and acetic acid production, depending on which strain was used and which type of inoculation was performed. Sequential inoculation led to the reduction of about half of the acetic acid content compared to the pure S. cerevisiae fermentation, but the ethanol and glycerol amounts were also low. A coinoculation with selected combinations of S. cerevisiae and C. zemplinina resulted in a decrease of ~0.3 g of acetic acid/liter, while maintaining high ethanol and glycerol levels. This study demonstrates that mixed S. cerevisiae and C. zemplinina fermentation could be applied in sweet wine fermentation to reduce the production of acetic acid, connected to the S. cerevisiae osmotic stress response. PMID:22247148

  9. Acetic acid detection threshold in synthetic wine samples of a portable electronic nose.

    PubMed

    Macas, Miguel Macas; Manso, Antonio Garca; Orellana, Carlos Javier Garca; Velasco, Horacio Manuel Gonzlez; Caballero, Ramn Gallardo; Chamizo, Juan Carlos Peguero

    2013-01-01

    Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L. PMID:23262483

  10. Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose

    PubMed Central

    Macías, Miguel Macías; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo; Chamizo, Juan Carlos Peguero

    2013-01-01

    Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L. PMID:23262483

  11. The Antibacterial Activity of Acetic Acid against Biofilm-Producing Pathogens of Relevance to Burns Patients

    PubMed Central

    Halstead, Fenella D.; Rauf, Maryam; Moiemen, Naiem S.; Bamford, Amy; Wearn, Christopher M.; Fraise, Adam P.; Lund, Peter A.; Oppenheim, Beryl A.; Webber, Mark A.

    2015-01-01

    Introduction Localised infections, and burn wound sepsis are key concerns in the treatment of burns patients, and prevention of colonisation largely relies on biocides. Acetic acid has been shown to have good antibacterial activity against various planktonic organisms, however data is limited on efficacy, and few studies have been performed on biofilms. Objectives We sought to investigate the antibacterial activity of acetic acid against important burn wound colonising organisms growing planktonically and as biofilms. Methods Laboratory experiments were performed to test the ability of acetic acid to inhibit growth of pathogens, inhibit the formation of biofilms, and eradicate pre-formed biofilms. Results Twenty-nine isolates of common wound-infecting pathogens were tested. Acetic acid was antibacterial against planktonic growth, with an minimum inhibitory concentration of 0.16–0.31% for all isolates, and was also able to prevent formation of biofilms (at 0.31%). Eradication of mature biofilms was observed for all isolates after three hours of exposure. Conclusions This study provides evidence that acetic acid can inhibit growth of key burn wound pathogens when used at very dilute concentrations. Owing to current concerns of the reducing efficacy of systemic antibiotics, this novel biocide application offers great promise as a cheap and effective measure to treat infections in burns patients. PMID:26352256

  12. Brettanomyces bruxellensis: effect of oxygen on growth and acetic acid production.

    PubMed

    Aguilar Uscanga, M G; Dlia, M-L; Strehaiano, P

    2003-04-01

    The influence of the oxygen supply on the growth, acetic acid and ethanol production by Brettanomyces bruxellensis in a glucose medium was investigated with different air flow rates in the range 0-300 l h(-1 ) x (0-0.5 vvm). This study shows that growth of this yeast is stimulated by moderate aeration. The optimal oxygen supply for cellular synthesis was an oxygen transfer rate (OTR) of 43 mg O(2) l(-1) x h(-1). In this case, there was an air flow rate of 60 l h(-1) (0.1 vvm). Above this value, the maximum biomass concentration decreased. Ethanol and acetic acid production was also dependent on the level of aeration: the higher the oxygen supply, the greater the acetic acid production and the lower the ethanol production. At the highest aeration rates, we observed a strong inhibition of the ethanol yield. Over 180 l h(-1) x (0.3 vvm, OTR =105 mg O(2) l(-1) x h(-1)), glucose consumption was inhibited and a high concentration of acetic acid (6.0 g x l(-1)) was produced. The ratio of "ethanol + acetic acid" produced per mole of consumed glucose using carbon balance calculations was analyzed. It was shown that this ratio remained constant in all cases. This makes it possible to establish a stoichiometric equation between oxygen supply and metabolite production. PMID:12655458

  13. Production of Value-added Products by Lactic Acid Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  14. Isolation and characterization of lactic acid bacteria from lakes.

    PubMed

    Yanagida, Fujitoshi; Chen, Yi-Sheng; Yasaki, Masatoshi

    2007-04-01

    Lactic acid bacteria (LAB) were isolated from lake-water samples collected at 7 lakes distributed in Yamanashi prefecture, Japan. Sampling was performed year round. 112 cultures were isolated and divided into classes by phenotype and then into groups by restriction fragment length polymorphism analysis and sequencing of 16S ribosomal DNA. Phenotypic and biochemical characteristics identified eleven different bacterial groups (A to K), and the results showed that the isolates represented seven genera: Lactococcus, Leuconostoc, Enterococcus, Lactobacillus, Carnobacterium, Streptococcus, and Weissella. Lactococcus lactis subsp. lactis was the most abundant lactic acid bacteria found in these lakes. Furthermore, Lactococcus lactis subsp. lactis was also the most abundant lactic acid bacteria found throughout the year. Seasonal differences, numbers of isolates and the species of lactic acid bacteria were also recorded in this study. PMID:17440921

  15. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies using traditional biochemical methods to study the ecology of commercial sauerkraut fermentations revealed that four lactic acid bacteria species, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis were the primary microorganisms in...

  16. Molecular biology and genetics of the acetate-utilizing methanogenic bacteria

    SciTech Connect

    Gunsalus, R.P.

    1991-01-01

    Acetate conversion to methane and C0{sub 2} by the methanogenic archaebacteria is a primary rate limiting step in anaerobic biodegradative processes in nature. However, the genetic study of these organisms has not been experimentally tractable due to the inability to grow and plate the organisms as single cells, and to extract high molecular weight DNA and RNA without shearing. The acetate-utilizing species, Methanosarcina thermolphila TM-1, is being used for the proposed genetic and molecular studies because, unlike previously described acetotrophic methanosarcina that have a thick heteropolysaccharide cell wall, this species can be cultured in a unicellular form that has a protein cell wall lacking the heteropolysaccharide layer. These cells can be gently disrupted to obtain protoplasts or lysed to yield intact genomic DNA and RNA. Experiments are in progress to develop a gene transfer system in this bacterial species. Methods are being developed and refined for the efficient plating of M. thermophila on defined media, for chemical mutagenesis, and for the isolation of mutants defective in acetate utilization. Chromosomal DNA libraries have been constructed from M. thermophila and are being used to clone genes involved in the acetate utilization pathway (e.g. carbon monoxide dehydrogenase). Once cloned, analysis of the molecular mechanisms responsible for their regulatory control will be performed. These studies should aid our understanding of the pathway for acetate utilization in M. thermophila and serve as a model for elucidating regulatory mechanisms in the acetotrophic methanogens.

  17. Effect of acetic acid on physical properties of pregelatinized wheat and corn starch gels.

    PubMed

    Majzoobi, Mahsa; Kaveh, Zahra; Farahnaky, Asgar

    2016-04-01

    Pregelatinized starches are physically modified starches with ability to absorb water and increase viscosity at ambient temperature. The main purpose of this study was to determine how different concentrations of acetic acid (0, 500, 1000, 10,000 mg/kg) can affect functional properties of pregelatinized wheat and corn starches (PGWS and PGCS, respectively) produced by a twin drum drier. With increasing acetic acid following changes occurred for both samples; cold water solubility (at 25 °C) increased, water absorption and apparent cold water viscosity (at 25 °C) reduced, the smooth surface of the starch particles converted to an uneven surface as confirmed by scanning electron microscopy, cohesiveness, consistency and turbidity of the starch gels reduced while their syneresis increased. It was found that in presence of acetic acid, PGWS resulted in higher water absorption and apparent cold water viscosity and produced more cohesive and turbid gels with less syneresis compared to PGCS. PMID:26593546

  18. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    NASA Astrophysics Data System (ADS)

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-12-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.

  19. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    PubMed Central

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-01-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods. PMID:26640089

  20. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting.

    PubMed

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-01-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80?C to 160?C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods. PMID:26640089

  1. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid

    PubMed Central

    Giannattasio, Sergio; Guaragnella, Nicoletta; dralevi?, Maa; Marra, Ersilia

    2013-01-01

    Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications. PMID:23430312

  2. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetic acid, 2-chloro-, 1-(3,3... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  3. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acetic acid, 2-chloro-, 1-(3,3... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  4. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetic acid, 2-chloro-, 1-(3,3... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  5. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetic acid, 2-chloro-, 1-(3,3... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  6. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetic acid, 2-chloro-, 1-(3,3... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  7. Use of pooled sodium acetate acetic acid formalin-preserved fecal specimens for the detection of intestinal parasites.

    PubMed

    Gaafar, Maha R

    2011-01-01

    This study aimed at comparing detection of intestinal parasites from single unpreserved stool sample vs. sodium acetate acetic acid formalin (SAF)-preserved pooled samples, and stained with chlorazol black dye in routine practice. Unpreserved samples were collected from 120 patients and represented as Group I. Other three SAF-preserved samples were collected from the same patients over a 6-day period and represented as Groups IIa, IIb, and IIc. The latter groups were equally subdivided into two subgroups. The first subgroup of each of the three samples was examined individually, whereas the second subgroup of each were pooled and examined as a single specimen. All groups were examined by the routine diagnostic techniques; however, in group II when the diagnosis was uncertain, the chlorazol black dye staining procedure was carried out. Results demonstrated that out of 74 patients who continued the study, 12 cases (16%) were positive in group I, compared with 29 (39%) in the subgroups examined individually, and 27 (36%) in the pooled subgroups. Therefore, pooling of preserved fecal samples is an efficient and economical procedure for the detection of parasites. Furthermore, the chlorazol black dye was simple and effective in detecting the nuclear details of different parasites. PMID:21567472

  8. Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans.

    PubMed

    Cleenwerck, Ilse; Camu, Nicholas; Engelbeen, Katrien; De Winter, Tom; Vandemeulebroecke, Katrien; De Vos, Paul; De Vuyst, Luc

    2007-07-01

    Twenty-three acetic acid bacteria, isolated from traditional heap fermentations of Ghanaian cocoa beans, were subjected to a polyphasic taxonomic study. The isolates were catalase-positive, oxidase-negative, Gram-negative rods. They oxidized ethanol to acetic acid and were unable to produce 2-ketogluconic acid, 5-ketogluconic acid and 2,5-diketogluconic acid from glucose; therefore, they were tentatively identified as Acetobacter species. 16S rRNA gene sequencing and phylogenetic analysis confirmed their position in the genus Acetobacter, with Acetobacter syzygii and Acetobacter lovaniensis as their closest phylogenetic neighbours. (GTG)(5)-PCR fingerprinting grouped the strains in a cluster that did not contain any type strains of members of the genus Acetobacter. DNA-DNA hybridization with the type strains of all recognized Acetobacter species revealed DNA-DNA relatedness values below the species level. The DNA G+C contents of three selected strains were 56.9-57.3 mol%. The novel strains had phenotypic characteristics that enabled them to be differentiated from phylogenetically related Acetobacter species, i.e. they were motile, did not produce 2-ketogluconic acid or 5-ketogluconic acid from glucose, were catalase-positive and oxidase-negative, grew on yeast extract with 30 % glucose, grew on glycerol (although weakly) but not on maltose or methanol as carbon sources, and did not grow with ammonium as sole nitrogen source and ethanol as carbon source. Based on the genotypic and phenotypic data, the isolates represent a novel species of the genus Acetobacter for which the name Acetobacter ghanensis sp. nov. is proposed. The type strain is R-29337(T) (=430A(T)=LMG 23848(T)=DSM 18895(T)). PMID:17625210

  9. Isolation and characterization of esters of indole-3-acetic acid from the liquid endosperm of the horse chestnut (Aesculus species)

    NASA Technical Reports Server (NTRS)

    Domagalski, W.; Schulze, A.; Bandurski, R. S.

    1987-01-01

    Esters of indole-3-acetic acid were extracted and purified from the liquid endosperm of immature fruits of various species of the horse chestnut (Aesculus parviflora, A. baumanni, A. pavia rubra, and A. pavia humulis). The liquid endosperm contained, at least 12 chromatographically distinct esters. One of these compounds was purified and characterized as an ester of indole-3-acetic acid and myo-inositol. A second compound was found to be an ester of indole-3-acetic acid and the disaccharide rutinose (glucosyl-rhamnose). A third compound was partially characterized as an ester of indole-3-acetic acid and a desoxyaminohexose.

  10. (S) 2-phenyl-2-(p-tolylsulfonylamino)acetic acid. Structure, acidity and its alkali carboxylates

    NASA Astrophysics Data System (ADS)

    Duarte-Hernández, Angélica M.; Contreras, Rosalinda; Suárez-Moreno, Galdina V.; Montes-Tolentino, Pedro; Ramos-García, Iris; González, Felipe J.; Flores-Parra, Angelina

    2015-03-01

    The structure and the preferred conformers of (S) 2-phenyl-2-(p-tolylsulfonylamino)acetic acid (1) are reported. Compound 1 is a derivative of the unnatural aminoacid the (S) phenyl glycine. The X-ray diffraction analyses of the complexes of 1 with water, methanol, pyridine and its own anion are discussed. In order to add information about the acidity of the COOH and NH protons in compound 1, its pKa in DMSO and those of N-benzyl-p-tolylsulfonamide and (S) N-methylbenzyl-p-tolylsulfonamide were determined by cyclic voltammetry. Data improved the scarce information about pKa in DMSO values of sulfonamides. The products of the reactions of compound 1 with one and two equivalents of LiOH, NaOH and KOH in methanol were analyzed. Crystals of the lithium (2) and sodium (3) carboxylates and the dipotassium sulfonylamide acetate (7) were obtained, they are coordination polymers. In compound 2, the lithium is bound to four oxygen atoms with short bond lengths. The coordination of the lithium atom to two carboxylates gives an infinite ribbon by formation of fused six membered rings. In the crystal of compound 3, two pentacoordinated sodium atoms are bridged by three oxygen atoms, one from a water molecule and two from DMSO. The short distance between the sodium atoms (3.123 Å), implies a metal-metal interaction. The sodium couples are linked by two carboxylate groups, forming a planar ribbon of fused twelve membered rings. A notable discovery was a water molecule quenched in the middle of the ring, with a tetra coordinated oxygen atom in a square planar geometry. In compound 7, the carboxylate and the amide are bound to heptacoordinated potassium atoms. The 2D polymer of 7 has a sandwich structure, with the carboxylate and potassium atoms in the inner layer covered by the aromatic rings.

  11. Development of functional ZnS nanospheres as active material for acetic acid detection

    NASA Astrophysics Data System (ADS)

    Peguit, A. D. M. V.; Candidato, R. T., Jr.; Alguno, A. C.

    2015-06-01

    We have successfully synthesized zinc sulphide (ZnS) nanospheresdeposited on glass and silicon on insulator substrates as an acetic acid sensor. Results show that nanospheresdeposited on silicon on insulator substrate at lower ZnCl2 concentration show better response and good recovery. We found out that the sensitivity of the ZnSnanosphereswere dependent on the surface morphology and that the morphology is affected by the ZnCl2 concentrations and the substrates used. Our results show a promising potential of ZnSnanospheresas an inexpensive alternative sensing material to the existing acetic acid detectors.

  12. Complex internal rearrangement processes triggered by electron transfer to acetic acid

    NASA Astrophysics Data System (ADS)

    Limão-Vieira, P.; Meneses, G.; Cunha, T.; Gil, A.; Calhorda, M. J.; García, G.; Ferreira da Silva, F.

    2015-09-01

    We present negative ion formation from collisions of 100 eV neutral potassium atoms with acetic acid (CH3COOH) and its deuterated analogue molecules (CH3COOD, CD3COOH). From the negative ion time-of-flight (TOF) mass spectra, OH- is the main fragment detected accounting on average for more than 25% of the total anion yield. The complex internal rearrangement processes triggered by electron transfer to acetic acid have been evaluated with the help of theoretical calculations at the DFT levels explaining the fragmentation channel yielding OH-.

  13. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2012-01-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 ?M-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  14. Effects of humic acids on the growth of bacteria

    NASA Astrophysics Data System (ADS)

    Tikhonov, V. V.; Yakushev, A. V.; Zavgorodnyaya, Yu. A.; Byzov, B. A.; Demin, V. V.

    2010-03-01

    The influence of humic acids of different origins on the growth of bacterial cultures of different taxa isolated from the soil and the digestive tracts of earthworms ( Aporrectodea caliginosa)habitats with contrasting conditionswas studied. More than half of the soil and intestinal isolates from the 170 tested strains grew on the humic acid of brown coal as the only carbon source. The specific growth rate of the bacteria isolated from the intestines of the earthworms was higher than that of the soil bacteria. The use of humic acids by intestinal bacteria confirms the possibility of symbiotic digestion by earthworms with the participation of bacterial symbionts. Humic acids at a concentration of 0.1 g/l stimulated the growth of the soil and intestinal bacteria strains (66 strains out of 161) on Czapeks medium with glucose (1 g/l), probably, acting as a regulator of the cell metabolism. On the medium with the humic acid, the intestinal bacteria grew faster than the soil isolates did. The most active growth of the intestinal isolates was observed by Paenibacillus sp., Pseudomonas putida, Delftia acidovorans, Microbacterium terregens, and Aeromonas sp.; among the soil ones were the representatives of the Pseudomonas genus. A response of the bacteria to the influence of humic acids was shown at the strain level using the example of Pseudomonas representatives. The Flexom humin preparation stimulated the growth of the hydrocarbon-oxidizing Acinetobacter sp. bacteria. This effect can be used for creating a new compound with the elevated activity of bacteria that are destroyers of oil and oil products.

  15. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides.

    PubMed

    Huang, Xiang-Feng; Liu, Jia-Nan; Lu, Li-Jun; Peng, Kai-Ming; Yang, Gao-Xiang; Liu, Jia

    2016-04-01

    Rhodosporidium toruloides AS 2.1389 was tested using different concentrations of acetic acid as a low-cost carbon source for the production of microbial lipids, which are good raw materials for biodiesel production. It grew and had higher lipid contents in media containing 4-20g/L acetic acid as the sole carbon source, compared with that in glucose-containing media under the same culture conditions. At acetic acid concentrations as high as 20g/L and the optimal carbon-to-nitrogen ratio (C/N) of 200 in a batch culture, the highest biomass production was 4.35g/L, with a lipid content of 48.2%. At acetic acid concentrations as low as 4g/L, a sequencing batch culture (SBC) with a C/N of 100 increased biomass production to 4.21g/L, with a lipid content of 38.6%. These results provide usable culture strategies for lipid production by R. toruloides AS 2.1389 when using diverse waste-derived volatile fatty acids. PMID:26851898

  16. Application of electrochemical optical waveguide lightmode spectroscopy for studying the effect of different stress factors on lactic acid bacteria.

    PubMed

    Adnyi, Nra; Nmeth, Edina; Halsz, Anna; Szendro, Istvn; Vradi, Mria

    2006-07-28

    Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS) has been developed to combine evanescent-field optical sensing with electrochemical control of surface adsorption processes. For bioanalytical sensing, a layer of indium tin oxide (ITO) served as both a high-refractive index waveguide and a conductive electrode. In addition, an electrochemical flow-through fluid cuvette was applied, which incorporated working, reference, and counter electrodes, and was compatible with the constraints of optical sensing. The subject of our study was to monitor how the different stress factors (lactic acid, acetic acid and hydrogen peroxide) influence the survival of lactic acid bacteria. The advantage of EC-OWLS technique is that we could carry out kinetic studies on the behaviour of bacteria under stress conditions, and after exposure of lactobacilli to acid and oxidative stress we get faster results about the status of bacteria compared to the traditional quantitative methods. After optimization of the polarization potential used, calibration curve was determined and the sensor response of different rate of living and damaged cells was studied. The bacterial cells were adsorbed in native form on the surface of the sensor by ensuring polarizing potential (1V) and were exposed to different concentration of acetic acid and hydrogen peroxide solution to 1h, respectively and the behaviour of bacteria was monitored. Results were compared to traditional micro-assay method. PMID:17723503

  17. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent.

    PubMed

    Gitipour, Saeid; Ahmadi, Soheil; Madadian, Edris; Ardestani, Mojtaba

    2016-01-01

    In this research, the effect of soil washing in the removal of chromium- and cadmium-contaminated sludge samples collected from Pond 2 of the Tehran Oil Refinery was investigated. These metals are considered as hazardous substances for human health and the environment. The carcinogenicity of chromate dust has been established for a long time. Cadmium is also a potential environmental toxicant. This study was carried out by collecting sludge samples from different locations in Pond 2. Soil washing was conducted to treat the samples. Chemical agents, such as acetic acid, ethylenediaminetetra acetic acid (EDTA) and hydrochloric acid, were used as washing solutions to remove chromium and cadmium from sludge samples. The results of this study indicated that the highest removal efficiencies from the sludge samples were achieved using a 0.3M HCl solution with 82.69% and 74.47% for chromium and cadmium, respectively. EDTA (0.1M) in the best condition extracted 66.81% of cadmium and 72.52% of chromium from the sludges. The lowest efficiency values for the samples, however, were achieved using 3M acetic acid with 41.7% and 46.96% removals for cadmium and chromium, respectively. The analysis of washed sludge indicated that the heavy metals removal decreased in the order of 3M acetic acid<0.1M EDTA<0.3M HCl, thus hydrochloric acid appears to offer a greater potential as a washing agent in remediating the sludge samples. PMID:26599728

  18. Reactive uptake of acetic acid on calcite and nitric acid reacted calcite aerosol in an environmental reaction chamber.

    PubMed

    Prince, Amy Preszler; Kleiber, Paul D; Grassian, Vicki H; Young, Mark A

    2008-01-01

    The heterogeneous chemistry of gas-phase acetic acid with CaCO(3)(calcite) aerosol was studied under varying conditions of relative humidity (RH) in an environmental reaction chamber. Infrared spectroscopy showed the loss of gas-phase reactant and the appearance of a gaseous product species, CO(2). The acetic acid is observed to adsorb onto the calcite aerosol through both a fast and a slow uptake channel. While the fast channel is relatively independent of RH, the slow channel exhibits enhanced uptake and reaction as the RH is increased. In additional experiments, the calcite aerosol was exposed to both nitric and acetic acids in the presence of water vapor. The rapid conversion of the particulate carbonate to nitrate and subsequent deliquescence significantly enhances the uptake and reaction of acetic acid. These results suggest a possible mechanism for observed correlations between particulate nitrate and organic acids in the atmosphere. Calcium rich mineral dust may be an important sink for simple organic acids. PMID:18075693

  19. Lactulose, lactic acid bacteria, intestinal microecology and mucosal protection.

    PubMed

    Salminen, S; Salminen, E

    1997-01-01

    During the fermentation of lactulose, short-chain fatty acids are formed with consequent lowering of the colon pH and modification of the microflora. Lactulose promotes the growth of lactic acid bacteria and bifidobacteria and, more specifically, Lactobacillus acidophilus in the colon. Lactulose and lactulose-containing products fermented with lactic acid bacteria lower colonic pH balancing intestinal microecology and normalizing intestinal transit. In animal studies, lactulose promotes a mainly Gram-positive faecal microflora, but large doses of lactulose may be associated with transient diarrhoea. Our studies indicate that lactulose with lactic acid bacteria effectively relieves constipation in human volunteers. Lactulose with lactic acid bacteria in a fermented diary product can balance and prevent radiotherapy-associated diarrhoea and intestinal side effects. Normalizing the intestinal flora and stabilizing mucosal integrity with lactulose has beneficial effects in intestinal disorders. Lactulose and lactic acid bacteria offer a promising ingredient combination for future functional and special dietary foods in treating intestinal disturbances. PMID:9145446

  20. 2-(Biphenyl-4-yl)acetic acid (felbinac).

    PubMed

    Van Eerdenbrugh, Bernard; Fanwick, Phillip E; Taylor, Lynne S

    2010-01-01

    The structure of the title compound, C(14)H(12)O(2), displays the expected inter-molecular hydrogen bonding of the carb-oxy-lic acid groups, forming dimers. The dihedral angle between the two aromatic rings is 27.01?(7). PMID:21587585

  1. 2-(Biphenyl-4-yl)acetic acid (felbinac)

    PubMed Central

    Van Eerdenbrugh, Bernard; Fanwick, Phillip E.; Taylor, Lynne S.

    2010-01-01

    The structure of the title compound, C14H12O2, displays the expected intermolecular hydrogen bonding of the carboxylic acid groups, forming dimers. The dihedral angle between the two aromatic rings is 27.01?(7). PMID:21587585

  2. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    ERIC Educational Resources Information Center

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed

  3. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    ERIC Educational Resources Information Center

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  4. Malolactic activity of lactic acid bacteria during sauerkraut fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The frequency of lactic acid bacteria (LAB) involved in sauerkraut fermentation with (MDC+) or without (MDC-) the ability to decarboxylate malic acid was determined. The MDC+ phenotype was found in >99% of homofermentative LAB isolated from commercial fermentations. In contrast, heterofermentative...

  5. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.

    PubMed

    Lindberg, Lina; Santos, Aline Xs; Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L(-1), while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L(-1) acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2, MIPC 9.1, M(IP)2C 2.2) and Z. bailii (IPC 4.9, MIPC 2.7, M(IP)2C 2.7), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large rearrangements in its lipid profile. PMID:24023914

  6. Lipidomic Profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii Reveals Critical Changes in Lipid Composition in Response to Acetic Acid Stress

    PubMed Central

    Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L?1, while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L?1 acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2, MIPC 9.1, M(IP)2C 2.2) and Z. bailii (IPC 4.9, MIPC 2.7, M(IP)2C 2.7), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large rearrangements in its lipid profile. PMID:24023914

  7. Silver nanoparticles in combination with acetic acid and zinc oxide quantum dots for antibacterial activities improvement-A comparative study

    NASA Astrophysics Data System (ADS)

    Sedira, Sofiane; Ayachi, Ahmed Abdelhakim; Lakehal, Sihem; Fateh, Merouane; Achour, Slimane

    2014-08-01

    Due to their remarkable antibacterial/antivirus properties, silver nanoparticles (Ag NPs) and zinc oxide quantum dots (ZnO Qds) have been widely used in the antimicrobial field. The mechanism of action of Ag NPs on bacteria was recently studied and it has been proven that Ag NPs exerts their antibacterial activities mainly by the released Ag+. In this work, Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method, respectively. It was demonstrated that Ag NPs can be oxidized easily in aqueous solution and the addition of acetic acid can increase the Ag+ release which improves the antibacterial activity of Ag NPs. A comparative study between bactericidal effect of Ag NPs/acetic acid and Ag NPs/ZnO Qds on Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus was undertaken using agar diffusion method. The obtained colloids were characterized using UV-vis spectroscopy, Raman spectrometry, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM).

  8. Calibration and intercomparison of acetic acid measurements using proton transfer reaction mass spectrometry (PTR-MS)

    USGS Publications Warehouse

    Haase, K.B.; Keene, W.C.; Pszenny, A.A.P.; Mayne, H.R.; Talbot, R.W.; Sive, B.C.

    2012-01-01

    Acetic acid is one of the most abundant organic acids in the ambient atmosphere, with maximum mixing ratios reaching into the tens of parts per billion by volume (ppbv) range. The identities and associated magnitudes of the major sources and sinks for acetic acid are poorly characterized, due in part to the limitation in available measurement techniques. This paper demonstrates that Proton Transfer Reaction Mass Spectrometry (PTR-MS) can reliably quantify acetic acid vapor in ambient air. Three different PTR-MS configurations were calibrated at low ppbv mixing ratios using permeation tubes, which yielded calibration factors between 7.0 and 10.9 normalized counts per second per ppbv (ncps ppbv−1) at a drift tube field strength of 132 townsend (Td). Detection limits ranged from 0.06 to 0.32 ppbv with dwell times of 5 s. These calibration factors showed negligible humidity dependence. Using the experimentally determined calibration factors, PTR-MS measurements of acetic acid during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign were validated against results obtained using Mist Chambers coupled with Ion Chromatography (MC/IC). An orthogonal least squares linear regression of paired data yielded a slope of 1.14 ± 0.06 (2σ), an intercept of 0.049 ± 20 (2σ) ppbv, and an R2 of 0.78. The median mixing ratio of acetic acid on Appledore Island, ME during the ICARTT campaign was 0.530 ± 0.025 ppbv with a minimum of 0.075 ± 0.004 ppbv, and a maximum of 3.555 ± 0.171 ppbv.

