Main View
This view is used for searching all possible sources.
First Page Previous Page 1 Next Page Last Page
 
1
Genome-Scale Model for Clostridium acetobutylicum: Part I. Metabolic Network

ARTICLE Genome-Scale Model for Clostridium acetobutylicum: Part I. Metabolic Network Resolution.1002/bit.22010 ABSTRACT: A genome-scale metabolic network reconstruc- tion for Clostridium acetobutylicum: Clostridium acetobutylicum; metabolic flux analysis; genome-scale model Introduction Genome-scale models

E-print Network

2
Purification of acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824 and cloning of the acetoacetate decarboxylase gene in Escherichia coli.
1990-11-01

In Clostridium acetobutylicum ATCC 824, acetoacetate decarboxylase (EC 4.1.1.4) is essential for solvent production, catalyzing the decarboxylation of acetoacetate to acetone. We report here the purification of the enzyme from C. acetobutylicum ATCC 824 and the cloning and expression of the gene encoding the acetoacetate decarboxylase enzyme in Escherichia ...

PubMed Central

3
Purification of acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824 and cloning of the acetoacetate decarboxylase gene in Escherichia coli
1990-11-01

In Clostridium acetobutylicum ATCC 824, acetoacetate decarboxylase (EC 4.1.1.4) is essential for solvent production, catalyzing the decarboxylation of acetoacetate to acetone. We report here the purification of the enzyme from C. acetobutylicum ATCC 824 and the cloning and expression of the gene encoding the acetoacetate decarboxylase enzyme in Escherichia ...

Energy Citations Database

4
Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1(pSPD5).
2006-01-01

Clostridium acetobutylicum is not able to grow on glycerol as the sole carbon source since it cannot reoxidize the excess of NADH generated by glycerol catabolism. Nevertheless, when the pSPD5 plasmid, carrying the NADH-consuming 1,3-propanediol pathway from C. butyricum VPI 3266, was introduced into C. acetobutylicum DG1, growth on glycerol was achieved, ...

PubMed

5
Transcriptional regulation of solventogenesis in Clostridium acetobutylicum.
2002-05-01

Solvent synthesis in Clostridium acetobutylicum is induced in concert with sporulation to counteract the dangerous effects of produced butyric and acetic acids and to provide the cell with sufficient time to complete endospore formation. Cardinal transcription units for butanol and acetone production are the sol and adc operons encoding butyraldehyde/butanol dehydrogenase and ...

PubMed

6
Engineering Clostridium Strain to Accept Unmethylated DNA
2010-02-09

It is difficult to genetically manipulate the medically and biotechnologically important genus Clostridium due to the existence of the restriction and modification (RM) systems. We identified and engineered the RM system of a model clostridial species, C. acetobutylicum, with the aim to allow the host to accept the unmethylated DNA efficiently. A gene CAC1502 putatively ...

PubMed Central

First Page Previous Page 1 Next Page Last Page