Science.gov

Sample records for acetyl coa hydrolysis

  1. A Capillary Electrophoretic Assay for Acetyl CoA Carboxylase

    PubMed Central

    Bryant, Sherrisse K.; Waldrop, Grover L.; Gilman, S. Douglass

    2013-01-01

    A simple off-column capillary electrophoretic (CE) assay for measuring acetyl coenzyme A carboxylase holoenzyme (holo-ACC) activity and inhibition was developed. The two reactions catalyzed by the holo-ACC components, biotin carboxylase (BC) and carboxyltransferase (CT), were simultaneous monitored in this assay. Acetyl coenzyme A (CoA), malonyl-CoA, adenosine triphosphate (ATP), and adenosine diphosphate (ADP) were separated by CE, and the depletion of ATP and acetyl-CoA as well as the production of ADP and malonyl-CoA were monitored. Inhibition of holo-ACC by the biotin carboxylase inhibitor, 2-amino-N,N-dibenzyloxazole-5-carboxamide, and the carboxyltransferase inhibitor, andrimid, was confirmed using this assay. A previously reported off-column CE assay for only the CT component of ACC was optimized, and an off-column CE assay for the BC component of ACC also was developed. PMID:23435309

  2. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants

    DOEpatents

    Nikolau, Basil J. (Ames, IA); Wurtele, Eve S. (Ames, IA); Oliver, David J. (Ames, IA); Schnable, Patrick S. (Ames, IA); Wen, Tsui-Jung (Ames, IA)

    2009-04-28

    The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method of producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.alpha. subunit of pPDH, the E1.beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyruvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.alpha. pPDH, E1.beta. pPDH, E2 pPDH, mtPDH or ALDH.

  3. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants

    DOEpatents

    Nikolau, Basil J.; Wurtele, Eve S.; Oliver, David J.; Behal, Robert; Schnable, Patrick S.; Ke, Jinshan; Johnson, Jerry L.; Allred, Carolyn C.; Fatland, Beth; Lutziger, Isabelle; Wen, Tsui-Jung

    2004-07-20

    The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method of producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.sub..alpha. subunit of pPDH, the E1.sub..beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyurvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.sub..alpha. pPDH, E1.sub..beta. pPDH, E2 pPDH, mtPDH or ALDH.

  4. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants

    DOEpatents

    Nikolau, Basil J.; Wurtele, Eve S.; Oliver, David J.; Behal, Robert; Schnable, Patrick S.; Ke, Jinshan; Johnson, Jerry L.; Allred, Carolyn C.; Fatland, Beth; Lutziger, Isabelle; Wen, Tsui-Jung

    2005-09-13

    The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method of producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.alpha. subunit of pPDH, the E1.beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyruvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.alpha. pPDH, E1.beta. pPDH, E2 pPDH, mtPDH or ALDH.

  5. Acetyl CoA Carboxylase: Isolation and Characterization of Native Biotin Carboxyl Carrier Protein

    PubMed Central

    Fall, R. Ray; Nervi, A. M.; Alberts, Alfred W.; Vagelos, P. Roy

    1971-01-01

    A large form of biotin carboxyl carrier protein (BCCPL) has been isolated from extracts of Escherichia coli. It has a minimal molecular weight of 20,000, according to its behavior on sodium dodecylsulfate-polyacrylamide gel electrophoresis, and contains approximately 1 mol of biotin per 22,000 g of protein. BCCPL exhibits Km values, in the biotin carboxylase and transcarboxylase half-reactions of acetyl CoA carboxylase, of 2 × 10-7 M and 4 × 10-7 M, respectively; these values are 50-100 times lower than those obtained with smaller forms of BCCP previously isolated. Electrophoresis of crude extracts of E. coli indicates that the major biotin-containing protein migrates at the same rate as BCCPL, which suggests that BCCPL is the native form of BCCP in E. coli. Images PMID:4934522

  6. Apicoplast acetyl Co-A carboxylase of the human malaria parasite is not targeted by cyclohexanedione herbicides.

    PubMed

    Goodman, Christopher D; Mollard, Vanessa; Louie, Theola; Holloway, Georgina A; Watson, Keith G; McFadden, Geoffrey I

    2014-04-01

    Malaria parasites retain a relict plastid (apicoplast) from a photosynthetic ancestor. The apicoplast is a useful drug target but the specificity of compounds believed to target apicoplast fatty acid biosynthesis has become uncertain, as this pathway is not essential in blood stages of the parasite. Herbicides that inhibit the plastid acetyl Coenzyme A (Co-A) carboxylase of plants also kill Plasmodium falciparum in vitro, but their mode of action remains undefined. We characterised the gene for acetyl Co-A carboxylase in P. falciparum. The P. falciparum acetyl-CoA carboxylase gene product is expressed in blood stage parasites and accumulates in the apicoplast. Ablation of the gene did not render parasites insensitive to herbicides, suggesting that these compounds are acting off-target in blood stages of P. falciparum. PMID:24583112

  7. Enhanced activity of acetyl CoA synthetase adsorbed on smart microgel: an implication for precursor biosynthesis.

    PubMed

    Dubey, Nidhi Chandrama; Tripathi, Bijay Prakash; Müller, Martin; Stamm, Manfred; Ionov, Leonid

    2015-01-28

    Acetyl coenzyme A (acetyl CoA) is an essential precursor molecule for synthesis of metabolites such as the polyketide-based drugs (tetracycline, mitharamycin, Zocor, etc.) fats, lipids, and cholesterol. Acetyl CoA synthetase (Acs) is one of the enzymes that catalyzes acetyl CoA synthesis, and this enzyme is essentially employed for continuous supply of the acetyl CoA for the production of these metabolites. To achieve reusable and a more robust entity of the enzyme, we carried out the immobilization of Acs on poly(N-isopropylacrylamide)-poly(ethylenimine) (PNIPAm-PEI) microgels via adsorption. Cationic PNIPAm-PEI microgel was synthesized by one-step graft copolymerization of NIPAm and N,N-methylene bis-acrylamide (MBA) from PEI. Adsorption studies of Acs on microgel indicated high binding of enzymes, with a maximum binding capacity of 286 ?g/mg of microgel for Acs was achieved. The immobilized enzymes showed improved biocatalytic efficiency over free enzymes, beside this, the reaction parameters and circular dichroism (CD) spectroscopy studies indicated no significant changes in the enzyme structure after immobilization. This thoroughly characterized enzyme bioconjugate was further immobilized on an ultrathin membrane to assess the same reaction in flow through condition. Bioconjugate was covalently immobilized on a thin layer of preformed microgel support upon polyethylene terephthalate (PET) track etched membrane. The prepared membrane was used in a dead end filtration device to monitor the bioconversion efficiency and operational stability of cross-linked bioconjugate. The membrane reactor showed consistent operational stability and maintained >70% of initial activity after 7 consecutive operation cycles. PMID:25561344

  8. Correlation of ATP Citrate Lyase and Acetyl CoA Levels with Trichothecene Production in Fusarium graminearum

    PubMed Central

    Sakamoto, Naoko; Tsuyuki, Rie; Yoshinari, Tomoya; Usuma, Jermnak; Furukawa, Tomohiro; Nagasawa, Hiromichi; Sakuda, Shohei

    2013-01-01

    Thecorrelation of ATP citrate lyase (ACL) and acetyl CoA levels with trichothecene production in Fusarium graminearum was investigated using an inhibitor (precocene II) and an enhancer (cobalt chloride) of trichothecene production by changing carbon sources in liquid medium. When precocene II (30 µM) was added to inhibit trichothecene production in a trichothecene high-production medium containing sucrose, ACL expression was reduced and ACL mRNA level as well as acetyl CoA amount in the fungal cells were reduced to the levels observed in a trichothecene trace-production medium containing glucose or fructose. The ACL mRNA level was greatly increased by addition of cobalt chloride in the trichothecene high-production medium, but not in the trichothecene trace-production medium. Levels were reduced to those level in the trichothecene trace-production medium by addition of precocene II (300 µM) together with cobalt chloride. These results suggest that ACL expression is activated in the presence of sucrose and that acetyl CoA produced by the increased ALC level may be used for trichothecene production in the fungus. These findings also suggest that sucrose is important for the action of cobalt chloride in activating trichothecene production and that precocene II may affect a step down-stream of the target of cobalt chloride. PMID:24284828

  9. Determination of the quantity of acetyl CoA carboxylase by (/sup 14/C)methyl avidin binding

    SciTech Connect

    Roman-Lopez, C.R.; Goodson, J.; Allred, J.B.

    1987-05-01

    Conditions are described under which monomeric (/sup 14/C)methyl avidin binds to SDS-denatured biotin enzymes and remains bound through polyacrylamide gel electrophoresis. The location of radioactive proteins on the dried gel was determined by fluorography and their identity was established by subunit molecular weight. The relative quantity of bound radioactive avidin, stoichiometrically equivalent to the molar quantity of biotin protein, can be determined by scanning the fluorograph with a soft laser densitometer. To determine the absolute quantity of biotin protein, the radioactive areas of the dried gel were cut out, resolubilized, and assayed for radioactivity. Since the specific radioactivity of the (/sup 14/C)methyl avidin was known, the quantity of avidin bound and therefore the quantity of biotin enzyme could be calculated. The method is illustrated by the analysis of purified acetyl CoA carboxylase and is applied to the analysis of biotin enzymes in isolated rat liver mitochondria.

  10. The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed

    PubMed Central

    2011-01-01

    Background Due to the complexity of lignocellulosic materials, a complete enzymatic hydrolysis into fermentable sugars requires a variety of cellulolytic and xylanolytic enzymes. Addition of xylanases has been shown to significantly improve the performance of cellulases and to increase cellulose hydrolysis by solubilizing xylans in lignocellulosic materials. The goal of this work was to investigate the effect of acetyl xylan esterase (AXE) originating from Trichoderma reesei on xylan solubilization and enzymatic hydrolysis of cellulose. Results The solubilization of xylan in pretreated wheat straw and giant reed (Arundo donax) by xylanolytic enzymes and the impact of the sequential or simultaneous solubilization of xylan on the hydrolysis of cellulose by purified enzymes were investigated. The results showed that the removal of acetyl groups in xylan by AXE increased the accessibility of xylan to xylanase and improved the hydrolysis of xylan in pretreated wheat straw and giant reed. Solubilization of xylan led to an increased accessibility of cellulose to cellulases and thereby increased the hydrolysis extent of cellulose. A clear synergistic effect between cellulases and xylanolytic enzymes was observed. The highest hydrolysis yield of cellulose was obtained with a simultaneous use of cellulases, xylanase and AXE, indicating the presence of acetylated xylan within the cellulose matrix. Acetylated xylobiose and acetylated xylotriose were produced from xylan without AXE, as confirmed by atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry. Conclusions The results in this paper demonstrate that supplementation of xylanase with AXE enhances the solubilization of xylan to some extent and, consequently, increases the subsequent hydrolysis of cellulose. The highest hydrolysis yield was, however, obtained by simultaneous hydrolysis of xylan and cellulose, indicating a layered structure of cellulose and xylan chains in the cell wall substrate. AXE has an important role in the hydrolysis of lignocellulosic materials containing acetylated xylan. PMID:22185437

  11. Apicoplast acetyl Co-A carboxylase of the human malaria parasite is not targeted by cyclohexanedione herbicides

    E-print Network

    McFadden, Geoff

    by cyclohexanedione herbicides Christopher D. Goodman a,1 , Vanessa Mollard a,1 , Theola Louie b,2 , Georgina A Co-A carboxylase Apicoplast Fatty acid biosynthesis Herbicides Malaria a b s t r a c t Malaria become uncertain, as this pathway is not essential in blood stages of the parasite. Herbicides

  12. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    NASA Technical Reports Server (NTRS)

    Hall, P. J.; Bandurski, R. S.

    1986-01-01

    [3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 degrees C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as alpha-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected.

  13. Hydrolysis of O-acetyl-ADP-ribose isomers by ADP-ribosylhydrolase 3.

    PubMed

    Kasamatsu, Atsushi; Nakao, Motoyuki; Smith, Brian C; Comstock, Lindsay R; Ono, Tohru; Kato, Jiro; Denu, John M; Moss, Joel

    2011-06-17

    O-acetyl-ADP-ribose (OAADPr), produced by the Sir2-catalyzed NAD(+)-dependent histone/protein deacetylase reaction, regulates diverse biological processes. Interconversion between two OAADPr isomers with acetyl attached to the C-2? and C-3? hydroxyl of ADP-ribose (ADPr) is rapid. We reported earlier that ADP-ribosylhydrolase 3 (ARH3), one of three ARH proteins sharing structural similarities, hydrolyzed OAADPr to ADPr and acetate, and poly(ADPr) to ADPr monomers. ARH1 also hydrolyzed OAADPr and poly(ADPr) as well as ADP-ribose-arginine, with arginine in ?-anomeric linkage to C-1? of ADP-ribose. Because both ARH3- and ARH1-catalyzed reactions involve nucleophilic attacks at the C-1? position, it was perplexing that the ARH3 catalytic site would cleave OAADPr at either the 2?- or 3?-position, and we postulated the existence of a third isomer, 1?-OAADPr, in equilibrium with 2?- and 3?-isomers. A third isomer, consistent with 1?-OAADPr, was identified at pH 9.0. Further, ARH3 OAADPr hydrolase activity was greater at pH 9.0 than at neutral pH where 3?-OAADPr predominated. Consistent with our hypothesis, IC(50) values for ARH3 inhibition by 2?- and 3?-N-acetyl-ADPr analogs of OAADPr were significantly higher than that for ADPr. ARH1 also hydrolyzed OAADPr more rapidly at alkaline pH, but cleavage of ADP-ribose-arginine was faster at neutral pH than pH 9.0. ARH3-catalyzed hydrolysis of OAADPr in H(2)(18)O resulted in incorporation of one (18)O into ADP-ribose by mass spectrometric analysis, consistent with cleavage at the C-1? position. Together, these data suggest that ARH family members, ARH1 and ARH3, catalyze hydrolysis of the 1?-O linkage in their structurally diverse substrates. PMID:21498885

  14. Hydrolysis of wheat arabinoxylan by two acetyl xylan esterases from Chaetomium thermophilum.

    PubMed

    Tong, Xiaoxue; Lange, Lene; Grell, Morten Nedergaard; Busk, Peter Kamp

    2015-01-01

    The thermophilic filamentous ascomycete Chaetomium thermophilum produces functionally diverse hemicellulases when grown on hemicellulose as carbon source. Acetyl xylan esterase (EC 3.1.1.72) is an important accessory enzyme in hemicellulose biodegradation. Although the genome of C. thermophilum has been sequenced, its carbohydrate esterases are not annotated yet. We applied peptide pattern recognition (PPR) tool for sequence analysis of the C. thermophilum genome, and 11 carbohydrate esterase genes were discovered. Furthermore, we cloned and heterologously expressed two putative acetyl xylan esterase genes, CtAxeA and CtAxeB, in Pichia pastoris. The recombinant proteins, rCtAxeA and rCtAxeB, released acetic acids from p-nitrophenyl acetate and water-insoluble wheat arabinoxylan. These results indicate that CtAxeA and CtAxeB are true acetyl xylan esterases. For both recombinant esterases, over 93 % of the initial activity was retained after 24 h of incubation at temperatures up to 60 °C, and over 90 % of the initial activity was retained after 24 h of incubation in different buffers from pH 4.0 to 9.0 at 4 and 50 °C. The overall xylose yield from wheat arabinoxylan hydrolysis was 8 % with xylanase treatment and increased to 34 % when xylanase was combined with rCtAxeA and rCtAxeB. In sum, the present study first report the biochemical characterization of two acetyl xylan esterases from C. thermophilum, which are efficient in hydrolyzing hemicellulose with potential application in biomass bioconversion to high value chemicals or biofuels. PMID:25369895

  15. Transition-State Analysis of 2-O-Acetyl-ADP-Ribose Hydrolysis by Human Macrodomain 1

    PubMed Central

    2015-01-01

    Macrodomains, including the human macrodomain 1 (MacroD1), are erasers of the post-translational modification of monoadenosinediphospho-ribosylation and hydrolytically deacetylate the sirtuin product O-acetyl-ADP-ribose (OAADPr). OAADPr has been reported to play a role in cell signaling based on oocyte microinjection studies, and macrodomains affect an array of cell processes including transcription and response to DNA damage. Here, we investigate human MacroD1 by transition-state (TS) analysis based on kinetic isotope effects (KIEs) from isotopically labeled OAADPr substrates. Competitive radiolabeled-isotope effects and mass spectrometry were used to obtain KIE data to yield intrinsic KIE values. Intrinsic KIEs were matched to a quantum chemical structure of the TS that includes the active site residues Asp184 and Asn174 and a structural water molecule. Transition-state analysis supports a concerted mechanism with an early TS involving simultaneous nucleophilic water attack and leaving group bond cleavage where the breaking C–O ester bond = 1.60 Å and the C–O bond to the attacking water nucleophile = 2.30 Å. The MacroD1 TS provides mechanistic understanding of the OAADPr esterase chemistry. PMID:25051211

  16. Prebiotic Fiber Increases Hepatic Acetyl CoA Carboxylase Phosphorylation and Suppresses Glucose-Dependent Insulinotropic Polypeptide Secretion More Effectively When Used with Metformin in Obese Rats1,2

    PubMed Central

    Pyra, Kim A.; Saha, Dolan C.; Reimer, Raylene A.

    2013-01-01

    Independently, metformin (MET) and the prebiotic, oligofructose (OFS), have been shown to increase glucagon-like peptide (GLP-1) secretion. Our objective was to determine whether using OFS as an adjunct with MET augments GLP-1 secretion in obese rats. Male, diet-induced obese Sprague Dawley rats were randomized to: 1) high-fat/-sucrose diet [HFHS; control (C); 20% fat, 50% sucrose wt:wt]; 2) HFHS+10% OFS (OFS); 3) HFHS + MET [300 mg/kg/d (MET)]; 4) HFHS+10% OFS+MET (OFS +MET). Body composition, glycemia, satiety hormones, and mechanisms related to dipeptidyl peptidase 4 (DPP4) activity in plasma, hepatic AMP-activated protein kinase (AMPK; Western blots), and gut microbiota (qPCR) were examined. Direct effects of MET and SCFA were examined in human enteroendocrine cells. The interaction between OFS and MET affected fat mass, hepatic TG, secretion of glucose-dependent insulinotropic polypeptide (GIP) and leptin, and AMPK?2 mRNA and phosphorylated acetyl CoA carboxylase (pACC) levels (P < 0.05). Combined, OFS and MET reduced GIP secretion to a greater extent than either treatment alone (P < 0.05). The hepatic pACC level was increased by OFS+MET by at least 50% above all other treatments, which did not differ from each other (P < 0.05). OFS decreased plasma DPP4 activity (P < 0.001). Cecal Bifidobacteria (P < 0.001) were markedly increased and C. leptum decreased (P < 0.001) with OFS consumption. In human enteroendocrine cells, the interaction between MET and SCFA affected GLP-1 secretion (P < 0.04) but was not associated with higher GLP-1 than the highest individual doses. In conclusion, the combined actions of OFS and MET were associated with important interaction effects that have the potential to improve metabolic outcomes associated with obesity. PMID:22223580

  17. Identification of a novel CoA synthase isoform, which is primarily expressed in the brain.

    PubMed

    Nemazanyy, Ivan; Panasyuk, Ganna; Breus, Oksana; Zhyvoloup, Alexander; Filonenko, Valeriy; Gout, Ivan T

    2006-03-24

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy beta and originally identified CoA synthase, CoASy alpha. The transcript specific for CoASy beta was identified by electronic screening and by RT-PCR analysis of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy beta. In contrast to CoASy alpha, which shows ubiquitous expression, CoASy beta is primarily expressed in the brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in the brain, requires further elucidation. PMID:16460672

  18. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    SciTech Connect

    Nemazanyy, Ivan . E-mail: nemazanyy@imbg.org.ua; Panasyuk, Ganna; Breus, Oksana; Zhyvoloup, Alexander; Filonenko, Valeriy; Gout, Ivan T. . E-mail: i.gout@ucl.ac.uk

    2006-03-24

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy {beta} and originally identified CoA synthase, CoASy {alpha}. The transcript specific for CoASy {beta} was identified by electronic screening and by RT-PCR analysis of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy {beta}. In contrast to CoASy {alpha}, which shows ubiquitous expression, CoASy {beta} is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation.

  19. Recent NASA Dryden COA Experience

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent

    2008-01-01

    This viewgraph presentation concerns the experience that Dryden has had with Certificate of Authorization (COA) in reference to unmanned aerial systems (UAS). It reviews recent Certificate of Authorization UAS's i.e., 2005 Altair NOAA Mission, 2006 Altair Western States Fire Mission, and 2007 Ikhana. The priorities for the safety process is reviewed, as are typical UAS hazards. Slides also review the common COA provisions, best practices and lessons learned, the 2005 NOAA/NASA Science Demonstration Flights and the use of the UAS systems during fire emergencies.

  20. A novel neutral xylanase with high SDS resistance from Volvariella volvacea: characterization and its synergistic hydrolysis of wheat bran with acetyl xylan esterase.

    PubMed

    Zheng, Fei; Huang, Jingxuan; Yin, Yuhao; Ding, Shaojun

    2013-10-01

    A neutral xylanase (XynII) from Volvariella volvacea was identified and characterized. Unlike other modular xylanases, it consists of only a single GH10 catalytic domain with a unique C-terminal sequence (W-R-W-F) and a phenylalanine and proline-rich motif (T-P-F-P-P-F) at N-terminus, indicating that it is a novel GH10 xylanase. XynII exhibited optimal activity at pH 7 and 60 °C and stability over a broad range of pH 4.0-10.0. XynII displayed extreme highly SDS resistance retaining 101.98, 92.99, and 69.84 % activity at the presence of 300 mM SDS on birchwood, soluble oat spelt, and beechwood xylan, respectively. It remained largely intact after 24 h of incubation with proteinase K at a protease to protein ratio of 1:50 at 37 °C. The kinetic constants K(m) value towards beechwood xylan was 0.548 mg ml?¹, and the k(cat)/K(m) ratio, reflecting the catalytic efficiency of the enzyme, was 126.42 ml mg?¹ s?¹ at 60 °C. XynII was a true endo-acting xylanase lacking cellulase activity. It has weak activity towards xylotriose but efficiently hydrolyzed xylans and xylooligosaccharides larger than xylotriose mainly to xylobiose. Synergistic action with acetyl xylan esterase (AXEI) from V. volvacea was observed for de-starched wheat bran. The highest degree of synergy (DS 1.42) was obtained in sequential reactions with AXEI digestion preceding XynII. The high SDS resistance and intrinsic stability suggested XynII may have potential applications in various industrial processes especially for the detergent and textile industries and animal feed industries. PMID:23903903

  1. The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid

    E-print Network

    Wurtele, Eve Syrkin

    anabolism and catabolism. Acetyl- CoA is a substrate for the TCA cycle and is a precursor-CoA and mevalonate. In addition, acetyl-CoA is the product of the catabolism of fatty acids and some amino acids (e

  2. The Fasted/Fed Mouse Metabolic Acetylome: N6-Acetylation Differences Suggest Acetylation Coordinates Organ-Specific Fuel Switching

    PubMed Central

    Yang, Li; Vaitheesvaran, Bhavapriya; Hartil, Kirsten; Robinson, Alan J.; Hoopmann, Michael R.; Eng, Jimmy K.; Kurland, Irwin J.; Bruce, James E.

    2011-01-01

    The elucidation of extra-nuclear lysine acetylation has been of growing interest, as the co-substrate for acetylation, acetyl CoA, is at a key metabolic intersection. Our hypothesis was that mitochondrial and cytoplasmic protein acetylation may be part of a fasted/re-fed feedback control system for the regulation of the metabolic network in fuel switching, where acetyl CoA would be provided by fatty acid oxidation, or glycolysis, respectively. To test this we characterized the mitochondrial and cytoplasmic acetylome in various organs that have a high metabolic rate relative to their mass, and/or switch fuels, under fasted and re-fed conditions (brain, kidney, liver, skeletal muscle, heart muscle, white and brown adipose tissues). Using immunoprecipitation, coupled with LC-MSMS label free quantification, we show there is a dramatic variation in global quantitative profiles of acetylated proteins from different organs. In total, 733 acetylated peptides from 337 proteins were identified and quantified, out of which 31 acetylated peptides from the metabolic proteins that may play organ-specific roles were analyzed in detail. Results suggest that fasted/re-fed acetylation changes coordinated by organ-specific (de-)acetylases in insulin-sensitive versus insensitive organs may underlie fuel use and switching. Characterization of the tissue-specific acetylome should increase understanding of metabolic conditions wherein normal fuel switching is disrupted, such as in Type II diabetes. PMID:21728379

  3. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  4. Acetylation of woody lignocellulose: significance and regulation

    PubMed Central

    Pawar, Prashant Mohan-Anupama; Koutaniemi, Sanna; Tenkanen, Maija; Mellerowicz, Ewa J.

    2013-01-01

    Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase) or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose toward improved saccharification. In this review we: (1) summarize literature on lignocellulose acetylation in different tree species, (2) present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, (3) describe plant proteins involved in lignocellulose O-acetylation, (4) give examples of microbial enzymes capable to de-acetylate lignocellulose, and (5) discuss prospects for exploiting these enzymes in planta to modify xylan acetylation. PMID:23734153

  5. Antagonism of P2Y1-induced vasorelaxation by acyl CoA: a critical role for palmitate and 3?-phosphate

    PubMed Central

    Alefishat, E; Alexander, SPH; Ralevic, V

    2013-01-01

    Background and Purpose Acyl derivatives of CoA have been shown to act as antagonists at human platelet and recombinant P2Y1 receptors, but little is known about their effects in the cardiovascular system. This study evaluated the effect of these endogenous nucleotide derivatives at P2Y1 receptors natively expressed in rat and porcine blood vessels. Experimental Approach Isometric tension recordings were used to evaluate the effects of CoA, acetyl CoA, palmitoyl CoA (PaCoA) and 3?-dephospho-palmitoyl-CoA on concentration relaxation–response curves to ADP and uridine triphosphate (UTP). A FlexStation monitored ADP- and UTP-evoked calcium responses in HEK293 cells. Key Results Acetyl CoA and PaCoA, but not CoA, inhibited endothelium-dependent relaxations to ADP with apparent selectivity for P2Y1 receptors (over P2Y2/4 receptors) in rat thoracic aorta; PaCoA was more potent than acetyl CoA (331-fold vs. fivefold shift of ADP response curve evoked by 10 ?M PaCoA and acetyl CoA, respectively); the apparent pA2 value for PaCoA was 6.44. 3?-dephospho-palmitoyl-CoA (10 ?M) was significantly less potent than PaCoA (20-fold shift). In porcine mesenteric arteries, PaCoA and the P2Y1 receptor antagonist MRS2500 blocked ADP-mediated endothelium-dependent relaxations; in contrast, they were ineffective against ADP-mediated endothelium-independent relaxation in porcine coronary arteries (which does not involve P2Y1 receptors). Calcium responses evoked by ADP activation of endogenous P2Y1 receptors in HEK293 cells were inhibited in the presence of PaCoA, which failed to alter responses to UTP (acting at endogenous P2Y2/4 receptors). Conclusions and Implications Acyl derivatives of CoA can act as endogenous selective antagonists of P2Y1 receptors in blood vessels, and this inhibitory effect critically depends on the palmitate and 3?-ribose phosphate substituents on CoA. PMID:23215951

  6. Inhibition of neutral lipase from castor bean lipid bodies by coenzyme A (CoA) and Oleoyl-CoA

    SciTech Connect

    Not Available

    1989-03-01

    The neutral lipase (EC 3.1.1.3) in lipid body membranes isolated from the endosperm of 4 day old castor (Ricinus communis L.) seedlings catalyzes the hydrolysis of ({sup 14}C)trioleoylglycerol, releasing ({sup 14}C)oleic acid for up to 4 hours. However, the addition of Mg-ATP and coenzyme A (CoA), which are present in the cytoplasm of plant cells, caused a progressive inhibition of the neutral lipase such that after 15 minutes, release of ({sup 14}C)oleic acid was almost undetectable. A fatty acyl CoA synthetase was found in the lipid body membrane which converts ({sup 14}C)oleic acid produced from the lipase reaction to ({sup 14}C)oleoyl-CoA under these conditions. The concentration of free oleoyl-CoA in the reaction mixture when the lipase was inhibited by 50% was calculated to be about 21 micromolar. It was found that a mixture of exogenously added oleoyl-CoA and CoA was most effective in causing lipase inhibition. Little inhibition of lipase was detected in the presence of CoA alone. It is possible that this effect is important in vivo in coordinating lipase activity with fatty acid oxidation.

  7. CoaSim Guile Manual Using the Guile-based CoaSim Simulator

    E-print Network

    Mailund, Thomas

    @birc.au.dk Bioinformatics ApS CoaSim v4.0 January 2006 #12;Copyright c 2006 Thomas Mailund · Bioinformatics ApS Permission be scripted to conduct such simula- tions. The manual has intentionally a bit of a tutorial flavour, as we. For people not familiar with Scheme, an excellent tutorial can be found at http

  8. Benorylate hydrolysis by human plasma and human liver.

    PubMed Central

    Williams, F M; Moore, U; Seymour, R A; Mutch, E M; Nicholson, E; Wright, P; Wynne, H; Blain, P G; Rawlins, M D

    1989-01-01

    1. Benorylate (4-acetamido phenyl-O-acetylsalicylate) hydrolysis in vitro by human plasma and by human liver microsomes and cytosol has been investigated. 2. Benorylate was hydrolysed by a route involving initial hydrolysis of the acetyl group to yield phenetsal followed by hydrolysis to paracetamol and salicylate. Hydrolysis via acetylsalicylate was minor. 3. Benorylate was more actively hydrolysed by liver cytosol than microsomes and about 10 times faster than plasma. 4. Following a single oral dose benorylate (4 g) to volunteers only salicylate and paracetamol were detected in the plasma. 5. The therapeutic effects of benorylate appear to be mediated by salicylate and paracetamol. PMID:2575401

  9. Benorylate hydrolysis by human plasma and human liver.

    PubMed

    Williams, F M; Moore, U; Seymour, R A; Mutch, E M; Nicholson, E; Wright, P; Wynne, H; Blain, P G; Rawlins, M D

    1989-12-01

    1. Benorylate (4-acetamido phenyl-O-acetylsalicylate) hydrolysis in vitro by human plasma and by human liver microsomes and cytosol has been investigated. 2. Benorylate was hydrolysed by a route involving initial hydrolysis of the acetyl group to yield phenetsal followed by hydrolysis to paracetamol and salicylate. Hydrolysis via acetylsalicylate was minor. 3. Benorylate was more actively hydrolysed by liver cytosol than microsomes and about 10 times faster than plasma. 4. Following a single oral dose benorylate (4 g) to volunteers only salicylate and paracetamol were detected in the plasma. 5. The therapeutic effects of benorylate appear to be mediated by salicylate and paracetamol. PMID:2575401

  10. Effect of (L-Carnitine) on acetyl-L-carnitine production by heart mitochondria

    SciTech Connect

    Bieber, L.L.; Lilly, K.; Lysiak, W.

    1986-05-01

    The authors recently reported a large efflux of acetyl-L-carnitine from rat heart mitochondria during state 3 respiration with pyruvate as substrate both in the presence and absence of malate. In this series of experiments, the effect of the concentration of L-carnitine on the efflux of acetyl-L-carnitine and on the production of /sup 14/CO/sub 2/ from 2-/sup 14/C-pyruvate was determined. Maximum acetylcarnitine production (approximately 25 n moles/min/mg protein) was obtained at 3-5 mM L-carnitine in the absence of added malate. /sup 14/CO/sub 2/ production decreased as the concentration of L-carnitine increased; it plateaued at 3-5 mM L-carnitine. These data indicate carnitine can stimulate flux of pyruvate through pyruvate dehydrogenase and can reduce flux of acetyl CoA through the Krebs cycle by acting as an acceptor of the acetyl moieties of acetyl CoA generated by pyruvate dehydrogenase.

  11. The extended reductive acetyl-CoA pathway: ATPases in metal cluster maturation and reductive activation.

    PubMed

    Jeoung, Jae-Hun; Goetzl, Sebastian; Hennig, Sandra Elisabeth; Fesseler, Jochen; Wörmann, Christina; Dendra, Julia; Dobbek, Holger

    2014-05-01

    The reductive acetyl-coenzyme A (acetyl-CoA) pathway, also known as the Wood-Ljungdahl pathway, allows reduction and condensation of two molecules of carbon dioxide (CO2) to build the acetyl-group of acetyl-CoA. Productive utilization of CO2 relies on a set of oxygen sensitive metalloenzymes exploiting the metal organic chemistry of nickel and cobalt to synthesize acetyl-CoA from activated one-carbon compounds. In addition to the central catalysts, CO dehydrogenase and acetyl-CoA synthase, ATPases are needed in the pathway. This allows the coupling of ATP binding and hydrolysis to electron transfer against a redox potential gradient and metal incorporation to (re)activate one of the central players of the pathway. This review gives an overview about our current knowledge on how these ATPases achieve their tasks of maturation and reductive activation. PMID:24477517

  12. Characterization and mode of action of two acetyl xylan esterases from Chrysosporium lucknowense C1 active towards acetylated xylans.

    PubMed

    Pouvreau, L; Jonathan, M C; Kabel, M A; Hinz, S W A; Gruppen, H; Schols, H A

    2011-08-10

    Two novel acetyl xylan esterases, Axe2 and Axe3, from Chrysosporium lucknowense (C1), belonging to the carbohydrate esterase families 5 and 1, respectively, were purified and biochemically characterized. Axe2 and Axe3 are able to hydrolyze acetyl groups both from simple acetylated xylo-oligosaccharides and complex non-soluble acetylglucuronoxylan. Both enzymes performed optimally at pH 7.0 and 40 °C. Axe2 has a clear preference for acetylated xylo-oligosaccharides (AcXOS) with a high degree of substitution and Axe3 does not show such preference. Axe3 has a preference for large AcXOS (DP 9-12) when compared to smaller AcXOS (especially DP 4-7) while for Axe2 the size of the oligomer is irrelevant. Even though there is difference in substrate affinity towards acetylated xylooligosaccharides from Eucalyptus wood, the final hydrolysis products are the same for Axe2 and Axe3: xylo-oligosaccharides containing one acetyl group located at the non-reducing xylose residue remain as examined using MALDI-TOF MS, CE-LIF and the application of an endo-xylanase (GH 10). PMID:22112517

  13. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase.

    PubMed

    Yu, Le; Zhao, Jingbo; Xu, Mengmeng; Dong, Jie; Varghese, Saju; Yu, Mingrui; Tang, I-Ching; Yang, Shang-Tian

    2015-06-01

    The overexpression of CoA transferase (ctfAB), which catalyzes the reaction: acetate/butyrate + acetoacetyl-CoA ? acetyl/butyryl-CoA + acetoacetate, was studied for its effects on acid reassimilation and butanol biosynthesis in Clostridium tyrobutyricum (?ack, adhE2). The plasmid pMTL007 was used to co-express adhE2 and ctfAB from Clostridium acetobutylicum ATCC 824. In addition, the sol operon containing ctfAB, adc (acetoacetate decarboxylase), and ald (aldehyde dehydrogenase) was also cloned from Clostridium beijerinckii NCIMB 8052 and expressed in C. tyrobutyricum (?ack, adhE2). Mutants expressing these genes were evaluated for their ability to produce butanol from glucose in batch fermentations at pH 5.0 and 6.0. Compared to C. tyrobutyricum (?ack, adhE2) without expressing ctfAB, all mutants with ctfAB overexpression produced more butanol, with butanol yield increased to 0.22?-?0.26 g/g (vs. 0.10?-?0.13 g/g) and productivity to 0.35 g/l h (vs. 0.13 g/l h) because of the reduced acetate and butyrate production. The expression of ctfAB also resulted in acetone production from acetoacetate through a non-enzymatic decarboxylation. PMID:25851718

  14. The sulfur atoms of the substrate CoA and the catalytic cysteine are required for a productive mode of substrate binding in bacterial biosynthetic thiolase, a thioester-dependent enzyme.

    PubMed

    Meriläinen, Gitte; Schmitz, Werner; Wierenga, Rik K; Kursula, Petri

    2008-12-01

    Thioesters are more reactive than oxoesters, and thioester chemistry is important for the reaction mechanisms of many enzymes, including the members of the thiolase superfamily, which play roles in both degradative and biosynthetic pathways. In the reaction mechanism of the biosynthetic thiolase, the thioester moieties of acetyl-CoA and the acetylated catalytic cysteine react with each other, forming the product acetoacetyl-CoA. Although a number of studies have been carried out to elucidate the thiolase reaction mechanism at the atomic level, relatively little is known about the factors determining the affinity of thiolases towards their substrates. We have carried out crystallographic studies on the biosynthetic thiolase from Zoogloea ramigera complexed with CoA and three of its synthetic analogues to compare the binding modes of these related compounds. The results show that both the CoA terminal SH group and the side chain SH group of the catalytic Cys89 are crucial for the correct positioning of substrate in the thiolase catalytic pocket. Furthermore, calorimetric assays indicate that the mutation of Cys89 into an alanine significantly decreases the affinity of thiolase towards CoA. Thus, although the sulfur atom of the thioester moiety is important for the reaction mechanism of thioester-dependent enzymes, its specific properties can also affect the affinity and competent mode of binding of the thioester substrates to these enzymes. PMID:19016856

  15. The hydrolysis of polyimides

    NASA Technical Reports Server (NTRS)

    Hoagland, P. D.; Fox, S. W.

    1973-01-01

    Thermal polymerization of aspartic acid produces a polysuccinimide (I), a chain of aspartoyl residues. An investigation was made of the alkaline hydrolysis of the imide rings of (I) which converts the polyimide to a polypeptide. The alkaline hydrolysis of polyimides can be expected to be kinetically complex due to increasing negative charge generated by carboxylate groups. For this reason, a diimide, phthaloyl-DL-aspartoyl-beta-alanine (IIA) was synthesized for a progressive study of the hydrolysis of polyimides. In addition, this diimide (IIA) can be related to thalidomide and might be expected to exhibit similar reactivity during hydrolysis of the phthalimide ring.

  16. Simultaneous pretreatment and enzymatic hydrolysis of forage biomass

    SciTech Connect

    Henk, L.; Linden, J.C.

    1993-12-31

    Sweet sorghum is an attractive fermentation feedstock because as much as 40% of the dry weight consists of readily femented sugars such as sucrose, glucose and frutose. Cellulose and hemicellulose comprise another 50%. However, if this material is to be used a year-round feedstock for ethanol production, a stable method of storage must be developed to maintain the sugar content. A modified version of the traditional ensiling process is made effective by the addition of cellulolytic/hemicellulolytic enzymes and lactic acid bacteria to freshly chopped sweet sorghum prior to the production of silage. In situ hydrolysis of cellulose and hemicellulose occurs concurrently with the acidic ensiling fementation. By hydolyzing the acetyl groups using acetyl xylan esterase and 3-0-methyl glucuronyl side chains using pectinase from hemicellulose, cellulose becomes accessible to hydrolysis by cellulase, both during in situ ensiling with enzymes and in the simultaneous saccharification and fermentation (SSF) to ethanol.

  17. Molecular cloning of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli

    PubMed Central

    Walker, Kevin; Croteau, Rodney

    2000-01-01

    The cDNA clone for a 10-deacetylbaccatin III-10-O-acetyl transferase, which catalyzes formation of the last diterpene intermediate in the Taxol biosynthetic pathway, has been isolated from Taxus cuspidata. By using consensus sequences from an assembly of transacylases of plant origin and from many deduced proteins of unknown function, a homology-based PCR cloning strategy was employed to amplify initially a 911-bp gene fragment of the putative taxane C-10 hydroxyl acetyl transferase from Taxus. This amplicon was used to screen a cDNA library constructed from mRNA isolated from methyl jasmonate-induced Taxus cells, from which the full-length 10-deacetylbaccatin III-10-O-transacetylase sequence was obtained. Expression of the ORF from pCWori+ in Escherichia coli JM109 afforded a functional enzyme, as determined by 1H-NMR and MS verification of the product baccatin III derived from 10-deacetylbaccatin III and acetyl CoA. The full-length cDNA has an ORF of 1,320 bp corresponding to a deduced protein of 440 residues with a calculated molecular weight of 49,052, consistent with the size of the operationally soluble, monomeric, native acetyl transferase. The recombinant acetyl transferase has a pH optimum of 7.5, has Km values of 10 ?M and 8 ?M for 10-deacetylbaccatin III and acetyl CoA, respectively, and is apparently regiospecific toward the 10-hydroxyl group of the taxane ring. Amino acid sequence comparison of 10-deacetylbaccatin III-10-O-acetyl transferase with taxadienol-5-O-acetyl transferase and with other known acyl transferases of plant origin indicates a significant degree of similarity between these enzymes (80% and 64–67%, respectively). PMID:10639122

  18. Itinerant electronic ferromagnetism in Sr2ScO3CoAs with largely spaced CoAs conduction layers

    NASA Astrophysics Data System (ADS)

    Ohta, Hiroto; Noguchi, Daisuke; Nabetani, Koichiro; Katori, Hiroko Aruga

    2013-09-01

    We studied magnetism of Sr2ScO3CoAs, a member of the group of layered compound with CoAs conducting layers, by using successfully synthesized polycrystalline sample. As a result of magnetic and electric resistivity measurements, Sr2ScO3CoAs was revealed to be an itinerant electronic ferromagnet with the Curie temperature TC = 48 K. We discussed the magnetism of this compound within the spin fluctuation theory for three-dimensional itinerant electronic ferromagnets in the ordered state and also pointed out possible quasi-two-dimensional behavior observed in magnetism.

  19. Progressing batch hydrolysis process

    DOEpatents

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  20. Thermodynamics of actinide hydrolysis

    SciTech Connect

    Hromadka, P.M.; Wong, P.J.; Sullivan, J.C.; Choppin, G.R.

    1996-10-01

    Thermodynamic parameters of Np(V), U(VI), and Pu(VI) hydrolysis have been measured at 5-45{degrees}C via calorimetric titration. These parameters are needed to evaluate actinide migration behavior in the near field of nuclear waste repositories which are expected to reach temperatures of 100{degrees}C. The enthalpies determined exhibit both a temperature as well as an ionic media dependence. Calorimetry provides a direct, quantitative method to observe the energetic consequences of hydrolysis and the solute-solvent interactions between actinide metals and their coordination spheres in aqueous solution. The different enthalpies of hydrolysis in 1M Me{sub 4}NCl and NaClO{sub 4} provide further insight concerning their second sphere salvation structures. Our results suggest {Delta}Cp is linear over the 40{degrees} temperature range. The linear correlation between {Delta}{Delta}H and {Delta}Cp reflects the dominance of solvent reorganization in the {Delta}Cp term. Based on our values of {Delta}Cp for Np(V), U(VI), and Pu(VI) hydrolysis, the Van`t Hoff equation (assumes {Delta}Cp=O) may not be used to estimate hydrolysis constants at elevated temperatures.

  1. Progressing batch hydrolysis process

    DOEpatents

    Wright, John D. (Denver, CO)

    1986-01-01

    A progressive batch hydrolysis process for producing sugar from a lignocellulosic feedstock, comprising passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feedstock to glucose; cooling said dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, then feeding said dilute acid stream serially through a plurality of prehydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose; and cooling the dilute acid stream containing glucose after it exits the last prehydrolysis reactor.

  2. Acid hydrolysis of cellulose

    SciTech Connect

    Salazar, H.

    1980-12-01

    One of the alternatives to increase world production of etha nol is by the hydrolysis of cellulose content of agricultural residues. Studies have been made on the types of hydrolysis: enzimatic and acid. Data obtained from the sulphuric acid hydrolysis of cellulose showed that this process proceed in two steps, with a yield of approximately 95% glucose. Because of increases in cost of alternatives resources, the high demand of the product and the more economic production of ethanol from cellulose materials, it is certain that this technology will be implemented in the future. At the same time further studies on the disposal and reuse of the by-products of this production must be undertaken.

  3. 3-Hydroxy-3-methylglutaryl CoA lyase (HL): Mouse and human HL gene (HMGCL) cloning and detection of large gene deletions in two unrelated HL-deficient patients

    SciTech Connect

    Wang, S.P.; Robert, M.F.; Mitchell, G.A.

    1996-04-01

    3-hydroxy-3-methylglutaryl CoA lyase (HL, EC 4.1.3.4) catalyzes the cleavage of 3-hydroxy-3-methylglutaryl CoA to acetoacetic acid and acetyl CoA, the final reaction of both ketogenesis and leucine catabolism. Autosomal-recessive HL deficiency in humans results in episodes of hypoketotic hypoglycemia and coma. Using a mouse HL cDNA as a probe, we isolated a clone containing the full-length mouse HL gene that spans about 15 kb of mouse chromosome 4 and contains nine exons. The promoter region of the mouse HL gene contains elements characteristic of a housekeeping gene: a CpG island containing multiple Sp1 binding sites surrounds exon 1, and neither a TATA nor a CAAT box are present. We identified multiple transcription start sites in the mouse HL gene, 35 to 9 bases upstream of the translation start codon. We also isolated two human HL genomic clones that include HL exons 2 to 9 within 18 kb. The mouse and human HL genes (HGMW-approved symbol HMGCL) are highly homologous, with identical locations of intron-exon junctions. By genomic Southern blot analysis and exonic PCR, was found 2 of 33 HL-deficient probands to be homozygous for large deletions in the HL gene. 26 refs., 4 figs., 2 tabs.

  4. Isomerization of 1-O-indol-3-ylacetyl-beta-D-glucose. Enzymatic hydrolysis of 1-O, 4-O, and 6-O-indol-3-ylacetyl-beta-D-glucose and the enzymatic synthesis of indole-3-acetyl glycerol by a hormone metabolizing complex

    NASA Technical Reports Server (NTRS)

    Kowalczyk, S.; Bandurski, R. S.

    1990-01-01

    The first compound in the series of reactions leading to the ester conjugates of indole-3-acetic acid (IAA) in kernels of Zea mays sweet corn is the acyl alkyl acetal, 1-O-indol-3-ylacetyl-beta-D-glucose (1-O-IAGlu). The enzyme catalyzing the synthesis of this compound is UDP-glucose:indol-3-ylacetate glucosyl-transferase (IAGlu synthase). The IAA moiety of the high energy compound 1-O-IAGlu may be enzymatically transferred to myo-inositol or to glycerol or the 1-O-IAGlu may be enzymatically hydrolyzed. Alternatively, nonenzymatic acyl migration may occur to yield the 2-O, 4-O, and 6-O esters of IAA and glucose. The 4-O and 6-O esters may then be enzymatically hydrolyzed to yield free IAA and glucose. This work reports new enzymatic activities, the transfer of IAA from 1-O-IAGlu to glycerol, and the enzyme-catalyzed hydrolysis of 4-O and 6-O-IAGlu. Data is also presented on the rate of non-enzymatic acyl migration of IAA from the 1-O to the 4-O and 6-O positions of glucose. We also report that enzymes catalyzing the synthesis of 1-O-IAGlu and the hydrolysis of 1-O, 4-O, and 6-O-IAGlu fractionate as a hormone metabolizing complex. The association of synthetic and hydrolytic capabilities in enzymes which cofractionate may have physiological significance.

  5. Catalytic Depolymerization of Chitin with Retention of N-Acetyl Group.

    PubMed

    Yabushita, Mizuho; Kobayashi, Hirokazu; Kuroki, Kyoichi; Ito, Shogo; Fukuoka, Atsushi

    2015-11-01

    Chitin, a polymer of N-acetylglucosamine units with ?-1,4-glycosidic linkages, is the most abundant marine biomass. Chitin monomers containing N-acetyl groups are useful precursors to various fine chemicals and medicines. However, the selective conversion of robust chitin to N-acetylated monomers currently requires a large excess of acid or a long reaction time, which limits its application. We demonstrate a fast catalytic transformation of chitin to monomers with retention of N-acetyl groups by combining mechanochemistry and homogeneous catalysis. Mechanical-force-assisted depolymerization of chitin with a catalytic amount of H2 SO4 gave soluble short-chain oligomers. Subsequent hydrolysis of the ball-milled sample provided N-acetylglucosamine in 53?% yield, and methanolysis afforded 1-O-methyl-N-acetylglucosamine in yields of up to 70?%. Our process can greatly reduce the use of acid compared to the conventional process. PMID:26538108

  6. Cellulose acetate from oil palm empty fruit bunch via a one step heterogeneous acetylation.

    PubMed

    Wan Daud, Wan Rosli; Djuned, Fauzi Muhammad

    2015-11-01

    Acetone soluble oil palm empty fruit bunch cellulose acetate (OPEFB-CA) of DS 2.52 has been successfully synthesized in a one-step heterogeneous acetylation of OPEFB cellulose without necessitating the hydrolysis stage. This has only been made possible by the mathematical modeling of the acetylation process by manipulating the variables of reaction time and acetic anhydride/cellulose ratio (RR). The obtained model was verified by experimental data with an error of less than 2.5%. NMR analysis showed that the distribution of the acetyl moiety among the three OH groups of cellulose indicates a preference at the C6 position, followed by C3 and C2. XRD revealed that OPEFB-CA is highly amorphous with a degree of crystallinity estimated to be ca. 6.41% as determined from DSC. The OPEFB-CA films exhibited good mechanical properties being their tensile strength and Young's modulus higher than those of the commercial CA. PMID:26256348

  7. The Logic Linking Protein Acetylation and Metabolism

    E-print Network

    Guarente, Leonard Pershing

    Protein acetylation now rivals phosphorylation in frequency of occurrence but is incompletely understood. A picture is presented in which protein acetylation is linked to available energy via the NAD-dependent deacetylases. ...

  8. Small GTP-binding protein Ran is regulated by posttranslational lysine acetylation.

    PubMed

    de Boor, Susanne; Knyphausen, Philipp; Kuhlmann, Nora; Wroblowski, Sarah; Brenig, Julian; Scislowski, Lukas; Baldus, Linda; Nolte, Hendrik; Krüger, Marcus; Lammers, Michael

    2015-07-14

    Ran is a small GTP-binding protein of the Ras superfamily regulating fundamental cellular processes: nucleo-cytoplasmic transport, nuclear envelope formation and mitotic spindle assembly. An intracellular Ran•GTP/Ran•GDP gradient created by the distinct subcellular localization of its regulators RCC1 and RanGAP mediates many of its cellular effects. Recent proteomic screens identified five Ran lysine acetylation sites in human and eleven sites in mouse/rat tissues. Some of these sites are located in functionally highly important regions such as switch I and switch II. Here, we show that lysine acetylation interferes with essential aspects of Ran function: nucleotide exchange and hydrolysis, subcellular Ran localization, GTP hydrolysis, and the interaction with import and export receptors. Deacetylation activity of certain sirtuins was detected for two Ran acetylation sites in vitro. Moreover, Ran was acetylated by CBP/p300 and Tip60 in vitro and on transferase overexpression in vivo. Overall, this study addresses many important challenges of the acetylome field, which will be discussed. PMID:26124124

  9. Mechanistic Insight with HBCH2CoA as a Probe to Polyhydroxybutyrate (PHB) Synthases

    PubMed Central

    2015-01-01

    Polyhydroxybutyrate (PHB) synthases catalyze the polymerization of 3-(R)-hydroxybutyrate coenzyme A (HBCoA) to produce polyoxoesters of 1–2 MDa. A substrate analogue HBCH2CoA, in which the S in HBCoA is replaced with a CH2 group, was synthesized in 13 steps using a chemoenzymatic approach in a 7.5% overall yield. Kinetic studies reveal it is a competitive inhibitor of a class I and a class III PHB synthases, with Kis of 40 and 14 ?M, respectively. To probe the elongation steps of the polymerization, HBCH2CoA was incubated with a synthase acylated with a [3H]-saturated trimer-CoA ([3H]-sTCoA). The products of the reaction were shown to be the methylene analogue of [3H]-sTCoA ([3H]-sT-CH2-CoA), saturated dimer-([3H]-sD-CO2H), and trimer-acid ([3H]-sT-CO2H), distinct from the expected methylene analogue of [3H]-saturated tetramer-CoA ([3H]-sTet-CH2-CoA). Detection of [3H]-sT-CH2-CoA and its slow rate of formation suggest that HBCH2CoA may be reporting on the termination and repriming process of the synthases, rather than elongation. PMID:24896226

  10. Acid hydrolysis of Jerusalem artichoke for ethanol fermentation

    SciTech Connect

    Kim, K.; Hamdy, M.K.

    1986-01-01

    An excellent substrate for ethanol production is the Jerusalem artichoke (JA) tuber (Helianthus tuberosus). This crop contains a high level of inulin that can be hydrolyzed mainly to D-fructose and has several distinct advantages as an energy source compared to others. The potential ethanol yield of ca. 4678 L/ha on good agricultural land is equivalent to that obtained from sugar beets and twice that of corn. When JA is to be used for ethanol fermentation by conventional yeast, it is first converted to fermentable sugars by enzymes or acids although various strains of yeast were used for the direct fermentation of JA extracts. Fleming and GrootWassink compared various acids (hydrochloric, sulfuric, citric, and phosphoric) and strong cation exchange resin for their effectiveness on inulin hydrolysis and reported that no differences were noted among the acids or resin in their influence on inulin hydrolysis. Undesirable side reactions were noted during acid hydrolysis leading to the formation of HMF and 2-(2-hydroxy acetyl) furan. The HMF at a level of 0.1% is known to inhibit growth and ethanol fermentation by yeast. In this study the authors established optimal conditions for complete acid-hydrolysis of JA with minimum side reactions and maximum sugar-ethanol production. A material balance for the ethanol production was also determined.

  11. Receptor-coupled phosphoinositide hydrolysis in human retinal pigment epithelium.

    PubMed

    Feldman, E L; Randolph, A E; Johnston, G C; DelMonte, M A; Greene, D A

    1991-06-01

    Carbachol and histamine stimulated phosphoinositide (PPI) hydrolysis in cultured human retinal pigment epithelium (RPE), as reflected by an accumulation of 3H-inositol phosphates in the presence of 10 mM Li+. Carbachol increased PPI hydrolysis to greater than 600% of basal with an EC50 of 60 microM; stimulation was linear up to 60 min. This activation likely occurred via the M3 muscarinic cholinergic receptor based on the IC50 values for 4-diphenylacetoxy-N-methylpiperidine methiodide (0.47 nM), pirenzepine (280 nM), and 11-[[2-[(diethylamino)methyl]-1-piperidinyl]-acetyl]-5,11- dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one (1.4 microM). Carbachol-mediated PPI hydrolysis was decreased by 80% in the absence of extracellular Ca2+. Histamine stimulated PPI turnover in a linear manner by 180% with an EC50 of 20 microM by the H1 histaminergic receptor. Serotonin, glutamate, norepinephrine, and dopamine were inactive. In human RPE, the resting cytoplasmic Ca2+ concentration, as determined by fura-2 fluorescence, was 138 +/- 24 nM. On the addition of carbachol, there was a 180% increase in peak intracellular Ca2+; addition of histamine increased intracellular Ca2+ by 187%. These results suggest receptor-mediated, inositol lipid hydrolysis is coupled to intracellular Ca2+ flux in human RPE. PMID:1851211

  12. Identification and Quantitative Analysis of Indole-3-Acetyl-l-Aspartate from Seeds of Glycine max L. 1

    PubMed Central

    Cohen, Jerry D.

    1982-01-01

    Indole-3-acetyl-l-aspartate (IAAsp) was isolated from seeds of Glycine max L. cv. Hark and its identity established by its chromatographic performance and its mass spectral fragmentation. Following acid hydrolysis, the aspartate moiety was shown to be the l-enantiomer by reverse phase high performance liquid chromatographic retention time of the bisethyl ester derivatized with 2,3,4,6-tetra-O-acetyl-?-d-glycopyranosyl isothiocyanate. Isotope dilution analysis using [14C]IAAsp as internal standard showed that soybean seed contained 10 ?mol/kg IAAsp and this accounted for one-half of the total indoleacetic acid of the seed. PMID:16662569

  13. Metabolic biology of 3-methylglutaconic acid-uria: a new perspective.

    PubMed

    Su, Betty; Ryan, Robert O

    2014-05-01

    Over the past 25 years a growing number of distinct syndromes/mutations associated with compromised mitochondrial function have been identified that share a common feature: urinary excretion of 3-methylglutaconic acid (3MGA). In the leucine degradation pathway, carboxylation of 3-methylcrotonyl CoA leads to formation of 3-methylglutaconyl CoA while 3-methylglutaconyl CoA hydratase converts this metabolite to 3-hydroxy-3-methylglutaryl CoA (HMG CoA). In "primary" 3MGA-uria, mutations in the hydratase are directly responsible for the accumulation of 3MGA. On the other hand, in all "secondary" 3MGA-urias, no defect in leucine catabolism exists and the metabolic origin of 3MGA is unknown. Herein, a path to 3MGA from mitochondrial acetyl CoA is proposed. The pathway is initiated when syndrome-associated mutations/DNA deletions result in decreased Krebs cycle flux. When this occurs, acetoacetyl CoA thiolase condenses two acetyl CoA into acetoacetyl CoA plus CoASH. Subsequently, HMG CoA synthase 2 converts acetoacetyl CoA and acetyl CoA to HMG CoA. Under syndrome-specific metabolic conditions, 3-methylglutaconyl CoA hydratase converts HMG CoA into 3-methylglutaconyl CoA in a reverse reaction of the leucine degradation pathway. This metabolite fails to proceed further up the leucine degradation pathway owing to the kinetic properties of 3-methylcrotonyl CoA carboxylase. Instead, hydrolysis of the CoA moiety of 3-methylglutaconyl CoA generates 3MGA, which appears in urine. If experimentally confirmed, this pathway provides an explanation for the occurrence of 3MGA in multiple disorders associated with compromised mitochondrial function. PMID:24407466

  14. Hydrolysis of biomass material

    DOEpatents

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  15. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions.

