Science.gov

Sample records for acetylation curtails nucleosome

  1. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1

    SciTech Connect

    Hatta, M.; Liu, F.; Cirillo, L.A.

    2009-02-20

    Transcriptional activity of FoxO factors is controlled through the actions of multiple growth factors signaling through protein kinase B, whereby phosphorylation of FoxO factors inhibits FoxO-mediated transactivation by promoting nuclear export. Phosphorylation of FoxO factors is enhanced by p300-mediated acetylation, which decreases their affinity for DNA. The negative effect of acetylation on FoxO DNA binding, together with nuclear FoxO mobility, is eliminated by over-expression of the de-acetylase Sirt1, suggesting that acetylation mobilizes FoxO factors in chromatin for inducible gene expression. Here, we show that acetylation significantly curtails the affinity of FoxO1 for its binding sites in nucleosomal DNA but has no effect on either stable nucleosome binding or remodeling by this factor. We suggest that, while acetylation provides a first, essential step toward mobilizing FoxO factors for inducible gene repression, additional mechanisms exist for overcoming their inherent capacity to stably bind and remodel nuclear chromatin.

  2. Acetylated histone H3 increases nucleosome dissociation

    NASA Astrophysics Data System (ADS)

    Simon, Marek; Manohar, Mridula; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Chromatin's basic unit structure is the nucleosome, i.e. genomic DNA wrapped around a particular class of proteins -- histones -- which due to their physical hindrance, block vital biological processes, such as DNA repair, DNA replication, and RNA transcription. Histone post-translational modifications, which are known to exist in vivo, are hypothesized to regulate these biological processes by directly altering DNA-histone interactions and thus nucleosome structure and stability. Using magnetic tweezers technique we studied the acetylation of histone H3 in the dyad region, i.e. at K115 and K122, on reconstituted arrays of nucleosomes under constant external force. Based on the measured increase in the probability of dissociation of modified nucleosomes, we infer that this double modification could facilitate histone chaperone mediated nucleosome disassembly in vivo.

  3. Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF.

    PubMed

    Chatterjee, Nilanjana; North, Justin A; Dechassa, Mekonnen Lemma; Manohar, Mridula; Prasad, Rashmi; Luger, Karolin; Ottesen, Jennifer J; Poirier, Michael G; Bartholomew, Blaine

    2015-12-01

    Signaling associated with transcription activation occurs through posttranslational modification of histones and is best exemplified by lysine acetylation. Lysines are acetylated in histone tails and the core domain/lateral surface of histone octamers. While acetylated lysines in histone tails are frequently recognized by other factors referred to as "readers," which promote transcription, the mechanistic role of the modifications in the lateral surface of the histone octamer remains unclear. By using X-ray crystallography, we found that acetylated lysines 115 and 122 in histone H3 are solvent accessible, but in biochemical assays they appear not to interact with the bromodomains of SWI/SNF and RSC to enhance recruitment or nucleosome mobilization, as previously shown for acetylated lysines in H3 histone tails. Instead, we found that acetylation of lysines 115 and 122 increases the predisposition of nucleosomes for disassembly by SWI/SNF and RSC up to 7-fold, independent of bromodomains, and only in conjunction with contiguous nucleosomes. Thus, in combination with SWI/SNF and RSC, acetylation of lateral surface lysines in the histone octamer serves as a crucial regulator of nucleosomal dynamics distinct from the histone code readers and writers. PMID:26416878

  4. Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF

    PubMed Central

    Chatterjee, Nilanjana; North, Justin A.; Dechassa, Mekonnen Lemma; Manohar, Mridula; Prasad, Rashmi; Luger, Karolin; Ottesen, Jennifer J.; Poirier, Michael G.

    2015-01-01

    Signaling associated with transcription activation occurs through posttranslational modification of histones and is best exemplified by lysine acetylation. Lysines are acetylated in histone tails and the core domain/lateral surface of histone octamers. While acetylated lysines in histone tails are frequently recognized by other factors referred to as “readers,” which promote transcription, the mechanistic role of the modifications in the lateral surface of the histone octamer remains unclear. By using X-ray crystallography, we found that acetylated lysines 115 and 122 in histone H3 are solvent accessible, but in biochemical assays they appear not to interact with the bromodomains of SWI/SNF and RSC to enhance recruitment or nucleosome mobilization, as previously shown for acetylated lysines in H3 histone tails. Instead, we found that acetylation of lysines 115 and 122 increases the predisposition of nucleosomes for disassembly by SWI/SNF and RSC up to 7-fold, independent of bromodomains, and only in conjunction with contiguous nucleosomes. Thus, in combination with SWI/SNF and RSC, acetylation of lateral surface lysines in the histone octamer serves as a crucial regulator of nucleosomal dynamics distinct from the histone code readers and writers. PMID:26416878

  5. Histone octamer acetylation affects the free energy of nucleosome formation

    NASA Astrophysics Data System (ADS)

    Mooney, Alex; Manohar, Mridula; Edon, Annick; Nakkula, Robin; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Nucleosomes, histone octamer-DNA complexes, form the fundamental repeating units of eukaryotic chromatin. Numerous post-translational modifications of histone octamers are found in vivo and are known to play roles in gene regulation and DNA repair, but the molecular functions of these modifications are not well understood. In this study we consider the effects of acetylating histone protein H3 residues Lys^115 and Lys^122. These modifications reduce the positive surface charge of the histone octamer at contact points with the negatively charged DNA phosphate backbone and add steric bulk in the dyad region. We report results from competitive reconstitutions that show the free energy of nucleosome formation between wild-type and modified histone octamer binding to a strong nucleosome positioning sequence is reduced. These results suggest that these modifications may be involved in nucleosome assembly and disassembly.

  6. Nucleosome structure incorporated histone acetylation site prediction in arabidopsis thaliana

    PubMed Central

    2010-01-01

    Abstract Background Acetylation is a crucial post-translational modification for histones, and plays a key role in gene expression regulation. Due to limited data and lack of a clear acetylation consensus sequence, a few researches have focused on prediction of lysine acetylation sites. Several systematic prediction studies have been conducted for human and yeast, but less for Arabidopsis thaliana. Results Concerning the insufficient observation on acetylation site, we analyzed contributions of the peptide-alignment-based distance definition and 3D structure factors in acetylation prediction. We found that traditional structure contributes little to acetylation site prediction. Identified acetylation sites of histones in Arabidopsis thaliana are conserved and cross predictable with that of human by peptide based methods. However, the predicted specificity is overestimated, because of the existence of non-observed acetylable site. Here, by performing a complete exploration on the factors that affect the acetylability of lysines in histones, we focused on the relative position of lysine at nucleosome level, and defined a new structure feature to promote the performance in predicting the acetylability of all the histone lysines in A. thaliana. Conclusion We found a new spacial correlated acetylation factor, and defined a ε-N spacial location based feature, which contains five core spacial ellipsoid wired areas. By incorporating the new feature, the performance of predicting the acetylability of all the histone lysines in A. Thaliana was promoted, in which the previous mispredicted acetylable lysines were corrected by comparing to the peptide-based prediction. PMID:21047388

  7. Interaction of RNA polymerase II with acetylated nucleosomal core particles

    SciTech Connect

    Pineiro, M.; Gonzalez, P.J.; Hernandez, F.; Palacian, E. )

    1991-05-31

    Chemical acetylation of nucleosomal cores is accompanied by an increase in their efficiency as in vitro transcription templates. Low amounts of acetic anhydride cause preferential modification of the amino-terminal tails of core histones. Modification of these domains, which causes moderate structural effects, is apparently correlated with the observed stimulation of RNA synthesis. In contrast, extensive modification of the globular regions of core histones, which is accompanied by a large structural relaxation of the particle, causes little additional effect on transcription. Acetylation of the amino-terminal domains of histones might stimulate transcription by changing the interaction of the histone tails with components of the transcriptional machinery.

  8. Nucleosome competition reveals processive acetylation by the SAGA HAT module.

    PubMed

    Ringel, Alison E; Cieniewicz, Anne M; Taverna, Sean D; Wolberger, Cynthia

    2015-10-01

    The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf29 contains a tandem Tudor domain that recognizes H3K4me3-containing peptides and is required for histone hyperacetylation in vivo. However, the mechanism by which H3K4me3 recognition leads to lysine hyperacetylation is unknown, as in vitro studies show no effect of the H3K4me3 modification on histone peptide acetylation by Gcn5. To determine how H3K4me3 binding by Sgf29 leads to histone hyperacetylation by Gcn5, we used differential fluorescent labeling of histones to monitor acetylation of individual subpopulations of methylated and unmodified nucleosomes in a mixture. We find that the SAGA HAT module preferentially acetylates H3K4me3 nucleosomes in a mixture containing excess unmodified nucleosomes and that this effect requires the Tudor domain of Sgf29. The H3K4me3 mark promotes processive, multisite acetylation of histone H3 by Gcn5 that can account for the different acetylation patterns established by SAGA at promoters versus coding regions. Our results establish a model for Sgf29 function at gene promoters and define a mechanism governing crosstalk between histone modifications. PMID:26401015

  9. Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure—a FRET study

    PubMed Central

    Gansen, Alexander; Tóth, Katalin; Schwarz, Nathalie; Langowski, Jörg

    2015-01-01

    Using FRET in bulk and on single molecules, we assessed the structural role of histone acetylation in nucleosomes reconstituted on the 170 bp long Widom 601 sequence. We followed salt-induced nucleosome disassembly, using donor–acceptor pairs on the ends or in the internal part of the nucleosomal DNA, and on H2B histone for measuring H2A/H2B dimer exchange. This allowed us to distinguish the influence of acetylation on salt-induced DNA unwrapping at the entry–exit site from its effect on nucleosome core dissociation. The effect of lysine acetylation is not simply cumulative, but showed distinct histone-specificity. Both H3- and H4-acetylation enhance DNA unwrapping above physiological ionic strength; however, while H3-acetylation renders the nucleosome core more sensitive to salt-induced dissociation and to dimer exchange, H4-acetylation counteracts these effects. Thus, our data suggest, that H3- and H4-acetylation have partially opposing roles in regulating nucleosome architecture and that distinct aspects of nucleosome dynamics might be independently controlled by individual histones. PMID:25589544

  10. Modulation of p300/CBP Acetylation of Nucleosomes by Bromodomain Ligand I-CBP112.

    PubMed

    Zucconi, Beth E; Luef, Birgit; Xu, Wei; Henry, Ryan A; Nodelman, Ilana M; Bowman, Gregory D; Andrews, Andrew J; Cole, Philip A

    2016-07-12

    The histone acetyltransferase (HAT) enzymes p300 and CBP are closely related paralogs that serve as transcriptional coactivators and have been found to be dysregulated in cancer and other diseases. p300/CBP is a multidomain protein and possesses a highly conserved bromodomain that has been shown to bind acetylated Lys residues in both proteins and various small molecules, including I-CBP112 and CBP30. Here we show that the ligand I-CBP112 can stimulate nucleosome acetylation up to 3-fold while CBP30 does not. Activation of p300/CBP by I-CBP112 is not observed with the isolated histone H3 substrate but requires a nucleosome substrate. I-CBP112 does not impact nucleosome acetylation by the isolated p300 HAT domain, and the effects of I-CBP112 on p300/CBP can be neutralized by CBP30, suggesting that I-CBP112 likely allosterically activates p300/CBP through bromodomain interactions. Using mass spectrometry and Western blots, we have found that I-CBP112 particularly stimulates acetylation of Lys18 of histone H3 (H3K18) in nucleosomes, an established in vivo site of p300/CBP. In addition, we show that I-CBP112 enhances H3K18 acetylation in acute leukemia and prostate cancer cells in a concentration range commensurate with its antiproliferative effects. Our findings extend the known pharmacology of bromodomain ligands in the regulation of p300/CBP and suggest a novel approach to modulating histone acetylation in cancer. PMID:27332697

  11. Binding of TATA Binding Protein to a Naturally Positioned Nucleosome Is Facilitated by Histone Acetylation

    PubMed Central

    Sewack, Gerald F.; Ellis, Thomas W.; Hansen, Ulla

    2001-01-01

    The TATA sequence of the human, estrogen-responsive pS2 promoter is complexed in vivo with a rotationally and translationally positioned nucleosome (NUC T). Using a chromatin immunoprecipitation assay, we demonstrate that TATA binding protein (TBP) does not detectably interact with this genomic binding site in MCF-7 cells in the absence of transcriptional stimuli. Estrogen stimulation of these cells results in hyperacetylation of both histones H3 and H4 within the pS2 chromatin encompassing NUC T and the TATA sequence. Concurrently, TBP becomes associated with the pS2 promoter region. The relationship between histone hyperacetylation and the binding of TBP was assayed in vitro using an in vivo-assembled nucleosomal array over the pS2 promoter. With chromatin in its basal state, the binding of TBP to the pS2 TATA sequence at the edge of NUC T was severely restricted, consistent with our in vivo data. Acetylation of the core histones facilitated the binding of TBP to this nucleosomal TATA sequence. Therefore, we demonstrate that one specific, functional consequence of induced histone acetylation at a native promoter is the alleviation of nucleosome-mediated repression of the binding of TBP. Our data support a fundamental role for histone acetylation at genomic promoters in transcriptional activation by nuclear receptors and provide a general mechanism for rapid and reversible transcriptional activation from a chromatin template. PMID:11158325

  12. Nucleosome Dancing at the Tempo of Histone Tail Acetylation

    PubMed Central

    Galvani, Angélique; Thiriet, Christophe

    2015-01-01

    The impact of histone acetylation on transcription was revealed over 50 years ago by Allfrey and colleagues. However, it took decades for an understanding of the fine mechanism by which this posttranslational modification affects chromatin structure and promotes transcription. Here, we review breakthroughs linking histone tail acetylation, histone dynamics, and transcription. We also discuss the histone exchange during transcription and highlight the important function of a pool of non-chromatinized histones in chromatin dynamics. PMID:26184324