  9. Calibration and intercomparison of acetic acid measurements using proton transfer reaction mass spectrometry (PTR-MS)

    NASA Astrophysics Data System (ADS)

    Haase, K. B.; Keene, W. C.; Pszenny, A. A. P.; Mayne, H. R.; Talbot, R. W.; Sive, B. C.

    2012-07-01

    Acetic acid is one of the most abundant organic acids in the ambient atmosphere, with maximum mixing ratios reaching into the tens of parts per billion by volume (ppbv) range. The identities and associated magnitudes of the major sources and sinks for acetic acid are poorly characterized, due in part to the limitation in available measurement techniques. This paper demonstrates that Proton Transfer Reaction Mass Spectrometry (PTR-MS) can reliably quantify acetic acid vapor in ambient air. Three different PTR-MS configurations were calibrated at low ppbv mixing ratios using permeation tubes, which yielded calibration factors between 7.0 and 10.9 normalized counts per second per ppbv (ncps ppbv-1) at a drift tube field strength of 132 townsend (Td). Detection limits ranged from 0.06 to 0.32 ppbv with dwell times of 5 s. These calibration factors showed negligible humidity dependence. Using the experimentally determined calibration factors, PTR-MS measurements of acetic acid during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign were validated against results obtained using Mist Chambers coupled with Ion Chromatography (MC/IC). An orthogonal least squares linear regression of paired data yielded a slope of 1.14 0.06 (2?), an intercept of 0.049 20 (2?) ppbv, and an R2 of 0.78. The median mixing ratio of acetic acid on Appledore Island, ME during the ICARTT campaign was 0.530 0.025 ppbv with a minimum of 0.075 0.004 ppbv, and a maximum of 3.555 0.171 ppbv.

  10. Importance of secondary sources in the atmospheric budgets of formic and acetic acids

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Wunch, D.; Crounse, J.; Millet, D. B.; Decarlo, P. F.; Vigouroux, C.; Deutscher, N. M.; Gonzalez Abad, G.; Toon, G. C.; Notholt, J.; Warneke, T.; Hannigan, J. W.; Warneke, C.; de Gouw, J. A.; Dunlea, E.; de Maziere, M. M.; Griffith, D. W.; Bernath, P. F.; Jimenez, J. L.; Wennberg, P. O.

    2010-12-01

    We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere. Our bottom-up estimate of the global source of formic (acetic) acid is ~ 1200 (1400) Gmol/yr, dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene. Their sinks are dominated by wet and dry deposition. We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America. The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes. We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that could be associated with the aging of organic aerosols. Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies.

  11. Importance of secondary sources in the atmospheric budgets of formic and acetic acids

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Wunch, D.; Crounse, J. D.; Toon, G. C.; Millet, D. B.; Decarlo, P. F.; Vigouroux, C.; Deutscher, N. M.; Gonzlez Abad, G.; Notholt, J.; Warneke, T.; Hannigan, J. W.; Warneke, C.; de Gouw, J. A.; Dunlea, E. J.; de Mazire, M.; Griffith, D. W. T.; Bernath, P.; Jimenez, J. L.; Wennberg, P. O.

    2010-10-01

    We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere. Our bottom-up estimate of the global source of formic and acetic acids are ~1200 and ~1400 Gmol/yr, dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene. Their sinks are dominated by wet and dry deposition. We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America. The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes. We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that may be associated with the aging of organic aerosols. Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies.

  12. Importance of secondary sources in the atmospheric budgets of formic and acetic acids

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Wunch, D.; Crounse, J. D.; Toon, G. C.; Millet, D. B.; Decarlo, P. F.; Vigouroux, C.; Deutscher, N. M.; Gonzlez Abad, G.; Notholt, J.; Warneke, T.; Hannigan, J. W.; Warneke, C.; de Gouw, J. A.; Dunlea, E. J.; de Mazire, M.; Griffith, D. W. T.; Bernath, P.; Jimenez, J. L.; Wennberg, P. O.

    2011-03-01

    We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere. Our bottom-up estimate of the global source of formic and acetic acids are ~1200 and ~1400 Gmol yr-1, dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene. Their sinks are dominated by wet and dry deposition. We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America. The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes. We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that may be associated with the aging of organic aerosols. Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies.

  13. Aqueous-phase hydrogenation of acetic acid over transition metal catalysts

    SciTech Connect

    Olcay, Hakan; Xu, Lijun; Xu, Ye; Huber, George

    2010-01-01

    Catalytic hydrogenation of acetic acid to ethanol has been carried out in aqueous phase on several metals, with ruthenium being the most active and selective. DFT calculations suggest that the initial CO bond scission yielding acetyl is the key step and that the intrinsic reactivity of the metals accounts for the observed activity.

  14. Vinegar (20% acetic acid) broadcast application for broadleaf weed control in spring-transplanted onions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic weed control research was conducted in southeast Oklahoma to determine the effect of broadcast over-the-top applications of acetic acid (vinegar) on weed control efficacy, crop injury and onion yields. The experiment included 6 weed control treatments (2 application volumes, 2 hand-weeding ...

  15. Role of Acetic Acid Irrigation in Medical Management of Chronic Suppurative Otitis Media: A Comparative Study.

    PubMed

    Gupta, Chhavi; Agrawal, Anjana; Gargav, Narendra Dutt

    2015-09-01

    Chronic otitis media is persistent and insidious disease. It is one of the most common bacterial infections in the field of otolaryngology having significant economic and individual repercussion. Medical management of chronic suppurative otitis media (CSOM) for dry ear is essential before surgical treatment. The objective is to consider the most appropriate medical treatment modalities for patients of CSOM. To assess results of acetic acid irrigation and topical and systemic antibiotic in CSOM and consider, the most appropriate medical management. This study was conducted prospectively from Nov 2011 to Sep 2013 in 100 patients of CSOM (tubotympanic type). Patient included in the present study were divided in two groups. In one group patients were treated with aural toilet and irrigation with acetic acid and in other group patients were treated with topical and systemic antibiotic. After a follow up period of 3months duration results were assessed on the basis of absence of discharge, healing of perforation and status of middle ear. Otorrhoea resolution in group treated with acetic acid was 84% and healing of perforation was noted in 26% while failure rate of 16% was noted. In group treated with topical and systemic antibiotic 58% of patient shows otorrhoea resolution, 14% achieve healing of perforation and 32% had failure. Medical management of CSOM without Cholesteatoma by frequent aural cleaning and irrigation using dilute acetic acid can be more desirable choice as compared to the topical and oral antibiotics. PMID:26405670

  16. GENE EXPRESSION PATTERNS OF CD-1 DAY-8 EMBRYO CULTURES EXPOSED TO BROMOCHLORO ACETIC ACID

    EPA Science Inventory

    Gene expression patterns of CD-1 day-8 embryo cultures exposed to bromochloro acetic acid

    Edward D. Karoly?*, Judith E. Schmid* and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and *Reproductiv...

  17. Interaction of acetic acid and phenylacetaldehyde as attractants for trapping pest species of moths (Lepidoptera: Noctuidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenylacetaldehyde is a flower volatile and attractant for many nectar-seeking moths. Acetic acid is a microbial fermentation product that is present in insect sweet baits. It is weakly attractive to some moths and other insects, but can be additive or synergistic with other compounds to make more p...

  18. EXTRACTION AND ELECTROSPINNING OF ZEIN EXTRACTED FROM CORN GLUTEN MEAL USING ACETIC ACID

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been demonstrated that zein fibers can be produced using the electrospinning technique. Fibers electrospun from acetic acid solution under suitable conditions provide fibers with a more consistent morphology (round 0.5-2.0 micro fibers) compared to fibers produced from aqueous ethanol soluti...

  19. Trapping social wasps (Hymenoptera: Vespidae) in nurseries with acetic acid and isobutanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    European hornet (Vespa crabro L.) damages bark of nursery trees, and several vespids sting nursery personnel when disturbed. We tested acetic acid and isobutanol lures in traps for V. crabro spring queens, to determine the seasonality of vespid captures, and compare the efficacy of patterns of trap...

  20. Molecular Cloning and Biochemical Characterization of Indole-3-acetic Acid Methyltransferase from Poplar (Populus trichocarpa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indole-3-acetic acid (IAA) is the most active endogenous auxin involved in various physiological processes in higher plants. Concentrations of IAA in plant tissues are regulated at multiple levels including de novo biosynthesis, degradation, and conjugation/deconjugation. In this paper, we report id...

  1. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use as Components...

  2. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use as Components...

  3. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  4. Functional genomics of lactic acid bacteria: from food to health

    PubMed Central

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health. PMID:25186768

  5. Functional genomics of lactic acid bacteria: from food to health.

    PubMed

    Douillard, François P; de Vos, Willem M

    2014-08-29

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health. PMID:25186768

  6. Remediation of acid mine drainage with sulfate reducing bacteria

    SciTech Connect

    Hauri, J.F.; Schaider, L.A.

    2009-02-15

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed changes in dissolved metal concentrations and pH. Using synthetic acid mine drainage and combinations of inputs, students monitor their bioreactors for decreases in dissolved copper and iron concentrations.

  7. Characteristics of isolated lactic acid bacteria and their effectiveness to improve stylo (Stylosanthes guianensis Sw.) silage quality at various temperatures.

    PubMed

    Liu, Qinhua; Chen, Mingxia; Zhang, Jianguo; Shi, Shangli; Cai, Yimin

    2012-02-01

    Two lactic acid bacteria (LAB) strains, Pediococcus pentosaceus SC1 and Lactobacillus paraplantarum SC2 isolated from king grass silage, were characterized and their effectiveness to improve the silage fermentation quality of stylo (Stylosanthes guianensis Sw.) was studied. Strain SC1 was able to grow at a high temperature of 45C, while SC2 did not. SC2 normally grew at a low pH of 4.0, while SC1 could not. These two strains and a commercial inoculant of LAB (L. plantarum, LP) were used as additives to stylo silage preparation at various temperatures (20C, 30C and 40C). All LAB inoculants significantly (P < 0.05) reduced the pH value and ammonia-N content, and increased the ratio of lactic acid to acetic acid and quality score compared with the control. In addition, inoculating LAB strains markedly (P < 0.05) reduced butyric acid content at the temperatures of 30C and 40C. Compared to SC2 and LP strains, strain SC1 was the most effective for improving stylo silage quality at 20C, indicated by the increase in lactic acid, ratio of lactic acid to acetic acid and quality score. At 30C and 40C, there were no significant differences among SC1, SC2 and LP treatments in pH values, contents of acetic acid, butyric acid and ammonia-N (P > 0.05). PMID:22339693

  8. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    SciTech Connect

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2006-07-11

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  9. TRAP RESPONSE OF MICHIGAN SOCIAL WASPS (HYMENOPTERA: VESPIDAE) TO THE FEEDING ATTRACTANTS ACETIC ACID, ISOBUTANOL, AND HEPTYL BUTYRATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nine Species of social wasps were captured in traps baited with acetic acid, isobutanol, heptyl butyrate and combinations of acetic acid and either isobutanol or heptyl butrate. Three yellowjacket species in the Vespula rufa species group were captured in traps (Vespula acadica (Sladen), Vespula co...

  10. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    SciTech Connect

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  11. Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor

    SciTech Connect

    Huang, Y.; Yang, S.T.

    1998-11-20

    Acetate was produced from whey lactose in batch and fed-batch fermentations using co-immobilized cells of Clostridium formicoaceticum and Lactococcus lactis. The cells were immobilized in a spirally wound fibrous sheet packed in a 0.45-L column reactor, with liquid circulated through a 5-L stirred-tank fermentor. Industrial-grade nitrogen sources, including corn steep liquor, casein hydrolysate, and yeast hydrolysate, were studied as inexpensive nutrient supplements to whey permeate and acid whey. Supplementation with either 2.5% (v/v) corn steep liquor or 1.5 g/L casein hydrolysate was adequate for the cocultured fermentation. The overall acetic acid yield from lactose was 0.9 g/g, and the productivity was 0.25 g/(L h). Both lactate and acetate at high concentrations inhibited the homoacetic fermentation. To overcome these inhibitions, fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentation was 75 g/L, which was the highest acetate concentration ever produced by C. formicoaceticum. Even at this high acetate concentration, the overall productivity was 0.18 g/(L h) based on the total medium volume and 1.23 g/(L h) based on the fibrous-bed reactor volume. The cells isolated from the fibrous-bed bioreactor at the end of this study were more tolerant to acetic acid than the original culture used to seed the bioreactor, indicating that adaptation and natural selection of acetate-tolerant strains occurred. This cocultured fermentation process could be used to produce a low-cost acetate deicer from whey permeate and acid whey.

  12. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    EPA Science Inventory

    Pervaporation is a potential process for recovering bioethanol produced from biomass fermentation. Fermentation broths contain ethanol, water, and a variety of other compounds, often including carboxylic acids. The effects of acetic acid on long-term pervaporation of aqueous et...

  13. A nitrilo-tri-acetic-acid/acetic acid route for the deposition of epitaxial cerium oxide films as high temperature superconductor buffer layers

    SciTech Connect

    Thuy, T.T.; Lommens, P.; Narayanan, V.; Van de Velde, N.; De Buysser, K.; Herman, G.G.; Cloet, V.; Van Driessche, I.

    2010-09-15

    A water based cerium oxide precursor solution using nitrilo-tri-acetic-acid (NTA) and acetic acid as complexing agents is described in detail. This precursor solution is used for the deposition of epitaxial CeO{sub 2} layers on Ni-5at%W substrates by dip-coating. The influence of the complexation behavior on the formation of transparent, homogeneous solutions and gels has been studied. It is found that ethylenediamine plays an important role in the gelification. The growth conditions for cerium oxide films were Ar-5% gas processing atmosphere, a solution concentration level of 0.25 M, a dwell time of 60 min at 900 {sup o}C and 5-30 min at 1050 {sup o}C. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), pole figures and spectroscopic ellipsometry were used to characterize the CeO{sub 2} films with different thicknesses. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to determine the carbon residue level in the surface of the cerium oxide film, which was found to be lower than 0.01%. Textured films with a thickness of 50 nm were obtained. - Graphical abstract: Study of the complexation and hydrolysis behavior of Ce{sup 4+} ions in the presence of nitrilo-tri-acetic acid and the subsequent development of an aqueous chemical solution deposition route suited for the processing of textured CeO{sub 2} buffer layers on Ni-W tapes.

  14. Kinetics of the catalytic destruction of acetic acid in p-XYLENE undergoing oxidation

    SciTech Connect

    Kenigsberg, T.P.; Ariko, N.G.; Mitskevich, N.I.; Nazimok, V.F.

    1986-06-01

    The oxidation of p-xylene in acetic acid medium was studied in the presence of a cobalt-manganese bromide catalyst at 145/sup 0/C and 1.82 /SUP ./ 10/sup 6/ Pa. It was established that the introduction of 5-10% manganese into a cobalt bromide catalyst leads to an acceleration of the oxidation of p-xylene and simultaneously to a decrease in the proportion of decarboxylation and burnout of the solvent. The observed kinetic principles are explained by peculiarities of the thermolysis of cobalt (III) and manganese (III) acetates, as well as by the formation of cobalt-manganese bromide complexes possessing increased activity.

  15. Enzymological studies of one-carbon reactions in the pathway of acetate utilization by methanogenic bacteria

    SciTech Connect

    Ferry, J.G.

    1991-01-01

    Several enzymes in the pathway of acetate conversion to methane and carbon dioxide have been purified from Methanosarcina thermophila. The mechanisms of these enzymes are under investigation utilizing biochemical, biophysical and molecular genetic approaches. Acetate kinase and phosphotransacetylase catalyzes the activation of acetate to acetyl-CoA. The primary structure of these enzymes will be determined through cloning and sequencing of the genes. Two protein components of the CO dehydrogenase complex are under investigations. The metal centers of each component have been characterized using EPR. Cloning and sequencing of the genes for the two subunits of each component is in progress. Results indicate that the Ni/Fe-S component cleaves the C-C and C-S bonds of acetyl-CoA followed by oxidation of the carbonyl group to carbon dioxide and transfer of the methyl group to the Co/Fe-S component. The enzymes and cofactors involved in transfer of the methyl group from the Co/Fe-S component to coenzyme M will be purified and characterized. Ferredoxin is an electron acceptor for the Ni/Fe-S component and also serves to reductively reactivate methylreductase which catalyzes the demethylation of methyl coenzyme M to methane. This ferredoxin is being characterized utilizing EPR and RR spectroscopic methods to determine the properties of the Fe-S centers. Genes encoding this and other ferredoxins have been cloned and sequenced to determine the primary structures. Carbonic anhydrase is being purified and characterized to determine the function of this enzyme in the pathway.

  16. Enzymological studies of one-carbon reactions in the pathway of acetate utilization by methanogenic bacteria

    SciTech Connect

    Ferry, J.G.

    1991-12-31

    Several enzymes in the pathway of acetate conversion to methane and carbon dioxide have been purified from Methanosarcina thermophila. The mechanisms of these enzymes are under investigation utilizing biochemical, biophysical and molecular genetic approaches. Acetate kinase and phosphotransacetylase catalyzes the activation of acetate to acetyl-CoA. The primary structure of these enzymes will be determined through cloning and sequencing of the genes. Two protein components of the CO dehydrogenase complex are under investigations. The metal centers of each component have been characterized using EPR. Cloning and sequencing of the genes for the two subunits of each component is in progress. Results indicate that the Ni/Fe-S component cleaves the C-C and C-S bonds of acetyl-CoA followed by oxidation of the carbonyl group to carbon dioxide and transfer of the methyl group to the Co/Fe-S component. The enzymes and cofactors involved in transfer of the methyl group from the Co/Fe-S component to coenzyme M will be purified and characterized. Ferredoxin is an electron acceptor for the Ni/Fe-S component and also serves to reductively reactivate methylreductase which catalyzes the demethylation of methyl coenzyme M to methane. This ferredoxin is being characterized utilizing EPR and RR spectroscopic methods to determine the properties of the Fe-S centers. Genes encoding this and other ferredoxins have been cloned and sequenced to determine the primary structures. Carbonic anhydrase is being purified and characterized to determine the function of this enzyme in the pathway.

  17. [Conversion of acetic acid to methane by thermophiles]. Progress report, May 15, 1989--May 14, 1993

    SciTech Connect

    Zinder, S.H.

    1993-06-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH{sub 4}. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  18. An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid.

    PubMed

    van Staden, J F; Mashamba, Mulalo G; Stefan, Raluca I

    2002-09-01

    An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid is proposed. A solution of 0.1 mol L(-1) sodium chloride is used as carrier. Titration is achieved by aspirating acetic acid samples between two strong base-zone volumes into a holding coil and by channelling the stack of well-defined zones with flow reversal through a reaction coil to a potentiometric sensor where the peak widths were measured. A linear relationship between peak width and logarithm of the acid concentration was obtained in the range 1-9 g/100 mL. Vinegar samples were analysed without any sample pre-treatment. The method has a relative standard deviation of 0.4% with a sample frequency of 28 samples per hour. The results revealed good agreement between the proposed sequential injection and an automated batch titration method. PMID:12207255

  19. Removal of acetic acid from simulated hemicellulosic hydrolysates by emulsion liquid membrane with organophosphorus extractants.

    PubMed

    Lee, Sang Cheol

    2015-09-01

    Selective removal of acetic acid from simulated hemicellulosic hydrolysates containing xylose and sulfuric acid was attempted in a batch emulsion liquid membrane (ELM) system with organophosphorus extractants. Various experimental variables were used to develop a more energy-efficient ELM process. Total operation time of an ELM run with a very small quantity of trioctylphosphine oxide as the extractant was reduced to about a third of those required to attain almost the same extraction efficiency as obtained in previous ELM works without any extractant. Under specific conditions, acetic acid was selectively separated with a high degree of extraction and insignificant loss of xylose, and its purity and enrichment ratio in the stripping phase were higher than 92% and 6, respectively. Also, reused organic membrane solutions exhibited the extraction efficiency as high as fresh organic solutions did. These results showed that the current ELM process would be quite practical. PMID:26056774

  20. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria

    DOE PAGESBeta

    Nancharaiah, Y. V.; Francis, A. J.

    2015-02-19

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L-1 and inhibited at > 2.5 g L-1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L-1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulationmore » of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.« less

  1. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria.

    PubMed

    Nancharaiah, Y V; Francis, A J

    2015-06-01

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Pseudomonas putida. Bacterial growth was stimulated at up to 2.5 g L(-1) and inhibited at >2.5 g L(-1) of [EMIM][Ac]. The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presence of 0.5 g L(-1) [EMIM][Ac]. Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulation of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment. PMID:25703901

  2. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria

    SciTech Connect

    Nancharaiah, Y. V.; Francis, A. J.

    2015-02-19

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L-1 and inhibited at > 2.5 g L-1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L-1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulation of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.

  3. Effects of acetic acid and arginine on pH elevation and growth of Bacillus licheniformis in an acidified cucumber juice medium.

    PubMed

    Yang, Zhenquan; Meng, Xia; Breidt, Frederick; Dean, Lisa L; Arritt, Fletcher M

    2015-04-01

    Bacillus licheniformis has been shown to cause pH elevation in tomato products having an initial pH below 4.6 and metabiotic effects that can lead to the growth of pathogenic bacteria. Because of this, the organism poses a potential risk to acidified vegetable products; however, little is known about the growth and metabolism of this organism in these products. To clarify the mechanisms of pH change and growth of B. licheniformis in vegetable broth under acidic conditions, a cucumber juice medium representative of a noninhibitory vegetable broth was used to monitor changes in pH, cell growth, and catabolism of sugars and amino acids. For initial pH values between pH 4.1 to 6.0, pH changes resulted from both fermentation of sugar (lowering pH) and ammonia production (raising pH). An initial pH elevation occurred, with starting pH values of pH 4.1 to 4.9 under both aerobic and anaerobic conditions, and was apparently mediated by the arginine deiminase reaction of B. licheniformis. This initial pH elevation was prevented if 5 mM or greater acetic acid was present in the brine at the same pH. In laboratory media, under favorable conditions for growth, data indicated that growth of the organism was inhibited at pH 4.6 with protonated acetic acid concentrations of 10 to 20 mM, corresponding to 25 to 50 mM total acetic acid; however, growth inhibition required greater than 300 mM citric acid (10-fold excess of the amount in processed tomato products) products under similar conditions. The data indicate that growth and pH increase by B. licheniformis may be inhibited by the acetic acid present in most commercial acidified vegetable products but not by the citric acid in many tomato products. PMID:25836398

  4. Formic and acetic acid over the central Amazon region, Brazil. I - Dry season

    NASA Technical Reports Server (NTRS)

    Andreae, M. O.; Andreae, T. W.; Talbot, R. W.; Harriss, R. C.

    1988-01-01

    The concentrations of formic and acetic acids in the gas phase, atmospheric aerosol, and rainwater samples collected in Amazonia at ground level and in the atmosphere during the Amazon Boundary Layer Experiment in July/August 1985 were analyzed by ion exchange chromatography. The diurnal behavior of both acids at ground level and their vertical distribution in the forest canopy point to the existence of vegetative sources as well as to production by chemical reactions in the atmosphere. The concentrations of formic and acetic acids in the gas phase were about 2 orders of magnitude higher than the corresponding concentrations in the atmospheric aerosol. In rainwater, the total formate and acetate represented about one half of the anion equivalents, in contrast to less than 10 percent of the soluble anionic equivalents contributed by these acids in the atmospheric aerosol. The observed levels of these ions in rainwater are considered to be the result of a combination of chemical reactions in hydrometeors and the scavenging of the gaseous acids by cloud droplets.

  5. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria.

    PubMed

    Panagou, Efstathios Z; Schillinger, Ulrich; Franz, Charles M A P; Nychas, George-John E

    2008-04-01

    The effect of controlled fermentation processes on the microbial association and biochemical profile of cv. Conservolea naturally black olives processed by the traditional anaerobic method was studied. The different treatments included (a) inoculation with a commercial starter culture of Lactobacillus pentosus, (b) inoculation with a strain of Lactobacillus plantarum isolated from a fermented cassava product and (c) uninoculated spontaneous process. Microbial growth, pH, titratable acidity, organic acids and volatile compounds were monitored throughout the fermentation. The initial microbiota consisted of Gram-negative bacteria, lactic acid bacteria and yeasts. Inhibition of Gram-negative bacteria was evident in all processes. Both starter cultures were effective in establishing an accelerated fermentation process and reduced the survival period of Gram-negative bacteria by 5 days compared with the spontaneous process, minimizing thus the likelihood of spoilage. Higher acidification of the brines was observed in inoculated processes without any significant difference between the two selected starter cultures (113.5 and 117.6mM for L. plantarum and L. pentosus, respectively). L. pentosus was also determined as the major species present during the whole process of spontaneous olive fermentation. It is characteristic that lactic acid fermentation was also initiated rapidly in the spontaneous process, as the conditions of fermentation, mainly the low salt level (6%, w/v) favored the dominance of lactic acid bacteria over yeasts. Lactic, acetic and propionic were the organic acids detected by HPLC in considerable amounts, whereas citric and malic acids were also present at low levels and degraded completely during the processes. Ethanol, methanol, acetaldehyde, ethyl acetate were the major volatile compounds identified by GC. Their concentrations varied among the different treatments, reflecting varying degrees of microbial activity in the brines. The results obtained from this study could help the Greek table olive industry to improve the existing processing schemes in order to increase product consistency and quality expanding the international market for naturally black olives. PMID:18206777

  6. A solvent extraction approach to recover acetic acid from mixed waste acids produced during semiconductor wafer process.

    PubMed

    Shin, Chang-Hoon; Kim, Ju-Yup; Kim, Jun-Young; Kim, Hyun-Sang; Lee, Hyang-Sook; Mohapatra, Debasish; Ahn, Jae-Woo; Ahn, Jong-Gwan; Bae, Wookeun

    2009-03-15

    Recovery of acetic acid (HAc) from the waste etching solution discharged from silicon wafer manufacturing process has been attempted by using solvent extraction process. For this purpose 2-ethylhexyl alcohol (EHA) was used as organic solvent. In the pre-treatment stage >99% silicon and hydrofluoric acid was removed from the solution by precipitation. The synthesized product, Na(2)SiF(6) having 98.2% purity was considered of commercial grade having good market value. The waste solution containing 279 g/L acetic acid, 513 g/L nitric acid, 0.9 g/L hydrofluoric acid and 0.030 g/L silicon was used for solvent extraction study. From the batch test results equilibrium conditions for HAc recovery were optimized and found to be 4 stages of extraction at an organic:aqueous (O:A) ratio of 3, 4 stages of scrubbing and 4 stages of stripping at an O:A ratio of 1. Deionized water (DW) was used as stripping agent to elute HAc from organic phase. In the whole batch process 96.3% acetic acid recovery was achieved. Continuous operations were successfully conducted for 100 h using a mixer-settler to examine the feasibility of the extraction system for its possible commercial application. Finally, a complete process flowsheet with material balance for the separation and recovery of HAc has been proposed. PMID:18639982

  7. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.

    PubMed

    Chen, Haihan; Grassian, Vicki H

    2013-09-17

    Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface. PMID:23883276

  8. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites

    SciTech Connect

    Brauman, A.; Labat, M. ); Kane, M.D.; Breznak, J.A. )

    1992-09-04

    The evolution of different feeding guilds in termites is paralleled by differences in the activity of their gut microbiota. In wood-feeding termites, carbon dioxide-reducing acetogenic bacteria were found to generally outprocess carbon dioxide-reducing methanogenic bacteria for reductant (presumably hydrogen) generated during microbial fermentation in the hindgut. By contrast, acetogenesis from hydrogen and carbon dioxide was of little significance in fungus-growing and soil-feeding termites, which evolved more methane than their wood- and grass-feeding counterparts. Given the large biomass of termites on the earth and especially in the tropics, these findings should help refine global estimates of carbon dioxide reduction in anoxic habitats and the contribution of termite emissions to atmospheric methane concentrations.

  9. Modelling the unexpected effect of acetic and lactic acid in combination with pH and aw on the growth/no growth interface of Zygosaccharomyces bailii.