    PubMed

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas; Zechner, Rudolf; Choudhary, Chunaram

    2015-11-01

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation sites, and greater sensitivity of SIRT3-targeted sites to chemical acetylation in vitro and fasting-induced acetylation in vivo, suggest a nonenzymatic mechanism of acetylation. Our data indicate that most mitochondrial acetylation occurs as a low-level nonenzymatic protein lesion and that SIRT3 functions as a protein repair factor that removes acetylation lesions from lysine residues. PMID:26358839

  16. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions

    PubMed Central

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas; Zechner, Rudolf; Choudhary, Chunaram

    2015-01-01

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation sites, and greater sensitivity of SIRT3-targeted sites to chemical acetylation in vitro and fasting-induced acetylation in vivo, suggest a nonenzymatic mechanism of acetylation. Our data indicate that most mitochondrial acetylation occurs as a low-level nonenzymatic protein lesion and that SIRT3 functions as a protein repair factor that removes acetylation lesions from lysine residues. PMID:26358839

  17. Protein acetylation in metabolism - metabolites and cofactors.

    PubMed

    Menzies, Keir J; Zhang, Hongbo; Katsyuba, Elena; Auwerx, Johan

    2016-01-01

    Reversible acetylation was initially described as an epigenetic mechanism regulating DNA accessibility. Since then, this process has emerged as a controller of histone and nonhistone acetylation that integrates key physiological processes such as metabolism, circadian rhythm and cell cycle, along with gene regulation in various organisms. The widespread and reversible nature of acetylation also revitalized interest in the mechanisms that regulate lysine acetyltransferases (KATs) and deacetylases (KDACs) in health and disease. Changes in protein or histone acetylation are especially relevant for many common diseases including obesity, diabetes mellitus, neurodegenerative diseases and cancer, as well as for some rare diseases such as mitochondrial diseases and lipodystrophies. In this Review, we examine the role of reversible acetylation in metabolic control and how changes in levels of metabolites or cofactors, including nicotinamide adenine dinucleotide, nicotinamide, coenzyme A, acetyl coenzyme A, zinc and butyrate and/or ?-hydroxybutyrate, directly alter KAT or KDAC activity to link energy status to adaptive cellular and organismal homeostasis. PMID:26503676

  18. Structural and docking studies of Leucaena leucocephala Cinnamoyl CoA reductase.

    PubMed

    Prasad, Nirmal K; Vindal, Vaibhav; Kumar, Vikash; Kabra, Ashish; Phogat, Navneet; Kumar, Manoj

    2011-03-01

    Lignin, a major constituent of plant call wall, is a phenolic heteropolymer. It plays a major role in the development of plants and their defense mechanism against pathogens. Therefore Lignin biosynthesis is one of the critical metabolic pathways. In lignin biosynthesis, the Cinnamoyl CoA reductase is a key enzyme which catalyzes the first step in the pathway. Cinnamoyl CoA reductase provides the substrates which represent the main transitional molecules of lignin biosynthesis pathway, exhibits a high in vitro kinetic preference for feruloyl CoA. In present study, the three-dimensional model of cinnamoyl CoA reductase was constructed based on the crystal structure of Grape Dihydroflavonol 4-Reductase. Furthermore, the docking studies were performed to understand the substrate interactions to the active site of CCR. It showed that residues ARG51, ASN52, ASP54 and ASN58 were involved in substrate binding. We also suggest that residue ARG51 in CCR is the determinant residue in competitive inhibition of other substrates. This structural and docking information have prospective implications to understand the mechanism of CCR enzymatic reaction with feruloyl CoA, however the approach will be applicable in prediction of substrates and engineering 3D structures of other enzymes as well. PMID:20512516

  19. A Method to determine lysine acetylation stoichiometries

    SciTech Connect

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; Pasa-Tolic, Ljiljana; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.; Ansong, Charles

    2014-07-21

    A major bottleneck to fully understanding the functional aspects of lysine acetylation is the lack of stoichiometry information. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of lysine acetylation on proteins globally. Using this technique, we determined the modification occupancy on hundreds of acetylated peptides from cell lysates and cross-validated the measurements via immunoblotting.

  20. Quantitative Profiling of Lysine Acetylation Reveals Dynamic Crosstalk between Receptor Tyrosine Kinases and Lysine Acetylation

    E-print Network

    Bryson, Bryan D.

    Lysine acetylation has been primarily investigated in the context of transcriptional regulation, but a role for acetylation in mediating other cellular responses has emerged. Multiple studies have described global lysine ...

  1. Crystal structure of serine acetyl transferase from Brucella abortus and its complex with coenzyme A.

    PubMed

    Kumar, Sudhir; Kumar, Nitesh; Alam, Neelima; Gourinath, Samudrala

    2014-10-01

    Brucella abortus is the major cause of premature foetal abortion in cattle, can be transmitted from cattle to humans, and is considered a powerful biological weapon. De novo cysteine biosynthesis is one of the essential pathways reported in bacteria, protozoa, and plants. Serine acetyltransferase (SAT) initiates this reaction by catalyzing the formation of O-acetylserine (OAS) using l-serine and acetyl coenzyme A as substrates. Here we report kinetic and crystallographic studies of this enzyme from B. abortus. The kinetic studies indicate that cysteine competitively inhibits the binding of serine to B. abortus SAT (BaSAT) and noncompetitively inhibits the binding of acetyl coenzyme A. The crystal structures of BaSAT in its apo state and in complex with coenzyme A (CoA) were determined to 1.96Å and 1.87Å resolution, respectively. BaSAT was observed as a trimer in a size exclusion column; however, it was seen as a hexamer in dynamic light scattering (DLS) studies and in the crystal structure, indicating it may exist in both states. The complex structure shows coenzyme A bound to the C-terminal region, making mostly hydrophobic contacts from the center of the active site extending up to the surface of the protein. There is no conformational difference in the enzyme between the apo and the complexed states, indicating lock and key binding and the absence of an induced fit mechanism. PMID:25058332

  2. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal -Oxidation of Unsaturated Fatty

    E-print Network

    Zhijie, Liu

    Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal -Oxidation of Unsaturated with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two

  3. Proteomic profiling of lysine acetylation in Pseudomonas aeruginosa reveals the diversity of acetylated proteins.

    PubMed

    Ouidir, Tassadit; Cosette, Pascal; Jouenne, Thierry; Hardouin, Julie

    2015-07-01

    Protein lysine acetylation is a reversible and highly regulated post-translational modification with the well demonstrated physiological relevance in eukaryotes. Recently, its important role in the regulation of metabolic processes in bacteria was highlighted. Here, we reported the lysine acetylproteome of Pseudomonas aeruginosa using a proteomic approach. We identified 430 unique peptides corresponding to 320 acetylated proteins. In addition to the proteins involved in various metabolic pathways, several enzymes contributing to the lipopolysaccharides biosynthesis were characterized as acetylated. This data set illustrated the abundance and the diversity of acetylated lysine proteins in P. aeruginosa and opens opportunities to explore the role of the acetylation in the bacterial physiology. PMID:25900529

  4. A Method to Determine Lysine Acetylation Stoichiometries

    DOE PAGESBeta

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong-Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; et al

    2014-01-01

    Lysine acetylation is a common protein posttranslational modification that regulates a variety of biological processes. A major bottleneck to fully understanding the functional aspects of lysine acetylation is the difficulty in measuring the proportion of lysine residues that are acetylated. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of protein lysine acetylation. Using this technique, we determined the modification occupancy for ~750 acetylated peptides from mammalian cell lysates. Furthermore, the acetylation on N-terminal tail of histone H4 was cross-validated by treating cells with sodiummore »butyrate, a potent deacetylase inhibitor, and comparing changes in stoichiometry levels measured by our method with immunoblotting measurements. Of note we observe that acetylation stoichiometry is high in nuclear proteins, but very low in mitochondrial and cytosolic proteins. In summary, our method opens new opportunities to study in detail the relationship of lysine acetylation levels of proteins with their biological functions.« less

  5. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  6. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  7. Depolymerization and de-N-acetylation of chitin oligomers in hydrochloric acid.

    PubMed

    Einbu, Aslak; Vårum, Kjell M

    2007-01-01

    The monosaccharide 2-amino-2-deoxy-D-glucose (glucosamine, GlcN) has recently drawn much attention in relation to its use to treat or prevent osteoarthritis in humans. Glucosamine is prepared from chitin, a process that is performed in concentrated acid, such as hydrochloric acid. This process involves two acid-catalyzed processes, that is, the hydrolysis of the glycosidic linkages (depolymerization) and of the N-acetyl linkages (de-N-acetylation). The depolymerization reaction has previously been found to be much faster compared to the deacetylation, with the consequence that the chitin chain will first be hydrolyzed to the monomer 2-acetamido-2-deoxy-D-glucose (N-acetylglucosamine, GlcNAc) which is subsequently deacetylated. We have found that the chitin disaccharide GlcNAc(1-->4)GlcNAc could be completely hydrolyzed to the monosaccharide GlcNAc with negligible concomitant de-N-acetylation, and the chitin disaccharide and monosaccharide were further used to study the depolymerization reaction and the de-N-acetylation reaction, respectively. The reactions were performed in hydrochloric acid as a function of acid concentration (3-12 M) and temperature (20-35 degrees C), and 1H-NMR spectroscopy was used to monitor the reaction rates. The 1H NMR spectrum of GlcNAc in concentrated (12 M) and deuterated hydrochloric acid at 25 degrees C was assigned. The glucofuranosyl oxazolinium (3) ion was found to exist in equilibrium with the alpha- and beta-anomers of the pyranose form of GlcNAc, where 3 was present in half the total molar concentrations of the two anomeric forms of GlcNAc. At lower acid concentration (3-6 M), only trace concentrations of 3 could be detected. The rate of de-N-acetylation of GlcNAc was determined as a function of hydrochloric acid concentration, showing a maximum at 6 M and decreasing by a factor of 2 upon decreasing or increasing the acid concentration to 3 or 12 M. The activation energy for hydrolysis of the N-acetyl linkage of GlcNAc was determined to be 102 +/- 7, 116 +/- 8, and 110 +/- 8 kJ mol(-1) at 3, 6, and 12 M hydrochloric acid concentration, respectively. The results are in accordance with the proposed SN2 reaction mechanism of the acid-catalyzed hydrolysis of the N-acetyl linkage where the rate-limiting step is the addition of water to the carbonium ion. The 1H NMR spectrum of the dimer GlcNAc-GlcNAc in concentrated (12 M) and deuterated hydrochloric acid at 25 degrees C was assigned. The rate of the acid-catalyzed cleavage of the glycosidic linkage of the dimer was determined as a function of hydrochloric acid concentration, showing a 6-fold increase from 3 to 6 M HCl concentration and a further 6-fold increase from 6 to 12 M HCl concentration, in contrast to the much smaller effect of acid concentration on the deacetylation reaction. Activation energy for hydrolysis of the glycosidic linkage of GlcNAc-GlcNAc was determined to be 110 +/- 6, 111 +/- 6, and 112 +/- 4 kJ mol(-1) at 3, 6 and 12 M hydrochloric acid concentration, respectively, that is, very similar to the activation energies determined for the deacetylation reaction. The results are in accordance with the proposed SN1 reaction mechanism of the acid-catalyzed hydrolysis of the glycosidic linkage, where the rate-limiting step is the formation of the carbonium ion. PMID:17206822

  8. Hydrolysis reactor for hydrogen production

    DOEpatents

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  9. EXPRESSION OF TURKEY TRANSCRIPTION FACTORS AND ACYL COA OXIDASE IN DIFFERENT TISSUES AND GENETIC POPULATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several transcription factors are involved in regulating lipid metabolism in various animal tissues. Peroxisome proliferator activated receptor (PPAR) gamma and PPAR alpha regulate both lipogenesis and fatty acid oxidation. Gene fragments for PPAR gamma, PPAR alpha, and acyl CoA oxidase (ACO) have b...

  10. Unique response of lung acetyl-CoA carboxylase to inhibitors

    SciTech Connect

    Patterson, C.E.; Davis, K.S.; Rhoades, R.A.

    1986-05-01

    Fatty acid synthesis (FAS) in lung is not inhibited by c-AMP analogs or aminophylline although these agents inhibit FAS in other lipogenic tissues. To further characterize FAS in lung, the authors examined the response of cultured fetal lung explants to known inhibitors of FAS in liver: t-butyl benzoic acid (tBB-which binds CoA and inhibits acetyl-CoA carboxylase) and palmitate (an allosteric effector of acetyl-CoA carboxylase). Explants derived from d18 fetuses (term=22d) were cultured 2d in F12k media containing 10mM lactate, 2mM glucose, and 10mM Hepes. At 48h, FAS was determined by incubation with /sup 3/H/sub 2/O (control = 3892 +/- 755 nmoles C2 units/g/h) and surfactant lipid production estimated by incorporation of /sup 14/C-choline into DSPC (control = 35.8 +/- 9.0 nmoles/g/h). Addition of tBB (50uM) did not significantly alter FAS or choline incorporation. Addition of palmitate (0.15mM) in either ethanol (1% final conc.) or albumin (3% final conc.) did not result in diminished FAS. Palmitate did increase DSPC labeling 20%, indicating that in these cultures the rate of surfactant synthesis is partially dependent upon palmitate availability. These data show that lung is unique in its unresponsiveness to various inhibitors of FAS which act at the level acetyl-CoA carboxylase and suggest that FAS is maintained in order to insure a de novo palmitate supply for surfactant lipid synthesis.

  11. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation

    PubMed Central

    Snyder, Nathaniel W.; Wei, Shuanzeng; Venneti, Sriram; Worth, Andrew J.; Yuan, Zuo-Fei; Lim, Hee-Woong; Liu, Shichong; Jackson, Ellen; Aiello, Nicole M.; Haas, Naomi B.; Rebbeck, Timothy R.; Judkins, Alexander; Won, Kyoung-Jae; Chodosh, Lewis A.; Garcia, Benjamin A.; Stanger, Ben Z.; Feldman, Michael D.; Blair, Ian A.; Wellen, Kathryn E.

    2014-01-01

    SUMMARY Histone acetylation plays important roles in gene regulation, DNA replication, and the response to DNA damage, and it is frequently deregulated in tumors. We postulated that tumor cell histone acetylation levels are determined in part by changes in acetyl-CoA availability mediated by oncogenic metabolic reprogramming. Here, we demonstrate that acetyl-CoA is dynamically regulated by glucose availability in cancer cells and that the ratio of acetyl-CoA: coenzyme A within the nucleus modulates global histone acetylation levels. In vivo, expression of oncogenic Kras or Akt stimulates histone acetylation changes that precede tumor development. Furthermore, we show that Akt's effects on histone acetylation are mediated through the metabolic enzyme ATP-citrate lyase (ACLY), and that pAkt(Ser473) levels correlate significantly with histone acetylation marks in human gliomas and prostate tumors. The data implicate acetyl-CoA metabolism as a key determinant of histone acetylation levels in cancer cells. PMID:24998913

  12. Acetylation of rice straw for thermoplastic applications.

    PubMed

    Zhang, Guangzhi; Huang, Kai; Jiang, Xue; Huang, Dan; Yang, Yiqi

    2013-07-01

    An inexpensive and biodegradable thermoplastic was developed through acetylation of rice straw (RS) with acetic anhydride. Acetylation conditions were optimized. The structure and properties of acetylated RS were characterized by fourier transform infrared (FTIR), solid-state (13)C NMR spectroscopy, X-ray diffractometer (XRD), scanning electron microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results showed that acetylation of RS has successfully taken place, and comparing with raw RS, the degree of crystallinity decreased and the decomposition rate was slow. The acetylated RS has got thermoplasticity when weight ratio of RS and acetic anhydride was 1:3, using sulphuric acid (9% to RS) as catalyst in glacial acetic acid 35°C for 12h, and the dosage of solvent was 9 times RS, in which weight percent gain (WPG) of the modified RS powder was 35.5% and its percent acetyl content was 36.1%. The acetylated RS could be formed into transparent thin films with different amount of plasticizer diethyl phthalate (DEP) using tape casting technology. PMID:23688473

  13. Enhanced acetyl-CoA production is associated with increased triglyceride accumulation in the green alga Chlorella desiccata

    PubMed Central

    Avidan, Omri; Brandis, Alexander; Rogachev, Ilana; Pick, Uri

    2015-01-01

    Triglycerides (TAGs) from microalgae can be utilized as food supplements and for biodiesel production, but little is known about the regulation of their biosynthesis. This work aimed to test the relationship between acetyl-CoA (Ac-CoA) levels and TAG biosynthesis in green algae under nitrogen deprivation. A novel, highly sensitive liquid chromatography mass spectrometry (LC-MS/MS) technique enabled us to determine the levels of Ac-CoA, malonyl-CoA, and unacetylated (free) CoA in green microalgae. A comparative study of three algal species that differ in TAG accumulation levels shows that during N starvation, Ac-CoA levels rapidly rise, preceding TAG accumulation in all tested species. The levels of Ac-CoA in the high TAG accumulator Chlorella desiccata exceed the levels in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Similarly, malonyl-CoA and free CoA levels also increase, but to lower extents. Calculated cellular concentrations of Ac-CoA are far lower than reported K mAc-CoA values of plastidic Ac-CoA carboxylase (ptACCase) in plants. Transcript level analysis of plastidic pyruvate dehydrogenase (ptPDH), the major chloroplastic Ac-CoA producer, revealed rapid induction in parallel with Ac-CoA accumulation in C. desiccata, but not in D. tertiolecta or C. reinhardtii. It is proposed that the capacity to accumulate high TAG levels in green algae critically depends on their ability to divert carbon flow towards Ac-CoA. This requires elevation of the chloroplastic CoA pool level and enhancement of Ac-CoA biosynthesis. These conclusions may have important implications for future genetic manipulation to enhance TAG biosynthesis in green algae. PMID:25922486

  14. Crystallographic trapping of the glutamyl-CoA thioester intermediate of family I CoA transferases

    SciTech Connect

    Rangarajan,E.; Li, Y.; Ajamian, E.; Iannuzzi, P.; Kernaghan, S.; Fraser, M.; Cygler, M.; Matte, A.

    2005-01-01

    Coenzyme A transferases are involved in a broad range of biochemical processes in both prokaryotes and eukaryotes, and exhibit a diverse range of substrate specificities. The YdiF protein from Escherichia coli O157:H7 is an acyl-CoA transferase of unknown physiological function, and belongs to a large sequence family of CoA transferases, present in bacteria to humans, which utilize oxoacids as acceptors. In vitro measurements showed that YdiF displays enzymatic activity with short-chain acyl-CoAs. The crystal structures of YdiF and its complex with CoA, the first co-crystal structure for any Family I CoA transferase, have been determined and refined at 1.9 and 2.0 Angstrom resolution, respectively. YdiF is organized into tetramers, with each monomer having an open {alpha}/{beta} structure characteristic of Family I CoA transferases. Co-crystallization of YdiF with a variety of CoA thioesters in the absence of acceptor carboxylic acid resulted in trapping a covalent {gamma}-glutamyl-CoA thioester intermediate. The CoA binds within a well defined pocket at the N- and C-terminal domain interface, but makes contact only with the C-terminal domain. The structure of the YdiF complex provides a basis for understanding the different catalytic steps in the reaction of Family I CoA transferases.

  15. Metabolic inversion of (R)-ibuprofen. Epimerization and hydrolysis of ibuprofenyl-coenzyme A.

    PubMed

    Tracy, T S; Hall, S D

    1992-01-01

    Ibuprofen [(racemic)2-(4-isobutylphenyl)propionic acid] has been proposed but not directly demonstrated to undergo unidirectional inversion from the (R)- to the (S)-configuration via a coenzyme A (CoA) thioester intermediate. Chemically synthesized (R)- and (S)-ibuprofenyl-CoA, and rat and human liver homogenates were used to investigate the relative rates of ibuprofenyl-CoA epimerization and hydrolysis. Rat whole liver homogenate completely epimerized (R)- or (S)-ibuprofenyl-CoA, whereas hydrolysis of this intermediate occurred at a much slower rate. Rat liver mitochondria was the most efficient at both epimerizing and hydrolyzing ibuprofenyl-CoA, whereas rat liver microsomes hydrolyzed ibuprofenyl-CoA at a rate similar to whole liver homogenate but had very little epimerization activity. Rat liver cytosol was the poorest at hydrolyzing ibuprofenyl-CoA but had substantial epimerization capability. Whole liver homogenate from human tissue was less efficient at epimerizing but as efficient at hydrolyzing ibuprofenyl-CoA as rat whole liver homogenate. No stereoselectivity of either epimerization or hydrolysis was noted for any of the enzyme preparations studied. This study demonstrates that the inversion of (R)-ibuprofen occurs, at least in part, via the epimerization of the metabolic intermediate, ibuprofenyl-CoA, in both rat and human liver tissues. PMID:1352228

  16. Histone deacetylase 3 indirectly modulates tubulin acetylation

    PubMed Central

    Bacon, Travis; Seiler, Caroline; Wolny, Marcin; Hughes, Ruth; Watson, Peter; Schwabe, John; Grigg, Ronald; Peckham, Michelle

    2015-01-01

    Histone deacetylase 3 (HDAC3), a member of the Class I subfamily of HDACs, is found in both the nucleus and the cytoplasm. Its roles in the nucleus have been well characterized, but its cytoplasmic roles are still not elucidated fully. We found that blocking HDAC3 activity using MI192, a compound specific for HDAC3, modulated tubulin acetylation in the human prostate cancer cell line PC3. A brief 1 h treatment of PC3 cells with MI192 significantly increased levels of tubulin acetylation and ablated the dynamic behaviour of microtubules in live cells. siRNA-mediated knockdown (KD) of HDAC3 in PC3 cells, significantly increased levels of tubulin acetylation, and overexpression reduced it. However, the active HDAC3–silencing mediator of retinoic and thyroid receptors (SMRT)–deacetylase-activating domain (DAD) complex did not directly deacetylate tubulin in vitro. These data suggest that HDAC3 indirectly modulates tubulin acetylation. PMID:26450925

  17. Histone deacetylase 3 indirectly modulates tubulin acetylation.

    PubMed

    Bacon, Travis; Seiler, Caroline; Wolny, Marcin; Hughes, Ruth; Watson, Peter; Schwabe, John; Grigg, Ronald; Peckham, Michelle

    2015-12-15

    Histone deacetylase 3 (HDAC3), a member of the Class I subfamily of HDACs, is found in both the nucleus and the cytoplasm. Its roles in the nucleus have been well characterized, but its cytoplasmic roles are still not elucidated fully. We found that blocking HDAC3 activity using MI192, a compound specific for HDAC3, modulated tubulin acetylation in the human prostate cancer cell line PC3. A brief 1 h treatment of PC3 cells with MI192 significantly increased levels of tubulin acetylation and ablated the dynamic behaviour of microtubules in live cells. siRNA-mediated knockdown (KD) of HDAC3 in PC3 cells, significantly increased levels of tubulin acetylation, and overexpression reduced it. However, the active HDAC3-silencing mediator of retinoic and thyroid receptors (SMRT)-deacetylase-activating domain (DAD) complex did not directly deacetylate tubulin in vitro. These data suggest that HDAC3 indirectly modulates tubulin acetylation. PMID:26450925

  18. Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-08-22

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  19. Specific interaction between S6K1 and CoA synthase: a potential link between the mTOR/S6K pathway, CoA biosynthesis and energy metabolism.

    PubMed

    Nemazanyy, Ivan; Panasyuk, Ganna; Zhyvoloup, Alexander; Panayotou, George; Gout, Ivan T; Filonenko, Valeriy

    2004-12-17

    Ribosomal protein S6 kinase (S6K) is a key regulator of cell size and growth. It is regulated via phosphoinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR) signaling pathways. We demonstrate for the first time that CoA synthase associates specifically with S6K1. The association was observed between native and transiently overexpressed proteins in vivo, as well as by BIAcore analysis in vitro. The sites of interaction were mapped to the C-terminal regions of both CoA synthase and S6K1. In vitro studies indicated that the interaction does not affect their enzymatic activities and that CoA synthase is not a substrate for S6 kinase. This study uncovers a potential link between mTor/S6K signaling pathway and energy metabolism through CoA and its thioester derivatives, but its physiological relevance should be further elucidated. PMID:15589845

  20. HYDROLYSIS OF CHLOROSTILBENE OXIDE: I. HYDROLYSIS IN HOMOGENEOUS SYSTEMS

    EPA Science Inventory

    The hydrolysis kinetics of 4-chlorostilbene oxide (CSO) in buffered distilled water, in natural waters, and in sediment associated water are reported. he disappearance of CSO followed pseudo-first-order kinetics in buffered water over the experimental pH range of 3 to 11. elow pH...

  1. Structural insights into rice straw pretreated by hot-compressed water in relation to enzymatic hydrolysis.

    PubMed

    Yu, Guoce; Yano, Shinichi; Inoue, Hiroyuki; Inoue, Seiichi; Wang, Jianlong; Endo, Takashi

    2014-11-01

    Pretreatment-induced structural alteration is critical in influencing the rate and extent of enzymatic saccharification of lignocellulosic biomass. The present work has investigated structural features of rice straw pretreated by hot-compressed water (HCW) from 140 to 240 °C for 10 or 30 min and enzymatic hydrolysis profiles of pretreated rice straw. Compositional profiles of pretreated rice straw were examined to offer the basis for structural changes. The wide-angle X-ray diffraction analysis revealed possible modification in crystalline microstructure of cellulose and the severity-dependent variation of crystallinity. The specific surface area (SSA) of pretreated samples was able to achieve more than 10-fold of that of the raw material and was in linear relationship with the removal of acetyl groups and xylan. The glucose yield by enzymatic hydrolysis of pretreated materials correlated linearly with the SSA increase and the dissolution of acetyl and xylan. A quantitatively intrinsic relationship was suggested to exist between enzymatic hydrolysis and the extraction of hemicellulose components in hydrothermally treated rice straw, and SSA was considered one important structural parameter signaling the efficiency of enzymatic digestibility in HCW-treated materials in which hemicellulose removal and lignin redistribution happened. PMID:25178420

  2. Regulation of schistosome egg production by HMG CoA reductase

    SciTech Connect

    VandeWaa, E.A.; Bennett, J.L.

    1986-03-05

    Hydroxymethylglutaryl coenzyme A reductase (HMG CoA reductase) catalyzes the conversion of HMG CoA to mevalonate in the synthesis of steroids, isoprenoids and terpenes. Mevinolin, an inhibitor of this enzyme, decreased egg production in Schistosoma mansoni during in vitro incubations. This was associated with a reduction in the incorporation of /sup 14/C-acetate into polyisoprenoids and a reduction in the formation of a lipid-linked oligosaccharide. In vivo, mevinolin in daily doses of 50 mg/kg (p.o., from days 30-48 post-infection) caused no change in gross liver pathology in S. mansoni infected mice. However, when parasites exposed to mevinolin or its vehicle in vivo were cultured in vitro, worms from mevinolin-treated mice produced six times more eggs than control parasites. When infected mice were dosed with 250 mg/kg mevinolin daily (p.o., from days 35-45 post-infection), liver pathology was reduced in comparison to control mice. Thus, during in vivo exposure to a high dose of the drug egg production is decreased, while at a lower dose it appears unaffected until the parasites are cultured in a drug-free in vitro system wherein egg production is stimulated to extraordinarily high levels. It may be that at low doses mevinolin, by inhibiting the enzyme, is blocking the formation of a product (such as an isoprenoid) which normally acts to down-regulate enzyme synthesis, resulting in enzyme induction. Induction of HMG CoA reductase is then expressed as increased egg production when the worms are removed from the drug. These data suggest that HMG CoA reductase plays a role in schistosome egg production.

  3. Structural, Kinetic and Proteomic Characterization of Acetyl Phosphate-Dependent Bacterial Protein Acetylation

    PubMed Central

    Sahu, Alexandria; Sorensen, Dylan; Minasov, George; Lima, Bruno P.; Scholle, Michael; Mrksich, Milan; Anderson, Wayne F.; Gibson, Bradford W.; Schilling, Birgit; Wolfe, Alan J.

    2014-01-01

    The emerging view of N?-lysine acetylation in eukaryotes is of a relatively abundant post-translational modification (PTM) that has a major impact on the function, structure, stability and/or location of thousands of proteins involved in diverse cellular processes. This PTM is typically considered to arise by the donation of the acetyl group from acetyl-coenzyme A (acCoA) to the ?-amino group of a lysine residue that is reversibly catalyzed by lysine acetyltransferases and deacetylases. Here, we provide genetic, mass spectrometric, biochemical and structural evidence that N?-lysine acetylation is an equally abundant and important PTM in bacteria. Applying a recently developed, label-free and global mass spectrometric approach to an isogenic set of mutants, we detected acetylation of thousands of lysine residues on hundreds of Escherichia coli proteins that participate in diverse and often essential cellular processes, including translation, transcription and central metabolism. Many of these acetylations were regulated in an acetyl phosphate (acP)-dependent manner, providing compelling evidence for a recently reported mechanism of bacterial N?-lysine acetylation. These mass spectrometric data, coupled with observations made by crystallography, biochemistry, and additional mass spectrometry showed that this acP-dependent acetylation is both non-enzymatic and specific, with specificity determined by the accessibility, reactivity and three-dimensional microenvironment of the target lysine. Crystallographic evidence shows acP can bind to proteins in active sites and cofactor binding sites, but also potentially anywhere molecules with a phosphate moiety could bind. Finally, we provide evidence that acP-dependent acetylation can impact the function of critical enzymes, including glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, and RNA polymerase. PMID:24756028

  4. The hydrolysis of proteins by microwave energy

    PubMed Central

    Margolis, Sam A.; Jassie, Lois; Kingston, H. M.

    1991-01-01

    Microwave energy, at manually-adjusted, partial power settings has been used to hydrolyse bovine serum albumin at 125 °C. Hydrolysis was complete within 2 h, except for valine and isoleucine which were completely liberated within 4 h. The aminoacid destruction was less than that observed at similar hydrolysis conditions with other methods and complete hydrolysis was achieved more rapidly. These results provide a basis for automating the process of amino-acid hydrolysis. PMID:18924889

  5. Kinetics of the Hydrolysis of Atmospherically Relevant

    E-print Network

    Elrod, Matthew J.

    Kinetics of the Hydrolysis of Atmospherically Relevant Isoprene-Derived Hydroxy Epoxides N E I L C and that these epoxides are likely to undergo efficient acid- catalyzed hydrolysis on SOA to 2-methyl-1, the specifichydroxyepoxidesobservedintheisoprenephotooxidation experiment (as well as several other related species) were synthesized, and the hydrolysis

  6. Engineering Acetyl Coenzyme A Supply: Functional Expression of a Bacterial Pyruvate Dehydrogenase Complex in the Cytosol of Saccharomyces cerevisiae

    PubMed Central

    Kozak, Barbara U.; van Rossum, Harmen M.; Luttik, Marijke A. H.; Akeroyd, Michiel; Benjamin, Kirsten R.; Wu, Liang; de Vries, Simon; Daran, Jean-Marc; Pronk, Jack T.

    2014-01-01

    ABSTRACT The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1?, E1?, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs+ reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. PMID:25336454

  7. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of catonic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrogen hydrolysis rate constant.

  8. Hydrolysis of fluorosilanes: a theoretical study.

    PubMed

    Cypryk, Marek

    2005-12-29

    Hydrolysis and condensation of simple trifluorosilanes, HSiF3 and MeSiF3, was studied by quantum mechanical methods. Hydrolysis of fluorosilanes is highly endothermic. The Gibbs free energy of the first reaction step in the gas phase is 31.4 kJ/mol, which corresponds to an equilibrium constant of 10(-6). Hydrolysis of the subsequent fluorine atoms in trifluorosilanes is thermodynamically more unfavorable than the first step of substitution. No significant difference in thermodynamics of hydrolysis was found between HSiF3 and MeSiF3. The activation energy for hydrolysis by a water dimer is significantly lower than that for hydrolysis by a water monomer. The former reaction is also less unfavorable thermodynamically, due to a high binding energy of the HF-H2O complex formed as a product of hydrolysis. Self-consistent reaction field (SCRF) calculations show that hydrolysis of trifluorosilanes in aqueous medium has lower activation energy than in the gas phase. It is also thermodynamically less unfavorable, due to better solvation of the products. Homofunctional condensation of HSiF2OH is thermodynamically favored. The equilibrium mixture for hydrolysis/condensation of RSiF3 in water is predicted to contain ca. 2.3% disiloxane (HF2Si)2O, if 100-fold excess of water relative to silane is assumed. Further hydrolysis of (HF2Si)2O is negligible. The thermodynamics of fluorosilane hydrolysis contrasts with that of chlorosilanes, where both hydrolysis and condensation are strongly favorable. Moreover, in the case of trichlorosilanes each subsequent hydrolysis step is more facile, leading to the product of full hydrolysis, RSi(OH)3. PMID:16366657

  9. Beating the acetyl coenzyme A-pathway to the origin of life

    PubMed Central

    Nitschke, Wolfgang; Russell, Michael J.

    2013-01-01

    Attempts to draft plausible scenarios for the origin of life have in the past mainly built upon palaeogeochemical boundary conditions while, as detailed in a companion article in this issue, frequently neglecting to comply with fundamental thermodynamic laws. Even if demands from both palaeogeochemistry and thermodynamics are respected, then a plethora of strongly differing models are still conceivable. Although we have no guarantee that life at its origin necessarily resembled biology in extant organisms, we consider that the only empirical way to deduce how life may have emerged is by taking the stance of assuming continuity of biology from its inception to the present day. Building upon this conviction, we have assessed extant types of energy and carbon metabolism for their appropriateness to conditions probably pertaining in those settings of the Hadean planet that fulfil the thermodynamic requirements for life to come into being. Wood–Ljungdahl (WL) pathways leading to acetyl CoA formation are excellent candidates for such primordial metabolism. Based on a review of our present understanding of the biochemistry and biophysics of acetogenic, methanogenic and methanotrophic pathways and on a phylogenetic analysis of involved enzymes, we propose that a variant of modern methanotrophy is more likely than traditional WL systems to date back to the origin of life. The proposed model furthermore better fits basic thermodynamic demands and palaeogeochemical conditions suggested by recent results from extant alkaline hydrothermal seeps. PMID:23754811

  10. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  11. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, Paul G. (Golden, CO); Ohlrogge, John B. (Okemos, MI)

    1996-01-01

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives thereof which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides.

  12. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  13. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  14. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  15. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  16. GENES ENCODING PLASTID ACETYL-COA CARBOXYLASE AND 3-PHOSPHOGLYCERATE KINASE OF THE TRITICUM/AEGILOPS COMPLEX AND THE EVOLUTIONARY HISTORY OF POLYPLOID WHEAT.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The classic wheat evolutionary history is one of adaptive radiation of the diploid Triticum/Aegilops species (A, S, D) , genome convergence and divergence of the tetraploid (T. turgidum AABB, and T. timopheevii AAAGG) and hexaploid (T. aestivum, AABBDD) species. The objective of this study was to a...

  17. Very long-chain acyl CoA dehydrogenase deficiency which was accepted as infanticide.

    PubMed

    Eminoglu, Tuba F; Tumer, Leyla; Okur, Ilyas; Ezgu, Fatih S; Biberoglu, Gursel; Hasanoglu, Alev

    2011-07-15

    Very-long-chain acyl-coenzyme A (CoA) dehydrogenase deficiency (VLCADD) (OMIM #201475) is an autosomal recessive disorder of fatty acid oxidation. Major phenotypic expressions are hypoketotic hypoglycemia, hepatomegaly, cardiomyopathy, myopathy, rhabdomyolysis, elevated creatinine kinase, and lipid infiltration of liver and muscle. At the same time, it is a rare cause of Sudden Infant Death Syndrome (SIDS) or unexplained death in the neonatal period [1-4]. We report a patient with VLCADD whose parents were investigated for infanticide because her three previous siblings had suddenly died after normal deliveries. PMID:21531094

  18. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development

    SciTech Connect

    Jin, Huanan; Song, Zhihong; Nikolau, Basil J.

    2012-03-31

    Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl?CoA molecules to form acetoacetyl?CoA. Two AACT?encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T?DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl?CoA precursor required for the cytosol?localized, mevalonate?derived isoprenoid biosynthetic pathway.

  19. Isolation, purification and structural characterization of an acetylated heteroglycan from the unripe fruits of Manilkara zapota L.

    PubMed

    Mondal, Subhas; Das, Debsankar; Roy, Sadhan K; Islam, Syed S

    2012-06-01

    A water soluble polysaccharide isolated from the hot water extract of the unripe fruits of Manilkara zapota L. was found to consist of 3-O-acyl-L-rhamnose, L-arabinose, 3-O-acetyl-D-methyl galacturonate in a molar proportion of nearly 1:1:1. Structural investigation of the polysaccharide was carried out using total hydrolysis, methylation analysis; periodate oxidation followed by GLC-MS, and NMR experiments. On the basis of the above experiments it is concluded that the following repeating unit is present in the polysaccharide. PMID:22560630

  20. Assessing an Impulsive Model for Rotational Energy Partitioning to Acetyl Radicals from the Photodissociation of Acetyl Chloride at 235 nm

    E-print Network

    Butler, Laurie J.

    the Photodissociation of Acetyl Chloride at 235 nm Caroline C. Womack, Wei-Hai Fang, Daniel B. Straus, and Laurie J the photodissociation of acetyl chloride to assess the utility of a recently proposed impulsive model when. The impulsive model explicitly includes an average over the vibrational quantum states of acetyl chloride when

  1. HYDROLYSIS

    EPA Science Inventory

    Hydrolytic processes provide the baseline loss rate for any chemical in an aqueous envi- ronment. Although various hydrolytic pathways account for significant degradation of certain classes of organic chemicals, other organic structures are completely inert. Strictly speaking, hy...

  2. Histone Acetylation Enzymes Coordinate Metabolism and Gene Expression.

    PubMed

    Shen, Yuan; Wei, Wei; Zhou, Dao-Xiu

    2015-10-01

    Histone lysine acetylation is well known for being important in the epigenetic regulation of gene expression in eukaryotic cells. Recent studies have uncovered a plethora of acetylated proteins involved in important metabolic pathways, such as photosynthesis and respiration in plants. Enzymes involved in histone acetylation and deacetylation are being identified as regulators of acetylation of metabolic enzymes. Importantly, key metabolites, such as acetyl-CoA and NAD(+), are involved in protein acetylation and deacetylation processes, and their cellular levels may regulate the activity of histone acetyltransferases (HAT) and deacetylases (HDAC). Further research is required to determine whether and how HATs and HDACs sense cellular metabolite signals to control gene expression and metabolic enzyme activity through lysine acetylation and deacetylation. PMID:26440431

  3. Acid Hydrolysis of Trioxalatocobaltate (III) Ion

    ERIC Educational Resources Information Center

    Wiggans, P. W.

    1975-01-01

    Describes an investigation involving acid hydrolysis and using both volumetric and kinetic techniques. Presents examples of the determination of the rate constant and its variation with temperature. (GS)

  4. OUTCROP-BASED HIGH RESOLUTION GAMMA-RAY CHARACTERIZATION OF ARSENIC-BEARING LITHOFACIES IN THE PERMIAN GARBER SANDSTONE AND WELLINGTON FORMATION, CENTRAL OKLAHOMA AQUIFER (COA). CLEVELAND COUNTY, OKLAHOMA

    EPA Science Inventory

    The COA supplies drinking water to a number of municipalities in central Oklahoma. Two major stratigraphic units in the COA, the Garber Sandstone and Wellington Formation, contain naturally occurring arsenic that exceeds government mandated drinking-water standards (EPA, 2001). ...

  5. Retarded hydrolysis-condensing reactivity of tetrabutyl titanate by acetylacetone and the application in dye-sensitized solar cells

    SciTech Connect

    Zhou, Conghua Ouyang, Jun; Yang, Bingchu

    2013-10-15

    Graphical abstract: - Highlights: • Effect of acetone acetyl on coarsening rate of TiO{sub 2} nanocrystallites was studied. • Hydrolysis reactivity of alkoxide was retarded with addition of acetone acetyl. • Coarsening rate of TiO{sub 2} nanocrystallites is retarded with addition of acetone acetyl. • The synthesized TiO{sub 2} sols were utilized in dye sensitized solar cells. • Small particles formed by Ti-complexes were beneficial for device performance. - Abstract: TiO{sub 2} nanocrystallites have been synthesized by hydrothermal reaction using tetrabutyl titanate as source material. Acetylacetone was utilized to modify hydrolysis-condensation behavior of the alkoxide and thus coarsening dynamics of TiO{sub 2} nanocrystallites in the reaction. With assistance of Fourier transformation infrared spectrum, transmission electron microscopy, selected area electron diffraction and X-ray diffraction, interaction between acetylacetone and tetrabutyltitanate was explored, crystallographic and morphological properties of TiO{sub 2} nanocrystallites were monitored. Less hydrolysable complex was formed by “method of chelating” as tetrabutyltitanate was mixed with acetylacetone, leading to retarded coarsening rate of nanocrystallites. The obtained TiO{sub 2} nanocrystallites were applied to fabricate nanoporous photoanode of dye sensitized solar cells. Improvement of 18% has been achieved for photo-to-electric energy conversion efficiency of the devices due to both upgraded open circuit voltage and photocurrent density.

  6. The Crystal Structure of N-Acetyl-L-glutamate Synthase from Neisseria gonorrhoeae Provides Insights into Mechanisms of Catalysis and Regulation

    SciTech Connect

    Shi, Dashuang; Sagar, Vatsala; Jin, Zhongmin; Yu, Xiaolin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M.; Tuchman, Mendel

    2010-01-07

    The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-A resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-A linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100A, respectively, and a height of 110A(.) Each AAK domain interacts with the cognate domains of two adjacent monomers across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg316, Arg425, and Ser427, anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys356 and Leu314, and hydrophobic interactions to the side chains of Leu313 and Leu314. The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes.

  7. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation

    SciTech Connect

    Wubben, T.; Mesecar, A.D.

    2014-10-02

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 {angstrom} resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observed in the MtPPAT-CoA complex.

  8. Fragrance material review on acetyl carene.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl carene when used as a fragrance ingredient is presented. Acetyl carene is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl carene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013A Toxicologic and dermatologic assessment of alkyl cyclic ketones when used as fragrance ingredients. (submitted for publication).) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. PMID:23911801

  9. Fragrance material review on acetyl cedrene.

    PubMed

    Scognamiglio, J; Letizia, C S; Politano, V T; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl cedrene when used as a fragrance ingredient is presented. Acetyl cedrene is a member of the fragrance structural group Alkyl Cyclic Ketones. The generic formula for this group can be represented as (R1)(R2)CO. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl cedrene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (2013) (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients. Submitted with this manuscript.) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. PMID:23907023

  10. Succinyl CoA: 3-oxoacid CoA transferase (SCOT): Human cDNA cloning, human chromosomal mapping to 5p13, and mutation detection in a SCOT-deficient patient

    SciTech Connect

    Kassovska-Bratinova, S.; Robert, M.F.; Mitchell, G.A.

    1996-09-01

    Succinyl CoA: 3-oxoacid CoA transferase (SCOT; E.C.2.8.3.5) mediates the rate-determining step of ketolysis in extrahepatic tissues, the esterification of acetoacetate to CoA for use in energy production. Hereditary SCOT deficiency in humans causes episodes of severe ketoacidosis. We obtained human-heart SCOT cDNA clones spanning the entire 1,560-nt coding sequence. Sequence alignment of the human SCOT peptides with other known CoA transferases revealed several conserved regions of potential functional importance. A single {approximately}3.2-kb SCOT mRNA is present in human tissues (heart > leukocytes {much_gt} fibroblasts), but no signal is detectable in the human hepatoma cell line HepG2. We mapped the human SCOT locus (OXCT) to the cytogenetic band 5p13 by in situ hybridization. From fibroblasts of a patient with hereditary SCOT deficiency, we amplified and cloned cDNA fragments containing the entire SCOT coding sequence. We found a homozygous C-to-G transversion at nt 848, which changes the Ser 283 codon to a stop codon. This mutation (S283X) is incompatible with normal enzyme function and represents the first documentation of a pathogenic mutation in SCOT deficiency. 45 refs., 6 figs.

  11. O-Acetylation of Plant Cell Wall Polysaccharides

    PubMed Central

    Gille, Sascha; Pauly, Markus

    2011-01-01

    Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production. PMID:22639638

  12. ACETYLATION PHENOTYPE VARIATION IN PEDIATRIC PATIENTS WITH ATOPIC DERMATITIS

    PubMed Central

    Majeed Al-Razzuqi, Rafi A; Al-Jeboori, Ali A; Al-Waiz, Makram M

    2011-01-01

    Background: Few studies have been done on the relation between acetylator status and allergic diseases. Aim: To determine any possible association between acetylating phenotype in pediatric patients with atopic dermatitis (AD) and the disease prognosis. Patients and Methods: Thirty-six pediatric patients and forty two healthy children as a control group were participated in the study. All participants received a single oral dose of dapsone of 1.54 mg/kg body weight, after an overnight fast. Using high performance liquid chromatography (HPLC), plasma concentrations of dapsone and its metabolite (monoacetyldapsone) were estimated to phenotype the participants as slow and rapid acetylators according to their acetylation ratio (ratio of monoacetyldapsone to dapsone). Results: 72.2% of pediatric patients with AD showed slow acetylating status as compared to 69.4% of control individuals. Also, 73% of AD patients with slow acetylating phenotype had familial history of allergy. The severity of AD occurred only in slow acetylator patients. The eczematous lesions in slow acetylators presented mainly in the limbs, while in rapid acetylators, they were found mostly in face and neck. Conclusion: This study shows an association between the N-acetylation phenotype variation and clinical aspects of AD. PMID:21716538

  13. Rate of Hydrolysis of Tertiary Halogeno Alkanes

    ERIC Educational Resources Information Center

    Pritchard, D. R.

    1978-01-01

    Describes an experiment to measure the relative rate of hydrolysis of the 2-x-2 methylpropanes, where x is bromo, chloro or iodo. The results are plotted on a graph from which the relative rate of hydrolysis can be deduced. (Author/GA)

  14. Microwave Pretreatment For Hydrolysis Of Cellulose

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; George, Clifford E.; Lightsey, George R.

    1993-01-01

    Microwave pretreatment enhances enzymatic hydrolysis of cellulosic wastes into soluble saccharides used as feedstocks for foods, fuels, and other products. Low consumption of energy, high yield, and low risk of proposed hydrolysis process incorporating microwave pretreatment makes process viable alternative to composting.

  15. Random Hydrolysis Controls the Dynamic Instability of Microtubules Ranjith Padinhateeri,

    E-print Network

    Random Hydrolysis Controls the Dynamic Instability of Microtubules Ranjith Padinhateeri, * Anatoly; Department of Chemistry, Rice University, Houston, Texas; and § Laboratoire de Physico-Chimie The hydrolysis. Despite decades of experimental work in this field, the precise mechanism of hydrolysis

  16. Edinburgh Research Explorer Organotrifluoroborate Hydrolysis: Boronic Acid Release

    E-print Network

    Millar, Andrew J.

    Edinburgh Research Explorer Organotrifluoroborate Hydrolysis: Boronic Acid Release Mechanism, 'Organotrifluoroborate Hydrolysis: Boronic Acid Release Mechanism and an Acid­Base Paradox in Cross-Coupling' Journal immediately and investigate your claim. Download date: 05. Jul. 2015 #12;Organotrifluoroborate Hydrolysis

  17. DOWN-REGULATION OF CINNAMOYL-COA REDUCTASE (CCR) IN POPLAR INVESTIGATED WITH CHEMOMETRICS AND 2D-NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An understanding of the lignification process is of vital importance, especially for the pulp and paper industry. Cinnamoyl-coa reductase (CCR) is an enzyme that plays a central role in the lignification process. Previous results have shown that down-regulation of CCR decreases the lignin content. B...

  18. Identification and Characterization of a Succinyl-Coenzyme A (CoA):Benzoate CoA Transferase in Geobacter metallireducens

    PubMed Central

    Oberender, Jana; Kung, Johannes W.; Seifert, Jana; von Bergen, Martin

    2012-01-01

    Geobacter metallireducens is a Fe(III)-respiring deltaproteobacterium and serves as a model organism for aromatic compound-degrading, obligately anaerobic bacteria. In this study, a genetic system was established for G. metallireducens using nitrate as an alternative electron acceptor. Surprisingly, disruption of the benzoate-induced bamY gene, encoding a benzoate coenzyme A (CoA) ligase, reproducibly showed an increased biomass yield in comparison to the wild type during growth with benzoate but not during growth with acetate. Complementation of bamY in trans converted the biomass yield back to the wild-type level. Growth of the bamY mutant with benzoate can be rationalized by the identification of a previously unknown succinyl-CoA:benzoate CoA transferase activity; it represents an additional, energetically less demanding mode of benzoate activation. The activity was highly enriched from extracts of cells grown on benzoate, yielding a 50-kDa protein band; mass spectrometric analysis identified the corresponding benzoate-induced gene annotated as a CoA transferase. It was heterologously expressed in Escherichia coli and characterized as a specific succinyl-CoA:benzoate CoA transferase. The newly identified enzyme in conjunction with a benzoate-induced succinyl-CoA synthetase links the tricarboxylic acid cycle to the upper benzoyl-CoA degradation pathway during growth on aromatic growth substrates. PMID:22408161

  19. Mechanistic Insight with HBCH[subscript 2]CoA as a Probe to Polyhydroxybutyrate (PHB) Synthases

    E-print Network

    Zhang, Wei

    Polyhydroxybutyrate (PHB) synthases catalyze the polymerization of 3-(R)-hydroxybutyrate coenzyme A (HBCoA) to produce polyoxoesters of 1–2 MDa. A substrate analogue HBCH[subscript 2]CoA, in which the S in HBCoA is replaced ...

  20. N-acetyl-l-histidine, a Prominent Biomolecule in Brain and Eye of Poikilothermic Vertebrates

    PubMed Central

    Baslow, Morris H.; Guilfoyle, David N.

    2015-01-01

    N-acetyl-l-histidine (NAH) is a prominent biomolecule in brain, retina and lens of poikilothermic vertebrates. In fish lens, NAH exhibits an unusual compartmentalized metabolism. It is synthesized from l-histidine (His) and acetyl Co-enzyme A. However, NAH cannot be catabolized by lens cells. For its hydrolysis, NAH is exported to ocular fluid where a specific acylase cleaves His which is then actively taken up by lens and re-synthesized into NAH. This energy-dependent cycling suggested a pump mechanism operating at the lens/ocular fluid interface. Additional studies led to the hypothesis that NAH functioned as a molecular water pump (MWP) to maintain a highly dehydrated lens and avoid cataract formation. In this process, each NAH molecule released to ocular fluid down its gradient carries with it 33 molecules of bound water, effectively transporting the water against a water gradient. In ocular fluid the bound water is released for removal from the eye by the action of NAH acylase. In this paper, we demonstrate for the first time the identification of NAH in fish brain using proton magnetic resonance spectroscopy (MRS) and describe recent evidence supporting the NAH MWP hypothesis. Using MRS, we also document a phylogenetic transition in brain metabolism between poikilothermic and homeothermic vertebrates. PMID:25919898

  1. Acetylation and methylation sites in histone H4 from Physarum polycephalum.

    PubMed

    Waterborg, J H; Fried, S R; Matthews, H R

    1983-11-01

    Histone H4 has been isolated and purified from plasmodia of Physarum polycephalum. The four major fragments produced by hydrolysis of H4 by acetic acid were separated and the complete amino acid sequence of two of them was determined. By analogy with calf H4, these peptides are at the C-terminus and give the sequence from residue 68 to the C-terminus (residue 102). In this 35 residue sequence there are two minor differences from calf H4: (i) residue 77 is arginine in Physarum H4 and lysine in calf H4; (ii) lysine-79 is partially methylated in Physarum. Arginine occurs at position 77 in pea H4 but the occurrence of methylated lysine at position 79 has not been reported for other species. In the N-terminal region, amino acid compositions of acetic acid, tryptic and chymotryptic peptides indicate that Physarum H4 and calf H4 have identical sequences from the N-terminus to residue 47. There may be minor differences in the region from residue 46 to residue 67. The sites of acetylation were determined by Edman degradation of acetate-labelled peptide 4-17 of Physarum H4. Acetylation was observed at positions 5, 8, 12, and 16. The only other labelled peptide was the N-terminal peptide, which is not susceptible to Edman degradation and is thus probably alpha-N-acetylated as in most other organisms. The results confirm the conservation of H4 sequence and place Physarum H4 in an intermediate position between lower eukaryote H4, such as yeast or Tetrahymena H4, and higher eukaryote H4, such as mammalian H4 or pea H4. PMID:6628379

  2. Preparation, physicochemical characterization and application of acetylated lotus rhizome starches.

    PubMed

    Sun, Suling; Zhang, Ganwei; Ma, Chaoyang

    2016-01-01

    Acetylated lotus rhizome starches were prepared, physicochemically characterized and used as food additives in puddings. The percentage content of the acetyl groups and degree of substitution increased linearly with the amount of acetic anhydride used. The introduction of acetyl groups was confirmed via Fourier transform infrared (FT-IR) spectroscopy. The values of the pasting parameters were lower for acetylated starch than for native starch. Acetylation was found to increase the light transmittance (%), the freeze-thaw stability, the swelling power and the solubility of the starch. Sensorial scores for puddings prepared using native and acetylated lotus rhizome starches as food additives indicated that puddings produced from the modified starches with superior properties over those prepared from native starch. PMID:26453845

  3. Selective Acetylation of per-O-TMS-Protected Monosaccharides

    PubMed Central

    Witschi, Mark A.

    2010-01-01

    Selective acetylation of various per-O-TMS-protected carbohydrates has been accomplished. Using a protecting group exchange strategy and microwave assistance, monosaccharides (glucose, galactose and mannose) can be selectively acetylated producing either the 6-O-monoacetate or 1,6-O-diacetylated species. This new class of molecules can be deprotected without migration of the acetyl groups providing useful synthetic intermediates. To demonstrate the scope of the reaction, the methodology was successfully extended to TMS-protected ceramide. PMID:20799705

  4. Crystal Structure of DmdD, a Crotonase Superfamily Enzyme That Catalyzes the Hydration and Hydrolysis of Methylthioacryloyl-CoA

    PubMed Central

    Tan, Dazhi; Crabb, Warren M.; Whitman, William B.; Tong, Liang

    2013-01-01

    Dimethyl-sulphoniopropionate (DMSP) is produced in abundance by marine phytoplankton, and the catabolism of this compound is an important source of carbon and reduced sulfur for marine bacteria and other organisms. The enzyme DmdD catalyzes the last step in the methanethiol (MeSH) pathway of DMSP catabolism. DmdD is a member of the crotonase superfamily of enzymes, and it catalyzes both the hydration and the hydrolysis of methylthioacryloyl-CoA (MTA-CoA), converting it to acetaldehyde, CO2, MeSH, and CoA. We report here the crystal structure of Ruegeria pomeroyi DmdD free enzyme at 1.5 Å resolution and the structures of the E121A mutant in complex with MTA-CoA and 3-methylmercaptopropionate-CoA (MMPA-CoA) at 1.8 Å resolution. DmdD is a hexamer, composed of a dimer of trimers where the three monomers of each trimer are related by a crystallographic 3-fold axis. The overall structure of this hexamer is similar to those of canonical crotonases. However, the C-terminal loops of DmdD in one of the trimers assume a different conformation and contribute to CoA binding in the active site of a neighboring monomer of the trimer, while these loops in the second trimer are disordered. MTA-CoA is bound deep in the active site in the first trimer, but shows a 1.5 Å shift in its position in the second trimer. MMPA-CoA has a similar binding mode to MTA-CoA in the first trimer. MMPA-CoA cannot be hydrated and is only hydrolyzed slowly by DmdD. Replacement of the sulfur atom in MMPA-CoA with a methylene group abolishes hydrolysis, suggesting that the unique property of the substrate is a major determinant of the hydrolysis activity of DmdD. PMID:23704947

  5. Structure, morphology and functionality of acetylated and oxidised barley starches.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-02-01

    Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production. PMID:25172707

  6. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    (-)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives were prepared by lipase catalyzed acylation of EGCG with vinyl acetate to improve its lipophilicity and expand its application in lipophilic media. The immobilized lipase, Lipozyme RM IM, was found to be the optimum catalyst. The optimiz...

  7. Lysine Acetylation Activates Mitochondrial Aconitase in the Heart.

    PubMed

    Fernandes, Jolyn; Weddle, Alexis; Kinter, Caroline S; Humphries, Kenneth M; Mather, Timothy; Szweda, Luke I; Kinter, Michael

    2015-06-30

    High-throughput proteomics studies have identified several thousand acetylation sites on more than 1000 proteins. Mitochondrial aconitase, the Krebs cycle enzyme that converts citrate to isocitrate, has been identified in many of these reports. Acetylated mitochondrial aconitase has also been identified as a target for sirtuin 3 (SIRT3)-catalyzed deacetylation. However, the functional significance of mitochondrial aconitase acetylation has not been determined. Using in vitro strategies, mass spectrometric analyses, and an in vivo mouse model of obesity, we found a significant acetylation-dependent activation of aconitase. Isolated heart mitochondria subjected to in vitro chemical acetylation with either acetic anhydride or acetyl-coenzyme A resulted in increased aconitase activity that was reversed with SIRT3 treatment. Quantitative mass spectrometry was used to measure acetylation at 21 lysine residues and revealed significant increases with both in vitro treatments. A high-fat diet (60% of kilocalories from fat) was used as an in vivo model and also showed significantly increased mitochondrial aconitase activity without changes in protein level. The high-fat diet also produced an increased level of aconitase acetylation at multiple sites as measured by the quantitative mass spectrometry assays. Treatment of isolated mitochondria from these mice with SIRT3 abolished the high-fat diet-induced activation of aconitase and reduced acetylation. Finally, kinetic analyses found that the increase in activity was a result of increased maximal velocity, and molecular modeling suggests the potential for acetylation at K144 to perturb the tertiary structure of the enzyme. The results of this study reveal a novel activation of mitochondrial aconitase by acetylation. PMID:26061789

  8. Biochemical and Crystallographic Analysis of Substrate Binding and Conformational Changes in Acetyl-CoA Synthetase

    SciTech Connect

    Reger,A.; Carney, J.; Gulick, A.

    2007-01-01

    The adenylate-forming enzymes, including acyl-CoA synthetases, the adenylation domains of non-ribosomal peptide synthetases (NRPS), and firefly luciferase, perform two half-reactions in a ping-pong mechanism. We have proposed a domain alternation mechanism for these enzymes whereby, upon completion of the initial adenylation reaction, the C-terminal domain of these enzymes undergoes a 140{sup o} rotation to perform the second thioester-forming half-reaction. Structural and kinetic data of mutant enzymes support this hypothesis. We present here mutations to Salmonella enterica acetyl-CoA synthetase (Acs) and test the ability of the enzymes to catalyze the complete reaction and the adenylation half-reaction. Substitution of Lys609 with alanine results in an enzyme that is unable to catalyze the adenylate reaction, while the Gly524 to leucine substitution is unable to catalyze the complete reaction yet catalyzes the adenylation half-reaction with activity comparable to the wild-type enzyme. The positions of these two residues, which are located on the mobile C-terminal domain, strongly support the domain alternation hypothesis. We also present steady-state kinetic data of putative substrate-binding residues and demonstrate that no single residue plays a dominant role in dictating CoA binding. We have also created two mutations in the active site to alter the acyl substrate specificity. Finally, the crystallographic structures of wild-type Acs and mutants R194A, R584A, R584E, K609A, and V386A are presented to support the biochemical analysis.