  13. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription

    PubMed Central

    Di Cerbo, Vincenzo; Mohn, Fabio; Ryan, Daniel P; Montellier, Emilie; Kacem, Salim; Tropberger, Philipp; Kallis, Eleni; Holzner, Monika; Hoerner, Leslie; Feldmann, Angelika; Richter, Florian Martin; Bannister, Andrew J; Mittler, Gerhard; Michaelis, Jens; Khochbin, Saadi; Feil, Robert; Schuebeler, Dirk; Owen-Hughes, Tom; Daujat, Sylvain; Schneider, Robert

    2014-01-01

    Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show that H3K64ac regulates nucleosome stability and facilitates nucleosome eviction and hence gene expression in vivo. In line with this, we demonstrate that H3K64ac is enriched in vivo at the transcriptional start sites of active genes and it defines transcriptionally active chromatin. Moreover, we find that the p300 co-activator acetylates H3K64, and consistent with a transcriptional activation function, H3K64ac opposes its repressive counterpart H3K64me3. Our findings reveal an important role for a histone modification within the nucleosome core as a regulator of chromatin function and they demonstrate that lateral surface modifications can define functionally opposing chromatin states. DOI: http://dx.doi.org/10.7554/eLife.01632.001 PMID:24668167

  14. Dynamics of histone H3 acetylation in the nucleosome core during mouse pre-implantation development.

    PubMed

    Ziegler-Birling, Céline; Daujat, Sylvain; Schneider, Robert; Torres-Padilla, Maria-Elena

    2016-08-01

    In mammals, the time period that follows fertilization is characterized by extensive chromatin remodeling, which enables epigenetic reprogramming of the gametes. Major changes in chromatin structure persist until the time of implantation, when the embryo develops into a blastocyst, which comprises the inner cell mass and the trophectoderm. Changes in DNA methylation, histone variant incorporation, and covalent modifications of the histones tails have been intensively studied during pre-implantation development. However, modifications within the core of the nucleosomes have not been systematically analyzed. Here, we report the first characterization and temporal analysis of 3 key acetylated residues in the core of the histone H3: H3K64ac, H3K122ac, and H3K56ac, all located at structurally important positions close to the DNA. We found that all 3 acetylations occur during pre-implantation development, but with different temporal kinetics. Globally, H3K64ac and H3K56ac were detected throughout cleavage stages, while H3K122ac was only weakly detectable during this time. Our work contributes to the understanding of the contribution of histone modifications in the core of the nucleosome to the "marking" of the newly established embryonic chromatin and unveils new modification pathways potentially involved in epigenetic reprogramming. PMID:26479850

  15. Bivalent interaction of the PZP domain of BRPF1 with the nucleosome impacts chromatin dynamics and acetylation.

    PubMed

    Klein, Brianna J; Muthurajan, Uma M; Lalonde, Marie-Eve; Gibson, Matthew D; Andrews, Forest H; Hepler, Maggie; Machida, Shinichi; Yan, Kezhi; Kurumizaka, Hitoshi; Poirier, Michael G; Côté, Jacques; Luger, Karolin; Kutateladze, Tatiana G

    2016-01-01

    BRPF1 (bromodomain PHD finger 1) is a core subunit of the MOZ histone acetyltransferase (HAT) complex, critical for normal developmental programs and implicated in acute leukemias. BRPF1 contains a unique assembly of zinc fingers, termed a PZP domain, the physiological role of which remains unclear. Here, we elucidate the structure-function relationship of this novel epigenetic reader and detail the biological and mechanistic consequences of its interaction with nucleosomes. PZP has a globular architecture and forms a 2:1 stoichiometry complex with the nucleosome, bivalently interacting with histone H3 and DNA. This binding impacts the nucleosome dynamics, shifting the DNA unwrapping/rewrapping equilibrium toward the unwrapped state and increasing DNA accessibility. We demonstrate that the DNA-binding function of the BRPF1 PZP domain is required for the MOZ-BRPF1-ING5-hEaf6 HAT complex to be recruited to chromatin and to acetylate nucleosomal histones. Our findings reveal a novel link between chromatin dynamics and MOZ-mediated acetylation. PMID:26626149

  16. Bivalent interaction of the PZP domain of BRPF1 with the nucleosome impacts chromatin dynamics and acetylation

    PubMed Central

    Klein, Brianna J.; Muthurajan, Uma M.; Lalonde, Marie-Eve; Gibson, Matthew D.; Andrews, Forest H.; Hepler, Maggie; Machida, Shinichi; Yan, Kezhi; Kurumizaka, Hitoshi; Poirier, Michael G.; Côté, Jacques; Luger, Karolin; Kutateladze, Tatiana G.

    2016-01-01

    BRPF1 (bromodomain PHD finger 1) is a core subunit of the MOZ histone acetyltransferase (HAT) complex, critical for normal developmental programs and implicated in acute leukemias. BRPF1 contains a unique assembly of zinc fingers, termed a PZP domain, the physiological role of which remains unclear. Here, we elucidate the structure-function relationship of this novel epigenetic reader and detail the biological and mechanistic consequences of its interaction with nucleosomes. PZP has a globular architecture and forms a 2:1 stoichiometry complex with the nucleosome, bivalently interacting with histone H3 and DNA. This binding impacts the nucleosome dynamics, shifting the DNA unwrapping/rewrapping equilibrium toward the unwrapped state and increasing DNA accessibility. We demonstrate that the DNA-binding function of the BRPF1 PZP domain is required for the MOZ-BRPF1-ING5-hEaf6 HAT complex to be recruited to chromatin and to acetylate nucleosomal histones. Our findings reveal a novel link between chromatin dynamics and MOZ-mediated acetylation. PMID:26626149

  17. SMARCAD1 is an ATP-dependent stimulator of nucleosomal H2A acetylation via CBP, resulting in transcriptional regulation

    PubMed Central

    Doiguchi, Masamichi; Nakagawa, Takeya; Imamura, Yuko; Yoneda, Mitsuhiro; Higashi, Miki; Kubota, Kazuishi; Yamashita, Satoshi; Asahara, Hiroshi; Iida, Midori; Fujii, Satoshi; Ikura, Tsuyoshi; Liu, Ziying; Nandu, Tulip; Kraus, W. Lee; Ueda, Hitoshi; Ito, Takashi

    2016-01-01

    Histone acetylation plays a pivotal role in transcriptional regulation, and ATP-dependent nucleosome remodeling activity is required for optimal transcription from chromatin. While these two activities have been well characterized, how they are coordinated remains to be determined. We discovered ATP-dependent histone H2A acetylation activity in Drosophila nuclear extracts. This activity was column purified and demonstrated to be composed of the enzymatic activities of CREB-binding protein (CBP) and SMARCAD1, which belongs to the Etl1 subfamily of the Snf2 family of helicase-related proteins. SMARCAD1 enhanced acetylation by CBP of H2A K5 and K8 in nucleosomes in an ATP-dependent fashion. Expression array analysis of S2 cells having ectopically expressed SMARCAD1 revealed up-regulated genes. Using native genome templates of these up-regulated genes, we found that SMARCAD1 activates their transcription in vitro. Knockdown analysis of SMARCAD1 and CBP indicated overlapping gene control, and ChIP-seq analysis of these commonly controlled genes showed that CBP is recruited to the promoter prior to SMARCAD1. Moreover, Drosophila genetic experiments demonstrated interaction between SMARCAD1/Etl1 and CBP/nej during development. The interplay between the remodeling activity of SMARCAD1 and histone acetylation by CBP sheds light on the function of chromatin and the genome-integrity network. PMID:26888216

  18. Dynamic Histone Acetylation of H3K4me3 Nucleosome Regulates MCL1 Pre-mRNA Splicing.

    PubMed

    Khan, Dilshad H; Gonzalez, Carolina; Tailor, Nikesh; Hamedani, Mohammad K; Leygue, Etienne; Davie, James R

    2016-10-01

    Pre-mRNA splicing is a cotranscriptional process affected by the chromatin architecture along the body of coding genes. Recruited to the pre-mRNA by splicing factors, histone deacetylases (HDACs) and K-acetyltransferases (KATs) catalyze dynamic histone acetylation along the gene. In colon carcinoma HCT 116 cells, HDAC inhibition specifically increased KAT2B occupancy as well as H3 and H4 acetylation of the H3K4 trimethylated (H3K4me3) nucleosome positioned over alternative exon 2 of the MCL1 gene, an event paralleled with the exclusion of exon 2. These results were reproduced in MDA-MB-231, but not in MCF7 breast adenocarcinoma cells. These later cells have much higher levels of demethylase KDM5B than either HCT 116 or MDA-MB-231 cells. We show that H3K4me3 steady-state levels and H3K4me3 occupancy at the end of exon 1 and over exon 2 of the MCL1 gene were lower in MCF7 than in MDA-MB-231 cells. Furthermore, in MCF7 cells, there was minimal effect of HDAC inhibition on H3/H4 acetylation and H3K4me3 levels along the MCL1 gene and no change in pre-mRNA splicing choice. These results show that, upon HDAC inhibition, the H3K4me3 mark plays a critical role in the exclusion of exon 2 from the MCL1 pre-mRNA. J. Cell. Physiol. 231: 2196-2204, 2016. © 2016 Wiley Periodicals, Inc. PMID:26864447

  19. Histone H3 Lysine 14 (H3K14) Acetylation Facilitates DNA Repair in a Positioned Nucleosome by Stabilizing the Binding of the Chromatin Remodeler RSC (Remodels Structure of Chromatin)*

    PubMed Central

    Duan, Ming-Rui; Smerdon, Michael J.

    2014-01-01

    Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage. PMID:24515106

  20. H3 Histone Tail Conformation within the Nucleosome and the Impact of K14 Acetylation Studied Using Enhanced Sampling Simulation

    PubMed Central

    Ikebe, Jinzen; Sakuraba, Shun; Kono, Hidetoshi

    2016-01-01

    Acetylation of lysine residues in histone tails is associated with gene transcription. Because histone tails are structurally flexible and intrinsically disordered, it is difficult to experimentally determine the tail conformations and the impact of acetylation. In this work, we performed simulations to sample H3 tail conformations with and without acetylation. The results show that irrespective of the presence or absence of the acetylation, the H3 tail remains in contact with the DNA and assumes an α-helix structure in some regions. Acetylation slightly weakened the interaction between the tail and DNA and enhanced α-helix formation, resulting in a more compact tail conformation. We inferred that this compaction induces unwrapping and exposure of the linker DNA, enabling DNA-binding proteins (e.g., transcription factors) to bind to their target sequences. In addition, our simulation also showed that acetylated lysine was more often exposed to the solvent, which is consistent with the fact that acetylation functions as a post-translational modification recognition site marker. PMID:26967163

  1. Acetylation of LYS-16 of H4 Histone Tail May Sequester the Tail and Inhibit its Interactions with Neighboring Nucleosomes

    NASA Astrophysics Data System (ADS)

    Potoyan, Davit; Papoian, Garegin

    2012-02-01

    Histone tails are highly flexible N terminal protrusions of histone proteins, which help to fold DNA into dense superstructures known as chromatin. On a molecular scale histone tails are poly-electrolites with high degree of conformational disorder, allowing them to function as bio-molecular ``switches,'' regulating various genetic regulatory processes via diverse types of covalent modifications. Because of being intrinsically disordered, the structural and dynamical aspects of histone tails are still poorly understood. Using multiple explicit solvent and coarse-grained MD simulations we have investigated the impact of the acetylation of LYS-16 residue on the conformational and DNA-binding propensities of H4 histone tail. The potential of mean force computed as a function of distance between a model DNA and histone tail center of mass showed a dramatic enhancement of binding affinity upon mono-acetylation of the H4 tail. The estimated binding free energy gain for the wild type is 2kT, while for the acetylated it reaches 4-5 kT. Additionally our structural analysis shows that acetylation is driving the chain into collapsed states, which get enriched in secondary structural elements upon binding to the DNA. We suggest a non-electrostatic mechanism that explains the enhanced binding affinity of the acetylated H4 tail. At last our findings lead us to propose a hypothesis that can potentially account for the celebrated chromatin ``fiber loosening effects'' observed in many experiments.

  2. Nucleosome Positioning

    PubMed Central

    Nishida, Hiromi

    2012-01-01

    Nucleosome positioning is not only related to genomic DNA compaction but also to other biological functions. After the chromatin is digested by micrococcal nuclease, nucleosomal (nucleosome-bound) DNA fragments can be sequenced and mapped on the genomic DNA sequence. Due to the development of modern DNA sequencing technology, genome-wide nucleosome mapping has been performed in a wide range of eukaryotic species. Comparative analyses of the nucleosome positions have revealed that the nucleosome is more frequently formed in exonic than intronic regions, and that most of transcription start and translation (or transcription) end sites are located in nucleosome linker DNA regions, indicating that nucleosome positioning influences transcription initiation, transcription termination, and gene splicing. In addition, nucleosomal DNA contains guanine and cytosine (G + C)-rich sequences and a high level of cytosine methylation. Thus, the nucleosome positioning system has been conserved during eukaryotic evolution.