    PubMed

    Vermeulen, A; Dang, T D T; Geeraerd, A H; Bernaerts, K; Debevere, J; Van Impe, J; Devlieghere, F

    2008-05-10

    Microbial spoilage of shelf-stable acidified sauces is predominantly caused by lactic acid bacteria and yeasts. A specific spoilage yeast in these products is Zygosaccharomyces bailii, as this fructophilic, osmotolerant, and weak acid resistant yeast is difficult to control. A growth/no growth model was developed describing the influence of (i) pH in a range from pH 3.0 to pH 5.0 (5 levels), (ii) acetic acid in a range from 0 to 3.5% (w/v), and (iii) lactic acid in a range from 0 to 3.0% (w/v). aw was fixed at a level of 0.95 which is representative for acidified sauces with high sugar content. Modified Sabouraud medium was inoculated at +/- 10(4) CFU/ml, incubated at 30 degrees C and growth was assessed by optical density measurements. All combinations of environmental conditions were tested in at least twelve replicates, yielding precise values for the probability of growth. Results showed that replacing acetic acid by lactic acid, which has a milder taste, may imply some risks on food spoilage because, under some conditions, stimulation of growth by lactic acid was observed. This stimulation had also consequences on the model development: (i) only ordinary logistic regression models were able to describe this phenomenon due to their flexible behaviour, (ii) it was necessary to split up the data set into two subsets to have the best description of the obtained data. Two different ordinary logistic regression models were fitted on these data sets taking either the total acid concentration as one of the explanatory variables or differentiating between the undissociated and dissociated acid concentrations. The obtained models were compared with the CIMSCEE code [CIMSCEE, 1992. Code for the production of microbiologically safe and stable emulsified and non-emulsified sauces containing acetic acid. Comit des Industries des Mayonnaise et Sauces Condimentaires, de la Communaut Economique Europenne, Brussels, Belgium], a formula which is nowadays often used by the food industry to predict the stability of acidified products based on the undissociated acetic acid, NaCl and sugars concentration. Comparing this formula and the newly developed models showed that the CIMSCEE code made a slight underestimation of the growth probability. Advantages of the newly developed models are the description of the gradual transition zone between growth and no growth and the incorporation of the effect of lactic acid, alone or in combination with acetic acid. PMID:18400324

  10. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Kuśnierz-Cabala, Beata; Konturek, Peter; Ambroży, Tadeusz; Dembiński, Artur

    2016-01-01

    Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa. PMID:26798415

  11. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    SciTech Connect

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.; Battista, John R.

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominated community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).

  12. Influence of Acidic pH on Hydrogen and Acetate Production by an Electrosynthetic Microbiome

    PubMed Central

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.

    2014-01-01

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (?5). Hydrogen production by biocathodes poised at ?600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ?515 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ?6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at ?765 mV (0.065 mA/cm2 sterile control at ?800 mV) by the Acetobacterium-dominated community. Supplying ?800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (?2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate (?=?4.7 kg CO2 captured). PMID:25333313

  13. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Ku?nierz-Cabala, Beata; Konturek, Peter; Ambro?y, Tadeusz; Dembi?ski, Artur

    2016-01-01

    Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8?nmol/kg, starting 24?h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1?. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa. PMID:26798415

  14. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    DOE PAGESBeta

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.; Battista, John R.

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominatedmore » community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).« less

  15. Negative Pressure Wound Therapy of Chronically Infected Wounds Using 1% Acetic Acid Irrigation

    PubMed Central

    Lee, Byeong Ho; Lee, Hye Kyung; Kim, Hyoung Suk; Moon, Min Seon; Suh, In Suck

    2015-01-01

    Background Negative-pressure wound therapy (NPWT) induces angiogenesis and collagen synthesis to promote tissue healing. Although acetic acid soaks normalize alkali wound conditions to raise tissue oxygen saturation and deconstruct the biofilms of chronic wounds, frequent dressing changes are required. Methods Combined use of NPWT and acetic acid irrigation was assessed in the treatment of chronic wounds, instilling acetic acid solution (1%) beneath polyurethane membranes twice daily for three weeks under continuous pressure (125 mm Hg). Clinical photographs, pH levels, cultures, and debrided fragments of wounds were obtained pre- and posttreatment. Tissue immunostaining (CD31, Ki-67, and CD45) and reverse transcription-polymerase chain reaction (vascular endothelial growth factor [VEGF], vascular endothelial growth factor receptor [VEGFR]; procollagen; hypoxia-inducible factor 1 alpha [HIF-1-alpha]; matrix metalloproteinase [MMP]-1,-3,-9; and tissue inhibitor of metalloproteinase [TIMP]) were also performed. Results Wound sizes tended to diminish with the combined therapy, accompanied by drops in wound pH (weakly acidic or neutral) and less evidence of infection. CD31 and Ki-67 immunostaining increased (P<0.05) post-treatment, as did the levels of VEGFR, procollagen, and MMP-1 (P<0.05), whereas the VEGF, HIF-1-alpha, and MMP-9/TIMP levels declined (P<0.05). Conclusions By combining acetic acid irrigation with negative-pressure dressings, both the pH and the size of chronic wounds can be reduced and infections be controlled. This approach may enhance angiogenesis and collagen synthesis in wounds, restoring the extracellular matrix. PMID:25606491

  16. Decadal variations of rainwater formic and acetic acid concentrations in Wilmington, NC, USA

    NASA Astrophysics Data System (ADS)

    Willey, Joan D.; Glinski, Donna A.; Southwell, Melissa; Long, Michael S.; Avery, G. Brooks, Jr.; Kieber, Robert J.

    2011-02-01

    Concentrations of formic and acetic acid from January 2008 through March 2009 were compared to two previous studies at this location (conducted in 1987-1990 and 1996-1998) in order to quantify the extent to which temporal changes in DOC and pH can be explained by changes in these organic acids. The volume weighted 2008 formic and acetic acid concentrations (5.6 and 2.6 ?M respectively) have decreased dramatically compared with those observed during the 1996-1998 study (9.9 and 7.3 ?M) and are also lower than concentrations observed in the 1987-1990 study (7.4 and 3.6 ?M). Changes in formic and acetic acids between 1996-97 and 2008 can account for approximately 50% of the DOC change and 40% of the H + change in rainwater over this same time period. These changes are most pronounced during the growing season, which is also the tourist and high traffic season at this location. Determining causation of these changes is difficult due to multiple biogenic and anthropogenic sources. However, the ratio of formic to acetic acid has also reverted back to a value consistent with reduced vehicular emissions, possibly related to the introduction of improved emission control technology including the use of reformulated gasoline in the late 1990's. Long term monitoring of seasonal, annual, and decadal trends will be of critical importance for evaluating the effects of future changes to atmospheric inputs such as the increased use of ethanol and other alternative fuels.

  17. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead.

    PubMed

    Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng

    2013-01-01

    Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely. PMID:23819268

  18. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts

    SciTech Connect

    Palmqvist, E.; Grage, H.; Meinander, N.Q.; Hahn-Haegerdal, B.

    1999-04-05

    The influence of the factors acetic acid, furfural, and p-hydroxybenzoic acid on the ethanol yield (Y{sub EtOH}) of Saccharomyces cerevisiae, bakers` yeast, S. cerevisiae ATCC 96581, and Candida shehatae NJ 23 was investigated using a 2{sup 3}-full factorial design with 3 centerpoints. The results indicated that acetic acid inhibited the fermentation by C. shehatae NJ 23 markedly more than by bakers` yeast, whereas no significant difference in tolerance towards the compounds was detected between the S. cerevisiae strains. Furfural and the lignin derived compound p-hydroxybenzoic acid did not affect any of the yeasts at the cell mass concentration used. The results indicated that the linear model was not adequate to describe the experimental data. Based on the results from the 2{sup 3}-full factorial experiment, an extended experiment was designed based on a central composite design to investigate the influence of the factors on the specific growth rate ({mu}), biomass yield (Y{sub x}), volumetric ethanol productivity (Q{sub EtOH}), and Y{sub EtOH}. Bakers` yeast was chosen in the extended experiment due to its better tolerance towards acetic acid, which makes it a more interesting organism for use in industrial fermentations of lignocellulosic hydrolysates.

  19. Formation of Short-Chain Fatty Acids from H2 and CO2 by a Mixed Culture of Bacteria

    PubMed Central

    Goldberg, I.; Cooney, C. L.

    1981-01-01

    The biological utilization of CO2 and H2 for the formation of short-chain fatty acids was studied by using a mixed culture of bacteria. Optimization of a medium was carried out in continuous culture to identify limiting factors which controlled growth and production of organic acids. The optimal pH for growth and acid production was 7.0 at 37°C; the maximal cell concentration obtained was 5.9 g of cells per liter (dry weight), and the maximal amount of volatile acids formed was 4.7 g/liter, with acetic acid as the predominant acid. With the optimized medium, it was found that the rate of transfer of hydrogen or carbon dioxide, or both, from gas to liquid was the limiting factor which controlled growth and production of acids. PMID:16345680

  20. Soil Bacteria Take Up D-Amino Acids, Protect Plants

    NASA Astrophysics Data System (ADS)

    Sun, H. J.; Zhang, G.

    2011-12-01

    Recently, many groups reported D-amino acid uptake by plant roots, raising the question of whether soil D-amino acids represent a source of nitrogen or a source of toxicity. The discussion needs to be placed in the context of competition with rhizosphere bacteria. To provide this context, we followed the concentrations of D- and L-enantiomers of alanine, glutamic acid, aspartic acid, and leucine after they were added to soils in the laboratory. In all cases, the uptake of L-enantiomer began immediately and proceeded rapidly until exhausted. In contrast, the uptake of D-enantiomer required induction: an initial period of inactivity followed by rapid consumption comparable in rate to L-enantiomer. The induced nature of the D activity was confirmed by the addition of rifampicin, an mRNA synthesis inhibitor. Preventing the synthesis of new enzymes abolished soil flora's ability to consume D-amino acids, but not L-amino acids. These results suggest that inducible special racemase enzymes, which can convert D-amino acids back to their native L-forms, are widespread among soil microorganisms. This finding does not rule out the possibility that some plants may out-compete microorganisms and be able to access D-amino acids. It does suggest, however, that rhizosphere bacteria can shield plants from the toxic effect of D-amino acids.

  1. Make use of lactic acid bacteria in biomass to biofuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) have been widely used in dairy fermentations, nutraceuticals, and probiotic/prebiotic applications. Selected strains from the LAB could potentially be used as microbial catalysts for production of fuels and chemicals from lignocellulosic biomass. The unique traits of lac...

  2. Effects of lactic acid bacteria contamination on lignocellulosic ethanol fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slower fermentation rates, mixed sugar compositions, and lower sugar concentrations may make lignocellulosic fermentations more susceptible to contamination by lactic acid bacteria (LAB), which is a common and costly problem to the corn-based fuel ethanol industry. To examine the effects of LAB con...

  3. PRODUCTION OF MANNITOL BY LACTIC ACID BACTERIA: A REVIEW

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mannitol, a naturally occurring polyol, can be produced by lactic acid bacteria (LAB) by fermentation. Some homofermentative LAB produce small amounts of mannitol from glucose. Several heterofermentative LAB can produce mannitol effectively from fructose. In this article, a review on mannitol pro...

  4. Systems solutions by lactic acid bacteria: from paradigms to practice.

    PubMed

    de Vos, Willem M

    2011-08-30

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  5. Systems solutions by lactic acid bacteria: from paradigms to practice

    PubMed Central

    2011-01-01

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  6. Heme and menaquinone induced electron transport in lactic acid bacteria

    PubMed Central

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-01-01

    Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species. PMID:19480672

  7. Inception of Acetic Acid/Water Cluster Growth in Molecular Beams.

    PubMed

    Bende, Attila; Perretta, Giuseppe; Sementa, Paolo; Di Palma, Tonia M

    2015-10-01

    The influence of carboxylic acids on water nucleation in the gas phase has been explored in the supersonic expansion of water vapour mixed with acetic acid (AcA) at various concentrations. The sodium-doping method has been used to detect clusters produced in supersonic expansions by using UV photoionisation. The mass spectra obtained at lower acid concentrations show well-detected Na(+) -AcA(H2O)n and Na(+)-AcA2 (H2O)n clusters up to 200 Da and, in the best cooling expansions, emerging Na(+)-AcAm (H2O)n signals at higher masses and unresolved signals that extend beyond m/e values >1000 Da. These signals, which increase with increasing acid content in water vapour, are an indication that the cluster growth taking place arises from mixed water-acid clusters. Theoretical calculations show that small acid-water clusters are stable and their formation is even thermodynamically favoured with respect to pure water clusters, especially at lower temperatures. These findings suggest that acetic acid may play a significant role as a pre-nucleation embryo in the formation of aerosols in wet environments. PMID:26296812

  8. Palladium-Catalyzed ?-Arylation of Aryl Acetic Acid Derivatives via Dienolate Intermediates with Aryl Chlorides and Bromides

    PubMed Central

    2016-01-01

    To date, examples of ?-arylation of carboxylic acids remain scarce. Using a deprotonative cross-coupling process (DCCP), a method for palladium-catalyzed ?-arylation of aryl acetic acids with aryl halides has been developed. This protocol is applicable to a wide range of aryl bromides and chlorides. A procedure for the palladium-catalyzed ?-arylation of styryl acetic acids is also described. PMID:25582024

  9. The effect of marination on lactic acid bacteria communities in raw broiler fillet strips

    PubMed Central

    Nieminen, T. T.; Välitalo, H.; Säde, E.; Paloranta, A.; Koskinen, K.; Björkroth, J.

    2012-01-01

    Marination with marinade containing salt, sugar, and acetic acid is commonly used in Finland to enhance the value of raw broiler meat. In this study, we investigated the effect of marination, marinade components and storage time on composition of bacterial communities in modified atmosphere-packaged (MAP) broiler fillet strips. The communities were characterized using two culture-independent methods: 16S rRNA gene fragment sequencing and terminal restriction fragment length polymorphism. In unmarinated broiler fillet strips, Lactococcus spp. and Carnobacterium spp. predominated at the early storage phase but were partially replaced by Lactobacillus spp. and Leuconostoc spp. when the chilled storage time was extended. In the marinated fillet strips, Lactobacillus spp. and Leuconostoc spp. predominated independent from the storage time. By mixing the different marinade components with broiler meat, we showed that marination changed the community composition and favored Leuconostoc spp. and Lactobacillus spp. by the combined effect of carbohydrates and acetic acid in marinade. Marination increased the maximum level of lactic acid bacteria in broiler meat and enhanced CO2 production and acidification of meat during the chilled storage. Accumulation of CO2 in package head-space due to the enhanced growth of Leuconostoc spp. in marinated meat may lead to bulging of packages, which is a spoilage defect frequently associated with marinated and MAP raw broiler preparations in Finland. PMID:23087685

  10. The effect of marination on lactic acid bacteria communities in raw broiler fillet strips.

    PubMed

    Nieminen, T T; Vlitalo, H; Sde, E; Paloranta, A; Koskinen, K; Bjrkroth, J

    2012-01-01

    Marination with marinade containing salt, sugar, and acetic acid is commonly used in Finland to enhance the value of raw broiler meat. In this study, we investigated the effect of marination, marinade components and storage time on composition of bacterial communities in modified atmosphere-packaged (MAP) broiler fillet strips. The communities were characterized using two culture-independent methods: 16S rRNA gene fragment sequencing and terminal restriction fragment length polymorphism. In unmarinated broiler fillet strips, Lactococcus spp. and Carnobacterium spp. predominated at the early storage phase but were partially replaced by Lactobacillus spp. and Leuconostoc spp. when the chilled storage time was extended. In the marinated fillet strips, Lactobacillus spp. and Leuconostoc spp. predominated independent from the storage time. By mixing the different marinade components with broiler meat, we showed that marination changed the community composition and favored Leuconostoc spp. and Lactobacillus spp. by the combined effect of carbohydrates and acetic acid in marinade. Marination increased the maximum level of lactic acid bacteria in broiler meat and enhanced CO(2) production and acidification of meat during the chilled storage. Accumulation of CO(2) in package head-space due to the enhanced growth of Leuconostoc spp. in marinated meat may lead to bulging of packages, which is a spoilage defect frequently associated with marinated and MAP raw broiler preparations in Finland. PMID:23087685

  11. A potential plasmid-curing agent, 8-epidiosbulbin E acetate, from Dioscorea bulbifera L. against multidrug-resistant bacteria.

    PubMed

    Shriram, Varsha; Jahagirdar, Sheetal; Latha, C; Kumar, Vinay; Puranik, Vedavati; Rojatkar, Supada; Dhakephalkar, Prashant K; Shitole, M G

    2008-11-01

    Bioassay-guided fractionation of an aqueous methanolic extract of Dioscorea bulbifera L. bulbs was performed using organic solvents. A novel plasmid-curing compound was identified as 8-epidiosbulbin E acetate (EEA) (norditerpene) on the basis of modern spectroscopic analysis and X-ray crystallography. EEA exhibited broad-spectrum plasmid-curing activity against multidrug-resistant (MDR) bacteria, including vancomycin-resistant enterococci. EEA cured antibiotic resistance plasmids (R-plasmids) from clinical isolates of Enterococcus faecalis, Escherichia coli, Shigella sonnei and Pseudomonas aeruginosa with 12-48% curing efficiency. The reference plasmids of Bacillus subtilis (pUB110), E. coli (RP4), P. aeruginosa (RIP64) and Salmonella typhi (R136) were cured with efficiency ranging from 16% to 64%. EEA-mediated R-plasmid curing decreased the minimal inhibitory concentration of antibiotics against MDR bacteria, thus making antibiotic treatment more effective. The antibiotic resistance pattern revealed that the compound was effective in the reversal of bacterial resistance to various antibiotics. In addition, the compound did not show any cytotoxicity against a broad range of human cancer cell lines, namely MCF-7 (breast cancer), SiHa (cervical cancer) and A431 (epidermal carcinoma), and hence has the potential to be used as a lead compound for drug discovery programmes. PMID:18718743

  12. DFT computation and experimental analysis of vibrational and electronic spectra of phenoxy acetic acid herbicides

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2013-05-01

    An absolute vibrational analysis has been attempted on the basis of experimental FTIR and NIR-FT Raman spectra with calculated vibrational wavenumbers and intensities of phenoxy acetic acids. The equilibrium geometry, bonding features and harmonic vibrational wavenumbers have been calculated with the help of B3LYP method with Dunning correlation consistent basis set aug-cc-pVTZ. The electronic structures of molecular fragments were described in terms of natural bond orbital analysis, which shows intermolecular Osbnd H⋯O and intramolecular Csbnd H⋯O hydrogen bonds. The electronic absorption spectra with different solvents have been investigated in combination with time-dependent density functional theory calculation. The pKa values of phenoxy acetic acids were compared.

  13. Chemical-shift MR imaging of acetic acid during percutaneous chemical ablation therapy: preliminary work.

    PubMed

    Roberts, David A; Rosen, Marc A; Clark, Timothy W I; Mondschein, Jeffrey; Soulen, Michael C; Siegelman, Evan; Leigh, John S

    2002-10-01

    The purpose of this study was to test the hypothesis that chemical-shift magnetic resonance (MR) imaging may be used to map the distribution of acetic acid during percutaneous chemical ablation procedures. Chemical-shift MR imaging was performed with use of standard methods on a 1.5-T scanner. Phantom and ex-vivo data demonstrated focal increases in the observed signal in chemical-shift MR imaging that correlate well with the site of injection. Preliminary study in a patient with hepatoma revealed focal signal at the injection site. These preliminary results suggest that chemical-shift MR imaging may be used to visualize acetic acid distribution during percutaneous chemical ablation procedures. PMID:12397130

  14. Degradation of Phthalic Acids by Denitrifying, Mixed Cultures of Bacteria

    PubMed Central

    Aftring, R. Paul; Chalker, Bruce E.; Taylor, Barrie F.

    1981-01-01

    Mixed cultures of bacteria, enriched from aquatic sediments, grew anaerobically on all three isomers of phthalic acid. Each culture grew anaerobically on only one isomer and also grew aerobically on the same isomer. Pure cultures were isolated from the phthalic acid (o-phthalic acid) and isophthalic acid (m-phthalic acid) enrichments that grew aerobically on phthalic and isophthalic acids. Cell suspension experiments indicated that protocatechuate is an intermediate of aerobic catabolism. Pure cultures which grew aerobically on terephthalic acid (p-phthalic acid) could not be isolated from the enrichments, and neither could pure cultures that grew anaerobically on any of the isomers. Cell suspension experiments suggested that separate pathways exist for the aerobic and anaerobic oxidation of phthalic acids. Each enrichment culture used only one phthalic acid isomer under anaerobic conditions, but all isomers were simultaneously adapted for the anaerobic catabolism of benzoate. Cells grown anaerobically on a phthalic acid immediately attacked the isomer under anaerobic conditions, whereas there was a lag before aerobic breakdown occurred, and, for phthalic and terephthalic acids, chloramphenicol stopped aerobic adaptation but had no effect on anaerobic catabolism. This work suggests that phthalic acids are biodegradable in anaerobic environments. PMID:16345769

  15. Pd-catalyzed gem-difluoroallylation of arylboronic acids with ?,?-difluoroallylic acetates.

    PubMed

    Zhang, Bo; Zhang, Xingang

    2016-01-01

    A highly regio- and stereo-selective palladium-catalyzed gem-difluoroallylation of arylboronic acids with ?,?-difluoroallylic acetates has been described. The method allows the synthesis of a variety of gem-difluoroallylated arenes with a tosyloxy group on the C[double bond, length as m-dash]C double bond, thus providing a good opportunity for down-stream transformations. PMID:26611839

  16. Trifluoroacetic anhydride promoted tandem conjugate addition of boronic acids/acetal ring opening.

    PubMed

    Roscales, Silvia; Csky, Aurelio G

    2012-03-01

    A new stereoselective tandem reaction consisting of the metal-free conjugate addition of boronic acids followed by an intramolecular ring opening of a cyclic acetal has been disclosed. Optically pure polysubstituted tetrahydropyrans have been synthesized diastereoselectively by this new reaction. Two new C-C bonds and up to three stereocenters are formed in a single step, allowing the generation of quaternary stereocenters. PMID:22339156

  17. Determination of Endogenous Indole-3-Acetic Acid in Plagiochila arctica (Hepaticae) 1

    PubMed Central

    Law, David M.; Basile, Dominick V.; Basile, Margaret R.

    1985-01-01

    Endogenous indole-3-acetic acid (IAA) was found in axenically cultured gametophytes of the leafy liverwort, Plagiochila arctica Bryhn and Kaal., by high-performance liquid chromatography with electrochemical detection. Identification of the methylated auxin was confirmed by gas chromatography-mass spectrometry. Addition of 57 micromolar IAA to cultures increased relative production of ethylene. This is the first definitive (gas chromatography-mass spectrometry) demonstration of the natural occurrence of IAA in a bryophyte. PMID:16664164

  18. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    PubMed

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering. PMID:25935346

  19. Molecular Biology and Genetics of the Acetate-Utilizing Methanogenic Bacteria

    SciTech Connect

    Robert P. Gunsalus

    2003-07-21

    Methane biosynthesis by the Methanosarcina species, in contrast to other methanogens, occurs from the full range of methanogenic substrates that include acetate, methanol, tri-methyl, di-methyl, and methyl-amine, methyl-sulfides, and in limited instances, H2/CO2. The Methanosarcina are also versatile in their ability to adapt and grow in habitats of varying osmolarity ranging from fresh water environments, marine environments, and to hyper saline environments (ca to 1.2 M NaCl). To facilitate studies that address the biochemistry, molecular biology and physiology of these organisms, we have constructed a whole-genome microarray to identify classes of differentially expressed genes in M. mazei strain Goe1. We propose to further identify and examine how genes and their proteins involved in the synthesis and transport of osmolytes in the cell are regulated. These compounds include N-epsilon-acetyl-beta-lysine, alpha-glutamate, betaine, and potassium whose levels within the cell are modulated in order to provide appropriate osmotic balance. We will identify differentially expressed genes involved in hydrogen and carbon dioxide sequestration since M. mazei strain Goe1 is currently the only practical model for such study. Finally, we will explore the essential roles of two metals, molybdate and tungstate, in methanogen regulation and metabolism of these environmentally essential organsims. The above studies will advance our general understanding of how methanogens respond to their environmental signals, and adapt by adjusting their physiology to thrive in changing anaerobic habitats whether natural or man-made.

  20. Corrosion resistance of aluminum-magnesium alloys in glacial acetic acid

    SciTech Connect

    Zaitseva, L.V.; Romaniv, V.I.

    1984-05-01

    Vessels for the storage and conveyance of glacial acetic acid are produced from ADO and AD1 aluminum, which are distinguished by corrosion resistance, weldability and workability in the hot and cold conditions but have low tensile strength. Aluminum-magnesium alloys are stronger materials close in corrosion resistance to technical purity aluminum. An investigation was made of the basic alloying components on the corrosion resistance of these alloys in glacial acetic acid. Both the base metal and the weld joints were tested. With an increase in temperature the corrosion rate of all of the tested materials increases by tens of times. The metals with higher magnesium content show more pitting damage. The relationship of the corrosion resistance of the alloys to magnesium content is confirmed by the similar intensity of failure of the joint metal of all of the investigated alloys and by electrochemical investigations. The data shows that AMg3 alloy is close to technically pure ADO aluminum. However, the susceptibility of even this material to local corrosion eliminates the possibility of the use of aluminum-magnesium alloys as reliable constructional materials in glacial acetic acid.

  1. Preparation and characterization of physicochemical properties of glacial acetic acid modified Gadung (Diocorea hispida Dennst) flours.

    PubMed

    Kumoro, Andri Cahyo; Amalia, Rizka; Budiyati, Catarina Sri; Retnowati, Diah Susetyo; Ratnawati, Ratnawati

    2015-10-01

    In addition to the presence of antinutrients, the inferior physicochemical properties of flours has caused gadung (Dioscorea hispida dennst) becomes one of the underutilized tubers in the world. Acetylation is one of the starch modification methods to alter the physicochemical properties of starch, namely swelling power and solubility. The objective of this work was to investigate the effect of reaction time, glacial acetic acid/flour mass ratio and pH on gadung flour acetylation at ambient temperature. The acetylation was carried out by reacting gadung flour slurry of 20% consistency with glacial acetic acid under alkaline condition. The results show that in general degree of substitution and swelling power increased with the increase of reaction time, while the solubility was not affected by reaction time after 10min acetylation. Acetylation led to significant changes in morphology and structure of gadung flour starch granules. Overall, all the acetylated gadung flours obtained in this work were having higher swelling power and solubility than the native flour. Acetylation of gadung flour using glacial acetic acid with 1:3 mass ratio and pH8.0 at ambient temperature for 30min resulted gadung flours with swelling power and solubility similar to that of Korean wheat flour. PMID:26396408

  2. Improving the environmental profile of wood panels via co-production of ethanol and acetic acid.

    PubMed

    Earles, J Mason; Halog, Anthony; Shaler, Stephen

    2011-11-15

    The oriented strand board (OSB) biorefinery is an emerging technology that could improve the building, transportation, and chemical sectors' environmental profiles. By adding a hot water extraction stage to conventional OSB panel manufacturing, hemicellulose polysaccharides can be extracted from wood strands and converted to renewably sourced ethanol and acetic acid. Replacing fossil-based gasoline and acetic acid has the potential to reduce greenhouse gas (GHG) emissions, among other possible impacts. At the same time, hemicellulose extraction could improve the environmental profile of OSB panels by reducing the level of volatile organic compounds (VOCs) emitted during manufacturing. In this study, the life cycle significance of such GHG, VOC, and other emission reductions was investigated. A process model was developed based on a mix of laboratory and industrial-level mass and energy flow data. Using these data a life cycle assessment (LCA) model was built. Sensitive process parameters were identified and used to develop a target production scenario for the OSB biorefinery. The findings suggest that the OSB biorefinery's deployment could substantially improve human and ecosystem health via reduction of select VOCs compared to conventionally produced OSB, gasoline, and acetic acid. Technological advancements are needed, however, to achieve desirable GHG reductions. PMID:21967719

  3. Inhibition effects on fermentation of hardwood extracted hemicelluloses by acetic acid and sodium.

    PubMed

    Walton, Sara; van Heiningen, Adriaan; van Walsum, Peter

    2010-03-01

    Extraction of hemicellulose from hardwood chips prior to pulping is a possible method for producing ethanol and acetic acid in an integrated forest bio-refinery, adding value to wood components normally relegated to boiler fuel. Hemicellulose was extracted from hardwood chips using green liquor, a pulping liquor intermediate consisting of aqueous NaOH, Na(2)CO(3), and Na(2)S, at 160 degrees C, held for 110 min in a 20 L rocking digester. The extracted liquor contained 3.7% solids and had a pH of 5.6. The organic content of the extracts was mainly xylo-oligosaccharides and acetic acid. Because it was dilute, the hemicellulose extract was concentrated by evaporation in a thin film evaporator. Concentrates from the evaporator reached levels of up to 10% solids. Inhibitors such as acetic acid and sodium were also concentrated by this method, presenting a challenge for the fermentation organisms. Fermentation experiments were conducted with Escherichia coli K011. The un-concentrated extract supported approximately 70% conversion of the initial sugars in 14 h. An extract evaporated down to 6% solids was also fermentable while a 10% solids extract was not initially fermentable. Strain conditioning was later found to enable fermentation at this level of concentration. Alternative processing schemes or inhibitor removal prior to fermentation are necessary to produce ethanol economically. PMID:19944597

  4. A theoretical study on the selective oxygen K-edge soft X-ray emission spectroscopy of liquid acetic acid

    NASA Astrophysics Data System (ADS)

    Nishida, Naohiro; Kanai, Seiji; Tokushima, Takashi; Horikawa, Yuka; Takahashi, Osamu

    2015-11-01

    We have performed theoretical calculations to reproduce the site-selective X-ray emission spectroscopy (XES) spectra of liquid acetic acid at the oxygen K-edge (OCdbnd O,1s and OOH,1s). Structure sampling of an acetic acid cluster model was performed from the ab initio molecular dynamics trajectory. Relative XES intensities for the core-hole excited state dynamics simulations were calculated using density functional theory. We found that the theoretical XES spectra reproduced well the experimental spectra and that these calculations gave us electronic and molecular structure information about liquid acetic acid.