  9. Nickel-dependent oligomerization of the alpha subunit of acetyl-coenzyme a synthase/carbon monoxide dehydrogenase.

    PubMed

    Tan, Xiangshi; Kagiampakis, Ioannis; Surovtsev, Ivan V; Demeler, Borries; Lindahl, Paul A

    2007-10-16

    After activation with NiCl2, the recombinant alpha subunit of the Ni-containing alpha2beta2 acetyl-CoA synthase/carbon monoxide dehydrogenase (ACS/CODH) catalyzes the synthesis of acetyl-CoA from CO, CoA, and a methyl group donated from the corrinoid-iron-sulfur protein (CoFeSP). The alpha subunit has two conformations (open and closed), and contains a novel [Fe4S4]-[Nip Nid] active site in which the proximal Nip ion is labile. Prior to Ni activation, recombinant apo-alpha contain only an Fe4S4 cluster. Ni-activated alpha subunits exhibit catalytic, spectroscopic and heterogeneity properties typical of alpha subunits contained in ACS/CODH. Evidence presented here indicates that apo-alpha is a monomer whereas Ni-treated alpha oligomerizes, forming dimers and higher molecular weight species including tetramers. No oligomerization occurred when apo-alpha was treated with Cu(II), Zn(II), or Co(II) ions, but oligomerization occurred when apo-alpha was treated with Pt(II) and Pd(II) ions. The dimer accepted only 0.5 methyl group/alpha and exhibited, upon treatment with CO and under reducing conditions, the NiFeC EPR signal quantifying to 0.4 spin/alpha. Dimers appear to consist of two types of alpha subunits, including one responsible for catalytic activity and one that provides a structural scaffold. Higher molecular weight species may be similarly constituted. It is concluded that Ni binding to the A-cluster induces a conformational change in the alpha subunit, possibly to the open conformation, that promotes oligomerization. These interrelated events demonstrate previously unrealized connections between (a) the conformation of the alpha subunit; (b) the metal which occupies the proximal/distal sites of the A-cluster; and (c) catalytic activity. PMID:17887777

  10. Continuous steam hydrolysis of tulip poplar

    SciTech Connect

    Fieber, C.A.; Roberts, R.S.; Faass, G.S.; Muzzy, J.D.; Colcord, A.R.; Bery, M.K.

    1982-01-01

    The continuous hydrolysis of poplar chips by steam at 300-350 psi resulted in the separation of hemicellulose (I) cellulose and lignin components. The I fraction was readily depolymerised by steam to acetic acid, furfural, methanol, and xylose.

  11. Catalysts for the hydrolysis of thiophosphate triesters 

    E-print Network

    Picot, Alexandre

    2005-02-17

    The degradation of phosphate triesters is efficiently catalyzed by organophosphate hydrolases (OPH). While a number of recent studies have focused on optimizing the rate of hydrolysis observed with the native enzyme, no ...

  12. Modeling of percolation process in hemicellulose hydrolysis.

    PubMed

    Cahela, D R; Lee, Y Y; Chambers, R P

    1983-01-01

    A mathematical model was developed for a percolation reactor in connection with consecutive first-order reactions. The model was designed to simulated acid-catalyzed cellulose or hemicellulose hydrolysis. The modeling process resulted in an analytically derived reactor equation, including mass-transfer effects, which was found to be useful in process desing and reactor optimization. The modedl was verified by experimental data obtained from hemicellulose hydrolysis. PMID:18548535

  13. 68 CEREAL CHEMISTRY Variability in Starch Acetylation Efficiency

    E-print Network

    68 CEREAL CHEMISTRY Variability in Starch Acetylation Efficiency from Commercial Waxy Corn Hybrids. 80(1):68­71 Raw material variability is common for starch processors and is responsible for increased processing costs. In this study, variability of starch acetylation due to hybrid influence was quantified

  14. Global analysis of lysine acetylation in strawberry leaves

    PubMed Central

    Fang, Xianping; Chen, Wenyue; Zhao, Yun; Ruan, Songlin; Zhang, Hengmu; Yan, Chengqi; Jin, Liang; Cao, Lingling; Zhu, Jun; Ma, Huasheng; Cheng, Zhongyi

    2015-01-01

    Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways, and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants. PMID:26442052

  15. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 172.372 N-Acetyl-L-methionine. The food additive N-acetyl-L-methionine may be safely added to... form, or as the sodium or potassium salts. (b) The additive meets the following specifications: (1...) Specific optical rotation 20 D: Between ?19° and ?23°. (4) The additive may contain residues of not...

  16. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Special Dietary and Nutritional Additives § 172.372 N-Acetyl-L-methionine. The food additive N-acetyl-L... free, hydrated or anhydrous form, or as the sodium or potassium salts. (b) The additive meets the...: Maximum 0.1 percent. (3) Specific optical rotation 20 D: Between ?19° and ?23°. (4) The additive...

  17. Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): part II. Fine structures of O-acetylated residues.

    PubMed

    Xing, Xiaohui; Cui, Steve W; Nie, Shaoping; Phillips, Glyn O; Goff, H Douglas; Wang, Qi

    2015-03-01

    Main objective of this study was to investigate the detailed structural information about O-acetylated sugar residues in Dendronan(®). A water solution (2%, w/w) of Dendronan(®) was treated with endo-?-mannanase to produce oligosaccharides rich in O-acetylated sugar residues. The oligosaccharides were partly recovered by ethanol precipitation (70%, w/w). The recovered sample (designated Hydrolyzed Dendrobium officinale Polysaccharide, HDOP) had a yield of 24.7% based on the dry weight of Dendronan(®) and was highly O-acetylated. A D2O solution of HDOP (6%, w/w) generated strong signals in (1)H, (13)C, 2D (1)H-(1)H COSY, 2D (1)H-(1)H TOCSY, 2D (1)H-(1)H NOESY, 2D (1)H-(13)C HMQC, and 2D (1)H-(13)C HMBC NMR spectra. Results of NMR analyses showed that the majority of O-acetylated mannoses were mono-substituted with acetyl groups at O-2 or O-3 position. There were small amounts of mannose residues with di-O-acetyl substitution at both O-2 and O-3 positions. Minor levels of mannoses with 6-O-acetyl, 2,6-di-O-acetyl, and 3,6-di-O-acetyl substitutions were also identified. Much information about sugar residue sequence was extracted from 2D (1)H-(13)C HMBC and 2D (1)H-(1)H NOESY spectra. (1)J(C-H) coupling constants of major sugar residues were obtained. Evidences for the existence of branches or O-acetylated glucoses in HDOP were not found. The major structure of Dendronan(®) is shown as follows: [Formula: see text] M: ?-D-mannopyranose; G: ?-D-glucopyranose; a: O-acetyl group. PMID:25498655

  18. Formation of the thioester, N-acetyl, S-lactoylcysteine, by reaction of N-acetylcysteine with pyruvaldehyde in aqueous solution. [in prebiotic evolution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1982-01-01

    N-acetylcysteine reacts efficiently with pyruvaldehyde (methylglyoxal) in aqueous solution (pH 7.0) in the presence of a weak base, like imidazole or phosphate, to give the thioester, N-acetyl, S-lactoylcysteine. Reactions of 100 mM N-acetylcysteine with 14 mM, 24 mM and 41 mM pyruvaldehyde yield, respectively, 86%, 76% and 59% N-acetyl, S-lactoylcysteine based on pyruvaldehyde. The decrease in the percent yield at higher pyruvaldehyde concentrations suggests that during its formation the thioester is not only consumed by hydrolysis, but also by reaction with some substance in the pyruvaldehyde preparation. Indeed, purified N-acetyl, S-lactoylcysteine disappears much more rapidly in the presence of pyruvaldehyde than in its absence. Presumably, N-acetyl, S-lactoylcysteine synthesis occurs by rearrangement of the hemithioacetal of N-acetylcysteine and pyruvaldehyde. The significance of this pathway of thioester formation to molecular evolution is discussed.

  19. SUBSURFACE WELL-LOG CORRELATION OF ARSENIC-BEARING LITHOFACIES IN THE PERMIAN GARBER SANDSTONE AND WELLINGTON FORMATION, CENTRAL OKLAHOMA AQUIFER (COA), CLEVELAND COUNTY, OKLAHOMA

    EPA Science Inventory

    The fluvial Garber Sandstone and the underlying Wellington Formation are important sources of drinking water in central Oklahoma. These formations, which make up much of the COA, consist of amalgamated sandstones with some interbedded mudstones, siltstones, and local mudstone- a...

  20. Importance of product inhibition in the kinetics of the acylase hydrolysis reaction by differential stopped flow microcalorimetry.

    PubMed

    Stödeman, Magnus; Schwarz, Frederick P

    2002-09-15

    The hydrolysis of N-acetyl-L-methionine, N-acetylglycine, N-acetyl-L-phenylalanine, and N-acetyl-L-alanine at 298.35K by porcine kidney acylase I (EC 3.5.1.14) was monitored by the heat released upon mixing of the substrate and enzyme in a differential stopped flow microcalorimeter. Values for the Michaelis constant (K(m)) and the catalytic constant (k(cat)) were determined from the progress of the reaction curve employing the integrated form of the Michaelis-Menten equation for each reaction mixture. When neglecting acetate product inhibition of the acylase, values for k(cat) were up to a factor of 2.3 larger than those values determined from reciprocal initial velocity-initial substrate concentration plots for at least four different reaction mixtures. In addition, values for K(m) were observed to increase linearly with an increase in the initial substrate concentration. When an acetate product inhibition constant of 600+/-31M(-1), determined by isothermal titration calorimetry, was used in the progress curve analysis, values for K(m) and k(cat) were in closer agreement with their values determined from the reciprocal initial velocity versus initial substrate concentration plots. The reaction enthalpies, Delta(r)H(cal), which were determined from the integrated heat pulse per amount of substrate in the reaction mixture, ranged from -4.69+/-0.09kJmol(-1) for N-acetyl-L-phenylalanine to -1.87+/-0.23kJmol(-1) for N-acetyl-L-methionine. PMID:12419341

  1. Semi-synthetic preparation of 1-O-(1'-/sup 14/C)hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) using plant cell cultures

    SciTech Connect

    Weber, N.; Mangold, H.K.

    1985-04-01

    Incubation of photomixotrophic cell suspension cultures of rape (Brassica napus) and heterotrophic cell suspension cultures of soya (Glycine max) with 1-O-(1'-/sup 14/C)hexadecyl-sn-glycerol or rac-1-O-(1'-/sup 14/C)hexadecylglycerol leads in high yield (up to 78%) to labeled 1-O-hexadecyl-2-acyl-sn-glycero-3-phosphocholines. Alkaline hydrolysis of the choline glycerophospholipids yields pure 1-O-(1'-/sup 14/C)hexadecyl-sn-glycero-3-phosphocholine. 1-O-(1'-14C)Hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) is obtained by acetylating the lyso compound. The semi-synthetic preparation described leads to labeled platelet activating factor in an overall yield of 50-60% without loss of specific activity.

  2. Comprehensive profiling of lysine acetylation suggests the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori.

    PubMed

    Nie, Zuoming; Zhu, Honglin; Zhou, Yong; Wu, Chengcheng; Liu, Yue; Sheng, Qing; Lv, Zhengbing; Zhang, Wenping; Yu, Wei; Jiang, Caiying; Xie, Longfei; Zhang, Yaozhou; Yao, Juming

    2015-09-01

    Lysine acetylation in proteins is a dynamic and reversible PTM and plays an important role in diverse cellular processes. In this study, using lysine-acetylation (Kac) peptide enrichment coupled with nano HPLC/MS/MS, we initially identified the acetylome in the silkworms. Overall, a total of 342 acetylated proteins with 667 Kac sites were identified in silkworm. Sequence motifs analysis around Kac sites revealed an enrichment of Y, F, and H in the +1 position, and F was also enriched in the +2 and -2 positions, indicating the presences of preferred amino acids around Kac sites in the silkworm. Functional analysis showed the acetylated proteins were primarily involved in some specific biological processes. Furthermore, lots of nutrient-storage proteins, such as apolipophorin, vitellogenin, storage proteins, and 30 K proteins, were highly acetylated, indicating lysine acetylation may represent a common regulatory mechanism of nutrient utilization in the silkworm. Interestingly, Ser2 proteins, the coating proteins of larval silk, were found to contain many Kac sites, suggesting lysine acetylation may be involved in the regulation of larval silk synthesis. This study is the first to identify the acetylome in a lepidoptera insect, and expands greatly the catalog of lysine acetylation substrates and sites in insects. PMID:26046922

  3. SIAH-mediated ubiquitination and degradation of acetyl-transferases regulate the p53 response and protein acetylation.

    PubMed

    Grishina, Inna; Debus, Katherina; García-Limones, Carmen; Schneider, Constanze; Shresta, Amit; García, Carlos; Calzado, Marco A; Schmitz, M Lienhard

    2012-12-01

    Posttranslational modification of proteins by lysine acetylation regulates many biological processes ranging from signal transduction to chromatin compaction. Here we identify the acetyl-transferases CBP/p300, Tip60 and PCAF as new substrates for the ubiquitin E3 ligases SIAH1 and SIAH2. While CBP/p300 can undergo ubiquitin/proteasome-dependent degradation by SIAH1 and SIAH2, the two other acetyl-transferases are exclusively degraded by SIAH2. Accordingly, SIAH-deficient cells show enhanced protein acetylation, thus revealing SIAH proteins as indirect regulators of the cellular acetylation status. Functional experiments show that Tip60/PCAF-mediated acetylation of the tumor suppressor p53 is antagonized by the p53 target gene SIAH2 which mediates ubiquitin/proteasome-mediated degradation of both acetyl-transferases and consequently diminishes p53 acetylation and transcriptional activity. The p53 kinase HIPK2 mediates hierarchical phosphorylation of SIAH2 at 5 sites, which further boosts its activity as a ubiquitin E3 ligase for several substrates and therefore dampens the late p53 response. PMID:23044042

  4. CoA Synthase is phosphorylated on tyrosines in mammalian cells, interacts with and is dephosphorylated by Shp2PTP.

    PubMed

    Breus, Oksana; Panasyuk, Ganna; Gout, Ivan T; Filonenko, Valeriy; Nemazanyy, Ivan

    2010-02-01

    CoA Synthase (CoASy, 4'-phosphopantetheine adenylyltransferase/dephospho-CoA kinase) mediates two final stages of de novo coenzyme A (CoA) biosynthesis in higher eukaryotes. Unfortunately very little is known about regulation of this important metabolic pathway. In this study, we demonstrate that CoASy interacts in vitro with Src homology-2 (SH2) domains of a number of signaling proteins, including Src homology-2 domains containing protein tyrosine phosphatase (Shp2PTP). Complexes between CoASy and Shp2PTP exist in vivo in mammalian cells and this interaction is regulated in a growth-factor-dependent manner. We have also demonstrated that endogenous CoASy is phosphorylated on tyrosine residues in vivo, and that cytoplasmic protein tyrosine kinases can mediate this phosphorylation in vitro and in vivo. Importantly, Shp2PTP-mediated CoASy in vitro dephosphorylation leads to an increase in CoASy enzymatic phosphopantetheine adenylyltransferase (PPAT) activity. We therefore argue that CoASy is a novel potential substrate of Shp2PTP and phosphorylation of CoASy at tyrosine residue(s) could represent unrecognized before mechanism of modulation intracellular CoA level in response to hormonal and (or) other extracellular stimuli. PMID:19763791

  5. Acyl CoA Binding Proteins are Required for Cuticle Formation and Plant Responses to Microbes

    PubMed Central

    Xia, Ye; Yu, Keshun; Gao, Qing-ming; Wilson, Ella V.; Navarre, Duroy; Kachroo, Pradeep; Kachroo, Aardra

    2012-01-01

    Fatty acids (FA) and lipids are well known regulators of plant defense. Our previous studies have shown that components of prokaryotic (plastidal) FA biosynthesis pathway regulate various aspects of plant defense. Here, we investigated the defense related roles of the soluble acyl CoA binding proteins (ACBPs), which are thought to facilitate the intracellular transport of FA/lipids. We show that ACBP3 and 4 are required for maintaining normal lipid levels and that ACBP3 contributes to the lipid flux between the prokaryotic and eukaryotic pathways. We also show that loss of ACBP3, 4, or 6 impair normal development of the cuticle and affect both basal and resistance protein-mediated defense against bacterial and fungal pathogens. Loss of ACBP3, 4, or 6 also inhibits the induction of systemic acquired resistance (SAR) due to the plants inability to generate SAR inducing signal(s). Together, these data show that ACBP3, ACBP4, and ACBP6 are required for cuticle development as well as defense against microbial pathogens. PMID:23060893

  6. Contribution of CoA Ligases to Benzenoid Biosynthesis in Petunia Flowers[W

    PubMed Central

    Klempien, Antje; Kaminaga, Yasuhisa; Qualley, Anthony; Nagegowda, Dinesh A.; Widhalm, Joshua R.; Orlova, Irina; Shasany, Ajit Kumar; Taguchi, Goro; Kish, Christine M.; Cooper, Bruce R.; D’Auria, John C.; Rhodes, David; Pichersky, Eran; Dudareva, Natalia

    2012-01-01

    Biosynthesis of benzoic acid from Phe requires shortening of the side chain by two carbons, which can occur via the ?-oxidative or nonoxidative pathways. The first step in the ?-oxidative pathway is cinnamoyl-CoA formation, likely catalyzed by a member of the 4-coumarate:CoA ligase (4CL) family that converts a range of trans-cinnamic acid derivatives into the corresponding CoA thioesters. Using a functional genomics approach, we identified two potential CoA-ligases from petunia (Petunia hybrida) petal-specific cDNA libraries. The cognate proteins share only 25% amino acid identity and are highly expressed in petunia corollas. Biochemical characterization of the recombinant proteins revealed that one of these proteins (Ph-4CL1) has broad substrate specificity and represents a bona fide 4CL, whereas the other is a cinnamate:CoA ligase (Ph-CNL). RNA interference suppression of Ph-4CL1 did not affect the petunia benzenoid scent profile, whereas downregulation of Ph-CNL resulted in a decrease in emission of benzylbenzoate, phenylethylbenzoate, and methylbenzoate. Green fluorescent protein localization studies revealed that the Ph-4CL1 protein is localized in the cytosol, whereas Ph-CNL is in peroxisomes. Our results indicate that subcellular compartmentalization of enzymes affects their involvement in the benzenoid network and provide evidence that cinnamoyl-CoA formation by Ph-CNL in the peroxisomes is the committed step in the ?-oxidative pathway. PMID:22649270

  7. Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers.

    PubMed

    Klempien, Antje; Kaminaga, Yasuhisa; Qualley, Anthony; Nagegowda, Dinesh A; Widhalm, Joshua R; Orlova, Irina; Shasany, Ajit Kumar; Taguchi, Goro; Kish, Christine M; Cooper, Bruce R; D'Auria, John C; Rhodes, David; Pichersky, Eran; Dudareva, Natalia

    2012-05-01

    Biosynthesis of benzoic acid from Phe requires shortening of the side chain by two carbons, which can occur via the ?-oxidative or nonoxidative pathways. The first step in the ?-oxidative pathway is cinnamoyl-CoA formation, likely catalyzed by a member of the 4-coumarate:CoA ligase (4CL) family that converts a range of trans-cinnamic acid derivatives into the corresponding CoA thioesters. Using a functional genomics approach, we identified two potential CoA-ligases from petunia (Petunia hybrida) petal-specific cDNA libraries. The cognate proteins share only 25% amino acid identity and are highly expressed in petunia corollas. Biochemical characterization of the recombinant proteins revealed that one of these proteins (Ph-4CL1) has broad substrate specificity and represents a bona fide 4CL, whereas the other is a cinnamate:CoA ligase (Ph-CNL). RNA interference suppression of Ph-4CL1 did not affect the petunia benzenoid scent profile, whereas downregulation of Ph-CNL resulted in a decrease in emission of benzylbenzoate, phenylethylbenzoate, and methylbenzoate. Green fluorescent protein localization studies revealed that the Ph-4CL1 protein is localized in the cytosol, whereas Ph-CNL is in peroxisomes. Our results indicate that subcellular compartmentalization of enzymes affects their involvement in the benzenoid network and provide evidence that cinnamoyl-CoA formation by Ph-CNL in the peroxisomes is the committed step in the ?-oxidative pathway. PMID:22649270

  8. Role of Histone Acetylation in Cell Cycle Regulation.

    PubMed

    Koprinarova, Miglena; Schnekenburger, Michael; Diederich, Marc

    2016-01-01

    Core histone acetylation is a key prerequisite for chromatin decondensation and plays a pivotal role in regulation of chromatin structure, function and dynamics. The addition of acetyl groups disturbs histone/DNA interactions in the nucleosome and alters histone/histone interactions in the same or adjacent nucleosomes. Acetyl groups can also provide binding sites for recruitment of bromodomain (BRD)-containing non-histone readers and regulatory complexes to chromatin allowing them to perform distinct downstream functions. The presence of a particular acetylation pattern influences appearance of other histone modifications in the immediate vicinity forming the "histone code". Although the roles of the acetylation of particular lysine residues for the ongoing chromatin functions is largely studied, the epigenetic inheritance of histone acetylation is a debated issue. The dynamics of local or global histone acetylation is associated with fundamental cellular processes such as gene transcription, DNA replication, DNA repair or chromatin condensation. Therefore, it is an essential part of the epigenetic cell response to processes related to internal and external signals. PMID:26303420

  9. Chitosan Molecular Structure as a Function of N-Acetylation

    SciTech Connect

    Franca, Eduardo F.; Freitas, Luiz C.; Lins, Roberto D.

    2011-07-01

    Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle-like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N-acetyl groups in the particles. The polysaccharide chains of highly N-deacetylated particles where the N-acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two-fold helix and five-fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two-fold helix with f and w values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N-acetyl groups are unevenly distributed. Systems with 60% or higher N-acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N-acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3- HO3(n) ... O5(n+ 1) hydrogen bond, which in turn controls particle aggregation.

  10. Regulation of Autophagy and Mitophagy by Nutrient Availability and Acetylation

    PubMed Central

    Webster, Bradley R.; Scott, Iain; Traba, Javier; Han, Kim; Sack, Michael N.

    2014-01-01

    Normal cellular function is dependent on a number of highly regulated homeostatic mechanisms, which act in concert to maintain conditions suitable for life. During periods of nutritional deficit, cells initiate a number of recycling programs which break down complex intracellular structures, thus allowing them to utilize the energy stored within. These recycling systems, broadly named “autophagy”, enable the cell to maintain the flow of nutritional substrates until they can be replenished from external sources. Recent research has shown that a number of regulatory components of the autophagy program are controlled by lysine acetylation. Lysine acetylation is a reversible post-translational modification that can alter the activity of enzymes in a number of cellular compartments. Strikingly, the main substrate for this modification is a product of cellular energy metabolism: acetyl-CoA. This suggests a direct and intricate link between fuel metabolites and the systems which regulate nutritional homeostasis. In this review, we examine how acetylation regulates the systems that control cellular autophagy, and how global protein acetylation status may act as a trigger for recycling of cellular components in a nutrient-dependent fashion. In particular, we focus on how acetylation may control the degradation and turnover of mitochondria, the major source of fuel-derived acetyl-CoA. PMID:24525425

  11. Review: Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-07-16

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  12. Obesity, cancer, and acetyl-CoA metabolism.

    PubMed

    Lee, Joyce V; Shah, Supriya A; Wellen, Kathryn E

    2013-06-01

    As rates of obesity soar in the Unites States and around the world, cancer attributed to obesity has emerged as major threat to public health. The link between obesity and cancer can be attributed in part to the state of chronic inflammation that develops in obesity. Acetyl-CoA production and protein acetylation patterns are highly sensitive to metabolic state and are significantly altered in obesity. In this article, we explore the potential role of nutrient-sensitive lysine acetylation in regulating inflammatory processes in obesity-linked cancer. PMID:23878588

  13. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate

    PubMed Central

    Baumann, Anna-Maria T.; Bakkers, Mark J. G.; Buettner, Falk F. R.; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A.; de Groot, Raoul J.; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host–pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1—a previously identified human candidate gene—is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  14. Two-stage acid hydrolysis of biomass

    SciTech Connect

    Ackerson, M.; Ziobro, M.; Gaddy, J.L.

    1981-01-01

    Biological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars. This hydrolysis can be accomplished enzymatically or with mineral acids. A two-step dilute and concentrated acid hydrolysis process has been developed that utilizes mild conditions and nominal quantities of acid. The use of two stages minimizes the decomposition of pentoses while allowing the high yields possible from use of concentrated acid. This process is described and the design and economics presented for conversion of corn stover. Acid recycle in the prehydrolysis step results in a 250% increase in the sugar concentration. The use of acid recycle would reduce the investment and operating cost for this process by about 20%.

  15. Neuroprotection in rabbit retina with N-acetyl-aspartylglutamate and 2-phosphonyl-methyl pentanedioic acid

    NASA Astrophysics Data System (ADS)

    Hacker, Henry D.; Yourick, Debra L.; Koenig, Michael K.; Slusher, Barbara S.; Meyerhoff, James L.

    1999-06-01

    Retinal tissue is subject to ischemia from diabetic retinopathy and other conditions that affect the retinal vasculature such as lupus erythematosus and temporal arteritis. There is evidence in animal models of reversible ischemia that a therapeutic window exists during early recovery when agents that reduce glutamate activity at its receptor sites can rescue neurons from injury. To model ischemia, we used sodium cyanide (NaCN), to inhibit oxidative metabolism, and 2-deoxyglucose (2-DG) to inhibit glycolysis. Dissociated rabbit retina cells were studied to evaluate the potential neuroprotective effects of N-acetyl-aspartyl-glutamate (MAAG), which competes with glutamate as a low-potency agonist at the NMDA receptor complex. N-acetylated ?-linked acidic dipeptidase (NAALADase; the NAAG-hydrolyzing enzyme) is responsible for the hydrolysis of NAAG into glutamate, a neurotransmitter and potent excitotoxin, and N-acetylaspartate. 2-Phosphonyl-methyl pentanedioic acid (PMPA) and ?-linked NAAG (?-NAAG), inhibitors of NAALADase, were also tested, since inhibition of NAALADase could reduce synaptic glutamate and increase the concentration of NAAG. We found that metabolic inhibition with NaCN/2-DG for 1 hour caused 50% toxicity as assessed with the MTT assay. Co-treatment with NAAG resulted in dose-dependent protection of up to 55% (p<0.005). When the non-hydrolyzable, NAALADase inhibitor ?-NAAG was employed dose-dependent protection of up to 37% was observed (p<0.001). PMPA also showed 48% protection (p<.05-.001) against these insults. These data suggest that NAAG may antagonize the effect of glutamate at the NMDA receptor complex in retina. Inhibition of NAALADase by PMPA and ?-NAAG may increase the activity of endogenous NAAG.

  16. Partially Acetylated Sugarcane Bagasse For Wicking Oil From Contaminated Wetlands

    EPA Science Inventory

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased ...

  17. 4-coumarate: CoA ligase partitions metabolites for eugenol biosynthesis.

    PubMed

    Rastogi, Shubhra; Kumar, Ritesh; Chanotiya, Chandan S; Shanker, Karuna; Gupta, Madan M; Nagegowda, Dinesh A; Shasany, Ajit K

    2013-08-01

    Biosynthesis of eugenol shares its initial steps with that of lignin, involving conversion of hydroxycinnamic acids to their corresponding coenzyme A (CoA) esters by 4-coumarate:CoA ligases (4CLs). In this investigation, a 4CL (OS4CL) was identified from glandular trichome-rich tissue of Ocimum sanctum with high sequence similarity to an isoform (OB4CL_ctg4) from Ocimum basilicum. The levels of OS4CL and OB4CL_ctg4-like transcripts were highest in O. sanctum trichome, followed by leaf, stem and root. The eugenol content in leaf essential oil was positively correlated with the expression of OS4CL in the leaf at different developmental stages. Recombinant OS4CL showed the highest activity with p-coumaric acid, followed by ferulic, caffeic and trans-cinnamic acids. Transient RNA interference (RNAi) suppression of OS4CL in O. sanctum leaves caused a reduction in leaf eugenol content and trichome transcript level, with a considerable increase in endogenous p-coumaric, ferulic, trans-cinnamic and caffeic acids. A significant reduction in the expression levels was observed for OB4CL_ctg4-related transcripts in suppressed trichome compared with transcripts similar to the other four isoforms (OB4CL_ctg1, 2, 3 and 5). Sinapic acid and lignin content were also unaffected in RNAi suppressed leaf samples. Transient expression of OS4CL-green fluorescent protein fusion protein in Arabidopsis protoplasts was associated with the cytosol. These results indicate metabolite channeling of intermediates towards eugenol by a specific 4CL and is the first report demonstrating the involvement of 4CL in creation of virtual compartments through substrate utilization and committing metabolites for eugenol biosynthesis at an early stage of the pathway. PMID:23677922

  18. An improved chemo-enzymatic synthesis of 1-beta-O-acyl glucuronides: highly chemoselective enzymatic removal of protecting groups from corresponding methyl acetyl derivatives.

    PubMed

    Baba, Akiko; Yoshioka, Tadao

    2007-12-01

    An improved and widely applicable chemo-enzymatic method for the synthesis of a series of 1-beta-O-acyl glucuronides 5a-f has been developed from the corresponding methyl acetyl derivatives 3a-f, which were stereospecifically synthesized from cesium salts of carboxylic acids 1a-f and methyl 2,3,4-tri-O-acetyl-1-bromo-1-deoxy-alpha-D-glucopyranuronate (2). Chemoselectivity of lipase AS Amano (LAS) in the hydrolytic removal of O-acetyl groups of 3a-f to provide methyl esters 4a-f was influenced by the nature of their 1-beta-O-acyl groups; high selectivity was evident only for 3b and 3f. Carboxylesterase from Streptomyces rochei (CSR), newly screened as an alternative to LAS, showed much greater chemoselectivity toward the O-acetyl groups than LAS; 3a, 3d, and 3e were chemoselectively hydrolyzed only by CSR. The combination of CSR with LAS yielded better results in the hydrolysis of 3c and 3f than did single usage of CSR. Final deprotection of the methyl ester groups of 4a-f to provide 5a-f was chemoselectively achieved by using lipase from Candida antarctica type B (CAL-B) as well as esterase from porcine liver (PLE), although CAL-B possessed higher chemoselectivity and catalytic efficiency than did PLE. CSR also exhibited high chemoselectivity in the synthesis of (S)-naproxen 1-beta-O-acyl glucopyranoside (7) from its 2,3,4,6-tetra-O-acetyl derivative 6. PMID:17985922

  19. Nucleosome Dancing at the Tempo of Histone Tail Acetylation

    PubMed Central

    Galvani, Angélique; Thiriet, Christophe

    2015-01-01

    The impact of histone acetylation on transcription was revealed over 50 years ago by Allfrey and colleagues. However, it took decades for an understanding of the fine mechanism by which this posttranslational modification affects chromatin structure and promotes transcription. Here, we review breakthroughs linking histone tail acetylation, histone dynamics, and transcription. We also discuss the histone exchange during transcription and highlight the important function of a pool of non-chromatinized histones in chromatin dynamics. PMID:26184324

  20. Acetyl radical generation in cigarette smoke: Quantification and simulations

    NASA Astrophysics Data System (ADS)

    Hu, Na; Green, Sarah A.

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high-performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commercial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass fiber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke.

  1. Acetyl Radical Generation in Cigarette Smoke: Quantification and Simulations

    PubMed Central

    Hu, Na; Green, Sarah A.

    2014-01-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography–mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10–150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commerial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass filber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acealdehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke. PMID:25253993

  2. Reduced microtubule acetylation in cystic fibrosis epithelial cells

    PubMed Central

    Rymut, Sharon M.; Harker, Alyssa; Corey, Deborah A.; Burgess, James D.; Sun, Hongtao; Clancy, John P.

    2013-01-01

    Dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) leads to many cellular consequences, including perinuclear accumulation of free cholesterol due to impaired endosomal transport. The hypothesis being tested is that CF-related perinuclear cholesterol accumulation due to disrupted endocytic trafficking occurs as a result of reduced microtubule (MT) acetylation. Here, it is identified that acetylated-?-tubulin (Ac-tub) content is reduced by ?40% compared with respective wild-type controls in both cultured CF cell models (IB3) and primary Cftr?/? mouse nasal epithelial tissue. Histone deacetylase 6 (HDAC6) has been shown to regulate MT acetylation, which provides reasonable grounds to test its impact on reduced Ac-tub content on CF cellular phenotypes. Inhibition of HDAC6, either through tubastatin treatment or HDAC6 knockdown in CF cells, increases Ac-tub content and results in redistributed free cholesterol and reduced stimulation of NF-?B activity. Mechanistically, endoplasmic reticulum stress, which is widely reported in CF and leads to aggresome formation, is identified as a regulator of MT acetylation. F508del CFTR correction with C18 in primary airway epithelial cells restores MT acetylation and cholesterol transport. A significant role for phosphatidyl inositol-3 kinase p110? is also identified as a regulator of MT acetylation. PMID:23873844

  3. An acetylation switch controls TDP-43 function and aggregation propensity

    PubMed Central

    Cohen, Todd J.; Hwang, Andrew W.; Restrepo, Clark R.; Yuan, Chao-Xing; Trojanowski, John Q.; Lee, Virginia M.Y.

    2015-01-01

    TDP-43 pathology is a disease hallmark that characterizes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). Although a critical role for TDP-43 as an RNA-binding protein has emerged, the regulation of TDP-43 function is poorly understood. Here we identify lysine acetylation as a novel post-translational modification controlling TDP-43 function and aggregation. We provide evidence that TDP-43 acetylation impairs RNA-binding and promotes accumulation of insoluble, hyper-phosphorylated TDP-43 species that largely resemble pathological inclusions in ALS and FTLD-TDP. Moreover, biochemical and cell-based assays identify oxidative stress as a signaling cue that promotes acetylated TDP-43 aggregates that are readily engaged by the cellular defense machinery. Importantly, acetylated TDP-43 lesions are found in ALS patient spinal cord, indicating that aberrant TDP-43 acetylation and loss of RNA binding are linked to TDP-43 proteinopathy. Thus, modulating TDP-43 acetylation represents a plausible strategy to fine-tune TDP-43 activity, which could provide new therapeutic avenues for TDP-43 proteinopathies. PMID:25556531

  4. Mechanisms of lactone hydrolysis in acidic conditions.

    PubMed

    Gómez-Bombarelli, Rafael; Calle, Emilio; Casado, Julio

    2013-07-19

    The acid-catalyzed hydrolysis of linear esters and lactones was studied using a hybrid supermolecule-polarizable continuum model (PCM) approach including up to six water molecules. The compounds studied included two linear esters, four ?-lactones, two ?-lactones, and one ?-lactone: ethyl acetate, methyl formate, ?-propiolactone, ?-butyrolactone, ?-isovalerolactone, diketene (4-methyleneoxetan-2-one), ?-butyrolactone, 2(5H)-furanone, and ?-valerolactone. The theoretical results are in good quantitative agreement with the experimental measurements reported in the literature and also in excellent qualitative agreement with long-held views regarding the nature of the hydrolysis mechanisms at molecular level. The present results help to understand the balance between the unimolecular (A(AC)1) and bimolecular (A(AC)2) reaction pathways. In contrast to the experimental setting, where one of the two branches is often occluded by the requirement of rather extreme experimental conditions, we have been able to estimate both contributions for all the compounds studied and found that a transition from A(AC)2 to A(AC)1 hydrolysis takes place as acidity increases. A parallel work addresses the neutral and base-catalyzed hydrolysis of lactones. PMID:23731203

  5. Optimization of dilute acid hydrolysis of Enteromorpha

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Liu, Haiyan; Li, Fuchao; Jiang, Peng; Qin, Song

    2011-11-01

    Acid hydrolysis is a simple and direct way to hydrolyze polysaccharides in biomass into fermentable sugars. To produce fermentable sugars effectively and economically for fuel ethanol, we have investigated the hydrolysis of Enteromorpha using acids that are typically used to hydrolyze biomass: H2SO4, HCl, H3PO4 and C4H4O4 (maleic acid). 5%(w/w) Enteromorpha biomass was treated for different times (30, 60, and 90 min) and with different acid concentrations (0.6, 1.0, 1.4, 1.8, and 2.2%, w/w) at 121°C. H2SO4 was the most effective acid in this experiment. We then analyzed the hydrolysis process in H2SO4 in detail using high performance liquid chromatography. At a sulfuric acid concentration of 1.8% and treatment time of 60 min, the yield of ethanol fermentable sugars (glucose and xylose) was high, (230.5 mg/g dry biomass, comprising 175.2 mg/g glucose and 55.3 mg/g xylose), with 48.6% of total reducing sugars being ethanol fermentable. Therefore, Enteromorpha could be a good candidate for production of fuel ethanol. In future work, the effects of temperature and biomass concentration on hydrolysis, and also the fermentation of the hydrolysates to ethanol fuel should be focused on.

  6. Thioglycoside hydrolysis catalyzed by {beta}-glucosidase

    SciTech Connect

    Shen Hong; Byers, Larry D.

    2007-10-26

    Sweet almond {beta}-glucosidase (EC 3.2.1.21) has been shown to have significant thioglycohydrolase activity. While the K{sub m} values for the S- and O-glycosides are similar, the k{sub cat} values are about 1000-times lower for the S-glycosides. Remarkably, the pH-profile for k{sub cat}/K{sub m} for hydrolysis of p-nitrophenyl thioglucoside (pNPSG) shows the identical dependence on a deprotonated carboxylate (pK{sub a} 4.5) and a protonated group (pK{sub a} 6.7) as does the pH-profile for hydrolysis of the corresponding O-glycoside. Not surprisingly, in spite of the requirement for the presence of this protonated group in catalytically active {beta}-glucosidase, thioglucoside hydrolysis does not involve general acid catalysis. There is no solvent kinetic isotope effect on the enzyme-catalyzed hydrolysis of pNPSG.

  7. Phosphatase hydrolysis of organic phosphorus compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatases are diverse groups of enzymes that deserve special attention because of the significant roles they play in mineralizing organic phosphorus (P) into inorganic available form. For getting more insight on the enzymatically hydrolysis of organic P, in this work, we compared the catalytic pa...

  8. Phosphatase Hydrolysis of Soil Organic Phosphorus Fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant available inorganic phosphorus (Pi) is usually limited in highly weathered Ultisols. The high Fe, Al, and Mn contents in these soils enhance Pi retention and fixation. The metals are also known to form complexes with organic phosphorus (Po) compounds. Hydrolysis of Po compounds is needed for P...

  9. HYDROLYSIS RATE CONSTANTS FOR ENHANCING PROPERTY-REACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Rate constants for hydrolysis in water of ten classes of organic compounds are examined with the objective of establishing new, or expanding existing, property reactivity correlations. These relationships then can be used to predict the environmental hydrolysis of chemicals that ...

  10. ATP Hydrolysis Stimulates Large Length Fluctuations in Single Actin Filaments

    E-print Network

    ATP Hydrolysis Stimulates Large Length Fluctuations in Single Actin Filaments Evgeny B. Stukalin Engineering, Rice University, Houston, Texas ABSTRACT Polymerization dynamics of single actin filaments is investigated theoretically using a stochastic model that takes into account the hydrolysis of ATP

  11. Kinetic studies of the hydrolysis of organophosphate insecticides by phosphotriesterase 

    E-print Network

    Zaitoun, Basel M.

    2002-01-01

    . By examining the enzymatic hydrolysis of these racemic mixtures, it was determined spectroscopically that PTE hydrolyzes both enantiomers at different rates. The enantiomeric preference of the enzymatic hydrolysis for propetamphos is 46:1 and 13...

  12. Non-catalytic steam hydrolysis of fats

    SciTech Connect

    Deibert, M.C.

    1992-08-28

    Hydrolysis of fats and oils produces fatty acid and glycerol. The catalyzed, liquid phase Colgate-Emry process, state-of-the-art, produces impure products that require extensive energy investment for their purification to commercial grade. Non-catalytic steam hydrolysis may produce products more easily purified. A bench-scale hydrolyzer was designed and constructed to contact descending liquid fat or oil with rising superheated steam. Each of the five stages in the reactor was designed similar to a distillation column stage to promote intimate liquid-gas contact. Degree of hydrolysis achieved in continuous tests using tallow feed were 15% at 280C and 35% at 300C at a tallow-to-steam mass feed ratio of 4.2. At a feed ratio of 9.2, the degree of hydrolysis was 21% at 300C. Decomposition was strongly evident at 325C but not at lower temperatures. Soybean oil rapidly polymerized under reaction conditions. Batch tests at 320C produced degrees of hydrolyses of between 44% and 63% using tallow and palm oil feeds. Over 95% fatty acids were present in a clean, readily separated organic portion of the overhead product from most tests. The test reactor had serious hydraulic resistance to liquid down-flow which limited operation to very long liquid residence times. These times are in excess of those that tallow and palm oil are stable at the reaction temperature. Little glycerol and extensive light organics were produced indicating that unexplained competing reactions to hydrolysis occurred in the experimental system. Further tests using an improved reactor will be required.

  13. Software interface for high-speed readout of particle detectors based on the CoaXPress communication standard

    NASA Astrophysics Data System (ADS)

    Hejtmánek, M.; Neue, G.; Voleš, P.

    2015-06-01

    This article is devoted to the software design and development of a high-speed readout application used for interfacing particle detectors via the CoaXPress communication standard. The CoaXPress provides an asymmetric high-speed serial connection over a single coaxial cable. It uses a widely available 75 ? BNC standard and can operate in various modes with a data throughput ranging from 1.25 Gbps up to 25 Gbps. Moreover, it supports a low speed uplink with a fixed bit rate of 20.833 Mbps, which can be used to control and upload configuration data to the particle detector. The CoaXPress interface is an upcoming standard in medical imaging, therefore its usage promises long-term compatibility and versatility. This work presents an example of how to develop DAQ system for a pixel detector. For this purpose, a flexible DAQ card was developed using the XILINX Spartan 6 FPGA. The DAQ card is connected to the framegrabber FireBird CXP6 Quad, which is plugged in the PCI Express bus of the standard PC. The data transmission was performed between the FPGA and framegrabber card via the standard coaxial cable in communication mode with a bit rate of 3.125 Gbps. Using the Medipix2 Quad pixel detector, the framerate of 100 fps was achieved. The front-end application makes use of the FireBird framegrabber software development kit and is suitable for data acquisition as well as control of the detector through the registers implemented in the FPGA.

  14. Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases

    NASA Astrophysics Data System (ADS)

    Hamer, Stefanie Nicole; Cord-Landwehr, Stefan; Biarnés, Xevi; Planas, Antoni; Waegeman, Hendrik; Moerschbacher, Bruno Maria; Kolkenbrock, Stephan

    2015-03-01

    Chitin and chitosan oligomers have diverse biological activities with potentially valuable applications in fields like medicine, cosmetics, or agriculture. These properties may depend not only on the degrees of polymerization and acetylation, but also on a specific pattern of acetylation (PA) that cannot be controlled when the oligomers are produced by chemical hydrolysis. To determine the influence of the PA on the biological activities, defined chitosan oligomers in sufficient amounts are needed. Chitosan oligomers with specific PA can be produced by enzymatic deacetylation of chitin oligomers, but the diversity is limited by the low number of chitin deacetylases available. We have produced specific chitosan oligomers which are deacetylated at the first two units starting from the non-reducing end by the combined use of two different chitin deacetylases, namely NodB from Rhizobium sp. GRH2 that deacetylates the first unit and COD from Vibrio cholerae that deacetylates the second unit starting from the non-reducing end. Both chitin deacetylases accept the product of each other resulting in production of chitosan oligomers with a novel and defined PA. When extended to further chitin deacetylases, this approach has the potential to yield a large range of novel chitosan oligomers with a fully defined architecture.

  15. Coupling of actin hydrolysis and polymerization: Reduced description with two

    E-print Network

    Kierfeld, Jan

    OFFPRINT Coupling of actin hydrolysis and polymerization: Reduced description with two nucleotide of actin hydrolysis and polymerization: Reduced description with two nucleotide states X. Li1,2 , R to the hydrolysis of adenosine triphosphate (ATP), which involves both the cleavage of ATP and the release

  16. BSA Treatment to Enhance Enzymatic Hydrolysis of Cellulose in Lignin

    E-print Network

    California at Riverside, University of

    BSA Treatment to Enhance Enzymatic Hydrolysis of Cellulose in Lignin Containing Substrates Bin Yang stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92. Similar improve- ments were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX

  17. Effects of microtubule mechanics on hydrolysis and catastrophes

    E-print Network

    Kierfeld, Jan

    Effects of microtubule mechanics on hydrolysis and catastrophes N Müller and J Kierfeld Department modeling steric constraints to investigate the influence of mechanical forces on hydrolysis bending angle, which changes from °0 to °22 by hydrolysis of a dimer. This also affects the lateral

  18. FRONTIERS ARTICLE On the hydration and hydrolysis of carbon dioxide

    E-print Network

    Cohen, Ronald C.

    FRONTIERS ARTICLE On the hydration and hydrolysis of carbon dioxide Alice H. England a,b , Andrew M August 2011 a b s t r a c t The dissolution of carbon dioxide in water and the ensuing hydrolysis, and hydration strength. Ó 2011 Elsevier B.V. All rights reserved. 1. Introduction The hydrolysis of carbon

  19. Energy Optimization of Bioethanol Production via Hydrolysis of Switchgrass

    E-print Network

    Grossmann, Ignacio E.

    1 Energy Optimization of Bioethanol Production via Hydrolysis of Switchgrass Mariano Martín, via hydrolysis. A superstructure embedding a number of alternatives is proposed. Two technologies of the grass is broken down. Next, enzymatic hydrolysis follows any of the pretreaments to obtain fermentable

  20. 4-O-Acetyl-sialic acid (Neu4,5Ac2) in acidic milk oligosaccharides of the platypus (Ornithorhynchus anatinus) and its evolutionary significance.

    PubMed

    Urashima, Tadasu; Inamori, Hiroaki; Fukuda, Kenji; Saito, Tadao; Messer, Michael; Oftedal, Olav T

    2015-06-01

    Monotremes (echidnas and platypus) retain an ancestral form of reproduction: egg-laying followed by secretion of milk onto skin and hair in a mammary patch, in the absence of nipples. Offspring are highly immature at hatching and depend on oligosaccharide-rich milk for many months. The primary saccharide in long-beaked echidna milk is an acidic trisaccharide Neu4,5Ac2(?2-3)Gal(?1-4)Glc (4-O-acetyl 3'-sialyllactose), but acidic oligosaccharides have not been characterized in platypus milk. In this study, acidic oligosaccharides purified from the carbohydrate fraction of platypus milk were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and (1)H-nuclear magnetic resonance spectroscopy. All identified structures, except Neu5Ac(?2-3)Gal(?1-4)Glc (3'-sialyllactose) contained Neu4,5Ac2 (4-O-acetyl-sialic acid). These include the trisaccharide 4-O-acetyl 3'-sialyllactose, the pentasaccharide Neu4,5Ac2(?2-3)Gal(?1-4)GlcNAc(?1-3)Gal(?1-4)Glc (4-O-acetyl-3'-sialyllacto-N-tetraose d) and the hexasaccharide Neu4,5Ac2(?2-3)Gal(?1-4)[Fuc(?1-3)]GlcNAc(?1-3)Gal(?1-4)Glc (4-O-acetyl-3'-sialyllacto-N-fucopentaose III). At least seven different octa- to deca-oligosaccharides each contained a lacto-N-neohexaose core (LNnH) and one or two Neu4,5Ac2 and one to three fucose residues. We conclude that platypus milk contains a diverse (? 20) array of neutral and acidic oligosaccharides based primarily on lactose, lacto-N-neotetraose (LNnT) and LNnH structural cores and shares with echidna milk the unique feature that all identified acidic oligosaccharides (other than 3'-sialyllactose) contain the 4-O-acetyl-sialic acid moiety. We propose that 4-O-acetylation of sialic acid moieties protects acidic milk oligosaccharides secreted onto integumental surfaces from bacterial hydrolysis via steric interference with bacterial sialidases. This may be of evolutionary significance since taxa ancestral to monotremes and other mammals are thought to have secreted milk, or a milk-like fluid containing oligosaccharides, onto skin surfaces. PMID:25601457

  1. Genetic Construction of Truncated and Chimeric Metalloproteins Derived from the Alpha Subunit of Acetyl-CoA Synthase from Clostridium thermoaceticum

    SciTech Connect

    Huay-Keng Loke; Xiangshi Tan; Paul A. Lindahl

    2002-06-28

    In this study, a genetics-based method is used to truncate acetyl-coenzyme A synthase from Clostridium thermoaceticum (ACS), an alpha2beta2 tetrameric 310 kda bifunctional enzyme. ACS catalyzes the reversible reduction of CO2 to CO and the synthesis of acetyl-CoA from CO (or CO2 in the presence of low-potential reductants), CoA, and a methyl group bound to a corrinoid-iron sulfur protein (CoFeSP). ACS contains 7 metal-sulfur clusters of 4 different types called A, B, C, and D. The B, C, and D clusters are located in the 72 kda beta subunit while the A-cluster, a Ni-X-Fe4S4 cluster that serves as the active site for acetyl-CoA synthase activity, is located in the 82 kda alpha subunit. The extent to which the essential properties of the cluster, including catalytic, redox, spectroscopic, and substrate-binding properties, were retained as ACS was progressively truncated was determined. Acetyl-CoA synthase catalytic activity remained when the entire alpha subunit was removed, as long as CO, rather than CO2 and a low-potential reductant, was used as a substrate. Truncating an {approx} 30 kda region from the N-terminus of the alpha subunit yielded a 49 kda protein that lacked catalytic activity but exhibited A-cluster-like spectroscopic, redox, and CO binding properties. Further truncation afforded a 23 kda protein that lacked recognizable A-cluster properties except for UV-vis spectra typical of [Fe4S4]2+ clusters. Two chimeric proteins were constructed by fusing the gene encoding a ferredoxin from Chromatium vinosum to genes encoding the 49 kda and 82 kda fragments of the alpha subunit. The chimeric proteins exhibited EPR signals that were not the simple sum of the signals from the separate proteins, suggesting magnetic interactions between clusters. This study highlights the potential for using genetics to simplify the study of complex multi-centered metalloenzymes and to generate new complex metalloenzymes with interesting properties.

  2. Identification and preliminary characterization of acsF, a Putative Ni-insertase used in the biosynthesis of acetyl-CoA synthase from Clostridium thermoaceticum

    SciTech Connect

    Huay-Keng Loke; Paul A. Lindahl

    2003-01-01

    OAK-B135 The acsABCDE genes in the Clostridium thermoaceticum genome are used for autotrophic acetyl-CoA synthesis using the Wood/Ljungdahl pathway. A 2.8 kb region between acsC and acsD was cloned and sequenced. Two open reading frames, orf7 ({approx} 1.9 kb) and acsF ({approx} 0.7 kb) were identified. orf7 appears to encode an Fe-S protein, in that it contains 5 conserved cysteine residues, 3 of which are present in a motif (CXXXXXCXXC) commonly used to coordinate Fe-S clusters. However, Orf7 is probably not involved in autotrophic acetyl-CoA synthesis, as homologous genes are present in organisms that do not utilize this pathway and are absent in many that do. In contrast, acsF is probably involved in this pathway. Sequence alignment of AcsF and 11 homologs reveals a number of conserved regions, including a P-loop that binds nucleoside triphosphates and catalyzes their hydrolysis. One homolog is CooC, an ATPase/GTPase that inserts Ni into a precursor form of the C-cluster of the carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum. Purified AcsF lacked Ni and Fe, and slowly catalyzed the hydrolysis of ATP. Such similarities to CooC suggest that AcsF may function to insert Ni into a Ni-deficient form of the bifunctional acetyl-CoA synthase/CODH from C. thermoaceticum (ACSCt). However, this could not be established, as expression of acsF did not effect activation of recombinant AcsAB expressed in E. coli. Also, E. coli cells defective in hypB retained the ability to synthesize active recombinant AcsAB. Rather, the concentration of extracellular Ni2+ ions was critical to activation.

  3. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis. [quantitative structure-activity relationship, complete neglect of differential overlap

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of cationic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR-primeP(O)X, where R and R-prime are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrolysis rate constant.

  4. Histones of Chlamydomonas reinhardtii. Synthesis, acetylation, and methylation.

    PubMed Central

    Waterborg, J H; Robertson, A J; Tatar, D L; Borza, C M; Davie, J R

    1995-01-01

    Histones of the green alga Chlamydomonas reinhardtii were prepared by a new method and fractionated by reversed-phase high-performance liquid chromatography. Acid-urea-Triton gel analysis and tritiated acetate labeling demonstrated high levels of steady-state acetylation for the single histone H3 protein, in contrast to low levels on histones H4 and H2B. Twenty percent of histone H3 is subject to dynamic acetylation with, on average, three acetylated lysine residues per protein molecule. Histone synthesis in light-dark-synchronized cultures was biphasic with pattern differences between two histone H1 variants, between two H2A variants, and between H2B and ubiquitinated H2B. Automated protein sequence analysis of histone H3 demonstrated a site-specific pattern of steady-state acetylation between 7 and 17% at five of the six amino-terminal lysines and of monomethylation between 5 and 81% at five of the eight amino-terminal lysines in a pattern that may limit dynamic acetylation. An algal histone H3 sequence was confirmed by protein sequencing with a single threonine as residue 28 instead of the serine28-alanine29 sequence, present in all other known plant and animal H3 histones. PMID:7480339

  5. Trans-regulation of Histone Deacetylase Activities through Acetylation*

    PubMed Central

    Luo, Yi; Jian, Wei; Stavreva, Diana; Fu, Xueqi; Hager, Gordon; Bungert, Jörg; Huang, Suming; Qiu, Yi

    2009-01-01

    HDAC1 and -2 are highly conserved enzymes and often coexist in the same coregulator complexes. Understanding the regulation of histone deacetylase activities is extremely important because these enzymes play key roles in epigenetic regulation in normal and cancer cells. We previously showed that HDAC1 is required for glucocorticoid receptor-mediated transcription activation and that its activity is regulated through acetylation by p300 during the induction cycle. Here, we showed that HDAC2 is also required for glucocorticoid receptor-mediated gene activation. HDAC2, however, is regulated through a different mechanism from that of HDAC1. HDAC2 is not acetylated by p300, although 5 of 6 acetylated lysine residues in HDAC1 are also present in HDAC2. More importantly, the activity of HDAC2 is inhibited by acetylated HDAC1. Additionally, we showed that acetylated HDAC1 can trans-regulate HDAC2 through heterodimerization. Thus, this study uncovered fundamental differences between HDAC1 and HDAC2. It also unveiled a new mechanism of collaborative regulation by HDAC1/2 containing coregulator complexes. PMID:19822520

  6. Continuous steam hydrolysis of tulip poplar

    SciTech Connect

    Fieber, C.; Colcord, A.R.; Faass, S.; Muzzy, J.D.; Roberts, R.S.

    1982-08-01

    To produce ethanol from hardwood it is desirable to fractionate the hardwood in order to produce a relatively pure cellulosic pulp for dilute acid hydrolysis. An experimental investigation of continuous steam hydrolysis of tulip poplar wood chips indicates that over 90% of the lignin present can be extracted by 0.1N sodium hydroxide, resulting in a cellulose pulp containing over 90% hexosan. The study was performed using a Stake Technology, Ltd., continuous digester rated at one oven dry ton per hour of wood chips. The yields of hexosans, hexoses, xylan, xylose, lignin, furfural, acetic acid and methanol were determined as a function of residence time and steam pressure in the digester. The information provides a basis for establishing a material and energy balance for a hardwood to ethanol plant.

  7. Pretreatment of sallow prior to enzymatic hydrolysis

    SciTech Connect

    Galbe, M.; Zacchi, G.; Scott, C.D.

    1986-01-01

    Pretreatment of fast-growing sallow by steam explosion prior to enzymic hydrolysis was investigated to find optimum conditions regarding pretreatment temperature and time. Some preliminary experiments with impregnation of the material with H/sub 2/SO/sub 4/ or Na/sub 2/SO/sub 3/ were performed to reduce the byproduct formation and to increase the xylose yield. A temperature of 220 degrees for 15 minutes gave the highest yield, approximately 80% of the glucose available based on raw material. The xylose recovered was equal to or less than 20% when no chemicals were added. Impregnation with Na/sub 2/SO/sub 3/ gave an improvement compared with the unimpregnated material. About 30% of the xylose content could thus be recovered after the enzymic hydrolysis. The results are promising. (Refs. 5).

  8. Effects of microtubule mechanics on hydrolysis and catastrophes

    E-print Network

    Müller, Nina

    2014-01-01

    We introduce a model for microtubule mechanics containing lateral bonds between dimers in neighboring protofilaments, bending rigidity of dimers, and repulsive interactions between protofilaments modeling steric constraints to investigate the influence of mechanical forces on hydrolysis and catastrophes. We use the allosteric dimer model, where tubulin dimers are characterized by an equilibrium bending angle, which changes from $0^\\circ$ to $22^\\circ$ by hydrolysis of a dimer. This also affects the lateral interaction and bending energies and, thus, the mechanical equilibrium state of the microtubule. As hydrolysis gives rise to conformational changes in dimers, mechanical forces also influence the hydrolysis rates by mechanical energy changes modulating the hydrolysis rate. The interaction via the microtubule mechanics then gives rise to correlation effects in the hydrolysis dynamics, which have not been taken into account before. Assuming a dominant influence of mechanical energies on hydrolysis rates, we i...

  9. ?-cyclodextrin assistant flavonoid glycosides enzymatic hydrolysis

    PubMed Central

    Jin, Xin; Zhang, Zhen-hai; Sun, E.; Jia, Xiao-Bin

    2013-01-01

    Background: The content of icaritin and genistein in herba is very low, preparation with relatively large quantities is an important issue for extensive pharmacological studies. Objective: This study focuses on preparing and enzymic hydrolysis of flavonoid glycosides /?-cyclodextrin inclusion complex to increase the hydrolysis rate. Materials and Methods: The physical property of newly prepared inclusion complex was tested by differential scanning calorimetry (DSC). The conditions of enzymatic hydrolysis were optimized for the bioconversion of flavonoid glycosides /?-cyclodextrin inclusion complex by mono-factor experimental design. The experiments are using the icariin and genistein as the model drugs. Results: The solubility of icariin and genistein were increased almost 17 times from 29.2 ?g/ml to 513.5 ?g/ml at 60°C and 28 times from 7.78 ?g/ml to 221.46 ?g/ml at 50°C, respectively, demonstrating that the inclusion complex could significantly increase the solubility of flavonoid glycosides. Under the optimal conditions, the reaction time of icariin and genistin decreased by 68% and 145%, when compared with that without ?-CD inclusion. By using this enzymatic condition, 473 mg icaritin (with the purity of 99.34%) and 567 mg genistein(with the purity of 99.46%), which was finally determined by melt point, ESI-MS, UV, IR, 1H NMR and 13C NMR, was obtained eventually by transforming the inclusion complex(contains 1.0 g substrates). Conclusion: This study can clearly indicate a new attempt to improve the speed of enzyme-hydrolysis of poorly water-soluble flavonoid glycosides and find a more superior condition which is used to prepare icaritin and genistein. PMID:24143039

  10. Multiple mass isotopomer tracing of acetyl-CoA metabolism in Langendorff-perfused rat hearts: channeling of acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase.