  3. Mediator-nucleosome interaction.

    PubMed

    Lorch, Y; Beve, J; Gustafsson, C M; Myers, L C; Kornberg, R D

    2000-07-01

    Mediator, a multiprotein complex involved in the regulation of RNA polymerase II transcription, binds to nucleosomes and acetylates histones. Three lines of evidence identify the Nut1 subunit of Mediator as responsible for the histone acetyltransferase (HAT) activity. An "in-gel" HAT assay reveals a single band of the appropriate size. Sequence alignment shows significant similarity of Nut1 to the GCN5-related N-acetyltransferase superfamily. Finally, recombinant Nut1 exhibits HAT activity in an in-gel assay. PMID:10949041

  4. Genome-wide nucleosome positioning during embryonic stem cell development.

    PubMed

    Teif, Vladimir B; Vainshtein, Yevhen; Caudron-Herger, Maïwen; Mallm, Jan-Philipp; Marth, Caroline; Höfer, Thomas; Rippe, Karsten

    2012-11-01

    We determined genome-wide nucleosome occupancies in mouse embryonic stem cells and their neural progenitor and embryonic fibroblast counterparts to assess features associated with nucleosome positioning during lineage commitment. Cell-type- and protein-specific binding preferences of transcription factors to sites with either low (Myc, Klf4 and Zfx) or high (Nanog, Oct4 and Sox2) nucleosome occupancy as well as complex patterns for CTCF were identified. Nucleosome-depleted regions around transcription start and transcription termination sites were broad and more pronounced for active genes, with distinct patterns for promoters classified according to CpG content or histone methylation marks. Throughout the genome, nucleosome occupancy was correlated with certain histone methylation or acetylation modifications. In addition, the average nucleosome repeat length increased during differentiation by 5-7 base pairs, with local variations for specific regions. Our results reveal regulatory mechanisms of cell differentiation that involve nucleosome repositioning. PMID:23085715

  5. Curtailment and Stochastic Curtailment to Shorten the CES-D

    ERIC Educational Resources Information Center

    Finkelman, Matthew D.; Smits, Niels; Kim, Wonsuk; Riley, Barth

    2012-01-01

    The Center for Epidemiologic Studies-Depression (CES-D) scale is a well-known self-report instrument that is used to measure depressive symptomatology. Respondents who take the full-length version of the CES-D are administered a total of 20 items. This article investigates the use of curtailment and stochastic curtailment (SC), two sequential…

  6. The prenucleosome, a stable conformational isomer of the nucleosome

    PubMed Central

    Fei, Jia; Torigoe, Sharon E.; Brown, Christopher R.; Khuong, Mai T.; Kassavetis, George A.; Boeger, Hinrich; Kadonaga, James T.

    2015-01-01

    Chromatin comprises nucleosomes as well as nonnucleosomal histone–DNA particles. Prenucleosomes are rapidly formed histone–DNA particles that can be converted into canonical nucleosomes by a motor protein such as ACF. Here we show that the prenucleosome is a stable conformational isomer of the nucleosome. It consists of a histone octamer associated with ∼80 base pair (bp) of DNA, which is located at a position that corresponds to the central 80 bp of a nucleosome core particle. Monomeric prenucleosomes with free flanking DNA do not spontaneously fold into nucleosomes but can be converted into canonical nucleosomes by an ATP-driven motor protein such as ACF or Chd1. In addition, histone H3K56, which is located at the DNA entry and exit points of a canonical nucleosome, is specifically acetylated by p300 in prenucleosomes relative to nucleosomes. Prenucleosomes assembled in vitro exhibit properties that are strikingly similar to those of nonnucleosomal histone–DNA particles in the upstream region of active promoters in vivo. These findings suggest that the prenucleosome, the only known stable conformational isomer of the nucleosome, is related to nonnucleosomal histone–DNA species in the cell. PMID:26680301

  7. Nucleosome dynamics: Sequence matters.

    PubMed

    Eslami-Mossallam, Behrouz; Schiessel, Helmut; van Noort, John

    2016-06-01

    About three quarter of all eukaryotic DNA is wrapped around protein cylinders, forming nucleosomes. Even though the histone proteins that make up the core of nucleosomes are highly conserved in evolution, nucleosomes can be very different from each other due to posttranslational modifications of the histones. Another crucial factor in making nucleosomes unique has so far been underappreciated: the sequence of their DNA. This review provides an overview of the experimental and theoretical progress that increasingly points to the importance of the nucleosomal base pair sequence. Specifically, we discuss the role of the underlying base pair sequence in nucleosome positioning, sliding, breathing, force-induced unwrapping, dissociation and partial assembly and also how the sequence can influence higher-order structures. A new view emerges: the physical properties of nucleosomes, especially their dynamical properties, are determined to a large extent by the mechanical properties of their DNA, which in turn depends on DNA sequence. PMID:26896338

  8. Closing the Gap between Single Molecule and Bulk FRET Analysis of Nucleosomes

    PubMed Central

    Gansen, Alexander; Hieb, Aaron R.; Böhm, Vera; Tóth, Katalin; Langowski, Jörg

    2013-01-01

    Nucleosome structure and stability affect genetic accessibility by altering the local chromatin morphology. Recent FRET experiments on nucleosomes have given valuable insight into the structural transformations they can adopt. Yet, even if performed under seemingly identical conditions, experiments performed in bulk and at the single molecule level have given mixed answers due to the limitations of each technique. To compare such experiments, however, they must be performed under identical conditions. Here we develop an experimental framework that overcomes the conventional limitations of each method: single molecule FRET experiments are carried out at bulk concentrations by adding unlabeled nucleosomes, while bulk FRET experiments are performed in microplates at concentrations near those used for single molecule detection. Additionally, the microplate can probe many conditions simultaneously before expending valuable instrument time for single molecule experiments. We highlight this experimental strategy by exploring the role of selective acetylation of histone H3 on nucleosome structure and stability; in bulk, H3-acetylated nucleosomes were significantly less stable than non-acetylated nucleosomes. Single molecule FRET analysis further revealed that acetylation of histone H3 promoted the formation of an additional conformational state, which is suppressed at higher nucleosome concentrations and which could be an important structural intermediate in nucleosome regulation. PMID:23637734

  9. Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders.

    PubMed

    López, Alberto J; Wood, Marcelo A

    2015-01-01

    It is becoming increasingly important to understand how epigenetic mechanisms control gene expression during neurodevelopment. Two epigenetic mechanisms that have received considerable attention are DNA methylation and histone acetylation. Human exome sequencing and genome-wide association studies have linked several neurobiological disorders to genes whose products actively regulate DNA methylation and histone acetylation. More recently, a third major epigenetic mechanism, nucleosome remodeling, has been implicated in human developmental and intellectual disability (ID) disorders. Nucleosome remodeling is driven primarily through nucleosome remodeling complexes with specialized ATP-dependent enzymes. These enzymes directly interact with DNA or chromatin structure, as well as histone subunits, to restructure the shape and organization of nucleosome positioning to ultimately regulate gene expression. Of particular interest is the neuron-specific Brg1/hBrm Associated Factor (nBAF) complex. Mutations in nBAF subunit genes have so far been linked to Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NBS), schizophrenia, and Autism Spectrum Disorder (ASD). Together, these human developmental and ID disorders are powerful examples of the impact of epigenetic modulation on gene expression. This review focuses on the new and emerging role of nucleosome remodeling in neurodevelopmental and ID disorders and whether nucleosome remodeling affects gene expression required for cognition independently of its role in regulating gene expression required for development. PMID:25954173

  10. Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders

    PubMed Central

    López, Alberto J.; Wood, Marcelo A.

    2015-01-01

    It is becoming increasingly important to understand how epigenetic mechanisms control gene expression during neurodevelopment. Two epigenetic mechanisms that have received considerable attention are DNA methylation and histone acetylation. Human exome sequencing and genome-wide association studies have linked several neurobiological disorders to genes whose products actively regulate DNA methylation and histone acetylation. More recently, a third major epigenetic mechanism, nucleosome remodeling, has been implicated in human developmental and intellectual disability (ID) disorders. Nucleosome remodeling is driven primarily through nucleosome remodeling complexes with specialized ATP-dependent enzymes. These enzymes directly interact with DNA or chromatin structure, as well as histone subunits, to restructure the shape and organization of nucleosome positioning to ultimately regulate gene expression. Of particular interest is the neuron-specific Brg1/hBrm Associated Factor (nBAF) complex. Mutations in nBAF subunit genes have so far been linked to Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NBS), schizophrenia, and Autism Spectrum Disorder (ASD). Together, these human developmental and ID disorders are powerful examples of the impact of epigenetic modulation on gene expression. This review focuses on the new and emerging role of nucleosome remodeling in neurodevelopmental and ID disorders and whether nucleosome remodeling affects gene expression required for cognition independently of its role in regulating gene expression required for development. PMID:25954173

  11. Statistical mechanics of nucleosomes

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan V.

    Eukaryotic cells contain long DNA molecules (about two meters for a human cell) which are tightly packed inside the micrometric nuclei. Nucleosomes are the basic packaging unit of the DNA which allows this millionfold compactification. A longstanding puzzle is to understand the principles which allow cells to both organize their genomes into chromatin fibers in the crowded space of their nuclei, and also to keep the DNA accessible to many factors and enzymes. With the nucleosomes covering about three quarters of the DNA, their positions are essential because these influence which genes can be regulated by the transcription factors and which cannot. We study physical models which predict the genome-wide organization of the nucleosomes and also the relevant energies which dictate this organization. In the last five years, the study of chromatin knew many important advances. In particular, in the field of nucleosome positioning, new techniques of identifying nucleosomes and the competing DNA-binding factors appeared, as chemical mapping with hydroxyl radicals, ChIP-exo, among others, the resolution of the nucleosome maps increased by using paired-end sequencing, and the price of sequencing an entire genome decreased. We present a rigorous statistical mechanics model which is able to explain the recent experimental results by taking into account nucleosome unwrapping, competition between different DNA-binding proteins, and both the interaction between histones and DNA, and between neighboring histones. We show a series of predictions of our new model, all in agreement with the experimental observations.

  12. Nucleosome Positioning and Epigenetics

    NASA Astrophysics Data System (ADS)

    Schwab, David; Bruinsma, Robijn

    2008-03-01

    The role of chromatin structure in gene regulation has recently taken center stage in the field of epigenetics, phenomena that change the phenotype without changing the DNA sequence. Recent work has also shown that nucleosomes, a complex of DNA wrapped around a histone octamer, experience a sequence dependent energy landscape due to the variation in DNA bend stiffness with sequence composition. In this talk, we consider the role nucleosome positioning might play in the formation of heterochromatin, a compact form of DNA generically responsible for gene silencing. In particular, we discuss how different patterns of nucleosome positions, periodic or random, could either facilitate or suppress heterochromatin stability and formation.

  13. RSC unravels the nucleosome.

    PubMed

    Lorch, Y; Zhang, M; Kornberg, R D

    2001-01-01

    RSC and SWI/SNF chromatin-remodeling complexes were previously reported to generate a stably altered nucleosome. We now describe the formation of hybrids between nucleosomes of different sizes, showing that the stably altered structure is a noncovalent dimer. A basis for dimer formation is suggested by an effect of RSC on the supercoiling of closed, circular arrays of nucleosomes. The effect may be explained by the interaction of RSC with DNA at the ends of the nucleosome, which could lead to the release 60--80 bp or more from the ends. DNA released in this way may be trapped in the stable dimer or lead to alternative fates such as histone octamer transfer to another DNA or sliding along the same DNA molecule. PMID:11172714

  14. Baculoviruses and nucleosome management

    SciTech Connect

    Volkman, Loy E.

    2015-02-15

    Negatively-supercoiled-ds DNA molecules, including the genomes of baculoviruses, spontaneously wrap around cores of histones to form nucleosomes when present within eukaryotic nuclei. Hence, nucleosome management should be essential for baculovirus genome replication and temporal regulation of transcription, but this has not been documented. Nucleosome mobilization is the dominion of ATP-dependent chromatin-remodeling complexes. SWI/SNF and INO80, two of the best-studied complexes, as well as chromatin modifier TIP60, all contain actin as a subunit. Retrospective analysis of results of AcMNPV time course experiments wherein actin polymerization was blocked by cytochalasin D drug treatment implicate actin-containing chromatin modifying complexes in decatenating baculovirus genomes, shutting down host transcription, and regulating late and very late phases of viral transcription. Moreover, virus-mediated nuclear localization of actin early during infection may contribute to nucleosome management. - Highlights: • Baculoviruses have negatively-supercoiled, circular ds DNA. • Negatively-supercoiled DNA spontaneously forms nucleosomes in the nucleus. • Nucleosomes must be mobilized for replication and transcription to proceed. • Actin-containing chromatin modifiers participate in baculovirus replication.

  15. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis

    PubMed Central

    Lu, Lin-Yu; Wu, Jiaxue; Ye, Lin; Gavrilina, Galina B.; Saunders, Thomas L.; Yu, Xiaochun

    2010-01-01

    Summary During spermatogenesis, global nucleosome removal occurs where histones are initially replaced by transition proteins and subsequently by protamines. This chromatin reorganization is thought to facilitate the compaction of the paternal genome into the sperm head and to protect the DNA from damaging agents. Histone ubiquitination has been suggested to be important for sex chromosome inactivation during meiotic prophase and nucleosome removal at post-meiotic stages. However, the mechanisms regulating these ubiquitin-mediated processes are unknown. In this study, we investigate the role of the ubiquitin ligase RNF8 during spermatogenesis and find that RNF8-deficient mice are proficient in meiotic sex chromosome inactivation (MSCI), but deficient in global nucleosome removal. Moreover, we show that RNF8-dependent histone ubiquitination induces H4K16 acetylation, which may be an initial step in nucleosome removal. Thus, our results show that RNF8 plays an important role during spermatogenesis through histone ubiquitination, resulting in trans-histone acetylation and global nucleosome removal. PMID:20153262

  16. Histone acetylation: a switch between repressive and permissive chromatin

    PubMed Central

    Eberharter, Anton; Becker, Peter B.