  5. The integration of acetic acid iontophoresis, orthotic therapy and physical rehabilitation for chronic plantar fasciitis: a case study

    PubMed Central

    Costa, Ivano A; Dyson, Anita

    2007-01-01

    A 15-year-old female soccer player presented with chronic plantar fasciitis. She was treated with acetic acid iontophoresis and a combination of rehabilitation protocols, ultrasound, athletic taping, custom orthotics and soft tissue therapies with symptom resolution and return to full activities within a period of 6 weeks. She reported no significant return of symptoms post follow-up at 2 months. Acetic acid iontophoresis has shown promising results and further studies should be considered to determine clinical effectiveness. The combination of acetic acid iontophoresis with conservative treatments may promote recovery within a shorter duration compared to the use of one-method treatment approaches. PMID:17885679

  6. Lactic Acid Bacteria – Friend or Foe? Lactic Acid Bacteria in the Production of Polysaccharides and Fuel Ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) have been widely used in the production of fermented foods and as probiotics. Alternan is a glucan with a distinctive backbone structure of alternating a-(1,6) and a-(1,3) linkages produced by the LAB Leuconostoc mesenteroides. In recent years, we have developed improved...

  7. Lactic acid bacteria of foods and their current taxonomy.

    PubMed

    Stiles, M E; Holzapfel, W H

    1997-04-29

    Application of molecular genetic techniques to determine the relatedness of food-associated lactic acid bacteria has resulted in significant changes in their taxonomic classification. During the 1980s the genus Streptococcus was separated into the three genera Enterococcus, Lactococcus and Streptococcus. The lactic acid bacteria associated with foods now include species of the genera Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella. The genus Lactobacillus remains heterogeneous with over 60 species (ymol% G+C content ranging from 33 to 55), of which about one-third are strictly heterofermentative. However, many changes have been made and reorganization of the genus along lines that do not follow previous morphological or phenotypic differentiation from Leuconostoc and Pediococcus is being studied. Phylogenetically belonging to the Actinomyces branch of the bacteria, Lactobacillus bifidus has been moved to the genus Bifidobacterium also on account of its greater than 50 mol% G+C content. It is therefore no longer considered one of the lactic acid bacteria senso strictu, which form part of the Clostridium branch of the bacteria. The new genus Weissella has been established to include one member of the genus Leuconostoc (Leuc, paramesenteroides) and heterofermentative lactobacilli with unusual interpeptide bridges in the peptidoglycan. Contrary to the clear-cut division of the streptococci, morphological and physiological features of Weissella do not directly support this grouping which now incorporates species that produce D(-)- as well as DL-lactate. The new genus Carnobacterium is morphologically similar to the lactobacilli, but it shares some physiological similarities (e.g. growth at pH 9.5) and a common phylogenetic branch with the genus Enterococcus. The review includes information on the taxonomic changes and the relationship of the bacteria of food fermentation and spoilage. PMID:9168311

  8. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors

    PubMed Central

    Gabris, Christina; Bengelsdorf, Frank R; Drre, Peter

    2015-01-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.230.99?U mg?1 protein), butyrate kinase (Buk, acetate-CoA transferase (But, 3.247.64?U?mg?1 protein), were determined in cell free extracts of biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH3 and NH4+-N), and a negative dependency can be postulated. Thus, high concentrations of NH3 and NH4+-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities. PMID:26086956

  9. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors.

    PubMed

    Gabris, Christina; Bengelsdorf, Frank R; Drre, Peter

    2015-09-01

    This study aimed at the investigation of the mechanisms of acidogenesis, which is a key process during anaerobic digestion. To expose possible bottlenecks, specific activities of the key enzymes of acidification, such as acetate kinase (Ack, 0.23-0.99?U mg(-1) protein), butyrate kinase (Buk, acetate-CoA transferase (But, 3.24-7.64?U?mg(-1) protein), were determined in cell free extracts of biogas reactor content from three different biogas reactors. Furthermore, the detection of Ack was successful via Western blot analysis. Quantification of corresponding functional genes encoding Buk (buk) and But (but) was not feasible, although an amplification was possible. Thus, phylogenetic trees were constructed based on respective gene fragments. Four new clades of possible butyrate-producing bacteria were postulated, as well as bacteria of the genera Roseburia or Clostridium identified. The low Buk activity was in contrast to the high specific But activity in the analysed samples. Butyrate formation via Buk activity does barely occur in the investigated biogas reactor. Specific enzyme activities (Ack, Buk and But) in samples drawn from three different biogas reactors correlated with ammonia and ammonium concentrations (NH? and NH?(+)-N), and a negative dependency can be postulated. Thus, high concentrations of NH? and NH?(+)-N may lead to a bottleneck in acidogenesis due to decreased specific acidogenic enzyme activities. PMID:26086956

  10. Adaptive response to acetic acid in the highly resistant yeast species Zygosaccharomyces bailii revealed by quantitative proteomics.

    PubMed

    Guerreiro, Joana F; Mira, Nuno P; S-Correia, Isabel

    2012-08-01

    Zygosaccharomyces bailii is the most tolerant yeast species to acetic acid-induced toxicity, being able to grow in the presence of concentrations of this food preservative close to the legal limits. For this reason, Z. bailii is the most important microbial contaminant of acidic food products but the mechanisms behind this intrinsic resistance to acetic acid are very poorly characterized. To gain insights into the adaptive response and tolerance to acetic acid in Z. bailii, we explored an expression proteomics approach, based on quantitative 2DE, to identify alterations occurring in the protein content in response to sudden exposure or balanced growth in the presence of an inhibitory but nonlethal concentration of this weak acid. A coordinate increase in the content of proteins involved in cellular metabolism, in particular, in carbohydrate metabolism (Mdh1p, Aco1p, Cit1p, Idh2p, and Lpd1p) and energy generation (Atp1p and Atp2p), as well as in general and oxidative stress response (Sod2p, Dak2p, Omp2p) was registered. Results reinforce the concept that glucose and acetic acid are coconsumed in Z. bailii, with acetate being channeled into the tricarboxylic acid cycle. When acetic acid is the sole carbon source, results suggest the activation of gluconeogenic and pentose phosphate pathways, based on the increased content of several proteins of these pathways after glucose exhaustion. PMID:22685079

  11. Quantifying Effect of Lactic, Acetic, and Propionic Acids on Growth of Molds Isolated from Spoiled Bakery Products.

    PubMed

    Dagnas, Stphane; Gauvry, Emilie; Onno, Bernard; Membr, Jeanne-Marie

    2015-09-01

    The combined effect of undissociated lactic acid (0 to 180 mmol/liter), acetic acid (0 to 60 mmol/liter), and propionic acid (0 to 12 mmol/liter) on growth of the molds Aspergillus niger, Penicillium corylophilum, and Eurotium repens was quantified at pH 3.8 and 25C on malt extract agar acid medium. The impact of these acids on lag time for growth (?) was quantified through a gamma model based on the MIC. The impact of these acids on radial growth rate (?) was analyzed statistically through polynomial regression. Concerning ?, propionic acid exhibited a stronger inhibitory effect (MIC of 8 to 20 mmol/liter depending on the mold species) than did acetic acid (MIC of 23 to 72 mmol/liter). The lactic acid effect was null on E. repens and inhibitory on A. niger and P. corylophilum. These results were validated using independent sets of data for the three acids at pH 3.8 but for only acetic and propionic acids at pH 4.5. Concerning ?, the effect of acetic and propionic acids was slightly inhibitory for A. niger and P. corylophilum but was not significant for E. repens. In contrast, lactic acid promoted radial growth of all three molds. The gamma terms developed here for these acids will be incorporated in a predictive model for temperature, water activity, and acid. More generally, results for ? and ? will be used to identify and evaluate solutions for controlling bakery product spoilage. PMID:26319723

  12. Effects of acetic acid, ethanol, and SO(2) on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains.

    PubMed

    Vilela-Moura, Alice; Schuller, Dorit; Mendes-Faia, Arlete; Crte-Real, Manuela

    2010-07-01

    Herein, we report the influence of different combinations of initial concentration of acetic acid and ethanol on the removal of acetic acid from acidic wines by two commercial Saccharomyces cerevisiae strains S26 and S29. Both strains reduced the volatile acidity of an acidic wine (1.0 gl(-1) acetic acid and 11% (v/v) ethanol) by 78% and 48%, respectively. Acetic acid removal by strains S26 and S29 was associated with a decrease in ethanol concentration of 0.7 and 1.2% (v/v), respectively. Strain S26 revealed better removal efficiency due to its higher tolerance to stress factors imposed by acidic wines. Sulfur dioxide (SO(2)) in the concentration range 95-170 mg l(-1)inhibits the ability of both strains to reduce the volatile acidity of the acidic wine used under our experimental conditions. Therefore, deacidification should be carried out either in wines stabilized by filtration or in wines with SO(2)concentrations up to 70 mg l(-1). Deacidification of wines with the better performing strain S26 was associated with changes in the concentration of volatile compounds. The most pronounced increase was observed for isoamyl acetate (banana) and ethyl hexanoate (apple, pineapple), with an 18- and 25-fold increment, respectively, to values above the detection threshold. The acetaldehyde concentration of the deacidified wine was 2.3 times higher, and may have a detrimental effect on the wine aroma. Moreover, deacidification led to increased fatty acids concentration, but still within the range of values described for spontaneous fermentations, and with apparently no negative impact on the organoleptical properties. PMID:20390413

  13. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    PubMed Central

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently ?-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  14. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide.

    PubMed

    Jourdin, Ludovic; Grieger, Timothy; Monetti, Juliette; Flexer, Victoria; Freguia, Stefano; Lu, Yang; Chen, Jun; Romano, Mark; Wallace, Gordon G; Keller, Jurg

    2015-11-17

    High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 1 A m(-2) and an acetic acid production rate of 685 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 2% of the CO2 supplied as the sole carbon source and 100 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure. PMID:26484732

  15. Effects of acid adaptation of Escherichia coli O157:H7 on efficacy of acetic acid spray washes to decontaminate beef carcass tissue.

    PubMed

    Berry, E D; Cutter, C N

    2000-04-01

    Exposure to low pH and organic acids in the bovine gastrointestinal tract may result in the induced acid resistance of Escherichia coli O157:H7 and other pathogens that may subsequently contaminate beef carcasses. The effect of acid adaptation of E. coli O157:H7 on the ability of acetic acid spray washing to reduce populations of this organism on beef carcass tissue was examined. Stationary-phase acid resistance and the ability to induce acid tolerance were determined for a collection of E. coli O157:H7 strains by testing the survival of acid-adapted and unadapted cells in HCl-acidified tryptic soy broth (pH 2.5). Three E. coli O157:H7 strains that were categorized as acid resistant (ATCC 43895) or acid sensitive (ATCC 43890) or that demonstrated inducible acid tolerance (ATCC 43889) were used in spray wash studies. Prerigor beef carcass surface tissue was inoculated with bovine feces containing either acid-adapted or unadapted E. coli O157:H7. The beef tissue was subjected to spray washing treatments with water or 2% acetic acid or left untreated. For strains ATCC 43895 and 43889, larger populations of acid-adapted cells than of unadapted cells remained on beef tissue following 2% acetic acid treatments and these differences remained throughout 14 days of 4 degrees C storage. For both strains, numbers of acid-adapted cells remaining on tissue following 2% acetic acid treatments were similar to numbers of both acid-adapted and unadapted cells remaining on tissue following water treatments. For strain ATCC 43890, there was no difference between populations of acid-adapted and unadapted cells remaining on beef tissue immediately following 2% acetic acid treatments. These data indicate that adaptation to acidic conditions by E. coli O157:H7 can negatively influence the effectiveness of 2% acetic acid spray washing in reducing the numbers of this organism on carcasses. PMID:10742232

  16. Mesoxalaldehyde acetals

    SciTech Connect

    Gordeeva, G.N.; Kalashnikov, S.M.; Popov, Yu.N.; Kruglov, E.A.; Imashev, U.B.

    1987-11-10

    The treatment of methylglyoxal acetals by alkyl nitrites in the presence of the corresponding aliphatic alcohols and hydrochloric acid leads to the formation of linear mesoxalaldehyde acetals, whose structure was established by NMR spectroscopy and mass spectrometry. The major pathways for the decomposition of these molecules upon electron impact were established.

  17. Sources and sinks of formic, acetic, and pyruvic acids over central Amazonia. II - Wet season

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Andreae, M. O.; Berresheim, H.; Jacob, D. J.; Beecher, K. M.

    1990-01-01

    Potential sources and sinks of formic, acetic, and pyruvic acids over the Amazon forest were investigated using a photochemical model and data collected on gas phase concentrations of these acids in the forest canopy, boundary layer, and free troposphere over the central Amazon Basin during the 1987 wet season. It was found that the atmospheric reactions previously suggested in the literature as sources of carboxylic acids (i.e., the gas phase decomposition of isoprene, the reaction between CH3CO3 and a peroxide, and aqueous phase oxidation of CH2O) appear to be too slow to explain the observed concentrations, suggesting that other atmospheric reactions, so far unidentified, could make a major contribution to the carboxylic acid budgets.

  18. Cell wall structure and function in lactic acid bacteria

    PubMed Central

    2014-01-01

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  19. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux

    SciTech Connect

    Buxton, D.B.; Schwaiger, M.; Nguyen, A.; Phelps, M.E.; Schelbert, H.R.

    1988-09-01

    The kinetics of (1-14C)acetate oxidation in isolated perfused rat hearts have been determined over a range of perfusion conditions. Effluent measurements demonstrated that 14CO2 cleared biexponentially over 50 minutes after bolus injection of (1-14C)acetate into normoxic hearts perfused with 5 mM glucose and 10 mU/ml insulin. The clearance half-time (t1/2) for the predominant initial clearance phase was 3.1 +/- 0.5 minutes (n = 4). MVO2 was varied over a fourfold range by hypoxia and phenylephrine stimulation (t1/2, 7.2 +/- 1.2 and 2.2 +/- 0.2 minutes, respectively) and in the presence of alternate substrates (lactate, 2 mM; DL-3-hydroxybutyrate, 20 mM; and palmitate, 0.1 mM), which did not modify either tricarboxylic acid (TCA) cycle flux or acetate kinetics. A good correlation (r = 0.93) was observed between k, the rate constant for the initial phase of 14CO2 clearance, and TCA cycle flux, estimated from oxygen consumption. In contrast to results with (1-14C)acetate, lactate (2 mM) increased t1/2 for 14CO2 clearance from a bolus injection of (1-14C)palmitate from 3.0 +/- 0.4 minutes (n = 3) at control to 4.3 +/- 0.2 minutes (n = 3, p less than 0.01). Addition of acetate in nontracer amounts (0.5 or 5 mM) caused significant underestimation of TCA cycle flux when estimated with (1-14C)acetate. 14CO2 clearance accounted for 88-98% of total effluent 14C between 10 and 20 minutes after (1-14C)acetate bolus injection; rate constants for clearance of 14CO2 and total 14C clearance were very similar during this period, and these two rate constants did not differ significantly from each other under any conditions tested.

  20. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris. PMID:25554489

  1. Inhibition of Methanogenesis from Acetate in Granular Sludge by Long-Chain Fatty Acids

    PubMed Central

    Koster, Iman W.; Cramer, Albertus

    1987-01-01

    The effect of four saturated long-chain fatty acids (caprylic, capric, lauric, and myristic) and one unsaturated long-chain fatty acid (oleic) on the microbial formation of methane from acetate was investigated in batch anaerobic toxicity assays. The tests were carried out with granular sludge from an upflow anaerobic sludge bed reactor. In this sludge, Methanothrix spp. are the predominant acetoclastic methanogens. Lauric acid appeared to be the most versatile inhibitor: inhibition started at 1.6 mM, and at 4.3 mM the maximum specific acetoclastic methanogenic activity had been reduced to 50%. Caprylic acid appeared to be only slightly inhibitory. Oleic acid was almost as inhibitory as lauric acid. Although adsorption of the inhibitor on the cell wall might play an important role in the mechanism of inhibition, the inhibition was found to be correlated with concentration rather than with the amount per unit of biomass. In practical situations, as in anaerobic waste treatment processes, synergism can be expected to enhance the inhibition of methanogenesis. In the present research a background concentration of lauric acid below its MIC strongly enhanced the toxicity of capric acid and (to an even greater extent) myristic acid. PMID:16347288

  2. Measurements of Acetic Acid and its Relationships with Trace Gases on Appledore Island, ME during the ICARTT Campaign

    NASA Astrophysics Data System (ADS)

    Haase, K. B.; Sive, B. C.; White, M. L.; Russo, R. S.; Ambrose, J. L.; Zhou, Y.; Talbot, R. W.

    2011-12-01

    Acetic acid is ubiquitously present in the ambient atmosphere. Acetic acid, along with formic acid, is the one of the most abundant gas phase organic acids with mixing ratios reaching into the tens of parts per billion by volume (ppbv) range, and can influence the pH of aerosols and precipitation. The magnitude of the sources and sinks of acetic acid in the environment is not well understood (~24 Tg/yr of missing emissions globally), as they are widely dispersed and measurements are relatively challenging to accomplish using established techniques. Here, the application of Proton Transfer Reaction Mass Spectrometry (PTR-MS) is explored as a technique for quantification of ambient acetic acid. Direct calibrations of PTR-MS instruments at low ppbv levels show good linearity and fast response, and during the ICARTT campaign, a PTR-MS measured acetic acid and a suite of other volatile organic compounds on Appledore Island, ME over a period of 6 weeks. During the campaign, the average mixing ratio of acetic acid on the island was 607.9 341.8 (1?) pptv with a median of 530 pptv. Mixing ratios of acetic acid observed on the island showed diurnal variations corresponding land breeze/sea breeze transport, similar to other pollutants including ozone and carbon monoxide, indicating that acetic acid was advected to the sample site, and not a product of local emissions. Additionally, no mixing ratio dependence on wind speed was found, indicating that at this location, loss due to dry deposition to the ocean during transport was minimal. Over the course of the campaign, acetic acid showed complex relationships with a range of other VOCs, indicating a diverse set of sources and further showing the utility of the PTR-MS technique for monitoring acetic acid. Mixing ratios of acetic acid showed correlations with different compounds at different times, indicating a complex source signature comprised of (1) anthropogenic emissions, (2) biomass burning, and (3) photochemical sources. Evidence of anthropogenic sources of acetic acid is shown by correlations with acetaldehyde, ethane, ethyne, dichloroethene, and carbon monoxide. Combustion emissions of carbon monoxide show the possibility of using carbon monoxide as tracer of acetic acid levels, yielding an enhancement ratio of 8.71 0.54 pptv ppbv-1 of carbon monoxide. Acetic acid mixing ratios were also higher when acetonitrile mixing ratios were elevated, indicating contributions from a biomass combustion source. Mixing ratios of alkyl nitrates also trended with acetic acid at times, indicating periods when contributions from photochemical production and transport in aged air masses were likely. Major Funding: NOAA Office of Oceanic and Atmospheric Research under grant # NA04OAR4600154, and the USGS for the opportunity to present the data.

  3. Bacteriocins of lactic acid bacteria: extending the family.

    PubMed

    Alvarez-Sieiro, Patricia; Montalbán-López, Manuel; Mu, Dongdong; Kuipers, Oscar P

    2016-04-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are proteinaceous antimicrobial molecules with a diverse genetic origin, posttranslationally modified or not, that can help the producer organism to outcompete other bacterial species. In this review, we focus on the various types of bacteriocins that can be found in LAB and the organization and regulation of the gene clusters responsible for their production and biosynthesis, and consider the food applications of the prototype bacteriocins from LAB. Furthermore, we propose a revised classification of bacteriocins that can accommodate the increasing number of classes reported over the last years. PMID:26860942

  4. Investigations of the pore formation in the lead selenide films using glacial acetic acid- and nitric acid-based electrolyte

    PubMed Central

    2012-01-01

    We report a novel synthesis of porous PbSe layers on Si substrates by anodic electrochemical treatment of PbSe/CaF2/Si(111) epitaxial structures in an electrolyte solution based on glacial acetic acid and nitric acid. Electron microscopy, X-ray diffractometry, and local chemical microanalysis investigation results for the porous layers are presented. Average size of the synthesized mesopores with approximately 1010 cm?2 surface density was determined to be 22 nm. The observed phenomenon of the active selenium redeposition on the mesopore walls during anodic treatment is discussed. PMID:22726822

  5. Survival mechanism of Escherichia coli O157:H7 against combined treatment with acetic acid and sodium chloride.

    PubMed

    Lee, Sun-Young; Kang, Dong-Hyun

    2016-05-01

    The combination of salt and acid is commonly used in the production of many foods, including pickles and fermented foods. However, in our previous studies, the addition of salt significantly reduced the inhibitory effect of acetic acid on Escherichia coli O157:H7 in laboratory media and pickled cucumbers. Therefore, this study was conducted to determine the mechanism by which salt confers resistance against acetic acid in E. coli O157:H7. The addition of high concentrations (up to 9% or 15% [w/v]) of salt increased the resistance of E. coli O157:H7 to acetic acid treatment. Combined treatment with acetic acid and salt showed varying results among different bacterial strains (an antagonistic effect for E. coli O157:H7 and Shigella and a synergistic effect for Listeria monocytogenes and Staphylococcus aureus). The addition of salt increased the cytoplasmic pH of E. coli O157:H7, but decreased the cytoplasmic pH of L. monocytogenes and S. aureus on treatment with acetic acid. Therefore, the addition of salt increases the acid resistance of E. coli O157:H7 possibly by increasing its acid resistance response and consequently preventing the acidification of its cytoplasm by organic acids. PMID:26742620

  6. Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria

    PubMed Central

    Kaur, Baljinder; Kumar, Balvir

    2013-01-01

    Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB), and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives. PMID:24066293

  7. Identification of acetate-oxidizing bacteria in a coastal marine surface sediment by RNA-stable isotope probing in anoxic slurries and intact cores.

    PubMed

    Vandieken, Verona; Thamdrup, Bo

    2013-05-01

    We investigated the terminal electron-accepting pathways and the acetate-oxidizing bacteria in surface sediment (0-5 mm depth) of Aarhus Bay, Denmark, in anoxic slurry and intact core incubations. In the intact cores, oxygen, nitrate, oxides of manganese and iron, and sulfate were all available and likely all used as electron acceptors by the microbial community, whereas microbial iron and sulfate reduction dominated in the slurries. The availability of electron acceptors clearly affected which organisms were labeled by 16S rRNA-stable isotope probing (SIP). Members of the Oceanospirillaceae were identified as (13) C-acetate oxidizers in both types of incubations, but bacteria related to Colwellia and Arcobacter oxidized acetate in the intact core, while members of the Desulfuromonadales and Acidithiobacillaceae did so in the slurry incubation. Desulfuromonadales sequences also dominated 16S rRNA gene clone libraries from the highest positive dilution of the acetate-oxidizing most probable number cultures with manganese and iron oxides. Thus, members of Desulfuromonadales are likely important for acetate oxidation coupled to iron and manganese reduction in situ, while the identified Gammaproteobacteria and affiliates of Arcobacter may utilize oxygen, nitrate and manganese oxides. Our study further highlights some of the biases that are associated with the use of RNA-SIP as well as slurry and intact core incubations. PMID:23289443

  8. Cross ketonization of Cuphea sp. oil with acetic acid over a composite oxide of Fe, Ce, and Al

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to demonstrate the viability of the cross ketonization reaction with the triacylglycerol from Cuphea sp. and acetic acid in a fixed-bed plug-flow reactor. The seed oil from Cuphea sp. contains up to 71% decanoic acid and the reaction of this fatty acid residue with ac...

  9. Regulation of indole-3-acetic acid biosynthesis by branched-chain amino acids in Enterobacter cloacae UW5.

    PubMed

    Parsons, Cassandra V; Harris, Danielle M M; Patten, Cheryl L

    2015-09-01

    The soil bacterium Enterobacter cloacae UW5 produces the rhizosphere signaling molecule indole-3-acetic acid (IAA) via the indolepyruvate pathway. Expression of indolepyruvate decarboxylase, a key pathway enzyme encoded by ipdC, is upregulated by the transcription factor TyrR in response to aromatic amino acids. Some members of the TyrR regulon may also be controlled by branched-chain amino acids and here we show that expression from the ipdC promoter and production of IAA are downregulated by valine, leucine and isoleucine. Regulation of the IAA synthesis pathway by both aromatic and branched-chain amino acids suggests a broader role for this pathway in bacterial physiology, beyond plant interactions. PMID:26347301

  10. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium...

  11. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium...

  12. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium...

  13. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium...

  14. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium...

  15. Biohydrogenation of C20 polyunsaturated fatty acids by anaerobic bacteria[S

    PubMed Central

    Sakurama, Haruko; Kishino, Shigenobu; Mihara, Kousuke; Ando, Akinori; Kita, Keiko; Takahashi, Satomi; Shimizu, Sakayu; Ogawa, Jun

    2014-01-01

    The PUFAs include many bioactive lipids. The microbial metabolism of C18 PUFAs is known to produce their bioactive isomers, such as conjugated FAs and hydroxy FAs, but there is little information on that of C20 PUFAs. In this study, we aimed to obtain anaerobic bacteria with the ability to produce novel PUFAs from C20 PUFAs. Through the screening of ∼100 strains of anaerobic bacteria, Clostridium bifermentans JCM 1386 was selected as a strain with the ability to saturate PUFAs during anaerobic cultivation. This strain converted arachidonic acid (cis-5,cis-8,cis-11,cis-14-eicosatetraenoic acid) and EPA (cis-5,cis-8,cis-11,cis-14,cis-17-EPA) into cis-5,cis-8,trans-13-eicosatrienoic acid and cis-5,cis-8,trans-13,cis-17-eicosatetraenoic acid, giving yields of 57% and 67% against the added PUFAs, respectively. This is the first report of the isolation of a bacterium transforming C20 PUFAs into corresponding non-methylene-interrupted FAs. We further investigated the substrate specificity of the biohydrogenation by this strain and revealed that it can convert two cis double bonds at the ω6 and ω9 positions in various C18 and C20 PUFAs into a trans double bond at the ω7 position. This study should serve to open up the development of novel potentially bioactive PUFAs. PMID:25002034

  16. The Partitioning of Acetic, Formic, and Phosphoric Acids Between Liquid Water and Steam

    SciTech Connect

    Gruszkiewicz, M.S.; Marshall, S.L.; Palmer, D.A.; Simonson, J.M.

    1999-06-22

    The chemical carryover of impurities and treatment chemicals from the boiler to the steam phase, and ultimately to the low-pressure turbine and condenser, can be quantified based on laboratory experiments preformed over ranges of temperature, pH, and composition. The two major assumptions are that thermodynamic equilibrium is maintained and no deposition, adsorption or decomposition occurs. The most recent results on acetic, formic and phosphoric acids are presented with consideration of the effects of hydrolysis and dimerization reactions. Complications arising from thermal decomposition of the organic acids are discussed. The partitioning constants for these acids and other solutes measured in this program have been incorporated into a simple thermodynamic computer code that calculates the effect of chemical and mechanical carryover on the composition of the condensate formed to varying extents in the water/steam cycle.

  17. Mechanism of formation of the carboxyl of acetate by acetogenic bacteria

    SciTech Connect

    Ragsdale, S.W.