    PubMed

    Li, Qingling; Deng, Shuang; Ibarra, Rafael A; Anderson, Vernon E; Brunengraber, Henri; Zhang, Guo-Fang

    2015-03-27

    We developed an isotopic technique to assess mitochondrial acetyl-CoA turnover (?citric acid flux) in perfused rat hearts. Hearts are perfused with buffer containing tracer [(13)C2,(2)H3]acetate, which forms M5 + M4 + M3 acetyl-CoA. The buffer may also contain one or two labeled substrates, which generate M2 acetyl-CoA (e.g. [(13)C6]glucose or [1,2-(13)C2]palmitate) or/and M1 acetyl-CoA (e.g. [1-(13)C]octanoate). The total acetyl-CoA turnover and the contributions of fuels to acetyl-CoA are calculated from the uptake of the acetate tracer and the mass isotopomer distribution of acetyl-CoA. The method was applied to measurements of acetyl-CoA turnover under different conditions (glucose ± palmitate ± insulin ± dichloroacetate). The data revealed (i) substrate cycling between glycogen and glucose-6-P and between glucose-6-P and triose phosphates, (ii) the release of small excess acetyl groups as acetylcarnitine and ketone bodies, and (iii) the channeling of mitochondrial acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Because of this channeling, the labeling of acetylcarnitine and ketone bodies released by the heart are not proxies of the labeling of mitochondrial acetyl-CoA. PMID:25645937

  11. Xylan hydrolysis in zinc chloride solution

    SciTech Connect

    Cao, N.J.; Xu, Q.; Chen, L.F

    1995-12-31

    Xylan is the major component of hemicellulose, which consists of up to one-third of the lignocellulosic biomass. When the zinc chloride solution was used as a pretreatment agent to facilitate cellulose hydrolysis, hemicellulose was hydrolyzed during the pretreatment stage. In this study, xylan was used as a model to study the hydrolysis of hemicellulose in zinc chloride solution. The degradation of xylose that is released from xylan was reduced by the formation of zinc-xylose complex. The xylose yield was > 90% (w/w) at 70{degrees}C. The yield and rate of hydrolysis were a function of temperature and the concentration of zinc chloride. The ratio of zinc chloride can be decreased from 9 to 1.3 (w/w). At this ratio, 76% of xylose yield was obtained. When wheat straw was pretreated with a concentrated zinc chloride solution, the hemicellulose hydrolysate contained only xylose and trace amounts of arabinose and oligosaccharides. With this approach, the hemicellulose hydrolysate can be separated from cellulose residue, which would be hydrolyzed subsequently to glucose by acid or enzymes to produce glucose. This production scheme provided a method to produce glucose and xylose in different streams, which can be fermented in separated fermenters.

  12. Palm date fibers: analysis and enzymatic hydrolysis.

    PubMed

    Shafiei, Marzieh; Karimi, Keikhosro; Taherzadeh, Mohammad J

    2010-01-01

    Waste palm dates were subjected to analysis for composition and enzymatic hydrolysis of their flesh fibers. The fruit contained 32% glucose and 30% fructose, while the water-insoluble fibers of its flesh consisted of 49.9% lignin and 20.9% polysaccharides. Water-insoluble fibers were settled to 55% of its initial volume in 12 h. The presence of skin and flesh colloidal fibers results in high viscosity and clogging problems during industrial processes. The settling velocity of the fibers was improved by enzymatic hydrolysis. Hydrolysis resulted in 84.3% conversion of the cellulosic part of the fibers as well as reducing the settling time to 10 minutes and the final settled volume to 4% of the initial volume. It implies easier separation of the fibers and facilitates fermentation processes in the corresponding industries. Two kinds of high- and low-lignin fibers were identified from the water-insoluble fibers. The high-lignin fibers (75% lignin) settled easily, while the low-lignin fibers (41.4% lignin) formed a slurry suspension which settled very slowly. The hydrophilicity of these low-lignin fibers is the major challenge of the industrial processes. PMID:21151438

  13. Fungal secretomes enhance sugar beet pulp hydrolysis

    PubMed Central

    Kracher, Daniel; Oros, Damir; Yao, Wanying; Preims, Marita; Rezic, Iva; Haltrich, Dietmar; Rezic, Tonci; Ludwig, Roland

    2014-01-01

    The recalcitrance of lignocellulose makes enzymatic hydrolysis of plant biomass for the production of second generation biofuels a major challenge. This work investigates an efficient and economic approach for the enzymatic hydrolysis of sugar beet pulp (SBP), which is a difficult to degrade, hemicellulose-rich by-product of the table sugar industry. Three fungal strains were grown on different substrates and the production of various extracellular hydrolytic and oxidative enzymes involved in pectin, hemicellulose, and cellulose breakdown were monitored. In a second step, the ability of the culture supernatants to hydrolyze thermally pretreated SBP was tested in batch experiments. The supernatant of Sclerotium rolfsii, a soil-borne facultative plant pathogen, was found to have the highest hydrolytic activity on SBP and was selected for further hydrolyzation experiments. A low enzyme load of 0.2 mg g–1 protein from the culture supernatant was sufficient to hydrolyze a large fraction of the pectin and hemicelluloses present in SBP. The addition of Trichoderma reesei cellulase (1–17.5 mg g–1 SBP) resulted in almost complete hydrolyzation of cellulose. It was found that the combination of pectinolytic, hemicellulolytic, and cellulolytic activities works synergistically on the complex SBP composite, and a combination of these hydrolytic enzymes is required to achieve a high degree of enzymatic SBP hydrolysis with a low enzyme load. PMID:24677771

  14. Comparison of Enzymatic Hydrolysis and Acid Hydrolysis of Sterol Glycosides from Foods Rich in ?(7)-Sterols.

    PubMed

    Münger, Linda H; Jutzi, Sabrina; Lampi, Anna-Maija; Nyström, Laura

    2015-08-01

    In this study, we present the difference in sterol composition of extracted steryl glycosides (SG) hydrolyzed by either enzymatic or acid hydrolysis. SG were analyzed from foods belonging to the plant families Cucurbitaceae (melon and pumpkin seeds) and Amaranthaceae (amaranth and beetroot), both of which are dominated by ?(7)-sterols. Released sterols were quantified by gas chromatography with a flame ionization detector (GC-FID) and identified using gas chromatography/mass spectrometry (GC-MS). All ?(7)-sterols identified (?(7)-stigmastenyl, spinasteryl, ?(7)-campesteryl, ?(7)-avenasteryl, poriferasta-7,25-dienyl and poriferasta-7,22,25-trienyl glucoside) underwent isomerization under acidic conditions and high temperature. Sterols with an ethylidene or methylidene side chain were found to form multiple artifacts. The artifact sterols coeluted with residues of incompletely isomerized ?(7)-sterols, or ?(5)-sterols if present, and could be identified as ?(8(14))-sterols on the basis of relative retention time, and their MS spectra as trimethylsilyl (TMS) and acetate derivatives. For instance, SG from melon were composed of 66% ?(7)-stigmastenol when enzymatic hydrolysis was performed, whereas with acid hydrolysis only 8% of ?(7)-stigmastenol was determined. The artifact of ?(7)-stigmastenol coeluted with residual non-isomerized spinasterol, demonstrating the high risk of misinterpretation of compositional data obtained after acid hydrolysis. Therefore, the accurate composition of SG from foods containing sterols with a double bond at C-7 can only be obtained by enzymatic hydrolysis or by direct analysis of the intact SG. PMID:25757602

  15. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis.

    PubMed

    Hu, Jialei; Donahue, Greg; Dorsey, Jean; Govin, Jérôme; Yuan, Zuofei; Garcia, Benjamin A; Shah, Parisha P; Berger, Shelley L

    2015-12-01

    Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs) during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination. PMID:26628362

  16. Dynamic changes in histone acetylation regulate origins of DNA replication

    PubMed Central

    Unnikrishnan, Ashwin; Gafken, Philip R.; Tsukiyama, Toshio

    2011-01-01

    While histone modifications have been implicated in many DNA-dependent processes, their precise role in DNA replication remains largely unknown. Here, we describe a very efficient, single-step method to specifically purify histones located around an origin of replication from S. cerevisiae. Using high-resolution mass spectrometry, we have obtained a comprehensive view of the histone modifications surrounding the origin of replication throughout the cell cycle. We have discovered that histone H3 and H4 acetylation is dynamically regulated around an origin of replication, at the level of multiply-acetylated histones. Furthermore, we find that this acetylation is required for efficient origin activation during S-phase. PMID:20228802

  17. Synthetic Biology for Engineering Acetyl Coenzyme A Metabolism in Yeast

    PubMed Central

    2014-01-01

    ABSTRACT The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl-CoA can be formed from glucose in high yield. Here the perspective of generating yeast platform strains that have such properties is discussed in the context of a major breakthrough with expression of a functional pyruvate dehydrogenase complex in the cytosol. PMID:25370498

  18. Effect of Zn on acetyl coenzyme a synthase: evidence for a conformational change in the alpha subunit during catalysis.

    PubMed

    Tan, Xiangshi; Bramlett, Matthew R; Lindahl, Paul A

    2004-05-19

    Acetyl coenzyme A synthase (ACS) is an alpha2beta2 tetramer in which the active-site A-cluster, located in the alpha subunits, consists of an Fe4S4 cubane bridged to a {Nip Nid} binuclear site. The alpha subunits exist in two conformations. In the open conformation, Nip is surface-exposed, while the proximal metal is buried in the closed conformation. Nip is labile and can be replaced by Cu. In this study, the effects of Zn are reported. ACS in which Zn replaced Nip was inactive and did not exhibit the so-called NiFeC EPR signal nor the ability to accept a methyl group from the corrinoid-iron-sulfur protein (CoFeSP). Once Zn-bound, it could not be replaced by subsequently adding Ni. The Zn-bound A-cluster cannot be reduced and bound with CO or become methylated, probably because Zn (like Cu) is insufficiently nucleophilic for these functions. Unexpectedly, Zn replaced Nip only while ACS was engaged in catalysis. Under these conditions, replacement occurred with kapp approximately 0.6 min-1. Replacement was blocked by including EDTA in the assay mix. Zn appears to replace Nip when ACS is in an intermediate state (or states) of catalysis but this(these) state(s) must not be present when ACS is reduced in CO alone, or in the presence of CoA, CoFeSP, or reduced methyl viologen. Nip appears susceptible to Zn-attack when the alpha subunit is in the open conformation and protected from attack when it is in the closed conformation. This is the first evidence that the structurally-characterized conformations of the alpha subunit change during catalysis, indicating a mechanistic role for this conformational change. PMID:15137746

  19. Interaction of RNA polymerase II with acetylated nucleosomal core particles

    SciTech Connect

    Pineiro, M.; Gonzalez, P.J.; Hernandez, F.; Palacian, E. )

    1991-05-31

    Chemical acetylation of nucleosomal cores is accompanied by an increase in their efficiency as in vitro transcription templates. Low amounts of acetic anhydride cause preferential modification of the amino-terminal tails of core histones. Modification of these domains, which causes moderate structural effects, is apparently correlated with the observed stimulation of RNA synthesis. In contrast, extensive modification of the globular regions of core histones, which is accompanied by a large structural relaxation of the particle, causes little additional effect on transcription. Acetylation of the amino-terminal domains of histones might stimulate transcription by changing the interaction of the histone tails with components of the transcriptional machinery.

  20. Effects of microtubule mechanics on hydrolysis and catastrophes

    E-print Network

    Nina Müller; Jan Kierfeld

    2014-06-05

    We introduce a model for microtubule mechanics containing lateral bonds between dimers in neighboring protofilaments, bending rigidity of dimers, and repulsive interactions between protofilaments modeling steric constraints to investigate the influence of mechanical forces on hydrolysis and catastrophes. We use the allosteric dimer model, where tubulin dimers are characterized by an equilibrium bending angle, which changes from $0^\\circ$ to $22^\\circ$ by hydrolysis of a dimer. This also affects the lateral interaction and bending energies and, thus, the mechanical equilibrium state of the microtubule. As hydrolysis gives rise to conformational changes in dimers, mechanical forces also influence the hydrolysis rates by mechanical energy changes modulating the hydrolysis rate. The interaction via the microtubule mechanics then gives rise to correlation effects in the hydrolysis dynamics, which have not been taken into account before. Assuming a dominant influence of mechanical energies on hydrolysis rates, we investigate the most probable hydrolysis pathways both for vectorial and random hydrolysis. Investigating the stability with respect to lateral bond rupture, we identify initiation configurations for catastrophes along the hydrolysis pathways and values for a lateral bond rupture force. If we allow for rupturing of lateral bonds between dimers in neighboring protofilaments above this threshold force, our model exhibits avalanche-like catastrophe events.

  1. Metabolic Regulation of Protein N-Alpha-Acetylation by Bcl-xL Promotes Cell Survival

    E-print Network

    Yi, Caroline H.

    Previous experiments suggest a connection between the N-alpha-acetylation of proteins and sensitivity of cells to apoptotic signals. Here, we describe a biochemical assay to detect the acetylation status of proteins and ...

  2. RNAi knockdown of acetyl-CoA carboxylase gene eliminates jinggangmycin-enhanced reproduction and population growth in the brown planthopper, Nilaparvata lugens

    PubMed Central

    Zhang, Yi-Xin; Ge, Lin-Quan; Jiang, Yi-Ping; Lu, Xiu-Li; Li, Xin; Stanley, David; Song, Qi-Sheng; Wu, Jin-Cai

    2015-01-01

    A major challenge in ecology lies in understanding the coexistence of intraguild species, well documented at the organismal level, but not at the molecular level. This study focused on the effects of the antibiotic, jinggangmycin (JGM), a fungicide widely used in Asian rice agroecosystems, on reproduction of insects within the planthopper guild, including the brown planthopper (BPH) Nilaparvata lugens and the white-backed planthopper (WBPH) Sogatella furcifera, both serious resurgence rice pests. JGM exposure significantly increased BPH fecundity and population growth, but suppressed both parameters in laboratory and field WBPH populations. We used digital gene expression and transcriptomic analyses to identify a panel of differentially expressed genes, including a set of up-regulated genes in JGM-treated BPH, which were down-regulated in JGM-treated WBPH. RNAi silencing of Acetyl Co-A carboxylase (ACC), highly expressed in JGM-treated BPH, reduced ACC expression (by >?60%) and eliminated JGM-induced fecundity increases in BPH. These findings support our hypothesis that differences in ACC expression separates intraguild species at the molecular level. PMID:26482193

  3. 2015-2016 Cost of Attendance Worksheet The steps below will assist you in estimating your Cost of Attendance (COA), the maximum budget

    E-print Network

    Ottino, Julio M.

    of Attendance (COA), the maximum budget amount used for determining how much financial aid you can receive (SESP) Single credit rate $4,022 MS in Engineering Management (MEM) MS in Managerial Communication (MSC for Creative Enterprises Single credit rate $3,753 MS in Product Development (MPD) Full-time (3-4 credits per

  4. 2014-2015 Cost of Attendance Worksheet The steps below will assist you in estimating your Cost of Attendance (COA), the maximum budget

    E-print Network

    Ottino, Julio M.

    of Attendance (COA), the maximum budget amount used for determining how much financial aid you can receive (SESP) Single credit rate $3,939 MS in Engineering Management (MEM) MS in Communication (MSC) MS credit rate $5,280 Half-time (2 credits per quarter) $7,148 MS in Leadership for Creative Enterprises

  5. CoA synthase is in complex with p85alphaPI3K and affects PI3K signaling pathway.

    PubMed

    Breus, Oksana; Panasyuk, Ganna; Gout, Ivan T; Filonenko, Valeriy; Nemazanyy, Ivan

    2009-08-01

    The complex interplay between cellular signaling and metabolism in eukaryotic cells just start to emerge. Coenzyme A (CoA) and its derivatives play a key role in cell metabolism and also participate in regulatory processes. CoA synthase (CoASy) is a mitochondria-associated enzyme which mediates two final stages of de novo CoA biosynthesis. Here, we report that CoASy is involved in signaling events in the cell and forms a functional complex with p85alphaPI3K in vivo. Importantly, observed interaction of endogenous CoASy and p85alphaPI3K is regulated in a growth factor dependent manner. Surprisingly, both catalytic p110alpha and regulatory p85alpha subunits of PI3K were detected in mitochondrial fraction where mitochondria-localized p85alphaPI3K was found in complex with CoASy. Unexpectedly, significant changes of PI3K signaling pathway activity were observed in experiments with siRNA-mediated CoASy knockdown pointing on the role of CoA biosynthetic pathway in signal transduction. PMID:19482007

  6. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    PubMed Central

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  7. Hydrolysis of ferric chloride in solution

    SciTech Connect

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox{trademark} process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200{degrees}C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl{sub 3 liquid} + H{sub 2}O {r_arrow} FeOCl{sub solid} + 2 HCl{sub gas} During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl{sub solid} + H{sub 2}O {r_arrow} Fe{sub 2}O{sub 3 solid} + 2 HCl{sub gas}. The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way.

  8. Coupling of kinesin steps to ATP hydrolysis

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Young, Edgar C.; Fleming, Margaret L.; Gelles, Jeff

    1997-07-01

    A key goal in the study of the function of ATP-driven motor enzymes is to quantify the movement produced from consumption of one ATP molecule. Discrete displacements of the processive motor kinesin along a microtubule have been reported as 5 and/or 8 nm (refs 4, 5). However, analysis of nanometre-scale movements is hindered by superimposed brownian motion. Moreover, because kinesin is processive and turns over stochastically, some observed displacements must arise from summation of smaller movements that are too closely spaced in time to be resolved. To address both of these problems, we used light microscopy instrumentation with low positional drift (<39 pm s-1) to observe single molecules of a kinesin derivative moving slowly (~2.5 nm s-1) at very low (150 nM) ATP concentration, so that ATP-induced displacements were widely spaced in time. This allowed increased time-averaging to suppress brownian noise (without application of external force), permitting objective measurement of the distribution of all observed displacement sizes. The distribution was analysed with a statistics-based method which explicitly takes into account the occurrence of unresolved movements, and determines both the underlying step size and the coupling of steps to ATP hydrolytic events. Our data support a fundamental enzymatic cycle for kinesin in which hydrolysis of a single ATP molecule is coupled to a step distance of the microtubule protofilament lattice spacing of 8.12 nm (ref.7). Step distances other than 8 nm are excluded, as is the coupling of each step to two or more consecutive ATP hydrolysis reactions with similar rates, or the coupling of two 8-nm steps to a single hydrolysis. The measured ratio of ATP consumption rate to stepping rate is invariant over a wide range of ATP concentration, suggesting that the 1 ATP to 8 nm coupling inferred from behaviour at low ATP can be generalized to high ATP.

  9. Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation.

    PubMed

    Bowler, Frank R; Chan, Christopher K W; Duffy, Colm D; Gerland, Béatrice; Islam, Saidul; Powner, Matthew W; Sutherland, John D; Xu, Jianfeng

    2013-05-01

    The recent synthesis of pyrimidine ribonucleoside-2',3'-cyclic phosphates under prebiotically plausible conditions has strengthened the case for the involvement of ribonucleic acid (RNA) at an early stage in the origin of life. However, a prebiotic conversion of these weakly activated monomers, and their purine counterparts, to the 3',5'-linked RNA polymers of extant biochemistry has been lacking (previous attempts led only to short oligomers with mixed linkages). Here we show that the 2'-hydroxyl group of oligoribonucleotide-3'-phosphates can be chemoselectively acetylated in water under prebiotically credible conditions, which allows rapid and efficient template-directed ligation. The 2'-O-acetyl group at the ligation junction of the product RNA strand can be removed under conditions that leave the internucleotide bonds intact. Remarkably, acetylation of mixed oligomers that possess either 2'- or 3'-terminal phosphates is selective for the 2'-hydroxyl group of the latter. This newly discovered chemistry thus suggests a prebiotic route from ribonucleoside-2',3'-cyclic phosphates to predominantly 3',5'-linked RNA via partially 2'-O-acetylated RNA. PMID:23609088

  10. Genetic Control of Differential Acetylation in Diabetic Rats

    PubMed Central

    Kaisaki, Pamela J.; Otto, Georg W.; McGouran, Joanna F.; Toubal, Amine; Argoud, Karène; Waller-Evans, Helen; Finlay, Clare; Caldérari, Sophie; Bihoreau, Marie-Thérèse; Kessler, Benedikt M.; Gauguier, Dominique; Mott, Richard

    2014-01-01

    Post-translational protein modifications such as acetylation have significant regulatory roles in metabolic processes, but their relationship to both variation in gene expression and DNA sequence is unclear. We address this question in the Goto-Kakizaki (GK) rat inbred strain, a model of polygenic type 2 diabetes. Expression of the NAD-dependent deacetylase Sirtuin-3 is down-regulated in GK rats compared to normoglycemic Brown Norway (BN) rats. We show first that a promoter SNP causes down-regulation of Sirtuin-3 expression in GK rats. We then use mass-spectrometry to identify proteome-wide differential lysine acetylation of putative Sirtuin-3 protein targets in livers of GK and BN rats. These include many proteins in pathways connected to diabetes and metabolic syndrome. We finally sequence GK and BN liver transcriptomes and find that mRNA expression of these targets does not differ significantly between GK and BN rats, in contrast to other components of the same pathways. We conclude that physiological differences between GK and BN rats are mediated by a combination of differential protein acetylation and gene transcription and that genetic variation can modulate acetylation independently of expression. PMID:24743600

  11. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONSUMPTION Special Dietary and Nutritional Additives § 172.372 N-Acetyl-L-methionine. The food additive N... may be in the free, hydrated or anhydrous form, or as the sodium or potassium salts. (b) The additive... ignition: Maximum 0.1 percent. (3) Specific optical rotation 20 D: Between ?19° and ?23°. (4) The...

  12. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CONSUMPTION Special Dietary and Nutritional Additives § 172.372 N-Acetyl-L-methionine. The food additive N... may be in the free, hydrated or anhydrous form, or as the sodium or potassium salts. (b) The additive... ignition: Maximum 0.1 percent. (3) Specific optical rotation 20 D: Between ?19° and ?23°. (4) The...

  13. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CONSUMPTION Special Dietary and Nutritional Additives § 172.372 N-Acetyl-L-methionine. The food additive N... may be in the free, hydrated or anhydrous form, or as the sodium or potassium salts. (b) The additive... ignition: Maximum 0.1 percent. (3) Specific optical rotation 20 D: Between ?19° and ?23°. (4) The...

  14. Mass spectrometry-based detection of protein acetylation

    PubMed Central

    Li, Yu; Silva, Jeffrey C.; Skinner, Mary E.; Lombard, David B.

    2014-01-01

    Summary Improved sample preparation techniques and increasingly sensitive mass spectrometry (MS) analysis have revolutionized the study of protein post-translational modifications (PTMs). Here, we describe a general approach for immunopurification and MS-based identification of acetylated proteins in biological samples. This approach is useful characterizing changes in the acetylome in response to biological interventions (1). PMID:24014401

  15. SCANDIUM TRIFLATE CATALYZED ACETYLATION OF STARCH UNDER MILD CONDITIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scandium (III) trifluoromethan sulfonate (Sc(OTf)3) was investigated as a catalyst for the acetylation of starch in order to determine the potential for preparing new types of starch esters under mild conditions. At room temperature, dry granular corn starch reacts with acetic anhydride in the pres...

  16. Acetylation of lysine 40 in alpha-tubulin is not essential in Tetrahymena thermophila

    PubMed Central

    1995-01-01

    In Tetrahymena, at least 17 distinct microtubule structures are assembled from a single primary sequence type of alpha- and beta- tubulin heterodimer, precluding distinctions among microtubular systems based on tubulin primary sequence isotypes. Tetrahymena tubulins also are modified by several types of posttranslational reactions including acetylation of alpha-tubulin at lysine 40, a modification found in most eukaryotes. In Tetrahymena, axonemal alpha-tubulin and numerous other microtubules are acetylated. We completely replaced the single type of alpha-tubulin gene in the macronucleus with a version encoding arginine instead of lysine 40 and therefore cannot be acetylated at this position. No acetylated tubulin was detectable in these transformants using a monoclonal antibody specific for acetylated lysine 40. Surprisingly, mutants lacking detectable acetylated tubulin are indistinguishable from wild-type cells. Thus, acetylation of alpha- tubulin at lysine 40 is non-essential in Tetrahymena. In addition, isoelectric focusing gel analysis of axonemal tubulin from cells unable to acetylate alpha-tubulin leads us to conclude that: (a) most or all ciliary alpha-tubulin is acetylated, (b) other lysines cannot be acetylated to compensate for loss of acetylation at lysine 40, and (c) acetylated alpha-tubulin molecules in wild-type cells contain one or more additional charge-altering modifications. PMID:7775576

  17. Mechanism and Kinetics of Acetyl-Lysine Binding to Bromodomains S. Steiner,,

    E-print Network

    Caflisch, Amedeo

    Mechanism and Kinetics of Acetyl-Lysine Binding to Bromodomains A. Magno,, S. Steiner,, and A to determine the pathway and kinetics of binding. The simulations show that acetyl-lysine has two major binding at the bottom of the binding pocket are displaced by the acetyl-lysine side chain. The kinetic analysis shows

  18. Cytoskeleton Dynamics: A Continuum Cooperative Hydrolysis Model

    NASA Astrophysics Data System (ADS)

    Xu, Jian-Wei; Cheng, Bo; Feng, Yu-Yu; Wang, Zi-Qing; Wang, Guo-Dong

    2015-05-01

    Cytoskeleton is a network of filamentous proteins, such as actin filaments and microtubules. We propose a continuum cooperative hydrolysis model which possesses exactly analytical solution to describe the dynamics of filament. The results show that the cooperativity leads to non negative-exponential distribution of T (ATP or GTP) subunits. As an application, we investigate the treadmilling phenomenon using our model. It is shown that the cooperativity remarkably affects the length of filament. Supported by Chinese Universities Scientific Fund under Grant No. 2014YB029 and National Natural Science Foundation of China under Grant No. 11205123

  19. EDC4 interacts with and regulates the dephospho-CoA kinase activity of CoA synthase.

    PubMed

    Gudkova, Daria; Panasyuk, Ganna; Nemazanyy, Ivan; Zhyvoloup, Alexander; Monteil, Pascale; Filonenko, Valeriy; Gout, Ivan

    2012-10-19

    Coenzyme A synthase (CoAsy) is a bifunctional enzyme which facilitates the last two steps of Coenzyme A biogenesis in higher eukaryotes. Here we describe that CoAsy forms a complex with enhancer of mRNA-decapping protein 4 (EDC4), a central scaffold component of processing bodies. CoAsy/EDC4 complex formation is regulated by growth factors and is affected by cellular stresses. EDC4 strongly inhibits the dephospho-CoA kinase activity of CoAsy in vitro. Transient overexpression of EDC4 decreases cell proliferation, and further co-expression of CoAsy diminishes this effect. Here we report that EDC4 might contribute to regulation of CoA biosynthesis in addition to its scaffold function in processing bodies. PMID:22982864

  20. Simulation of continuous and batch hydrolysis of willow

    SciTech Connect

    Zacchi, G.; Dahlbom, J.; Scott, C.D.

    1986-01-01

    The influence of product and enzyme concentrations on the kinetics of the enzymic hydrolysis of alkali-pretreated willow is studied. The hydrolysis was performed in a UF-membrane reactor in which the product concentration was kept constant. An empirical 4-parameter rate equation that gives a good correlation to both continuous and batch hydrolysis data is presented. The model comprises the effects of enzyme concentration and product inhibition. (Refs. 11).

  1. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  2. Nucleosome competition reveals processive acetylation by the SAGA HAT module

    PubMed Central

    Ringel, Alison E.; Cieniewicz, Anne M.; Taverna, Sean D.; Wolberger, Cynthia

    2015-01-01

    The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf29 contains a tandem Tudor domain that recognizes H3K4me3-containing peptides and is required for histone hyperacetylation in vivo. However, the mechanism by which H3K4me3 recognition leads to lysine hyperacetylation is unknown, as in vitro studies show no effect of the H3K4me3 modification on histone peptide acetylation by Gcn5. To determine how H3K4me3 binding by Sgf29 leads to histone hyperacetylation by Gcn5, we used differential fluorescent labeling of histones to monitor acetylation of individual subpopulations of methylated and unmodified nucleosomes in a mixture. We find that the SAGA HAT module preferentially acetylates H3K4me3 nucleosomes in a mixture containing excess unmodified nucleosomes and that this effect requires the Tudor domain of Sgf29. The H3K4me3 mark promotes processive, multisite acetylation of histone H3 by Gcn5 that can account for the different acetylation patterns established by SAGA at promoters versus coding regions. Our results establish a model for Sgf29 function at gene promoters and define a mechanism governing crosstalk between histone modifications. PMID:26401015

  3. N-Acetyl-D-glucosamine-6-phosphate deacetylase: substrate activation via a single divalent metal ion.

    PubMed

    Hall, Richard S; Xiang, Dao Feng; Xu, Chengfu; Raushel, Frank M

    2007-07-10

    NagA is a member of the amidohydrolase superfamily and catalyzes the deacetylation of N-acetyl-d-glucosamine-6-phosphate. The catalytic mechanism of this enzyme was addressed by the characterization of the catalytic properties of metal-substituted derivatives of NagA from Escherichia coli with a variety of substrate analogues. The reaction mechanism is of interest since NagA from bacterial sources is found with either one or two divalent metal ions in the active site. This observation indicates that there has been a divergence in the evolution of NagA and suggests that there are fundamental differences in the mechanistic details for substrate activation and hydrolysis. NagA from E. coli was inactivated by the removal of the zinc bound to the active site and the apoenzyme reactivated upon incubation with 1 equiv of Zn2+, Cd2+, Co2+, Mn2+, Ni2+, or Fe2+. In the proposed catalytic mechanism the reaction is initiated by the polarization of the carbonyl group of the substrate via a direct interaction with the divalent metal ion and His-143. The invariant aspartate (Asp-273) found at the end of beta-strand 8 in all members of the amidohydrolase superfamily abstracts a proton from the metal-bound water molecule (or hydroxide) to promote the hydrolytic attack on the carbonyl group of the substrate. A tetrahedral intermediate is formed and then collapses with cleavage of the C-N bond after proton transfer to the leaving group amine by Asp-273. The lack of a solvent isotope effect by D2O and the absence of any changes to the kinetic constants with increases in solvent viscosity indicate that net product formation is not limited to any significant extent by proton-transfer steps or the release of products. N-Trifluoroacetyl-d-glucosamine-6-phosphate is hydrolyzed by NagA 26-fold faster than the corresponding N-acetyl derivative. This result is consistent with the formation or collapse of the tetrahedral intermediate as the rate limiting step in the catalytic mechanism of NagA. PMID:17567047

  4. Acetyl Coenzyme A Synthetase Is Acetylated on Multiple Lysine Residues by a Protein Acetyltransferase with a Single Gcn5-Type N-Acetyltransferase (GNAT) Domain in Saccharopolyspora erythraea

    PubMed Central

    You, Di; Yao, Li-li; Huang, Dan; Escalante-Semerena, Jorge C.

    2014-01-01

    Reversible lysine acetylation (RLA) is used by cells of all domains of life to modulate protein function. To date, bacterial acetylation/deacetylation systems have been studied in a few bacteria (e.g., Salmonella enterica, Bacillus subtilis, Escherichia coli, Erwinia amylovora, Mycobacterium tuberculosis, and Geobacillus kaustophilus), but little is known about RLA in antibiotic-producing actinomycetes. Here, we identify the Gcn5-like protein acetyltransferase AcuA of Saccharopolyspora erythraea (SacAcuA, SACE_5148) as the enzyme responsible for the acetylation of the AMP-forming acetyl coenzyme A synthetase (SacAcsA, SACE_2375). Acetylated SacAcsA was deacetylated by a sirtuin-type NAD+-dependent consuming deacetylase (SacSrtN, SACE_3798). In vitro acetylation/deacetylation of SacAcsA enzyme was studied by Western blotting, and acetylation of lysine residues Lys237, Lys380, Lys611, and Lys628 was confirmed by mass spectrometry. In a strain devoid of SacAcuA, none of the above-mentioned Lys residues of SacAcsA was acetylated. To our knowledge, the ability of SacAcuA to acetylate multiple Lys residues is unique among AcuA-type acetyltransferases. Results from site-specific mutagenesis experiments showed that the activity of SacAcsA was controlled by lysine acetylation. Lastly, immunoprecipitation data showed that in vivo acetylation of SacAcsA was influenced by glucose and acetate availability. These results suggested that reversible acetylation may also be a conserved regulatory posttranslational modification strategy in antibiotic-producing actinomycetes. PMID:24957627

  5. 40 CFR 721.10152 - Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4...Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4...oxirane, substituted silylmethyl-, hydrolysis products with alkanol...

  6. 40 CFR 721.10152 - Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4...Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4...oxirane, substituted silylmethyl-, hydrolysis products with alkanol...

  7. 40 CFR 721.10152 - Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4...Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4...oxirane, substituted silylmethyl-, hydrolysis products with alkanol...

  8. 40 CFR 721.10152 - Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4...Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4...oxirane, substituted silylmethyl-, hydrolysis products with alkanol...

  9. 40 CFR 721.10152 - Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4...Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4...oxirane, substituted silylmethyl-, hydrolysis products with alkanol...

  10. Ubiquitination of Notch1 is regulated by MAML1-mediated p300 acetylation of Notch1

    SciTech Connect

    Popko-Scibor, Anita E.; Lindberg, Mikael J.; Hansson, Magnus L.; Holmlund, Teresa; Wallberg, Annika E.

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer p300 acetylates conserved lysines within Notch1 C-terminal nuclear localization signal. Black-Right-Pointing-Pointer MAML1 and CSL, components of Notch transcription complex, increase Notch acetylation. Black-Right-Pointing-Pointer MAML1-dependent acetylation of Notch1 by p300 decreases the ubiquitination of Notch1. Black-Right-Pointing-Pointer CDK8 inhibits Notch acetylation and Notch transcription enhanced by p300. -- Abstract: Earlier studies demonstrated the involvement of the p300 histone acetyltransferase in Notch signaling but the precise mechanisms by which p300 might modulate Notch function remains to be investigated. In this study, we show that p300 acetylates Notch1 ICD in cell culture assay and in vitro, and conserved lysines located within the Notch C-terminal nuclear localization signal are essential for Notch acetylation. MAML1 and CSL, which are components of the Notch transcription complex, enhance Notch acetylation and we suggest that MAML1 increases Notch acetylation by potentiating p300 autoacetylation. Furthermore, MAML1-dependent acetylation of Notch1 ICD by p300 decreases the ubiquitination of Notch1 ICD in cellular assays. CDK8 has been shown to target Notch1 for ubiquitination and proteosomal degradation. We show that CDK8 inhibits Notch acetylation and Notch transcription enhanced by p300. Therefore, we speculate that acetylation of Notch1 might be a mechanism to regulate Notch activity by interfering with ubiquitin-dependent pathways.

  11. Acid-functionalized nanoparticles for biomass hydrolysis

    NASA Astrophysics Data System (ADS)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during the catalytic reactions. PS nanoparticles were further evaluated for the pretreatment of corn stover in order to increase digestibility of the biomass. The pretreatment was carried out at three different catalyst load and temperature levels. At 180°C, the total glucose yield was linearly correlated to the catalyst load. A maximum glucose yield of 90% and 58% of the hemicellulose sugars were obtained at this temperature.

  12. Pre-Steady-State Analysis of ATP Hydrolysis by Saccharomyces cereVisiae DNA Topoisomerase II. 2. Kinetic Mechanism for the Sequential Hydrolysis of Two

    E-print Network

    Lewis, Timothy

    Pre-Steady-State Analysis of ATP Hydrolysis by Saccharomyces cereVisiae DNA Topoisomerase II. 2. Kinetic Mechanism for the Sequential Hydrolysis of Two ATP Timothy T. Harkins,,| Timothy J. Lewis) sequential ATP hydrolysis or (2) simultaneous hydrolysis of both ATP. Here, we present results

  13. Reaction dynamics of ATP hydrolysis catalyzed by P-glycoprotein.

    PubMed

    Scian, Michele; Acchione, Mauro; Li, Mavis; Atkins, William M

    2014-02-18

    P-glycoprotein (P-gp) is a member of the ABC transporter family that confers drug resistance to many tumors by catalyzing their efflux, and it is a major component of drug-drug interactions. P-gp couples drug efflux with ATP hydrolysis by coordinating conformational changes in the drug binding sites with the hydrolysis of ATP and release of ADP. To understand the relative rates of the chemical step for hydrolysis and the conformational changes that follow it, we exploited isotope exchange methods to determine the extent to which the ATP hydrolysis step is reversible. With ?(18)O4-labeled ATP, no positional isotope exchange is detectable at the bridging ?-phosphorus-O-?-phosphorus bond. Furthermore, the phosphate derived from hydrolysis includes a constant ratio of three (18)O/two (18)O/one (18)O that reflects the isotopic composition of the starting ATP in multiple experiments. Thus, H2O-exchange with HPO4(2-) (Pi) was negligible, suggesting that a [P-gp·ADP·Pi] is not long-lived. This further demonstrates that the hydrolysis is essentially irreversible in the active site. These mechanistic details of ATP hydrolysis are consistent with a very fast conformational change immediately following, or concomitant with, hydrolysis of the ?-phosphate linkage that ensures a high commitment to catalysis in both drug-free and drug-bound states. PMID:24506763

  14. Ultrasound Enhancement of Enzymatic Hydrolysis of Cellulose Plant Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The work reported here is based on acceleration of enzymatic hydrolysis of plant biomass substrate by introduction of low intensity, uniform ultrasound field into a reaction chamber (bio-reactor). This method may serve as improvement of rates in the hydrolysis of cellulosic materials to sugars, whi...

  15. Enzymatic hydrolysis of steryl ferulates and steryl glycosides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Steryl ferulates and steryl glycosides are phytosterol conjugates found characteristically in cereals. Their properties in enzymatic hydrolysis are, however, not yet well known. Steryl ferulates and steryl glycosides were extracted and purified from rye and wheat bran. Their rates of hydrolysis with...

  16. Class Projects in Physical Organic Chemistry: The Hydrolysis of Aspirin

    ERIC Educational Resources Information Center

    Marrs, Peter S.

    2004-01-01

    An exercise that provides a hands-on demonstration of the hydrolysis of aspirin is presented. The key to understanding the hydrolysis is recognizing that all six process may occur simultaneously and that the observed rate constant is the sum of the rate constants that one rate constant dominates the overall process.

  17. Pretreatment and enzymatic hydrolysis of corn fiber

    SciTech Connect

    Grohmann, K.; Bothast, R.J.

    1996-10-01

    Corn fiber is a co-product of the corn wet milling industry which is usually marketed as a low value animal feed ingredient. Approximately 1.2 x 10{sup 6} dry tons of this material are produced annually in the United States. The fiber is composed of kernel cell wall fractions and a residual starch which can all be potentially hydrolyzed to a mixture of glucose, xylose, arabinose and galactose. We have investigated a sequential saccharification of polysaccharides in corn fiber by a treatment with dilute sulfuric acid at 100 to 160{degrees}C followed by partial neutralization and enzymatic hydrolysis with mixed cellulose and amyloglucosidase enzymes at 45{degrees}C. The sequential treatment achieved a high (approximately 85%) conversion of all polysaccharides in the corn fiber to monomeric sugars, which were in most cases fermentable to ethanol by the recombinant bacterium Escherichia coli KOll.

  18. Kinetics of the enzymatic hydrolysis of cellulose

    SciTech Connect

    Wald, S.; Wilke, C.R.; Blanch, H.W.

    1984-01-01

    Enzymatic hydrolysis of cellulose for sugar production offers advantages of higher conversion, minimal by-product formation, low energy requirements, and mild operating conditions over other chemical conversions. The development of a kinetic model, based on observable, macroscopic properties of the overall system, is helpful in design and economic evaluation of processes for sugar conversion and ethanol production. A kinetic model is presented, incorporating enzyme adsorption, product inhibition, and considers a multiple enzyme and substrate system. This model was capable of simulating saccharification of a lignocellulosic material, rice straw, at high substrate (up to 333 g/L) and enzyme concentrations (up to 9.2 FPU/mL) that are common to proposed process designs. (Refs. 37).

  19. 40 CFR 721.10498 - Substituted alkyl ester, hydrolysis products with silica (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... false Substituted alkyl ester, hydrolysis products with silica (generic...10498 Substituted alkyl ester, hydrolysis products with silica (generic...generically as substituted alkyl ester, hydrolysis products with silica (PMNs...

  20. 40 CFR 721.10497 - Substituted alkyl ester, hydrolysis products with silica and substituted silane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... false Substituted alkyl ester, hydrolysis products with silica and substituted...10497 Substituted alkyl ester, hydrolysis products with silica and substituted...generically as substituted alkyl ester, hydrolysis products with silica and...

  1. 40 CFR 721.10499 - Substituted silane, hydrolysis products with silica (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Substituted silane, hydrolysis products with silica (generic...721.10499 Substituted silane, hydrolysis products with silica (generic...identified generically as substituted silane, hydrolysis products with silica (PMNs...

  2. 40 CFR 721.10499 - Substituted silane, hydrolysis products with silica (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false Substituted silane, hydrolysis products with silica (generic...721.10499 Substituted silane, hydrolysis products with silica (generic...identified generically as substituted silane, hydrolysis products with silica (PMNs...

  3. 40 CFR 721.10497 - Substituted alkyl ester, hydrolysis products with silica and substituted silane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... false Substituted alkyl ester, hydrolysis products with silica and substituted...10497 Substituted alkyl ester, hydrolysis products with silica and substituted...generically as substituted alkyl ester, hydrolysis products with silica and...

  4. 40 CFR 721.10498 - Substituted alkyl ester, hydrolysis products with silica (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... false Substituted alkyl ester, hydrolysis products with silica (generic...10498 Substituted alkyl ester, hydrolysis products with silica (generic...generically as substituted alkyl ester, hydrolysis products with silica (PMNs...

  5. Probing the Origins of Catalytic Discrimination between Phosphate and Sulfate Monoester Hydrolysis: Comparative Analysis of Alkaline

    E-print Network

    Herschlag, Dan

    Probing the Origins of Catalytic Discrimination between Phosphate and Sulfate Monoester Hydrolysis phosphatase (AP) catalyzes both phos- phate and sulfate monoester hydrolysis reactions with a 1010 - fold preference for phosphate monoester hydrolysis, despite the similarity between these reactions

  6. Application of High Throughput Pretreatment and Co-Hydrolysis System to Thermochemical

    E-print Network

    California at Riverside, University of

    Application of High Throughput Pretreatment and Co-Hydrolysis System to Thermochemical Pretreatment, Tennessee ABSTRACT: High throughput pretreatment (HTPH) and enzymatic hydrolysis systems are now vital and enzymatic hydrolysis conditions. Although hydrothermal pretreatment is currently being employed in most high

  7. Enzymatic characterizations and activity regulations of N-acetyl-?-D-glucosaminidase from the spermary of Nile tilapia (Oreochromis niloticus).

    PubMed

    Zhang, Wei-Ni; Bai, Ding-Ping; Huang, Yi-Fan; Hu, Chong-Wei; Chen, Qing-Xi; Huang, Xiao-Hong

    2014-02-01

    N-Acetyl-?-D-glucosaminidase (NAGase) is proved to be correlated with reproduction of male animals. In this study, enzymatic characterizations of NAGase from spermary of Nile tilapia (Oreochromis niloticus) were investigated in order to further study its reproductive function in fish. Tilapia NAGase was purified to be PAGE homogeneous by the following techniques: (NH4)2SO4 fractionation (40-55%), DEAE-cellulose (DE-32) ion exchange chromatography, Sephadex G-200 gel filtration and DEAE-Sephadex (A-50). The specific activity of the purified enzyme was 4100 U/mg. The enzyme molecular weight was estimated as 118.0 kD. Kinetic studies showed that the hydrolysis of p-nitrophenyl-N-acetyl-?-D-glucosaminide (pNP-NAG) by the enzyme followed Michaelis-Menten kinetics. The Michaelis-Menten constant (Km) and maximum velocity (Vm) were determined to be 0.67 mM and 23.26 ?M/min, respectively. The optimum pH and optimum temperature of the enzyme for hydrolysis of pNP-NAG was to be at pH 5.7 and 55°C, respectively. The enzyme was stable in a pH range from 3.3 to 8.1 at 37°C, and inactive at temperature above 45°C. The enzyme activity was regulated by the following ions in decreasing order: Hg(2+) > Zn(2+) > Cu(2+) > Pb(2+) > Mn(2+). The IC50 of Cu(2+), Zn(2+) and Hg(2+) was 1.23, 0.28, and 0.0027 mM, respectively. However, the ions Li(+), Na(+), K(+), Mg(2+) and Ca(2+) had almost no influence on enzyme activity. In conclusion, the enzymatic characterizations of NAGase from tilapia were special to the other animals, which were correlated with its living habit; besides, CuSO4 and ZnSO4 should used very carefully as insecticides in tilapia cultivation since they both had strong regulations on the enzyme. PMID:24012383

  8. Histone acetylation modifiers in the pathogenesis of malignant disease.

    PubMed Central

    Mahlknecht, U.; Hoelzer, D.

    2000-01-01

    Chromatin structure is gaining increasing attention as a potential target in the treatment of cancer. Relaxation of the chromatin fiber facilitates transcription and is regulated by two competing enzymatic activities, histone acetyltransferases (HATs) and histone deacetylases (HDACs), which modify the acetylation state of histone proteins and other promoter-bound transcription factors. While HATs, which are frequently part of multisubunit coactivator complexes, lead to the relaxation of chromatin structure and transcriptional activation, HDACs tend to associate with multisubunit core-pressor complexes, which result in chromatin condensation and transcriptional repression of specific target genes. HATs and HDACs are known to be involved both in the pathogenesis as well as in the suppression of cancer. Some of the genes encoding these enzymes have been shown to be rearranged in the context of chromosomal translocations in human acute leukemias and solid tumors, where fusions of regulatory and coding regions of a variety of transcription factor genes result in completely new gene products that may interfere with regulatory cascades controlling cell growth and differentiation. On the other hand, some histone acetylation-modifying enzymes have been located within chromosomal regions that are particularly prone to chromosomal breaks. In these cases gains and losses of chromosomal material may affect the availability of functionally active HATs and HDACs, which in turn disturbs the tightly controlled equilibrium of histone acetylation. We review herein the recent achievements, which further help to elucidate the biological role of histone acetylation modifying enzymes and their potential impact on our current understanding of the molecular changes involved in the development of solid tumors and leukemias. PMID:11055583

  9. Givinostat inhibition of hepatic stellate cell proliferation and protein acetylation

    PubMed Central

    Wang, Yu-Gang; Xu, Ling; Wang, Ting; Wei, Jue; Meng, Wen-Ying; Wang, Na; Shi, Min

    2015-01-01

    AIM: To explore the effect of the histone deacetylase inhibitor givinostat on proteins related to regulation of hepatic stellate cell proliferation. METHODS: The cell counting kit-8 assay and flow cytometry were used to observe changes in proliferation, apoptosis, and cell cycle in hepatic stellate cells treated with givinostat. Western blot was used to observe expression changes in p21, p57, CDK4, CDK6, cyclinD1, caspase-3, and caspase-9 in hepatic stellate cells exposed to givinostat. The scratch assay was used to analyze the effect of givinostat on cell migration. Effects of givinostat on the reactive oxygen species profile, mitochondrial membrane potential, and mitochondrial permeability transition pore opening in JS-1 cells were observed by laser confocal microscopy. RESULTS: Givinostat significantly inhibited JS-1 cell proliferation and promoted cell apoptosis, leading to cell cycle arrest in G0/G1 phases. Treatment with givinostat downregulated protein expression of CDK4, CDK6, and cyclin D1, whereas expression of p21 and p57 was significantly increased. The givinostat-induced apoptosis of hepatic stellate cells was mainly mediated through p38 and extracellular signal-regulated kinase 1/2. Givinostat treatment increased intracellular reactive oxygen species production, decreased mitochondrial membrane potential, and promoted mitochondrial permeability transition pore opening. Acetylation of superoxide dismutase (acetyl K68) and nuclear factor-?B p65 (acetyl K310) was upregulated, while there was no change in protein expression. Moreover, the notable beneficial effect of givinostat on liver fibrosis was also confirmed in the mouse models. CONCLUSION: Givinostat has antifibrotic activities via regulating the acetylation of nuclear factor-?B and superoxide dismutase 2, thus inhibiting hepatic stellate cell proliferation and inducing apoptosis. PMID:26217084

  10. Molecular Cell, Volume 44 SAGA and ATAC Histone Acetyl Transferase

    E-print Network

    - 00-000). The siRNAs were transfected into HeLa cells using Lipofectamine 2000 and OptiMEM serum free-transfection for protein and mRNA analysis by western blot or Q-RT-PCR, respectively. Inducible shGCN5 HeLa cells were used1 Molecular Cell, Volume 44 Article SAGA and ATAC Histone Acetyl Transferase Complexes Regulate

  11. The asymmetric total synthesis of (+)-N-acetyl norloline.

    PubMed

    Ye, Jian-Liang; Liu, Yang; Yang, Zhi-Ping; Huang, Pei-Qiang

    2016-01-11

    The asymmetric total synthesis of (+)-N-acetyl norloline, the putative biogenic precursor of all known loline alkaloids, has been achieved in 12 steps from commercially available (R)-glyceraldehyde acetonide. The synthesis relies on the Rassu/Casiraghi's vinylogous aldol reaction, an intramolecular oxa-heteroconjugate addition and a reductive amination to establish the four contiguous stereogenic centers and construct the strained oxygen-bridge under mild conditions. PMID:26538080

  12. Mechanism and kinetics of acetyl-lysine binding to bromodomains

    E-print Network

    Caflisch, Amedeo

    Mechanism and kinetics of acetyl-lysine binding to bromodomains SUPPLEMENTARY INFORMATION A. Magnoa) Kac CHARMM Unbound, Asn1604 2 down 12 6 TAF1(2) Kac AMBER P-binding from CHARMM 2 2 TAF1(2) Kac AMBER N-binding from CHARMM 2 2 BRD4(1) (3UVW) Tetrapeptide CHARMM X-Ray 2 2 CREBBP (3P1C) Tetrapeptide

  13. Poly(ADP-Ribosyl)ation Affects Histone Acetylation and Transcription

    PubMed Central

    Verdone, Loredana; La Fortezza, Marco; Ciccarone, Fabio; Caiafa, Paola; Zampieri, Michele; Caserta, Micaela

    2015-01-01

    Poly(ADP-ribosyl)ation (PARylation) is a posttranslational protein modification catalyzed by members of the poly(ADP-ribose) polymerase (PARP) enzyme family. PARylation regulates a wide variety of biological processes in most eukaryotic cells including energy metabolism and cell death, maintenance of genomic stability, chromatin structure and transcription. Inside the nucleus, cross-talk between PARylation and other epigenetic modifications, such as DNA and histone methylation, was already described. In the present work, using PJ34 or ABT888 to inhibit PARP activity or over-expressing poly(ADP-ribose) glycohydrolase (PARG), we show decrease of global histone H3 and H4 acetylation. This effect is accompanied by a reduction of the steady state mRNA level of p300, Pcaf, and Tnf?, but not of Dnmt1. Chromatin immunoprecipitation (ChIP) analyses, performed at the level of the Transcription Start Site (TSS) of these four genes, reveal that changes in histone acetylation are specific for each promoter. Finally, we demonstrate an increase of global deacetylase activity in nuclear extracts from cells treated with PJ34, whereas global acetyltransferase activity is not affected, suggesting a role for PARP in the inhibition of histone deacetylases. Taken together, these results show an important link between PARylation and histone acetylation regulated transcription. PMID:26636673

  14. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  15. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal ?-Oxidation of Unsaturated Fatty Acids

    SciTech Connect

    Hua, Tian; Wu, Dong; Ding, Wei; Wang, Jiangyun; Shaw, Neil; Liu, Zhi-Jie

    2012-10-15

    Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via ?-oxidation, differences exist between the peroxisomal and mitochondrial ?-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCR refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the C? hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the Km values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.

  16. Ultrafast hydrolysis of a Lewis photoacid.

    PubMed

    Henrich, Joseph D; Suchyta, Scott; Kohler, Bern

    2015-02-12

    This study explores the concept that electronic excitation can dramatically enhance Lewis acidity. Specifically, it is shown that photoexcitation transforms an electron-deficient organic compound of negligible Lewis acidity in its electronic ground state into a potent excited-state Lewis acid that releases a proton from a nearby water molecule in 3.1 ps. It was shown previously (Peon et al. J. Phys. Chem. A 2001, 105, 5768) that the excited state of methyl viologen (MV(2+)) is quenched rapidly in aqueous solution with the formation of an unidentified photoproduct. In this study, the quenching mechanism and the identity of the photoproduct were investigated by the femtosecond transient absorption and fluorescence upconversion techniques. Transient absorption signals at UV probe wavelengths reveal a long-lived species with a pH-dependent lifetime due to reaction with hydronium ions at a bimolecular rate of 3.1 × 10(9) M(-1) s(-1). This species is revealed to be a charge-transfer complex consisting of a ground-state MV(2+) ion and a hydroxide ion formed when a water molecule transfers a proton to the bulk solvent. Formation of a contact ion pair between MV(2+) and hydroxide shifts the absorption spectrum of the former ion by a few nm to longer wavelengths, yielding a transient absorption spectrum with a distinctive triangle wave appearance. The slight shift of this spectrum, which is in excellent agreement with steady-state difference spectra recorded for MV(2+) at high pH, is consistent with an ion pair but not with a covalent adduct (pseudobase). The long lifetime of the ion pair at neutral pH indicates that dissociation occurs many orders of magnitude more slowly than predicted by the Smoluchowski-Debye equation. Remarkably, there is no evidence of geminate recombination, suggesting that the proton that is transferred to the solvent is conducted at least several water shells away. Although the hydrolysis mechanism has yet to be fully established, evidence suggests that the strongly oxidizing excited state of MV(2+) triggers the proton-coupled oxidation of a water molecule. The observed kinetic isotope effect of 1.7 seen in D2O vs H2O is of the magnitude expected for an ultrafast concerted proton-electron transfer reaction. The ultrafast hydrolysis seen here may be a general excited-state quenching mechanism for electronically excited Lewis acids and other powerful photooxidants in aqueous solution. PMID:25510461

  17. Acid hydrolysis of pretreated lignocellulose from corn residue

    SciTech Connect

    Bienkowski, P.R.; Ladisch, M.R.; Voloch, M.; Tsao, G.T.

    1984-01-01

    The lignocellulose derived from the hemicellulose hydrolysis of corn residue was steeped in 15 to 25% sulfuric acid at 40 to 103 degrees C, filtered to recover solids, and then dried in a fluidized bed dryer to concentrate the acid. Acid concentration, steeping temperature, drying time, and temperature effects are described by the current work. Hydrolysis of the pretreated lignocelloses gave 90% cellulose conversion with acid consumption corresponding to 1.50 g H/sub 2/SO/sub 4//g glucose and sugar concentrations in the hydrolyzate of up to 6.5 wt% in the best cases. Kinetic parameters are presented which describe the observed rates and extent of hydrolysis.

  18. Effect of corosolic acid on the hydrolysis of disaccharides.

    PubMed

    Takagi, Satoshi; Miura, Toshihiro; Ishibashi, Chinami; Kawata, Takanori; Ishihara, Eriko; Gu, Yeunhwa; Ishida, Torao

    2008-06-01

    The banaba leaf (Lagerstroemia speciosa L.) has been used in traditional Oriental medicine to treat diabetes in the Philippines. It contains corosolic acid (CA), a compound which has a hypoglycemic effect. We examined the effect of CA on blood glucose levels and the hydrolysis of disaccharides in the small intestine in mice. CA (10 mg/kg body weight) improved hyperglycemia after an oral administration of sucrose, and significantly reduced the hydrolysis of sucrose in the small intestine. These results suggest that the hypoglycemic activity of CA is derived, at least in part, due to the inhibition of the hydrolysis of sucrose. PMID:18635916

  19. Vibrational spectroscopic studies in the hydrolysis and condensation of chlorotrimethylsilane.

    PubMed

    Li, Ying-Sing; Le, Kim

    2004-03-01

    Raman and infrared spectroscopy were used to study the hydrolysis and condensation of chlorotrimethylsilane (CTMC) in aqueous organic solvents. From the recorded spectra and their intensity variation with time, we were able to identify trimethylsilanol as the reaction intermediate or the hydrolysis product as well as hexamethyldisiloxane (HMDS) as the final condensation product. The measured Raman intensity of CTMS at different time revealed that hydrolysis of CTMS is first order in terms of the CTMS concentration. From the Raman spectra collected under different conditions, it was noted that condensation reaction rates is faster in neutral condition than in acidic condition. PMID:15036105

  20. Distinct and predictive histone lysine acetylation patterns at promoters, enhancers, and gene bodies.

    PubMed

    Rajagopal, Nisha; Ernst, Jason; Ray, Pradipta; Wu, Jie; Zhang, Michael; Kellis, Manolis; Ren, Bing

    2014-11-01

    In eukaryotic cells, histone lysines are frequently acetylated. However, unlike modifications such as methylations, histone acetylation modifications are often considered redundant. As such, the functional roles of distinct histone acetylations are largely unexplored. We previously developed an algorithm RFECS to discover the most informative modifications associated with the classification or prediction of mammalian enhancers. Here, we used this tool to identify the modifications most predictive of promoters, enhancers, and gene bodies. Unexpectedly, we found that histone acetylation alone performs well in distinguishing these unique genomic regions. Further, we found the association of characteristic acetylation patterns with genic regions and association of chromatin state with splicing. Taken together, our work underscores the diverse functional roles of histone acetylation in gene regulation and provides several testable hypotheses to dissect these roles. PMID:25122670

  1. Autoimmune regulator is acetylated by transcription coactivator CBP/p300

    SciTech Connect

    Saare, Mario; Rebane, Ana; SIAF, Swiss Institute of Allergy and Asthma Research, University of Zuerich, Davos ; Rajashekar, Balaji; Vilo, Jaak; Peterson, Paert

    2012-08-15

    The Autoimmune Regulator (AIRE) is a regulator of transcription in the thymic medulla, where it controls the expression of a large set of peripheral-tissue specific genes. AIRE interacts with the transcriptional coactivator and acetyltransferase CBP and synergistically cooperates with it in transcriptional activation. Here, we aimed to study a possible role of AIRE acetylation in the modulation of its activity. We found that AIRE is acetylated in tissue culture cells and this acetylation is enhanced by overexpression of CBP and the CBP paralog p300. The acetylated lysines were located within nuclear localization signal and SAND domain. AIRE with mutations that mimicked acetylated K243 and K253 in the SAND domain had reduced transactivation activity and accumulated into fewer and larger nuclear bodies, whereas mutations that mimicked the unacetylated lysines were functionally similar to wild-type AIRE. Analogously to CBP, p300 localized to AIRE-containing nuclear bodies, however, the overexpression of p300 did not enhance the transcriptional activation of AIRE-regulated genes. Further studies showed that overexpression of p300 stabilized the AIRE protein. Interestingly, gene expression profiling revealed that AIRE, with mutations mimicking K243/K253 acetylation in SAND, was able to activate gene expression, although the affected genes were different and the activation level was lower from those regulated by wild-type AIRE. Our results suggest that the AIRE acetylation can influence the selection of AIRE activated genes. -- Highlights: Black-Right-Pointing-Pointer AIRE is acetylated by the acetyltransferases p300 and CBP. Black-Right-Pointing-Pointer Acetylation occurs between CARD and SAND domains and within the SAND domain. Black-Right-Pointing-Pointer Acetylation increases the size of AIRE nuclear dots. Black-Right-Pointing-Pointer Acetylation increases AIRE protein stability. Black-Right-Pointing-Pointer AIRE acetylation mimic regulates a different set of AIRE target genes.