    2002-01-01

    The organization of eukaryotic chromatin has a major impact on all nuclear processes involving DNA substrates. Gene expression is affected by the positioning of individual nucleosomes relative to regulatory sequence elements, by the folding of the nucleosomal fiber into higher-order structures and by the compartmentalization of functional domains within the nucleus. Because site-specific acetylation of nucleosomal histones influences all three aspects of chromatin organization, it is central to the switch between permissive and repressive chromatin structure. The targeting of enzymes that modulate the histone acetylation status of chromatin, in synergy with the effects mediated by other chromatin remodeling factors, is central to gene regulation. PMID:11882541

  17. 10 CFR 580.03 - Curtailment priorities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) CURTAILMENT PRIORITIES FOR ESSENTIAL AGRICULTURAL USES § 580.03 Curtailment priorities. (a) Notwithstanding any provision of law other than section 401(b) of the Natural Gas Policy Act of 1978, or any other rule, regulation, or order...

  18. 10 CFR 580.03 - Curtailment priorities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) CURTAILMENT PRIORITIES FOR ESSENTIAL AGRICULTURAL USES § 580.03 Curtailment priorities. (a) Notwithstanding any provision of law other than section 401(b) of the Natural Gas Policy Act of 1978, or any other rule, regulation, or order...

  19. 10 CFR 580.03 - Curtailment priorities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) CURTAILMENT PRIORITIES FOR ESSENTIAL AGRICULTURAL USES § 580.03 Curtailment priorities. (a) Notwithstanding any provision of law other than section 401(b) of the Natural Gas Policy Act of 1978, or any other rule, regulation, or order...

  20. 10 CFR 580.03 - Curtailment priorities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) CURTAILMENT PRIORITIES FOR ESSENTIAL AGRICULTURAL USES § 580.03 Curtailment priorities. (a) Notwithstanding any provision of law other than section 401(b) of the Natural Gas Policy Act of 1978, or any other rule, regulation, or order...

  1. 10 CFR 580.03 - Curtailment priorities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) CURTAILMENT PRIORITIES FOR ESSENTIAL AGRICULTURAL USES § 580.03 Curtailment priorities. (a) Notwithstanding any provision of law other than section 401(b) of the Natural Gas Policy Act of 1978, or any other rule, regulation, or order...

  2. Nucleosome Core Particle

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Nucleosome Core Particle grown on STS-81. The fundamental structural unit of chromatin and is the basis for organization within the genome by compaction of DNA within the nucleus of the cell and by making selected regions of chromosomes available for transcription and replication. Principal Investigator's are Dr. Dan Carter and Dr. Gerard Bunick of New Century Pharmaceuticals.

  3. Properties of active nucleosomes as revealed by HMG 14 and 17 chromatography.

    PubMed Central

    Weisbrod, S T

    1982-01-01

    Nucleosomes from actively transcribed genes (active nucleosomes) contain nonhistone proteins HMG 14 and 17 and are preferentially sensitive to digestion by DNAse I. Active nucleosomes isolated by chromatography on an HMG 14 and 17 glass bead affinity column were analyzed with respect to overall structure, accessory nonhistone components and modifications to the DNA and histones. The experiments lead to the following conclusions: the DNA in the active nucleosome is undermethylated compared to bulk DNA; topoisomerase I is a non-stoichiometric component of the active nucleosome fraction; the level of histone acetylation is enriched in active nucleosomes, but the extent of enrichment cannot account for HMG binding; and the two histone H3 molecules in the active nucleosome can dimerize more readily and are, therefore, probably closer together than those in the bulk of the nucleosomes. Additionally it is shown that HMG 14 and 17 prefer to bind to single- vs. double-stranded nucleic acids. The role of HMG 14 and 17 in producing a highly DNAse I sensitive structure and correspondingly helping to facilitate transcription is discussed in terms of these properties. Images PMID:6210882

  4. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila

    PubMed Central

    Liu, Jun; Zimmer, Kurt; Rusch, Douglas B.; Paranjape, Neha; Podicheti, Ram; Tang, Haixu; Calvi, Brian R.

    2015-01-01

    Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC. PMID:26227968

  5. Why Do Nucleosomes Unwrap Asymmetrically?

    PubMed

    de Bruin, Lennart; Tompitak, Marco; Eslami-Mossallam, Behrouz; Schiessel, Helmut

    2016-07-01

    Nucleosomes, DNA spools with a protein core, engage about three-quarters of eukaryotic DNA and play a critical role in chromosomal processes, ranging from gene regulation, recombination, and replication to chromosome condensation. For more than a decade, micromanipulation experiments where nucleosomes are put under tension, as well as the theoretical interpretations of these experiments, have deepened our understanding of the stability and dynamics of nucleosomes. Here we give a theoretical explanation for a surprising new experimental finding: nucleosomes wrapped onto the 601 positioning sequence (the sequence used in most laboratories) respond highly asymmetrically to external forces by always unwrapping from the same end. Using a computational nucleosome model, we show that this asymmetry can be explained by differences in the DNA mechanics of two very short stretches on the wrapped DNA portion. Our finding suggests that the physical properties of nucleosomes, here the response to forces, can be tuned locally by the choice of the underlying base-pair sequence. This leads to a new view of nucleosomes: a physically highly varied set of DNA-protein complexes whose properties can be tuned on evolutionary time scales to their specific function in the genomic context. PMID:26991771

  6. Sustainable food consumption. Product choice or curtailment?

    PubMed

    Verain, Muriel C D; Dagevos, Hans; Antonides, Gerrit

    2015-08-01

    Food consumption is an important factor in shaping the sustainability of our food supply. The present paper empirically explores different types of sustainable food behaviors. A distinction between sustainable product choices and curtailment behavior has been investigated empirically and predictors of the two types of behavior have been identified. Respondents were classified into four segments based on their sustainable food behaviors: unsustainers, curtailers, product-oriented consumers, and sustainers. Significant differences between the segments were found with regard to food choice motives, personal and social norms, food involvement, subjective knowledge on sustainable food, ability to judge how sustainably a product has been produced and socio-demographics. It is concluded that distinguishing between behavioral strategies toward sustainable food consumption is important as consumer segments can be identified that differ both in their level of sustainable food consumption and in the type of behavior they employ. PMID:25913683

  7. Nucleosome dynamics during chromatin remodeling in vivo

    PubMed Central

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    ABSTRACT Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation. PMID:26933790

  8. Nucleosome dynamics during chromatin remodeling in vivo.

    PubMed

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation. PMID:26933790

  9. Nucleosomal structure at hyperacetylated loci probed in nuclei by DNA-histone crosslinking.

    PubMed Central

    Ebralidse, K K; Hebbes, T R; Clayton, A L; Thorne, A W; Crane-Robinson, C

    1993-01-01

    Chemically induced histone-DNA crosslinking in nuclei is used to monitor structural changes in chromosomal domains containing hyperacetylated histones. Core particles harbouring the crosslinks are immunofractionated with antibodies specific for acetylated histones. Crosslinking is revealed by gel separation of tryptic peptides from core histones that carry 32P-labelled residual nucleotide. The large number of DNA-histone crosslinks retained indicates that acetylated core histone tails are not totally displaced from the DNA. Changes in the patterns of crosslinked peptides imply a restructuring of hyperacetylated histone-DNA interactions at several points within the nucleosome. This demonstrates that a distinct conformational state is adopted in acetylated nucleosomes, known to be concentrated at transcriptionally active loci. Images PMID:8233821

  10. Folding of Nucleosome Arrays

    NASA Astrophysics Data System (ADS)

    Howell, Steven; Jimenez-Useche, Isabel; Andresen, Kurt; Yuan, Chongli; Qiu, Xiangyun

    2014-03-01

    Chromatin conformation and dynamics is central to gene functions including packaging, regulation, and repair. At the molecular level, the basic building block of chromatin is a nucleosome core particle (NCP) made of 147 base pairs (bp) of dsDNA wrapped around an octamer of histone proteins. These NCPs are connected by short 10-90 bps of linker DNA as beads on a string. Key factors determining the packaging of NCP arrays to form chromatin include ionic condition, linker DNA length, and epigenetic modifications, especially of the histone tails. We have investigated how the conformations of model tetra-NCP arrays are modulated by these factors using small angle x-ray scattering (SAXS). Here we present recent studies of the effects of ion (KCl and MgCl2), linker length, and histone modification (tail deletions) on NCP arrays. Our SAXS measurement makes it possible to learn about both the global compaction of NCP arrays and local inter-NCP spatial correlations within the same array.

  11. Conditions for positioning of nucleosomes on DNA

    NASA Astrophysics Data System (ADS)

    Sheinman, Michael; Chung, Ho-Ryun

    2015-08-01

    Positioning of nucleosomes along a eukaryotic genome plays an important role in its organization and regulation. There are many different factors affecting the location of nucleosomes. Some can be viewed as preferential binding of a single nucleosome to different locations along the DNA and some as interactions between neighboring nucleosomes. In this study, we analyze positioning of nucleosomes and derive conditions for their good positioning. Using analytic and numerical approaches we find that, if the binding preferences are very weak, an interplay between the interactions and the binding preferences is essential for a good positioning of nucleosomes, especially on correlated energy landscapes. Analyzing the empirical energy landscape, we conclude that good positioning of nucleosomes in vivo is possible only if they strongly interact. In this case, our model, predicting long-length-scale fluctuations of nucleosomes' occupancy along the DNA, accounts well for the empirical observations.

  12. Nucleosome Organization in Human Embryonic Stem Cells

    PubMed Central

    Taylor, Jared F.; Khattab, Omar S.; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E.; Wang, Ping H.

    2015-01-01

    The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a “ground state” of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this “ground state” by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states) are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational analysis of

  13. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions. PMID:26966245

  14. Brownian dynamics simulation of the effect of histone modification on nucleosome structure

    NASA Astrophysics Data System (ADS)

    Li, Wei; Dou, Shuo-Xing; Xie, Ping; Wang, Peng-Ye

    2007-05-01

    Using Brownian dynamics we simulate the effect of histone modification, such as phosphorylation, acetylation, and methylation, on nucleosome structure by varying the interaction force between DNA and the histone octamer. The simulation shows that the structural stability of nucleosome is very sensitive to the interaction force, and the DNA unwrapping from the modified histone octamer usually occurs turn by turn. Furthermore, the effects of temperature and DNA break as well as the competition between modified and normal histone octamers are investigated, with the simulation results being in agreement with the experimental observation that phosphorylated nucleosomes near DNA breaks are more easily depleted. Though the simulation study may only give a coarse grained view of the DNA unwrapping process for the modified histone octamer, it may provide insight into the mechanism of DNA repair.

  15. Electrostatic Analysis of The Nucleosome Stability

    NASA Astrophysics Data System (ADS)

    Fenley, Andrew; Adams, David; Onufriev, Alexey

    2007-03-01

    The wrapping and unwrapping of the DNA around the histone octomer of a nucleosome core particle (NCP) plays a vital role in many cellular processes, such as transcription, replication, and cell differentiation. The exact mechanisms underlying the associated transitions in the NCP are still not well understood. We present a simple, two-state electrostatic model of the NCP that agrees with a number of experiments and suggests mechanisms that could initiate DNA unwrapping in vivo. We present and discuss a 2D phase diagram of the system as a function of ambient salt concentration and the net charge of the histone octomer. The model also predicts the free energy of a NCP at physiological conditions. The stability of the system is strongly dependent on the charge of the histone octomer, hinting at possible modes of control in in vivo (acetylation and/or pH changes). The model permits analytical solutions in the low and high salt limits. The analysis of these solutions suggests simple physical mechanisms behind the observed folding and unfolding behavior at environmental solvent conditions.

  16. A Chemical Biology Approach to Reveal Sirt6-targeted Histone H3 Sites in Nucleosomes.

    PubMed

    Wang, Wesley Wei; Zeng, Yu; Wu, Bo; Deiters, Alexander; Liu, Wenshe R

    2016-07-15

    As a member of a highly conserved family of NAD(+)-dependent histone deacetylases, Sirt6 is a key regulator of mammalian genome stability, metabolism, and life span. Previous studies indicated that Sirt6 is hardwired to remove histone acetylation at H3K9 and H3K56. However, how Sirt6 recognizes its nucleosome substrates has been elusive due to the difficulty of accessing homogeneous acetyl-nucleosomes and the low activity of Sirt6 toward peptide substrates. Based on the fact that Sirt6 has an enhanced activity to remove long chain fatty acylation from lysine, we developed an approach to recombinantly synthesize histone H3 with a fatty acylated lysine, N(ε)-(7-octenoyl)-lysine (OcK), installed at a number of lysine sites and used these acyl-H3 proteins to assemble acyl-nucleosomes as active Sirt6 substrates. A chemical biology approach that visualizes OcK in nucleosomes and therefore allows direct sensitization of Sirt6 activities on its acyl-nucleosome substrates was also formulated. By combining these two approaches, we showed that Sirt6 actively removes acylation from H3K9, H3K18, and H3K27; has relatively low activities toward H3K4 and K3K23; but sluggishly removes acylation at H3K14, H3K36, H3K56, and H3K79. Overexpressing Sirt6 in 293T cells led to downregulated acetylation at H3K18 and K3K27, confirming these two novel Sirt6-targeted nucleosome lysine sites in cells. Given that downregulation of H3K18 acetylation is correlated with a poor prognosis of several cancer types and H3K27 acetylation antagonizes repressive gene regulation by di- and trimethylation at H3K27, our current study implies that Sirt6 may serve as a target for cancer intervention and regulatory pathway investigation in cells. PMID:27152839

  17. Nucleosome architecture throughout the cell cycle

    PubMed Central

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-01

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity. PMID:26818620

  18. Changing Chromatin Fiber Conformation by Nucleosome Repositioning

    PubMed Central

    Müller, Oliver; Kepper, Nick; Schöpflin, Robert; Ettig, Ramona; Rippe, Karsten; Wedemann, Gero

    2014-01-01

    Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ∼10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell. PMID:25418099

  19. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes

    PubMed Central

    Dechassa, Mekonnen Lemma; Sabri, Abdellah; Pondugula, Santhi; Kassabov, Stefan R.; Chatterjee, Nilanjana; Kladde, Michael P.; Bartholomew, Blaine

    2010-01-01

    SUMMARY The ATP-dependent chromatin remodeling complex SWI/SNF regulates transcription and has been implicated in promoter nucleosome eviction. Efficient nucleosome disassembly by SWI/SNF alone in biochemical assays has however not been directly observed. Employing a model system of dinucleosomes rather than mononucleosomes, we demonstrate that remodeling leads to ordered and efficient disassembly of one of the two nucleosomes. An H2A/H2B dimer is first rapidly displaced and then in a slower reaction an entire histone octamer is lost. Nucleosome disassembly by SWI/SNF did not require additional factors such as chaperones or acceptors of histones. Observations in single molecules as well as bulk measurement suggest that a key intermediate in this process is one in which a nucleosome is moved towards the adjacent nucleosome. SWI/SNF recruited by the transcriptional activator Gal4-VP16 preferentially mobilizes the proximal nucleosome and destabilizes the adjacent nucleosome. PMID:20513433

  20. Role of Histone Acetylation in Cell Cycle Regulation.

    PubMed

    Koprinarova, Miglena; Schnekenburger, Michael; Diederich, Marc

    2016-01-01

    Core histone acetylation is a key prerequisite for chromatin decondensation and plays a pivotal role in regulation of chromatin structure, function and dynamics. The addition of acetyl groups disturbs histone/DNA interactions in the nucleosome and alters histone/histone interactions in the same or adjacent nucleosomes. Acetyl groups can also provide binding sites for recruitment of bromodomain (BRD)-containing non-histone readers and regulatory complexes to chromatin allowing them to perform distinct downstream functions. The presence of a particular acetylation pattern influences appearance of other histone modifications in the immediate vicinity forming the "histone code". Although the roles of the acetylation of particular lysine residues for the ongoing chromatin functions is largely studied, the epigenetic inheritance of histone acetylation is a debated issue. The dynamics of local or global histone acetylation is associated with fundamental cellular processes such as gene transcription, DNA replication, DNA repair or chromatin condensation. Therefore, it is an essential part of the epigenetic cell response to processes related to internal and external signals. PMID:26303420

  1. Nucleosomal promoter variation generates gene expression noise

    PubMed Central

    Brown, Christopher R.; Boeger, Hinrich

    2014-01-01

    Gene product molecule numbers fluctuate over time and between cells, confounding deterministic expectations. The molecular origins of this noise of gene expression remain unknown. Recent EM analysis of single PHO5 gene molecules of yeast indicated that promoter molecules stochastically assume alternative nucleosome configurations at steady state, including the fully nucleosomal and nucleosome-free configuration. Given that distinct configurations are unequally conducive to transcription, the nucleosomal variation of promoter molecules may constitute a source of gene expression noise. This notion, however, implies an untested conjecture, namely that the nucleosomal variation arises de novo or intrinsically (i.e., that it cannot be explained as the result of the promoter’s deterministic response to variation in its molecular surroundings). Here, we show—by microscopically analyzing the nucleosome configurations of two juxtaposed physically linked PHO5 promoter copies—that the configurational variation, indeed, is intrinsically stochastic and thus, a cause of gene expression noise rather than its effect. PMID:25468975

  2. Nucleosomes Shape DNA Polymorphism and Divergence

    PubMed Central

    Langley, Sasha A.; Karpen, Gary H.; Langley, Charles H.

    2014-01-01

    An estimated 80% of genomic DNA in eukaryotes is packaged as nucleosomes, which, together with the remaining interstitial linker regions, generate higher order chromatin structures [1]. Nucleosome sequences isolated from diverse organisms exhibit ∼10 bp periodic variations in AA, TT and GC dinucleotide frequencies. These sequence elements generate intrinsically curved DNA and help establish the histone-DNA interface. We investigated an important unanswered question concerning the interplay between chromatin organization and genome evolution: do the DNA sequence preferences inherent to the highly conserved histone core exert detectable natural selection on genomic divergence and polymorphism? To address this hypothesis, we isolated nucleosomal DNA sequences from Drosophila melanogaster embryos and examined the underlying genomic variation within and between species. We found that divergence along the D. melanogaster lineage is periodic across nucleosome regions with base changes following preferred nucleotides, providing new evidence for systematic evolutionary forces in the generation and maintenance of nucleosome-associated dinucleotide periodicities. Further, Single Nucleotide Polymorphism (SNP) frequency spectra show striking periodicities across nucleosomal regions, paralleling divergence patterns. Preferred alleles occur at higher frequencies in natural populations, consistent with a central role for natural selection. These patterns are stronger for nucleosomes in introns than in intergenic regions, suggesting selection is stronger in transcribed regions where nucleosomes undergo more displacement, remodeling and functional modification. In addition, we observe a large-scale (∼180 bp) periodic enrichment of AA/TT dinucleotides associated with nucleosome occupancy, while GC dinucleotide frequency peaks in linker regions. Divergence and polymorphism data also support a role for natural selection in the generation and maintenance of these super-nucleosomal

  3. Mapping nucleosome positions using DNase-seq.

    PubMed

    Zhong, Jianling; Luo, Kaixuan; Winter, Peter S; Crawford, Gregory E; Iversen, Edwin S; Hartemink, Alexander J

    2016-03-01

    Although deoxyribonuclease I (DNase I) was used to probe the structure of the nucleosome in the 1960s and 1970s, in the current high-throughput sequencing era, DNase I has mainly been used to study genomic regions devoid of nucleosomes. Here, we reveal for the first time that DNase I can be used to precisely map the (translational) positions of in vivo nucleosomes genome-wide. Specifically, exploiting a distinctive DNase I cleavage profile within nucleosome-associated DNA--including a signature 10.3 base pair oscillation that corresponds to accessibility of the minor groove as DNA winds around the nucleosome--we develop a Bayes-factor-based method that can be used to map nucleosome positions along the genome. Compared to methods that require genetically modified histones, our DNase-based approach is easily applied in any organism, which we demonstrate by producing maps in yeast and human. Compared to micrococcal nuclease (MNase)-based methods that map nucleosomes based on cuts in linker regions, we utilize DNase I cuts both outside and within nucleosomal DNA; the oscillatory nature of the DNase I cleavage profile within nucleosomal DNA enables us to identify translational positioning details not apparent in MNase digestion of linker DNA. Because the oscillatory pattern corresponds to nucleosome rotational positioning, it also reveals the rotational context of transcription factor (TF) binding sites. We show that potential binding sites within nucleosome-associated DNA are often centered preferentially on an exposed major or minor groove. This preferential localization may modulate TF interaction with nucleosome-associated DNA as TFs search for binding sites. PMID:26772197

  4. Theoretical models of possible compact nucleosome structures.

    PubMed

    Besker, Neva; Anselmi, Claudio; De Santis, Pasquale

    2005-04-01

    Chromatin structure seems related to the DNA linker length. This paper presents a systematic search of the possible chromatin structure as a function of the linker lengths, starting from three different low-resolution molecular models of the nucleosome. Gay-Berne potential was used to evaluate the relative nucleosome packing energy. Results suggest that linker DNAs, which bridges and orientate nucleosomes, affect both the geometry and the rigidity of the global chromatin structure. PMID:15752596

  5. Nucleosome Spacing Generated by ISWI and CHD1 Remodelers Is Constant Regardless of Nucleosome Density

    PubMed Central

    Lieleg, Corinna; Ketterer, Philip; Nuebler, Johannes; Ludwigsen, Johanna; Gerland, Ulrich; Dietz, Hendrik

    2015-01-01

    Arrays of regularly spaced nucleosomes are a hallmark of chromatin, but it remains unclear how they are generated. Recent genome-wide studies, in vitro and in vivo, showed constant nucleosome spacing even if the histone concentration was experimentally reduced. This counters the long-held assumption that nucleosome density determines spacing and calls for factors keeping spacing constant regardless of nucleosome density. We call this a clamping activity. Here, we show in a purified system that ISWI- and CHD1-type nucleosome remodelers have a clamping activity such that they not only generate regularly spaced nucleosome arrays but also generate constant spacing regardless of nucleosome density. This points to a functionally attractive nucleosome interaction that could be mediated either directly by nucleosome-nucleosome contacts or indirectly through the remodelers. Mutant Drosophila melanogaster ISWI without the HAND-SANT-SLIDE (HSS) domain had no detectable spacing activity even though it is known to remodel and slide nucleosomes. This suggests that the role of ISWI remodelers in generating constant spacing is not just to mediate nucleosome sliding; they actively contribute to the attractive interaction. Additional factors are necessary to set physiological spacing in absolute terms. PMID:25733687

  6. Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair

    PubMed Central

    Gursoy-Yuzugullu, Ozge; Ayrapetov, Marina K.; Price, Brendan D.

    2015-01-01

    The repair of DNA double-strand breaks (DSBs) requires open, flexible chromatin domains. The NuA4–Tip60 complex creates these flexible chromatin structures by exchanging histone H2A.Z onto nucleosomes and promoting acetylation of histone H4. Here, we demonstrate that the accumulation of H2A.Z on nucleosomes at DSBs is transient, and that rapid eviction of H2A.Z is required for DSB repair. Anp32e, an H2A.Z chaperone that interacts with the C-terminal docking domain of H2A.Z, is rapidly recruited to DSBs. Anp32e functions to remove H2A.Z from nucleosomes, so that H2A.Z levels return to basal within 10 min of DNA damage. Further, H2A.Z removal by Anp32e disrupts inhibitory interactions between the histone H4 tail and the nucleosome surface, facilitating increased acetylation of histone H4 following DNA damage. When H2A.Z removal by Anp32e is blocked, nucleosomes at DSBs retain elevated levels of H2A.Z, and assume a more stable, hypoacetylated conformation. Further, loss of Anp32e leads to increased CtIP-dependent end resection, accumulation of single-stranded DNA, and an increase in repair by the alternative nonhomologous end joining pathway. Exchange of H2A.Z onto the chromatin and subsequent rapid removal by Anp32e are therefore critical for creating open, acetylated nucleosome structures and for controlling end resection by CtIP. Dynamic modulation of H2A.Z exchange and removal by Anp32e reveals the importance of the nucleosome surface and nucleosome dynamics in processing the damaged chromatin template during DSB repair. PMID:26034280

  7. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  8. Tetrameric organization of vertebrate centromeric nucleosomes

    PubMed Central

    Dimitriadis, Emilios K.; Weber, Christian; Gill, Rajbir K.; Diekmann, Stephan; Dalal, Yamini

    2010-01-01

    Mitosis ensures equal genome segregation in the eukaryotic lineage. This process is facilitated by microtubule attachment to each chromosome via its centromere. In centromeres, canonical histone H3 is replaced in nucleosomes by a centromere-specific histone H3 variant (CENH3), providing the unique epigenetic signature required for microtubule binding. Due to recent findings of alternative CENH3 nucleosomal forms in invertebrate centromeres, it has been debated whether the classical octameric nucleosomal arrangement of two copies of CENH3, H4, H2A, and H2B forms the basis of the vertebrate centromere. To address this question directly, we examined CENH3 [centromere protein A (CENP-A)] nucleosomal organization in human cells, using a combination of nucleosome component analysis, atomic force microscopy (AFM), and immunoelectron microscopy (immuno-EM). We report that native CENP-A nucleosomes contain centromeric alpha satellite DNA, have equimolar amounts of H2A, H2B, CENP-A, and H4, and bind kinetochore proteins. These nucleosomes, when measured by AFM, yield one-half the dimensions of canonical octameric nucleosomes. Using immuno-EM, we find that one copy of CENP-A, H2A, H2B, and H4 coexist in CENP-A nucleosomes, in which internal C-terminal domains are accessible. Our observations indicate that CENP-A nucleosomes are organized as asymmetric heterotypic tetramers, rather than canonical octamers. Such altered nucleosomes form a chromatin fiber with distinct folding characteristics, which we utilize to discriminate tetramers directly within bulk chromatin. We discuss implications of our observations in the context of universal epigenetic and mechanical requirements for functional centromeres. PMID:21059934

  9. A physical analysis of nucleosome positioning

    NASA Astrophysics Data System (ADS)

    Gerland, Ulrich

    2015-03-01

    The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. A high nucleosome coverage is essential for cells, e.g. to prevent cryptic transcription, and the local positions of specific nucleosomes can play an important role in gene regulation. It is known that in vivo nucleosome positions are affected by a complex mix of passive and active mechanisms, including sequence-specific histone-DNA binding, nucleosome-nucleosome interactions, ATP-dependent remodeling enzymes, transcription, and DNA replication. Yet, the statistical distribution of nucleosome positions is extremely well described by simple physical models that treat the chromatin fiber as an interacting one-dimensional gas. I will discuss how can we interpret this surprising observation from a mechanistic perspective. I will also discuss the kinetics of the interacting gas model, which is pertinent to the question of how cells achieve the high nucleosome coverage within a short time, e.g. after DNA replication.

  10. Structural analysis of nucleosomal barrier to transcription

    PubMed Central

    Gaykalova, Daria A.; Kulaeva, Olga I.; Volokh, Olesya; Shaytan, Alexey K.; Hsieh, Fu-Kai; Kirpichnikov, Mikhail P.; Sokolova, Olga S.; Studitsky, Vasily M.

    2015-01-01

    Thousands of human and Drosophila genes are regulated at the level of transcript elongation and nucleosomes are likely targets for this regulation. However, the molecular mechanisms of formation of the nucleosomal barrier to transcribing RNA polymerase II (Pol II) and nucleosome survival during/after transcription remain unknown. Here we show that both DNA–histone interactions and Pol II backtracking contribute to formation of the barrier and that nucleosome survival during transcription likely occurs through allosterically stabilized histone–histone interactions. Structural analysis indicates that after Pol II encounters the barrier, the enzyme backtracks and nucleosomal DNA recoils on the octamer, locking Pol II in the arrested state. DNA is displaced from one of the H2A/H2B dimers that remains associated with the octamer. The data reveal the importance of intranucleosomal DNA–protein and protein–protein interactions during conformational changes in the nucleosome structure on transcription. Mechanisms of nucleosomal barrier formation and nucleosome survival during transcription are proposed. PMID:26460019

  11. E APPROACH, FACING W SHOWING PARAPET CURTAILS Stanley Brook ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    E APPROACH, FACING W SHOWING PARAPET CURTAILS - Stanley Brook Bridge, Spanning Stanley Brook, Stanley Brook Motor Road, & Seaside Trail on Barr Hill-Day Mountain Carriage Road, Seal Harbor, Hancock County, ME

  12. A brief review of nucleosome structure.

    PubMed

    Cutter, Amber R; Hayes, Jeffrey J

    2015-10-01

    The nucleosomal subunit organization of chromatin provides a multitude of functions. Nucleosomes elicit an initial ∼7-fold linear compaction of genomic DNA. They provide a critical mechanism for stable repression of genes and other DNA-dependent activities by restricting binding of trans-acting factors to cognate DNA sequences. Conversely they are engineered to be nearly meta-stable and disassembled (and reassembled) in a facile manner to allow rapid access to the underlying DNA during processes such as transcription, replication and DNA repair. Nucleosomes protect the genome from DNA damaging agents and provide a lattice onto which a myriad of epigenetic signals are deposited. Moreover, vast strings of nucleosomes provide a framework for assembly of the chromatin fiber and higher-order chromatin structures. Thus, in order to provide a foundation for understanding these functions, we present a review of the basic elements of nucleosome structure and stability, including the association of linker histones. PMID:25980611

  13. Characterization of Dnmt1 Binding and DNA Methylation on Nucleosomes and Nucleosomal Arrays

    PubMed Central

    Thalhammer, Verena; Längst, Gernot

    2015-01-01

    The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin. PMID:26496704

  14. Replication-guided nucleosome packing and nucleosome breathing expedite the formation of dense arrays

    PubMed Central

    Osberg, Brendan; Nuebler, Johannes; Korber, Philipp; Gerland, Ulrich

    2014-01-01

    The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. How cells achieve such high coverage within a short time, e.g. after DNA replication, remains poorly understood. It is known that random sequential adsorption of impenetrable particles on a line reaches high density extremely slowly, due to a jamming phenomenon. The nucleosome-shifting action of remodeling enzymes has been proposed as a mechanism to resolve such jams. Here, we suggest two biophysical mechanisms which assist rapid filling of DNA with nucleosomes, and we quantitatively characterize these mechanisms within mathematical models. First, we show that the ‘softness’ of nucleosomes, due to nucleosome breathing and stepwise nucleosome assembly, significantly alters the filling behavior, speeding up the process relative to ‘hard’ particles with fixed, mutually exclusive DNA footprints. Second, we explore model scenarios in which the progression of the replication fork could eliminate nucleosome jamming, either by rapid filling in its wake or via memory of the parental nucleosome positions. Taken together, our results suggest that biophysical effects promote rapid nucleosome filling, making the reassembly of densely packed nucleosomes after DNA replication a simpler task for cells than was previously thought. PMID:25428353

  15. Fitness landscape for nucleosome positioning

    PubMed Central

    Weghorn, Donate; Lässig, Michael

    2013-01-01

    Histone–DNA complexes, so-called nucleosomes, are the building blocks of DNA packaging in eukaryotic cells. The histone-binding affinity of a local DNA segment depends on its elastic properties and determines its accessibility within the nucleus, which plays an important role in the regulation of gene expression. Here, we derive a fitness landscape for intergenic DNA segments in yeast as a function of two molecular phenotypes: their elasticity-dependent histone affinity and their coverage with transcription factor binding sites. This landscape reveals substantial selection against nucleosome formation over a wide range of both phenotypes. We use it as the core component of a quantitative evolutionary model for intergenic DNA segments. This model consistently predicts the observed diversity of histone affinities within wild Saccharomyces paradoxus populations, as well as the affinity divergence between neighboring Saccharomyces species. Our analysis establishes histone binding and transcription factor binding as two separable modes of sequence evolution, each of which is a direct target of natural selection. PMID:23784778

  16. Stepwise nucleosome translocation by RSC remodeling complexes

    PubMed Central

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-01-01

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1–2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome. DOI: http://dx.doi.org/10.7554/eLife.10051.001 PMID:26895087

  17. Stepwise nucleosome translocation by RSC remodeling complexes.

    PubMed

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-01-01

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1-2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome. PMID:26895087

  18. Exploring the Free Energy Landscape of Nucleosomes.

    PubMed

    Zhang, Bin; Zheng, Weihua; Papoian, Garegin A; Wolynes, Peter G

    2016-07-01

    The nucleosome is the fundamental unit for packaging the genome. A detailed molecular picture for its conformational dynamics is crucial for understanding transcription and gene regulation. We investigate the disassembly of single nucleosomes using a predictive coarse-grained protein DNA model with transferable force fields. This model quantitatively describes the thermodynamic stability of both the histone core complex and the nucleosome and predicts rates of transient nucleosome opening that match experimental measurements. Quantitative characterization of the free-energy landscapes reveals the mechanism of nucleosome unfolding in which DNA unwinding and histone protein disassembly are coupled. The interfaces between H2A-H2B dimers and the (H3-H4)2 tetramer are first lost when the nucleosome opens releasing a large fraction but not all of its bound DNA. For the short strands studied in single molecule experiments, the DNA unwinds asymmetrically from the histone proteins, with only one of its two ends preferentially exposed. The detailed molecular mechanism revealed in this work provides a structural basis for interpreting experimental studies of nucleosome unfolding. PMID:27300314

  19. Structure, dynamics, and evolution of centromeric nucleosomes

    PubMed Central

    Dalal, Yamini; Furuyama, Takehito; Vermaak, Danielle; Henikoff, Steven

    2007-01-01

    Centromeres are defining features of eukaryotic chromosomes, providing sites of attachment for segregation during mitosis and meiosis. The fundamental unit of centromere structure is the centromeric nucleosome, which differs from the conventional nucleosome by the presence of a centromere-specific histone variant (CenH3) in place of canonical H3. We have shown that the CenH3 nucleosome core found in interphase Drosophila cells is a heterotypic tetramer, a “hemisome” consisting of one molecule each of CenH3, H4, H2A, and H2B, rather than the octamer of canonical histones that is found in bulk nucleosomes. The surprising discovery of hemisomes at centromeres calls for a reevaluation of evidence that has long been interpreted in terms of a more conventional nucleosome. We describe how the hemisome structure of centromeric nucleosomes can account for enigmatic properties of centromeres, including kinetochore accessibility, epigenetic inheritance, rapid turnover of misincorporated CenH3, and transcriptional quiescence of pericentric heterochromatin. Structural differences mediated by loop 1 are proposed to account for the formation of stable tetramers containing CenH3 rather than stable octamers containing H3. Asymmetric CenH3 hemisomes might interrupt the global condensation of octameric H3 arrays and present an asymmetric surface for kinetochore formation. We suggest that this simple mechanism for differentiation between centromeric and packaging nucleosomes evolved from an archaea-like ancestor at the dawn of eukaryotic evolution. PMID:17893333

  20. Structural basis for retroviral integration into nucleosomes

    PubMed Central

    Maskell, Daniel P.; Renault, Ludovic; Serrao, Erik; Lesbats, Paul; Matadeen, Rishi; Hare, Stephen; Lindemann, Dirk; Engelman, Alan N.; Costa, Alessandro; Cherepanov, Peter

    2015-01-01

    Retroviral integration is catalyzed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome1,2. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy (EM) reveals a multivalent intasome-nucleosome interface involving both gyres of nucleosomal DNA and one H2A-H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A-H2B heterodimer to allow integration at strongly preferred superhelix location (SHL) ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration. PMID:26061770

  1. Nucleosome positioning from tiling microarray data

    PubMed Central

    Yassour, Moran; Kaplan, Tommy; Jaimovich, Ariel; Friedman, Nir

    2008-01-01

    Motivation: The packaging of DNA around nucleosomes in eukaryotic cells plays a crucial role in regulation of gene expression, and other DNA-related processes. To better understand the regulatory role of nucleosomes, it is important to pinpoint their position in a high (5–10 bp) resolution. Toward this end, several recent works used dense tiling arrays to map nucleosomes in a high-throughput manner. These data were then parsed and hand-curated, and the positions of nucleosomes were assessed. Results: In this manuscript, we present a fully automated algorithm to analyze such data and predict the exact location of nucleosomes. We introduce a method, based on a probabilistic graphical model, to increase the resolution of our predictions even beyond that of the microarray used. We show how to build such a model and how to compile it into a simple Hidden Markov Model, allowing for a fast and accurate inference of nucleosome positions. We applied our model to nucleosomal data from mid-log yeast cells reported by Yuan et al. and compared our predictions to those of the original paper; to a more recent method that uses five times denser tiling arrays as explained by Lee et al.; and to a curated set of literature-based nucleosome positions. Our results suggest that by applying our algorithm to the same data used by Yuan et al. our fully automated model traced 13% more nucleosomes, and increased the overall accuracy by about 20%. We believe that such an improvement opens the way for a better understanding of the regulatory mechanisms controlling gene expression, and how they are encoded in the DNA. Contact: nir@cs.huji.ac.il PMID:18586706

  2. Oligonucleotide Sequence Motifs as Nucleosome Positioning Signals

    PubMed Central

    Collings, Clayton K.; Fernandez, Alfonso G.; Pitschka, Chad G.; Hawkins, Troy B.; Anderson, John N.

    2010-01-01

    To gain a better understanding of the sequence patterns that characterize positioned nucleosomes, we first performed an analysis of the periodicities of the 256 tetranucleotides in a yeast genome-wide library of nucleosomal DNA sequences that was prepared by in vitro reconstitution. The approach entailed the identification and analysis of 24 unique tetranucleotides that were defined by 8 consensus sequences. These consensus sequences were shown to be responsible for most if not all of the tetranucleotide and dinucleotide periodicities displayed by the entire library, demonstrating that the periodicities of dinucleotides that characterize the yeast genome are, in actuality, due primarily to the 8 consensus sequences. A novel combination of experimental and bioinformatic approaches was then used to show that these tetranucleotides are important for preferred formation of nucleosomes at specific sites along DNA in vitro. These results were then compared to tetranucleotide patterns in genome-wide in vivo libraries from yeast and C. elegans in order to assess the contributions of DNA sequence in the control of nucleosome residency in the cell. These comparisons revealed striking similarities in the tetranucleotide occurrence profiles that are likely to be involved in nucleosome positioning in both in vitro and in vivo libraries, suggesting that DNA sequence is an important factor in the control of nucleosome placement in vivo. However, the strengths of the tetranucleotide periodicities were 3–4 fold higher in the in vitro as compared to the in vivo libraries, which implies that DNA sequence plays less of a role in dictating nucleosome positions in vivo. The results of this study have important implications for models of sequence-dependent positioning since they suggest that a defined subset of tetranucleotides is involved in preferred nucleosome occupancy and that these tetranucleotides are the major source of the dinucleotide periodicities that are characteristic of

  3. Nucleosome

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The fundamental structural unit of chromatin and is the basis for organization within the genome by compaction of DNA within the nucleus of the cell and by making selected regions of chromosomes available for transcription and replication.

  4. Improved nucleosome-positioning algorithm iNPS for accurate nucleosome positioning from sequencing data.

    PubMed

    Chen, Weizhong; Liu, Yi; Zhu, Shanshan; Green, Christopher D; Wei, Gang; Han, Jing-Dong Jackie

    2014-01-01

    Accurate determination of genome-wide nucleosome positioning can provide important insights into global gene regulation. Here, we describe the development of an improved nucleosome-positioning algorithm-iNPS-which achieves significantly better performance than the widely used NPS package. By determining nucleosome boundaries more precisely and merging or separating shoulder peaks based on local MNase-seq signals, iNPS can unambiguously detect 60% more nucleosomes. The detected nucleosomes display better nucleosome 'widths' and neighbouring centre-centre distance distributions, giving rise to sharper patterns and better phasing of average nucleosome profiles and higher consistency between independent data subsets. In addition to its unique advantage in classifying nucleosomes by shape to reveal their different biological properties, iNPS also achieves higher significance and lower false positive rates than previously published methods. The application of iNPS to T-cell activation data demonstrates a greater ability to facilitate detection of nucleosome repositioning, uncovering additional biological features underlying the activation process. PMID:25233085

  5. Wind and Solar Energy Curtailment: Experience and Practices in the United States

    SciTech Connect

    Bird, L.; Cochran, J.; Wang, X.

    2014-03-01

    This report examines U.S. curtailment practices, with a particular emphasis on utilities in the Western states. The information presented here is based on a series of interviews conducted with utilities, system operators, wind energy developers, and non-governmental organizations. The report provides case studies of curtailment experience and examines the reasons for curtailment, curtailment procedures, compensation, and practices that can minimize curtailment.

  6. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases

    PubMed Central

    Dahlin, Jayme L; Chen, Xiaoyue; Walters, Michael A.; Zhang, Zhiguo

    2015-01-01

    During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies. PMID:25365782

  7. Chromatin remodeling by nucleosome disassembly in vitro.

    PubMed

    Lorch, Yahli; Maier-Davis, Barbara; Kornberg, Roger D

    2006-02-28

    The RSC chromatin-remodeling complex completely disassembles a nucleosome in the presence of the histone chaperone Nap1 and ATP. Disassembly occurs in a stepwise manner, with the removal of H2A/H2B dimers, followed by the rest of the histones and the release of naked DNA. RSC and related chromatin-remodeling complexes may be responsible for the removal of promoter nucleosomes during transcriptional activation in vivo. PMID:16492771

  8. Nucleosome repeat lengths and columnar chromatin structure.

    PubMed

    Trifonov, Edward N

    2016-06-01

    Thorough quantitative study of nucleosome repeat length (NRL) distributions, conducted in 1992 by J. Widom, resulted in a striking observation that the linker lengths between the nucleosomes are quantized. Comparison of the NRL average values with the MNase cut distances predicted from the hypothetical columnar structure of chromatin (this work) shows a close correspondence between the two. This strongly suggests that the NRL distribution, actually, reflects the dominant role of columnar chromatin structure common for all eukaryotes. PMID:26208520

  9. Doxorubicin enhances nucleosome turnover around promoters.

    PubMed

    Yang, Fan; Kemp, Christopher J; Henikoff, Steven

    2013-05-01

    Doxorubicin is an anthracycline DNA intercalator that is among the most commonly used anticancer drugs. Doxorubicin causes DNA double-strand breaks in rapidly dividing cells, although whether it also affects general chromatin properties is unknown. Here, we use a metabolic labeling strategy to directly measure nucleosome turnover to examine the effect of doxorubicin on chromatin dynamics in squamous cell carcinoma cell lines derived from genetically defined mice. We find that doxorubicin enhances nucleosome turnover around gene promoters and that turnover correlates with gene expression level. Consistent with a direct action of doxorubicin, enhancement of nucleosome turnover around promoters gradually increases with time of exposure to the drug. Interestingly, enhancement occurs both in wild-type cells and in cells lacking either the p53 tumor suppressor gene or the master regulator of the DNA damage response, ATM, suggesting that doxorubicin action on nucleosome dynamics is independent of the DNA damage checkpoint. In addition, another anthracycline drug, aclarubicin, shows similar effects on enhancing nucleosome turnover around promoters. Our results suggest that anthracycline intercalation promotes nucleosome turnover around promoters by its effect on DNA topology, with possible implications for mechanisms of cell killing during cancer chemotherapy. PMID:23602475

  10. Trajectories of microsecond molecular dynamics simulations of nucleosomes and nucleosome core particles.

    PubMed

    Shaytan, Alexey K; Armeev, Grigoriy A; Goncearenco, Alexander; Zhurkin, Victor B; Landsman, David; Panchenko, Anna R

    2016-06-01

    We present here raw trajectories of molecular dynamics simulations for nucleosome with linker DNA strands as well as minimalistic nucleosome core particle model. The simulations were done in explicit solvent using CHARMM36 force field. We used this data in the research article Shaytan et al., 2016 [1]. The trajectory files are supplemented by TCL scripts providing advanced visualization capabilities. PMID:27222871

  11. Variations on Stochastic Curtailment in Sequential Mastery Testing

    ERIC Educational Resources Information Center

    Finkelman, Matthew David

    2010-01-01

    In sequential mastery testing (SMT), assessment via computer is used to classify examinees into one of two mutually exclusive categories. Unlike paper-and-pencil tests, SMT has the capability to use variable-length stopping rules. One approach to shortening variable-length tests is stochastic curtailment, which halts examination if the probability…

  12. 27 CFR 40.114 - Extension or curtailment of factory.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of factory. 40.114 Section 40.114 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Products Changes in Location of Factory § 40.114 Extension or curtailment of factory. Where a tobacco products factory is to be changed to an extent which will make inaccurate the description of the factory...

  13. 27 CFR 40.114 - Extension or curtailment of factory.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of factory. 40.114 Section 40.114 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Products Changes in Location of Factory § 40.114 Extension or curtailment of factory. Where a tobacco products factory is to be changed to an extent which will make inaccurate the description of the factory...

  14. 27 CFR 40.114 - Extension or curtailment of factory.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... factory. 40.114 Section 40.114 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Products Changes in Location of Factory § 40.114 Extension or curtailment of factory. Where a tobacco products factory is to be changed to an extent which will make inaccurate the description of the factory...

  15. 27 CFR 40.114 - Extension or curtailment of factory.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of factory. 40.114 Section 40.114 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Products Changes in Location of Factory § 40.114 Extension or curtailment of factory. Where a tobacco products factory is to be changed to an extent which will make inaccurate the description of the factory...

  16. 27 CFR 40.114 - Extension or curtailment of factory.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of factory. 40.114 Section 40.114 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Products Changes in Location of Factory § 40.114 Extension or curtailment of factory. Where a tobacco products factory is to be changed to an extent which will make inaccurate the description of the factory...

  17. Theoretical analysis of epigenetic cell memory by nucleosome modification.

    PubMed

    Dodd, Ian B; Micheelsen, Mille A; Sneppen, Kim; Thon, Geneviève

    2007-05-18

    Chromosomal regions can adopt stable and heritable alternative states resulting in bistable gene expression without changes to the DNA sequence. Such epigenetic control is often associated with alternative covalent modifications of histones. The stability and heritability of the states are thought to involve positive feedback where modified nucleosomes recruit enzymes that similarly modify nearby nucleosomes. We developed a simplified stochastic model for dynamic nucleosome modification based on the silent mating-type region of the yeast Schizosaccharomyces pombe. We show that the mechanism can give strong bistability that is resistant both to high noise due to random gain or loss of nucleosome modifications and to random partitioning upon DNA replication. However, robust bistability required: (1) cooperativity, the activity of more than one modified nucleosome, in the modification reactions and (2) that nucleosomes occasionally stimulate modification beyond their neighbor nucleosomes, arguing against a simple continuous spreading of nucleosome modification. PMID:17512413

  18. UV damage in DNA promotes nucleosome unwrapping.

    PubMed

    Duan, Ming-Rui; Smerdon, Michael J

    2010-08-20

    The association of DNA with histones in chromatin impedes DNA repair enzymes from accessing DNA lesions. Nucleosomes exist in a dynamic equilibrium in which portions of the DNA molecule spontaneously unwrap, transiently exposing buried DNA sites. Thus, nucleosome dynamics in certain regions of chromatin may provide the exposure time and space needed for efficient repair of buried DNA lesions. We have used FRET and restriction enzyme accessibility to study nucleosome dynamics following DNA damage by UV radiation. We find that FRET efficiency is reduced in a dose-dependent manner, showing that the presence of UV photoproducts enhances spontaneous unwrapping of DNA from histones. Furthermore, this UV-induced shift in unwrapping dynamics is associated with increased restriction enzyme accessibility of histone-bound DNA after UV treatment. Surprisingly, the increased unwrapping dynamics is even observed in nucleosome core particles containing a single UV lesion at a specific site. These results highlight the potential for increased "intrinsic exposure" of nucleosome-associated DNA lesions in chromatin to repair proteins. PMID:20562439

  19. The Nucleosome Map of the Mammalian Liver

    PubMed Central

    Li, Zhaoyu; Schug, Jonathan; Tuteja, Geetu; White, Peter; Kaestner, Klaus H.

    2011-01-01

    Mammalian genomes contain billions of basepairs of DNA that must be highly compacted as chromatin to fit into the nano-scale of the nucleus, but yet be accessible to allow for transcription to occur. Binding to nucleosomal DNA is critical for ‘pioneer’ transcription factors such as the winged helix transcription factors Foxa1 and Foxa2 to regulate chromatin structure and gene activation. Here we report the genome-wide map of nucleosome positions in the mouse liver, with emphasis on transcriptional start sites, CpG islands, Foxa2 binding sites, and their correlation with gene expression. Despite the heterogeneity of liver tissue, we could clearly discern the nucleosome pattern of the predominant liver cell, the hepatocyte. By analyzing nucleosome occupancy and the distributions of heterochromatin protein 1 (Hp1), CBP (also known as Crebbp), and p300 (Ep300) in Foxa1/2-deficient livers we find, surprisingly, that the maintenance of nucleosome position and chromatin structure surrounding Foxa2 binding sites is independent of Foxa1/2. PMID:21623366

  20. Predicting Nucleosome Positioning Using Multiple Evidence Tracks

    NASA Astrophysics Data System (ADS)

    Reynolds, Sheila M.; Weng, Zhiping; Bilmes, Jeff A.; Noble, William Stafford

    We describe a probabilistic model, implemented as a dynamic Bayesian network, that can be used to predict nucleosome positioning along a chromosome based on one or more genomic input tracks containing position-specific information (evidence). Previous models have either made predictions based on primary DNA sequence alone, or have been used to infer nucleosome positions from experimental data. Our framework permits the combination of these two distinct types of information. We show how this flexible framework can be used to make predictions based on either sequence-model scores or experimental data alone, or by using the two in combination to interpret the experimental data and fill in gaps. The model output represents the posterior probability, at each position along the chromosome, that a nucleosome core overlaps that position, given the evidence. This posterior probability is computed by integrating the information contained in the input evidence tracks along the entire input sequence, and fitting the evidence to a simple grammar of alternating nucleosome cores and linkers. In addition to providing a novel mechanism for the prediction of nucleosome positioning from arbitrary heterogeneous data sources, this framework is also applicable to other genomic segmentation tasks in which local scores are available from models or from data that can be interpreted as defining a probability assignment over labels at that position. The ability to combine sequence-based predictions and data from experimental assays is a significant and novel contribution to the ongoing research regarding the primary structure of chromatin and its effects upon gene regulation.

  1. BINOCh: binding inference from nucleosome occupancy changes

    PubMed Central

    Meyer, Clifford A.; He, Housheng H.; Brown, Myles; Liu, X. Shirley

    2011-01-01

    Summary: Transcription factor binding events are frequently associated with a pattern of nucleosome occupancy changes in which nucleosomes flanking the binding site increase in occupancy, while those in the vicinity of the binding site itself are displaced. Genome-wide information on enhancer proximal nucleosome occupancy can be readily acquired using ChIP-seq targeting enhancer-related histone modifications such as H3K4me2. Here, we present a software package, BINOCh that allows biologists to use such data to infer the identity of key transcription factors that regulate the response of a cell to a stimulus or determine a program of differentiation. Availability: The BINOCh open source Python package is freely available at http://liulab.dfci.harvard.edu/BINOCh under the FreeBSD license. Contact: cliff@jimmy.harvard.edu; xsliu@jimmy.harvard.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21551136

  2. Nucleosome structure in chromatin from heated cells

    SciTech Connect

    Warters, R.L.; Roti Roti, J.L.; Winward, R.T.

    1980-12-01

    The effect of hyperthermia (40 to 80/sup 0/C) on the nucleosome structure of mammalian chromatin was determined using the enzyme micrococcal nuclease. At equivalent fractional DNA digestion it was found that neither the size of DNA nor the total fraction of cellular DNA associated with nucleosome structure is altered by heat exposure up to 48/sup 0/C for 30 min. It is proposed that this heat-induced reduction in the accessibility to nuclease attack of DNA in chromatin from heated cells is due to the increased protein mass associated with chromatin.

  3. Inhibition by acetyl-CoA of hepatic carnitine acyltransferase and fatty acid oxidation.

    PubMed Central

    McCormick, K; Notar-Francesco, V J; Sriwatanakul, K

    1983-01-01

    At micromolar concentrations, acetyl-CoA inhibited hepatic carnitine acyltransferase activity and mitochondrial fatty acid oxidation. The inhibitory effects were not nearly as potent on a molar basis as those of malonyl-CoA; nevertheless, the cytosolic concentrations of acetyl-CoA, as yet unknown, may be sufficient (greater than 30 microM) to curtail appreciably the mitochondrial transfer of long-chain acyl-CoA units and fatty acid oxidation. Hence acetyl-CoA may also partially regulate hepatic ketogenesis. PMID:6661211

  4. Toxoplasma histone acetylation remodelers as novel drug targets

    PubMed Central

    Vanagas, Laura; Jeffers, Victoria; Bogado, Silvina S; Dalmasso, Maria C; Sullivan, William J; Angel, Sergio O

    2013-01-01

    Toxoplasma gondii is a leading cause of neurological birth defects and a serious opportunistic pathogen. The authors and others have found that Toxoplasma uses a unique nucleosome composition supporting a fine gene regulation together with other factors. Post-translational modifications in histones facilitate the establishment of a global chromatin environment and orchestrate DNA-related biological processes. Histone acetylation is one of the most prominent post-translational modifications influencing gene expression. Histone acetyltransferases and histone deacetylases have been intensively studied as potential drug targets. In particular, histone deacetylase inhibitors have activity against apicomplexan parasites, underscoring their potential as a new class of antiparasitic compounds. In this review, we summarize what is known about Toxoplasma histone acetyltransferases and histone deacetylases, and discuss the inhibitors studied to date. Finally, the authors discuss the distinct possibility that the unique nucleosome composition of Toxoplasma, which harbors a nonconserved H2Bv variant histone, might be targeted in novel therapeutics directed against this parasite. PMID:23199404

  5. Nucleosomes unfold completely at a transcriptionally active promoter.

    PubMed

    Boeger, Hinrich; Griesenbeck, Joachim; Strattan, J Seth; Kornberg, Roger D

    2003-06-01

    It has long been known that promoter DNA is converted to a nuclease-sensitive state upon transcriptional activation. Recent findings have raised the possibility that this conversion reflects only a partial unfolding or other perturbation of nucleosomal structure, rather than the loss of nucleosomes. We report topological, sedimentation, nuclease digestion, and ChIP analyses, which demonstrate the complete unfolding of nucleosomes at the transcriptionally active PHO5 promoter of the yeast Saccharomyces cerevisiae. Although nucleosome loss occurs at all promoter sites, it is not complete at any of them, suggesting the existence of an equilibrium between the removal of nucleosomes and their reformation. PMID:12820971

  6. Activated RSC-nucleosome complex and persistently altered form of the nucleosome.

    PubMed

    Lorch, Y; Cairns, B R; Zhang, M; Kornberg, R D

    1998-07-10

    RSC, an abundant, essential chromatin-remodeling complex, related to SWI/SNF complex, binds nucleosomes and naked DNA with comparable affinities, as shown by gel shift analysis. The RSC-nucleosome complex is converted in the presence of ATP to a slower migrating form. This activated complex exhibits greatly increased susceptibility to endo- and exonucleases but retains a full complement of histones. Activation persists in the absence of ATP, and on removal of RSC, the nucleosome is released in an altered form, with a diminished electrophoretic mobility, greater sedimentation rate, and marked instability at elevated ionic strength. The reaction is reversible in the presence of RSC and ATP, with conversion of the altered form back to the nucleosome. PMID:9674424

  7. Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites.

    PubMed

    Möbius, Wolfram; Gerland, Ulrich

    2010-01-01

    The positions of nucleosomes in eukaryotic genomes determine which parts of the DNA sequence are readily accessible for regulatory proteins and which are not. Genome-wide maps of nucleosome positions have revealed a salient pattern around transcription start sites, involving a nucleosome-free region (NFR) flanked by a pronounced periodic pattern in the average nucleosome density. While the periodic pattern clearly reflects well-positioned nucleosomes, the positioning mechanism is less clear. A recent experimental study by Mavrich et al. argued that the pattern observed in Saccharomyces cerevisiae is qualitatively consistent with a "barrier nucleosome model," in which the oscillatory pattern is created by the statistical positioning mechanism of Kornberg and Stryer. On the other hand, there is clear evidence for intrinsic sequence preferences of nucleosomes, and it is unclear to what extent these sequence preferences affect the observed pattern. To test the barrier nucleosome model, we quantitatively analyze yeast nucleosome positioning data both up- and downstream from NFRs. Our analysis is based on the Tonks model of statistical physics which quantifies the interplay between the excluded-volume interaction of nucleosomes and their positional entropy. We find that although the typical patterns on the two sides of the NFR are different, they are both quantitatively described by the same physical model with the same parameters, but different boundary conditions. The inferred boundary conditions suggest that the first nucleosome downstream from the NFR (the +1 nucleosome) is typically directly positioned while the first nucleosome upstream is statistically positioned via a nucleosome-repelling DNA region. These boundary conditions, which can be locally encoded into the genome sequence, significantly shape the statistical distribution of nucleosomes over a range of up to approximately 1,000 bp to each side. PMID:20808881

  8. Patching Broken DNA: Nucleosome Dynamics and the Repair of DNA Breaks.

    PubMed

    Gursoy-Yuzugullu, Ozge; House, Nealia; Price, Brendan D

    2016-05-01

    The ability of cells to detect and repair DNA double-strand breaks (DSBs) is dependent on reorganization of the surrounding chromatin structure by chromatin remodeling complexes. These complexes promote access to the site of DNA damage, facilitate processing of the damaged DNA and, importantly, are essential to repackage the repaired DNA. Here, we will review the chromatin remodeling steps that occur immediately after DSB production and that prepare the damaged chromatin template for processing by the DSB repair machinery. DSBs promote rapid accumulation of repressive complexes, including HP1, the NuRD complex, H2A.Z and histone methyltransferases at the DSB. This shift to a repressive chromatin organization may be important to inhibit local transcription and limit mobility of the break and to maintain the DNA ends in close contact. Subsequently, the repressive chromatin is rapidly dismantled through a mechanism involving dynamic exchange of the histone variant H2A.Z. H2A.Z removal at DSBs alters the acidic patch on the nucleosome surface, promoting acetylation of the H4 tail (by the NuA4-Tip60 complex) and shifting the chromatin to a more open structure. Further, H2A.Z removal promotes chromatin ubiquitination and recruitment of additional DSB repair proteins to the break. Modulation of the nucleosome surface and nucleosome function during DSB repair therefore plays a vital role in processing of DNA breaks. Further, the nucleosome surface may function as a central hub during DSB repair, directing specific patterns of histone modification, recruiting DNA repair proteins and modulating chromatin packing during processing of the damaged DNA template. PMID:26625977

  9. Global remodeling of nucleosome positions in C. elegans

    PubMed Central

    2013-01-01

    Background Eukaryotic chromatin architecture is affected by intrinsic histone-DNA sequence preferences, steric exclusion between nucleosome particles, formation of higher-order structures, and in vivo activity of chromatin remodeling enzymes. Results To disentangle sequence-dependent nucleosome positioning from the other factors, we have created two high-throughput maps of nucleosomes assembled in vitro on genomic DNA from the nematode worm Caenorhabditis elegans. A comparison of in vitro nucleosome positions with those observed in a mixed-stage, mixed-tissue population of C. elegans cells reveals that in vivo sequence preferences are modified on the genomic scale. Indeed, G/C dinucleotides are predicted to be most favorable for nucleosome formation in vitro but not in vivo. Nucleosome sequence read coverage in vivo is distinctly lower in chromosome arms than in central regions; the observed changes in apparent nucleosome sequence specificity, likely due to genome-wide chromatin remodeler activity, contribute to the formation of these megabase-scale chromatin domains. We also observe that the majority of well-positioned in vivo nucleosomes do not occupy thermodynamically favorable sequences observed in vitro. Finally, we find that exons are intrinsically more amenable to nucleosome formation compared to introns. Nucleosome occupancy of introns and exons consistently increases with G/C content in vitro but not in vivo, in agreement with our observation that G/C dinucleotide enrichment does not strongly promote in vivo nucleosome formation. Conclusions Our findings highlight the importance of both sequence specificity and active nucleosome repositioning in creating large-scale chromatin domains, and the antagonistic roles of intrinsic sequence preferences and chromatin remodelers in C. elegans. Sequence read data has been deposited into Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra; accession number SRA050182). Additional data, software and computational

  10. Nucleosome positioning and composition modulate in silico chromatin flexibility.

    PubMed

    Clauvelin, N; Lo, P; Kulaeva, O I; Nizovtseva, E V; Diaz-Montes, J; Zola, J; Parashar, M; Studitsky, V M; Olson, W K

    2015-02-18

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of ∼150 DNA base pairs and eight histone proteins-found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the 'local' inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome positioning, and

  11. Dynamic Nucleosome Organization at hox Promoters during Zebrafish Embryogenesis

    PubMed Central

    Weicksel, Steven E.; Xu, Jia; Sagerström, Charles G.

    2013-01-01

    Nucleosome organization at promoter regions plays an important role in regulating gene activity. Genome-wide studies in yeast, flies, worms, mammalian embryonic stem cells and transformed cell lines have found well-positioned nucleosomes flanking a nucleosome depleted region (NDR) at transcription start sites. This nucleosome arrangement depends on DNA sequence (cis-elements) as well as DNA binding factors and ATP-dependent chromatin modifiers (trans-factors). However, little is understood about how the nascent embryonic genome positions nucleosomes during development. This is particularly intriguing since the embryonic genome must undergo a broad reprogramming event upon fusion of sperm and oocyte. Using four stages of early embryonic zebrafish development, we map nucleosome positions at the promoter region of 37 zebrafish hox genes. We find that nucleosome arrangement at the hox promoters is a progressive process that takes place over several stages. At stages immediately after fertilization, nucleosomes appear to be largely disordered at hox promoter regions. At stages after activation of the embryonic genome, nucleosomes are detectable at hox promoters, with positions becoming more uniform and more highly occupied. Since the genomic sequence is invariant during embryogenesis, this progressive change in nucleosome arrangement suggests that trans-factors play an important role in organizing nucleosomes during embryogenesis. Separating hox genes into expressed and non-expressed groups shows that expressed promoters have better positioned and occupied nucleosomes, as well as distinct NDRs, than non-expressed promoters. Finally, by blocking the retinoic acid-signaling pathway, we disrupt early hox gene transcription, but observe no effect on nucleosome positions, suggesting that active hox transcription is not a driving force behind the arrangement of nucleosomes at the promoters of hox genes during early development. PMID:23671670

  12. Nucleosome positioning and composition modulate in silico chromatin flexibility

    NASA Astrophysics Data System (ADS)

    Clauvelin, N.; Lo, P.; Kulaeva, O. I.; Nizovtseva, E. V.; Diaz-Montes, J.; Zola, J.; Parashar, M.; Studitsky, V. M.; Olson, W. K.

    2015-02-01

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes—the familiar assemblies of ˜150 DNA base pairs and eight histone proteins—found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the ‘local’ inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome

  13. Selective recognition of acetylated histones by bromodomains in transcriptional co-activators

    PubMed Central

    Hassan, Ahmed H.; Awad, Salma; Al-Natour, Zeina; Othman, Samah; Mustafa, Farah; Rizvi, Tahir A.

    2006-01-01

    Bromodomains are present in many chromatin-associated proteins such as the SWI/SNF and RSC chromatin remodelling and the SAGA HAT (histone acetyltransferase) complexes, and can bind to acetylated lysine residues in the N-terminal tails of the histones. Lysine acetylation is a histone modification that forms a stable epigenetic mark on chromatin for bromodomain-containing proteins to dock and in turn regulate gene expression. In order to better understand how bromodomains read the ‘histone code’ and interact with acetylated histones, we have tested the interactions of several bromodomains within transcriptional co-activators with differentially acetylated histone tail peptides and HAT-acetylated histones. Using GST (glutathione S-transferase) pull-down assays, we show specificity of binding of some bromodomains to differentially acetylated H3 and H4 peptides as well as HAT-acetylated histones. Our results reveal that the Swi2/Snf2 bromodomain interacts with various acetylated H3 and H4 peptides, whereas the Gcn5 bromodomain interacts only with acetylated H3 peptides and tetra-acetylated H4 peptides. Additionally we show that the Spt7 bromodomain interacts with acetylated H3 peptides weakly, but not with acetylated H4 peptides. Some bromodomains such as the Bdf1-2 do not interact with most of the acetylated peptides tested. Results of the peptide experiments are confirmed with tests of interactions between these bromodomains and HAT-acetylated histones. Furthermore, we demonstrate that the Swi2/Snf2 bromodomain is important for the binding and the remodelling activity of the SWI/SNF complex on hyperacetylated nucleosomes. The selective recognition of the bromodomains observed in the present study accounts for the broad effects of bromodomain-containing proteins observed on binding to histones. PMID:17049045

  14. Assessment of the possibility of forecasting future natural gas curtailments

    SciTech Connect

    Lemont, S.

    1980-01-01

    This study provides a preliminary assessment of the potential for determining probabilities of future natural-gas-supply interruptions by combining long-range weather forecasts and natural-gas supply/demand projections. An illustrative example which measures the probability of occurrence of heating-season natural-gas curtailments for industrial users in the southeastern US is analyzed. Based on the information on existing long-range weather forecasting techniques and natural gas supply/demand projections enumerated above, especially the high uncertainties involved in weather forecasting and the unavailability of adequate, reliable natural-gas projections that take account of seasonal weather variations and uncertainties in the nation's energy-economic system, it must be concluded that there is little possibility, at the present time, of combining the two to yield useful, believable probabilities of heating-season gas curtailments in a form useful for corporate and government decision makers and planners. Possible remedial actions are suggested that might render such data more useful for the desired purpose in the future. The task may simply require the adequate incorporation of uncertainty and seasonal weather trends into modeling systems and the courage to report projected data, so that realistic natural gas supply/demand scenarios and the probabilities of their occurrence will be available to decision makers during a time when such information is greatly needed.

  15. Substantial Histone Reduction Modulates Genomewide Nucleosomal Occupancy and Global Transcriptional Output

    PubMed Central

    Celona, Barbara; Weiner, Assaf; Di Felice, Francesca; Mancuso, Francesco M.; Cesarini, Elisa; Rossi, Riccardo L.; Gregory, Lorna; Baban, Dilair; Rossetti, Grazisa; Grianti, Paolo; Pagani, Massimiliano; Bonaldi, Tiziana; Ragoussis, Jiannis; Friedman, Nir; Camilloni, Giorgio; Bianchi, Marco E.; Agresti, Alessandra

    2011-01-01

    The basic unit of genome packaging is the nucleosome, and nucleosomes have long been proposed to restrict DNA accessibility both to damage and to transcription. Nucleosome number in cells was considered fixed, but recently aging yeast and mammalian cells were shown to contain fewer nucleosomes. We show here that mammalian cells lacking High Mobility Group Box 1 protein (HMGB1) contain a reduced amount of core, linker, and variant histones, and a correspondingly reduced number of nucleosomes, possibly because HMGB1 facilitates nucleosome assembly. Yeast nhp6 mutants lacking Nhp6a and -b proteins, which are related to HMGB1, also have a reduced amount of histones and fewer nucleosomes. Nucleosome limitation in both mammalian and yeast cells increases the sensitivity of DNA to damage, increases transcription globally, and affects the relative expression of about 10% of genes. In yeast nhp6 cells the loss of more than one nucleosome in four does not affect the location of nucleosomes and their spacing, but nucleosomal occupancy. The decrease in nucleosomal occupancy is non-uniform and can be modelled assuming that different nucleosomal sites compete for available histones. Sites with a high propensity to occupation are almost always packaged into nucleosomes both in wild type and nucleosome-depleted cells; nucleosomes on sites with low propensity to occupation are disproportionately lost in nucleosome-depleted cells. We suggest that variation in nucleosome number, by affecting nucleosomal occupancy both genomewide and gene-specifically, constitutes a novel layer of epigenetic regulation. PMID:21738444

  16. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility

    PubMed Central

    Mieczkowski, Jakub; Cook, April; Bowman, Sarah K.; Mueller, Britta; Alver, Burak H.; Kundu, Sharmistha; Deaton, