ARTICLE Genome-Scale Model for Clostridium acetobutylicum: Part I. Metabolic Network Resolution.1002/bit.22010 ABSTRACT: A genome-scale metabolic network reconstruc- tion for Clostridium acetobutylicum: Clostridium acetobutylicum; metabolic flux analysis; genome-scale model Introduction Genome-scale models
E-print Network
In Clostridium acetobutylicum ATCC 824, acetoacetate decarboxylase (EC 4.1.1.4) is essential for solvent production, catalyzing the decarboxylation of acetoacetate to acetone. We report here the purification of the enzyme from C. acetobutylicum ATCC 824 and the cloning and expression of the gene encoding the acetoacetate decarboxylase enzyme in Escherichia ...
PubMed Central
Energy Citations Database
Clostridium acetobutylicum is not able to grow on glycerol as the sole carbon source since it cannot reoxidize the excess of NADH generated by glycerol catabolism. Nevertheless, when the pSPD5 plasmid, carrying the NADH-consuming 1,3-propanediol pathway from C. butyricum VPI 3266, was introduced into C. acetobutylicum DG1, growth on glycerol was achieved, ...
PubMed
Solvent synthesis in Clostridium acetobutylicum is induced in concert with sporulation to counteract the dangerous effects of produced butyric and acetic acids and to provide the cell with sufficient time to complete endospore formation. Cardinal transcription units for butanol and acetone production are the sol and adc operons encoding butyraldehyde/butanol dehydrogenase and ...
It is difficult to genetically manipulate the medically and biotechnologically important genus Clostridium due to the existence of the restriction and modification (RM) systems. We identified and engineered the RM system of a model clostridial species, C. acetobutylicum, with the aim to allow the host to accept the unmethylated DNA efficiently. A gene CAC1502 putatively ...