  2. Core promoter acetylation is not required for high transcription from the phosphoenolpyruvate carboxylase promoter in maize

    PubMed Central

    2009-01-01

    Background Acetylation of promoter nucleosomes is tightly correlated and mechanistically linked to gene activity. However, transcription is not necessary for promoter acetylation. It seems, therefore, that external and endogenous stimuli control histone acetylation and by this contribute to gene regulation. Photosynthetic genes in plants are excellent models with which to study the connection between stimuli and chromatin modifications because these genes are strongly expressed and regulated by multiple stimuli that are easily manipulated. We have previously shown that acetylation of specific histone lysine residues on the photosynthetic phosphoenolpyruvate carboxylase (Pepc) promoter in maize is controlled by light and is independent of other stimuli or gene activity. Acetylation of upstream promoter regions responds to a set of other stimuli which include the nutrient availability of the plant. Here, we have extended these studies by analysing histone acetylation during the diurnal and circadian rhythm of the plant. Results We show that histone acetylation of individual lysine residues is removed from the core promoter before the end of the illumination period which is an indication that light is not the only factor influencing core promoter acetylation. Deacetylation is accompanied by a decrease in gene activity. Pharmacological inhibition of histone deacetylation is not sufficient to prevent transcriptional repression, indicating that deacetylation is not controlling diurnal gene regulation. Variation of the Pepc promoter activity during the day is controlled by the circadian oscillator as it is maintained under constant illumination for at least 3 days. During this period, light-induced changes in histone acetylation are completely removed from the core promoter, although the light stimulus is continuously applied. However, acetylation of most sites on upstream promoter elements follows the circadian rhythm. Conclusion Our results suggest a central role of upstream promoter acetylation in the quantitative regulation of gene expression in this model gene. Induced core promoter acetylation is dispensable for the highest gene expression in the diurnal and circadian rhythm. PMID:19954517

  3. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis1[C][W][OPEN

    PubMed Central

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha; Harholt, Jesper; Chong, Sun-Li; Pawar, Prashant Mohan-Anupama; Mellerowicz, Ewa J.; Tenkanen, Maija; Cheng, Kun; Pauly, Markus; Scheller, Henrik Vibe

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls. PMID:24019426

  4. Aurora B is regulated by acetylation/deacetylation during mitosis in prostate cancer cells

    PubMed Central

    Fadri-Moskwik, Maria; Weiderhold, Kimberly N.; Deeraksa, Arpaporn; Chuang, Carol; Pan, Jing; Lin, Sue-Hwa; Yu-Lee, Li-Yuan

    2012-01-01

    Protein acetylation has been implicated in playing an important role during mitotic progression. Aurora B kinase is known to play a critical role in mitosis. However, whether Aurora B is regulated by acetylation is not known. Using IP with an anti-acetyl lysine antibody, we identified Aurora B as an acetylated protein in PC3 prostate cancer cells. Knockdown of HDAC3 or inhibiting HDAC3 deacetylase activity led to a significant increase (P<0.01 and P<0.05, respectively) in Aurora B acetylation as compared to siLuc or vehicle-treated controls. Increased Aurora B acetylation is correlated with a 30% reduction in Aurora B kinase activity in vitro and resulted in significant defects in Aurora B-dependent mitotic processes, including kinetochore-microtubule attachment and chromosome congression. Furthermore, Aurora B transiently interacts with HDAC3 at the kinetochore-microtubule interface of congressing chromosomes during prometaphase. This window of interaction corresponded with a transient but significant reduction (P=0.02) in Aurora B acetylation during early mitosis. Together, these results indicate that Aurora B is more active in its deacetylated state and further suggest a new mechanism by which dynamic acetylation/deacetylation acts as a rheostat to fine-tune Aurora B activity during mitotic progression.—Fadri-Moskwik, M., Weiderhold, K. N., Deeraksa, A., Chuang, C., Pan, J., Lin, S.-H., Yu-Lee, L.-Y. Aurora B is regulated by acetylation/deacetylation during mitosis in prostate cancer cells. PMID:22751009

  5. Acetylation of cyclin-dependent kinase 5 is mediated by GCN5

    SciTech Connect

    Lee, Juhyung; Yun, Nuri; Kim, Chiho; Song, Min-Young; Park, Kang-Sik; Oh, Young J.

    2014-04-25

    Highlights: • Cyclin-dependent kinase 5 (CDK5) is present as an acetylated form. • CDK5 is acetylated by GCN5. • CDK5’s acetylation site is mapped at Lys33. • Its acetylation may affect CDK5’s kinase activity. - Abstract: Cyclin-dependent kinase 5 (CDK5), a member of atypical serine/threonine cyclin-dependent kinase family, plays a crucial role in pathophysiology of neurodegenerative disorders. Its kinase activity and substrate specificity are regulated by several independent pathways including binding with its activator, phosphorylation and S-nitrosylation. In the present study, we report that acetylation of CDK5 comprises an additional posttranslational modification within the cells. Among many candidates, we confirmed that its acetylation is enhanced by GCN5, a member of the GCN5-related N-acetyl-transferase family of histone acetyltransferase. Co-immunoprecipitation assay and fluorescent localization study indicated that GCN5 physically interacts with CDK5 and they are co-localized at the specific nuclear foci. Furthermore, liquid chromatography in conjunction with a mass spectrometry indicated that CDK5 is acetylated at Lys33 residue of ATP binding domain. Considering this lysine site is conserved among a wide range of species and other related cyclin-dependent kinases, therefore, we speculate that acetylation may alter the kinase activity of CDK5 via affecting efficacy of ATP coordination.

  6. Location of O-acetyl substituents in xylo-oligosaccharides obtained from hydrothermally treated Eucalyptus wood.

    PubMed

    Kabel, Mirjam A; de Waard, Pieter; Schols, Henk A; Voragen, Alphons G J

    2003-01-01

    A combination of techniques was used to localise the O-acetyl substituents in xylo-oligosaccharides, which are present in hydrolysates of hydrothermally treated Eucalyptus wood. Reversed-phase (RP)-high performance liquid chromatography (HPLC) coupled on-line to both a mass spectrometer and an evaporating light scattering (ELS) detector provided data about the order of elution of the various O-acetylated oligomers. The retention of the oligomers on the column depended on the number and position of the O-acetyl substituents within the xylo-oligosaccharides. One dimensional (1D)- and two dimensional (2D)-(1)H NMR spectroscopy was used to study the structural features of several xylotetramers separated by RP-HPLC, each having one O-acetyl substituent. O-Acetyl migration was proven to have occurred in these xylo-oligosaccharides. Mainly O-acetyl migration within the same xylosyl residue was observed. RP-HPLC-NMR was performed in order to study the structural features of the acetylated oligomers 'on-line' avoiding O-acetyl migration. Finally, the precise location of the 2-O- or 3-O-acetyl substituent in 6 xylotetramers and 4 xylotrimers separated by RP-HPLC was determined. PMID:12504383

  7. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism.

    PubMed

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu; Zhang, Kezhong

    2015-12-15

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor ? (PPAR?) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH. PMID:26438600

  8. Metabolism of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine in the human neutrophil

    SciTech Connect

    Triggiani, M.; D'Souza, D.M.; Chilton, F.H. )

    1991-04-15

    The biosynthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (1-acyl-2-acetyl-GPC) together with that of 1-alkyl-2-acetyl-GPC (platelet-activating factor) has been demonstrated in a variety of inflammatory cells and tissues. It has been hypothesized that the relative proportion of these phospholipids produced upon cell activation may be influenced by their rates of catabolism. We studied the catabolism of 1-acyl-2-acetyl-GPC in resting and activated human neutrophils and compared it to that of 1-alkyl-2-acetyl-GPC. Neutrophils rapidly catabolize both 1-alkyl-2-acetyl-GPC and 1-acyl-2-acetyl-GPC; however, the rate of catabolism of 1-acyl-2-acetyl-GPC is approximately 2-fold higher than that of 1-alkyl-2-acetyl-GPC. In addition, most of 1-acyl-2-acetyl-GPC is catabolized through a pathway different from that of 1-alkyl-2-acetyl-GPC. The main step in the catabolism of 1-acyl-2-acetyl-GPC is the removal of the long chain at the sn-1 position; the long chain residue is subsequently incorporated either into triglycerides or into phosphatidylcholine. The 1-lyso-2-acetyl-GPC formed in this reaction is then further degraded to glycerophosphocholine, choline, or phosphocholine. 1-Acyl-2-acetyl-GPC is also catabolized, to a lesser extent, through deacetylation at the sn-2 position and reacylation with a long chain fatty acid. Stimulation of neutrophils by A23187 results in a higher rate of catabolism of 1-acyl-2-acetyl-GPC by increasing both the removal of the long chain at the sn-1 position and the deacetylation-reacylation at the sn-2 position. In a broken cell preparation, the cytosolic fraction of the neutrophil was shown to contain an enzyme activity which cleaved the sn-1 position of 1-acyl-2-acetyl-GPC and 1-acyl-2-lyso-GPC but not of 1,2-diacyl-GPC.

  9. Histone Acetylation and CREB Binding Protein Are Required for Neuronal Resistance against Ischemic Injury

    E-print Network

    Yildirim, Ferah

    Epigenetic transcriptional regulation by histone acetylation depends on the balance between histone acetyltransferase (HAT) and deacetylase activities (HDAC). Inhibition of HDAC activity provides neuroprotection, indicating ...

  10. Acetylation-defective mutants of Ppar? are associated with decreased lipid synthesis in breast cancer cells

    PubMed Central

    Tian, Lifeng; Wang, Chenguang; Hagen, Fred K.; Gormley, Michael; Addya, Sankar; Soccio, Raymond; Casimiro, Mathew C.; Zhou, Jie; Powell, Michael J.; Xu, Ping; Deng, Haiteng; Sauve, Anthony A.; Pestell, Richard G.

    2014-01-01

    In our prior publications we characterized a conserved acetylation motif (K(R)xxKK) of evolutionarily related nuclear receptors. Recent reports showed that peroxisome proliferator activated receptor gamma (PPAR?) deacetylation by SIRT1 is involved in delaying cellular senescence and maintaining the brown remodeling of white adipose tissue. However, it still remains unknown whether lysyl residues 154 and 155 (K154/155) of the conserved acetylation motif (RIHKK) in Ppar?1 are acetylated. Herein, we demonstrate that Ppar?1 is acetylated and regulated by both endogenous TSA-sensitive and NAD-dependent deacetylases. Acetylation of lysine 154 was identified by mass spectrometry (MS) while deacetylation of lysine 155 by SIRT1 was confirmed by in vitro deacetylation assay. An in vivo labeling assay revealed K154/K155 as bona fide acetylation sites. The conserved acetylation sites of Ppar?1 and the catalytic domain of SIRT1 are both required for the interaction between Ppar?1 and SIRT1. Sirt1 and Ppar?1 converge to govern lipid metabolism in vivo. Acetylation-defective mutants of Ppar?1 were associated with reduced lipid synthesis in ErbB2 overexpressing breast cancer cells. Together, these results suggest that the conserved lysyl residues K154/K155 of Ppar?1 are acetylated and play an important role in lipid synthesis in ErbB2-positive breast cancer cells. PMID:25229978

  11. Mechanisms of lactone hydrolysis in neutral and alkaline conditions.

    PubMed

    Gómez-Bombarelli, Rafael; Calle, Emilio; Casado, Julio

    2013-07-19

    The neutral and base-catalyzed hydrolysis of nine carboxylic acid esters was studied using a hybrid supermolecule-PCM approach including six explicit water molecules. The molecules studied included two linear esters, four ?-lactones, two ?-lactones, and one ?-lactone: ethyl acetate and methyl formate, ?-propiolactone, ?-butyrolactone, ?-isovalerolactone, diketene (4-methyleneoxetan-2-one), ?-butyrolactone, 2(5H)-furanone, and ?-valerolactone. DFT and ab initio methods were used to analyze the features of the various possible hydrolysis mechanisms. For all compounds, reasonable to very good qualitative and quantitative agreement with experimental work was found, and evidence is provided to support long-standing hypotheses regarding the role of solvent molecule as a base catalyst. In addition, novel evidence is presented for the existence of an elimination-addition mechanism in the basic hydrolysis of diketene. A parallel work addresses the acid-catalyzed hydrolysis of lactones. PMID:23758295

  12. Enzymatic hydrolysis of steryl glycosides for their analysis in foods.

    PubMed

    Münger, Linda H; Nyström, Laura

    2014-11-15

    Steryl glycosides (SG) contribute significantly to the total intake of phytosterols. The standard analytical procedure involving acid hydrolysis fails to reflect the correct sterol profile of SG due to isomerization of some of the labile sterols. Therefore, various glycosylases were evaluated for their ability to hydrolyse SG under milder conditions. Using a pure SG mixture in aqueous solution, the highest glycolytic activity, as demonstrated by the decrease in SG and increase in free sterols was achieved using inulinase preparations (decrease of >95%). High glycolytic activity was also demonstrated using hemicellulase (63%). The applicability of enzymatic hydrolysis using inulinase preparations was further verified on SG extracted from foods. For example in potato peel ?(5)-avenasteryl glucoside, a labile SG, was well preserved and contributed 26.9% of the total SG. Therefore, enzymatic hydrolysis is suitable for replacing acid hydrolysis of SG in food lipid extracts to accurately determine the sterol profile of SG. PMID:24912717

  13. Energetic approach of biomass hydrolysis in supercritical water.

    PubMed

    Cantero, Danilo A; Vaquerizo, Luis; Mato, Fidel; Bermejo, M Dolores; Cocero, M José

    2015-03-01

    Cellulose hydrolysis can be performed in supercritical water with a high selectivity of soluble sugars. The process produces high-pressure steam that can be integrated, from an energy point of view, with the whole biomass treating process. This work investigates the integration of biomass hydrolysis reactors with commercial combined heat and power (CHP) schemes, with special attention to reactor outlet streams. The innovation developed in this work allows adequate energy integration possibilities for heating and compression by using high temperature of the flue gases and direct shaft work from the turbine. The integration of biomass hydrolysis with a CHP process allows the selective conversion of biomass into sugars with low heat requirements. Integrating these two processes, the CHP scheme yield is enhanced around 10% by injecting water in the gas turbine. Furthermore, the hydrolysis reactor can be held at 400°C and 23 MPa using only the gas turbine outlet streams. PMID:25536511

  14. A General Approach for Teaching Hydrolysis of Salts.

    ERIC Educational Resources Information Center

    Aguirre-Ode, Fernando

    1987-01-01

    Presented is a general approach and equation for teaching the hydrolysis of salts. This general equation covers many more sets of conditions than those currently in textbooks. The simplifying assumptions leading to the known limiting equations are straightforward. (RH)

  15. Kinetics of the hydrolysis of guanosine 5'-phospho-2-methylimidazolide

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1986-01-01

    The hydrolysis kinetics of guanosine 5'-phospho-2-methylimidazolide (2-MeImpG) in aqueous buffered solutions of various pH's was studied at 75 and 37 C, using spectrophotometric and HPLC techniques. The hydrolysis was found to be very slow even at low pH. At 75 C and pH at or below l.0, two kinetic processes were observed: the more rapid one was attributed to the hydrolysis of the phosphoimidazolide P-N bond; the second, much slower one, was attributed to the cleavage of the glycosidic bond. It is noted that the P-N hydrolysis in phosphoimidazolides is very slow compared to other phosphoramidates, and that this might be one of the reasons why the phosphoimidazolides showed an extraordinary ability to form long oligomers under template-directed conditions.

  16. Enzyme resistant feruloylated xylooligomer analogues from thermochemically treated corn fiber contain large side chains, ethyl glycosides and novel sites of acetylation.

    PubMed

    Appeldoorn, Maaike M; de Waard, Pieter; Kabel, Mirjam A; Gruppen, Harry; Schols, Henk A

    2013-11-15

    In order to use corn fiber as a source for bioethanol production the enzymatic hydrolysis of the complex glucuronoarabinoxylans present has to be improved. Several oligosaccharides present in the supernatant of mild acid pretreated and enzymatically saccharified corn fiber that resist the current available enzymes were (semi)purified for structural analysis by NMR or ESI-MS(n). The structural features of 21 recalcitrant oligosaccharides are presented. A common feature of almost all these oligosaccharides is that they contain (part of) an ?-l-galactopyranosyl-(1?2)-?-d-xylopyranosyl-(1?2)-5-O-trans-feruloyl-l-arabinofuranose side chain attached to the O-3 position of the ?-1-4 linked xylose backbone. Several of the identified oligosaccharides contained an ethyl group at the reducing end hypothesized to be formed during SSF. The ethyl glycosides found are far more complex than previously described structures. A new feature present in more than half of the oligosaccharides is an acetyl group attached to the O-2 position of the same xylose to which the oligomeric side chain was attached to the O-3 position. Finding enzymes attacking these large side chains and the dense substituted xylan backbone will boost the hydrolysis of corn fiber glucuronoxylan. PMID:24056012

  17. Genetic Evidence that the Acetylation of the Smc3p Subunit of Cohesin Modulates Its ATP-Bound State to Promote Cohesion Establishment in Saccharomyces cerevisiae

    PubMed Central

    Heidinger-Pauli, Jill M.; Onn, Itay; Koshland, Douglas

    2010-01-01

    Sister chromatid cohesion refers to the process by which sister chromatids are tethered together until the metaphase-to-anaphase transition. The evolutionarily conserved cohesin complex mediates sister chromatid cohesion. Cohesin not only ensures proper chromosome segregation, but also promotes high-fidelity DNA repair and transcriptional regulation. Two subunits of cohesin (Smc1p, Smc3p) are members of the structural maintenance of chromosomes (SMC) family. The SMC family is recognized by their large coiled-coil arms and conserved ATP-binding cassette-like ATPase domain. While both Smc1p and Smc3p ATP binding and hydrolysis are essential for cohesin function in vivo, little is known about how this core enzymatic activity is regulated to facilitate sister chromatid cohesion. Here we use SMC mutant proteins to block specific steps in cohesin's ATPase cycle in Saccharomyces cerevisiae. We show that blocking Smc3p-mediated ATP binding or Smc3p ATP hydrolysis traps unique functional states in cohesion. Finally, we provide evidence that Smc3p acetylation, which has an essential role in cohesion establishment, modulates the Smc3p ATP-bound state. PMID:20498298

  18. Expression of mung bean pectin acetyl esterase in potato tubers: effect on acetylation of cell wall polymers and tuber mechanical properties.

    PubMed

    Orfila, Caroline; Dal Degan, Florence; Jørgensen, Bodil; Scheller, Henrik Vibe; Ray, Peter M; Ulvskov, Peter

    2012-07-01

    A mung bean (Vigna radiata) pectin acetyl esterase (CAA67728) was heterologously expressed in tubers of potato (Solanum tuberosum) under the control of the granule-bound starch synthase promoter or the patatin promoter in order to probe the significance of O-acetylation on cell wall and tissue properties. The recombinant tubers showed no apparent macroscopic phenotype. The enzyme was recovered from transgenic tubers using a high ionic strength buffer and the extract was active against a range of pectic substrates. Partial in vivo de-acetylation of cell wall polysaccharides occurred in the transformants, as shown by a 39% decrease in the degree of acetylation (DA) of tuber cell wall material (CWM). Treatment of CWM using a combination of endo-polygalacturonase and pectin methyl esterase extracted more pectin polymers from the transformed tissue compared to wild type. The largest effect of the pectin acetyl esterase (68% decrease in DA) was seen in the residue from this extraction, suggesting that the enzyme is preferentially active on acetylated pectin that is tightly bound to the cell wall. The effects of acetylation on tuber mechanical properties were investigated by tests of failure under compression and by determination of viscoelastic relaxation spectra. These tests suggested that de-acetylation resulted in a stiffer tuber tissue and a stronger cell wall matrix, as a result of changes to a rapidly relaxing viscoelastic component. These results are discussed in relation to the role of pectin acetylation in primary cell walls and its implications for industrial uses of potato fibres. PMID:22293853

  19. Sulfation of deoxynivalenol, its acetylated derivatives, and T2-toxin?

    PubMed Central

    Fruhmann, Philipp; Skrinjar, Philipp; Weber, Julia; Mikula, Hannes; Warth, Benedikt; Sulyok, Michael; Krska, Rudolf; Adam, Gerhard; Rosenberg, Erwin; Hametner, Christian; Fröhlich, Johannes

    2014-01-01

    The synthesis of several sulfates of trichothecene mycotoxins is presented. Deoxynivalenol (DON) and its acetylated derivatives were synthesized from 3-acetyldeoxynivalenol (3ADON) and used as substrate for sulfation in order to reach a series of five different DON-based sulfates as well as T2-toxin-3-sulfate. These substances are suspected to be formed during phase-II metabolism in plants and humans. The sulfation was performed using a sulfuryl imidazolium salt, which was synthesized prior to use. All protected intermediates and final products were characterized via NMR and will serve as reference materials for further investigations in the fields of toxicology and bioanalytics of mycotoxins. PMID:25170180

  20. Hydrolysis of phosphodiesters through transformation of the bacterial phosphotriesterase.

    PubMed

    Shim, H; Hong, S B; Raushel, F M

    1998-07-10

    The phosphotriesterase from Pseudomonas diminuta catalyzes the hydrolysis of a wide array of phosphotriesters and related phosphonates, including organophosphate pesticides and military nerve agents. It has now been shown that this enzyme can also catalyze the hydrolysis of phosphodiesters, albeit at a greatly reduced rate. However, the enzymatic hydrolysis of ethyl-4-nitrophenyl phosphate (compound I) by the wild-type enzyme was >10(8) times faster than the uncatalyzed reaction (kcat = 0.06 s-1 and Km = 38 mM). Upon the addition of various alkylamines to the reaction mixture, the kcat/Km for the phosphodiester (compound I) increased up to 200-fold. Four mutant enzymes of the phosphotriesterase were constructed in a preliminary attempt to improve phosphodiester hydrolysis activity of the native enzyme. Met-317, which is thought to reside in close proximity to the pro-S-ethoxy arm of the paraoxon substrate, was mutated to arginine, alanine, histidine, and lysine. These mutant enzymes showed slight improvements in the catalytic hydrolysis of organophosphate diesters. The M317K mutant enzyme displayed the most improvement in catalytic activity (kcat = 0.34 s-1 and Km = 30 mM). The M317A mutant enzyme catalyzed the hydrolysis of the phosphodiester (compound I) in the presence of alkylamines up to 200 times faster than the wild-type enzyme in the absence of added amines. The neutralization of the negative charge on the oxygen atom of the phosphodiester by the ammonium cation within the active site is thought to be responsible for the rate enhancement by these amines in the hydrolytic reaction. These results demonstrate that an active site optimized for the hydrolysis of organophosphate triesters can be made to catalyze the hydrolysis of organophosphate diesters. PMID:9651332

  1. Comparative analysis of pharmacological treatments with N-acetyl-dl-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    PubMed

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only. PMID:26607469

  2. Toxicology 212 (2005) 107115 Carbofuran and malathion inhibit nucleotide hydrolysis in

    E-print Network

    Eizirik, Eduardo

    2005-01-01

    Toxicology 212 (2005) 107­115 Carbofuran and malathion inhibit nucleotide hydrolysis in zebrafish and ADP hydrolysis in an uncompetitive manner, but no effect was observed on AMP hydrolysis. Malathion decreased ATP and ADP hydrolysis in competitive and an uncompetitive manner, respectively, but not altered

  3. ATP Hydrolysis in Water -A Density Functional Study J. Akola and R. O. Jones*

    E-print Network

    ATP Hydrolysis in Water - A Density Functional Study J. Akola and R. O. Jones* Institut fu¨r Festko-dependent hydrolysis reaction. Two paths for ATP hydrolysis in water with Mg2+ are studied here using the density) in the triphosphate tail of the molecule as an energy-rich bond that releases energy upon hydrolysis due

  4. Hydrolysis of ammonia borane and metal amidoboranes: A comparative study

    NASA Astrophysics Data System (ADS)

    Banu, Tahamida; Debnath, Tanay; Ash, Tamalika; Das, Abhijit K.

    2015-11-01

    A gas phase mechanistic investigation has been carried out theoretically to explore the hydrolysis pathway of ammonia borane (NH3BH3) and metal amidoboranes (MNH2BH3, M = Li,Na). The Solvation Model based on Density (SMD) has been employed to show the effect of bulk water on the reaction mechanism. Gibbs free energy of solvation has also been computed to evaluate the stabilization of the participating systems in water medium which directly affects the barrier heights in the potential energy surface of hydrolysis reaction. To validate the experimentally observed kinetics studies, we have carried out transition state theory calculations on these hydrolysis reactions. Our result shows that the hydrolysis of both the metal amidoboranes exhibits greatly improved kinetics over the neat NH3BH3 hydrolysis which corroborates well with the experimental observation. Between the two amidoboranes, hydrolysis of LiNH2BH3 is found to be kinetically favored over that of NaNH2BH3, making it a better candidate for releasing molecular hydrogen.

  5. Hydrolysis of ammonia borane and metal amidoboranes: A comparative study.

    PubMed

    Banu, Tahamida; Debnath, Tanay; Ash, Tamalika; Das, Abhijit K

    2015-11-21

    A gas phase mechanistic investigation has been carried out theoretically to explore the hydrolysis pathway of ammonia borane (NH3BH3) and metal amidoboranes (MNH2BH3, M = Li,Na). The Solvation Model based on Density (SMD) has been employed to show the effect of bulk water on the reaction mechanism. Gibbs free energy of solvation has also been computed to evaluate the stabilization of the participating systems in water medium which directly affects the barrier heights in the potential energy surface of hydrolysis reaction. To validate the experimentally observed kinetics studies, we have carried out transition state theory calculations on these hydrolysis reactions. Our result shows that the hydrolysis of both the metal amidoboranes exhibits greatly improved kinetics over the neat NH3BH3 hydrolysis which corroborates well with the experimental observation. Between the two amidoboranes, hydrolysis of LiNH2BH3 is found to be kinetically favored over that of NaNH2BH3, making it a better candidate for releasing molecular hydrogen. PMID:26590535

  6. Study of microwave effects on the lipase-catalyzed hydrolysis.

    PubMed

    Chen, Chia-Chen; Reddy, P Muralidhar; Devi, C Shobha; Chang, Po-Chi; Ho, Yen-Peng

    2016-01-01

    The effect of microwave heating on lipase-catalyzed reaction remains controversial. It is not clear whether the reaction rate enhancements are purely due to thermal/heating effects or to non-thermal effects. Therefore, quantitative mass spectrometry was used to conduct accurate kinetic analysis of lipase-catalyzed hydrolysis of triolein by microwave and conventional heating. Commercial lipases from Candida rugosa (CRL), Porcine Pancreas (PPL), and Burkholderia cepacia (BCL) were used. Hydrolysis reactions were performed at various temperatures and pH levels, along with various amounts of buffer and enzymes. Hydrolysis product yields at each time point using an internal-standard method showed no significant difference between microwave and conventional heating conditions when the reaction was carried out at the same temperature. CRL showed optimum catalytic activity at 37°C, while PPL and BCL had better activities at 50°C. The phosphate buffer was found to give a better hydrolysis yield than the Tris-HCl buffer. Overall results prove that a non-thermal effect does not exist in microwave-assisted lipase hydrolysis of triolein. Therefore, conventional heating at high temperatures (e.g., 50°C) can be also used to accelerate hydrolysis reactions. PMID:26672464

  7. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate.

    PubMed

    Schmeitzl, Clemens; Warth, Benedikt; Fruhmann, Philipp; Michlmayr, Herbert; Malachová, Alexandra; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Adam, Gerhard

    2015-08-01

    Deoxynivalenol (DON) is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON) and 3,15-diacetyl-DON (3,15-diADON), and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-?-D-glucoside (D15G) and of 15-acetyl-DON-3-sulfate (15-ADON3S) as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-?-D-glucoside (15-ADON3G) is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-?-D-glucoside (D3G). This study highlights significant differences in the metabolization of DON and its acetylated derivatives. PMID:26274975

  8. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate

    PubMed Central

    Schmeitzl, Clemens; Warth, Benedikt; Fruhmann, Philipp; Michlmayr, Herbert; Malachová, Alexandra; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Adam, Gerhard

    2015-01-01

    Deoxynivalenol (DON) is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON) and 3,15-diacetyl-DON (3,15-diADON), and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-?-D-glucoside (D15G) and of 15-acetyl-DON-3-sulfate (15-ADON3S) as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-?-D-glucoside (15-ADON3G) is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-?-D-glucoside (D3G). This study highlights significant differences in the metabolization of DON and its acetylated derivatives. PMID:26274975

  9. Plant Physiol. (1997) 113: 357-365 Structure of the CACI Gene and in Situ Characterization of

    E-print Network

    Wurtele, Eve Syrkin

    1997-01-01

    in the stroma of the plastidsand chloroplasts. The CACl mRNA accumu- latesthroughout developingembryosand, the ATP-dependent carboxylation of acetyl-COA to form malonyl-COA,is catalyzed by ACCase (acetyl

  10. Inert and oxidative subcritical water hydrolysis of insoluble egg yolk granular protein, functional properties, and comparison to enzymatic hydrolysis.

    PubMed

    Marcet, Ismael; Álvarez, Carlos; Paredes, Benjamín; Díaz, Mario

    2014-08-13

    The use of enzymes to recover soluble peptides with functional properties from insoluble proteins could prove to be very expensive, implying high reaction times and low yields. In this study, the insoluble granular protein, previously delipidated, was hydrolyzed using enzymes (trypsin) as a comparison to the proposed alternative method: subcritical water hydrolysis (SWH) using both nitrogen and oxygen streams. The result of the hydrolysis was characterized in terms of the yield and peptide size distribution as well as different functional properties. The SWH of the delipidated granules resulted in a higher recovery yield than that obtained by enzymatic hydrolysis in half of the time. The foaming capacity of the peptides obtained by SWH was higher than that obtained by trypsin hydrolysis, although the foam stability was lower. Slight differences were detected between these peptides in terms of their emulsifying properties. PMID:25033007

  11. Directed elongation model for microtubule GTP hydrolysis.

    PubMed Central

    Caplow, M; Reid, R

    1985-01-01

    We propose a role for GTP hydrolysis in microtubule assembly in which the GTPase reaction serves to stabilize tubulin subunits in the microtubule. The GTPase reaction in tubulin subunits containing GTP at microtubule ends is presumed to occur predominately in subunits at one of the interfaces between a cap of GTP-containing tubulin subunit and a core of GDP-containing tubulin subunit in the microtubule, resulting in elongation of the core. The proposed model interprets the effects of GDP on microtubule assembly, using a reaction scheme in which GDP-containing tubulin subunits are able to add to microtubule ends. The model can account for the GTP requirement for microtubule assembly, the GDP inhibition of the rate for microtubule elongation, and the fact that a metastable state exists after the enzymic conversion of GTP to GDP, with microtubules which are at steady state. To account for the fact that the microtubule assembly and disassembly rates are nonlinearly dependent upon the tubulin subunit concentration and for the effects of GDP-containing tubulin subunits on the kinetic properties of microtubules, our scheme includes nonproductive as well as productive binding of GTP- and GDP-containing tubulin subunits. We compare our model with an alternative scheme [Hill, T. L. & Carlier, M. F. (1983) Proc. Natl. Acad. Sci. USA 80, 7234-7238], which interprets the effects of GDP on microtubule assembly using a reaction scheme in which GDP is able to exchange with GTP in GTP-containing tubulin subunits in the microtubule and in which the principal GTPase occurs in GTP-containing tubulin subunits at the microtubule/solution interface. PMID:3858823

  12. Cyclohexanecarboxyl-Coenzyme A (CoA) and Cyclohex-1-ene-1-Carboxyl-CoA Dehydrogenases, Two Enzymes Involved in the Fermentation of Benzoate and Crotonate in Syntrophus aciditrophicus

    PubMed Central

    Kung, Johannes W.; Seifert, Jana; von Bergen, Martin

    2013-01-01

    The strictly anaerobic Syntrophus aciditrophicus is a fermenting deltaproteobacterium that is able to degrade benzoate or crotonate in the presence and in the absence of a hydrogen-consuming partner. During growth in pure culture, both substrates are dismutated to acetate and cyclohexane carboxylate. In this work, the unknown enzymes involved in the late steps of cyclohexane carboxylate formation were studied. Using enzyme assays monitoring the oxidative direction, a cyclohex-1-ene-1-carboxyl-CoA (Ch1CoA)-forming cyclohexanecarboxyl-CoA (ChCoA) dehydrogenase was purified and characterized from S. aciditrophicus and after heterologous expression of its gene in Escherichia coli. In addition, a cyclohexa-1,5-diene-1-carboxyl-CoA (Ch1,5CoA)-forming Ch1CoA dehydrogenase was characterized after purification of the heterologously expressed gene. Both enzymes had a native molecular mass of 150 kDa and were composed of a single, 40- to 45-kDa subunit; both contained flavin adenine dinucleotide (FAD) as a cofactor. While the ChCoA dehydrogenase was competitively inhibited by Ch1CoA in the oxidative direction, Ch1CoA dehydrogenase further converted the product Ch1,5CoA to benzoyl-CoA. The results obtained suggest that Ch1,5CoA is a common intermediate in benzoate and crotonate fermentation that serves as an electron-accepting substrate for the two consecutively operating acyl-CoA dehydrogenases characterized in this work. In the case of benzoate fermentation, Ch1,5CoA is formed by a class II benzoyl-CoA reductase; in the case of crotonate fermentation, Ch1,5CoA is formed by reversing the reactions of the benzoyl-CoA degradation pathway that are also employed during the oxidative (degradative) branch of benzoate fermentation. PMID:23667239

  13. Identification of the Acetylation and Ubiquitin-Modified Proteome during the Progression of Skeletal Muscle Atrophy

    PubMed Central

    Ryder, Daniel J.; Judge, Sarah M.; Beharry, Adam W.; Farnsworth, Charles L.; Silva, Jeffrey C.; Judge, Andrew R.

    2015-01-01

    Skeletal muscle atrophy is a consequence of several physiological and pathophysiological conditions including muscle disuse, aging and diseases such as cancer and heart failure. In each of these conditions, the predominant mechanism contributing to the loss of skeletal muscle mass is increased protein turnover. Two important mechanisms which regulate protein stability and degradation are lysine acetylation and ubiquitination, respectively. However our understanding of the skeletal muscle proteins regulated through acetylation and ubiquitination during muscle atrophy is limited. Therefore, the purpose of the current study was to conduct an unbiased assessment of the acetylation and ubiquitin-modified proteome in skeletal muscle during a physiological condition of muscle atrophy. To induce progressive, physiologically relevant, muscle atrophy, rats were cast immobilized for 0, 2, 4 or 6 days and muscles harvested. Acetylated and ubiquitinated peptides were identified via a peptide IP proteomic approach using an anti-acetyl lysine antibody or a ubiquitin remnant motif antibody followed by mass spectrometry. In control skeletal muscle we identified and mapped the acetylation of 1,326 lysine residues to 425 different proteins and the ubiquitination of 4,948 lysine residues to 1,131 different proteins. Of these proteins 43, 47 and 50 proteins were differentially acetylated and 183, 227 and 172 were differentially ubiquitinated following 2, 4 and 6 days of disuse, respectively. Bioinformatics analysis identified contractile proteins as being enriched among proteins decreased in acetylation and increased in ubiquitination, whereas histone proteins were enriched among proteins increased in acetylation and decreased in ubiquitination. These findings provide the first proteome-wide identification of skeletal muscle proteins exhibiting changes in lysine acetylation and ubiquitination during any atrophy condition, and provide a basis for future mechanistic studies into how the acetylation and ubiquitination status of these identified proteins regulates the muscle atrophy phenotype. PMID:26302492

  14. Acetylation of Gly1 and Lys2 Promotes Aggregation of Human ?D-Crystallin

    PubMed Central

    2015-01-01

    The human lens contains three major protein families: ?-, ?-, and ?-crystallin. Among the several variants of ?-crystallin in the human lens, ?D-crystallin is a major form. ?D-Crystallin is primarily present in the nuclear region of the lens and contains a single lysine residue at the second position (K2). In this study, we investigated the acetylation of K2 in ?D-crystallin in aging and cataractous human lenses. Our results indicated that K2 is acetylated at an early age and that the amount of K2-acetylated ?D-crystallin increased with age. Mass spectrometric analysis revealed that in addition to K2, glycine 1 (G1) was acetylated in ?D-crystallin from human lenses and in ?D-crystallin acetylated in vitro. The chaperone ability of ?-crystallin for acetylated ?D-crystallin was lower than that for the nonacetylated protein. The tertiary structure and the microenvironment of the cysteine residues were significantly altered by acetylation. The acetylated protein exhibited higher surface hydrophobicity, was unstable against thermal and chemical denaturation, and exhibited a higher propensity to aggregate at 80 °C in comparison to the nonacetylated protein. Acetylation enhanced the GdnHCl-induced unfolding and slowed the subsequent refolding of ?D-crystallin. Theoretical analysis indicated that the acetylation of K2 and G1 reduced the structural stability of the protein and brought the distal cysteine residues (C18 and C78) into close proximity. Collectively, these results indicate that the acetylation of G1 and K2 residues in ?D-crystallin likely induced a molten globule-like structure, predisposing it to aggregation, which may account for the high content of aggregated proteins in the nucleus of aged and cataractous human lenses. PMID:25393041

  15. Acetylation of loofa (Luffa cylindrica) sponge as immobilization carrier for bioprocesses involving cellulase.

    PubMed

    Hideno, Akihiro; Ogbonna, James C; Aoyagi, Hideki; Tanaka, Hideo

    2007-04-01

    The feasibility of using loofa sponge for immobilization of cellulase-producing microorganisms was investigated by acetylating loofa sponge. Acetylation was achieved by autoclaving process of loofa sponge immersed in acetic anhydride at various temperatures for various times. The degree of acetylation, as inferred by the weight percentage gain (WPG), was enhanced by increasing both temperature and the duration of acetylation. The acetylation of a piece of loofa sponge in an autoclave at 120 degrees C for 20 min resulted in a WPG of about 8%, which was sufficient to protect the loofa sponge against cellulose degradation. The acetylated loofa sponge prepared under this condition was not decomposed by commercial cellulase and its structure was maintained for more than 720 h during repeated-batch treatments with commercial cellulase. A flocculating yeast (Saccharomyces cerevisiae IR-2) and a fungus (Trichoderma reesei QM9414) were successfully immobilized in the acetylated loofa sponge. In each case, the percentage of immobilized cells was as high as that obtained using nonacetylated loofa sponge. Acetylation had no adverse effects on cell growth and immobilization of T. reesei QM9414, as well as on cell growth and ethanol production by S. cerevisiae IR-2. T. reesei QM9414 immobilized on an acetylated loofa sponge was successfully used for repeated-batch cellulase production from commercial cellulose powder. Although the acetylated loofa sponge showed a slight weight loss, it was not disintegrated by activated sludge. The results obtained in this study showed that acetylated loofa sponge is suitable as an immobilization carrier for bioprocesses involving cellulase. PMID:17502271

  16. Clinical and molecular characterization of five patients with succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency.

    PubMed

    Fukao, Toshiyuki; Sass, Jörn Oliver; Kursula, Petri; Thimm, Eva; Wendel, Udo; Ficicioglu, Can; Monastiri, Kamel; Guffon, Nathalie; Bari?, Ivo; Zabot, Marie-Therese; Kondo, Naomi

    2011-05-01

    Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is an inborn error of ketone body metabolism and causes episodic ketoacidosis. We report clinical and molecular analyses of 5 patients with SCOT deficiency. Patients GS07, GS13, and GS14 are homozygotes of S405P, L327P, and R468C, respectively. GS17 and GS18 are compound heterozygotes for S226N and A215V, and V404F and E273X, respectively. These mutations have not been reported previously. Missense mutations were further characterized by transient expression analysis of mutant cDNAs. Among 6 missense mutations, mutants L327P, R468C, and A215V retained some residual activities and their mutant proteins were detected in immunoblot analysis following expression at 37°C. They were more stable at 30°C than 37°C, indicating their temperature sensitive character. The R468C mutant is a distinct temperature sensitive mutant which retained 12% and 51% of wild-type residual activities at 37 and 30°C, respectively. The S226N mutant protein was detected but retained no residual activity. Effects of missense mutations were predicted from the tertiary structure of the SCOT molecule. Main effects of these mutations were destabilization of SCOT molecules, and some of them also affected catalytic activity. Among 5 patients, GS07 and GS18 had null mutations in both alleles and the other three patients retained some residual SCOT activities. All 5 developed a first severe ketoacidotic crisis with blood gas pH <7.1, and experienced multiple ketoacidotic decompensations (two of them had seven such episodes). In general, the outcome was good even following multiple ketoacidotic events. Permanent ketosis or ketonuria is considered a pathognomonic feature of SCOT deficiency. However, this condition depends not only on residual activity but also on environmental factors. PMID:21296660

  17. Mutation analysis of methylmalonyl CoA mutase gene exon 2 in Egyptian families: Identification of 25 novel allelic variants

    PubMed Central

    Ghoraba, Dina A.; Mohammed, Magdy M.; Zaki, Osama K.

    2015-01-01

    Methylmalonic aciduria (MMA) is an autosomal recessive disorder of methylmalonate and cobalamin (cbl; vitamin B12) metabolism. It is an inborn error of organic acid metabolism which commonly results from a defect in the gene encoding the methylmalonyl-CoA mutase (MCM) apoenzyme. Here we report the results of mutation study of exon 2 of the methylmalonyl CoA mutase (MUT) gene, coding MCM residues from 1 to 128, in ten unrelated Egyptian families affected with methylmalonic aciduria. Patients were presented with a wide-anion gap metabolic acidosis. The diagnosis has established by the measurement of C3 (propionylcarnitine) and C3:C2 (propionylcarnitine/acetylcarnitine) in blood by using liquid chromatography–tandem mass spectrometry (LC/MS–MS) and was confirmed by the detection of an abnormally elevated level of methylmalonic acid in urine by using gas chromatography–mass spectrometry (GC/MS) and isocratic cation exchange high-performance liquid-chromatography (HPLC). Direct sequencing of gDNA of the MUT gene exon 2 has revealed a total of 26 allelic variants: ten of which were intronic, eight were located upstream to the exon 2 coding region, four were novel modifications predicted to affect the splicing region, three were novel mutations within the coding region: c.15G > A (p.K5K), c.165C > A (p.N55K) and c.7del (p.R3EfsX14), as well as the previously reported mutation c.323G > A (p.R108H). PMID:25750861

  18. Unequal synthesis and differential degradation of propionyl CoA carboxylase subunits in cells from normal and propionic acidemia patients.

    PubMed Central

    Ohura, T; Kraus, J P; Rosenberg, L E

    1989-01-01

    We have characterized further the molecular basis of human inherited propionyl CoA carboxylase deficiency by measuring steady state levels of the mRNAs coding for the enzyme's two protein subunits (alpha and beta) and by estimating initial synthesis and steady state levels of the protein subunits in skin fibroblasts from controls and affected patients. We studied cell lines from both major complementation groups (pccA and pccBC) corresponding, respectively, to defects in the carboxylase's alpha and beta subunits. Analysis of pccA lines revealed the absence of alpha chain mRNA in three and an abnormally small alpha-mRNA in a fourth. Despite the presence of normal beta-mRNA in each of these pccA lines, there was complete absence of both alpha and beta protein subunits under steady state conditions, even though new synthesis and mitochondrial import of beta precursors was normal. Results in nine pccBC lines revealed normal alpha mRNA in each, while the amounts of beta-mRNA were distinctly reduced in every case. Correspondingly, alpha protein subunits were present in normal amounts at steady-state, but beta subunits were uniformly decreased. In addition, in six of the nine beta deficient cell lines, partially degraded beta-subunits were observed. To help interpret these results, synthesis and stability of carboxylase subunits were studied in intact HeLa cells using a pulse-chase protocol. Whereas alpha chains were stable over the four hour interval studied, beta chains--initially synthesized in large excess over alpha chains--were degraded rapidly reaching equivalence with alpha chains after two hours.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:2741949

  19. Identification of an acetylation site of Chlamydomonas alpha-tubulin.

    PubMed Central

    LeDizet, M; Piperno, G

    1987-01-01

    An acetylation site of Chlamydomonas axonemal alpha-tubulins was identified near, or within, the binding site of 6-11B-1, a monoclonal antibody specific for posttranslationally acetylated alpha-tubulins. In a first approach, axonemal proteins were hydrolyzed by formic acid, cyanogen bromide, or chymotrypsin and analyzed with immunoblots. The smallest alpha-tubulin peptide retained on nitrocellulose and containing antibody-binding site(s) was found to span amino acids 37-138 (alpha 37-138). A smaller antibody-binding peptide, identified as alpha 25-50, was obtained by complete digestion of alpha-tubulin with chymotrypsin. This fragment was purified by reversed-phase HPLC and assayed by its ability to bind 6-11B-1 in solution. Determination of the amino acid sequences of alpha 37-138 and alpha 25-50 showed that residue 40 in axonemal alpha-tubulin is epsilon N-acetyllysine. A sequence very similar to Chlamydomonas alpha 25-50 is found in the majority of alpha-tubulins analyzed so far. However, the corresponding region is markedly divergent in some alpha-tubulin isoforms from chicken, Drosophila, and yeast. Images PMID:2441392

  20. Two Arabidopsis Proteins Synthesize Acetylated Xylan in Vitro

    PubMed Central

    Urbanowicz, Breeanna R.; Peña, Maria J.; Moniz, Heather A.; Moremen, Kelley W.; York, William S.

    2014-01-01

    SUMMARY Xylan is the third most abundant glycopolymer on earth after cellulose and chitin. As a major component of wood, grain and forage, this natural biopolymer has far-reaching impacts on human life. This highly acetylated cell wall polysaccharide is a vital component of the plant cell wall, which functions as a molecular scaffold, providing plants with mechanical strength and flexibility. Mutations that impair synthesis of the xylan backbone give rise to plants that fail to grow normally due to collapsed xylem cells in the vascular system. Phenotypic analysis of these mutants has implicated many proteins in xylan biosynthesis. However, the enzymes directly responsible for elongation and acetylation of the xylan backbone have not been unambiguously identified. Here we provide direct biochemical evidence that two Arabidopsis thaliana proteins, IRREGULAR XYLEM 10-L (IRX10-L) and ESKIMO1/ TRICOME BIREFRINGENCE 29 (ESK1/TBL29), catalyze these respective processes in vitro. By identifying the elusive xylan synthase and establishing ESK1/TBL29 as the archetypal plant polysaccharide O-acetyltransferase, we have resolved two long-standing questions in plant cell wall biochemistry. These findings shed light on integral steps in the molecular pathways utilized by plants to synthesize a major component of the world's biomass and expand our toolkit for producing glycopolymers with valuable properties. PMID:25141999

  1. Characterization of Maize Acetyl-Coenzyme A Carboxylase.

    PubMed Central

    Egli, M. A.; Gengenbach, B. G.; Gronwald, J. W.; Somers, D. A.; Wyse, D. L.

    1993-01-01

    Maize (Zea mays L.) leaf acetyl-CoA carboxylase (ACCase) was purified about 500-fold by ammonium sulfate fractionation and gel filtration and blue Sepharose affinity and anion-exchange chromatography. Most ACCase activity (85%) recovered from the anion-exchange column was found in a highly purified fraction (specific activity 5.5 [mu]mol acid-stable product min-1 mg-1) that consisted primarily of a single 227-kD biotinylated polypeptide. The fraction represented 29% of the original activity and was designated ACCase I. A second partially purified ACCase activity (ACCase II) eluted earlier during anion-exchange chromatography, contained a single biotinylated polypeptide of 219 kD, was poorly recognized by antiserum raised against the ACCase I polypeptide, and was less inhibited by the herbicides haloxyfop or sethoxydim than was ACCase I. ACCase I and II both utilized propionyl-CoA as substrate about 50% as effectively as acetyl-CoA, and neither utilized methylcrotonyl-CoA. Immunoprecipitation with antiserum and protein blotting of crude extracts of leaf, embryo, and endosperm tissue and suspension cells indicated that most ACCase activity in these tissues was immunologically similar and consisted of ACCase I. Only leaves contained significant amounts of the ACCase II polypeptide; however, no ACCase II polypeptide was found in isolated mesophyll chloroplasts. The ACCase I and II polypeptides appear to be subunits of distinct ACCase isoforms. PMID:12231704

  2. Protein acetylation sites mediated by Schistosoma mansoni GCN5

    SciTech Connect

    Moraes Maciel, Renata de; Furtado Madeiro da Costa, Rodrigo; Meirelles Bastosde Oliveira, Francisco; Rumjanek, Franklin David; Fantappie, Marcelo Rosado

    2008-05-23

    The transcriptional co-activator GCN5, a histone acetyltransferase (HAT), is part of large multimeric complexes that are required for chromatin remodeling and transcription activation. As in other eukaryotes, the DNA from the parasite Schistosome mansoni is organized into nucleosomes and the genome encodes components of chromatin-remodeling complexes. Using a series of synthetic peptides we determined that Lys-14 of histone H3 was acetylated by the recombinant SmGCN5-HAT domain. SmGCN5 was also able to acetylate schistosome non-histone proteins, such as the nuclear receptors SmRXR1 and SmNR1, and the co-activator SmNCoA-62. Electron microscopy revealed the presence of SmGCN5 protein in the nuclei of vitelline cells. Within the nucleus, SmGCN5 was found to be located in interchromatin granule clusters (IGCs), which are transcriptionally active structures. The data suggest that SmGCN5 is involved in transcription activation.

  3. Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis.

    PubMed

    Ometto, Francesco; Quiroga, Gerardo; Pšeni?ka, Pavel; Whitton, Rachel; Jefferson, Bruce; Villa, Raffaella

    2014-11-15

    Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This work investigated the effect of four pre-treatments on three microalgae species, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. The analysis of the composition of the soluble COD released and of the TEM images of the cells showed two main degradation actions associated with the processes: (1) cell wall damage with the release of intracellular AOM (thermal, thermal hydrolysis and ultrasound) and (2) degradation of the cell wall constituents with the release of intracellular AOM and the solubilisation of the cell wall biopolymers (enzymatic hydrolysis). As a result of this, enzymatic hydrolysis showed the greatest biogas yield increments (>270%) followed by thermal hydrolysis (60-100%) and ultrasounds (30-60%). PMID:25150520

  4. Kinetics of catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent

    NASA Astrophysics Data System (ADS)

    Al-Kady, Ahmed S.; Ahmed, El-Sadat I.; Gaber, M.; Hussein, Mohamed M.; Ebeid, El-Zeiny M.

    2011-09-01

    The kinetics of chemical hydrolysis including neutral, acid- and base-catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent were studied at different temperatures. The rate constants and activation parameters were determined by following the build-up of fluorescence peak of the hydrolysis product 4-methylumbelliferone (4-MU). The time scale of esterase enzyme hydrolysis caused by salmonella was compared with chemical hydrolysis as a background process.

  5. Kinetics of catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent.

    PubMed

    Al-Kady, Ahmed S; Ahmed, El-Sadat I; Gaber, M; Hussein, Mohamed M; Ebeid, El-Zeiny M

    2011-09-01

    The kinetics of chemical hydrolysis including neutral, acid- and base-catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent were studied at different temperatures. The rate constants and activation parameters were determined by following the build-up of fluorescence peak of the hydrolysis product 4-methylumbelliferone (4-MU). The time scale of esterase enzyme hydrolysis caused by salmonella was compared with chemical hydrolysis as a background process. PMID:21715222

  6. Hydrolysis of nucleoside triphosphates other than ATP by nitrogenase.

    PubMed

    Ryle, M J; Seefeldt, L C

    2000-03-01

    The hydrolysis of ATP to ADP and P(i) is an integral part of all substrate reduction reactions catalyzed by nitrogenase. In this work, evidence is presented that nitrogenases isolated from Azotobacter vinelandii and Clostridium pasteurianum can hydrolyze MgGTP, MgITP, and MgUTP to their respective nucleoside diphosphates at rates comparable to those measured for MgATP hydrolysis. The reactions were dependent on the presence of both the iron (Fe) protein and the molybdenum-iron (MoFe) protein. The oxidation state of nitrogenase was found to greatly influence the nucleotide hydrolysis rates. MgATP hydrolysis rates were 20 times higher under dithionite reducing conditions (approximately 4,000 nmol of MgADP formed per min/mg of Fe protein) as compared with indigo disulfonate oxidizing conditions (200 nmol of MgADP formed per min/mg of Fe protein). In contrast, MgGTP, MgITP, and MgUTP hydrolysis rates were significantly higher under oxidizing conditions (1,400-2,000 nmol of MgNDP formed per min/mg of Fe protein) as compared with reducing conditions (80-230 nmol of MgNDP formed per min/mg of Fe protein). The K(m) values for MgATP, MgGTP, MgUTP, and MgITP hydrolysis were found to be similar (330-540 microM) for both the reduced and oxidized states of nitrogenase. Incubation of Fe and MoFe proteins with each of the MgNTP molecules and AlF(4)(-) resulted in the formation of non-dissociating protein-protein complexes, presumably with trapped AlF(4)(-) x MgNDP. The implications of these results in understanding how nucleotide hydrolysis is coupled to substrate reduction in nitrogenase are discussed. PMID:10692415

  7. ASEB: a web server for KAT-specific acetylation site prediction

    PubMed Central

    Wang, Likun; Du, Yipeng; Lu, Ming; Li, Tingting

    2012-01-01

    Protein lysine acetylation plays an important role in the normal functioning of cells, including gene expression regulation, protein stability and metabolism regulation. Although large amounts of lysine acetylation sites have been identified via large-scale mass spectrometry or traditional experimental methods, the lysine (K)-acetyl-transferase (KAT) responsible for the acetylation of a given protein or lysine site remains largely unknown due to the experimental limitations of KAT substrate identification. Hence, the in silico prediction of KAT-specific acetylation sites may provide direction for further experiments. In our previous study, we developed the acetylation set enrichment based (ASEB) computer program to predict which KAT-families are responsible for the acetylation of a given protein or lysine site. In this article, we provide KAT-specific acetylation site prediction as a web service. This web server not only provides the online tool and R package for the method in our previous study, but several useful services are also included, such as the integration of protein–protein interaction information to enhance prediction accuracy. This web server can be freely accessed at http://cmbi.bjmu.edu.cn/huac. PMID:22600735

  8. ASEB: a web server for KAT-specific acetylation site prediction.

    PubMed

    Wang, Likun; Du, Yipeng; Lu, Ming; Li, Tingting

    2012-07-01

    Protein lysine acetylation plays an important role in the normal functioning of cells, including gene expression regulation, protein stability and metabolism regulation. Although large amounts of lysine acetylation sites have been identified via large-scale mass spectrometry or traditional experimental methods, the lysine (K)-acetyl-transferase (KAT) responsible for the acetylation of a given protein or lysine site remains largely unknown due to the experimental limitations of KAT substrate identification. Hence, the in silico prediction of KAT-specific acetylation sites may provide direction for further experiments. In our previous study, we developed the acetylation set enrichment based (ASEB) computer program to predict which KAT-families are responsible for the acetylation of a given protein or lysine site. In this article, we provide KAT-specific acetylation site prediction as a web service. This web server not only provides the online tool and R package for the method in our previous study, but several useful services are also included, such as the integration of protein-protein interaction information to enhance prediction accuracy. This web server can be freely accessed at http://cmbi.bjmu.edu.cn/huac. PMID:22600735

  9. Acetylation of Starch with Vinyl Acetate in Imidazolium Ionic Liquids and Characterization of Acetate Distribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch was acetylated with vinyl acetate in different 1-butyl-3-methylimidazolium (BMIM) salts as solvent in effort to produce starches with different acetylation patterns. Overall degree of substitution was much higher for basic anions such as acetate and dicyanimide (dca) than for neutral anions ...

  10. Histone Acetylation is Recruited in Consolidation as a Molecular Feature of Stronger Memories

    ERIC Educational Resources Information Center

    Federman, Noel; Fustinana, Maria Sol; Romano, Arturo

    2009-01-01

    Gene expression is a key process for memory consolidation. Recently, the participation of epigenetic mechanisms like histone acetylation was evidenced in long-term memories. However, until now the training strength required and the persistence of the chromatin acetylation recruited are not well characterized. Here we studied whether histone…

  11. The Effect of Acetyl-L-Carnitine Administration on Persons with Down Syndrome

    ERIC Educational Resources Information Center

    Pueschel, Siegfried M.

    2006-01-01

    Since previous investigations reported improvements in cognition of patients with dementia after acetyl-L-carnitine therapy and since there is an increased risk for persons with Down syndrome to develop Alzheimer disease, this study was designed to investigate the effect of acetyl-L-carnitine administration on neurological, intellectual, and…

  12. The Role of Histone Acetylation in Cocaine-Induced Neural Plasticity and Behavior

    E-print Network

    Wood, Marcelo A.

    The Role of Histone Acetylation in Cocaine-Induced Neural Plasticity and Behavior George A Rogge1 of abuse, such as cocaine, cause stable changes in neural plasticity that in turn drive long-term changes regulation via histone acetylation in cocaine action. Neuropsychopharmacology Reviews advance online

  13. Protein acetylation in prokaryotes increases stress resistance Qun Ma, Thomas K. Wood

    E-print Network

    Wood, Thomas K.

    Protein acetylation in prokaryotes increases stress resistance Qun Ma, Thomas K. Wood Department of lysine residues is conserved in all three kingdoms; however, its role in prokaryotes is unknown. Here we of a specific environmental role of acetylation in prokaryotes. Ó 2011 Elsevier Inc. All rights reserved. 1

  14. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains

    E-print Network

    Zhao, Huimin

    introduction of heterologous acetyl-CoA biosynthetic pathways, including pyruvate dehydrogenase (PDH), ATP International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. 1. Introduction evolved a variety of routes for acetyl-CoA synthesis (Fig. S1), such as the oxidative decarboxylation

  15. Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli

    PubMed Central

    Castaño-Cerezo, Sara; Bernal, Vicente; Post, Harm; Fuhrer, Tobias; Cappadona, Salvatore; Sánchez-Díaz, Nerea C; Sauer, Uwe; Heck, Albert JR; Altelaar, AF Maarten; Cánovas, Manuel

    2014-01-01

    Although protein acetylation is widely observed, it has been associated with few specific regulatory functions making it poorly understood. To interrogate its functionality, we analyzed the acetylome in Escherichia coli knockout mutants of cobB, the only known sirtuin-like deacetylase, and patZ, the best-known protein acetyltransferase. For four growth conditions, more than 2,000 unique acetylated peptides, belonging to 809 proteins, were identified and differentially quantified. Nearly 65% of these proteins are related to metabolism. The global activity of CobB contributes to the deacetylation of a large number of substrates and has a major impact on physiology. Apart from the regulation of acetyl-CoA synthetase, we found that CobB-controlled acetylation of isocitrate lyase contributes to the fine-tuning of the glyoxylate shunt. Acetylation of the transcription factor RcsB prevents DNA binding, activating flagella biosynthesis and motility, and increases acid stress susceptibility. Surprisingly, deletion of patZ increased acetylation in acetate cultures, which suggests that it regulates the levels of acetylating agents. The results presented offer new insights into functional roles of protein acetylation in metabolic fitness and global cell regulation. PMID:25518064

  16. Hydrolysis and fractionation of lignocellulosic biomass

    DOEpatents

    Torget, Robert W. (Littleton, CO); Padukone, Nandan (Denver, CO); Hatzis, Christos (Denver, CO); Wyman, Charles E. (Lakewood, CO)

    2000-01-01

    A multi-function process is described for the hydrolysis and fractionation of lignocellulosic biomass to separate hemicellulosic sugars from other biomass components such as extractives and proteins; a portion of the solubilized lignin; cellulose; glucose derived from cellulose; and insoluble lignin from said biomass comprising one or more of the following: optionally, as function 1, introducing a dilute acid of pH 1.0-5.0 into a continual shrinking bed reactor containing a lignocellulosic biomass material at a temperature of about 94 to about 160.degree. C. for a period of about 10 to about 120 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of extractives, lignin, and protein by keeping the solid to liquid ratio constant throughout the solubilization process; as function 2, introducing a dilute acid of pH 1.0-5.0, either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing either fresh biomass or the partially fractionated lignocellulosic biomass material from function 1 at a temperature of about 94-220.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of hemicellulosic sugars, semisoluble sugars and other compounds, and amorphous glucans by keeping the solid to liquid ratio constant throughout the solubilization process; as function 3, optionally, introducing a dilute acid of pH 1.0-5.0 either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing the partially fractionated lignocellulosic biomass material from function 2 at a temperature of about 180-280.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of 1 to about 5 reactor volumes to effect solubilization of cellulosic sugars by keeping the solid to liquid ratio constant throughout the solubilization process; and as function 4, optionally, introducing a dilute acid of pH 1.0-5.0 either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing the partially fractionated lignocellulosic biomass material from function 3 at a temperature of about 180-280.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of cellulosic sugars by keeping the solid to liquid ratio constant throughout the solubilization process.

  17. Functional, thermal and rheological properties of oat ?-glucan modified by acetylation.

    PubMed

    de Souza, Nelisa Lamas; Bartz, Josiane; Zavareze, Elessandra da Rosa; de Oliveira, Patrícia Diaz; da Silva, Wagner Schellin Vieira; Alves, Gabriela Hörnke; Dias, Alvaro Renato Guerra

    2015-07-01

    Fibers of ?-glucan have been added to foods for their thickening properties, their ability to form gel at low concentrations, but mainly for their appeal in health promotion. Current analysis evaluates the influence of acetylation (4% and 6% acetic anhydride for 10 and 20 min) on the functional, thermal, morphological and rheological properties of the concentrate containing 31% of oat ?-glucan. The degree of substitution of the acetylated ?-glucans ranged from 0.03 to 0.12, suitable for use in foods. Acetylation increased the heterogeneity of molecule degradation and promoted a more compacted hole-less microstructure. Functional properties such as the swelling power and bile acid binding capacity were increased by acetylation. The ?-glucan gel showed a reduction in hardness and adhesiveness, which was confirmed by its rheological behavior similar to liquid. The above information is relevant to establish the industrial application of acetylated ?-glucan. PMID:25704708

  18. Structural, morphological, and physicochemical properties of acetylated high-, medium-, and low-amylose rice starches.

    PubMed

    Colussi, Rosana; Pinto, Vania Zanella; El Halal, Shanise Lisie Mello; Vanier, Nathan Levien; Villanova, Franciene Almeida; Marques E Silva, Ricardo; da Rosa Zavareze, Elessandra; Dias, Alvaro Renato Guerra

    2014-03-15

    The high-, medium-, and low-amylose rice starches were isolated by the alkaline method and acetylated by using acetic anhydride for 10, 30, and 90 min of reaction. The degree of substitution (DS), the Fourier-transformed infrared spectroscopy (FTIR), the X-ray diffractograms, the thermal, morphological, and pasting properties, and the swelling power and solubility of native and acetylated starches were evaluated. The DS of the low-amylose rice starch was higher than the DS of the medium- and the high-amylose rice starches. The introduction of acetyl groups was confirmed by FTIR spectroscopy. The acetylation treatment reduced the crystallinity, the viscosity, the swelling power, and the solubility of rice starch; however, there was an increase in the thermal stability of rice starch modified by acetylation. PMID:24528747

  19. Effect of Genistein and L-Carnitine and Their Combination on Gene Expression of Hepatocyte HMG-COA Reductase and LDL Receptor in Experimental Nephrotic Syndrome

    PubMed Central

    YOUSEFINEJAD, Abbas; SIASSI, Fereydoon; MIRSHAFIEY, Abbas; ESHRAGHIAN, Mohammad-Reza; KOOHDANI, Fariba; JAVANBAKHT, Mohammad Hassan; SEDAGHAT, Reza; RAMEZANI, Atena; ZAREI, Mahnaz; DJALALI, Mahmoud

    2015-01-01

    Background: Nephrotic syndrome is a disorder that leads to hyperlipidemia. L-carnitine and genistein can effect on lipid metabolism and the syndrome. In the present study, we have delved into the separate and the twin-effects of L-carnitine and genistein on the gene expressions of HMG-COA reductase and LDL receptor in experimental nephrotic syndrome. Methods: In this controlled experimental study, 50 male Sprague–Dawley rats were randomly divided into five groups: NC (normal-control), PC (patient-control), LC (L-carnitine), G (genistein), LCG (L-carnitine-genistein). Adriamycin was used for inducing nephrotic syndrome and the spot urine samples and urine protein-to-creatinine ratio were measured. Hepatocytic RNA was extracted and real-time PCR was used for HMG-COA Reductase and LDL receptor gene Expression measurement. Results: The final weight of the patients groups were lower than the NC group (P=0.001), and weight gain of the NC group was higher than the other groups (P<0.001). The proteinuria and urine protein-to-creatinine ratio showed significant differences between PC group and LC, G and LCG groups at week 7 (P<0.001). The expression of HMGCOA Reductase mRNA down regulated in LC, G and LCG groups in comparison with PC group (P<0.001). ?CT of LDLr mRNA showed significant differences between the PC group and the other patient groups (P<0.001). Conclusion: This study shows a significant decreasing (P<0.001) and non-significant increasing trend in HMG-COA Reductase and LDLr gene expression, respectively, and synergistic effect of L-carnitine and genistein on these genes in experimental nephrotic syndrome. PMID:26576346

  20. ISOLATION AND UTILIZATION OF ACETYL-CoA CARBOXYLASE FROM OIL PALM (Elaeis guineensis) MESOCARP Keywords: acetyl-CoA carboxylase, gene isolation, biotin carboxylase, biodegradable plastics, oil palm.

    E-print Network

    Sinskey, Anthony J.

    ISOLATION AND UTILIZATION OF ACETYL-CoA CARBOXYLASE FROM OIL PALM (Elaeis guineensis) MESOCARP 97 Keywords: acetyl-CoA carboxylase, gene isolation, biotin carboxylase, biodegradable plastics, oil palm; Accepted: 7 November 2007. ISOLATION AND UTILIZATION OF ACETYL-CoA CARBOXYLASE FROM OIL PALM (Elaeis

  1. Alterations of the degree of xylan acetylation in Arabidopsis xylan mutants

    PubMed Central

    Lee, Chanhui; Teng, Quincy; Zhong, Ruiqin; Ye, Zheng-Hua

    2014-01-01

    Xylan is the second most abundant polysaccharide in secondary walls of dicot plants and one of its structural features is the high degree of acetylation of xylosyl residues. In Arabidopsis, about 60% of xylosyl residues in xylan are acetylated and the biochemical mechanisms controlling xylan acetylation are largely unknown. A recent report by Yuan et al. (2013) revealed the essential role of a DUF231 domain-containing protein, ESKIMO1 (ESK1), in xylan acetylation in Arabidopsis as the esk1 mutation caused specific reductions in the degree of xylan 2-O or 3-O-monoacetylation and in the activity of xylan acetyltransferase. Interestingly, the esk1 mutation also resulted in an elevation of glucuronic acid (GlcA) substitutions in xylan. Since GlcA substitutions in xylan occur at the O-2 position of xylosyl residues, it is plausible that the increase in GlcA substitutions in the esk1 mutant is attributed to the reduction in acetylation at O-2 of xylosyl residues, which renders more O-2 positions available for GlcA substitutions. Here, we investigated the effect of removal of GlcA substitutions on the degree of xylan acetylation. We found that a complete loss of GlcA substitutions in the xylan of the gux1/2/3 triple mutant led to a significant increase in the degree of xylan acetylation, indicating that xylan acetyltransferases and glucuronyltransferases compete with each other for xylosyl residues for their acetylation or GlcA substitutions in planta. In addition, detailed structure analysis of xylan from the rwa1/2/3/4 quadruple mutant revealed that it had a uniform reduction of acetyl substitutions at different positions of the xylosyl residues, which is consistent with the proposed role of RWAs as acetyl coenzyme A transporters. The significance of these findings is discussed. PMID:24518588

  2. Partially Acetylated Dendrimer-Entrapped Gold Nanoparticles with Reduced Cytotoxicity for Gene Delivery Applications.

    PubMed

    Hou, Wenxiu; Wen, Shihui; Guo, Rui; Wang, Shige; Shi, Xiangyang

    2015-06-01

    Gene therapy has been concerned to be one of the most promising strategies to treat many diseases such as genetic disorders and cancer. However, design of safe and highly efficient gene delivery vectors still remains a great challenge. In this work, we report the use of partially acetylated dendrimer-entrapped gold nanoparticles (Au DENPs) for gene delivery applications. First, partially acetylated generation 5 poly(amidoamine) dendrimers with different acetylation degrees were used as templates to synthesize Au DENPs. The formed Au DENPs were characterized via different techniques and were used to complex two different pDNAs encoding luciferase (Luc) and enhanced green fluorescent protein (EGFP), respectively for gene transfection studies. The Au DENPs/pDNA polyplexes with different N/P ratios were characterized by gel retardation assay, dynamic light scattering, and zeta potential measurements, and the gene transfection efficiency was evaluated by Luc assay and fluorescence microscopic imaging of the EGFP expression, respectively. We show that despite the partial acetylation (5, 10, 20, and 30 acetyl groups per G5 dendrimer according to the molar feeding ratio), all acetylated Au DENPs are able to effectively compact the pDNA and transfect genes to the model cell line with high efficiency comparable to the Au DENPs without acetylation. With the proven less cytotoxicity of the partially acetylated Au DENPs than that of non-acetylated Au DENPs by cell viability assay, the developed partially acetylated Au DENPs may serve as promising vectors for safe gene delivery applications with non-compromised gene transfection efficiency. PMID:26369017

  3. The acetyl group deficit at the onset of contraction in ischaemic canine skeletal muscle

    PubMed Central

    Roberts, Paul A; Loxham, Susan J G; Poucher, Simon M; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L

    2002-01-01

    Considerable debate surrounds the identity of the precise cellular site(s) of inertia that limit the contribution of mitochondrial ATP resynthesis towards a step increase in workload at the onset of muscular contraction. By detailing the relationship between canine gracilis muscle energy metabolism and contractile function during constant-flow ischaemia, in the absence (control) and presence of pyruvate dehydrogenase complex activation by dichloroacetate, the present study examined whether there is a period at the onset of contraction when acetyl-coenzyme A (acetyl-CoA) availability limits mitochondrial ATP resynthesis, i.e. whether a limitation in mitochondrial acetyl group provision exists. Secondly, assuming it does exist, we also aimed to identify the mechanism by which dichloroacetate overcomes this ‘acetyl group deficit’. No increase in pyruvate dehydrogenase complex activation or acetyl group availability occurred during the first 20 s of contraction in the control condition, with strong trends for both acetyl-CoA and acetylcarnitine to actually decline (indicating the existence of an acetyl group deficit). Dichloroacetate increased resting pyruvate dehydrogenase complex activation, acetyl-CoA and acetylcarnitine by ?20-fold (P < 0.01), ?3-fold (P < 0.01) and ?4-fold (P < 0.01), respectively, and overcame the acetyl group deficit at the onset of contraction. As a consequence, the reliance upon non-oxidative ATP resynthesis was reduced by ?40 % (P < 0.01) and tension development was increased by ?20 % (P < 0.05) following 5 min of contraction. The present study has demonstrated, for the first time, the existence of an acetyl group deficit at the onset of contraction and has confirmed the metabolic and functional benefits to be gained from overcoming this inertia. PMID:12381829

  4. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveals Substrate Specificity of Protein Acetyltransferases

    SciTech Connect

    Crosby, Heidi A; Pelletier, Dale A; Hurst, Gregory {Greg} B; Escalante-Semerena, Jorge C

    2012-01-01

    Background: Protein acetylation is widespread in prokaryotes. Results: Six new acyl-CoA synthetases whose activities are controlled by acetylation were identified, and their substrate preference established. A new protein acetyltransferase was also identified and its substrate specificity determined. Conclusion: Protein acetyltransferases acetylate a conserved lysine residue in protein substrates. Significance: The R. palustris Pat enzyme specifically acetylates AMP-forming acyl-CoA synthetases and regulates fatty acid metabolism.

  5. Improved hydrolysis process for the saccharification of biomass

    SciTech Connect

    Prieto, S.; Clausen, E.C.; Gaddy, J.L.; Scott, C.D.

    1986-01-01

    A single-step concentrated H/sub 2/SO/sub 4/ hydrolysis process for the conversion of lignocellulosic material to monomeric sugars was developed. The conversion of corn stover to reducing sugars using 70% H/sub 2/SO/sub 4/ at 60 degrees for 5-10 minutes yields a maximum conversion of 70% when feeding a 10% solids feed. When the hydrolysis is carried out with a 2% stover feed the conversion of stover to monomers was 90% in just over 20 minutes. A modified single-step hydrolysis using a 10% solids feed was also developed using 70% H/sub 2/SO/sub 4/ at 50 degrees for 10-20 minutes, followed by dilution and further reaction. When the initial hydrolysis is followed by a 30-40% H/sub 2/SO/sub 4/ hydrolysis at 100 degrees for 20 minutes total monomeric sugar conversion results. Analysis of the hydrolyzates from both the single-step and the modified single-step process show acceptable levels of both furfural and hydroxymethylfurfural. When using the modified single-step process with equal to or less than 37% H2SO4, the furfural concentration reached only 0.027% and the hydroxymethylfurfural concentration was zero.

  6. Benefits from Tween during enzymic hydrolysis of corn stover

    SciTech Connect

    Kaar, W.E.; Holtzapple, M.T.

    1998-08-20

    Corn stover is a potential substrate for fermentation processes. Previous work with corn stover demonstrated that lime pretreatment rendered it digestible by cellulase; however, high sugar yields required very high enzyme loadings. Because cellulase is a significant cost in biomass conversion processes, the present study focused on improving the enzyme efficiency using Tween 20 and Tween 80; Tween 20 is slightly more effective than Tween 80. The recommended pretreatment conditions for the biomass remained unchanged regardless of whether Tween was added during the hydrolysis. The recommended Tween loading was 0.15 g Tween/g dry biomass. The critical relationship was the Tween loading on the biomass, not the Tween concentration in solution. The 72-h enzymic conversion of pretreated corn stover using 5 FPU cellulase/g dry biomass at 50 C with Tween 20 as part of the medium was 0.85 g/g for cellulose, 0.66 g/g for xylan, and 0.75 for total polysaccharide; addition of Tween improved the cellulose, xylan, and total polysaccharide conversions by 42, 40, and 42%, respectively. Kinetic analyses showed that Tween improved the enzymic absorption constants, which increased the effective hydrolysis rate compared to hydrolysis without Tween. Furthermore, Tween prevented thermal deactivation of the enzymes, which allows for the kinetic advantage of higher temperature hydrolysis. Ultimate digestion studies showed higher conversions for samples containing Tween, indicating a substrate effect. It appears that Tween improves corn stover hydrolysis through three effects: enzyme stabilizer, lignocellulose disrupter, and enzyme effector.

  7. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes.

    PubMed

    Qing, Qing; Yang, Bin; Wyman, Charles E

    2010-12-01

    Typically, the enzymatic hydrolysis rate of lignocellulosic biomass is fast initially but then slows down more rapidly than can be explained by just consumption of substrate. Although several factors including enzyme inhibition, enzyme deactivation, a drop in substrate reactivity, or nonproductive binding of enzyme to lignin could be responsible for this loss of effectiveness, we recently reported evidence that xylose, xylan, and xylooligomers dramatically decrease conversion rates and yields, but clarification was still needed for the magnitude of their effect. Therefore, in this study, xylan and various xylooligomers were added to Avicel hydrolysis at low enzyme loadings and found to have a greater effect than adding equal amounts of xylose derived from these materials or when added separately. Furthermore, xylooligomers were more inhibitory than xylan or xylose in terms of a decreased initial hydrolysis rate and a lower final glucose yield even for a low concentration of 1.67 mg/ml. At a higher concentration of 12.5mg/ml, xylooligomers lowered initial hydrolysis rates of Avicel by 82% and the final hydrolysis yield by 38%. Mixed DP xylooligomers showed strong inhibition on cellulase enzymes but not on beta-glucosidase enzymes. By tracking the profile change of xylooligomers, a large portion of the xylooligomers was found to be hydrolyzed by Spezyme CP enzyme preparations, indicating competitive inhibition by mixed xylooligomers. A comparison among glucose sugars and xylose sugars also showed that xylooligomers were more powerful inhibitors than well-established glucose and cellobiose. PMID:20708404

  8. Enzymatic hydrolysis of cellulose and various pretreated wood fractions

    SciTech Connect

    Saddler, J.N.; Brownell, H.H.; Clermont, L.P.; Levitin, N.

    1982-06-01

    Three strains of Trichoderma-Trichoderma reesei C30, Trichoderma reesei QM9414, and Trichoderma species E58-were used to study the enzymatic hydrolysis of pretreated wood substrates. Each of the culture filtrates was incubated with a variety of commercially prepared cellulose substrates and pretreated wood substrates. Solka floc was the most easily degraded commercial cellulose. The enzyme accessibility of steam-exploded samples which has been alkali extracted and then stored wet decreased with the duration of the steam treatment. Air drying reduced the extent of hydrolysis of all the samples but had a greater effect on the samples which had previously shown the greatest hydrolysis. Mild pulping using 2% chlorite increased the enzymatic hydrolysis of all the samples. Steam explosion was shown to be an excellent pretreatment method for aspen wood and was much superior to dilute nitric acid pretreatment. The results indicate that the distribution of the lignin as well as the surface area of the cellulosic substrate are important features in enzymatic hydrolysis. (Refs 17).

  9. Enzymatic hydrolysis of fractionated products from oil thermally oxidated

    SciTech Connect

    Yashida, H.; Alexander, J.C.

    1983-01-01

    Enzymatic hydrolysis of the acylglycerol products obtained from thermally oxidized vegetable oils was studied. Corn, sunflower and soybean oils were heated in the laboratory at 180/sup 0/C for 50, 70 and 100 hr with aeration and directly fractionated by silicic acid column chromatography. By successive elution with 20%, then 60% isopropyl ether in n-hexane, and diethyl ether, the thermally oxidized oils were separated into three fractions: the nonpolar fraction (monomeric compounds), slightly polar fraction (dimeric compounds), and polar fraction comprising oligomeric compounds. Enzymatic hydrolysis with pancreatic lipase showed that the monomers were hydrolyzed as rapidly as the corresponding unheated oils, the dimers much more slowly, and the oligomeric compounds barely at all. Overall, the hydrolysis of the dimers was less than 23% of that for the monomers, with small differences among the oils. Longer heating periods resulted in greater reductions in hydrolysis of the dimeric compounds. These results suggest that the degree of enzymatic hydrolysis of the fractionated acylglycerol compounds is related to differences in the thermal oxidative deterioration, and amounts of polar compounds in the products. (33 Refs.)

  10. Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method.

    PubMed Central

    Munnecke, D M

    1976-01-01

    A crude cell extract from a mixed bacterial culture growing on parathion, an organophosphate insecticide, hydrolyzed parathion (21 C) at a rate of 416 nmol/min per mg of protein. This rate of enzymatic hydrolysis, when compared with chemical hydrolysis by 0.1 N sodium hydroxide at 40 C, was 2, 450 times faster. Eight of 12 commonly used organophosphate insecticides were enzymatically hydrolyzed with this enzyme preparation at rates ranging from 12 to 1,360 nmol/min per mg of protein. Seven pesticides were hydrolyzed at rates significantly higher (40 to 1,005 times faster) than chemical hydrolysis. The pH optimum for enzymatic hydrolysis of the eight pesticides ranged from 8.5 to 9.5, with less than 50% of maximal activity expressed at pH 7.0. Maximal enzyme activity occurred at 35 C. The crude extract lost its activity at the rate of only 0.75%/day when stored at 6 C. Eight organic solvents, ranging from methanol to hexane, at low concentrations stimulated enzymatic hydrolysis by 3 to 20%, whereas at higher concentrations (1,000 mg/liter) they inhibited the reaction (9 to 50%). Parathion metabolites p-nitrophenol, hydroquinone, and diethylthiophosphoric acid, at up to 100-mg/liter concentrations, did not significantly influence enzyme activity. PMID:9901

  11. Lactose Hydrolysis in Milk and Dairy Whey Using Microbial ?-Galactosidases

    PubMed Central

    Dutra Rosolen, Michele; Gennari, Adriano; Volpato, Giandra; Volken de Souza, Claucia Fernanda

    2015-01-01

    This work aimed at evaluating the influence of enzyme concentration, temperature, and reaction time in the lactose hydrolysis process in milk, cheese whey, and whey permeate, using two commercial ?-galactosidases of microbial origins. We used Aspergillus oryzae (at temperatures of 10 and 55°C) and Kluyveromyces lactis (at temperatures of 10 and 37°C) ?-galactosidases, both in 3, 6, and 9?U/mL concentrations. In the temperature of 10°C, the K. lactis ?-galactosidase enzyme is more efficient in the milk, cheese whey, and whey permeate lactose hydrolysis when compared to A. oryzae. However, in the enzyme reaction time and concentration conditions evaluated, 100% lactose hydrolysis was not reached using the K. lactis ?-galactosidase. The total lactose hydrolysis in whey and permeate was obtained with the A. oryzae enzyme, when using its optimum temperature (55°C), at the end of a 12?h reaction, regardless of the enzyme concentration used. For the lactose present in milk, this result occurred in the concentrations of 6 and 9?U/mL, with the same time and temperature conditions. The studied parameters in the lactose enzymatic hydrolysis are critical for enabling the application of ?-galactosidases in the food industry. PMID:26587283

  12. Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri? †

    PubMed Central

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K.

    2008-01-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0? = ?410 mV) with NADH (E0? = ?320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0? = ?10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper. PMID:17993531

  13. Impact of ?-amylase combined with hydrochloric acid hydrolysis on structure and digestion of waxy rice starch.

    PubMed

    Li, Hongyan; Zhu, Yanqiao; Jiao, Aiquan; Zhao, Jianwei; Chen, Xiaoming; Wei, Benxi; Hu, Xiuting; Wu, Chunsen; Jin, Zhengyu; Tian, Yaoqi

    2013-04-01

    The structure and in vitro digestibility of native waxy rice starch by the combined hydrolysis of ?-amylase and hydrochloric acid were investigated in this study. The combined hydrolysis technique generated higher hydrolysis rate and extent than the enzymatic hydrolysis. The granular appearance and chromatograph profile demonstrated that ?-amylase and hydrochloric acid exhibited different patterns of hydrolysis. The rise in the ratio of absorbance 1047/1022cm(-1), the melting temperature range (Tc-To), and the melting enthalpy (?H) were observed during the combined hydrolysis. These results suggest that ?-amylase simultaneously cleaves the amorphous and crystalline regions, whereas the amorphous regions of starch granules are preferentially hydrolyzed during the acid hydrolysis. Furthermore, the combined hydrolysis increased rapidly digestible starch (RDS) while decreased slowly digestible starch (SDS) and resistant starch (RS), indicating that the hydrolysis mode affected the digestion property of native waxy rice starch. PMID:23357798

  14. Acetylated Hyaluronic Acid: Enhanced Bioavailability and Biological Studies

    PubMed Central

    Saturnino, Carmela; Sinicropi, Maria Stefania; Puoci, Francesco

    2014-01-01

    Hyaluronic acid (HA), a macropolysaccharidic component of the extracellular matrix, is common to most species and it is found in many sites of the human body, including skin and soft tissue. Not only does HA play a variety of roles in physiologic and in pathologic events, but it also has been extensively employed in cosmetic and skin-care products as drug delivery agent or for several biomedical applications. The most important limitations of HA are due to its short half-life and quick degradation in vivo and its consequently poor bioavailability. In the aim to overcome these difficulties, HA is generally subjected to several chemical changes. In this paper we obtained an acetylated form of HA with increased bioavailability with respect to the HA free form. Furthermore, an improved radical scavenging and anti-inflammatory activity has been evidenced, respectively, on ABTS radical cation and murine monocyte/macrophage cell lines (J774.A1). PMID:25114930

  15. Acetylation of barnyardgrass starch with acetic anhydride under iodine catalysis.

    PubMed

    Bartz, Josiane; Goebel, Jorge Tiago; Giovanaz, Marcos Antônio; Zavareze, Elessandra da Rosa; Schirmer, Manoel Artigas; Dias, Alvaro Renato Guerra

    2015-07-01

    Barnyardgrass (Echinochloa crus-galli) is an invasive plant that is difficult to control and is found in abundance as part of the waste of the paddy industry. In this study, barnyardgrass starch was extracted and studied to obtain a novel starch with potential food and non-food applications. We report some of the physicochemical, functional and morphological properties as well as the effect of modifying this starch with acetic anhydride by catalysis with 1, 5 or 10mM of iodine. The extent of the introduction of acetyl groups increased with increasing iodine levels as catalyst. The shape of the granules remained unaltered, but there were low levels of surface corrosion and the overall relative crystallinity decreased. The pasting temperature, enthalpy and other gelatinisation temperatures were reduced by the modification. There was an increase in the viscosity of the pastes, except for the peak viscosity, which was strongly reduced in 10mM iodine. PMID:25704707

  16. Genome-scale acetylation-dependent histone eviction during spermatogenesis.

    PubMed

    Goudarzi, Afsaneh; Shiota, Hitoshi; Rousseaux, Sophie; Khochbin, Saadi

    2014-10-01

    A genome-wide histone hyperacetylation is known to occur in the absence of transcription in haploid male germ cells, spermatids, before and during the global histone eviction and their replacement by non-histone DNA-packaging proteins. Although the occurrence of this histone hyperacetylation has been correlated with histone removal for a long time, the underlying mechanisms have remained largely obscure. Important recent discoveries have not only shed light on how histone acetylation could drive a subsequent transformation in genome organization but also revealed that the associated nucleosome dismantlement is a multi-step process, requiring the contribution of histone variants, critical destabilizing histone modifications and chromatin readers, including Brdt, working together to achieve the full packaging of the male genome, indispensable for the propagation of life. PMID:24613302

  17. Acetylated dammarane-type bisdesmosides from Combretum inflatum.

    PubMed

    Williams, Russell B; Norman, Vanessa L; Goering, Matt G; O'Neil-Johnson, Mark; Eldridge, Gary R; Starks, Courtney M

    2013-09-27

    The first study of the chemical constituents of Combretum inflatum has resulted in the isolation of seven new acetylated dammarane-type bisdesmosides (1-7). Their structures were determined from microgram quantities on hand using Bruker BioSpin TCI 1.7 mm MicroCryoProbe technology, ESIMS, and comparison to data found in the literature. Compounds 1-7 were screened for inhibition of an Escherichia coli strain UTI89 biofilm, MRSA inhibition, and cytotoxicity in NCI-H460 human lung cancer cells. Compounds 3-7 reduced the growth of MRSA at 16 ?g/mL by 71-45%, and compound 7 had an IC?? value of 3.9 ?M in NCI-H460. PMID:23978065

  18. Acetylated Lysozyme as Impurity in Lysozyme Crystals: Constant Distribution Coefficient

    NASA Technical Reports Server (NTRS)

    Thomas, B. R.; Chernov, A. A.

    2000-01-01

    Hen egg white lysozyme (HEWL) was acetylated to modify molecular charge keeping the molecular size and weight nearly constant. Two derivatives, A and B, more and less acetylated, respectively, were obtained, separated, purified and added to the solution from which crystals of tetragonal HEWL crystals were grown. Amounts of the A or B impurities added were 0.76, 0.38 and 0.1 milligram per millimeter while HEWL concentration were 20, 30 and 40 milligram per milliliter. The crystals grown in 18 experiments for each impurity were dissolved and quantities of A or B additives in these crystals were analyzed by cation exchange high performance liquid chromatography. All the data for each set of 18 samples with the different impurity and regular HEWL concentrations is well described by one distribution coefficient K = 2.15 plus or minus 0.13 for A and K = 3.42 plus or minus 0.25 for B. The observed independence of the distribution coefficient on both the impurity concentration and supersaturation is explained by the dilution model described in this paper. It shows that impurity adsorption and incorporation rate is proportional to the impurity concentration and that the growth rate is proportional to the crystallizing protein in solution. With the kinetic coefficient for crystallization, beta = 5.10(exp -7) centimeters per second, the frequency at which an impurity molecule near the growing interface irreversibly joins a molecular site on the crystal was found to be 3 1 per second, much higher than the average frequency for crystal molecules. For best quality protein crystals it is better to have low microheterogeneous protein impurity concentration and high supers aturation.

  19. Granular starch hydrolysis for fuel ethanol production

    NASA Astrophysics Data System (ADS)

    Wang, Ping

    Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (?48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (?90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea addition were evaluated in the dry grind process using GSHE (GSH process). Addition of proteases resulted in higher ethanol concentrations (15.2 to 18.0% v/v) and lower (DDGS) yields (32.9 to 45.8% db) compared to the control (no protease addition). As level of proteases and GSHE increased, ethanol concentrations increased and DDGS yields decreased. Proteases addition reduced required GSHE dose. Ethanol concentrations with protease addition alone were higher than with urea or with addition of both protease and urea. Corn endosperm consists of soft and hard endosperm. More exposed starch granules and rough surfaces produced from soft endosperm compared to hard endosperm will create more surface area which will benefit the solid phase hydrolysis as used in GSH process. In this study, the effects of protease, urea, endosperm hardness and GSHE levels on the GSH process were evaluated. Soft and hard endosperm materials were obtained by grinding and sifting flaking grits from dry milling pilot plant. Soft endosperm resulted in higher ethanol concentrations (at 72 hr) compared to ground corn or hard endosperm. Addition of urea increased ethanol concentrations (at 72 hr) for soft and hard endosperm. The effect of protease addition on increasing ethanol concentrations and fermentation rates was more predominant for soft endosperm, less for hard endosperm and least for ground corn. The GSH process with protease resulted in higher ethanol concentration than that with urea. For fermentation of soft endosperm, GSHE dose can be reduced. Ground corn fermented faster at the beginning than hard and soft endosperm due to the presence of inherent nutrients which enhanced yeast growth.

  20. Base hydrolysis and hydrothermal processing of PBX-9404 explosive

    SciTech Connect

    Sanchez, J.A.; Flesner, R.L.; Spontarelli, T.; Dell`Orco, P.C.; Kramer, J.F.

    1994-12-31

    Base hydrolysis in combination with hydrothermal processing has been proposed as an environmentally acceptable alternative to open burning/open detonation for degradation and destruction of high explosives. In this report, we examine gaseous and aqueous products of base hydrolysis of the HMX-based plastic bonded explosive, PBX-9404. We also examine products from the subsequent hydrothermal treatment of the base hydrolysate. The gases produced from hydrolysis of PBX-9404 are ammonia, nitrous oxide, and nitrogen. Major aqueous products are sodium formate, acetate, nitrate, and nitrite, but not all carbon products have been identified. Hydrothermal processing of base hydrolysate destroyed up to 98% of the organic carbon in solution, and higher destruction efficiencies are possible. Major gas products detected from hydrothermal processing were nitrogen and nitrous oxide.

  1. Base hydrolysis and hydrothermal processing of PBX-9404 explosive

    SciTech Connect

    Sanchez, J.A.; Flesner, R.L.; Spontarelli, T.; Dell`Orco, P.C.; Kramer, J.F.

    1995-04-01

    Base hydrolysis in combination with hydrothermal processing has been proposed as an environmentally acceptable alternative to open burning/open detonation for degradation and destruction of high explosives. In this report, the authors examine gaseous and aqueous products of base hydrolysis of the HMX-based plastic bonded explosive, PBX-9404. The authors also examine products from the subsequent hydrothermal treatment of the base hydrolysate. The gases produced from hydrolysis of PBX-9404 are ammonia, nitrous oxide, and nitrogen. Major aqueous products are sodium formate, acetate, nitrate, and nitrite, but not all carbon products have been identified. Hydrothermal processing of base hydrolysate destroyed up to 98% of the organic carbon in solution, and higher destruction efficiencies are possible. Major gas products detected from hydrothermal processing were nitrogen and nitrous oxide.

  2. Base hydrolysis and supercritical water oxidation of PBX-9404

    SciTech Connect

    Flesner, R.L.; Spontarelli, T.; Dell`Orco, P.C.; Kramer, J.F.; Sanchez, J.A.

    1994-11-09

    Base hydrolysis in combination with hydrothermal processing has been proposed as an environmentally acceptable alternative to open burning/open detonation for degradation and destruction of high explosives. In this report, the authors examine gaseous and aqueous products of base hydrolysis of the HMX-based plastic bonded explosive, PBX-9404. The authors also examine products from the subsequent hydrothermal treatment of the base hydrolysate. The gases produced from hydrolysis of PBX-9404 are ammonia, nitrous oxide, and nitrogen. Major aqueous products are sodium formate, acetate, nitrate, and nitrite, but not all carbon products have been identified. Hydrothermal processing of base hydrolysate destroyed up to 98% of the organic carbon in solution, and higher destruction efficiencies are possible. Major gas products detected from hydrothermal processing were nitrogen and nitrous oxide.

  3. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase.

    PubMed

    Ghattas, Nesrine; Abidi, Ferid; Galai, Said; Marzouki, M Nejib; Salah, Abderraouf Ben

    2014-07-01

    Lipase extracted from Rhizopus oryzae was immobilized in alginate gel beads. The effects of the immobilization conditions, such as, alginate concentration, CaCl2 concentration and amount of initial enzyme on retained activity (specific activity ratio of entrapped active lipase to free lipase) were investigated. The optimal conditions for lipase entrapment were determined: 2% (w/v) alginate concentration, 100mM CaCl2 and enzyme ratio of 2000IU/mL.In such conditions, immobilized lipase by inclusion in alginate showed a highest stability and activity, on olive oil hydrolysis reaction where it could be reused for 10 cycles. After 15min of hydrolysis reaction, the mass composition of monoolein, diolein and triolein were about 78%, 10% and 12%. Hydrolysis' products purification by column chromatography lead to a successful separation of reaction compounds and provide a pure fraction of monoolein which is considered as the widest used emulsifier in food and pharmaceutical industries. PMID:24755261

  4. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications

    PubMed Central

    Ghanta, Sirisha; Grossmann, Ruth E.; Brenner, Charles

    2014-01-01

    Hormone systems evolved over 500 million years of animal evolution to motivate feeding behavior and convert excess calories to fat. These systems produced vertebrates, including humans, who are famine-resistant but sensitive to obesity in environments of persistent overnutrition. We looked for cell-intrinsic metabolic features, which might have been subject to an evolutionary drive favoring lipogenesis. Mitochondrial protein acetylation appears to be such a system. Because mitochondrial acetyl-coA is the central mediator of fuel oxidation and is saturable, this metabolite is postulated to be the fundamental indicator of energy excess, which imprints a memory of nutritional imbalances by covalent modification. Fungal and invertebrate mitochondria have highly acetylated mitochondrial proteomes without an apparent mitochondrially-targeted protein lysine acetyltransferase. Thus, mitochondrial acetylation is hypothesized to have evolved as a nonenzymatic phenomenon. Because the pKa of a nonperturbed Lys is 10.4 and linkage of a carbonyl carbon to an ? amino group cannot be formed with a protonated Lys, we hypothesize that acetylation occurs on residues with depressed pKa values, accounting for the propensity of acetylation to hit active sites and suggesting that regulatory Lys residues may have been under selective pressure to avoid or attract acetylation throughout animal evolution. In addition, a shortage of mitochondrial oxaloacetate under ketotic conditions can explain why macronutrient insufficiency also produces mitochondrial hyperacetylation. Reduced mitochondrial activity during times of overnutrition and undernutrition would improve fitness by virtue of resource conservation. Micronutrient insufficiency is predicted to exacerbate mitochondrial hyperacetylation. Nicotinamide riboside and Sirt3 activity are predicted to relieve mitochondrial inhibition. PMID:24050258

  5. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications.

    PubMed

    Ghanta, Sirisha; Grossmann, Ruth E; Brenner, Charles

    2013-01-01

    Hormone systems evolved over 500 million years of animal natural history to motivate feeding behavior and convert excess calories to fat. These systems produced vertebrates, including humans, who are famine-resistant but sensitive to obesity in environments of persistent overnutrition. We looked for cell-intrinsic metabolic features, which might have been subject to an evolutionary drive favoring lipogenesis. Mitochondrial protein acetylation appears to be such a system. Because mitochondrial acetyl-coA is the central mediator of fuel oxidation and is saturable, this metabolite is postulated to be the fundamental indicator of energy excess, which imprints a memory of nutritional imbalances by covalent modification. Fungal and invertebrate mitochondria have highly acetylated mitochondrial proteomes without an apparent mitochondrially targeted protein lysine acetyltransferase. Thus, mitochondrial acetylation is hypothesized to have evolved as a nonenzymatic phenomenon. Because the pKa of a nonperturbed Lys is 10.4 and linkage of a carbonyl carbon to an ? amino group cannot be formed with a protonated Lys, we hypothesize that acetylation occurs on residues with depressed pKa values, accounting for the propensity of acetylation to hit active sites and suggesting that regulatory Lys residues may have been under selective pressure to avoid or attract acetylation throughout animal evolution. In addition, a shortage of mitochondrial oxaloacetate under ketotic conditions can explain why macronutrient insufficiency also produces mitochondrial hyperacetylation. Reduced mitochondrial activity during times of overnutrition and undernutrition would improve fitness by virtue of resource conservation. Micronutrient insufficiency is predicted to exacerbate mitochondrial hyperacetylation. Nicotinamide riboside and Sirt3 activity are predicted to relieve mitochondrial inhibition. PMID:24050258

  6. A reactivity-selectivity study of the Friedel-Crafts acetylation of 3,3?-dimethylbiphenyl and the oxidation of the acetyl derivatives

    PubMed Central

    2012-01-01

    Background Friedel-Crafts acetylation is an important route to aromatic ketones, in research laboratories and in industry. The acetyl derivatives of 3,3?-dimethylbiphenyl (3,3?-dmbp) have applications in the field of liquid crystals and polymers and may be oxidized to the dicarboxylic acids and derivatives that are of interest in cancer treatment. Findings The effect of solvent and temperature on the selectivity of monoacetylation of 3,3’-dmbp by the Perrier addition procedure was studied using stoichiometric amounts of reagents. 4-Ac-3,3?-dmbp was formed almost quantitatively in boiling 1,2-dichloroethane and this is almost twice the yield hitherto reported. Using instead a molar ratio of substrate:AcCl:AlCl3 equal to 1:4:4 or 1:6:6 in boiling 1,2-dichloroethane, acetylation afforded 4,4?- and 4,6?-diacetyl-3,3?-dmbp in a total yield close to 100%. The acetyl derivatives were subsequently converted to the carboxylic acids by hypochlorite oxidation. The relative stabilities of the isomeric products and the corresponding ?-complexes were studied by DFT calculations and the data indicated that mono- and diacetylation followed different mechanisms. Conclusions Friedel-Crafts acetylation of 3,3?-dmbp using the Perrier addition procedure in boiling 1,2-dichloroethane was found to be superior to other recipes. The discrimination against the 6-acetyl derivative during monoacetylation seems to reflect a mechanism including an AcCl:AlCl3 complex or larger agglomerates as the electrophile, whereas the less selective diacetylations of the deactivated 4-Ac-3,3?-dmbp are suggested to include the acetyl cation as the electrophile. The DFT data also showed that complexation of intermediates and products with AlCl3 does not seem to be important in determining the mechanism. PMID:22682296

  7. Microwave-assisted hydrolysis of polysaccharides over polyoxometalate clusters.

    PubMed

    Tsubaki, Shuntaro; Oono, Kiriyo; Ueda, Tadaharu; Onda, Ayumu; Yanagisawa, Kazumichi; Mitani, Tomohiko; Azuma, Jun-ichi

    2013-09-01

    Polyoxometalate (POM) clusters were utilized as recyclable acid catalysts and microwave-absorbing agents for the microwave-assisted hydrolysis of corn starch and crystalline cellulose. Phosphotungstic (PW) and silicotungstic (SiW) acids showed high hydrolyzing activity, while phosphomolybdic acid (PMo) showed lower glucose stability. The PW catalyst could be recycled by ether extraction at least 4 times without changing its catalytic activity. The addition of PW could reduce the energy demand required for running the hydrolysis by 17-23%. The dielectric property of the aqueous PW solution was important for increasing the microwave-absorption capability of the reaction system and reducing the energy consumption. PMID:23859983

  8. Benzene/nitrous oxide flammability in the precipitate hydrolysis process

    SciTech Connect

    Jacobs, R A

    1989-09-18

    The HAN (hydroxylamine nitrate) process for destruction of nitrite in precipitate hydrolysis produces nitrous oxide (N2O) gas as one of the products. N2O can form flammable mixtures with benzene which is also present due to radiolysis and hydrolysis of tetraphenylborate. Extensive flame modeling and explosion testing was undertaken to define the minimum oxidant for combustion of N2O/benzene using both nitrogen and carbon dioxide as diluents. The attached memorandum interprets and documents the results of the studies.

  9. COA User's Guide

    SciTech Connect

    Fox, B.; Pautz, J.; Sellers, C.

    1999-01-28

    The Department of Energy (DOE) has one of the largest and most complete collections of information on crude oil composition that is available to the public. The computer program that manages this database of crude oil analyses has recently been rewritten to allow easier access to this information. This report describes how the new system can be accessed and how the information contained in the Crude Oil Analysis Data Bank can be obtained.

  10. Structural characterization of the acetylated heteroxylan from the natural hybrid Paulownia elongata/Paulownia fortunei.

    PubMed

    Gonçalves, Virgínia M F; Evtuguin, Dmitry V; Domingues, M Rosário M

    2008-02-01

    The heteroxylan from the hybrid Paulownia elongata/Paulownia fortunei is an O-acetyl-(4-O-methylglucurono)xylan with an acetylation degree (DS) of 0.59 and a molecular weight (M(w)) of 29 kDa. The heteroxylan backbone is composed by (1-->4)-linked beta-d-xylopyranosyl units (Xylp) partially ramified with terminal (1-->2)-linked 4-O-methyl-alpha-D-glucuronosyl (MeGlcpA) and a small proportion of alpha-D-glucuronosyl (GlcpA) residues in a molar ratio of Xylp:(MeGlcpA+GlcpA) of 20:1. Roughly half of the beta-D-xylopyranosyl units in the backbone are acetylated: 3-O-acetylated (22 mol %), 2-O-acetylated (23 mol %) or 2,3-di-O-acetylated (7 mol %). ESI-MS and MALDI-MS studies of partially hydrolyzed heteroxylan revealed a random distribution of O-Ac and MeGlcpA within the backbone. However, the frequency of substitution with O-Ac along the backbone is not uniform and the molecular regions that did not contain MeGlcpA substituents possessed an acetylation degree significantly lower than the average DS of the xylan. PMID:18039538

  11. Acetylation at lysine 71 inactivates superoxide dismutase 1 and sensitizes cancer cells to genotoxic agents

    PubMed Central

    Lu, Junyan; Xie, Zuoquan; Sun, Wenyi; Luo, Cheng; Ding, Jian; Yuan, Shengtao; Geng, Meiyu; Huang, Min

    2015-01-01

    Cancer cells are characterized by a high dependency on antioxidant enzymes to cope with the elevated rates of reactive oxygen species (ROS). Impairing antioxidant capacity in cancer cells disturbs the ROS homeostasis and exposes cancer cells to massive oxidative stress. In this study, we have discovered that superoxide dismutase 1 (SOD1), a major player in maintaining the cellular redox status, was acetylated at lysine 71. This acetylation, which was primarily deacetylated by Sirtuin 1 (SIRT1), suppressed the enzymatic activity of SOD1 via disrupting its association with copper chaperone for SOD1 (CCS). More importantly, genotoxic agents, such as camptothecin (CPT), induced SOD1 acetylation by disrupting its binding with SIRT1. CPT-induced SOD1 acetylation was stimulated by its provoked ROS, suggesting a positive feedback loop, in which ROS per se impairs the antioxidative defence of cancer cells and reinforces oxidative stress stimulated by anticancer agents. The intrinsic abundance of SOD1 acetylation varied among cancer cells, and high level of SOD1 acetylation was correlated with elevated sensitivity to CPT. Together, our findings gained mechanistic insights into how cytotoxic agents fine tune the intracellular ROS homeostasis to strengthen their anticancer effects, and suggested SOD1 acetylation as a candidate biomarker for predicting response to CPT-based chemotherapy. PMID:26008972

  12. Preparation, characterization and antioxidant activities of acetylated polysaccharides from Cyclocarya paliurus leaves.

    PubMed

    Xie, Jian-Hua; Zhang, Fan; Wang, Zhi-Jun; Shen, Ming-Yue; Nie, Shao-Ping; Xie, Ming-Yong

    2015-11-20

    In this study, polysaccharides extracted from Cyclocarya paliurus leaves were modified to obtain its three acetylated derivatives, Ac-CP1, Ac-CP2, and Ac-CP3. The physicochemical characteristics and antioxidant activities of acetylated derivatives were investigated. The results of chemical and FT-IR spectrum analysis showed differences between acetylated derivatives and native C. paliurus polysaccharide, which revealed that the acetylation were successful. Relative to unmodified polysaccharide, the protein contents of acetylated derivatives decreased, while carbohydrate values increased. The molecular weight (Mw) of acetylated derivatives were approximately 1.05-1.09×10(6)Da and were mainly composed of Ara, Gal, Glc, Man, GalA. Ac-CP1 with relatively low degree of substitution (0.13±0.01) exhibited excellent antioxidant activity in DPPH radical assay (95.21±0.89%), and also had strong chelating activity on ?-carotene-linoleic acid assay (34.64±2.07%) at 0.5mg/ml. In addition, scanning electron microscope (SEM) observations suggested that acetylation could change the morphology and structure of polysaccharides from C. paliurus leaves. PMID:26344318

  13. Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF.

    PubMed

    Chatterjee, Nilanjana; North, Justin A; Dechassa, Mekonnen Lemma; Manohar, Mridula; Prasad, Rashmi; Luger, Karolin; Ottesen, Jennifer J; Poirier, Michael G; Bartholomew, Blaine

    2015-12-01

    Signaling associated with transcription activation occurs through posttranslational modification of histones and is best exemplified by lysine acetylation. Lysines are acetylated in histone tails and the core domain/lateral surface of histone octamers. While acetylated lysines in histone tails are frequently recognized by other factors referred to as "readers," which promote transcription, the mechanistic role of the modifications in the lateral surface of the histone octamer remains unclear. By using X-ray crystallography, we found that acetylated lysines 115 and 122 in histone H3 are solvent accessible, but in biochemical assays they appear not to interact with the bromodomains of SWI/SNF and RSC to enhance recruitment or nucleosome mobilization, as previously shown for acetylated lysines in H3 histone tails. Instead, we found that acetylation of lysines 115 and 122 increases the predisposition of nucleosomes for disassembly by SWI/SNF and RSC up to 7-fold, independent of bromodomains, and only in conjunction with contiguous nucleosomes. Thus, in combination with SWI/SNF and RSC, acetylation of lateral surface lysines in the histone octamer serves as a crucial regulator of nucleosomal dynamics distinct from the histone code readers and writers. PMID:26416878

  14. Effect of acetyl esterification on physicochemical properties of chick pea (Cicer arietinum L.) starch.

    PubMed

    Yadav, Dev Kumar; Patki, Prakash Eknatharao

    2015-07-01

    Acetyl esterification of isolated Bengal gram starch was carried out using acetic anhydride as reactant. Modification of native starch at variant concentrations of acetic anhydride (6, 8 and 10 %, w/w) resulted in modified starch with 2.14, 3.35, 4.47% acetyl content and 0.082, 0.130 and 0.176° of substitution (DS) respectively. The acetyl esterification of native starch brought significant changes in physicochemical properties with respect to pasting behavior, granule morphology, thermal properties and retrogradation profile. Acetyl modifications of native starch increased swelling capacity, water absorption power and oil absorption capability by 17, 13 and 20 % respectively. Acetylation has decreased pasting temperature, pasting time, final viscosity and set back viscosity due to increase in amylsoe content, hydrogen bonding and porosity of starch granule. The acetyl modification was confirmed by IR spectra with the presence of an ester carbonyl group (C = O) at 1720.3 cm(-1) and absorption band at 174.8 cm(-1). In DSC evaluation there was decrease in To, Tp, Tc and ?H of acetylated starch than native starch which resulted in reduced retrogradation by 56 %. PMID:26139882

  15. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    NASA Technical Reports Server (NTRS)

    Komoszynski, M.; Bandurski, R. S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumption concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C]galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.

  16. Acetylation Regulates Survival of Salmonella enterica Serovar Typhimurium under Acid Stress.

    PubMed

    Ren, Jie; Sang, Yu; Ni, Jinjing; Tao, Jing; Lu, Jie; Zhao, Mingwen; Yao, Yu-Feng

    2015-09-01

    The ability to acetylate lysine residues is conserved across organisms, and acetylation of lysine residues plays important roles in various cellular functions. Maintaining intracellular pH homeostasis is crucial for the survival of enteric bacteria in the acidic gastric tract. It has been shown that eukaryotes can stabilize the intracellular pH by histone deacetylation. However, it remains unknown whether bacteria can utilize a reversible protein acetylation system to adapt to an acidic environment. Here we demonstrate that protein acetylation/deacetylation is critical for Salmonella enterica serovar Typhimurium to survive in an acidic environment. We used RNA sequencing to analyze the transcriptome patterns under acid stress and found that the transcriptional levels of genes involved in NAD(+)/NADH metabolism were significantly changed, leading to an increase in the intracellular NAD(+)/NADH ratio. Moreover, acid stress downregulated the transcriptional level of pat, encoding acetyltransferase, and genes cyaA and crp, encoding adenylate cyclase and cyclic AMP receptor protein, respectively, which are positive regulators of pat. It was found that the acid signal alerts the tricarboxylic acid cycle to promote the consumption of acetyl coenzyme A (Ac-CoA), an acetyl group donor for the acetylation reaction. A lowered acetylation level not only was the bacterial response to acid stress but also increased the survival rate of S. Typhimurium under acid stress. The pat deletion mutant had a more stable intracellular pH, which paralleled the higher survival rate after acid treatment compared with that of both the wild-type strain and the cobB (encoding deacetylase) deletion mutant. Our data indicate that bacteria can downregulate the protein acetylation level to prevent the intracellular pH from further falling under acid stress, and this work may provide a new perspective to understand the bacterial acid resistance mechanism. PMID:26070677

  17. Meta-analysis of the relationship between slow acetylation of N-acetyl transferase 2 and the risk of bladder cancer.

    PubMed

    An, Y; Li, H; Wang, K J; Liu, X H; Qiu, M X; Liao, Y; Huang, J L; Wang, X S

    2015-01-01

    The incidence of bladder cancer is closely associated with exposure to aromatic amines, that can cause cancer only after metabolic activation regulated by N-acetyl transferase 1 and 2 (NAT1 and NAT2). Many studies have indicated that slow acetylation of NAT2 increases the risk of bladder cancer. The major risk factor is tobacco smoke; however, some studies have failed to prove this. This study attempted to explore the correlation between NAT2 slow acetylation and bladder cancer risk through a meta-analysis of published case-control studies. Studies detecting NAT2 gene status in bladder cancer patients and healthy controls were retrieved from PubMed, Cochrane, EMchrane, CBM, and CNKI. We retrieved the data of cited articles and publications to identify and compare NAT2 gene in bladder cancer patients and healthy controls. The variables within and between the studies were also considered. The META module in the Stata v.6.0 software was used for data analysis. Twenty independent studies were enrolled in our meta-analysis according to the inclusion and exclusion criteria. Individual differences in the bladder cancer susceptibility were, in part, attributed to the effect of carcinogens. The merged odds ratio of the effect of slow acetylation on bladder cancer was 1.31 (95% confidence interval = 1.11-1.55). In conclusion, NAT2 slow acetylation state was associated with bladder cancer risk, and was shown to modestly increase the risk of bladder cancer. PMID:26681036

  18. Separate Pathways for O Acetylation of Polymeric and Monomeric Sialic Acids and Identification of Sialyl O-Acetyl Esterase in Escherichia coli K1

    PubMed Central

    Steenbergen, Susan M.; Lee, Young-Choon; Vann, Willie F.; Vionnet, Justine; Wright, Lori F.; Vimr, Eric R.

    2006-01-01

    O acetylation at carbon positions 7 or 9 of the sialic acid residues in the polysialic acid capsule of Escherichia coli K1 is catalyzed by a phase-variable contingency locus, neuO, carried by the K1-specific prophage, CUS-3. Here we describe a novel method for analyzing polymeric sialic acid O acetylation that involves the release of surface sialic acids by endo-N-acetylneuraminidase digestion, followed by fluorescent labeling and detection of quinoxalinone derivatives by chromatography. The results indicated that NeuO is responsible for the majority of capsule modification that takes place in vivo. However, a minor neuO-independent O acetylation pathway was detected that is dependent on the bifunctional polypeptide encoded by neuD. This pathway involves O acetylation of monomeric sialic acid and is regulated by another bifunctional enzyme, NeuA, which includes N-terminal synthetase and C-terminal sialyl O-esterase domains. A homologue of the NeuA C-terminal domain (Pm1710) in Pasteurella multocida was also shown to be an esterase, suggesting that it functions in the catabolism of acetylated environmental sialic acids. Our combined results indicate a previously unexpected complexity in the synthesis and catabolism of microbial sialic and polysialic acids. These findings are key to understanding the biological functions of modified sialic acids in E. coli K1 and other species and may provide new targets for drug or vaccine development. PMID:16923886

  19. Expression and purification of histone H3 proteins containing multiple sites of lysine acetylation using nonsense suppression.

    PubMed

    Young, Isaac A; Mittal, Chitvan; Shogren-Knaak, Michael A

    2016-02-01

    Lysine acetylation is a common post-translational modification, which is especially prevalent in histone proteins in chromatin. A number of strategies exist for generating histone proteins containing lysine acetylation, but an especially attractive approach is to genetically encode acetyl-lysine residues using nonsense suppression. This strategy has been successfully applied to single sites of histone acetylation. However, because histone acetylation can often occur at multiple sites simultaneously, we were interested in determining whether this approach could be extended. Here we show that we can express histone H3 proteins that incorporate up to four sites of lysine acetylation on the histone tail. Because the amount of expressed multi-acetylated histone is reduced relative to the wild type, a purification strategy involving affinity purification and ion exchange chromatography was optimized. This expression and purification strategy ultimately generates H3 histone uniformly acetylated at the desired position at levels and purity sufficient to assemble histone octamers. Histone octamers containing four sites of lysine acetylation were assembled into mononucleosomes and enzymatic assays confirmed that this acetylation largely blocks further acetylation by the yeast SAGA acetyltransferase complex. PMID:26481273

  20. 40 CFR 721.10152 - Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-, hydrolysis products with alkanol zirconium(4+) salt and silica, acetates (generic). 721.10152 Section 721... Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica... substance identified generically as oxirane, substituted silylmethyl-, hydrolysis products with...

  1. 40 CFR 721.10152 - Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, hydrolysis products with alkanol zirconium(4+) salt and silica, acetates (generic). 721.10152 Section 721... Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica... substance identified generically as oxirane, substituted silylmethyl-, hydrolysis products with...

  2. 40 CFR 721.10152 - Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-, hydrolysis products with alkanol zirconium(4+) salt and silica, acetates (generic). 721.10152 Section 721... Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica... substance identified generically as oxirane, substituted silylmethyl-, hydrolysis products with...

  3. 40 CFR 721.10152 - Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-, hydrolysis products with alkanol zirconium(4+) salt and silica, acetates (generic). 721.10152 Section 721... Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica... substance identified generically as oxirane, substituted silylmethyl-, hydrolysis products with...

  4. 40 CFR 721.10152 - Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-, hydrolysis products with alkanol zirconium(4+) salt and silica, acetates (generic). 721.10152 Section 721... Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica... substance identified generically as oxirane, substituted silylmethyl-, hydrolysis products with...

  5. An MRM-based workflow for absolute quantitation of lysine-acetylated metabolic enzymes in mouse liver.

    PubMed

    Xu, Leilei; Wang, Fang; Xu, Ying; Wang, Yi; Zhang, Cuiping; Qin, Xue; Yu, Hongxiu; Yang, Pengyuan

    2015-12-01

    As a key post-translational modification mechanism, protein acetylation plays critical roles in regulating and/or coordinating cell metabolism. Acetylation is a prevalent modification process in enzymes. Protein acetylation modification occurs in sub-stoichiometric amounts; therefore extracting biologically meaningful information from these acetylation sites requires an adaptable, sensitive, specific, and robust method for their quantification. In this work, we combine immunoassays and multiple reaction monitoring-mass spectrometry (MRM-MS) technology to develop an absolute quantification for acetylation modification. With this hybrid method, we quantified the acetylation level of metabolic enzymes, which could demonstrate the regulatory mechanisms of the studied enzymes. The development of this quantitative workflow is a pivotal step for advancing our knowledge and understanding of the regulatory effects of protein acetylation in physiology and pathophysiology. PMID:26524672

  6. Radioactive demonstration of the late wash'' Precipitate Hydrolysis Process

    SciTech Connect

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-06-30

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the late wash'' flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests.

  7. Radioactive demonstration of the ``late wash`` Precipitate Hydrolysis Process

    SciTech Connect

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-06-30

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the ``late wash`` flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests.

  8. Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particle size reduction is a crucial factor in transportation logistics as well as cellulosic conversion. The effect of particle size on enzymatic hydrolysis of pretreated Miscanthus x giganteus was determined. Miscanthus was ground using a hammer mill equipped with screens having 0.08, 2.0 or 6.0...

  9. Small peptides hydrolysis in dry-cured meats.

    PubMed

    Mora, Leticia; Gallego, Marta; Escudero, Elizabeth; Reig, Milagro; Aristoy, M-Concepción; Toldrá, Fidel

    2015-11-01

    Large amounts of different peptides are naturally generated in dry-cured meats as a consequence of the intense proteolysis mechanisms which take place during their processing. In fact, meat proteins are extensively hydrolysed by muscle endo-peptidases (mainly calpains and cathepsins) followed by exo-peptidases (mainly, tri- and di-peptidyl peptidases, dipeptidases, aminopeptidases and carboxypeptidases). The result is a large amount of released free amino acids and a pool of numerous peptides with different sequences and lengths, some of them with interesting sequences for bioactivity. This manuscript is presenting the proteomic identification of small peptides resulting from the hydrolysis of four target proteins (glyceraldehyde-3-phosphate dehydrogenase, beta-enolase, myozenin-1 and troponin T) and discusses the enzymatic routes for their generation during the dry-curing process. The results indicate that the hydrolysis of peptides follows similar exo-peptidase mechanisms. In the case of dry-fermented sausages, most of the observed hydrolysis is the result of the combined action of muscle and microbial exo-peptidases except for the hydrolysis of di- and tri-peptides, mostly due to microbial di- and tri-peptidases, and the release of amino acids at the C-terminal that appears to be mostly due to muscle carboxypeptidases. PMID:25944374

  10. Structural modifications of lignocellulosics by pretreatments to enhance enzymatic hydrolysis

    SciTech Connect

    Gharpuray, M.M.; Lee, Y.F.; Fan, L.T.

    1983-01-01

    In this work an evaluation was made of a wide variety of single and multiple pretreatment methods for enhancing the rate of enzymatic hydrolysis of wheat straw. A multiple pretreatment consisted of a physical pretreatment followed by a chemical pretreatment. The structural features of wheat straw, including the specific surface area, crystallinity index, and lignin content, were measured to understand the mechanism of the enhancement in the hyrolysis rate upon pretreatment. It has been found that, in general, multiple pretreatments were not promising, since the hydrolysis rates rarely exceeded those achieved by single pretreatments. Ball-milling pretreatment was found to be effective in increasing the specific surface area and decreasing the crystallinity index. Treatment with ethylene glycol was highly effective in increasing the specific surface area, in addition to a high degree of delignification. Peracetic acid pretreatment was highly effective in delignifying substrate. Among multiple pretreatments, those involving peracetic acid treatment generally had lower crystallinity indices and lignin content values. The relationship between the hydrolysis rate and the set of structural features indicated that an increase in surface area and a decrease in the crystallinity and lignin content enhance the hydrolysis; the specific surface area is the most influential of the structural features, followed by the lignin content. (Refs. 23).

  11. Kinetic Modeling of Enzymatic Hydrolysis of Pretreated Creeping Wild Ryegrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A semimechanistic multi-reaction kinetic model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, creeping wild ryegrass (CWR; Leymus triticoides). This model incorporated one homogeneous reaction of cellobiose-to-glucose and two heterogeneous reactions of cellulose-to...

  12. HYDROLYSIS OF CHLORPYRIFOS IN AQUEOUS AND COLLOIDAL SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrolysis of chlorpyrifos [o,o-diethyl o-(3, 5, 6-trichloro-2-pyridyl) phosphorothioate] to TCP (3,5,6-trichloro-2-pyridinol) is an important degradation process influencing the fate of chlorpyrifos in aquatic environments. The effects of water chemistry and suspended colloids (smectites, humic ac...

  13. Results of the hydrolysis of fusinitic brown coals

    SciTech Connect

    Perednikova, Z.M.; Garstman, B.B.; Rakitina, E.V.; Rumyantseva, Z.A.

    1984-01-01

    The products of the alkaline hydrolysis of debituminized fusinitic brown coals have been separated into relatively homogeneous groups of substances with the aid of extraction, chromatography, and alkaline saponification. The group compositions of the substances isolated have been studied by IR spectroscopy.

  14. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles.

    PubMed

    Sun, Daohua; Mazumder, Vismadeb; Metin, Önder; Sun, Shouheng

    2011-08-23

    Monodisperse 8 nm CoPd nanoparticles (NPs) with controlled compositions were synthesized by the reduction of cobalt acetylacetonate and palladium bromide in the presence of oleylamine and trioctylphosphine. These NPs were active catalysts for hydrogen generation from the hydrolysis of ammonia borane (AB), and their activities were composition dependent. Among the 8 nm CoPd catalysts tested for the hydrolysis of AB, the Co(35)Pd(65) NPs exhibited the highest catalytic activity and durability. Their hydrolysis completion time and activation energy were 5.5 min and 27.5 kJ mol(-1), respectively, which were comparable to the best Pt-based catalyst reported. The catalytic performance of the CoPd/C could be further enhanced by a preannealing treatment at 300 °C under air for 15 h with the hydrolysis completion time reduced to 3.5 min. This high catalytic performance of Co(35)Pd(65) NP catalyst makes it an exciting alternative in pursuit of practical implementation of AB as a hydrogen storage material for fuel cell applications. PMID:21766875

  15. Vicinal ?,?-functionalizations of amines: cyclization versus dehydrogenative hydrolysis.

    PubMed

    Jiang, Fan; Achard, Mathieu; Bruneau, Christian

    2015-10-01

    Direct vicinal ?,?-difunctionalization of tertiary cyclic amines is achieved in the presence of ruthenium or iridium transition-metal complexes featuring phosphine-sulfonate chelates. By varying the reaction conditions, ?-alkylated lactams were obtained by a formal dehydrogenative hydrolysis in which one molecule of hydrogen is generated from water. PMID:26385286

  16. REVISED TREATMENT OF N2 O5 HYDROLYSIS IN CMAQ

    EPA Science Inventory

    In this presentation, revised treatment of homogeneous and heterogeneous hydrolysis of dinitrogen pentoxide in the Community Multiscale Air Quality model version 4.6 are described. A series of model sensitivity tests are conducted and compared with observations of total atmosphe...

  17. ACID AND ENZYMATIC HYDROLYSIS OF SALINE BIOMASS FOR SUGAR PRODUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saline crops were evaluated for their potential to be used as feedstock for fermentable sugar production via dilute acid pretreatment and enzymatic hydrolysis. The saline crops included two woods, Athel (Tamarix aphylla L) and Eucalyptus (Eucalyptus camaldulensis), and two grasses, Jose Tall Wheatgr...

  18. Effects of hydrolysis and carbonization reactions on hydrochar production.

    PubMed

    Fakkaew, K; Koottatep, T; Polprasert, C

    2015-09-01

    Hydrothermal carbonization (HTC) is a thermal conversion process which converts wet biomass into hydrochar. In this study, a low-energy HTC process named "Two-stage HTC" comprising of hydrolysis and carbonization stages using faecal sludge as feedstock was developed and optimized. The experimental results indicated the optimum conditions of the two-stage HTC to be; hydrolysis temperature of 170 °C, hydrolysis reaction time of 155 min, carbonization temperature of 215 °C, and carbonization reaction time of 100 min. The hydrolysis reaction time and carbonization temperature had a statistically significant effect on energy content of the produced hydrochar. Energy input of the two-stage HTC was about 25% less than conventional HTC. Energy efficiency of the two-stage HTC for treating faecal sludge was higher than that of conventional HTC and other thermal conversion processes such as pyrolysis and gasification. The two-stage HTC could be considered as a potential technology for treating FS and producing hydrochar. PMID:26051497

  19. Acid hydrolysis of sweet potato for ethanol production

    SciTech Connect

    Kim, K.; Hamdy, M.K.

    1985-01-01

    Studies were conducted to establish optimal conditions for the acid hydrolysis of sweet potato for maximal ethanol yield. The starch contents of two sweet potato cultivars (Georgia Red and TG-4), based on fresh weight, were 21.1 +/- 0.6% and 27.5 +/- 1.6%, respectively. The results of acid hydrolysis experiments showed the following: (1) both hydrolysis rate and hydroxymethylfurfural (HMF) concentration were a function of HCL concentration, temperature, and time; (2) the reducing sugars were rapidly formed with elevated concentrations of HCl and temperature, but also destroyed quickly; and (3) HMF concentration increased significantly with the concentration of HCl, temperature, and hydrolysis time. Maximum reducing sugar value of 84.2 DE and 0.056% HMF (based on wet weight) was achieved after heating 8% SPS for 15 min in 1N HCl at 110/sup 0/C. Degraded 8% SPS (1N HCl, 97/sup 0/C for 20 min or 110/sup 0/C for 10 min) was utilized as substrate for ethanol fermentation and 3.8% ethanol (v/v) was produced from 1400 mL fermented wort. This is equal to 41.6 g ethanol (200 proof) from 400 g of fresh sweet potato tuber (Georgia Red) or an ethanol yield potential of 431 gal of 200-proof ethanol/acre (from 500 bushel tubers/acre).

  20. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    SciTech Connect

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  1. Allergenicity of Peanut Proteins is Retained Following Enzymatic Hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rationale: Hydrolysis of peanut proteins by food-grade enzymes may reduce allergenicity and could lead to safer forms of immunotherapy. Methods: Light roasted peanut flour extracts were digested with pepsin (37°C, pH 2), Alcalase (60°C pH 8), or Flavourzyme (50°C, pH 7) up to 1 hr, or sequentially w...

  2. DFT STUDY OF THE HYDROLYSIS OF SOME S-TRIAZINES

    EPA Science Inventory

    The acid-catalyzed hydrolysis of atrazine and related 2-chloro-s-triazines to the corresponding 2-hydroxy-s-triazines was investigated using the B3LYP hybrid density functional theory method. Gas-phase calculations were performed at the B3LYP/6-311++G(d,p)//B3LYP/6-31G* level of ...

  3. Hydrolysis of ferric ion in water and conformational equilibrium

    E-print Network

    Martin, R L E; Pratt, L R; Martin, Richard L.; Pratt, Lawrence R.

    1998-01-01

    Reported here are results of theoretical calculations on the hexaaquoferric complex and deprotonated products to investigate the molecular mechanisms of hydrolysis of ferric ion in water. The combination of density functional electronic structure techniques and a dielectric continuum model for electrostatic solvation applied to the Fe(H$_2$O)$_6

  4. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOEpatents

    Nguyen, Quang A. (Chesterfield, MO); Keller, Fred A. (Lakewood, CO); Tucker, Melvin P. (Lakewood, CO)

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  5. The Preparation and Enzymatic Hydrolysis of a Library of Esters

    ERIC Educational Resources Information Center

    Sanford, Elizabeth M.; Smith, Traci L.

    2008-01-01

    An investigative case study involving the preparation of a library of esters using Fischer esterification and alcoholysis of acid chlorides and their subsequent enzymatic hydrolysis by pig liver esterase and orange peel esterase is described. Students work collaboratively to prepare and characterize the library of esters and complete and evaluate…

  6. Evaluation of Cation Hydrolysis Schemes with a Pocket Calculator.

    ERIC Educational Resources Information Center

    Clare, Brian W.

    1979-01-01

    Described is the use of two models of pocket calculators. The Hewlett-Packard HP67 and the Texas Instruments TI59, to solve problems arising in connection with ionic equilibria in solution. A three-parameter regression program is described and listed as a specific example, the hydrolysis of hexavalent uranium, is provided. (BT)

  7. Penicillin Hydrolysis: A Kinetic Study of a Multistep, Multiproduct Reaction.

    ERIC Educational Resources Information Center

    McCarrick, Thomas A.; McLafferty, Fred W.

    1984-01-01

    Background, procedures used, and typical results are provided for an experiment in which students carry out the necessary measurements on the acid-catalysis of penicillin in two hours. By applying kinetic theory to the data obtained, the reaction pathways for the hydrolysis of potassium benzyl penicillin are elucidated. (JN)

  8. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    PubMed

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. PMID:26253917

  9. Review: Continuous hydrolysis and fermentation for cellulosic ethanol production Simone Brethauer, Charles E. Wyman *

    E-print Network

    California at Riverside, University of

    Review: Continuous hydrolysis and fermentation for cellulosic ethanol production Simone Brethauer Available online 14 December 2009 Keywords: Continuous fermentation Enzymatic hydrolysis Fuel ethanol Lignocellulosic biomass Simultaneous saccharification and fermentation (SSF) a b s t r a c t Ethanol made

  10. The effect of microwave irradiation on enzymatic hydrolysis of rice straw.

    PubMed

    Zhu, Shengdong; Wu, Yuanxin; Yu, Ziniu; Zhang, Xia; Li, Hui; Gao, Ming

    2006-10-01

    A series of experiments involving microwave irradiation were carried out to evaluate the effect of microwave irradiation on enzymatic hydrolysis of rice straw. Compared with microwave irradiation free hydrolysis, rice straw pretreated by combining microwave irradiation with alkali could increase the initial hydrolysis rate but the hydrolysis yield remained unchanged. When the enzyme solution was treated by microwave irradiation, the initial hydrolysis rate increased slightly, but the yield was decreased remarkably. Its optimal hydrolysis conditions were temperature (45 degrees C), pH (4.8) and enzyme loading (20 mg g(-1) substrate), which was determined by an orthogonal experiment. When intermittent microwave irradiation was used, initial hydrolysis rate was greatly accelerated but the yield was decreased slightly. Its optimal hydrolysis conditions were temperature (50 degrees C), pH (4.8) and enzyme loading (20 mg g(-1) substrate), which was determined by another orthogonal experiment. PMID:16216494

  11. A kinetic study of hydrolysis of polyester elastomer in magnetic tape

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Watanabe, H.

    1994-01-01

    A useful method for kinetic study of the hydrolysis of polyester elastomer is established which uses the number-average molecular weight. The reasonableness of this method is confirmed and the effect of magnetic particles on hydrolysis is considered.

  12. Effect of the extent of the hydrolysis of tetrabutoxytitanium on catalysis efficiency in the esterification reaction

    SciTech Connect

    Chervina, S.I.; Maksimenko, E.G.; Barshtein, R.S.; Shabanova, N.V.; Bulai, A.K.; Kotov, Yu.I.; Slonim, I.Ya.

    1988-03-01

    A study was carried out on the products of the hydrolysis of tetrabutoxytitanium and their catalytic activity in the esterification reaction. A maximum is observed in the dependence of the reaction rate constant on the extent of the hydrolysis of tetrabutoxytitanium. The maximum effective esterification rate constant corresponds to 60% hydrolysis of tetrabutoxytitanium. The hydrolysis products in this case have largely linear structure. The relationship between the catalytic activity of linear polytitanates and their stability in the reaction medium is discussed.

  13. Benefits from tween during enzymic hydrolysis of corn stover

    PubMed

    Kaar; Holtzapple

    1998-08-20

    Corn stover is a potential substrate for fermentation processes. Previous work with corn stover demonstrated that lime pretreatment rendered it digestible by cellulase; however, high sugar yields required very high enzyme loadings. Because cellulase is a significant cost in biomass conversion processes, the present study focused on improving the enzyme efficiency using Tween 20 and Tween 80; Tween 20 is slightly more effective than Tween 80. The recommended pretreatment conditions for the biomass remained unchanged regardless of whether Tween was added during the hydrolysis. The recommended Tween loading was 0.15 g Tween/g dry biomass. (The critical relationship was the Tween loading on the biomass, not the Tween concentration in solution.) The 72-h enzymic conversion of pretreated corn stover using 5 FPU cellulase/g dry biomass at 50 degrees C with Tween 20 as part of the medium was 0.85 g/g for cellulose, 0.66 g/g for xylan, and 0.75 for total polysaccharide; addition of Tween improved the cellulose, xylan, and total polysaccharide conversions by 42, 40, and 42%, respectively. Kinetic analyses showed that Tween improved the enzymic absorption constants, which increased the effective hydrolysis rate compared to hydrolysis without Tween. Furthermore, Tween prevented thermal deactivation of the enzymes, which allows for the kinetic advantage of higher temperature hydrolysis. Ultimate digestion studies showed higher conversions for samples containing Tween, indicating a substrate effect. It appears that Tween improves corn stover hydrolysis through three effects: enzyme stabilizer, lignocellulose disrupter, and enzyme effector. Copyright 1998 John Wiley & Sons, Inc. PMID:10099355

  14. Non-catalytic steam hydrolysis of fats. Final report

    SciTech Connect

    Deibert, M.C.

    1992-08-28

    Hydrolysis of fats and oils produces fatty acid and glycerol. The catalyzed, liquid phase Colgate-Emry process, state-of-the-art, produces impure products that require extensive energy investment for their purification to commercial grade. Non-catalytic steam hydrolysis may produce products more easily purified. A bench-scale hydrolyzer was designed and constructed to contact descending liquid fat or oil with rising superheated steam. Each of the five stages in the reactor was designed similar to a distillation column stage to promote intimate liquid-gas contact. Degree of hydrolysis achieved in continuous tests using tallow feed were 15% at 280C and 35% at 300C at a tallow-to-steam mass feed ratio of 4.2. At a feed ratio of 9.2, the degree of hydrolysis was 21% at 300C. Decomposition was strongly evident at 325C but not at lower temperatures. Soybean oil rapidly polymerized under reaction conditions. Batch tests at 320C produced degrees of hydrolyses of between 44% and 63% using tallow and palm oil feeds. Over 95% fatty acids were present in a clean, readily separated organic portion of the overhead product from most tests. The test reactor had serious hydraulic resistance to liquid down-flow which limited operation to very long liquid residence times. These times are in excess of those that tallow and palm oil are stable at the reaction temperature. Little glycerol and extensive light organics were produced indicating that unexplained competing reactions to hydrolysis occurred in the experimental system. Further tests using an improved reactor will be required.

  15. Effect of pulsed electric fields assisted acetylation on morphological, structural and functional characteristics of potato starch.

    PubMed

    Hong, Jing; Chen, Rujiao; Zeng, Xin-An; Han, Zhong

    2016-02-01

    Pulsed electric fields (PEF)-assisted acetylation of potato starch with different degree of substitution (DS) was prepared and effects of PEF strength, reaction time, starch concentration on DS were studied by response surface methodology. Results showed DS was increased from 0.054 (reaction time of 15 min) to 0.130 (reaction time of 60 min) as PEF strength increased from 3 to 5 kV/cm. External morphology revealed that acetylated starch with higher DS was aggravated more bulges and asperities. Fourier-transformed infrared spectroscopy confirmed the introduction of acetyl group through a band at 1730 cm(-1). The optimum sample (DS =0 .13) had lower retrogradation (39.1%), breakdown (155 BU) and setback value (149BU), while pasting temperature (62.2 °C) was slightly higher than non-PEF-assisted samples. These results demonstrated PEF treatment can be a potential and beneficial method for acetylation and achieve higher DS with shorter reaction time. PMID:26304315

  16. Correlation of sulphadimidine acetylation test in urine and blood for isoniazid phenotyping.

    PubMed

    Nair, C R; Gupta, R C; Varshneya, A K; Malik, S K

    1984-12-01

    Sulphadimidine acetylation was determined in 110 cases in samples obtained from urine and blood. A trimodal distribution was observed by both the methods. The correlation co-efficient "r" for the two methods was 0.46. PMID:6526538

  17. Dietary, Metabolic, and Potentially Environmental Modulation of the Lysine Acetylation Machinery

    PubMed Central

    Kim, Go-Woon; Gocevski, Goran; Wu, Chao-Jung; Yang, Xiang-Jiao

    2010-01-01

    Healthy lifestyles and environment produce a good state of health. A number of scientific studies support the notion that external stimuli regulate an individual's epigenomic profile. Epigenetic changes play a key role in defining gene expression patterns under both normal and pathological conditions. As a major posttranslational modification, lysine (K) acetylation has received much attention, owing largely to its significant effects on chromatin dynamics and other cellular processes across species. Lysine acetyltransferases and deacetylases, two opposing families of enzymes governing K-acetylation, have been intimately linked to cancer and other diseases. These enzymes have been pursued by vigorous efforts for therapeutic development in the past 15 years or so. Interestingly, certain dietary components have been found to modulate acetylation levels in vivo. Here we review dietary, metabolic, and environmental modulators of the K-acetylation machinery and discuss how they may be of potential value in the context of disease prevention. PMID:20976254

  18. Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth

    PubMed Central

    Sun, Ting; Li, Xuan; Zhang, Peng; Chen, Wen-Dan; Zhang, Hai-liang; Li, Dan-Dan; Deng, Rong; Qian, Xiao-Jun; Jiao, Lin; Ji, Jiao; Li, Yun-Tian; Wu, Rui-Yan; Yu, Yan; Feng, Gong-Kan; Zhu, Xiao-Feng

    2015-01-01

    Beclin 1, a protein essential for autophagy, regulates autophagy by interacting with Vps34 and other cofactors to form the Beclin 1 complex. Modifications of Beclin 1 may lead to the induction, inhibition or fine-tuning of the autophagic response under a variety of conditions. Here we show that Beclin 1 is acetylated by p300 and deacetylated by SIRT1 at lysine residues 430 and 437. In addition, the phosphorylation of Beclin 1 at S409 by CK1 is required for the subsequent p300 binding and Beclin 1 acetylation. Beclin 1 acetylation inhibits autophagosome maturation and endocytic trafficking by promoting the recruitment of Rubicon. In tumour xenografts, the expression of 2KR mutant Beclin 1 (substitution of K430 and K437 to arginines) leads to enhanced autophagosome maturation and tumour growth suppression. Therefore, our study identifies an acetylation-dependent regulatory mechanism governing Beclin 1 function in autophagosome maturation and tumour growth. PMID:26008601

  19. Fluorescence excitation spectroscopic study of the jet-cooled acetyl cyanide

    E-print Network

    Kim, Sang Kyu

    Fluorescence excitation spectroscopic study of the jet-cooled acetyl cyanide Min-Chul Yoon, Young S. Choi, and Sang Kyu Kima) Department of Chemistry, Inha University, Inchon (402-751), Republic of Korea

  20. Histone Acetylation Modifiers in the Pathogenesis of Alzheimer’s Disease

    PubMed Central

    Lu, Xi; Wang, Li; Yu, Caijia; Yu, Daohai; Yu, Gang

    2015-01-01

    It is becoming more evident that histone acetylation, as one of the epigenetic modifications or markers, plays a key role in the etiology of Alzheimer’s disease (AD). Histone acetylases and histone deacetylases (HDACs) are the well-known covalent enzymes that modify the reversible acetylation of lysine residues in histone amino-terminal domains. In AD, however, the roles of these enzymes are controversial. Some recent studies indicate that HDAC inhibitors are neuroprotective by regulating memory and synaptic dysfunctions in cellular and animal models of AD; while on the other hand, increase of histone acetylation have been implicated in AD pathology. In this review, we focus on the recent advances on the roles of histone acetylation covalent enzymes in AD and discuss how targeting these enzymes can ultimately lead to therapeutic approaches for treating AD. PMID:26136662

  1. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux.

    PubMed

    Wang, Qijun; Zhang, Yakun; Yang, Chen; Xiong, Hui; Lin, Yan; Yao, Jun; Li, Hong; Xie, Lu; Zhao, Wei; Yao, Yufeng; Ning, Zhi-Bin; Zeng, Rong; Xiong, Yue; Guan, Kun-Liang; Zhao, Shimin; Zhao, Guo-Ping

    2010-02-19

    Lysine acetylation regulates many eukaryotic cellular processes, but its function in prokaryotes is largely unknown. We demonstrated that central metabolism enzymes in Salmonella were acetylated extensively and differentially in response to different carbon sources, concomitantly with changes in cell growth and metabolic flux. The relative activities of key enzymes controlling the direction of glycolysis versus gluconeogenesis and the branching between citrate cycle and glyoxylate bypass were all regulated by acetylation. This modulation is mainly controlled by a pair of lysine acetyltransferase and deacetylase, whose expressions are coordinated with growth status. Reversible acetylation of metabolic enzymes ensure that cells respond environmental changes via promptly sensing cellular energy status and flexibly altering reaction rates or directions. It represents a metabolic regulatory mechanism conserved from bacteria to mammals. PMID:20167787

  2. Sialic acid O-acetylation in group B Streptococcus : impact on pathogen-host interactions

    E-print Network

    Weiman, Shannon Dawn

    2009-01-01

    between Type III strains, incidence of meningitis, andtype III strains are over-represented in cases of late onset disease and meningitis (meningitis suggests that O-acetylation may impact adhesion and invasion to different types

  3. An Acute Acetyl Fentanyl Fatality: A Case Report With Postmortem Concentrations.

    PubMed

    McIntyre, Iain M; Trochta, Amber; Gary, Ray D; Malamatos, Mark; Lucas, Jonathan R

    2015-01-01

    In this case report, we present an evaluation of the distribution of postmortem concentrations of acetyl fentanyl in a fatality attributed to the drug. A young man who had a history of heroin abuse was found deceased at his parents' home. Toxicology testing, which initially screened positive for fentanyl by ELISA, subsequently confirmed acetyl fentanyl by gas chromatography-mass spectrometry specific ion monitoring (GC-MS SIM) analysis following liquid-liquid extraction. No other drugs or medications, including fentanyl, were detected. The acetyl fentanyl peripheral blood concentration was quantified at 260 ng/mL compared with the central blood concentration of 250 ng/mL. The liver concentration was 1,000 ng/kg, the vitreous was 240 ng/mL and the urine was 2,600 ng/mL. The cause of death was certified due to acute acetyl fentanyl intoxication, and the manner of death was certified as an accident. PMID:25917447

  4. Evidence for two immunologically distinct acetyl-coenzyme A synthetases in yeast

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.; Mandel, A. D.; Klein, H. P.

    1974-01-01

    Evidence is presented that clearly establishes the presence of two acetyl-CoA synthetases in Saccharomyces cerevisiae, one elaborated under 'aerobic' conditions, the other under 'nonaerobic' conditions. The antibody produced by each enzyme is immunologically specific.

  5. In vivo treatment by diallyl disulfide increases histone acetylation in rat colonocytes

    SciTech Connect

    Druesne-Pecollo, Nathalie . E-mail: Nathalie.Pecollo@jouy.inra.fr; Chaumontet, Catherine; Pagniez, Anthony; Vaugelade, Pierre; Bruneau, Aurelia; Thomas, Muriel; Cherbuy, Claire; Duee, Pierre-Henri; Martel, Paule

    2007-03-02

    Diallyl disulfide (DADS) is an organosulfur compound from garlic which exhibits various anticarcinogenic properties including inhibition of tumor cell proliferation. DADS antiproliferative effects were previously associated with an increase in histone acetylation in two human tumor colon cell lines, suggesting that DADS-induced histone hyperacetylation could be one of the mechanisms involved in its protective properties on colon carcinogenesis. The effects of DADS on histone H4 and H3 acetylation levels were investigated in vivo in colonocytes isolated from non-tumoral rat. Administrated by intracaecal perfusion or gavage, DADS increases histone H4 and H3 acetylation in colonocytes. Moreover, data generated using cDNA expression arrays suggest that DADS could modulate the expression of a subset of genes. These results suggest the involvement of histone acetylation in modulation of gene expression by DADS in normal rat colonocytes, which might play a role in its biological effects as well as in its anticarcinogenic properties in vivo.

  6. MATHEMATICAL MODELING OF ENZYMATIC HYDROLYSIS OF STARCH: APPLICATION TO FUEL ETHANOL PRODUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymatic hydrolysis of starch in corn is an important step that determines fermentation efficiency. Corn genetics, post harvest handling and process conditions are factors that affect starch hydrolysis. There is a lack of mathematical models for starch hydrolysis in the dry grind corn process tha...

  7. Molecular Mechanism of ADP-Ribose Hydrolysis By Human NUDT5 From Structural and Kinetic Studies

    E-print Network

    Tian, Weidong

    Molecular Mechanism of ADP-Ribose Hydrolysis By Human NUDT5 From Structural and Kinetic Studies and biochemical data together reveal the molecular basis of the catalytic mechanism of ADPR hydrolysis by hNUDT5 that most dimeric ADPRases may share a similar catalytic mechanism of ADPR hydrolysis. © 2008 Elsevier Ltd

  8. 40 CFR 721.10499 - Substituted silane, hydrolysis products with silica (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted silane, hydrolysis... Significant New Uses for Specific Chemical Substances § 721.10499 Substituted silane, hydrolysis products with... substances identified generically as substituted silane, hydrolysis products with silica (PMNs P-06-278 and...

  9. Actin Polymerization and Depolymerization Coupled to Cooperative Hydrolysis Jan Kierfeld,3

    E-print Network

    Kierfeld, Jan

    Actin Polymerization and Depolymerization Coupled to Cooperative Hydrolysis Xin Li,1,2 Jan Kierfeld; published 23 July 2009) The hydrolysis of adenosine triphosphate (ATP) during actin (de processes such as cell adhesion, locomotion, and division, all of which are coupled to ATP hydrolysis [1

  10. DOI: 10.1002/cphc.201402016 Phosphate Monoester Hydrolysis by Trinuclear Alkaline

    E-print Network

    Liao, Rongzhen

    DOI: 10.1002/cphc.201402016 Phosphate Monoester Hydrolysis by Trinuclear Alkaline Phosphatase; DFT magnesium and two zinc atoms) that cat- alyzes the hydrolysis of a broad range of phosphate monoest- ers in enzymatic hydrolysis of phos- phate esters, for the investigation of catalytic properties of bi- nuclear

  11. 40 CFR 721.10497 - Substituted alkyl ester, hydrolysis products with silica and substituted silane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted alkyl ester, hydrolysis... ester, hydrolysis products with silica and substituted silane (generic). (a) Chemical substance and... alkyl ester, hydrolysis products with silica and substituted silane (PMNs P-06-276 and P-06-279)...

  12. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis

    E-print Network

    California at Riverside, University of

    hydrolysis of the remaining solids Todd A. Lloyd, Charles E. Wyman * Thayer School of Engineering, Dartmouth in subsequent enzymatic hydrolysis, depending on the enzyme loading. Glucose yields increased from as high as 56 hydrolysis. These results also suggest that enhanced hemicellulase activity could further improve xylose

  13. Antimony recovery from SbCl5 acid solution by hydrolysis and aging

    E-print Network

    Volinsky, Alex A.

    Antimony recovery from SbCl5 acid solution by hydrolysis and aging Ling Meng, Shen-Gen Zhang*, De was recovered in the form of hydrated antimony pentoxide through the hydrolysis process. The effects of hydrolysis ratio and aging time on the Sb recovery process were studied, and the corresponding trends were

  14. The Reaction Mechanism of Paraoxon Hydrolysis by Phosphotriesterase from Combined QM/MM Simulations

    E-print Network

    Minnesota, University of

    The Reaction Mechanism of Paraoxon Hydrolysis by Phosphotriesterase from Combined QM/MM Simulations Submitted to Biochemistry #12;1 The Reaction Mechanism of Paraoxon Hydrolysis by Phosphotriesterase from of Paraoxon Hydrolysis by Phosphotriesterase Page 1 of 57 ACS Paragon Plus Environment Submitted

  15. Xylan hydrolysis in Populus trichocarpa P. deltoides and model substrates during hydrothermal pretreatment

    E-print Network

    California at Riverside, University of

    Xylan hydrolysis in Populus trichocarpa  P. deltoides and model substrates during hydrothermal. deltoides, holocellulose, and birchwood xylan were used. Xylan hydrolysis was followed by glycome profiling and chromatography. Lignin­carbohydrate and xylan­cellulose bonds limited xylan hydrolysis. Cell wall structure

  16. Xylose Monomer and Oligomer Yields for Uncatalyzed Hydrolysis of Sugarcane Bagasse Hemicellulose at Varying Solids Concentration

    E-print Network

    California at Riverside, University of

    Xylose Monomer and Oligomer Yields for Uncatalyzed Hydrolysis of Sugarcane Bagasse Hemicellulose is mostly lignin plus lesser amounts of minerals, oils, and other com- pounds.4 Enzymatic hydrolysis chemicals.3,5 Pretreatment is essential to realize high enzymatic hydrolysis yields. Although no one

  17. ATP Hydrolysis Enhances RNA Recognition and Antiviral Signal Transduction by the Innate Immune Sensor,

    E-print Network

    Myong, Sua

    ATP Hydrolysis Enhances RNA Recognition and Antiviral Signal Transduction by the Innate Immune receptor required for innate antiviral signaling. Results: LGP2 uses ATP hydrolysis to diversify RNA infec- tion and initiate antiviral signal transduction cascades. The ATP hydrolysis activity of LGP2

  18. 40 CFR 721.10498 - Substituted alkyl ester, hydrolysis products with silica (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted alkyl ester, hydrolysis... Significant New Uses for Specific Chemical Substances § 721.10498 Substituted alkyl ester, hydrolysis products... chemical substances identified generically as substituted alkyl ester, hydrolysis products with...

  19. Study of the Enzymatic Hydrolysis of Cellulose for Production of Fuel Ethanol

    E-print Network

    California at Riverside, University of

    Study of the Enzymatic Hydrolysis of Cellulose for Production of Fuel Ethanol by the Simultaneous the simultaneous saccharification and fermentation (SSF) process. The SSF integrates the enzymatic hydrolysis to the ethanologenic fermentation, the kinetics of cellulose hydrolysis by cellulase and p

  20. Investigation of a New Thermosensitive Block Copolymer Micelle: Hydrolysis, Disruption, and Release

    E-print Network

    Zhao, Yue

    Investigation of a New Thermosensitive Block Copolymer Micelle: Hydrolysis, Disruption, and Release design that is based on the use of one block bearing a thermally labile side group, whose hydrolysis upon)methacrylamide lactate) (NHPMAAm- lactate).5 At physiological conditions (pH 7.4, 37 °C), the hydrolysis of the lactate

  1. Dipeptide hydrolysis by the dinuclear zinc enzyme human renal dipeptidase: Mechanistic insights from DFT calculations

    E-print Network

    Liao, Rongzhen

    Dipeptide hydrolysis by the dinuclear zinc enzyme human renal dipeptidase: Mechanistic insights dipeptidase is investigated using hybrid density functional theory. This enzyme catalyzes the hydrolysis the hydrolysis of dipeptides with D-, L-, or dehydro-amino acids at the C-terminus (Scheme 1) [1­3]. It plays

  2. RESEARCH Open Access Co-hydrolysis of hydrothermal and dilute acid

    E-print Network

    California at Riverside, University of

    RESEARCH Open Access Co-hydrolysis of hydrothermal and dilute acid pretreated Populus slurries and enzymatic hydrolysis used in conventional analyses is slow, labor-intensive and very difficult to automate, a streamlined approach we term `co-hydrolysis' was developed. In this method, the solids and liquid

  3. Changes in the Enzymatic Hydrolysis Rate of Avicel Cellulose With Conversion

    E-print Network

    California at Riverside, University of

    Changes in the Enzymatic Hydrolysis Rate of Avicel Cellulose With Conversion Bin Yang, Deidre M: 10.1002/bit.20942 Abstract: The slow down in enzymatic hydrolysis of cellulose with conversion has hydrolysis. Then, the solids were treated with proteinase to degrade the cellulase enzymes remaining

  4. Estimating the rate constant of cyclic GMP hydrolysis by activated phosphodiesterase in photoreceptors

    E-print Network

    Holcman, David

    Estimating the rate constant of cyclic GMP hydrolysis by activated phosphodiesterase photoreceptor. They involve the hydrolysis of cGMP, a soluble cyclic nucleotide, that gates ionic channels characterizes cGMP hydrolysis induced by a single light-activated PDE. So far, no attempt has been made

  5. 40 CFR 721.10499 - Substituted silane, hydrolysis products with silica (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted silane, hydrolysis... Significant New Uses for Specific Chemical Substances § 721.10499 Substituted silane, hydrolysis products with... substances identified generically as substituted silane, hydrolysis products with silica (PMNs P-06-278 and...

  6. Fast Hemicellulose Quantification Via a Simple One-Step Acid Hydrolysis

    E-print Network

    California at Riverside, University of

    Fast Hemicellulose Quantification Via a Simple One-Step Acid Hydrolysis Xiadi Gao,1,2,3 Rajeev hydrolysis method was developed, which applied 4 wt% sulfuric acid at 121 C for 1 h to rapidly quantify XGM-step acid hydrolysis while significantly shortening analysis time. Biotechnol. Bioeng. 2014;111: 1088

  7. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation

    E-print Network

    Economou, Tassos

    A molecular switch in SecA protein couples ATP hydrolysis to protein translocation SpyridoulaA dimers. NBD1 is suffi- cient for single rounds of SecA ATP hydrolysis. Multi- ple ATP turnovers at NBD1. This intramolecular regulator of ATP hydrolysis (IRA) mediates N-/C-domain binding and acts as a molecular switch

  8. Characterization of the degree of polymerization of xylooligomers produced by flowthrough hydrolysis of pure xylan

    E-print Network

    California at Riverside, University of

    hydrolysis of pure xylan and corn stover with water Bin Yang, Charles E. Wyman * Center for Environmental, although hemicellulose hydrolysis is virtually always assumed to follow first-order homogeneous kinetics for these difference is that lignin and lignin­ xylan compounds in particular play an important role in the hydrolysis

  9. Sugar yields from dilute sulfuric acid and sulfur dioxide pretreatments and subsequent enzymatic hydrolysis of switchgrass

    E-print Network

    California at Riverside, University of

    hydrolysis of switchgrass Jian Shi a , Mirvat A. Ebrik a , Charles E. Wyman a,b, a Center for Environmental for pretreatment and subsequent enzymatic hydrolysis to identify conditions for the highest total sugar yields. Pretreatment with 1 wt.% dilute sulfuric acid at 140 °C for 40 min followed by enzymatic hydrolysis with 48

  10. Role of ATP-Hydrolysis in the Dynamics of a Single Actin Filament Padinhateeri Ranjith,

    E-print Network

    Lacoste, David

    Role of ATP-Hydrolysis in the Dynamics of a Single Actin Filament Padinhateeri Ranjith, * Kirone, and ATP hydrolysis of subunits either according to the vectorial mechanism or to the random mechanism. In a previous work, we developed a model for a single actin or microtubule filament where hydrolysis occurred

  11. Hydrolysis of cis-and trans-Epoxyeicosatrienoic Acids by Rat Red Blood Cells

    E-print Network

    Hammock, Bruce D.

    Hydrolysis of cis- and trans-Epoxyeicosatrienoic Acids by Rat Red Blood Cells Houli Jiang, Angela G- and trans-isomers. The Vmax of trans-EET hydrolysis by RBCs is approximately 2 to 3 times the same geometric and regio prefer- ences of EET hydrolysis as with rat intact RBCs. The principal epoxide

  12. Hydrolysis of different chain length xylooliogmers by cellulase and hemicellulase Qing Qing, Charles E. Wyman

    E-print Network

    California at Riverside, University of

    Hydrolysis of different chain length xylooliogmers by cellulase and hemicellulase Qing Qing xylan, resulting in high xylooligomer concentra- tions remaining in the hydrolysis broth. Our recent and about 5% of low DP xylooligomers (mainly xylobiose) proved resistant to hydrolysis by cellulase or b

  13. An Overview of Chemical Processes That Damage Cellular DNA: Spontaneous Hydrolysis, Alkylation, and Reactions with Radicals

    E-print Network

    Gates, Kent. S.

    ReViews An Overview of Chemical Processes That Damage Cellular DNA: Spontaneous Hydrolysis damage under physiological conditions. Contents 1. Introduction 1747 2. Hydrolysis of DNA 1747 2.1. Spontaneous Hydrolysis of the Phosphodiester Backbone Is Very Slow 1747 2.2. Hydrolytic Deamination of DNA

  14. 40 CFR 721.10497 - Substituted alkyl ester, hydrolysis products with silica and substituted silane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted alkyl ester, hydrolysis... ester, hydrolysis products with silica and substituted silane (generic). (a) Chemical substance and... alkyl ester, hydrolysis products with silica and substituted silane (PMNs P-06-276 and P-06-279)...

  15. Application of High Throughput Pretreatment and Co-Hydrolysis System to Thermochemical

    E-print Network

    California at Riverside, University of

    ARTICLE Application of High Throughput Pretreatment and Co-Hydrolysis System to Thermochemical release from the coupled operations of pretreat- ment and enzymatic hydrolysis are extremely time and material intensive, high throughput (HT) pretreatment and enzymatic hydrolysis systems have become vital

  16. Single-Molecule Nanopositioning: Structural Transitions of a Helicase-DNA Complex during ATP Hydrolysis

    E-print Network

    Myong, Sua

    Hydrolysis Hamza Balci, Sinan Arslan, Sua Myong,§ Timothy M. Lohman,{ and Taekjip Hak * Physics Department of Escherichia coli Rep helicase undergoing ATP hydrolysis while bound to a partial- duplex DNA (pdDNA) were. INTRODUCTION Helicases use the binding, hydrolysis, and release of nucle- oside triphosphates (NTPs) to unwind

  17. 40 CFR 721.10498 - Substituted alkyl ester, hydrolysis products with silica (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted alkyl ester, hydrolysis... Significant New Uses for Specific Chemical Substances § 721.10498 Substituted alkyl ester, hydrolysis products... chemical substances identified generically as substituted alkyl ester, hydrolysis products with...

  18. Molecular dissection of the roles of nucleotide binding and hydrolysis in dynein's AAA domains

    E-print Network

    Vale, Ronald D.

    Molecular dissection of the roles of nucleotide binding and hydrolysis in dynein's AAA domains of nucleotide binding and hydrolysis in each of these four AAA domains has constituted an important and unre as a model system, we mutagenized residues involved in nucleotide binding or hydrolysis in the four AAA

  19. Site specificity analysis of Piccolo NuA4-mediated acetylation for different histone complexes.

    PubMed

    Kuo, Yin-Ming; Henry, Ryan A; Tan, Song; Côté, Jacques; Andrews, Andrew J

    2015-12-01

    We have a limited understanding of the site specificity of multi-subunit lysine acetyltransferase (KAT) complexes for histone-based substrates, especially in regards to the different complexes formed during nucleosome assembly. Histone complexes could be a major factor in determining the acetylation specificity of KATs. In the present study, we utilized a label-free quantitative MS-based method to determine the site specificity of acetylation catalysed by Piccolo NuA4 on (H3/H4)2 tetramer, tetramer bound DNA (tetrasome) and nucleosome core particle (NCP). Our results show that Piccolo NuA4 can acetylate multiple lysine residues on these three histone complexes, of which NCP is the most favourable, (H3/H4)2 tetramer is the second and tetrasome is the least favourable substrate for Piccolo NuA4 acetylation. Although Piccolo NuA4 preferentially acetylates histone H4 (H4K12), the site specificity of the enzyme is altered with different histone complex substrates. Our results show that before nucleosome assembly is complete, H3K14 specificity is almost equal to that of H4K12 and DNA-histone interactions suppress the acetylation ability of Piccolo NuA4. These data suggest that the H2A/H2B dimer could play a critical role in the increase in acetylation specificity of Piccolo NuA4 for NCP. This demonstrates that histone complex formation can alter the acetylation preference of Piccolo NuA4. Such findings provide valuable insight into regulating Piccolo NuA4 specificity by modulating chromatin dynamics and in turn manipulating gene expression. PMID:26420880

  20. Role of protein acetylation, formation and dispersal of biofilms, and their impact on insects 

    E-print Network

    Ma, Qun

    2012-07-16

    OF PROTEIN ACETYLATION, FORMATION AND DISPERSAL OF BIOFILMS, AND THEIR IMPACT ON INSECTS A Dissertation by QUN MA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of DOCTOR OF PHILOSOPHY May 2011 Major Subject: Chemical Engineering ROLE OF PROTEIN ACETYLATION, FORMATION AND DISPERSAL OF BIOFILMS, AND THEIR IMPACT ON INSECTS A Dissertation by QUN MA Submitted to the Office...

  1. Neonatal Isoflurane Exposure Induces Neurocognitive Impairment and Abnormal Hippocampal Histone Acetylation in Mice

    PubMed Central

    Zhong, Tao; Guo, Qulian; Zou, Wangyuan; Zhu, Xiaoyan; Song, Zongbin; Sun, Bei; He, Xin; Yang, Yong

    2015-01-01

    Background Neonatal exposure to isoflurane may induce long-term memory impairment in mice. Histone acetylation is an important form of chromatin modification that regulates the transcription of genes required for memory formation. This study investigated whether neonatal isoflurane exposure-induced neurocognitive impairment is related to dysregulated histone acetylation in the hippocampus and whether it can be attenuated by the histone deacetylase (HDAC) inhibitor trichostatin A (TSA). Methods C57BL/6 mice were exposed to 0.75% isoflurane three times (each for 4 h) at postnatal days 7, 8, and 9. Contextual fear conditioning (CFC) was tested at 3 months after anesthesia administration. TSA was intraperitoneally injected 2 h before CFC training. Hippocampal histone acetylation levels were analyzed following CFC training. Levels of the neuronal activation and synaptic plasticity marker c-Fos were investigated at the same time point. Results Mice that were neonatally exposed to isoflurane showed significant memory impairment on CFC testing. These mice also exhibited dysregulated hippocampal H4K12 acetylation and decreased c-Fos expression following CFC training. TSA attenuated isoflurane-induced memory impairment and simultaneously increased histone acetylation and c-Fos levels in the hippocampal cornu ammonis (CA)1 area 1 h after CFC training. Conclusions Memory impairment induced by repeated neonatal exposure to isoflurane is associated with dysregulated histone H4K12 acetylation in the hippocampus, which probably affects downstream c-Fos gene expression following CFC training. The HDAC inhibitor TSA successfully rescued impaired contextual fear memory, presumably by promoting histone acetylation and histone acetylation-mediated gene expression. PMID:25928815

  2. Adjunctive N-acetyl-L-cysteine in treatment of murine pneumococcal meningitis.

    PubMed

    Högen, Tobias; Demel, Cornelia; Giese, Armin; Angele, Barbara; Pfister, Hans-Walter; Koedel, Uwe; Klein, Matthias

    2013-10-01

    Despite antibiotic therapy, acute and long-term complications are still frequent in pneumococcal meningitis. One important trigger of these complications is oxidative stress, and adjunctive antioxidant treatment with N-acetyl-l-cysteine was suggested to be protective in experimental pneumococcal meningitis. However, studies of effects on neurological long-term sequelae are limited. Here, we investigated the impact of adjunctive N-acetyl-l-cysteine on long-term neurological deficits in a mouse model of meningitis. C57BL/6 mice were intracisternally infected with Streptococcus pneumoniae. Eighteen hours after infection, mice were treated with a combination of ceftriaxone and placebo or ceftriaxone and N-acetyl-l-cysteine, respectively. Two weeks after infection, neurologic deficits were assessed using a clinical score, an open field test (explorative activity), a t-maze test (memory function), and auditory brain stem responses (hearing loss). Furthermore, cochlear histomorphological correlates of hearing loss were assessed. Adjunctive N-acetyl-l-cysteine reduced hearing loss after pneumococcal meningitis, but the effect was minor. There was no significant benefit of adjunctive N-acetyl-l-cysteine treatment in regard to other long-term complications of pneumococcal meningitis. Cochlear morphological correlates of meningitis-associated hearing loss were not reduced by adjunctive N-acetyl-l-cysteine. In conclusion, adjunctive therapy with N-acetyl-l-cysteine at a dosage of 300 mg/kg of body weight intraperitoneally for 4 days reduced hearing loss but not other neurologic deficits after pneumococcal meningitis in mice. These results make a clinical therapeutic benefit of N-acetyl-l-cysteine in the treatment of patients with pneumococcal meningitis questionable. PMID:23877681

  3. Acetyl-keto-?-boswellic acid induces lipolysis in mature adipocytes.

    PubMed

    Liu, Jian-Jun; Toy, Wan Ching; Liu, Sylvia; Cheng, Anton; Lim, Boon Khim; Subramaniam, Tavin; Sum, Chee Fang; Lim, Su Chi

    2013-02-01

    Recently, it was reported that naturally occurring pentacyclic triterpenoids such as ursolic acid have anti-adiposity property. We studied if acetyl-keto-?-boswellic acid (AKBA), an established anti-inflammation and anti-cancer pentacyclic triterpenoid which has similar chemical structure to ursolic acid, may modulate adipocyte phenotype. 3T3-L1 murine adipocytes and human subcutaneous adipocytes were treated with AKBA in different concentrations in vitro. AKBA triggered significant lipolysis in 3T3-L1 adipocytes as shown by reduced neutral lipids in cytosol and increased free fatty acids in culture medium. Increased lipolysis by AKBA was accompanied by up-regulation of lipolytic enzymes, adipocyte triglyceride lipase (ATGL) and hormone sensitive lipase (HSL), and a decreased expression of lipid droplet stability regulator perilipin. In addition, AKBA treatment reduced phenotypic markers of mature adipocyte aP2, adiponectin and glut-4 in mature adipocytes. Further studies revealed that AKBA down-regulated PPAR-? and C/EBP-? expression in a dose and temporal dependent manner in mature adipocytes. In human adipocytes, AKBA likewise mobilized lipolysis accompanied by down-regulation of PPAR-?2 expression and loss of phenotypic markers of mature adipocytes. PMID:23313487

  4. Replication-independent nucleosome exchange is enhanced by local and specific acetylation of histone H4.

    PubMed

    Elliott, Giles O; Murphy, Kevin J; Hayes, Jeffrey J; Thiriet, Christophe

    2013-02-01

    We used a novel single-cell strategy to examine the fate of histones during G(2)-phase. Consistent with previous results, we find that in G(2)-phase, the majority of nuclear histones are assembled into chromatin, whereas a small fraction comprises an unassembled pool. Small increases in the amount of histones within the free pool affect the extent of exchange, suggesting that the free pool is in dynamic equilibrium with chromatin proteins. Unexpectedly, acetylated H4 is preferentially partitioned to the unassembled pool. Although an increase in global histone acetylation did not affect overall nucleosome dynamics, an H4 containing lysine to glutamine substitutions as mimics of acetylation significantly increased the rate of exchange, but did not affect the acetylation state of neighbouring nucleosomes. Interestingly, transcribed regions are particularly predisposed to exchange on incorporation of H4 acetylation mimics compared with surrounding regions. Our results support a model whereby histone acetylation on K8 and K16 specifically marks nucleosomes for eviction, with histones being rapidly deacetylated on reassembly. PMID:23303778

  5. Rat ventral prostate xanthine oxidase-mediated metabolism of acetaldehyde to acetyl radical.

    PubMed

    Castro, G D; Costantini, M H; Castro, J A

    2009-04-01

    Alcohol drinking is known to lead to deleterious effects on prostate epithelial cells from humans and experimental animals. The understanding of the mechanisms underlying these effects is relevant to intraprostatic ethanol treatment of benign prostatic hyperplasia and to shed some light into the conflictive results linking alcohol consumption to prostate cancer. In previous studies, we provided evidence about the presence in the rat ventral prostate of cytosolic and microsomal metabolic pathways of ethanol to acetaldehyde and 1-hydroxyethyl radical and about the low levels of alcohol dehydrogenase and aldehyde dehydrogenase. Acetaldehyde accumulation in prostate tissue and oxidative stress promotion were also observed. In this study, we report that in the ventral prostate cytosolic fraction, xanthine oxidoreductase is able to metabolize acetaldehyde to acetyl radical. The identification of the acetyl was performed by GC-MS of the silylated acetyl-PBN adduct. Reference adduct was generated chemically. Formation of acetyl was also observed using pure xanthine oxidase. The generation of acetyl by the prostate cytosol was inhibited by allopurinol, oxypurinol, diphenyleneiodonium chloride, folate, and ellagic acid. Results suggest that metabolism of ethanol to acetaldehyde and to 1-hydroxyethyl and acetyl radicals could be involved in the deleterious effects of alcohol drinking on prostate epithelial cells. PMID:19734271

  6. Acetylation of glucokinase regulatory protein decreases glucose metabolism by suppressing glucokinase activity

    PubMed Central

    Park, Joo-Man; Kim, Tae-Hyun; Jo, Seong-Ho; Kim, Mi-Young; Ahn, Yong-Ho

    2015-01-01

    Glucokinase (GK), mainly expressed in the liver and pancreatic ?-cells, is critical for maintaining glucose homeostasis. GK expression and kinase activity, respectively, are both modulated at the transcriptional and post-translational levels. Post-translationally, GK is regulated by binding the glucokinase regulatory protein (GKRP), resulting in GK retention in the nucleus and its inability to participate in cytosolic glycolysis. Although hepatic GKRP is known to be regulated by allosteric mechanisms, the precise details of modulation of GKRP activity, by post-translational modification, are not well known. Here, we demonstrate that GKRP is acetylated at Lys5 by the acetyltransferase p300. Acetylated GKRP is resistant to degradation by the ubiquitin-dependent proteasome pathway, suggesting that acetylation increases GKRP stability and binding to GK, further inhibiting GK nuclear export. Deacetylation of GKRP is effected by the NAD+-dependent, class III histone deacetylase SIRT2, which is inhibited by nicotinamide. Moreover, the livers of db/db obese, diabetic mice also show elevated GKRP acetylation, suggesting a broader, critical role in regulating blood glucose. Given that acetylated GKRP may affiliate with type-2 diabetes mellitus (T2DM), understanding the mechanism of GKRP acetylation in the liver could reveal novel targets within the GK-GKRP pathway, for treating T2DM and other metabolic pathologies. PMID:26620281

  7. Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells

    PubMed Central

    Pathak, Ravi; Philizaire, Marc; Mujtaba, Shiraz

    2015-01-01

    The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre- and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to -independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets. PMID:26295410

  8. Autoregulation of the Rsc4 Tandem Bromodomain by Gcn5 Acetylation

    SciTech Connect

    VanDemark,A.; Kasten, M.; Ferris, E.; Heroux, A.; Hill, C.; Cairns, B.

    2007-01-01

    An important issue for chromatin remodeling complexes is how their bromodomains recognize particular acetylated lysine residues in histones. The Rsc4 subunit of the yeast remodeler RSC contains an essential tandem bromodomain (TBD) that binds acetylated K14 of histone H3 (H3K14ac). We report a series of crystal structures that reveal a compact TBD that binds H3K14ac in the second bromodomain and, remarkably, binds acetylated K25 of Rsc4 itself in the first bromodomain. Endogenous Rsc4 is acetylated only at K25, and Gcn5 is identified as necessary and sufficient for Rsc4 K25 acetylation in vivo and in vitro. Rsc4 K25 acetylation inhibits binding to H3K14ac, and mutation of Rsc4 K25 results in altered growth rates. These data suggest an autoregulatory mechanism in which Gcn5 performs both the activating (H3K14ac) and inhibitory (Rsc4 K25ac) modifications, perhaps to provide temporal regulation. Additional regulatory mechanisms are indicated as H3S10 phosphorylation inhibits Rsc4 binding to H3K14ac peptides.

  9. Combinatorial regulation of a signal-dependent activator by phosphorylation and acetylation.

    PubMed

    Paz, Jose C; Park, Sangho; Phillips, Naomi; Matsumura, Shigenobu; Tsai, Wen-Wei; Kasper, Lawryn; Brindle, Paul K; Zhang, Guangtao; Zhou, Ming-Ming; Wright, Peter E; Montminy, Marc

    2014-12-01

    In the fasted state, increases in catecholamine signaling promote adipocyte function via the protein kinase A-mediated phosphorylation of cyclic AMP response element binding protein (CREB). CREB activity is further up-regulated in obesity, despite reductions in catecholamine signaling, where it contributes to the development of insulin resistance. Here we show that obesity promotes the CREB binding protein (CBP)-mediated acetylation of CREB at Lys136 in adipose. Under lean conditions, CREB acetylation was low due to an association with the energy-sensing NAD(+)-dependent deacetylase SirT1; amounts of acetylated CREB were increased in obesity, when SirT1 undergoes proteolytic degradation. Whereas CREB phosphorylation stimulated an association with the KIX domain of CBP, Lys136 acetylation triggered an interaction with the CBP bromodomain (BRD) that augmented recruitment of this coactivator to the promoter. Indeed, coincident Ser133 phosphorylation and Lys136 acetylation of CREB stimulated the formation of a ternary complex with the KIX and BRD domains of CBP by NMR analysis. As disruption of the CREB:BRD complex with a CBP-specific BRD inhibitor blocked effects of CREB acetylation on target gene expression, our results demonstrate how changes in nutrient status modulate cellular gene expression in response to hormonal signals. PMID:25404345

  10. Loss of amino-terminal acetylation suppresses a prion phenotype by modulating global protein folding.

    PubMed

    Holmes, William M; Mannakee, Brian K; Gutenkunst, Ryan N; Serio, Tricia R

    2014-01-01

    Amino-terminal acetylation is among the most ubiquitous of protein modifications in eukaryotes. Although loss of N-terminal acetylation is associated with many abnormalities, the molecular basis of these effects is known for only a few cases, where acetylation of single factors has been linked to binding avidity or metabolic stability. In contrast, the impact of N-terminal acetylation for the majority of the proteome, and its combinatorial contributions to phenotypes, are unknown. Here, by studying the yeast prion [PSI(+)], an amyloid of the Sup35 protein, we show that loss of N-terminal acetylation promotes general protein misfolding, a redeployment of chaperones to these substrates, and a corresponding stress response. These proteostasis changes, combined with the decreased stability of unacetylated Sup35 amyloid, reduce the size of prion aggregates and reverse their phenotypic consequences. Thus, loss of N-terminal acetylation, and its previously unanticipated role in protein biogenesis, globally resculpts the proteome to create a unique phenotype. PMID:25023910

  11. Loss of N-terminal Acetylation Suppresses A Prion Phenotype By Modulating Global Protein Folding

    PubMed Central

    Holmes, William M.; Mannakee, Brian K.; Gutenkunst, Ryan N.; Serio, Tricia R.

    2014-01-01

    N-terminal acetylation is among the most ubiquitous of protein modifications in eukaryotes. While loss of N-terminal acetylation is associated with many abnormalities, the molecular basis of these effects is known for only a few cases, where acetylation of single factors has been linked to binding avidity or metabolic stability. In contrast, the impact of N-terminal acetylation for the majority of the proteome, and its combinatorial contributions to phenotypes, are unknown. Here, by studying the yeast prion [PSI+], an amyloid of the Sup35 protein, we show that loss of N-terminal acetylation promotes general protein misfolding, a redeployment of chaperones to these substrates, and a corresponding stress response. These proteostasis changes, combined with the decreased stability of unacetylated Sup35 amyloid, reduce the size of prion aggregates and reverse their phenotypic consequences. Thus, loss of N-terminal acetylation, and its previously unanticipated role in protein biogenesis, globally resculpts the proteome to create a unique phenotype. PMID:25023910

  12. Inhibition of acetyl-coenzyme A carboxylase by two classes of grass-selective herbicides

    SciTech Connect

    Rendina, A.R.; Craig-Kennard, A.C.; Beaudoin, J.D.; Breen, M.K. )

    1990-05-01

    The selective grass herbicides diclofop, haloxyfop, and trifop (((aryloxy)phenoxy)propionic acids) and alloxydim, sethoxydim, and clethodim (cyclohexanediones) are potent, reversible inhibitors of acetyl-coenzyme A carboxylase (ACC) partially purified from barley, corn, and wheat. Although inhibition of the wheat enzyme by clethodim and diclofop is noncompetitive versus each of the substrates adenosine triphosphate (ATP), HCO{sub 3}{sup {minus}}, and acetyl-coenzyme A (acetyl-CoA), diclofop and clethodim are nearly competitive versus acetyl-CoA since the level of inhibition is most sensitive to the concentration of acetyl-CoA (K{sub is} < K{sub ii}). To conclusively show whether the herbicides interact at the biotin carboxylation site or the carboxyl transfer site, the inhibition of isotope exchange and partial reactions catalyzed at each site was studied with the wheat enzyme. Only the ({sup 14}C)acetyl-CoA-malonyl-CoA exchange and decarboxylation of ({sup 14}C)malonyl-CoA reactions are strongly inhibited by clethodim and diclofop, suggesting that the herbicides interfere with the carboxyl transfer site rather than the biotin carboxylation site of the enzyme. Double-inhibition studies with diclofop and clethodim suggest that the ((aryloxy)phenoxy)propionic acid and cyclohexanedione herbicides may bind to the same region of the enzyme.

  13. Switching Catalysis from Hydrolysis to Perhydrolysis in Pseudomonas fluorescens Esterase

    SciTech Connect

    Yin, D.; Bernhardt, P; Morley, K; Jiang, Y; Cheeseman, J; Purpero, V; Schrag, J; Kazlauskas, R

    2010-01-01

    Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of {var_epsilon}-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k{sub cat}, but K{sub m} also increased so the specificity constant, k{sub cat}/K{sub m}, remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of {var_epsilon}-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the active site blocks access for larger alcohol moieties but binds {var_epsilon}-caprolactone more tightly. These results are consistent with the natural function of perhydrolases being either hydrolysis of peroxycarboxylic acids or hydrolysis of lactones.

  14. A mechanism of catalyzed GTP hydrolysis by Ras protein through magnesium ion

    NASA Astrophysics Data System (ADS)

    Lu, Qiang; Nassar, Nicolas; Wang, Jin

    2011-11-01

    The hydrolysis by Ras plays pivotal roles in the activation of signaling pathways that lead to cell growth, proliferation, and differentiation. Despite their significant role in human cancer, the hydrolysis mechanism remains unclear. In the present Letter, we propose a GTP hydrolysis mechanism in which the ? phosphate is cut off primarily by magnesium ion. We studied both normal and mutated Ras and the cause of the malfunction of these mutants, compared the effect of Mg2+ and Mn2+. The simulation results are consistent with the experiments and support the new hydrolysis mechanism. This work will benefit both GTPases and ATPases hydrolysis studies.

  15. Accelerated Hydrolysis of Aspirin Using Alternating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Reinscheid, Uwe M.

    2009-08-01

    The major problem of current drug-based therapy is selectivity. As in other areas of science, a combined approach might improve the situation decisively. The idea is to use the pro-drug principle together with an alternating magnetic field as physical stimulus, which can be applied in a spatially and temporarily controlled manner. As a proof of principle, the neutral hydrolysis of aspirin in physiological phosphate buffer of pH 7.5 at 40 °C was chosen. The sensor and actuator system is a commercially available gold nanoparticle (NP) suspension which is approved for animal usage, stable in high concentrations and reproducibly available. Applying the alternating magnetic field of a conventional NMR magnet system accelerated the hydrolysis of aspirin in solution.

  16. Enzymatic hydrolysis of Russian-VX by organophosphorus hydrolase.

    PubMed

    Rastogi, V K; DeFrank, J J; Cheng, T C; Wild, J R

    1997-12-18

    The Russian-VX (R-VX) is the principle V-type nerve agent in the chemical warfare (CW) arsenal of the Former Soviet Union. We here report the enzymatic hydrolysis of the P-S bond of Russian-VX by organophosphorus hydrolase (OPH) from Pseudomonas diminuta. While the Michaelis constant, K(m) for R-VX (474 microM), was similar to that for VX (434 microM), the Vmax for R-VX (2.1 mumoles/mg/min) was about four-fold higher compared to that for VX (0.56 mumoles/mg/min). A 50% inhibition in the rate of the enzymatic hydrolysis of R-VX was observed in the presence of 0.5% ethanol, isoamyl-alcohol, or isopropanol. The presence of acetonitrile, diethylene glycol, or methanol had marginal effects. These results comprise the first demonstration of enzymatic detoxification of R-VX. PMID:9425265

  17. Enzymatic hydrolysis and fermentation of agricultural residues to ethanol

    SciTech Connect

    Mes-Hartree, M.; Hogan, C.M.; Saddler, J.N.

    1984-01-01

    A combined enzymatic hydrolysis and fermentation process was used to convert steam-treated wheat and barley straw to ethanol. Maximum conversion efficiencies were obtained when the substrates were steamed for 90 s. These substrates could yield over 0.4 g ethanol/g cellulose following a combined enzymatic hydrolysis and fermentation process procedure using culture filtrates derived from Trichoderma harzianum E58. When culture filtrates from Trichoderma reesei C30 and T. reesei QM9414 were used, the ethanol yields obtained were 0.32 and 0.12 g ethanol/g cellulose utilized, respectively. The lower ethanol yields obtained with these strains were attributed to the lower amounts of ..beta..-glucosidase detected in the T. reesei culture filtrates.

  18. Enzymatic hydrolysis of cellulosic materials: a kinetic study

    SciTech Connect

    Beltrame, P.L.; Carniti, P.; Focher, B.; Marzetti, A.; Sarto, V.

    1984-01-01

    A kinetic study of the enzymatic hydrolysis of two celluloses with different structural features was performed at various temperatures (26-50/sup 0/C). The enzymatic system consisted of three types of enzymes: E/sub 1/-..beta..-1,4-glucan glucanohydrolase; E/sub 2/-..beta..-1,4-glucan cellobiohydrolase; and E/sub 3/-..beta..-glucosidase. A mathematical model for the mechanism of the hydrolysis of cellulosic materials catalyzed by a multienzymatic system was checked and a good rationalization of the experimental results was achieved. Uncompetitive and competitive glucose inhibition on E/sub 1/ and E/sub 2/, respectively, appeared to occur for both substrates. Inhibition by cellobiose was checked at 34/sup 0/C on one substrate. The V/sub max/, K/sub m/, and glucose inhibition constants were optimized and their dependence on temperature determined.

  19. Hydrolysis rates of pyrrolizidine alkaloids derived from Senecio jacobaea.

    PubMed

    Dueker, S R; Lamé, M W; Segall, H J

    1995-01-01

    Many of the commonly studied pyrrolizidine alkaloids (PAs) are built upon the subgroup retronecine (RET), which is released from the parent molecule by either base catalyzed or enzymatic hydrolysis of the ester linkages. The rate of appearance of RET in a hydrolytic study would thus reflect the rate of hydrolysis for the PA being tested. We have developed a gas chromatographic (GC) method to measure the release of RET from incubations of PAs with the guinea pig carboxylesterase, GPH1. The PAs tested were the following: jacobine (JAB), jacozine (JAZ), retrorsine (RES), and seneciphylline (SNP). The KmS for SNP and JAZ were determined to be 64.9 and 349.2 microM, respectively. In addition, a qualitative assessment of hydrolytic activity toward a radiolabelled mixture of retrorsine/riddelliine (RES/RIL) was performed with HPLC and radiometric detection. PMID:8572933

  20. Snapshots of the maltose transporter during ATP hydrolysis

    SciTech Connect

    Oldham, Michael L.; Chen, Jue

    2011-12-05

    ATP-binding cassette transporters are powered by ATP, but the mechanism by which these transporters hydrolyze ATP is unclear. In this study, four crystal structures of the full-length wild-type maltose transporter, stabilized by adenosine 5{prime}-({beta},{gamma}-imido)triphosphate or ADP in conjunction with phosphate analogs BeF{sub 3}{sup -}, VO{sub 4}{sup 3-}, or AlF{sub 4}{sup -}, were determined to 2.2- to 2.4-{angstrom} resolution. These structures led to the assignment of two enzymatic states during ATP hydrolysis and demonstrate specific functional roles of highly conserved residues in the nucleotide-binding domain, suggesting that ATP-binding cassette transporters catalyze ATP hydrolysis via a general base mechanism.

  1. Catalysis of a Flavoenzyme-Mediated Amide Hydrolysis

    SciTech Connect

    Mukherjee, Tathagata; Zhang, Yang; Abdelwahed, Sameh; Ealick, Steven E.; Begley, Tadhg P.

    2010-09-13

    A new pyrimidine catabolic pathway (the Rut pathway) was recently discovered in Escherichia coli K12. In this pathway, uracil is converted to 3-hydroxypropionate, ammonia, and carbon dioxide. The seven-gene Rut operon is required for this conversion. Here we demonstrate that the flavoenzyme RutA catalyzes the initial uracil ring-opening reaction to give 3-ureidoacrylate. This reaction, while formally a hydrolysis reaction, proceeds by an oxidative mechanism initiated by the addition of a flavin hydroperoxide to the C4 carbonyl. While peroxide-catalyzed amide hydrolysis has chemical precedent, we are not aware of a prior example of analogous chemistry catalyzed by flavin hydroperoxides. This study further illustrates the extraordinary catalytic versatility of the flavin cofactor.

  2. A DFT investigation of methanolysis and hydrolysis of triacetin

    E-print Network

    Limpanuparb, Taweetham; Tantirungrotechai, Yuthana; 10.1016/j.theochem.2010.05.022

    2012-01-01

    The thermodynamic and kinetic aspects of the methanolysis and hydrolysis reactions of glycerol triacetate or triacetin, a model triacylglycerol compound, were investigated by using Density Functional Theory (DFT) at the B3LYP/6-31++G(d,p) level of calculation. Twelve elementary steps of triacetin methanolysis were studied under acid-catalyzed and base-catalyzed conditions. The mechanism of acid-catalyzed methanolysis reaction which has not been reported yet for any esters was proposed. The effects of substitution, methanolysis/hydrolysis position, solvent and face of nucleophilic attack on the free energy of reaction and activation energy were examined. The prediction confirmed the facile position at the middle position of glycerol observed by NMR techniques. The calculated activation energy and the trends of those factors agree with existing experimental observations in biodiesel production.

  3. Investigation of the Polymorphs and Hydrolysis of Uranium Trioxide

    SciTech Connect

    Sweet, Lucas E.; Blake, Thomas A.; Henager, Charles H.; Hu, Shenyang Y.; Johnson, Timothy J.; Meier, David E.; Peper, Shane M.; Schwantes, Jon M.

    2013-04-01

    This work focuses on progress in gaining a better understanding of the polymorphic nature of the UO3-water system, one of several important materials associated with the nuclear fuel cycle. The UO3-water system is complex and has not been fully characterized, even though these species are common throughout the fuel cycle. Powder x-ray diffraction, Raman and fluorescence characterization was performed on polymorphic forms of UO3 and UO3 hydrolysis products for the purpose of developing some predictive capability of estimating process history and utility, e.g. for polymorphic phases of unknown origin. Specifically, we have investigated three industrially relevant production pathways of UO3 and discovered a previously unknown low temperature route to ?-UO3. Pure phases of UO3, hydrolysis products and starting materials were used to establish optical spectroscopic signatures for these compounds.

  4. Alcohol fermentation of sweet potato. Membrane reactor in enzymic hydrolysis

    SciTech Connect

    Azhar, A.; Hamdy, M.K.

    1981-01-01

    Use of ultrafiltration membrane systems in stirred cell and in thin-channel systems for immobilizing enzyme (sweet potato intrinsic and crystalline beta-amylase) in hydrolysis of sweet potato through a continuous operation mode were studied. Both the filtration rate and reducing sugars, produced as the result of enzymic hydrolysis, decreased with the filtration time. The immobilized enzymes in the thin-channel system showed a much better performance compared to that in the stirred cell system. Addition of crystalline sweet potato beta-amylase to the sweet potato increased both the filtration rate and reducing-sugars content. Alcohol fermentation of the filtrate resulted in an alcohol content of 4.2%. This represented fermentation of 95% of the sugars with an efficiency of 88%.

  5. Alcohol fermentation of sweet potato. Membrane reactor in enzymatic hydrolysis

    SciTech Connect

    Azhar, A.; Hamdy, M.K.

    1981-06-01

    Use of ultrafiltration membrane systems in stirred cell and in thin-channel systems for immobilizing enzyme (sweet potato intrinsic and crystalline /beta/-amylase) in hydrolysis of sweet potato through a continuous operation mode were studied. Both the filtration rate and reducing sugars, produced as the result of enzymatic hydrolysis, decreased with the filtration time. THe immobilized enzymes in the thin-channel system showed a much better performance compared to that in the stirred cell system. Addition of crystalline sweet potato /beta/-amylase to the sweet potato increased both the filtration rate and reducing-sugars content. Alcoholic fermentation of the filtrate resulted in an alcohol content of 4.2%. This represented fermentation of 95% of the sugars with an efficiency of 88%. 17 refs.

  6. Improving the efficiency of enzyme utilization for sugar beet pulp hydrolysis.

    PubMed

    Zheng, Yi; Cheng, Yu-Shen; Yu, Chaowei; Zhang, Ruihong; Jenkins, Bryan M; VanderGheynst, Jean S

    2012-11-01

    Sugar beet pulp (SBP) is a carbohydrate-rich residue of table sugar processing. It shows promise as a feedstock for fermentable sugar and biofuel production via enzymatic hydrolysis and microbial fermentation. This research focused on the enzymatic hydrolysis of SBP and examined the effects of solid loading (2-10 %, dry basis), enzyme preparation, and enzyme recycle on the production of fermentable sugars. The enzyme partitioning to the solid and liquid phases during SBP enzymatic hydrolysis and loss during recycling were investigated using SDS-PAGE and Zymogram analysis. Without considering product inhibition, the cellulase added initially to the SBP hydrolysis lost only 6 % filter paper activity and negligible carboxymethyl cellulose activity upon multiple cycles of SBP hydrolysis. It was found that enzyme dosage can be reduced by 50 % while maintaining similar, and in some cases higher fermentable sugar yield. The removal of hydrolysis products will further improve enzymatic hydrolysis of SBP for biofuel production. PMID:22580744

  7. Resistance to acetyl-CoA carboxylase-inhibiting herbicides.

    PubMed

    Kaundun, Shiv S

    2014-09-01

    Resistance to acetyl-CoA carboxylase herbicides is documented in at least 43 grass weeds and is particularly problematic in Lolium, Alopecurus and Avena species. Genetic studies have shown that resistance generally evolves independently and can be conferred by target-site mutations at ACCase codon positions 1781, 1999, 2027, 2041, 2078, 2088 and 2096. The level of resistance depends on the herbicides, recommended field rates, weed species, plant growth stages, specific amino acid changes and the number of gene copies and mutant ACCase alleles. Non-target-site resistance, or in essence metabolic resistance, is prevalent, multigenic and favoured under low-dose selection. Metabolic resistance can be specific but also broad, affecting other modes of action. Some target-site and metabolic-resistant biotypes are characterised by a fitness penalty. However, the significance for resistance regression in the absence of ACCase herbicides is yet to be determined over a practical timeframe. More recently, a fitness benefit has been reported in some populations containing the I1781L mutation in terms of vegetative and reproductive outputs and delayed germination. Several DNA-based methods have been developed to detect known ACCase resistance mutations, unlike metabolic resistance, as the genes remain elusive to date. Therefore, confirmation of resistance is still carried out via whole-plant herbicide bioassays. A growing number of monocotyledonous crops have been engineered to resist ACCase herbicides, thus increasing the options for grass weed control. While the science of ACCase herbicide resistance has progressed significantly over the past 10 years, several avenues provided in the present review remain to be explored for a better understanding of resistance to this important mode of action. PMID:24700409

  8. Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling.

    PubMed

    Gitau, Samuel Chege; Li, Xuelian; Zhao, Dandan; Guo, Zhenfeng; Liang, Haihai; Qian, Ming; Lv, Lifang; Li, Tianshi; Xu, Bozhi; Wang, Zhiguo; Zhang, Yong; Xu, Chaoqian; Lu, Yanjie; Du, Zhiming; Shan, Hongli; Yang, Baofeng

    2015-12-01

    Ventricular hypertrophy is a powerful and independent predictor of cardiovascular morbid events. The vascular properties of low-dose acetyl salicylic acid (aspirin) provide cardiovascular benefits through the irreversible inhibition of platelet cyclooxygenase 1; however, the possible anti-hypertrophic properties and potential mechanism of aspirin have not been investigated in detail. In this study, healthy wild-type male mice were randomly divided into three groups and subjected to transverse aortic constriction (TAC) or sham operation. The TAC-operated mice were treated with the human equivalent of low-dose aspirin (10 mg·kg(-1)·d(-1)); the remaining mice received an equal amount of phosphate buffered saline with 0.65% ethanol, which was used as a vehicle. A cardiomyocyte hypertrophy model induced by angiotensin II (10 nmol·L(-1)) was treated with the human equivalent of low (10 or 100 ?mol·L(-1)) and high (1000 ?mol·L(-1)) aspirin concentrations in plasma. Changes in the cardiac structure and function were assessed through echocardiography and transmission electron microscopy. Gene expression was determined through RT-PCR and western blot analysis. Results indicated that aspirin treatment abrogated the increased thickness of the left ventricular anterior and posterior walls, the swelling of mitochondria, and the increased surface area in in vivo and in vitro hypertrophy models. Aspirin also normalized the upregulated hypertrophic biomarkers, ?-myosin heavy chain (?-MHC), atrial natriuretic peptide (ANP), and b-type natriuretic peptide (BNP). Aspirin efficiently reversed the upregulation of ?-catenin and P-Akt expression and the TAC- or ANG II-induced downregulation of GSK-3?. Therefore, low-dose aspirin possesses significant anti-hypertrophic properties at clinically relevant concentrations for anti-thrombotic therapy. The downregulation of ?-catenin and Akt may be the underlying signaling mechanism of the effects of aspirin. PMID:26626190

  9. Endo-exo Synergism in Cellulose Hydrolysis Revisited*

    PubMed Central

    Jalak, Jürgen; Kurašin, Mihhail; Teugjas, Hele; Väljamäe, Priit

    2012-01-01

    Synergistic cooperation of different enzymes is a prerequisite for efficient degradation of cellulose. The conventional mechanistic interpretation of the synergism between randomly acting endoglucanases (EGs) and chain end-specific processive cellobiohydrolases (CBHs) is that EG-generated new chain ends on cellulose surface serve as starting points for CBHs. Here we studied the hydrolysis of bacterial cellulose (BC) by CBH TrCel7A and EG TrCel5A from Trichoderma reesei under both single-turnover and “steady state” conditions. Unaccountable by conventional interpretation, the presence of EG increased the rate constant of TrCel7A-catalyzed hydrolysis of BC in steady state. At optimal enzyme/substrate ratios, the “steady state” rate of synergistic hydrolysis became limited by the velocity of processive movement of TrCel7A on BC. A processivity value of 66 ± 7 cellobiose units measured for TrCel7A on 14C-labeled BC was close to the leveling off degree of polymerization of BC, suggesting that TrCel7A cannot pass through the amorphous regions on BC and stalls. We propose a mechanism of endo-exo synergism whereby the degradation of amorphous regions by EG avoids the stalling of TrCel7A and leads to its accelerated recruitment. Hydrolysis of pretreated wheat straw suggested that this mechanism of synergism is operative also in the degradation of lignocellulose. Although both mechanisms of synergism are used in parallel, the contribution of conventional mechanism is significant only at high enzyme/substrate ratios. PMID:22733813

  10. Stability of aminooxy glycosides to glycosidase catalysed hydrolysis.

    PubMed

    Iqbal, Amjid; Chibli, Hicham; Hamilton, Chris J

    2013-08-01

    The stability of the amino(methoxy) beta-glycosidic bond to glycosidase catalysed hydrolysis is reported. Beta-O-benzyl glucose and beta-O-benzyl galactose are substrates hydrolysed by beta-glucosidase and beta-galactosidase from almonds and Escherichia coli, respectively. However their beta-N-benzyl-(O-methoxy)-glucoside and beta-N-benzyl-(O-methoxy)-galactoside derivatives are competitive inhibitors. PMID:23764956

  11. The Intracellular Concentration of Acetyl Phosphate in Escherichia coli Is Sufficient for Direct Phosphorylation of Two-Component Response Regulators?

    PubMed Central

    Klein, Adam H.; Shulla, Ana; Reimann, Sylvia A.; Keating, David H.; Wolfe, Alan J.

    2007-01-01

    Acetyl phosphate, the intermediate of the AckA-Pta pathway, acts as a global signal in Escherichia coli. Although acetyl phosphate clearly signals through two-component response regulators, it remains unclear whether acetyl phosphate acts as a direct phospho donor or functions through an indirect mechanism. We used two-dimensional thin-layer chromatography to measure the relative concentrations of acetyl phosphate, acetyl coenzyme A, ATP, and GTP over the course of the entire growth curve. We estimated that the intracellular concentration of acetyl phosphate in wild-type cells reaches at least 3 mM, a concentration sufficient to activate two-component response regulators via direct phosphoryl transfer. PMID:17545286

  12. Characterization of nucleolin K88 acetylation defines a new pool of nucleolin colocalizing with pre-mRNA splicing factors.

    PubMed

    Das, Sadhan; Cong, Rong; Shandilya, Jayasha; Senapati, Parijat; Moindrot, Benoit; Monier, Karine; Delage, Hélène; Mongelard, Fabien; Kumar, Sanjeev; Kundu, Tapas K; Bouvet, Philippe

    2013-03-01

    Nucleolin is a multifunctional protein that carries several post-translational modifications. We characterized nucleolin acetylation and developed antibodies specific to nucleolin K88 acetylation. Using this antibody we show that nucleolin is acetylated in vivo and is not localized in the nucleoli, but instead is distributed throughout the nucleoplasm. Immunofluorescence studies indicate that acetylated nucleolin is co-localized with the splicing factor SC35 and partially with Y12. Acetylated nucleolin is expressed in all tested proliferating cell types. Our findings show that acetylation defines a new pool of nucleolin which support a role for nucleolin in the regulation of mRNA maturation and transcription by RNA polymerase II. PMID:23353999

  13. Reaction pathways and free energy profiles for spontaneous hydrolysis of urea and tetramethylurea: Unexpected substituent effects

    PubMed Central

    Yao, Min; Tu, Wenlong; Chen, Xi; Zhan, Chang-Guo

    2013-01-01

    It has been difficult to directly measure the spontaneous hydrolysis rate of urea and, thus, 1,1,3,3-tetramethylurea (Me4U) was used as a model to determine the “experimental” rate constant for urea hydrolysis. The use of Me4U was based on an assumption that the rate of urea hydrolysis should be 2.8 times that of Me4U hydrolysis because the rate of acetamide hydrolysis is 2.8 times that of N,N-dimethyl-acetamide hydrolysis. The present first-principles electronic-structure calculations on the competing non-enzymatic hydrolysis pathways have demonstrated that the dominant pathway is the neutral hydrolysis via the CN addition for both urea (when pH<~11.6) and Me4U (regardless of pH), unlike the non-enzymatic hydrolysis of amides where alkaline hydrolysis is dominant. Based on the computational data, the substituent shift of free energy barrier calculated for the neutral hydrolysis is remarkably different from that for the alkaline hydrolysis, and the rate constant for the urea hydrolysis should be ~1.3×109-fold lower than that (4.2×10?12 s?1) measured for the Me4U hydrolysis. As a result, the rate enhancement and catalytic proficiency of urease should be 1.2×1025 and 3×1027 M?1, respectively, suggesting that urease surpasses proteases and all other enzymes in its power to enhance the rate of reaction. All of the computational results are consistent with available experimental data for Me4U, suggesting that the computational prediction for urea is reliable. PMID:24097048

  14. Lactose hydrolysis by ?-galactosidase enzyme: optimization using response surface methodology.

    PubMed

    Das, Bipasha; Roy, Ananda Prasad; Bhattacharjee, Sangita; Chakraborty, Sudip; Bhattacharjee, Chiranjib

    2015-11-01

    In the present study, it was aimed to optimize the process of lactose hydrolysis using free and immobilized ?-galactosidase to produce glucose and galactose. Response surface methodology (RSM) by central composite design (CCD) was employed to optimize the degree of hydrolysis by varying three parameters, temperature (15-45°C), solution pH (5-9) and ?-galactosidase enzyme concentration (2-8mg/mL) for free mode of analysis and sodium alginate concentration (2-4%), calcium chloride concentration (3-6%) and enzyme concentration (2-8mg/mL) for immobilized process. Based on plots and variance analysis, the optimum operational conditions for maximizing lactose hydrolysis were found to be temperature (35.5°C), pH (6.7) and enzyme concentration (6.7mg/mL) in free mode and sodium alginate concentration (3%), calcium chloride concentration (5.9%) and enzyme concentration (5.2mg/mL) in immobilized mode. PMID:25842188

  15. A new route to improved glucose yields in cellulose hydrolysis

    SciTech Connect

    Zhao, Haibo; Holladay, John E.; Kwak, Ja Hun; Zhang, Z. Conrad

    2007-08-01

    An unusual inverse temperature-dependent pathway was discovered for cellulose decrystallization in trifluoroacetic acid (TFA). Cellulose was completely decrystallized by TFA at 0 °C in less than 2 hours, a result not achieved in 48 hours at 25°C in the same medium. The majority of TFA used in cellulose decrystallization was recycled via a vacuum process. The small remaining amount of TFA was diluted with water to make a 0.5% TFA solution and used as a catalyst in dilute acid hydrolysis. After one minute, under batch conditions at 185 °C, the glucose yield reached 63.5% without production of levulinic acid. In comparison, only 15.0% glucose yield was achieved in the hydrolysis of untreated cellulose by 0.5% H2SO4 under the same condition. Further improvement of glucose yield is possible by optimizing reaction conditions. Alternatively, the remaining TFA can be completely removed by water while keeping the regenerated cellulose in a highly amorphous state. This regenerated cellulose is much more reactive than untreated cellulose in hydrolysis reactions, but still less reactive than corn starch. The lower temperatures and shorter reaction times with this activated cellulose makes it possible to reduce operating costs and decrease byproduct yields such as HMF and levulinic acid.

  16. Hydrolysis of iron and chromium fluorides: mechanism and kinetics.

    PubMed

    Gálvez, José L; Dufour, Javier; Negro, Carlos; López-Mateos, Federico

    2008-06-15

    Fluoride complexes of metallic ions are one of the main problems when processing industrial effluents with high content of fluoride anion. The most important case is derived from pickling treatment of stainless steel, which is performed with HNO3/HF mixtures to remove oxides scale formed over the metal surface. Waste from this process, spent pickling liquor, must be treated for recovering metallic and acid content. Conventional treatments produce a final effluent with high quantity of fluoride complexes of iron and chromium. This work proposes a hydrolysis treatment of these solid metal fluorides by reacting them with a basic agent. Metal oxides are obtained, while fluoride is released to solution as a solved salt, which can be easily recovered as hydrofluoric acid. Solid iron and chromium fluorides, mainly K2FeF5(s) and CrF3(s), obtained in the UCM treatment process, were employed in this work. Optimal hydrolysis operating conditions were obtained by means of a factorial design: media must be basic but pH cannot be higher than 9.5, temperature from 40 to 70 degrees C and alkali concentration (potassium hydroxide) below 1.1 mol L(-1). Secondary reactions have been detected, which are probably due to fluoride adsorption onto obtained oxides surface. Mechanism of reaction consists of several stages, involving solid fluoride dissolution and complexes decomposition. Hydrolysis kinetics has been modeled with classical crystal dissolution kinetics, based on mass transfer phenomena. PMID:17988794

  17. Programmed Hydrolysis in Designing Paclitaxel Prodrug for Nanocarrier Assembly.

    PubMed

    Fu, Q; Wang, Y; Ma, Y; Zhang, D; Fallon, J K; Yang, X; Liu, D; He, Z; Liu, F

    2015-01-01

    Nanocarriers delivering prodrugs are a way of improving in vivo effectiveness and efficiency. For therapeutic efficacy, the prodrug must hydrolyze to its parent drug after administration. Based on the fact that the hydrolysis is impeded by steric hindrance and improved by sufficient polarity, in this study, we proposed the PTX-S-S-VE, the conjugation of paclitaxel (PTX) to vitamin E (VE) through a disulfide bridge. This conjugate possessed the following advantages: first, it can be encapsulated in the VE/VE2-PEG2000/water nanoemulsions because of favorable hydrophobic interactions; second, the nanoemulsions had a long blood circulation time; finally, the concentrated glutathione in the tumor microenvironment could cleave the disulfide bond to weaken the steric hindrance and increase the polarity, promoting the hydrolysis to PTX and increasing the anticancer activity. It was demonstrated in vitro that the hydrolysis of PTX-S-S-VE was enhanced and the cytotoxicity was increased. In addition, PTX-S-S-VE had greater anticancer activity against the KB-3-1 cell line tumor xenograft and the tumor size was smaller after the 4(th) injection. The present result suggests a new way, use of reduction, to improve the in vivo anticancer activity of a prodrug for nanocarrier delivery by unshielding the ester bond and taking off the steric block. PMID:26166066

  18. Enzymatic hydrolysis of defatted mackerel protein with low bitter taste

    NASA Astrophysics Data System (ADS)

    Hou, Hu; Li, Bafang; Zhao, Xue

    2011-03-01

    Ultrasound-assisted solvent extraction was confirmed as a novel, effective method for separating lipid from mackerel protein, resulting in a degreasing rate (DR) of 95% and a nitrogen recovery (NR) of 88.6%. To obtain protein hydrolysates with high nitrogen recovery and low bitter taste, enzymatic hydrolysis was performed using eight commercially available proteases. It turned out that the optimum enzyme was the `Mixed enzymes for animal proteolysis'. An enzyme dosage of 4%, a temperature of 50°, and a hydrolysis time of 300 min were found to be the optimum conditions to obtain high NR (84.28%) and degree of hydrolysis (DH, 16.18%) by orthogonal experiments. Glutamic acid was the most abundant amino acid of MDP (defatted mackerel protein) and MDPH (defatted mackerel protein hydrolysates). Compared with the FAO/WHO reference protein, the essential amino acid chemical scores (CS) were greater than 1.0 (1.0-1.7) in MDPH, which is reflective of high nutritional value. This, coupled with the light color and slight fishy odor, indicates that MDPH would potentially have a wide range of applications such as nutritional additives, functional ingredients, and so on.

  19. Pretreatment for cellulose hydrolysis by carbon dioxide explosion

    SciTech Connect

    Zheng, Y.; Lin, H.M.; Tsao, G.T.

    1998-11-01

    Cellulosic materials were treated with supercritical carbon dioxide to increase the reactivity of cellulose, thereby to enhance the rate and the extent of cellulose hydrolysis. In this pretreatment process, the cellulosic materials such as Avicel, recycled paper mix, sugarcane bagasse and the repulping waste of recycled paper are placed in a reactor under pressurized carbon dioxide at 35 C for a controlled time period. Upon an explosive release of the carbon dioxide pressure, the disruption of the cellulosic structure increases the accessible surface area of the cellulosic substrate to enzymatic hydrolysis. Results indicate that supercritical carbon dioxide is effective for pretreatment of cellulose. An increase in pressure facilitates the faster penetration of carbon dioxide molecules into the crystalline structures, thus more glucose is produced from cellulosic materials after the explosion as compared to those without the pretreatment. This explosion pretreatment enhances the rate of cellulosic material hydrolysis as well as increases glucose yield by as much as 50%. Results from the simultaneous saccharification and fermentation tests also show the increase in the available carbon source from the cellulosic materials for fermentation to produce ethanol. As an alternative method, this supercritical carbon dioxide explosion has a possibility to reduce expense compared with ammonia explosion, and since it is operated at the low temperature, it will not cause degradation of sugars such as those treated with steam explosion due to the high-temperature involved.

  20. A single molecule study of cellulase hydrolysis of crystalline cellulose

    NASA Astrophysics Data System (ADS)

    Liu, Yu-San; Luo, Yonghua; Baker, John O.; Zeng, Yining; Himmel, Michael E.; Smith, Steve; Ding, Shi-You

    2010-02-01

    Cellobiohydrolase-I (CBH I), a processive exoglucanase secreted by Trichoderma reesei, is one of the key enzyme components in a commercial cellulase mixture currently used for processing biomass to biofuels. CBH I contains a family 7 glycoside hydrolase catalytic module, a family 1 carbohydrate-binding module (CBM), and a highlyglycosylated linker peptide. It has been proposed that the CBH I cellulase initiates the hydrolysis from the reducing end of one cellulose chain and successively cleaves alternate ?-1,4-glycosidic bonds to release cellobiose as its principal end product. The role each module of CBH I plays in the processive hydrolysis of crystalline cellulose has yet to be convincingly elucidated. In this report, we use a single-molecule approach that combines optical (Total Internal Reflection Fluorescence microscopy, or TIRF-M) and non-optical (Atomic Force Microscopy, or AFM) imaging techniques to analyze the molecular motion of CBM tagged with green fluorescence protein (GFP), and to investigate the surface structure of crystalline cellulose and changes made in the structure by CBM and CBH I. The preliminary results have revealed a confined nanometer-scale movement of the TrCBM1-GFP bound to cellulose, and decreases in cellulose crystal size as well as increases in surface roughness during CBH I hydrolysis of crystalline cellulose.

  1. Whey protein isolate polydispersity affects enzymatic hydrolysis outcomes.

    PubMed

    O'Loughlin, I B; Murray, B A; Brodkorb, A; FitzGerald, R J; Robinson, A A; Holton, T A; Kelly, P M

    2013-12-01

    The effects of heat-induced denaturation of whey protein isolate (WPI) on the enzymatic breakdown of ?-La, caseinomacropeptide (CMP), ?-Lg A and ?-Lg B were observed as hydrolysis proceeded to a 5% degree of hydrolysis (DH) in both unheated and heat-treated (80 °C, 10 min) WPI dispersions (100 g L(-1)). Hydrolysis of denatured WPI favoured the generation of higher levels of free essential amino acids; lysine, phenylalanine and arginine compared to the unheated substrate. LC-MS/MS identified 23 distinct peptides which were identified in the denatured WPI hydrolysate - the majority of which were derived from ?-Lg. The mapping of the detected regions in ?-La, ?-Lg, and CMP enabled specific cleavage points to be associated with certain serine endo-protease activities. The outcomes of the study emphasise how a combined approach of substrate heat pre-treatment and enzymology may be used to influence proteolysis with attendant opportunities for targeting unique peptide production and amino acid release. PMID:23870966

  2. Programmed Hydrolysis in Designing Paclitaxel Prodrug for Nanocarrier Assembly

    PubMed Central

    Fu, Q.; Wang, Y.; Ma, Y.; Zhang, D.; Fallon, J. K.; Yang, X.; Liu, D.; He, Z.; Liu, F.

    2015-01-01

    Nanocarriers delivering prodrugs are a way of improving in vivo effectiveness and efficiency. For therapeutic efficacy, the prodrug must hydrolyze to its parent drug after administration. Based on the fact that the hydrolysis is impeded by steric hindrance and improved by sufficient polarity, in this study, we proposed the PTX-S-S-VE, the conjugation of paclitaxel (PTX) to vitamin E (VE) through a disulfide bridge. This conjugate possessed the following advantages: first, it can be encapsulated in the VE/VE2-PEG2000/water nanoemulsions because of favorable hydrophobic interactions; second, the nanoemulsions had a long blood circulation time; finally, the concentrated glutathione in the tumor microenvironment could cleave the disulfide bond to weaken the steric hindrance and increase the polarity, promoting the hydrolysis to PTX and increasing the anticancer activity. It was demonstrated in vitro that the hydrolysis of PTX-S-S-VE was enhanced and the cytotoxicity was increased. In addition, PTX-S-S-VE had greater anticancer activity against the KB-3-1 cell line tumor xenograft and the tumor size was smaller after the 4th injection. The present result suggests a new way, use of reduction, to improve the in vivo anticancer activity of a prodrug for nanocarrier delivery by unshielding the ester bond and taking off the steric block. PMID:26166066

  3. Treatment of heterotopic ossification through remote ATP hydrolysis

    PubMed Central

    Peterson, Jonathan R.; De La Rosa, Sara; Eboda, Oluwatobi; Cilwa, Katherine E.; Agarwal, Shailesh; Buchman, Steven R.; Cederna, Paul S.; Xi, Chuanwu; Morris, Michael D.; Herndon, David N.; Xiao, Wenzhong; Tompkins, Ronald G.; Krebsbach, Paul H.; Wang, Stewart C.; Levi, Benjamin

    2015-01-01

    Heterotopic ossification (HO) is the pathologic development of ectopic bone in soft tissues because of a local or systemic inflammatory insult, such as burn injury or trauma. In HO, mesenchymal stem cells (MSCs) are inappropriately activated to undergo osteogenic differentiation. Through the correlation of in vitro assays and in vivo studies (dorsal scald burn with Achilles tenotomy), we have shown that burn injury enhances the osteogenic potential of MSCs and causes ectopic endochondral heterotopic bone formation and functional contractures through bone morphogenetic protein–mediated canonical SMAD signaling. We further demonstrated a prevention strategy for HO through adenosine triphosphate (ATP) hydrolysis at the burn site using apyrase. Burn site apyrase treatment decreased ATP, increased adenosine 3?,5?-monophosphate, and decreased phosphorylation of SMAD1/5/8 in MSCs in vitro. This ATP hydrolysis also decreased HO formation and mitigated functional impairment in vivo. Similarly, selective inhibition of SMAD1/5/8 phosphorylation with LDN-193189 decreased HO formation and increased range of motion at the injury site in our burn model in vivo. Our results suggest that burn injury–exacerbated HO formation can be treated through therapeutics that target burn site ATP hydrolysis and modulation of SMAD1/5/8 phosphorylation. PMID:25253675

  4. Treatment of heterotopic ossification through remote ATP hydrolysis.

    PubMed

    Peterson, Jonathan R; De La Rosa, Sara; Eboda, Oluwatobi; Cilwa, Katherine E; Agarwal, Shailesh; Buchman, Steven R; Cederna, Paul S; Xi, Chuanwu; Morris, Michael D; Herndon, David N; Xiao, Wenzhong; Tompkins, Ronald G; Krebsbach, Paul H; Wang, Stewart C; Levi, Benjamin

    2014-09-24

    Heterotopic ossification (HO) is the pathologic development of ectopic bone in soft tissues because of a local or systemic inflammatory insult, such as burn injury or trauma. In HO, mesenchymal stem cells (MSCs) are inappropriately activated to undergo osteogenic differentiation. Through the correlation of in vitro assays and in vivo studies (dorsal scald burn with Achilles tenotomy), we have shown that burn injury enhances the osteogenic potential of MSCs and causes ectopic endochondral heterotopic bone formation and functional contractures through bone morphogenetic protein-mediated canonical SMAD signaling. We further demonstrated a prevention strategy for HO through adenosine triphosphate (ATP) hydrolysis at the burn site using apyrase. Burn site apyrase treatment decreased ATP, increased adenosine 3',5'-monophosphate, and decreased phosphorylation of SMAD1/5/8 in MSCs in vitro. This ATP hydrolysis also decreased HO formation and mitigated functional impairment in vivo. Similarly, selective inhibition of SMAD1/5/8 phosphorylation with LDN-193189 decreased HO formation and increased range of motion at the injury site in our burn model in vivo. Our results suggest that burn injury-exacerbated HO formation can be treated through therapeutics that target burn site ATP hydrolysis and modulation of SMAD1/5/8 phosphorylation. PMID:25253675

  5. Hydrolysis of organonitrate functional groups in aerosol particles

    SciTech Connect

    Liu, Shang; Shilling, John E.; Song, Chen; Hiranuma, Naruki; Zaveri, Rahul A.; Russell, Lynn M.

    2012-10-19

    Organonitrate (ON) groups are important substituents in secondary organic aerosols. Model simulations and laboratory studies indicate a large fraction of ON groups in aerosol particles, but much lower quantities are observed in the atmosphere. Hydrolysis of ON groups in aerosol particles has been proposed recently. To test this hypothesis, we simulated formation of ON molecules in a reaction chamber under a wide range of relative humidity (0% to 90%). The mass fraction of ON groups (5% to 20% for high-NOx experiments) consistently decreased with increasing relative humidity, which was best explained by hydrolysis of ON groups at a rate of 4 day-1 (lifetime of 6 hours) for reactions under relative humidity greater than 20%. In addition, we found that secondary nitrogen-containing molecules absorb light, with greater absorption under dry and high-NOx conditions. This work provides the first evidence for particle-phase hydrolysis of ON groups, a process that could substantially reduce ON group concentration in the atmosphere.

  6. ATP hydrolysis stimulates large length fluctuations in single actin filaments

    E-print Network

    Evgeny B. Stukalin; Anatoly B. Kolomeisky

    2005-07-27

    Polymerization dynamics of single actin filaments is investigated theoretically using a stochastic model that takes into account the hydrolysis of ATP-actin subunits, the geometry of actin filament tips, the lateral interactions between the monomers as well as the processes at both ends of the polymer. Exact analytical expressions are obtained for a mean growth velocity and for dispersion in length fluctuations. It is found that the ATP hydrolysis has a strong effect on dynamic properties of single actin filaments. At high concentrations of free actin monomers the mean size of unhydrolyzed ATP-cap is very large, and the dynamics is governed by association/dissociation of ATP-actin subunits. However, at low concentrations the size of the cap becomes finite, and the dissociation of ADP-actin subunits makes a significant contribution to overall dynamics. Actin filament length fluctuations reach the maximum at the boundary between two dynamic regimes, and this boundary is always larger than the critical concentration. Random and vectorial mechanisms of hydrolysis are compared, and it is found that they predict qualitatively similar dynamic properties. The possibility of attachment and detachment of oligomers is also discussed. Our theoretical approach is successfully applied to analyze the latest experiments on the growth and length fluctuations of individual actin filaments.

  7. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis

    SciTech Connect

    Zhao, Hua; Jones, Cecil L; Baker, Gary A; Xia, Shuqian; Olubajo, Olarongbe; Person, Vernecia

    2009-01-01

    The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs)were found capable of dissolving more than 10 wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904 910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432 2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137 140, 407 421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and nonvolatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. 70 C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58 75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel cellulose, filter paper and cottonwere hydrolyzed 2 10 times faster than the respective untreated celluloses. A complete hydrolysis of Avicel cellulose could be achieved in 6 h given the Trichoderma reesei cellulase/substrate ratio (w/w) of 3:20 at 50 C. In addition,we observed that cellulase is more thermally stable (up to 60 C) in the presence of regenerated cellulose. Furthermore, our systematic studies suggest that the presence of various ILs during the hydrolysis induced different degrees of cellulase inactivation. Therefore, a thorough removal of IL residues after cellulose regeneration is highly recommended, and a systematic investigation on this subject is much needed.

  8. Formation of hydroxyapatite by hydrolysis of alpha-tricalcium phosphate

    NASA Astrophysics Data System (ADS)

    Durucan, Caner

    Low-temperature cement-type formation of hydroxyapatite [Ca10(PO4)6(OH)2 or HAp) has value in terms of developing synthetic compounds similar in compositions to those formed by natural mineralization of bone. Understanding the in vitro kinetics of formation of the synthetic composition could produce insights into developing hard tissue analogs. The kinetics and chemistry of cement-type formation of HAp by hydrolysis of particulate alpha-tricalcium phosphate (alpha-Ca 3(PO4)2 or alpha-TCP) were examined. In particular, the effects of reaction temperature, synthesis route, inorganic salt additives and presence of biodegradable polymers (poly(alpha-hydroxyl acids) on the hydrolysis rate and microstructural/mechanical properties of HAp were determined using the following analytical techniques: isothermal calorimetry, x-ray diffraction, scanning electron microscsopy (SEM), fourier transform infrared spectroscopy (FTIR), solution chemistry, diametrical compression and 3-point bending tests. For the phase-pure alpha-TCP/water system the complete reaction times and morphologies of the resultant HAp were found to be strongly dependent on reaction temperature over a range of 37°C to 56°C. Isothermal calorimetry analyses revealed a thermally activated hydrolysis mechanism, leading to higher reaction rates with an increase in hydrolysis temperature. The microstructure of the resultant HAp typically had entangled, flake-like morphology, with HAp formed at 37°C having a smaller crystalline size than that formed at 45°C and 56°C. The cement hardening contributed to entanglement at the microstructural level. In all cases the hydrated product was phase pure calcium-deficient hydroxyapatite [Ca10-x(HPO4) x(PO4)6-x(OH)2-x], and no other intermediates or by-products were formed through the complete transformation. According to the proposed kinetic model, a two-step mechanism was found to control the overall hydrolysis reaction and thereby HAp formation at 37°C. During the first step, the reaction rate was controlled by the surface area of the anhydrous TCP particulates hence controlling their initial dissolution. Subsequently, the reaction rate was controlled by a nucleation and growth mechanism. During the second stage, HAp formation initiates preferentially on alpha-TCP surfaces. Further growth of HAp continues progressively by dissolution and precipitation of unreacted alpha-TCP, analogous to natural biomineralization events. (Abstract shortened by UMI.)

  9. The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites

    PubMed Central

    AbouElfetouh, Alaa; Kuhn, Misty L; Hu, Linda I; Scholle, Michael D; Sorensen, Dylan J; Sahu, Alexandria K; Becher, Dörte; Antelmann, Haike; Mrksich, Milan; Anderson, Wayne F; Gibson, Bradford W; Schilling, Birgit; Wolfe, Alan J

    2015-01-01

    N?-lysine acetylation is an abundant posttranslational modification of thousands of proteins involved in diverse cellular processes. In the model bacterium Escherichia coli, the ?-amino group of a lysine residue can be acetylated either catalytically by acetyl-coenzyme A (acCoA) and lysine acetyltransferases, or nonenzymatically by acetyl phosphate (acP). It is well known that catalytic acCoA-dependent N?-lysine acetylation can be reversed by deacetylases. Here, we provide genetic, mass spectrometric, structural and immunological evidence that CobB, a deacetylase of the sirtuin family of NAD+-dependent deacetylases, can reverse acetylation regardless of acetyl donor or acetylation mechanism. We analyzed 69 lysines on 51 proteins that we had previously detected as robustly, reproducibly, and significantly more acetylated in a cobB mutant than in its wild-type parent. Functional and pathway enrichment analyses supported the hypothesis that CobB regulates protein function in diverse and often essential cellular processes, most notably translation. Combined mass spectrometry, bioinformatics, and protein structural data provided evidence that the accessibility and three-dimensional microenvironment of the target acetyllysine help determine CobB specificity. Finally, we provide evidence that CobB is the predominate deacetylase in E. coli. PMID:25417765

  10. Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects

    PubMed Central

    Myklebust, Line M.; Van Damme, Petra; Støve, Svein I.; Dörfel, Max J.; Abboud, Angèle; Kalvik, Thomas V.; Grauffel, Cedric; Jonckheere, Veronique; Wu, Yiyang; Swensen, Jeffrey; Kaasa, Hanna; Liszczak, Glen; Marmorstein, Ronen; Reuter, Nathalie; Lyon, Gholson J.; Gevaert, Kris; Arnesen, Thomas

    2015-01-01

    The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease. PMID:25489052

  11. Acetylation of NDPK-D Regulates Its Subcellular Localization and Cell Survival

    PubMed Central

    Fujita, Yuki; Fujiwara, Kei; Zenitani, Shigetake; Yamashita, Toshihide

    2015-01-01

    Nucleoside diphosphate kinases (NDPK) are ubiquitous enzymes that catalyze the reversible phosphotransfer of ?-phosphates between di- and triphosphonucleosides. NDPK-D (Nm23-H4) is the only member of the NDPK family with a mitochondrial targeting sequence. Despite the high expression of NDPK-D in the developing central nervous system, its function remains to be determined. In this study, we show that NDPK-D knockdown induces apoptosis in neuroblastoma cells as well as in mouse cortex, suggesting that NDPK-D is required for neuronal survival. We identified NDPK-D as a binding partner of NAD+-dependent histone deacetylase, SIRT1, by yeast two-hybrid screening. NDPK-D co-localized with SIRT1, and the association of these molecules was confirmed by co-immunoprecipitation. Inhibition of SIRT1 increases the acetylation of NDPK-D. Overexpression of NDPK-D along with SIRT1, or mutation in the acetylated lysine residues in NDPK-D, increases its nuclear accumulation. Furthermore, the NDPK-D acetylation-mimic mutant increased apoptosis in N1E-115 cells. Our data demonstrate that acetylation regulates the shuttling of NDPK-D between nucleus and cytoplasm, and increased acetylation of NDPK-D causes apoptosis. PMID:26426123

  12. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1

    SciTech Connect

    Hatta, M.; Liu, F.; Cirillo, L.A.

    2009-02-20

    Transcriptional activity of FoxO factors is controlled through the actions of multiple growth factors signaling through protein kinase B, whereby phosphorylation of FoxO factors inhibits FoxO-mediated transactivation by promoting nuclear export. Phosphorylation of FoxO factors is enhanced by p300-mediated acetylation, which decreases their affinity for DNA. The negative effect of acetylation on FoxO DNA binding, together with nuclear FoxO mobility, is eliminated by over-expression of the de-acetylase Sirt1, suggesting that acetylation mobilizes FoxO factors in chromatin for inducible gene expression. Here, we show that acetylation significantly curtails the affinity of FoxO1 for its binding sites in nucleosomal DNA but has no effect on either stable nucleosome binding or remodeling by this factor. We suggest that, while acetylation provides a first, essential step toward mobilizing FoxO factors for inducible gene repression, additional mechanisms exist for overcoming their inherent capacity to stably bind and remodel nuclear chromatin.

  13. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Momonoki, Y. S.; Bandurski, R. S. (Principal Investigator)

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol.

  14. Methamphetamine promotes ?-tubulin deacetylation in endothelial cells: the protective role of acetyl-l-carnitine.

    PubMed

    Fernandes, S; Salta, S; Summavielle, T

    2015-04-16

    Methamphetamine (METH) is a powerful psychostimulant drug used worldwide for its reinforcing properties. In addition to the classic long-lasting monoaminergic-disrupting effects extensively described in the literature, METH has been consistently reported to increase blood brain barrier (BBB) permeability, both in vivo and in vitro, as a result of tight junction and cytoskeleton disarrangement. Microtubules play a critical role in cell stability, which relies on post-translational modifications such as ?-tubulin acetylation. As there is evidence that psychostimulants drugs modulate the expression of histone deacetylases (HDACs), we hypothesized that in endothelial cells METH-mediation of cytoplasmatic HDAC6 activity could affect tubulin acetylation and further contribute to BBB dysfunction. To validate our hypothesis, we exposed the bEnd.3 endothelial cells to increasing doses of METH and verified that it leads to an extensive ?-tubulin deacetylation mediated by HDACs activation. Furthermore, since we recently reported that acetyl-l-carnitine (ALC), a natural occurring compound, prevents BBB structural loss in a context of METH exposure, we reasoned that ALC could also preserve the acetylation of microtubules under METH action. The present results confirm that ALC is able to prevent METH-induced deacetylation providing effective protection on microtubule acetylation. Although further investigation is still needed, HDACs regulation may become a new therapeutic target for ALC. PMID:25703822

  15. Fluorescent nanosensor for probing histone acetyltransferase activity based on acetylation protection and magnetic graphitic nanocapsules.

    PubMed

    Han, Yitao; Li, Pei; Xu, Yiting; Li, Hao; Song, Zhiling; Nie, Zhou; Chen, Zhuo; Yao, Shouzhuo

    2015-02-18

    Protein acetylation catalyzed by histone acetyltransferases (HATs) is significant in biochemistry and pharmacology because of its crucial role in epigenetic gene regulations. Herein, an antibody-free fluorescent nanosensor is developed for the facile detection of HAT activity based on acetylation protection against exopeptidase cleavage and super-quenching ability of nanomaterials. It is shown for the first time that HAT-catalyzed acetylation could protect the peptide against exopeptidase digestion. FITC-tagged acetylated peptide causes the formation of a nano-quenchers/peptide nano-complex resulting in fluorescence quenching, while the unacetylated peptide is fully degraded by exopeptidase to release the fluorophore and restore fluorescence. Four kinds of nano-quenchers, including core-shell magnetic graphitic nanocapsules (MGN), graphene oxide (GO), single-walled carbon nanotubes (SWCNTs), and gold nanoparticles (AuNPs), are comprehensively compared. MGN shows the best selectivity to recognize the acetylated peptide and the lowest detection limit because of its excellent quenching efficiency and magnetic enrichment property. With this MGN-based nanosensor, HAT p300 is detected down to 0.1 nM with wide linear range from 0.5 to 100 nM. This sensor is feasible to assess HAT inhibition and detect p300 activity in cell lysate. The proposed nanosensor is simple, sensitive, and cost-effective for HAT assay, presenting a promising toolkit for epigenetic research and HAT-targeted drug discovery. PMID:25277402

  16. The extracellular release of Schistosoma mansoni HMGB1 nuclear protein is mediated by acetylation

    SciTech Connect

    Coutinho Carneiro, Vitor; Moraes Maciel, Renata de; Caetano de Abreu da Silva, Isabel; Furtado Madeira da Costa, Rodrigo; Neto Paiva, Claudia; Torres Bozza, Marcelo; Rosado Fantappie, Marcelo

    2009-12-25

    Schistosoma mansoni HMGB1 (SmHMGB1) was revealed to be a substrate for the parasite histone acetyltransferases SmGCN5 and SmCBP1. We found that full-length SmHMGB1, as well as its HMG-box B (but not HMG-box A) were acetylated in vitro by SmGCN5 and SmCBP1. However, SmCBP1 was able to acetylate both substrates more efficiently than SmGCN5. Interestingly, the removal of the C-terminal acidic tail of SmHMGB1 (SmHMGB1{Delta}C) resulted in increased acetylation of the protein. We showed by mammalian cell transfection assays that SmHMGB1 and SmHMGB1{Delta}C were transported from the nucleus to the cytoplasm after sodium butyrate (NaB) treatment. Importantly, after NaB treatment, SmHMGB1 was also present outside the cell. Together, our data suggest that acetylation of SmHMGB1 plays a role in cellular trafficking, culminating with its secretion to the extracellular milieu. The possible role of SmHMGB1 acetylation in the pathogenesis of schistosomiasis is discussed.

  17. Acetylation of NDPK-D Regulates Its Subcellular Localization and Cell Survival.

    PubMed

    Fujita, Yuki; Fujiwara, Kei; Zenitani, Shigetake; Yamashita, Toshihide

    2015-01-01

    Nucleoside diphosphate kinases (NDPK) are ubiquitous enzymes that catalyze the reversible phosphotransfer of ?-phosphates between di- and triphosphonucleosides. NDPK-D (Nm23-H4) is the only member of the NDPK family with a mitochondrial targeting sequence. Despite the high expression of NDPK-D in the developing central nervous system, its function remains to be determined. In this study, we show that NDPK-D knockdown induces apoptosis in neuroblastoma cells as well as in mouse cortex, suggesting that NDPK-D is required for neuronal survival. We identified NDPK-D as a binding partner of NAD+-dependent histone deacetylase, SIRT1, by yeast two-hybrid screening. NDPK-D co-localized with SIRT1, and the association of these molecules was confirmed by co-immunoprecipitation. Inhibition of SIRT1 increases the acetylation of NDPK-D. Overexpression of NDPK-D along with SIRT1, or mutation in the acetylated lysine residues in NDPK-D, increases its nuclear accumulation. Furthermore, the NDPK-D acetylation-mimic mutant increased apoptosis in N1E-115 cells. Our data demonstrate that acetylation regulates the shuttling of NDPK-D between nucleus and cytoplasm, and increased acetylation of NDPK-D causes apoptosis. PMID:26426123

  18. Atomic resolution structure of human ?-tubulin acetyltransferase bound to acetyl-CoA

    PubMed Central

    Taschner, Michael; Vetter, Melanie; Lorentzen, Esben

    2012-01-01

    Acetylation of lysine residues is an important posttranslational modification found in all domains of life. ?-tubulin is specifically acetylated on lysine 40, a modification that serves to stabilize microtubules of axons and cilia. Whereas histone acetyltransferases have been extensively studied, there is no structural and mechanistic information available on ?-tubulin acetyltransferases. Here, we present the structure of the human ?-tubulin acetyltransferase catalytic domain bound to its cosubstrate acetyl-CoA at 1.05 Å resolution. Compared with other lysine acetyltransferases of known structure, ?-tubulin acetyltransferase displays a relatively well-conserved cosubstrate binding pocket but is unique in its active site and putative ?-tubulin binding site. Using acetylation assays with structure-guided mutants, we map residues important for acetyl-CoA binding, substrate binding, and catalysis. This analysis reveals a basic patch implicated in substrate binding and a conserved glutamine residue required for catalysis, demonstrating that the family of ?-tubulin acetyltransferases uses a reaction mechanism different from other lysine acetyltransferases characterized to date. PMID:23071318

  19. Kinetic and process studies on free and solid acid catalyzed hydrolysis of biomass substrates

    SciTech Connect

    Abasaeed, A.E.

    1987-01-01

    Trifluoroacetic acid (TFA) was tested as a catalyst for cellulose hydrolysis. Eighty percent conversion of cellulose into glucose was obtained with concentrated TFA. The kinetics of TFA catalyzed cellulose hydrolysis was investigated. The reaction was found to follow first order kinetics for both hydrolysis and decomposition. The kinetic parameters were determined from experimental data covering conditions of 160-180 C, 10-30% acid, and 1:2 solid to liquid ratio. The hydrolysis reaction was found to be more sensitive to temperature than the decomposition reaction. Use of TFA was further investigated as a pretreatment for enzymatic hydrolysis of cellulose. A two-fold increase in sugar yields was obtained for TFA pretreated samples in comparison to untreated ones. The kinetics of hydrolysis of prehydrolyzed wood by sulfuric acid was investigated. The substrate was first treated with 0.75% acid at 184 C for 4 minutes to remove hemicellulose. The kinetic parameters were determined in the range of 198-215 C and 1-3% acid. A heterogeneous kinetic model was developed to study the effect of particle size on acid hydrolysis of cellulose. It was found that as the chip size increases, maximum glucose yield decreases and reaction time at which maximum yield occurs increases. Acidic zeolites (LZ-M-8) were investigated as catalysts for hydrolysis reaction of inulin into fructose. The hydrolysis reaction was found to follow first order kinetics. Products containing 96 and 75% fructose were obtained upon hydrolysis respectively from inulin and extract.

  20. N-Terminal Acetylation Inhibits Protein Targeting to the Endoplasmic Reticulum

    PubMed Central

    Forte, Gabriella M. A.; Pool, Martin R.; Stirling, Colin J.

    2011-01-01

    Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%–80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins. Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species. PMID:21655302