    1991-01-01

    The final steps in acetyl-CoA synthesis are performed by carbon monoxide dehydrogenase (CODH), a nickel/iron-sulfur protein. Over the past three years, our goal has been to identify the steps leading to the formation of the carbonyl group of acetyl-CoA in Clostridium thermoaceticum. We have studied an EPR- detectible CODH-CO intermediate, called the Ni-Fe-C intermediate. CO, CO{sub 2}, and the carboxyl of pyruvate appear to enter the pathway via the Ni-Fe-C intermediate which serves as the precurser of the carbonyl of acetyl-CoA. Studies of the Ni-Fe-C species by Moessbauer, electron nuclear double resonance (ENDOR), and EPR spectroscopies and controlled potential coulometry, have suggested two possible structures for this center: a(4Fe-4S) center bonded to a nickel complex by a ligand bridge and a (Ni-3Fe-4S) center. The CO is proposed to be bound to either the Ni or Fe components of the complex. As described in detail below, we have studied each step shown and have made progress in elucidating the chemical structures and redox properties of the intermediates. It now seems likely that the Ni-Fe center which binds CO also is the site at which methyl-CODH and acetyl-CODH are formed. In a study of the structure and function of the other Fe-S centers in CODH, we have characterized a (4Fe-4S) cluster, a (Ni-Fe-C) center, and an iron-sulfur center with two oxidation reduction potentials which could be the precurser of the Ni-Fe-C species. In collaboration with Lars Ljungdahl (Univ. of Georgia), we have determined the complete amino acid sequence of CODH. We also have discovered that CODH can reduce nitrous oxide to nitrogen at significant rates. 25 refs., 8 figs.

  18. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi.

    PubMed

    Trias, Rosalia; Baeras, Llus; Montesinos, Emilio; Badosa, Esther

    2008-12-01

    This study evaluated the efficacy of lactic acid bacteria (LAB) isolated from fresh fruits and vegetables as biocontrol agents against the phytopathogenic and spoilage bacteria and fungi, Xanthomonas campestris, Erwinia carotovora, Penicillium expansum, Monilinia laxa, and Botrytis cinerea. The antagonistic activity of 496 LAB strains was tested in vitro and all tested microorganisms except P. expansum were inhibited by at least one isolate. The 496 isolates were also analyzed for the inhibition of P. expansum infection in wounds of Golden Delicious apples. Four strains (TC97, AC318, TM319, and FF441) reduced the fungal rot diameter of the apples by 20%; only Weissella cibaria strain TM128 decreased infection levels by 50%. Cell-free supernatants of selected antagonistic bacteria were studied to determine the nature of the antimicrobial compounds produced. Organic acids were the preferred mediators of inhibition but hydrogen peroxide was also detected when strains BC48, TM128, PM141 and FF441 were tested against E. carotovora. While previous reports of antifungal activity by LAB are scarce, our results support the potential of LAB as biocontrol agents against postharvest rot. PMID:19204894

  19. Graft Loss Due to Percutaneous Sclerotherapy of a Lymphocele Using Acetic Acid After Renal Transplantation

    SciTech Connect

    Adani, Gian Luigi Baccarani, Umberto; Bresadola, Vittorio; Lorenzin, Dario; Montanaro, Domenico; Risaliti, Andrea; Terrosu, Giovanni; Sponza, Massimo; Bresadola, Fabrizio

    2005-12-15

    Development of lymphoceles after renal transplantation is a well-described complication that occurs in up to 40% of recipients. The gold standard approach for the treatment of symptomatic cases is not well defined yet. Management options include simple aspiration, marsupialization by a laparotomy or laparoscopy, and percutaneous sclerotherapy using different chemical agents. Those approaches can be associated, and they depend on type, dimension, and localization of the lymphocele. Percutaneous sclerotherapy is considered to be less invasive than the surgical approach; it can be used safely and effectively, with low morbidity, in huge, rapidly accumulating lymphoceles. Moreover, this approach is highly successful, and the complication rate is acceptable; the major drawback is a recurrence rate close to 20%. We herewith report a renal transplant case in which the patient developed a symptomatic lymphocele that was initially treated by ultrasound-guided percutaneous sclerotherapy with ethanol and thereafter using acetic acid for early recurrence. A few hours after injection of acetic acid in the lymphatic cavity, the patient started to complain of acute pain localized to the renal graft and fever. An ultrasound of the abdomen revealed thrombosis of the renal vein and artery. The patient was immediately taken to the operating room, where the diagnosis of vascular thrombosis was confirmed and the graft was urgently explanted. In conclusion, we strongly suggest avoiding the use of acetic acid as a slerosating agent for the percutaneous treatment of post-renal transplant lymphocele because, based on our experience, it could be complicated by vascular thrombosis of the kidney, ending in graft loss.

  20. Glycolaldehyde, methyl formate and acetic acid adsorption and thermal desorption from interstellar ices

    NASA Astrophysics Data System (ADS)

    Burke, Daren J.; Puletti, Fabrizio; Brown, Wendy A.; Woods, Paul M.; Viti, Serena; Slater, Ben

    2015-02-01

    We have undertaken a detailed investigation of the adsorption, desorption and thermal processing of the astrobiologically significant isomers glycolaldehyde, acetic acid and methyl formate. Here, we present the results of laboratory infrared and temperature programmed desorption (TPD) studies of the three isomers from model interstellar ices adsorbed on a carbonaceous dust grain analogue surface. Laboratory infrared data show that the isomers can be clearly distinguished on the basis of their infrared spectra, which has implications for observations of interstellar ice spectra. Laboratory TPD data also show that the three isomers can be distinguished on the basis of their thermal desorption behaviour. In particular, TPD data show that the isomers cannot be treated the same way in astrophysical models of desorption. The desorption of glycolaldehyde and acetic acid from water-dominated ices is very similar, with desorption being mainly dictated by water ice. However, methyl formate also desorbs from the surface of the ice, as a pure desorption feature, and therefore desorbs at a lower temperature than the other two isomers. This is more clearly indicated by models of the desorption on astrophysical time-scales corresponding to the heating rate of 25 and 5 M⊙ stars. For a 25 M⊙ star, our model shows that a proportion of the methyl formate can be found in the gas phase at earlier times compared to glycolaldehyde and acetic acid. This has implications for the observation and detection of these molecules, and potentially explains why methyl formate has been observed in a wider range of astrophysical environments than the other two isomers.

  1. Toxicokinetics and Oral Bioavailability of Halogenated Acetic Acids Mixtures in Naive and GSTzeta-Depleted Rats

    SciTech Connect

    Saghir, Shakil A.; Schultz, Irv R.

    2005-04-01

    Pharmacokinetics of halogenated acetic acid (HAA) mixtures in native and GSTzeta depleted rats was investigated. Rats were administered orally or i.v. to Mixture-1 (monobromo- dichloro-, chlorodibromo-, tribromo- acetic acids) or Mixture-2 (bromochloro-, dibromo-, trichloro- bromodichloro- acetic acids) at a dose of 25 ?mol/kg HAA and blood samples collected up to 36 h. GSTzeta depleted rats were also orally dosed with each mixture and euthanized at 0.25, 0.5, 1, 2 and 4 h to determine tissue distribution. In Mixture-1, GSTzeta depletion only affected the pharmacokinetics of DCAA, which increased the elimination t? from 9 min to 1.3 h. After oral administration, DCAA exhibited a complex time-course plasma profile with secondary peaks appearing long after completion of the initial absorption phase. This phenomenon coincided with elevated DCA levels in the lower portion of the GI tract compared to CDBAA and TBAA. For Mixture-2, all di-HAAs were eliminated extremely rapidly from plasma in both na?ve and GSTzeta depleted animals (t? was 4-11 min in na?ve and 11-24 min in GSTzeta depleted rats), t? of BDCAA and TCAA was 3.5 and 12 h in na?ve and 2.3 and 7.5 h in GSTzeta depleted rats. The primary difference in the pharmacokinetics among HAAs when administered as mixture was the total body clearance (Clb) which was reduced compared to after individual administration. These results suggest competitive interactions between tri- and di-HAAs beyond what would be predicted from individual HAA studies. For di-HAAs, the total dose is important as clearance is dose dependent due to competition for GSTzeta. When considering HAAs dosimetry, importance should be placed on both the components of the mixture and prior exposure history to di-HAAs.

  2. Isolation of thermophilic L-lactic acid producing bacteria showing homo-fermentative manner under high aeration condition.

    PubMed

    Tongpim, Saowanit; Meidong, Ratchanu; Poudel, Pramod; Yoshino, Satoshi; Okugawa, Yuki; Tashiro, Yukihiro; Taniguchi, Masayuki; Sakai, Kenji

    2014-03-01

    By applying non-sterile open fermentation of food waste, various thermotolerant l-lactic acid-producing bacteria were isolated and identified. The predominant bacterial isolates showing higher accumulation of l-lactic acid belong to 3 groups of Bacillus coagulans, according to their 16S rRNA gene sequence similarities. B. coagulans strains M21 and M36 produced high amounts of l-lactic acid of high optical purity and lactic acid selectivity in model kitchen refuse medium and glucose-yeast extract-peptone medium. Other thermotolerant isolates resembling to Bacillus humi, B. ruris, B. subtilis, B. niacini and B. soli were also identified. These bacteria produced low amounts of l-lactic acid of more than 99% optical purity. All isolated strains showed the highest growth rate at temperatures around 55-60C. They showed unique responses to various oxygen supply conditions. The majority of isolates produced l-lactic acid at a low overall oxygen transfer coefficient (KLa); however, acetic acid was produced instead of l-lactic acid at a high KLa. B. coagulans M21 was the only strain that produced high, consistent, and reproducible amounts of optically pure l-lactic acid (>99% optical purity) under high and low KLa conditions in a homo-fermentative manner. PMID:24119530

  3. Efficient sugar release by acetic acid ethanol-based organosolv pretreatment and enzymatic saccharification.

    PubMed

    Zhang, Hongdan; Wu, Shubin

    2014-12-01

    Acetic acid ethanol-based organosolv pretreatment of sugar cane bagasse was performed to enhance enzymatic hydrolysis. The effect of different parameters (including temperature, reaction time, solvent concentration, and acid catalyst dose) on pretreatment prehydrolyzate and subsequent enzymatic digestibility was determined. During the pretreatment process, 11.83 g of xylose based on 100 g of raw material could be obtained. After the ethanol-based pretreatment, the enzymatic hydrolysis was enhanced and the highest glucose yield of 40.99 g based on 100 g of raw material could be obtained, representing 93.8% of glucose in sugar cane bagasse. The maximum total sugar yields occurred at 190 C, 45 min, 60:40 ethanol/water, and 5% dosage of acetic acid, reaching 58.36 g (including 17.69 g of xylose and 40.67 g of glucose) based on 100 g of raw material, representing 85.4% of total sugars in raw material. Furthermore, characterization of the pretreated sugar cane bagasse using X-ray diffraction and scanning electron microscopy analyses were also developed. The results suggested that ethanol-based organosolv pretreatment could enhance enzymatic digestibilities because of the delignification and removal of xylan. PMID:25393929

  4. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions

    PubMed Central

    Elshaghabee, Fouad M. F.; Bockelmann, Wilhelm; Meske, Diana; de Vrese, Michael; Walte, Hans-Georg; Schrezenmeir, Juergen; Heller, Knut J.

    2016-01-01

    To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD+/NADP+, drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial metabolism may be important in preventing or promoting NAFLD. PMID:26858714

  5. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions.

    PubMed

    Elshaghabee, Fouad M F; Bockelmann, Wilhelm; Meske, Diana; de Vrese, Michael; Walte, Hans-Georg; Schrezenmeir, Juergen; Heller, Knut J

    2016-01-01

    To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD(+)/NADP(+), drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial metabolism may be important in preventing or promoting NAFLD. PMID:26858714

  6. Hydroxylamine hydrochloride-acetic acid-soluble and -insoluble fractions of pelagic sediment: Readsorption revisited

    USGS Publications Warehouse

    Piper, D.Z.; Wandless, G.A.

    1992-01-01

    The extraction of the rare earth elements (REE) from deep-ocean pelagic sediment, using hydroxylamine hydrochloride-acetic acid, leads to the separation of approximately 70% of the bulk REE content into the soluble fraction and 30% into the insoluble fraction. The REE pattern of the soluble fraction, i.e., the content of REE normalized to average shale on an element-by-element basis and plotted against atomic number, resembles the pattern for seawater, whereas the pattern, as well as the absolute concentrations, in the insoluble fraction resembles the North American shale composite. These results preclude significant readsorption of the REE by the insoluble phases during the leaching procedure.

  7. Benzimidazole as corrosion inhibitor for heat treated 6061 Al- SiCp composite in acetic acid

    NASA Astrophysics Data System (ADS)

    Chacko, Melby; Nayak, Jagannath

    2015-06-01

    6061 Al-SiCpcomposite was solutionizedat 350 °C for 30 minutes and water quenched. It was then underaged at 140 °C (T6 treatment). The aging behaviour of the composite was studied using Rockwell B hardness measurement. Corrosion behaviour of the underaged sample was studied in different concentrations of acetic acid and at different temperatures. Benzimidazole at different concentrations was used for the inhibition studies. Inhibition efficiency of benzimidazole was calculated for different experimental conditions. Thermodynamic parameters were found out which suggested benzimidazole is an efficient inhibitor and it adsorbed on to the surface of composite by mixed adsorption where chemisorption is predominant.

  8. Crystal structure of 3-acet-oxy-2-methyl-benzoic acid.

    PubMed

    Saranya, Matheswaran; Subashini, Annamalai; Arunagiri, Chidambaram; Muthiah, Packianathan Thomas

    2015-07-01

    In the title mol-ecule, C10H10O4, the carb-oxy-lic acid group is twisted by 11.37 (15)° from the plane of the benzene ring and the acet-oxy group is twisted from this plane by 86.60 (17)°. In the crystal, mol-ecules are linked by pairs of O-H⋯O hydrogen bonds, forming inversion dimers with the expected R 2 (2)(8) graph-set motif. PMID:26279915

  9. [Hydroxylation of indolyl-3-acetic acid by the fungus aspergillus niger IBFM-F-12].

    PubMed

    Koshcheenko, K A; Baklashova, T G; Kozlovskiĭ, A G; Arinbasarov, M U; Skriabin, G K

    1977-01-01

    Physiological and biochemical properties of the culture of Aspergillus niger IBPM F 12 carrying out hydroxylation IAA in the 4-, 5-, 6-positions of the indole nucleus were studied. The optimal composition of the medium for the cultivation was established. The transformation was performed by the washed fungal mycelium taken in the middle of the growth log-phase at a substrate concentration of I g/l. The correlation between the hydroxylase activity and pH, temperaure and biomass quantity was shown. The method of isolating 4-, 5- and 6-hydroxyindolyl-3-acetic acids in preparative amounts was developed. PMID:866301

  10. Concentration of Indole-3-acetic Acid and Its Derivatives in Plants 1

    PubMed Central

    Bandurski, Robert S.; Schulze, Aga

    1977-01-01

    Seeds of oat, coconut, soybean, sunflower, rice, millet, kidney bean, buckwheat, wheat, and corn and vegetative tissue of oat, pea, and corn were assayed for free indole-3-acetic acid (IAA), esterified IAA, and peptidyl IAA. Three conclusions were drawn: (a) all plant tissues examined contained most of their IAA as derivatives, either esterified or as a peptide; (b) the cereal grains examined contained mainly ester IAA; (c) the legume seeds examined contained mainly peptidyl IAA. Errors in analysis of free and bound IAA are discussed. PMID:16660061

  11. The potential of lactic acid bacteria for the production of safe and wholesome food.

    PubMed

    Hammes, W P; Tichaczek, P S

    1994-03-01

    By tradition lactic acid bacteria (LAB) are involved in the production of fermented foods. These constitute one quarter of our diet and are characterized by a safe history, certain beneficial health effects, and an extended shelf life when compared with raw materials. The various fermenting substrates are habitats for specific LAB that differ in their metabolic potential. The health effects exerted by LAB are the following: 1. Production of lactic acid and minor amounts of acetic and formic acid. These cause: a drop in pH and thereby growth inhibition of food spoiling or poisoning bacteria; killing of certain pathogens; detoxification by degradation of noxious compounds of plant origin (usually in combination with plant-derived enzymatic activities). 2. Production of antimicrobial compounds (e.g. bacteriocins, H2O2, fatty acids). 3. Probiotic effects as live organisms in food. The wholesomeness of LAB can also be extended to fields outside human nutrition, as they may act as probiotics in animal production or as plant protectives in agriculture and thus contribute to healthy raw materials for food production. Modern concepts or perspectives of the application of LAB include the following: 1. Selection of the best adapted and safely performing LAB strains. 2. Selection of strains with probiotic effects. 3. Selection of strains with health-promoting effects (e.g. production of vitamins or essential amino acids, anti-tumour activity). 4. Selection of strains with food protective activities (inhibiting spoilage or food pathogens). These strains can be added to food or used as starters in food fermentations. They may be found as wild-type organisms or can be obtained by genetic engineering.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8178575

  12. Biohydrogenation of C20 polyunsaturated fatty acids by anaerobic bacteria.

    PubMed

    Sakurama, Haruko; Kishino, Shigenobu; Mihara, Kousuke; Ando, Akinori; Kita, Keiko; Takahashi, Satomi; Shimizu, Sakayu; Ogawa, Jun

    2014-09-01

    The PUFAs include many bioactive lipids. The microbial metabolism of C18 PUFAs is known to produce their bioactive isomers, such as conjugated FAs and hydroxy FAs, but there is little information on that of C20 PUFAs. In this study, we aimed to obtain anaerobic bacteria with the ability to produce novel PUFAs from C20 PUFAs. Through the screening of ?100 strains of anaerobic bacteria, Clostridium bifermentans JCM 1386 was selected as a strain with the ability to saturate PUFAs during anaerobic cultivation. This strain converted arachidonic acid (cis-5,cis-8,cis-11,cis-14-eicosatetraenoic acid) and EPA (cis-5,cis-8,cis-11,cis-14,cis-17-EPA) into cis-5,cis-8,trans-13-eicosatrienoic acid and cis-5,cis-8,trans-13,cis-17-eicosatetraenoic acid, giving yields of 57% and 67% against the added PUFAs, respectively. This is the first report of the isolation of a bacterium transforming C20 PUFAs into corresponding non-methylene-interrupted FAs. We further investigated the substrate specificity of the biohydrogenation by this strain and revealed that it can convert two cis double bonds at the ?6 and ?9 positions in various C18 and C20 PUFAs into a trans double bond at the ?7 position. This study should serve to open up the development of novel potentially bioactive PUFAs. PMID:25002034

  13. A peculiar stimulatory effect of acetic and lactic acid on growth and fermentative metabolism of Zygosaccharomyces bailii.

    PubMed

    Dang, T D T; Vermeulen, A; Ragaert, P; Devlieghere, F

    2009-05-01

    Stimulatory or protective effects of organic acids at low concentrations, e.g. acetic and lactic acid, on microorganisms have previously been reported. Especially in case of Zygosaccharomyces bailii, a peculiar growth stimulation by these two acids has recently been noticed. In order to elucidate this interesting phenomenon, growth and fermentative metabolism of Z. bailii was investigated in media with low pH (pH 4.0), high sugar (15% (w/v)) and different acetic and lactic acid concentrations. At both experimental temperatures (7 and 30 degrees C), a growth stimulation in the presence of 2.5% (v/v) lactic acid was observed. Furthermore at 7 degrees C, the yeast exhibited another unusual behaviour as it grew much faster in media containing 1.25% (v/v) acetic acid than in the control (without any acid). Production of fermentative metabolites was also increased together with the enhanced growth at both temperatures. These possible stimulatory effects of acetic and lactic acid should be taken into consideration when the acids are used at low doses for food preservative purpose. Presence of the acids may stimulate Z. bailii growth and fermentative metabolism, particularly at refrigeration temperature, consequently resulting in an earlier spoilage. PMID:19269576

  14. Potential of lactic acid bacteria in aflatoxin risk mitigation.

    PubMed

    Ahlberg, Sara H; Joutsjoki, Vesa; Korhonen, Hannu J

    2015-08-17

    Aflatoxins (AF) are ubiquitous mycotoxins contaminating food and feed. Consumption of contaminated food and feed can cause a severe health risk to humans and animals. A novel biological method could reduce the health risks of aflatoxins through inhibiting mold growth and binding aflatoxins. Lactic acid bacteria (LAB) are commonly used in fermented food production. LAB are known to inhibit mold growth and, to some extent, to bind aflatoxins in different matrices. Reduced mold growth and aflatoxin production may be caused by competition for nutrients between bacterial cells and fungi. Most likely, binding of aflatoxins depends on environmental conditions and is strain-specific. Killed bacteria cells possess consistently better binding abilities for aflatoxin B1 (AFB1) than viable cells. Lactobacilli especially are relatively well studied and provide noticeable possibilities in binding of aflatoxin B1 and M1 in food. It seems that binding is reversible and that bound aflatoxins are released later on (Haskard et al., 2001; Peltonen et al., 2001). This literature review suggests that novel biological methods, such as lactic acid bacteria, show potential in mitigating toxic effects of aflatoxins in food and feed. PMID:26001523

  15. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH

    PubMed Central

    Davis, C. R.; Wibowo, D. J.; Lee, T. H.; Fleet, G. H.

    1986-01-01

    Commercially produced red wines were adjusted to pH 3.0, 3.2, 3.5, 3.7, or 4.0 and examined during and after malolactic fermentation for growth of lactic acid bacteria and changes in the concentrations of carbohydrates, organic acids, amino acids, and acetaldehyde. With one exception, Leuconostoc oenos conducted the malolactic fermentation in all wines and was the only species to occur in wines at pH below 3.5. Malolactic fermentation by L. oenos was accompanied by degradation of malic, citric, and fumaric acids and production of lactic and acetic acids. The concentrations of arginine, histidine, and acetaldehyde also decreased at this stage, but the behavior of hexose and pentose sugars was complicated by other factors. Pediococcus parvulus conducted the malolactic fermentation in one wine containing 72 mg of total sulfur dioxide per liter. Fumaric and citric acids were not degraded during this malolactic fermentation, but hexose sugars were metabolized. P. parvulus and species of Lactobacillus grew after malolactic fermentation in wines with pH adjusted above 3.5. This growth was accompanied by the utilization of wine sugars and production of lactic and acetic acids. PMID:16347015

  16. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH.

    PubMed

    Davis, C R; Wibowo, D J; Lee, T H; Fleet, G H

    1986-03-01

    Commercially produced red wines were adjusted to pH 3.0, 3.2, 3.5, 3.7, or 4.0 and examined during and after malolactic fermentation for growth of lactic acid bacteria and changes in the concentrations of carbohydrates, organic acids, amino acids, and acetaldehyde. With one exception, Leuconostoc oenos conducted the malolactic fermentation in all wines and was the only species to occur in wines at pH below 3.5. Malolactic fermentation by L. oenos was accompanied by degradation of malic, citric, and fumaric acids and production of lactic and acetic acids. The concentrations of arginine, histidine, and acetaldehyde also decreased at this stage, but the behavior of hexose and pentose sugars was complicated by other factors. Pediococcus parvulus conducted the malolactic fermentation in one wine containing 72 mg of total sulfur dioxide per liter. Fumaric and citric acids were not degraded during this malolactic fermentation, but hexose sugars were metabolized. P. parvulus and species of Lactobacillus grew after malolactic fermentation in wines with pH adjusted above 3.5. This growth was accompanied by the utilization of wine sugars and production of lactic and acetic acids. PMID:16347015

  17. Industrial production of amino acids by coryneform bacteria.

    PubMed

    Hermann, Thomas

    2003-09-01

    In the 1950s Corynebacterium glutamicum was found to be a very efficient producer of L-glutamic acid. Since this time biotechnological processes with bacteria of the species Corynebacterium developed to be among the most important in terms of tonnage and economical value. L-Glutamic acid and L-lysine are bulk products nowadays. L-Valine, L-isoleucine, L-threonine, L-aspartic acid and L-alanine are among other amino acids produced by Corynebacteria. Applications range from feed to food and pharmaceutical products. The growing market for amino acids produced with Corynebacteria led to significant improvements in bioprocess and downstream technology as well as in molecular biology. During the last decade big efforts were made to increase the productivity and to decrease the production costs. This review gives an overview of the world market for amino acids produced by Corynebacteria. Significant improvements in bioprocess technology, i.e. repeated fed batch or continuous production are summarised. Bioprocess technology itself was improved furthermore by application of more sophisticated feeding and automatisation strategies. Even though several amino acids developed towards commodities in the last decade, side aspects of the production process like sterility or detection of contaminants still have increasing relevance. Finally one focus of this review is on recent developments in downstream technology. PMID:12948636

  18. Flow Cytometric Assessment of Viability of Lactic Acid Bacteria

    PubMed Central

    Bunthof, Christine J.; Bloemen, Karen; Breeuwer, Pieter; Rombouts, Frank M.; Abee, Tjakko

    2001-01-01

    The viability of lactic acid bacteria is crucial for their applications as dairy starters and as probiotics. We investigated the usefulness of flow cytometry (FCM) for viability assessment of lactic acid bacteria. The esterase substrate carboxyfluorescein diacetate (cFDA) and the dye exclusion DNA binding probes propidium iodide (PI) and TOTO-1 were tested for live/dead discrimination using a Lactococcus, a Streptococcus, three Lactobacillus, two Leuconostoc, an Enterococcus, and a Pediococcus species. Plate count experiments were performed to validate the results of the FCM assays. The results showed that cFDA was an accurate stain for live cells; in exponential-phase cultures almost all cells were labeled, while 70°C heat-killed cultures were left unstained. PI did not give clear live/dead discrimination for some of the species. TOTO-1, on the other hand, gave clear discrimination between live and dead cells. The combination of cFDA and TOTO-1 gave the best results. Well-separated subpopulations of live and dead cells could be detected with FCM. Cell sorting of the subpopulations and subsequent plating on agar medium provided direct evidence that cFDA labels the culturable subpopulation and that TOTO-1 labels the nonculturable subpopulation. Applied to cultures exposed to deconjugated bile salts or to acid, cFDA and TOTO-1 proved to be accurate indicators of culturability. Our experiments with lactic acid bacteria demonstrated that the combination of cFDA and TOTO-1 makes an excellent live/dead assay with versatile applications. PMID:11319119

  19. Techno-economic Analysis for the Thermochemical Conversion of Lignocellulosic Biomass to Ethanol via Acetic Acid Synthesis

    SciTech Connect

    Zhu, Yunhua; Jones, Susanne B.

    2009-04-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). This study performs a techno-economic analysis of the thermo chemical conversion of biomass to ethanol, through methanol and acetic acid, followed by hydrogenation of acetic acid to ethanol. The conversion of syngas to methanol and methanol to acetic acid are well-proven technologies with high conversions and yields. This study was undertaken to determine if this highly selective route to ethanol could provide an already established economically attractive route to ethanol. The feedstock was assumed to be wood chips at 2000 metric ton/day (dry basis). Two types of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. Process models were developed and a cost analysis was performed. The carbon monoxide used for acetic acid synthesis from methanol and the hydrogen used for hydrogenation were assumed to be purchased and not derived from the gasifier. Analysis results show that ethanol selling prices are estimated to be $2.79/gallon and $2.81/gallon for the indirectly-heated gasifier and the directly-heated gasifier systems, respectively (1stQ 2008$, 10% ROI). These costs are above the ethanol market price for during the same time period ($1.50 - $2.50/gal). The co-production of acetic acid greatly improves the process economics as shown in the figure below. Here, 20% of the acetic acid is diverted from ethanol production and assumed to be sold as a co-product at the prevailing market prices ($0.40 - $0.60/lb acetic acid), resulting in competitive ethanol production costs.

  20. Development of Mucosal Vaccines Based on Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Bermdez-Humarn, Luis G.; Innocentin, Silvia; Lefvre, Francois; Chatel, Jean-Marc; Langella, Philippe

    Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.

  1. Development of vaccine delivery vehicles based on lactic acid bacteria.

    PubMed

    Tarahomjoo, Shirin

    2012-06-01

    Live recombinant bacteria represent attractive antigen delivery systems able to induce both mucosal and systemic immune responses against heterologous antigens. The first live recombinant bacterial vectors developed were derived from attenuated pathogenic microorganisms. In addition to the difficulties often encountered in the construction of stable attenuated mutants of pathogenic organisms, attenuated pathogens may retain a residual virulence level that renders them unsuitable for the vaccination of partially immunocompetent individuals such as infants, the elderly or immunocompromised patients. As an alternative to this strategy, non-pathogenic food-grade lactic acid bacteria (LAB) maybe used as live antigen carriers. This article reviews LAB vaccines constructed using antigens other than tetanus toxin fragment C, against bacterial, viral, and parasitic infective agents, for which protection studies have been performed. The antigens utilized for the development of LAB vaccines are briefly described, along with the efficiency of these systems in protection studies. Moreover, the key factors affecting the performance of these systems are highlighted. PMID:21901278

  2. Current taxonomy of phages infecting lactic acid bacteria

    PubMed Central

    Mahony, Jennifer; van Sinderen, Douwe

    2013-01-01

    Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp., and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species. PMID:24478767

  3. Lipoteichoic acid synthesis and function in gram-positive bacteria.

    PubMed

    Percy, Matthew G; Gründling, Angelika

    2014-01-01

    Lipoteichoic acid (LTA) is an important cell wall polymer found in gram-positive bacteria. Although the exact role of LTA is unknown, mutants display significant growth and physiological defects. Additionally, modification of the LTA backbone structure can provide protection against cationic antimicrobial peptides. This review provides an overview of the different LTA types and their chemical structures and synthesis pathways. The occurrence and mechanisms of LTA modifications with D-alanyl, glycosyl, and phosphocholine residues will be discussed along with their functions. Similarities between the production of type I LTA and osmoregulated periplasmic glucans in gram-negative bacteria are highlighted, indicating that LTA should perhaps be compared to these polymers rather than lipopolysaccharide, as is presently the case. Lastly, current efforts to use LTAs as vaccine candidates, synthesis proteins as novel antimicrobial targets, and LTA mutant strains as improved probiotics are highlighted. PMID:24819367

  4. Preliminary analysis of Monterey kerogen by mild stepwise oxidation with sodium dichromate in glacial acetic acid

    NASA Astrophysics Data System (ADS)

    Barakat, A. O.; Yen, T. F.

    1988-02-01

    Kerogen from Monterey shale was degraded by a controlled, mild stepwise oxidation with sodium dichromate in acetic acid. The products of each step were examined by capillary gas chromatography and combined gas chromatography-mass spectrometry analyses of their methyl esters. Major oxidation products were saturated normal monocarboxylic acids (C 6-C 34), saturated normal ?,?-dicarboxylic acids (C 4-C 34), and isoprenoid acids (C 14-C 21, except C 18). Less dominant were aromatic acids, branched monocarboxylic acids (C 6-C 16), cyclic structures, heterocyclic compounds, as well as some unidentified compounds. On the basis of the evidence obtained from the qualitative and quantitative variation of the products with duration of oxidation, the following results were obtained: (a) the kerogen nucleus is mainly composed of long-chain polymethylene, cross-linked aliphatic structure from which protrude n- alkyl chains and minor amounts of isoprenoid and non-isoprenoid branched hydrocarbons; (b) the periphery, compared to the nucleus, contains a greater proportion of n- alkyl and isoprenoid moieties, particularly the C 14, C 16, and C 18n- alkyl chains as well as the C 15 and C 16 isoprenoid chains; (c) other subordinate structures present include phenyl and tolyl groups as well as alicyclic and heterocyclic compounds.

  5. Cytoplasmic pH mediates pH taxis and weak-acid repellent taxis of bacteria.

    PubMed Central

    Kihara, M; Macnab, R M

    1981-01-01

    Bacteria migrate away from an acid pH and from a number of chemicals, including organic acids such as acetate; the basis for detection of these environmental cues has not been demonstrated. Membrane-permeant weak acids caused prolonged tumbling when added to Salmonella sp. or Escherichia coli cells at pH 5.5. Tethered Salmonella cells went from a prestimulus behavior of 14% clockwise rotation to 80% clockwise rotation when 40 mM acetate was added and remained this way for more than 30 min. A low external pH in the absence of weak acid did not markedly affect steady-state tumbling frequency. Among the weak acids tested, the rank for acidity (salicylate greater than benzoate greater than acetate greater than 5,5-dimethyl-2,4-oxazolidinedione) was the same as the rank for the ability to collapse the transmembrane pH gradient and to cause tumbling. At pH 7.0, the tumbling responses caused by the weak acids were much briefer. Indole, a non-weak-acid repellent, did not cause prolonged tumbling at low pH. Two chemotaxis mutants (a Salmonella mutant defective in the chemotaxis methylesterase and an E. coli mutant defective in the methyl-accepting protein in MCP I) showed inverse responses of enhanced counterclockwise rotation in the first 1 min after acetate addition. The latter mutant had been found previously to be defective in the sensing of gradients of extracellular pH and (at neutral pH) of acetate. We conclude (i) that taxes away from acid pH and membrane-permeant weak acids are both mediated by a pH-sensitive component located either in the cytoplasm or on the cytoplasmic side of the membrane, rather than by an external receptor (as in the case of the attractants), and (ii) that both of these taxes involve components of the chemotaxis methylation system, at least in the early phase of the response. PMID:7009572

  6. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions.

    PubMed

    Woo, Ji-Min; Yang, Kyung-Mi; Kim, Sae-Um; Blank, Lars M; Park, Jin-Byung

    2014-07-01

    Cellular responses of Saccharomyces cerevisiae to high temperatures of up to 42C during ethanol fermentation at a high glucose concentration (i.e., 100g/L) were investigated. Increased temperature correlated with stimulated glucose uptake to produce not only the thermal protectant glycerol but also ethanol and acetic acid. Carbon flux into the tricarboxylic acid (TCA) cycle correlated positively with cultivation temperature. These results indicate that the increased demand for energy (in the form of ATP), most likely caused by multiple stressors, including heat, acetic acid, and ethanol, was matched by both the fermentation and respiration pathways. Notably, acetic acid production was substantially stimulated compared to that of other metabolites during growth at increased temperature. The acetic acid produced in addition to ethanol seemed to subsequently result in adverse effects, leading to increased production of reactive oxygen species. This, in turn, appeared to cause the specific growth rate, and glucose uptake rate reduced leading to a decrease of the specific ethanol production rate far before glucose depletion. These results suggest that adverse effects from heat, acetic acid, ethanol, and oxidative stressors are synergistic, resulting in a decrease of the specific growth rate and ethanol production rate and, hence, are major determinants of cell stability and ethanol fermentation performance of S. cerevisiae at high temperatures. The results are discussed in the context of possible applications. PMID:24706214

  7. Bio-conversion of apple pomace into ethanol and acetic acid: Enzymatic hydrolysis and fermentation.

    PubMed

    Parmar, Indu; Rupasinghe, H P Vasantha

    2013-02-01

    Enzymatic hydrolysis of cellulose present in apple pomace was investigated using process variables such as enzyme activity of commercial cellulase, pectinase and β-glucosidase, temperature, pH, time, pre-treatments and end product separation. The interaction of enzyme activity, temperature, pH and time had a significant effect (P<0.05) on release of glucose. Optimal conditions of enzymatic saccharification were: enzyme activity of cellulase, 43units; pectinase, 183units; β-glucosidase, 41units/g dry matter (DM); temperature, 40°C; pH 4.0 and time, 24h. The sugars were fermented using Saccharomyces cerevisae yielding 19.0g ethanol/100g DM. Further bio-conversion using Acetobacter aceti resulted in the production of acetic acid at a concentration of 61.4g/100g DM. The present study demonstrates an improved process of enzymatic hydrolysis of apple pomace to yield sugars and concomitant bioconversion to produce ethanol and acetic acid. PMID:23334018

  8. Dynamics of H Atom Production from Photodissociation of Acetic Acid-d(1).

    PubMed

    Park, Sung Man; Kwon, Chan Ho; Kim, Hong Lae

    2015-09-10

    Detailed dissociation dynamics of H(D) from acetic acid-d1 (CH3COOD) has been investigated upon electronic excitation to the (1)(n,?*), S1 state at 205 nm by measuring laser-induced fluorescence spectra of the fragment H(D) atoms. In addition, quantum yields for the H(D) atom dissociation channels, CH3COO + D and CH2COOD + H, were measured, which are 0.07 0.03 and 0.17 0.03, respectively. From the Doppler broadened spectra, the center-of-mass translational energy releases into products were obtained. To determine the detailed dissociation dynamics, two-dimensional potential energy surfaces along the reaction coordinate including the coordinate directly coupled to the dissociation coordinate were examined by employing quantum chemical calculations. For the CH3COO + D channel, the coupled coordinate is the dihedral angle of D against the COO plane. The dissociation of D(H) from acetic acid should take place along the triplet surface via surface crossing from the initially excited S1 state. Along the triplet surface, an exit channel barrier exists, which originates from the structural difference between the T1 and the product asymptotes, especially the dihedral angle of D against the COO plane. The observed translational energy releases were successfully estimated by the barrier impulsive model based upon the calculated two-dimensional potential energy surfaces at the B3LYP/cc-pVDZ level of theory. PMID:26294176

  9. Preclinical in vitro and in vivo activity of 5,6-dimethylxanthenone-4-acetic acid.

    PubMed Central

    Laws, A. L.; Matthew, A. M.; Double, J. A.; Bibby, M. C.

    1995-01-01

    5,6-Dimethylxanthenone-4-acetic acid (5,6-MeXAA) is a fused tricyclic analogue of flavone acetic acid (FAA) which was developed in an attempt to improve on the activity of FAA. Previous studies have shown 5,6-MeXAA to be curative in 80% of mice bearing colon 38 tumours and 12 times more dose potent than FAA. This investigation has demonstrated that a murine colon tumour cell line (MAC15A) is approximately 60 times more sensitive to 5,6-MeXAA than to FAA, although these differences were not seen in three human cell lines tested. 5,6-MeXAA caused significant blood flow shutdown and haemorrhagic necrosis in subcutaneous MAC15A tumours in syngeneic and nude hosts, but measurable changes in tumour volume were seen only in syngeneic hosts. 5,6-MeXAA was inactive against intraperitoneal MAC15A but produced significant anti-tumour effects against the same cell line inoculated via an intravenous route. FAA has been shown previously to be inactive in this model. Interestingly, the effects against lung colonies were not accompanied by obvious necrotic changes, suggesting that they may be the result of increased direct cytotoxicity rather than an indirect host mechanism. Further studies to investigate the effects against systemic tumour deposits are under way. Images Figure 3 PMID:7779712

  10. Enhancement of the wet properties of transparent chitosan-acetic-acid-salt films using microfibrillated cellulose.

    PubMed

    Nordqvist, David; Idermark, Johan; Hedenqvist, Mikael S; Gllstedt, Mikael; Ankerfors, Mikael; Lindstrm, Tom

    2007-08-01

    This report presents a new route to enhance the wet properties of chitosan-acetic-acid-salt films using microfibrillated cellulose (MFC). The enhancement makes it easier to form chitosan-acetic-acid-salt films into various shapes at room temperature in the wet state. Chitosan with MFC was compared with the well-known buffer treatment. It was observed that films containing 5 wt % MFC were visually identical to the buffered/unbuffered films without MFC. Field-emission scanning electron microscopy indicated that MFC formed a network with uniformly distributed fibrils and fibril bundles in the chitosan matrix. The addition of MFC reduced the risk of creases and deformation in the wet state because of a greater wet stiffness. The wet films containing MFC were also extensible. Although the stiffness, strength and extensibility were highest for the buffered films, the wet strength of the MFC-containing unbuffered films was sufficient for wet forming operations. The effects of MFC on the mechanical properties of the dry chitosan films were small or absent. It was concluded that the addition of MFC is an acceptable alternative to buffering for shaping chitosan films/products in the wet state. The advantages are that the "extra" processing step associated with buffering is unnecessary and that the film matrix remains more water-soluble. PMID:17645308

  11. Saturable Uptake of Indol-3yl-Acetic Acid by Maize Roots

    PubMed Central

    Martin, Hilary V.; Pilet, Paul-Emile

    1986-01-01

    The uptake of 5-[3H]indol-3yl-acetic acid (IAA*) by segments of Zea mays L. roots was measured in the presence of nonradioactive indol-3yl-acetic acid (IAA°) at different concentrations. IAA uptake was found to have a nonsaturable component and a saturable part with (at pH 5.0) an apparent Km of 0.285 micromolar and apparent Vmax 55.0 picomoles per gram fresh mass per minute. These results are consistent with those which might be expected for a saturable carrier capable of regulating IAA levels. High performance liquid chromatography analyses showed that very little metabolism of IAA* took place during 4 minute uptake experiments. Whereas nonsaturable uptake was similar for all 2 millimeter long segments prepared within the 2 to 10 millimeter region, saturable uptake was greatest for the 2 to 4 millimeter region. High levels of uptake by stelar (as compared with cortical) segments are partly attributable to the saturable carrier, and also to a high level of uptake by nonsaturable processes. The carrier may play an essential role in controlling IAA levels in maize roots, especially the accumulation of IAA in the apical region. The increase in saturable uptake toward the root tip may also contribute to the acropetal polarity of auxin transport. PMID:16664920

  12. Azithromycin and erythromycin ameliorate the extent of colonic damage induced by acetic acid in rats

    SciTech Connect

    Mahgoub, Afaf . E-mail: afaf_mahgoub@yahoo.com; El-Medany, Azza; Mustafa, Ali; Arafah, Maha; Moursi, Mahmoud

    2005-05-15

    Ulcerative colitis is a common inflammatory bowel disease (IBD) of unknown etiology. Recent studies have revealed the role of some microorganisms in the initiation and perpetuation of IBD. The role of antibiotics in the possible modulation of colon inflammation is still uncertain. In this study, we evaluated the effects of two macrolides, namely azithromycin and erythromycin, at different doses on the extent and severity of ulcerative colitis caused by intracolonic administration of 3% acetic acid in rats. The lesions and the inflammatory response were assessed by histology and measurement of myeloperoxidase (MPO) activity, nitric oxide synthetase (NOS) and tumor necrosis factor alpha (TNF{alpha}) in colonic tissues. Inflammation following acetic acid instillation was characterized by oedema, diffuse inflammatory cell infiltration and necrosis. Increase in MPO, NOS and TNF{alpha} was detected in the colonic tissues. Administration of either azithromycin or erythromycin at different dosage (10, 20 and 40 mg/kg orally, daily for 5 consecutive days) significantly (P < 0.05) reduced the colonic damage, MPO and NOS activities as well as TNF{alpha} level. This reduction was highly significant with azithromycin when given at a dose of 40 mg/kg. It is concluded that azithromycin and erythromycin may have a beneficial therapeutic role in ulcerative colitis.

  13. Experimental densities of binary mixtures: Acetic acid with benzene at several temperatures

    NASA Astrophysics Data System (ADS)

    Bolat, Georgiana; Sutiman, Daniel; Lisa, Gabriela

    2011-03-01

    Hydrocarbons are the most commonly used chemicals in the hydrocarbon processing industries. The knowledge of thermodynamic properties of various binary organic or inorganic mixtures is essential in many practical aspects concerning the mass transport and fluid flow. Such properties are important from the fundamental point of view to understand their mixing behaviour (molecular interactions), as well for practical applications (e.g. in the petrochemical industry). The density of acetic acid-benzene mixtures at several temperatures (T = 296.15, 302.15, 308.15, 314.15 and 319.15 K) were measured over the whole composition range and atmospheric pressure, along with the physical-chemical properties of the pure components (e.g. density, viscosity, refractive index at 298.15 K). The excess molar volumes at the above-mentioned temperatures were calculated from experimental data and fitted by using a new polynomial equation comparing the results with the known equation of Redlich-Kister. The excess volumes for acetic acid with benzene were positive and increase with the temperature. Results were analyzed in terms of molecular interactions. This research was financed by the postdoc grant PERFORM-ERA-ID 57649.

  14. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    SciTech Connect

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterial populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.

  15. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    PubMed

    Geissler, Andreas J; Behr, Jrgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-01

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis. PMID:26398285

  16. An intercomparison of measurement systems for vapor and particulate phase concentrations of formic and acetic acids

    NASA Technical Reports Server (NTRS)

    Keene, William C.; Talbot, Robert W.; Andreae, Meinrat O.; Beecher, Kristene; Berresheim, Harold

    1989-01-01

    During June 1986, eight systems for measuring vapor phase and four for measuring particulate phase concentrations of formic acid (HCOOH) and acetic acid (CH3COOH) were intercompared in central Virginia. HCOOH and CH3COOH vapors were sampled by condensate, mist, Chromosorb 103 GC resin, NaOH-coated annular denuders, NaOH-impregnated quartz filters, K2CO3 and NaCO3-impregnated cellulose filters, and Nylasorb membranes. Atmospheric aerosol was collected on Teflon and Nuclepore filters using both hi-vol and lo-vol systems to measure particulate phase concentrations. Performances of the mist chamber and K2CO3-impregnated filter techniques were evaluated using zero air and ambient air spiked with HCOOH(g) and CH3COOH(g), and formaldehyde from permeation sources. The advantages and drawbacks of these methods are reported and discussed.

  17. Liquid-liquid equilibria of the ternary system water + acetic acid + 1-hexanol

    SciTech Connect

    Fahim, M.A.; Al-Muhtaseb, S.A.; Al-Nashef, I.M.

    1997-01-01

    The recovery of organic acids from dilute solutions resulting from fermentation processes is important and many solvents have been tried to improve such recovery. Liquid-liquid equilibria for the ternary system water + acetic acid + 1-hexanol were measured over a temperature range of (288 to 323) K. The results were used to estimate the interaction parameters between each of the three compounds for the NRTL and UNIQUAC models and between each of the main groups of H{sub 2}O, CH{sub 2} (paraffinic CH{sub 2}), OH, and COOH for the UNIFAC model as a function of temperature. The estimated interaction parameters were successfully used to predict the equilibrium compositions by the three models. The NRTL equation was the most accurate model in correlating the overall equilibrium compositions of the studied system. The UNIQUAC and UNIFAC models satisfactorily predicted the equilibrium compositions.

  18. An intercomparison of measurement systems for vapor and particulate phase concentrations of formic and acetic acids

    NASA Astrophysics Data System (ADS)

    Keene, William C.; Talbot, Robert W.; Andreae, Meinrat O.; Beecher, Kristene; Berresheim, Harold

    1989-05-01

    During June 1986, eight systems for measuring vapor phase and four for measuring particulate phase concentrations of formic acid (HCOOH) and acetic acid (CH3COOH) were intercompared in central Virginia. HCOOH and CH3COOH vapors were sampled by condensate, mist, Chromosorb 103 GC resin, NaOH-coated annular denuders, NaOH-impregnated quartz filters, K2CO3 and NaCO3-impregnated cellulose filters, and Nylasorb membranes. Atmospheric aerosol was collected on Teflon and Nuclepore filters using both hi-vol and lo-vol systems to measure particulate phase concentrations. Performances of the mist chamber and K2CO3-impregnated filter techniques were evaluated using zero air and ambient air spiked with HCOOH(g) and CH3COOH(g), and formaldehyde from permeation sources. The advantages and drawbacks of these methods are reported and discussed.

  19. Matrix Isolation IR Spectroscopy of 1:1 Complexes of Acetic Acid and Trihaloacetic Acids with Water and Benzene

    NASA Astrophysics Data System (ADS)

    Banerjee, Pujarini; Chakraborty, Tapas

    2015-06-01

    A comparative study of infrared spectral effects for 1:1 complex formation of acetic acid (AA), trifluoroacetic acid (TFAA) and trichloroacetic acid (TFAA) with water and benzene has been carried out under a matrix isolation environment. Despite the large difference in aqueous phase acidities of the three acids, the measured νb{OH}stretching frequencies of the monomers of the three molecules are found to be almost same, and in agreement with gas phase electronic structure calculations. Intrinsic acidities are expressed only in the presence of the proton acceptors, water or benzene. Although electronic structure calculations predict distinct νb{OH} red-shifts for all three acids, the measured spectral features for TCAA and TFAA in this range do not allow unambiguous assignments for the 1:1 complex. On the other hand, the spectral changes in the νb{C=O} region are more systematic, and the observed changes are consistent with predictions of theory. Components of overall binding energy of each complex have been obtained from energy decomposition analysis, which allows determination of the relative contributions of various physical forces towards overall stability of the complexes, and the details will be discussed in the talk.

  20. Occurrence and role of lactic acid bacteria in seafood products.

    PubMed

    Françoise, Leroi

    2010-09-01

    Lactic acid bacteria (LAB) in fish flesh has long been disregarded because the high post-mortem pH, the low percentage of sugars, the high content of low molecular weight nitrogenous molecules and the low temperature of temperate waters favor the rapid growth of pH-sensitive psychrotolerant marine Gram-negative bacteria like Pseudomonas, Shewanella and Photobacterium. In seafood packed in both vacuum (VP) and modified atmosphere (MAP) packaging commonly CO(2) enriched, the growth of the Gram-negative aerobic bacteria group (predominantly pseudomonads) is effectively inhibited and the number reached by LAB during storage is higher than that achieved in air but always several log units lower than the trimethylamine oxide (TMA-O) reducing and CO(2)-resistant organisms (Shewanella putrefaciens and Photobacterium phosphoreum). Accordingly, LAB are not of much concern in seafood neither aerobically stored nor VP and MAP. However, they may acquire great relevance in lightly preserved fish products (LPFP), including those VP or MAP. Fresh fish presents a very high water activity (aw) value (0.99). However, aw is reduced to about 0.96 when salt (typically 6% WP) is added to the product. As a result, aerobic Gram-negative bacteria are inhibited, which allows the growth of other organisms more resistant to reduced aw, i.e. LAB, and then they may acquire a central role in the microbial events occurring in the product. Changes in consumers' habits have led to an increase of convenient LPFP with a relative long shelf-life (at least 3 weeks) which, on the other hand, may constitute a serious problem from a safety perspective since Listeria monocytogenes and sometimes Clostridium botulinum (mainly type E) may able to grow. In any case the LAB function in marine products is complex, depending on species, strains, interaction with other bacteria and the food matrix. They may have no particular effect or they may be responsible for spoilage and, in certain cases, they may even exert a bioprotective effect in relation to undesirable bacteria. The bioprotective potential of endogenous LAB in relation to pathogens and spoiling bacteria has often been highlighted. However, the technology is still in its infancy compared with foods dairy and meat products in which either the carbohydrate content (dairy products) or sugar and salt added (meat products) favor the acidification by LAB that enable a natural preservation of the product. Successful studies on LAB as probiotic for fish intensify, but this potential is still to be explored for human. Although not usual, some applications of LAB for fermentation of marine products and by-products are described. PMID:20630312

  1. Biosynthesis of Indole-3-Acetic Acid by New Klebsiella oxytoca Free and Immobilized Cells on Inorganic Matrices

    PubMed Central

    Celloto, Valria R.; Oliveira, Arildo J. B.; Gonalves, Jos E.; Watanabe, Ceclia S. F.; Matioli, Graciette; Gonalves, Regina A. C.

    2012-01-01

    While many natural and synthetic compounds exhibit auxin-like activity in bioassays, indole-3-acetic acid (IAA) is recognized as the key auxin in most plants. IAA has been implicated in almost all aspects of plant growth and development and a large array of bacteria have been reported to enhance plant growth. Cells of Klebsiella oxytoca isolated from the rhizosphere of Aspidosperma polyneuron and immobilized by adsorption on different inorganic matrices were used for IAA production. The matrices were prepared by the sol-gel method and the silica-titanium was the most suitable matrix for effective immobilization. In operational stability assays, IAA production was maintained after four cycles of production, obtaining 42.80 2.03??g?mL?1 of IAA in the third cycle, which corresponds to a 54% increase in production in relation to the first cycle, whereas free cells began losing activity after the first cycle. After 90 days of storage at 4C the immobilized cells showed the slight reduction of IAA production without significant loss of activity. PMID:22623901

  2. Fermentative Conversion of Cellulose to Acetic Acid and Cellulolytic Enzyme Production by a Bacterial Mixed Culture Obtained from Sewage Sludge

    PubMed Central

    Khan, A. W.; Wall, Duncan; van den Berg, L.

    1981-01-01

    A simple procedure that uses a cellulose-enriched culture started from sewage sludge was developed for producing cellulolytic enzymes and converting cellulose to acetic acid rather than CH4 and CO2. In this procedure, the culture which converts cellulose to CH4 and CO2 was mixed with a synthetic medium and cellulose and heated to 80C for 15 min before incubation. The end products formed were acetic acid, propionic acid, CO2, and traces of ethanol and H2. Supernatants from 6- to 10-day-old cultures contained 16 to 36 mM acetic acid. Cellulolytic enzymes in the supernatant were stable at 2C under aerobic conditions for up to 4 weeks and had the ability to hydrolyze carboxymethyl cellulose, a microcystalline cellulose, cellobiose, xylan, and filter paper to reducing sugars. PMID:16345772

  3. Acetic acid-assisted hydrothermal fractionation of empty fruit bunches for high hemicellulosic sugar recovery with low byproducts.

    PubMed

    Kim, Dong Young; Um, Byung Hwan; Oh, Kyeong Keun

    2015-07-01

    Xylose, mannose, and galactose (xmg) recovery from empty fruit bunches using acetic acid-assisted hydrothermal (AAH) fractionation method was investigated. Acetic acid has been demonstrated to be effective in xmg recovery in comparison with the liquid hot-water (LHW) fractionation. The maximum xmg recovery yield (50.7 %) from the empty fruit bunch (EFB) was obtained using AAH fractionation at optimum conditions (6.9 wt.% acetic acid at 170 C and for 18 min); whereas, only 16.2 % of xmg recovery was obtained from the LHW fractionation at the same reaction conditions (170 C and 18 min). Releasing out the glucose from EFB was kept at low level (<1.0 %) through all tested conditions and consequently negligible 5-HMF and formic acid were analyzed in the hydrolyzate. The production of furfural was also resulted with extremely low level (1.0 g/L). PMID:25962829

  4. Enantioselective synthesis of 1,2-dihydronaphthalene-1-carbaldehydes by addition of boronates to isochromene acetals catalyzed by tartaric acid.

    PubMed

    Luan, Yi; Barbato, Keith S; Moquist, Philip N; Kodama, Tomohiro; Schaus, Scott E

    2015-03-11

    Tartaric acid is an ideal asymmetric catalyst as it is abundant, cheap, and environmentally friendly. (+)-Tartaric acid was found to catalyze a novel enantioselective [4 + 2] cycloaddition of isochromene acetals and vinylboronates. A variety of substituted isochromene acetals were tolerated, furnishing the desired dihydronaphthalenes and dihydrobenzofluorene products in good yields. High enantiomeric ratios (up to 98.5:1.5) and excellent diastereoselectivities (all >99:1) were observed employing 10 mol % of (+)-tartaric acid as the catalyst, in combination with 5 mol % of Ho(OTf)3. PMID:25715172

  5. Wall Teichoic Acids of Gram-Positive Bacteria

    PubMed Central

    Brown, Stephanie; Santa Maria, John P.; Walker, Suzanne

    2013-01-01

    The peptidoglycan layers of many gram-positive bacteria are densely functionalized with anionic glycopolymers called wall teichoic acids (WTAs). These polymers play crucial roles in cell shape determination, regulation of cell division, and other fundamental aspects of gram-positive bacterial physiology. Additionally, WTAs are important in pathogenesis and play key roles in antibiotic resistance. We provide an overview of WTA structure and biosynthesis, review recent studies on the biological roles of these polymers, and highlight remaining questions. We also discuss prospects for exploiting WTA biosynthesis as a target for new therapies to overcome resistant infections. PMID:24024634

  6. Wall teichoic acids of gram-positive bacteria.

    PubMed

    Brown, Stephanie; Santa Maria, John P; Walker, Suzanne

    2013-01-01

    The peptidoglycan layers of many gram-positive bacteria are densely functionalized with anionic glycopolymers known as wall teichoic acids (WTAs). These polymers play crucial roles in cell shape determination, regulation of cell division, and other fundamental aspects of gram-positive bacterial physiology. Additionally, WTAs are important in pathogenesis and play key roles in antibiotic resistance. We provide an overview of WTA structure and biosynthesis, review recent studies on the biological roles of these polymers, and highlight remaining questions. We also discuss prospects for exploiting WTA biosynthesis as a target for new therapies to overcome resistant infections. PMID:24024634

  7. Developmental toxicity of mixtures: the water disinfection by-products dichloro-, dibromo- and bromochloro acetic acid in rat embryo culture

    EPA Science Inventory

    The chlorination of drinking water results in production of numerous disinfection by-products (DBPs). One of the important classes of DBPs is the haloacetic acids. We have previously shown that the haloacetic acids (HAs), dichloro (DCA), dibromo (DBA) and bromochloro (BCA) acetic...

  8. Acetal-linked branched poly(dimethyl-aminoethyl methacrylate) as an acid cleavable gene vector with reduced cytotoxicity.

    PubMed

    Cao, H L; Dong, Y X; Aied, A; Zhao, T Y; Chen, X; Wang, W X; Pandit, A

    2014-12-21

    An acid labile branched PDMAEMA/acetal copolymer with amino group was synthesized by the DE-ATRP and followed by Michael addition. The degradation of the polymer was strongly pH-dependent. High nucleic acid transfection efficiency with low cytotoxicity was observed compared to its non-degradable copolymer counterpart. PMID:25358033

  9. Rapid identification, by use of the LTQ Orbitrap hybrid FT mass spectrometer, of antifungal compounds produced by lactic acid bacteria.

    PubMed

    Brosnan, Brid; Coffey, Aidan; Arendt, Elke K; Furey, Ambrose

    2012-07-01

    Fungal contamination of food causes health and economic concerns. Several species of lactic acid bacteria (LAB) have antifungal activity which may inhibit food spoilage fungi. LAB have GRAS (generally recognised as safe) status, allowing them to be safely integrated into food systems as natural food preservatives. A method is described herein that enables rapid screening of LAB cultures for 25 known antifungal compounds associated with LAB. This is the first chromatographic method developed which enables the rapid identification of a wide range of antifungal compounds by a single method with a short analysis time (23 min). Chromatographic separation was achieved on a Phenomenex Gemini C18 100A column (150 mm??2.0 mm; 5 ?m) by use of a mobile-phase gradient prepared from (A) water containing acetic acid (0.1%) and (B) acetonitrile containing acetic acid (0.1%), at a flow rate of 0.3 L min(-1). The gradient involved a progressive ramp from 10-95% acetonitrile over 13 min. The LC was coupled to a hybrid LTQ Orbitrap XL fourier-transform mass spectrometer (FTMS) operated in negative ionisation mode. High mass accuracy data (<3 ppm) obtained by use of high resolution (30,000 K) enabled unequivocal identification of the target compounds. This method allows comprehensive profiling and comparison of different LAB strains and is also capable of the identification of additional compounds produced by these bacteria. PMID:22526638

  10. PHOTOLYSIS RATES OF (2,4,5-TRICHLOROPHENOXY)ACETIC ACID AND 4-AMINO-3,5,6-TRICHLOROPICOLINIC ACID IN NATURAL WATERS

    EPA Science Inventory

    Photoreactions of (2,45-trichlorophenoxy) acetic acid (2,4,5-T) and 4-amino-3,5,6-trichloropicolinic acid (picloram) were studied in distilled water, natural water samples, fulvic acid solutions, and solutions containing iron (III) and/or hydrogen peroxide to determine the effect...

  11. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae.

    PubMed

    Cheng, Cheng; Zhao, Xinqing; Zhang, Mingming; Bai, Fengwu

    2016-03-01

    RTT109 is a histone acetyltransferase for the acetylation of histone H3. It is still not clear whether RTT109 plays a role in regulation of gene expression under environmental stresses. In this study, the involvement of RTT109 in acetic acid stress tolerance of Saccharomyces cerevisiae was investigated. It was revealed that the absence of RTT109 enhanced resistance to 5.5 g L(-1) acetic acid, which was indicated by improved growth of RTT109Δ mutant compared with that of the wild-type BY4741 strain. Meanwhile, the lag phase was shortened for 48 h and glucose consumption completed 36 h in advance for RTT109Δ mutant compared to the wild-type strain, with ethanol production rate increased from 0.39 to 0.60 g L(-1) h(-1). Significantly, elevated transcription levels of HSP12, CTT1 and GSH1, as well as increased activities of antioxidant enzymes were observed in RTT109Δ under acetic acid stress. Improved flocculation of RTT109Δ compared to that of the control strain BY4741 under the acetic acid stress was also observed. These results suggest that the absence of RTT109 not only activates transcription of stress responsive genes, but also improves resistance to oxidative stress, which ultimately contributes to improved acetic acid tolerance in S. cerevisiae. PMID:26851403

  12. Modified technique to recover microsporidian spores in sodium acetate-acetic acid-formalin-fixed fecal samples by light microscopy and correlation with transmission electron microscopy.

    PubMed Central

    Carter, P L; MacPherson, D W; McKenzie, R A

    1996-01-01

    Microsporidia are an emerging cause of significant disease, particularly in the immunocompromised host. Until recently, the diagnosis of enteric infections has required invasive sampling, the use of expensive technology, and considerable technological expertise. The purpose of the present study was to examine three modifications to the processing of fecal specimens for light microscopy (LM) examination for microsporidian spores: the use of pretreatment with potassium hydroxide, modified centrifugation conditions, and a modified staining technique. A sodium acetate-acetic acid-formalin-fixed fecal sample containing numerous microsporidian spores confirmed to be positive by transmission electron microscopy (TEM) was used in all studies performed. A simulation of a heavy to lightly infected individual was used. The results of LM were correlated with those of TEM. Duplicate smears were stained with Weber's modified trichrome and Giemsa (GS) stains. The stained slides were randomized and examined blindly by LM at x 625 and x 1,250 magnifications. A portion of the dilutions after centrifugation were fixed for TEM. The Weber modified trichrome stain performance rating was higher than the Giemsa stain rating because of ease of interpretation, and material stained with Weber modified trichrome stain required less examination time at a lower magnification. The number of positive smears and the quantity of spores detected were significantly higher following pretreatment of the sample with KOH. TEM was positive only when numerous spores were present, but the quality of the photomicrographs was superior after pretreatment with KOH. Pretreatment of sodium acetate-acetic acid-formalin-fixed fecal samples with 10% KOH and then a 5-min centrifugation time and staining with Weber modified trichrome stain provide for the excellent recovery of microsporidia in the routine diagnostic parasitology laboratory. PMID:8897162

  13. Modified technique to recover microsporidian spores in sodium acetate-acetic acid-formalin-fixed fecal samples by light microscopy and correlation with transmission electron microscopy.

    PubMed

    Carter, P L; MacPherson, D W; McKenzie, R A

    1996-11-01

    Microsporidia are an emerging cause of significant disease, particularly in the immunocompromised host. Until recently, the diagnosis of enteric infections has required invasive sampling, the use of expensive technology, and considerable technological expertise. The purpose of the present study was to examine three modifications to the processing of fecal specimens for light microscopy (LM) examination for microsporidian spores: the use of pretreatment with potassium hydroxide, modified centrifugation conditions, and a modified staining technique. A sodium acetate-acetic acid-formalin-fixed fecal sample containing numerous microsporidian spores confirmed to be positive by transmission electron microscopy (TEM) was used in all studies performed. A simulation of a heavy to lightly infected individual was used. The results of LM were correlated with those of TEM. Duplicate smears were stained with Weber's modified trichrome and Giemsa (GS) stains. The stained slides were randomized and examined blindly by LM at x 625 and x 1,250 magnifications. A portion of the dilutions after centrifugation were fixed for TEM. The Weber modified trichrome stain performance rating was higher than the Giemsa stain rating because of ease of interpretation, and material stained with Weber modified trichrome stain required less examination time at a lower magnification. The number of positive smears and the quantity of spores detected were significantly higher following pretreatment of the sample with KOH. TEM was positive only when numerous spores were present, but the quality of the photomicrographs was superior after pretreatment with KOH. Pretreatment of sodium acetate-acetic acid-formalin-fixed fecal samples with 10% KOH and then a 5-min centrifugation time and staining with Weber modified trichrome stain provide for the excellent recovery of microsporidia in the routine diagnostic parasitology laboratory. PMID:8897162

  14. Diversity of lactic acid bacteria of the bioethanol process

    PubMed Central

    2010-01-01

    Background Bacteria may compete with yeast for nutrients during bioethanol production process, potentially causing economic losses. This is the first study aiming at the quantification and identification of Lactic Acid Bacteria (LAB) present in the bioethanol industrial processes in different distilleries of Brazil. Results A total of 489 LAB isolates were obtained from four distilleries in 2007 and 2008. The abundance of LAB in the fermentation tanks varied between 6.0 105 and 8.9 108 CFUs/mL. Crude sugar cane juice contained 7.4 107 to 6.0 108 LAB CFUs. Most of the LAB isolates belonged to the genus Lactobacillus according to rRNA operon enzyme restriction profiles. A variety of Lactobacillus species occurred throughout the bioethanol process, but the most frequently found species towards the end of the harvest season were L. fermentum and L. vini. The different rep-PCR patterns indicate the co-occurrence of distinct populations of the species L. fermentum and L. vini, suggesting a great intraspecific diversity. Representative isolates of both species had the ability to grow in medium containing up to 10% ethanol, suggesting selection of ethanol tolerant bacteria throughout the process. Conclusions This study served as a first survey of the LAB diversity in the bioethanol process in Brazil. The abundance and diversity of LAB suggest that they have a significant impact in the bioethanol process. PMID:21092306

  15. Production of Acetic Acid from Carbohydrate Biomass by Two-Step Reaction with Alkaline Hydrothermal Reaction and Wet Oxidation

    NASA Astrophysics Data System (ADS)

    Yan, X.; Jin, F.; Tohji, K.; Enomoto, H.

    2007-03-01

    An investigation was carried out to improve the production of acetic acid by an alkaline two-step process, in which the first step is to accelerate the formation of lactic acid in a hydrothermal reaction with the addition of alkali, and the second step is further convert the lactic acid produced in the first step to acetic acid by oxidation with newly added oxygen. Results showed that the addition of alkali promoted selectively the formation of lactic acid from glucose at a hydrothermal condition. Acetic acid yield in the alkaline two-step process greatly increased in comparison to that without the addition of any alkali. In the alkaline two-step process, the highest acetic acid yield arrived at 27 % on the carbon base under the conditions of reaction temperature of 300 C, reaction time of 1 min, and Ca(OH)2 concentration of 0.32 M in the first step, and reaction temperature of 300 C, reaction time of 3 min, and oxygen supply of 70 % in the second step.

  16. Acetic acid recovery from a hybrid biological-hydrothermal treatment process of sewage sludge - a pilot plant study.

    PubMed

    Andrews, J; Dare, P; Estcourt, G; Gapes, D; Lei, R; McDonald, B; Wijaya, N

    2015-01-01

    A two-stage process consisting of anaerobic fermentation followed by sub-critical wet oxidation was used to generate acetic acid from sewage sludge at pilot scale. Volatile fatty acids, dominated by propionic acid, were produced over 4-6 days in the 2,000 L fermentation reactor, which also achieved 31% solids reduction. Approximately 96% of the carbon was retained in solution over the fermentation stage. Using a 200 L wet oxidation reactor operating in batch mode, the second stage achieved 98% volatile suspended solids (VSS) destruction and 67% total chemical oxygen demand (tCOD) destruction. Acetic acid produced in this stage was recalcitrant to further degradation and was retained in solution. The gross yield from VSS was 16% for acetic acid and 21% for volatile fatty acids across the process, higher than reported yields for wet oxidation alone. The pilot plant results showed that 72% of the incoming phosphorus was retained in the solids, 94% of the nitrogen became concentrated in solution and 41% of the carbon was converted to a soluble state, in a more degradable form. Acetic acid produced from the process has the potential to be used to offset ethanol requirements in biological nutrient removal plants. PMID:25768220

  17. Removal and recovery of furfural, 5-hydroxymethylfurfural, and acetic acid from aqueous solutions using a soluble polyelectrolyte.

    PubMed

    Carter, Brian; Gilcrease, Patrick C; Menkhaus, Todd J

    2011-09-01

    In the cellulosic ethanol process, furfural, 5-hydroxymethylfurfural (HMF), and acetic acid are formed during the high temperature acidic pretreatment step needed to convert biomass into fermentable sugars. These compounds can inhibit cellulase enzymes and fermentation organisms at relatively low concentrations (? 1 g/L). Effective removal of these inhibitory compounds would allow the use of more severe pretreatment conditions to improve sugar yields and lead to more efficient fermentations; if recovered and purified, they could also be sold as valuable by-products. This study investigated the separation of aldhehydes (furfural and HMF) and organic acid (acetic acid) inhibitory compounds from simple aqueous solutions by using polyethyleneimene (PEI), a soluble cationic polyelectrolyte. PEI added to simple solutions of each inhibitor at a ratio of 1 mol of functional group to 1 mol inhibitor removed up to 89.1, 58.6, and 81.5 wt% of acetic acid, HMF, and furfural, respectively. Furfural and HMF were recovered after removal by washing the polyelectrolyte/inhibitor complex with dilute sulfuric acid solution. Recoveries up to 81.0 and 97.0 wt% were achieved for furfural and HMF, respectively. The interaction between PEI and acetic acid was easily disrupted by the addition of chloride ions, sulfate ions, or hydroxide ions. The use of soluble polymers for the removal and recovery of inhibitory compounds from biomass slurries is a promising approach to enhance the efficiency and economics of an envisioned biorefinery. PMID:21455937

  18. Acetate and other Volatile Fatty Acids - Key Intermediates in marine sediment metabolism - Thermodynamic and kinetic implications

    NASA Astrophysics Data System (ADS)

    Glombitza, C.; Jaussi, M.; Røy, H.; Jørgensen, B. B.

    2014-12-01

    Volatile fatty acids (VFAs) play important roles as key intermediates in the anaerobic metabolism of subsurface microbial communities. Usually they are present in marine sediment pore water in low concentrations as a result of balanced production and consumption, both occurring in the same sediment zone. Thus their low concentrations represent a steady state condition regulated by either thermodynamics or kinetics. We have developed a novel analytical approach for the parallel measurement of several VFAs directly from marine pore water without any sample pretreatment by the use of a 2-dimensional ion chromatography coupled to mass spectrometry. In a first study we analyzed acetate, formate, and propionate in pore water from sediment cores retrieved from 5 different stations within and offshore of the Godhåbsfjord (Greenland). The sediment cores represent different sedimentological conditions, ranging from a typical marine sedimentation site to a glacier/freshwater dominated site. In addition to VFA concentrations, we measured sulfate concentrations, sulfate reduction rates, and cell abundances. We calculated the Gibbs free energy (ΔG) available for sulfate reduction (SR), as well as the VFA turnover times by the in-situ SR rates. The turnover time for acetate by SR ranged from several hours to days in the top cm of sediment and increased to several hundred years at the bottom of the SR zone. From the associated cell abundances we calculated that the VFA turnover times were significantly longer than the diffusion times of the VFA between individual cells. This shows that VFA consumption in the SR zone, and concomitantly the observed pore water concentrations, are not constrained by diffusion. DG values for SR using acetate were >36 kJ/mol which is significantly above the lower limit for anaerobic microbial energy metabolism. It thus remains unclear what controls the VFA concentrations in the sediment.

  19. Hydrogen production from steam reforming of acetic acid over Cu-Zn supported calcium aluminate.

    PubMed

    Mohanty, Pravakar; Patel, Madhumita; Pant, Kamal K

    2012-11-01

    Hydrogen can be produced by catalytic steam reforming (CSR) of biomass-derived oil. Typically bio oil contains 12-14% acetic acid; therefore, this acid was chosen as model compound for reforming of biooil with the help of a Cu-Zn/Ca-Al catalyst for high yield of H(2) with low CH(4) and CO content. Calcium aluminate support was prepared by solid-solid reaction at 1350°C. X-ray diffraction indicates 12CaO·7Al(2)O(3) as major, CaA(l4)O(7) and Ca(5)A(l6)O(14) as minor phases. Cu and Zn were loaded onto the support by wet-impregnation at 10 and 1wt.%, respectively. The catalysts were characterized by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy TEM and the surface area for both support and Cu-Zn were 10.5 and 5.8m(2)/g, respectively. CSR was carried out in a tubular fixed bed reactor (I.D.=19mm) at temperatures between 600 and 800°C with 3-g loadings and (H(2)O/acetic acid) wt. ratio of 9:1. Significantly high (80%) yield of hydrogen was obtained over Cu-Zn/Ca-Al catalyst, as incorporation of Zn enhanced the H(2) yield by reducing deactivation of the catalyst. The coke formation on the support (Ca-12/Al-7) surface was negligible due to the presence of excess oxygen in the 12CaO·7Al(2)O(3) phase. PMID:22944490

  20. Azospirillum brasilense Produces the Auxin-Like Phenylacetic Acid by Using the Key Enzyme for Indole-3-Acetic Acid Biosynthesis

    PubMed Central

    Somers, E.; Ptacek, D.; Gysegom, P.; Srinivasan, M.; Vanderleyden, J.

    2005-01-01

    An antimicrobial compound was isolated from Azospirillum brasilense culture extracts by high-performance liquid chromatography and further identified by gas chromatography-mass spectrometry as the auxin-like molecule, phenylacetic acid (PAA). PAA synthesis was found to be mediated by the indole-3-pyruvate decarboxylase, previously identified as a key enzyme in indole-3-acetic acid (IAA) production in A. brasilense. In minimal growth medium, PAA biosynthesis by A. brasilense was only observed in the presence of phenylalanine (or precursors thereof). This observation suggests deamination of phenylalanine, decarboxylation of phenylpyruvate, and subsequent oxidation of phenylacetaldehyde as the most likely pathway for PAA synthesis. Expression analysis revealed that transcription of the ipdC gene is upregulated by PAA, as was previously described for IAA and synthetic auxins, indicating a positive feedback regulation. The synthesis of PAA by A. brasilense is discussed in relation to previously reported biocontrol properties of A. brasilense. PMID:15812004

  1. Naturally Occurring Lactic Acid Bacteria Isolated from Tomato Pomace Silage

    PubMed Central

    Wu, Jing-jing; Du, Rui-ping; Gao, Min; Sui, Yao-qiang; Xiu, Lei; Wang, Xiao

    2014-01-01

    Silage making has become a significant method of forage conservation worldwide. To determine how tomato pomace (TP) may be used effectively as animal feed, it was ensilaged for 90 days and microbiology counts, fermentation characteristics and chemical composition of tomato pomace silage (TPS) were evaluated at the 30th, 60th, and 90th days, respectively. In addition, 103 lactic acid bacteria were isolated from TPS. Based on the phenotypic and chemotaxonomic characteristics, 16S rDNA sequence and carbohydrate fermentation tests, the isolates were identified as 17 species namely: Lactobacillus coryniformis subsp. torquens (0.97%), Lactobacillus pontis (0.97%), Lactobacillus hilgardii (0.97%), Lactobacillus pantheris (0.97%), Lactobacillus amylovorus (1.9%), Lactobacillus panis (1.9%), Lactobacillus vaginalis (1.9%), Lactobacillus rapi (1.9%), Lactobacillus buchneri (2.9%), Lactobacillus parafarraginis (2.9%), Lactobacillus helveticus (3.9%), Lactobacillus camelliae (3.9%), Lactobacillus fermentum (5.8%), Lactobacillus manihotivorans (6.8%), Lactobacillus plantarum (10.7%), Lactobacillus harbinensis (16.5%) and Lactobacillus paracasei subsp. paracasei (35.0%). This study has shown that TP can be well preserved for 90 days by ensilaging and that TPS is not only rich in essential nutrients, but that physiological and biochemical properties of the isolates could provide a platform for future design of lactic acid bacteria (LAB) inoculants aimed at improving the fermentation quality of silage. PMID:25049999

  2. Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis.

    PubMed

    Majamaa, H; Isolauri, E; Saxelin, M; Vesikari, T

    1995-04-01

    We compared different lactic acid bacteria for their effect on the immune response to rotavirus in children with acute rotavirus gastroenteritis. After initial oral rehydration, 49 children aged 6 to 35 months with rotavirus gastroenteritis randomly received either Lactobacillus casei subsp. casei strain GG (LGG), L. casei subsp. rhamnosus (Lactophilus), or a combination of Streptococcus thermophilus and L. delbrckii subsp. bulgaricus (Yalacta) twice daily for 5 days. Serum antibodies to rotavirus, total number of immunoglobulin-secreting cells (ISC), and specific antibody-secreting cells (sASC) to rotavirus were measured at the acute stage and at convalescence. The mean (SD) duration of diarrhea was 1.8 (0.8) days in children who received LGG, 2.8 (1.2) days in those receiving Lactophilus, and 2.6 (1.4) days in those receiving Yalacta (F = 3.3, p = 0.04). The ISC response was comparable in the three study groups, but the rotavirus-specific immune responses were different. LGG therapy was associated with an enhancement of IgA sASC to rotavirus and serum IgA antibody level at convalescent stage. We conclude that certain strains of lactic acid bacteria, particularly LGG, promote serum and intestinal immune responses to rotavirus, and thus may be important in establishing immunity against rotavirus reinfections. PMID:7608829

  3. Metal-organic coordination architectures of azole heterocycle ligands bearing acetic acid groups: Synthesis, structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Hu, Bo-Wen; Zhao, Jiong-Peng; Yang, Qian; Hu, Tong-Liang; Du, Wen-Ping; Bu, Xian-He

    2009-10-01

    Four new coordination complexes with azole heterocycle ligands bearing acetic acid groups, [Co( L1) 2] n ( 1) , [Cu L1N 3] n ( 2), [Cu( L2) 20.5C 2H 5OHH 2O] n ( 3) and [Co( L2) 2] n ( 4) (here, H L1=1H-imidazole-1-yl-acetic acid, H L2=1H-benzimidazole-1-yl-acetic acid) have been synthesized and structurally characterized. Single-crystal structure analysis shows that 3 and 4 are 2D complexes with 4 4-sql topologies, while another 2D complex 1 has a (4 3) 2(4 6)-kgd topology. And 2 is a 3D complex composed dinuclear ?1,1-bridging azido Cu II entities with distorted rutile topology. The magnetic properties of 1 and 2 have been studied.

  4. Gas-Phase Thermal Tautomerization of Imidazole-Acetic Acid: Theoretical and Computational Investigations.

    PubMed

    Aziz, Saadullah G; Osman, Osman I; Elroby, Shaaban A; Hilal, Rifaat H

    2015-01-01

    The gas-phase thermal tautomerization reaction between imidazole-4-acetic (I) and imidazole-5-acetic (II) acids was monitored using the traditional hybrid functional (B3LYP) and the long-range corrected functionals (CAM-B3LYP and ?B97XD) with 6-311++G** and aug-cc-pvdz basis sets. The roles of the long-range and dispersion corrections on their geometrical parameters, thermodynamic functions, kinetics, dipole moments, Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular Orbital (HOMO-LUMO) energy gaps and total hyperpolarizability were investigated. All tested levels of theory predicted the preference of I over II by 0.750-0.877 kcal/mol. The origin of predilection of I is assigned to the H-bonding interaction (nN8??*O14-H15). This interaction stabilized I by 15.07 kcal/mol. The gas-phase interconversion between the two tautomers assumed a 1,2-proton shift mechanism, with two transition states (TS), TS1 and TS2, having energy barriers of 47.67-49.92 and 49.55-52.69 kcal/mol, respectively, and an sp-type intermediate. A water-assisted 1,3-proton shift route brought the barrier height down to less than 20 kcal/mol in gas-phase and less than 12 kcal/mol in solution. The relatively high values of total hyperpolarizability of I compared to II were interpreted and discussed. PMID:26556336

  5. Short-chain fatty acids produced by intestinal bacteria.

    PubMed

    Topping, D L

    1996-03-01

    The colon is the major site of bacterial colonisation in the human gut and the resident species are predominantly anaerobes. They include potential pathogens but the greater proportion appear to be organisms which salvage energy through the metabolism of undigested carbohydrates and gut secretions. The major products of carbohydrate metabolism are the short chain fatty acids (SCFA), acetate, propionate and butyrate. In addition to general effects (such as lowering of pH) individual acids exert specific effects. All of the major SCFA appear to promote the flow of blood through the colonic vasculature while propionate enhances muscular activity and epithelial cell proliferation. Butyrate appears to promote a normal cell phenotype as well as being a major fuel for colonocytes. Important substrates for bacterial fermentation include non-starch polysaccharides (major components of dietary fibre) but it seems that starch which has escaped digestion in the small intestine (resistant starch) is the major contributor. Oligosaccharides are utilised by probiotic organisms and in the diet, act as prebiotics in promoting their numbers in faeces. High amylose starch is a form of RS and it appears to act as a prebiotic also. Although there is evidence that probiotics such as Bifidobacteria metabolise oligosaccharides and other carbohydrates, there appears to be little evidence to support a change in faecal SCFA excretion. It seems that any health benefits of probiotics are exerted through means other than SCFA. PMID:24394459

  6. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, J.L.

    1998-09-15

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 5 figs.

  7. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, James L. (Fayetteville, AR)

    1998-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  8. Core Fluxome and Metafluxome of Lactic Acid Bacteria under Simulated Cocoa Pulp Fermentation Conditions

    PubMed Central

    Adler, Philipp; Bolten, Christoph Josef; Dohnt, Katrin; Hansen, Carl Erik

    2013-01-01

    In the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive 13C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel 13C studies with [13C6]glucose, [1,2-13C2]glucose, and [13C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains of L. fermentum and L. plantarum revealed major differences in their fluxes. The L. fermentum strains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas only L. fermentum NCC 575 used fructose to form mannitol. In contrast, L. plantarum strains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of different L. fermentum and L. plantarum strains indicated a dominant (96%) contribution of L. fermentum NCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures. L. fermentum NCC 575 might be one candidate due to its superior performance in flux activity. PMID:23851099

  9. Core fluxome and metafluxome of lactic acid bacteria under simulated cocoa pulp fermentation conditions.

    PubMed

    Adler, Philipp; Bolten, Christoph Josef; Dohnt, Katrin; Hansen, Carl Erik; Wittmann, Christoph

    2013-09-01

    In the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive (13)C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel (13)C studies with [(13)C6]glucose, [1,2-(13)C2]glucose, and [(13)C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains of L. fermentum and L. plantarum revealed major differences in their fluxes. The L. fermentum strains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas only L. fermentum NCC 575 used fructose to form mannitol. In contrast, L. plantarum strains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of different L. fermentum and L. plantarum strains indicated a dominant (96%) contribution of L. fermentum NCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures. L. fermentum NCC 575 might be one candidate due to its superior performance in flux activity. PMID:23851099

  10. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    NASA Technical Reports Server (NTRS)

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  11. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    SciTech Connect

    Chisnell, J.R.; Bandurski, R.S.

    1988-01-01

    Either 5-(/sup 3/H)indole-3-acetic acid (IAA) or 5-(/sup 3/H)indole-3-acetyl-myoinositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-(/sup 3/H)indole-3-acetic acid or 5-(/sup 3/H)indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyle-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  12. Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Cronin, J. R.; Blair, N. E.; Desmarais, D. J.; Chang, S.

    1991-01-01

    Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources.

  13. Study of polydimethylsiloxane/aromatic polyamide laminated membranes for separation of acetic acid/water mixtures by pervaporation process

    SciTech Connect

    Deng, S.; Sourirajan, S.; Matsuura, T. )

    1994-06-01

    Separation of acetic acid/water mixtures by pervaporation was attempted over a range of compositions using polydimethylsiloxane (PDMS), aromatic polyamide (PA), and laminated polydimethylsiloxane-aromatic polyamide membranes. PDMS membranes are hydrophobic and acetic acid selective, whereas PA membranes are hydrophilic and water selective. When PDMS and PA membranes were laminated, with PDMS on the top side and in contact with the feed, water selectivity of the bottom PA membrane was intensified. On the other hand, when the PA membrane was on the top side and in contact with the feed, the selectivity was lowered. 10 refs., 4 figs.

  14. Sensitizers containing donor cascade and rhodanine-3-acetic acid moieties for dye-sensitized solar cells

    SciTech Connect

    Wu, Quan-Ping; Zhang, Lu; Liang, Mao; Sun, Zhe; Xue, Song

    2011-01-15

    Three organic dyes with D-{pi}-D-{pi}-A structure based on triarylamine, dimethylarylamine, and rhodanine-3-acetic acid moieties are designed and synthesized. Incorporating thiophene moieties into the system affords sensitizers with high molar extinction coefficients. These dyes were applied into nanocrystalline TiO{sub 2} dye-sensitized solar cells through standard operations. For a typical device the maximal monochromatic incident photon-to-current conversion efficiency (IPCE) can reach 73%, with a short-circuit photocurrent density (J{sub sc}) of 7.3 mA/cm{sup 2}, an open-circuit voltage (V{sub oc}) of 636 mV, and a fill factor (ff) of 0.61, corresponding to an overall conversion efficiency ({eta}) of 2.86%. (author)

  15. Vapor phase ketonization of acetic acid on ceria based metal oxides

    SciTech Connect

    Liu, Changjun; Karim, Ayman M.; Lebarbier, Vanessa MC; Mei, Donghai; Wang, Yong

    2013-12-01

    The activities of CeO2, Mn2O3-CeO2 and ZrO2-CeO2 were measured for acetic acid ketonization under reaction conditions relevant to pyrolysis vapor upgrading. We show that the catalyst ranking changed depending on the reaction conditions. Mn2O3-CeO2 was the most active catalyst at 350 oC, while ZrO2 - CeO2 was the most active catalyst at 450 oC. Under high CO2 and steam concentration in the reactants, Mn2O3-CeO2 was the most active catalyst at 350 and 450 °C. The binding energies of steam and CO2 with the active phase were calculated to provide the insight into the tolerance of Mn2O3-CeO2 to steam and CO2.

  16. An EPR study on radiation-induced 4-hydroxyphenyl-acetic acid polycrystalline

    NASA Astrophysics Data System (ADS)

    Ceylan, Y.; Usta, K.; Usta, A.; Aydogmus, H. Yumurtaci; Guner, A.

    2015-11-01

    To determine of irradiation effect on 4-hydroxyphenyl-acetic acid polycrystalline, electron paramagnetic resonance (EPR) measurements were carried out. Two samples were used, which were given dose of 22.8 and 49 kGy by gamma rays using 60Co-source. EPR signals were not observed from irradiated sample, taken dose of 22.8 kGy. The measurements were performed on the sample, absorbed dose of 49 kGy, at the temperature between 120 K and 450 K. The two radical structures were suggested within experimental error. Though the radicals are identical, it was determined that they have different EPR parameters. It was observed that the intensities of the EPR spectra were to be dependent on the temperature. Also, in this study, it was aimed to test success of the machine learning methods to select the best method can be implemented theoretically.

  17. A molecular molybdenum electrocatalyst for generating hydrogen from acetic acid or water

    NASA Astrophysics Data System (ADS)

    Cao, Jie-Ping; Zhou, Ling-Ling; Fu, Ling-Zhi; Zhan, Shuzhong

    2014-12-01

    The reaction of 2-pyridylamino-N,N-bis(2-methylene-4,6-difluorophenol) (H2L?) and MoCl5 affords a molybdenum(VI) complex [MoL?(O)2] 1, a new molecular electrocatalyst, which has been determined by X-ray crystallography. Electrochemical studies show that a molybdenum(IV) intermediate is responsible for the reductive proton to generate H2, and 1 can catalyze hydrogen evolution from acetic acid or aqueous buffer. Turnover frequency (TOF) reaches a maximum of 50.6 (in DMF) and 756 (in buffer, pH 6.0) moles of hydrogen per mole of catalyst per hour, respectively. Sustained proton reduction catalysis occurs at glassy carbon (GC) electrode to give H2 over a 72 h electrolysis period and no observable decomposition of the catalyst.

  18. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.

    PubMed

    Jackson, R G; Lim, E K; Li, Y; Kowalczyk, M; Sandberg, G; Hoggett, J; Ashford, D A; Bowles, D J

    2001-02-01

    Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis. PMID:11042207

  19. One-component thioxanthone acetic acid derivative photoinitiator for free radical polymerization.

    PubMed

    Esen, Duygu S; Temel, Gokhan; Balta, Demet K; Allonas, Xavier; Arsu, Nergis

    2014-01-01

    Acetic acid-based thioxanthone (TXCH2 COOH) was synthesized and characterized and used as a photoinitiator for free radical photopolymerization of methyl methacrylate (MMA) in the absence and presence of a tertiary amine (MDEA) in different solvents. Different absorption properties were observed depending on the solvent. Fluorescence and phosphorescence experiments were also carried out successfully. The fluorescence quantum yield was found to be 0.09 and the phosphorescence lifetime was calculated as 138 ms at 77 K. The photoinitiator undergoes efficient intersystem crossing into the triplet state and the lowest triplet state possesses π-π* configuration. Laser flash photolysis experiments show that transient absorption of TXCH2 COOH is similar to the parent thioxanthone and the triplet lifetime was calculated as 2.3 μs at 630 nm. PMID:24372104

  20. Encasing of Na+ ion in dimer-formed acetic acid clusters.

    PubMed

    Di Palma, Tonia M; Bende, Attila

    2015-10-01

    Peaks with anomalous abundance found in the mass spectra are associated with ions with enhanced stability. Among the scientific community focused on mass spectrometry, these peaks are called 'magic peaks' and their stability is often because of suggestive symmetric structures. Here, we report findings on ionised Na-acetic acid clusters [Na(+) -(AcA)n ] produced by Na-doping of (AcA)n and UV laser ionisation. Peaks labelled n = 2, 4, 8 are clearly distinguishable in the mass spectra from their anomalous intensity. Ab initio calculations helped elucidate cluster structures and energetic. A plausible interpretation of the magic peaks is given in terms of (AcA)n formed by dimer aggregation. The encasing of Na(+) by twisted dimers is proposed to be the origin of the enhanced cluster stability. A conceivable dimer-formed tube-like closed structure is found for the Na(+) -(AcA)8 . PMID:26456782

  1. Treatment of Myositis Ossificans with acetic acid phonophoresis: a case series

    PubMed Central

    Bagnulo, Angela; Gringmuth, Robert

    2014-01-01

    Objective To create awareness of myositis ossificans (MO) as a potential complication of muscle contusion by presenting its clinical presentation and diagnostic features. An effective method of treatment is offered for those patients who develop traumatic MO. Management: Patients in this case series developed traumatic MO, confirmed on diagnostic ultrasound. Patients participated in a treatment regimen consisting of phonophoresis of acetic acid with ultrasound. Outcome: In all cases, a trial of phonophoresis therapy significantly decreased patient signs, symptoms and the size of the calcification on diagnostic ultrasound in most at a 4-week post diagnosis mark. Discussion: Due to the potential damage to the muscle and its function, that surgical excision carries; safe effective methods of conservative treatment for MO are crucial. MO deserves more attention in the literature due to its common presentation in athletes. PMID:25550659

  2. Indole-3-acetic acid production by newly isolated red yeast Rhodosporidium paludigenum.

    PubMed

    Nutaratat, Pumin; Amsri, Weerawan; Srisuk, Nantana; Arunrattiyakorn, Panarat; Limtong, Savitree

    2015-01-01

    Indole 3-acetic acid (IAA) is the principal hormone which regulates various developmental and physiological processes in plants. IAA production is considered as a key trait for supporting plant growth. Hence, in this study, production of indole-3-acetic acid (IAA) by a basidiomycetous red yeast Rhodosporidium paludigenum DMKU-RP301 (AB920314) was investigated and improved by the optimization of the culture medium and culture conditions using one factor at a time (OFAT) and response surface methodology (RSM). The study considered the effects of incubation time, carbon and nitrogen sources, growth factor, tryptophan, temperature, shaking speed, NaCl and pH, on the production of IAA. The results showed that all the factors studied, except NaCl, affected IAA production by R. paludigenum DMKU-RP301. Maximum IAA production of 1,623.9 mg/l was obtained as a result of the studies using RSM. The optimal medium and growth conditions observed in this study resulted in an increase of IAA production by a factor of up to 5.0 compared to the unoptimized condition, i.e. when yeast extract peptone dextrose (YPD) broth supplemented with 0.1% l-tryptophan was used as the production medium. The production of IAA was then scaled up in a 2-l stirred tank fermenter, and the maximum IAA of 1,627.1 mg/l was obtained. This experiment indicated that the obtained optimal medium and condition (pH and temperature) from shaking flask production can be used for the production of IAA in a larger size production. In addition, the present research is the first to report on the optimization of IAA production by the yeast Rhodosporidium. PMID:25833674

  3. Activity of H(+)-ATPase in ruminal bacteria with special reference to acid tolerance.

    PubMed Central

    Miwa, T; Esaki, H; Umemori, J; Hino, T

    1997-01-01

    Batch culture experiments showed that permeabilized cells and membranes of Ruminococcus albus and Fibrobacter succinogenes, acid-intolerant celluloytic bacteria, have only one-fourth to one-fifth as much H(+)-ATPase as Megasphaera elsdenii and Streptococcus bovis, which are relatively acid tolerant. Even in the cells grown in continuous culture at pH 7.0, the acid-intolerant bacteria contained less than half as much H(+)-ATPase as the acid-tolerant bacteria. The amounts of H(+)-ATPase in the acid-tolerant bacteria were increased by more than twofold when the cells were grown at the lowest pH permitting growth, whereas little increase was observed in the case of the acid-intolerant bacteria. These results indicate that the acid-intolerant bacteria not only contain smaller amounts of H(+)-ATPase at neutral pH but also have a lower capacity to enhance the level of H(+)-ATPase in response to low pH than the acid-tolerant bacteria. In addition, the H(+)-ATPases of the acid-intolerant bacteria were more sensitive to low pH than those of the acid-tolerant bacteria, although the optimal pHs were similar. PMID:9172333

  4. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    NASA Astrophysics Data System (ADS)

    Saavedra, Lucila; Sesma, Fernando

    The search for new antimicrobial peptides produced by lactic acid bacteria and other Gram-positive microorganisms has become an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic host systems makes them attractive candidates for biotechnological applications. However, before suggesting or choosing a new bacteriocin for future technology developments, it is necessary to elucidate its biochemical structure and its mode of action, which may be carried out once the bacteriocin is purified to homogeneity. This chapter focuses on describing the main strategies used for the purification of numerous bacteriocins.

  5. Potential Role of Acetyl-CoA Synthetase (acs) and Malate Dehydrogenase (mae) in the Evolution of the Acetate Switch in Bacteria and Archaea

    PubMed Central

    Barnhart, Elliott P.; McClure, Marcella A.; Johnson, Kiki; Cleveland, Sean; Hunt, Kristopher A.; Fields, Matthew W.

    2015-01-01

    Although many Archaea have AMP-Acs (acetyl-coenzyme A synthetase) and ADP-Acs, the extant methanogenic genus Methanosarcina is the only identified Archaeal genus that can utilize acetate via acetate kinase (Ack) and phosphotransacetylase (Pta). Despite the importance of ack as the potential urkinase in the ASKHA phosphotransferase superfamily, an origin hypothesis does not exist for the acetate kinase in Bacteria, Archaea, or Eukarya. Here we demonstrate that Archaeal AMP-Acs and ADP-Acs contain paralogous ATPase motifs previously identified in Ack, which demonstrate a novel relation between these proteins in Archaea. The identification of ATPase motif conservation and resulting structural features in AMP- and ADP-acetyl-CoA synthetase proteins in this study expand the ASKHA superfamily to include acetyl-CoA synthetase. Additional phylogenetic analysis showed that Pta and MaeB sequences had a common ancestor, and that the Pta lineage within the halophilc archaea was an ancestral lineage. These results suggested that divergence of a duplicated maeB within an ancient halophilic, archaeal lineage formed a putative pta ancestor. These results provide a potential scenario for the establishment of the Ack/Pta pathway and provide novel insight into the evolution of acetate metabolism for all three domains of life. PMID:26235787

  6. Potential Role of Acetyl-CoA Synthetase (acs) and Malate Dehydrogenase (mae) in the Evolution of the Acetate Switch in Bacteria and Archaea.

    PubMed

    Barnhart, Elliott P; McClure, Marcella A; Johnson, Kiki; Cleveland, Sean; Hunt, Kristopher A; Fields, Matthew W

    2015-01-01

    Although many Archaea have AMP-Acs (acetyl-coenzyme A synthetase) and ADP-Acs, the extant methanogenic genus Methanosarcina is the only identified Archaeal genus that can utilize acetate via acetate kinase (Ack) and phosphotransacetylase (Pta). Despite the importance of ack as the potential urkinase in the ASKHA phosphotransferase superfamily, an origin hypothesis does not exist for the acetate kinase in Bacteria, Archaea, or Eukarya. Here we demonstrate that Archaeal AMP-Acs and ADP-Acs contain paralogous ATPase motifs previously identified in Ack, which demonstrate a novel relation between these proteins in Archaea. The identification of ATPase motif conservation and resulting structural features in AMP- and ADP-acetyl-CoA synthetase proteins in this study expand the ASKHA superfamily to include acetyl-CoA synthetase. Additional phylogenetic analysis showed that Pta and MaeB sequences had a common ancestor, and that the Pta lineage within the halophilc archaea was an ancestral lineage. These results suggested that divergence of a duplicated maeB within an ancient halophilic, archaeal lineage formed a putative pta ancestor. These results provide a potential scenario for the establishment of the Ack/Pta pathway and provide novel insight into the evolution of acetate metabolism for all three domains of life. PMID:26235787

  7. Evaluation of the tolerance of acetic acid and 2-furaldehyde on the growth of Pichia stipitis and its respiratory deficient.

    PubMed

    Ortiz-Muiz, B; Rasgado-Mellado, J; Solis-Pacheco, J; Nolasco-Hiplito, C; Domnguez-Gonzlez, J M; Aguilar-Uscanga, M G

    2014-10-01

    The use of lignocellulosic residues for ethanol production is limited by toxic compounds in fermenting yeasts present in diluted acid hydrolysates like acetic acid and 2-furaldehyde. The respiratory deficient phenotype gives the cell the ability to resist several toxic compounds. So the aim of this work was to evaluate the tolerance to toxic compounds present in lignocellulosic hydrolysates like acetic acid and 2-furaldehyde in Pichia stipitis and its respiratory deficient strains. The respiratory deficient phenotype was induced by exposure to chemical agents such as acriflavine, acrylamide and rhodamine; 23 strains were obtained. The selection criterion was based on increasing specific ethanol yield (gethanolg(-1)biomass) with acetic acid and furaldehyde tolerance. The screening showed that P. stipitis NRRL Y-7124 ACL 2-1RD (lacking cytochrome c), obtained using acrylamide, presented the highest specific ethanol production rate (1.82gg(-1)h(-1)). Meanwhile, the ACF8-3RD strain showed the highest acetic acid tolerance (7.80gL(-1)) and the RHO2-3RD strain was able to tolerate up to 1.5gL(-1) 2-furaldehyde with a growth and ethanol production inhibition of 23 and 22%, respectively. The use of respiratory deficient yeast phenotype is a strategy for ethanol production improvement in a medium with toxic compounds such as hydrolysed sugarcane bagasse amongst others. PMID:24700134

  8. Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts.

    PubMed

    Zhou, N; Zhang, J X; Fan, M T; Wang, J; Guo, G; Wei, X Y

    2012-09-01

    The aim of this study was to evaluate the susceptibility of 43 strains of lactic acid bacteria, isolated from Chinese yogurts made in different geographical areas, to 11 antibiotics (ampicillin, penicillin G, roxithromycin, chloramphenicol, tetracycline, chlortetracycline, lincomycin, kanamycin, streptomycin, neomycin, and gentamycin). The 43 isolates (18 Lactobacillus bulgaricus and 25 Streptococcus thermophilus) were identified at species level and were typed by random amplified polymorphic DNA analysis. Thirty-five genotypically different strains were detected and their antimicrobial resistance to 11 antibiotics was determined using the agar dilution method. Widespread resistance to ampicillin, chloramphenicol, chlortetracycline, tetracyclines, lincomycin, streptomycin, neomycin, and gentamycin was found among the 35 strains tested. All of the Strep. thermophilus strains tested were susceptible to penicillin G and roxithromycin, whereas 23.5 and 64.7% of Lb. bulgaricus strains, respectively, were resistant. All of the Strep. thermophilus and Lb. bulgaricus strains were found to be resistant to kanamycin. The presence of the corresponding resistance genes in the resistant isolates was investigated through PCR, with the following genes detected: tet(M) in 1 Lb. bulgaricus and 2 Strep. thermophilus isolates, ant(6) in 2 Lb. bulgaricus and 2 Strep. thermophilus isolates, and aph(3')-IIIa in 5 Lb. bulgaricus and 2 Strep. thermophilus isolates. The main threat associated with these bacteria is that they may transfer resistance genes to pathogenic bacteria, which has been a major cause of concern to human and animal health. To our knowledge, the aph(3')-IIIa and ant(6) genes were found in Lb. bulgaricus and Strep. thermophilus for the first time. Further investigations are required to analyze whether the genes identified in Lb. bulgaricus and Strep. thermophilus isolates might be horizontally transferred to other species. PMID:22916881

  9. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives.

    PubMed

    Rokop, Z P; Horton, M A; Newton, I L G

    2015-10-01

    In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members (Fructobacillus and Lactobacillaceae) and honey bee-specific "core" members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro. Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of "noncore" and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. PMID:26253685

  10. Immunomodulation of monocytes by probiotic and selected lactic Acid bacteria.

    PubMed

    Jensen, Hanne; Drømtorp, Signe Marie; Axelsson, Lars; Grimmer, Stine

    2015-03-01

    Some lactic acid bacteria (LAB), especially bacteria belonging to the genus Lactobacillus, are recognized as common inhabitants of the human gastrointestinal tract and have received considerable attention in the last decades due to their postulated health-promoting effects. LAB and probiotic bacteria can modulate the host immune response. However, much is unknown about the mediators and mechanisms responsible for their immunological effect. Here, we present a study using cytokine secretion from the monocytic cell line THP-1 and NF-κB activation in the monocytic cell line U937-3xkB-LUC to elucidate immune stimulating abilities of LAB in vitro. In this study, we investigate both commercially available and potential probiotic LAB strains, and the role of putative surface proteins of L. reuteri using mutants. L. reuteri strains induced the highest cytokine secretion and the highest NF-κB activation, whereas L. plantarum strains and L. rhamnosus GG were low inducers/activators. One of the putative L. reuteri surface proteins, Hmpref0536_10802, appeared to be of importance for the stimulation of THP-1 cells and the activation of NF-κB in U937-3xkB-LUC cells. Live and UV-inactivated preparations resulted in different responses for two of the strains investigated. Our results add to the complexity in the interaction between LAB and human cells and suggest the possible involvement of secreted pro- and anti-inflammatory mediators of LAB. It is likely that it is the sum of bacterial surface proteins and bacterial metabolites and/or secreted proteins that induce cytokine secretion in THP-1 cells and activate NF-κB in U937-3xkB-LUC cells in this study. PMID:25331988

  11. Lactic acid bacteria as oral delivery systems for biomolecules.

    PubMed

    Berlec, A; Ravnikar, M; Strukelj, B

    2012-11-01

    Lactic acid bacteria (LAB) have become increasingly studied over the last two decades as potential delivery systems for various biological molecules to the gastrointestinal tract. This article presents an overview of characteristics of LAB as delivery systems and of the applications which have already been developed. The majority of LAB strains are able to survive the intestinal passage and some are also able to persist and colonize the intestine. Several strains were in fact described as members of the human commensal flora. They can interact with their host and are able to deliver large molecular weight biomolecules across the epithelium via M-cells or dendritic cells. The most widely applied LAB species has been Lactococcus lactis; however species from genus Lactobacillus are gaining popularity and the first examples from genus Bifidobacterium are starting to emerge. Bacteria are mostly applied live and enable continuous delivery of the biomolecules. However, killed bacteria (e.g. gram-positive enhancer matrix), with bound biomolecules or as adjuvants, are also being developed. The techniques for genetic modification of LAB are well known. This review focuses on the delivery of recombinant proteins and DNA, which can cause either local or systemic effects. We divide recombinant proteins into antigens and therapeutic proteins. Delivery of antigens for the purpose of vaccination represents the most abundant application with numerous successful demonstrations of the efficacy on the animal model. Therapeutic proteins have mostly been developed for the treatment of the inflammatory bowel disease, by the delivery of anti-inflammatory cytokines, or downregulation of proinflammatory cytokines. Delivery of allergens for the modulation of allergic disorders represents the second most popular application of therapeutic proteins. The delivery of DNA by LAB was demonstrated and offers exciting opportunities, especially as a vaccine. New discoveries may eventually lead to the transition of LAB as delivery systems in clinical practice. PMID:23210237

  12. Bioprotective potential of lactic acid bacteria in malting and brewing.

    PubMed

    Rouse, Susan; van Sinderen, Douwe

    2008-08-01

    Lactic acid bacteria (LAB) are naturally associated with many foods or their raw ingredients and are popularly used in food fermentation to enhance the sensory, aromatic, and textural properties of food. These microorganisms are well recognized for their biopreservative properties, which are achieved through the production of antimicrobial compounds such as lactic acid, diacetyl, bacteriocins, and other metabolites. The antifungal activity of certain LAB is less well characterized, but organic acids, as yet uncharacterized proteinaceous compounds, and cyclic dipeptides can inhibit the growth of some fungi. A variety of microbes are carried on raw materials used in beer brewing, rendering the process susceptible to contamination and often resulting in spoilage or inferior quality of the finished product. The application of antimicrobial-producing LAB at various points in the malting and brewing process could help to negate this problem, providing an added hurdle for spoilage organisms to overcome and leading to the production of a higher quality beer. This review outlines the bioprotective potential of LAB and its application with specific reference to the brewing industry. PMID:18724772

  13. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria.

    PubMed

    Magnusson, Jesper; Strm, Katrin; Roos, Stefan; Sjgren, Jrgen; Schnrer, Johan

    2003-02-14

    More than 1200 isolates of lactic acid bacteria isolated from different environments were screened for antifungal activity in a dual-culture agar plate assay. Approximately 10% of the isolates showed inhibitory activity and 4% showed strong activity against the indicator mould Aspergillus fumigatus. The antifungal spectra for 37 isolates with strong activity and five isolates with low or no activity were determined. Several of the strains showed strong inhibitory activity against the moulds A. fumigatus, Aspergillus nidulans, Penicillium commune and Fusarium sporotrichioides, and also against the yeast Rhodotorula mucilaginosa. Penicillium roqueforti and the yeasts Pichia anomala and Kluyveromyces marxianus were not inhibited. Several isolates showed reduced antifungal activity after storage and handling. The majority of the fungal inhibitory isolates were identified by 16S rDNA sequencing as Lactobacillus coryniformis. Lactobacillus plantarum and Pediococcus pentosaceus were also frequently identified among the active isolates. The degree of fungal inhibition was not only related to production of lactic or acetic acid. In addition, antifungal cyclic dipeptides were identified after HPLC separation and several other active fractions were found suggesting a highly complex nature of the antifungal activity. PMID:12594034

  14. [Extracellular protein of propionic acid bacteria inhibits induced mutation in strains of Salmonella typhimurium].

    PubMed

    Vorob'eva, L I; Khodzhaev, E Iu; Ponomareva, G M

    2001-01-01

    A culture of propionic acid bacteria grown in a glucose-containing minimal medium, as well as the culture liquid and logarithmic-phase cells obtained from this culture, were found to inhibit the base pair substitution mutations induced by 4-nitroquinoline N-oxide, N-methyl-N'-nitro-N-nitrosoguanidine, and sodium azide and the frameshift mutations induced by 9-aminoacridine. The antimutagenic activity of the culture liquid (CL) was presumably due to the presence of an extracellular thermolabile protein with a molecular mass of no more than 12 kDa based on the facts that this activity considerably decreased after the treatment of the CL with pronase, its heating at 92 degrees C, and its dialysis in a cellulose sack, which retains substances with molecular masses greater than 12 kDa. The residual antimutagenic activity of the dialyzed culture liquid was probably related to the interaction of the mutagen with thiols, rather than to the presence of organic acids (acetic or propionic). Thiols may also contribute to the antimutagenic activity of the P. shermanii cells. PMID:11338834

  15. [Activated Sludge Bacteria Transforming Cyanopyridines and Amides of Pyridinecarboxylic Acids].

    PubMed

    Demakov, V A; Vasil'ev, D M; Maksimova, Yu G; Pavlova, Yu A; Ovechkina, G V; Maksimov, A Yu

    2015-01-01

    Species diversity of bacteria from the activated sludge of Perm biological waste treatment facilities capable of transformation of cyanopyridines and amides of pyridinecarboxylic acids was investigated. Enrichment cultures in mineral media with 3-cyanopyridine as the sole carbon and nitrogen source were used to obtain 32 clones of gram-negative heterotrophic bacteria exhibiting moderate growth on solid and liquid media with 3- and 4-cyanopyridine. Sequencing of the 16S rRNA gene fragments revealed that the clones with homology of at least 99% belonged to the genera Acinetobacte, Alcaligenes, Delftia, Ochrobactrum, Pseudomonas, Stenotrophomonas, and Xanthobacter. PCR analysis showed that 13 out of 32 isolates contained the sequences (-1070 bp) homologous to the nitrilase genes reported previously in Alcaligenes faecalis JM3 (GenBank, D13419.1). Nine clones were capable of nitrile and amide transformation in minimal salt medium. Acinetobacter sp. 11 h and Alcaligenes sp. osv transformed 3-cyanopyridine to nicotinamide, while most of the clones possessed amidase activity (0.5 to 46.3 mmol/(g h) for acetamide and 0.1 to 5.6 mmol/(g h) for nicotinamide). Nicotinamide utilization by strain A. faecalis 2 was shown to result in excretion of a secondary metabolite, which was identified as dodecyl acrylate at 91% probability. PMID:26263697

  16. Perspectives of engineering lactic acid bacteria for biotechnological polyol production.

    PubMed

    Monedero, Vicente; Prez-Martnez, Gaspar; Yebra, Mara J

    2010-04-01

    Polyols are sugar alcohols largely used as sweeteners and they are claimed to have several health-promoting effects (low-caloric, low-glycemic, low-insulinemic, anticariogenic, and prebiotic). While at present chemical synthesis is the only strategy able to assure the polyol market demand, the biotechnological production of polyols has been implemented in yeasts, fungi, and bacteria. Lactic acid bacteria (LAB) are a group of microorganisms particularly suited for polyol production as they display a fermentative metabolism associated with an important redox modulation and a limited biosynthetic capacity. In addition, LAB participate in food fermentation processes, where in situ production of polyols during fermentation may be useful in the development of novel functional foods. Here, we review the polyol production by LAB, focusing on metabolic engineering strategies aimed to redirect sugar fermentation pathways towards the synthesis of biotechnologically important sugar alcohols such as sorbitol, mannitol, and xylitol. Furthermore, possible approaches are presented for engineering new fermentation routes in LAB for production of arabitol, ribitol, and erythritol. PMID:20180114

  17. ANTIFUNGAL AND SPROUT REGULATORY BIOACTIVITIES OF PHENYLACETIC ACID, INDOLE-3-ACETIC ACID, AND TYROSOL ISOLATED FROM THE POTATO DRY ROT SUPPRESSIVE BACTERIUM ENTEROBACTER CLOACAE S11:T:07

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterobacter cloacae S11:T:07 (NRRL B-21050) is a promising biological control agent which has significantly reduced both fungal dry rot disease and sprouting in lab and pilot potato storages. The metabolites phenylacetic acid (PAA), indole-3-acetic acid (IAA), and tyrosol (TSL) were isolated from ...

  18. Effect of different concentrations of acetic, citric, and propionic acid dipping solutions on bacterial contamination of raw chicken skin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial contamination of raw, processed poultry may include spoilage bacteria and foodborne pathogens. We evaluated different combinations of organic acid (OA) wash solutions for their ability to reduce bacterial contamination of raw chicken skin and to inhibit growth of spoilage bacteria and path...

  19. Production of ?-Amino Butyric Acid in Tea Leaves wit Treatment of Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuko; Hayakawa, Kiyoshi; Ueno, Hiroshi

    Lactic acid bacteria was searched for producing termented tea that contained a lot of ?-amino butyric acid(GABA). Also examined were the growth condition, GABA production and changes in catechin contents in the tea leaves. Lactobacillus brevis L12 was found to be suitable for the production of fermented tea since it gave as much GABA as gabaron tea when tea leaves being suspended with water at 10% and incubated for 4 days at 25C. The amount of GABA produced was more than calculated based upon the content of glutamic acid in tea leaves. It is probable to assume that glutamate derived from glutamine and theanine is converted into GABA.

  20. Halophilic bacteria susceptibility to peracetic acid vapor and ethylene oxide.

    PubMed

    Tasch, P; Todd, B

    1973-02-01

    Extremely to slightly halophilic bacteria were tested for susceptibility to two sterilizing agents, peracetic acid (PAA) and ethylene oxide (ETO). PAA susceptibility was explored by two methods: an agar plate (constant pH of 7.2) and a filter strip (constant incubation period of 37 days); 100% susceptibility was obtained by both methods. The dosage (0.5 ml/min) was applied to a filter pad in a petri dish cover. Glove box experiments with ETO (input 1.5 lb. [ca. 680.4 g]/24 hr, the only constant) yielded 100% susceptibility for all halophiles tested. These experiments demonstrated the efficacy of two lethal agents for extreme halophiles, PAA and ETO. Variation in pH did not affect susceptibility. PMID:4694343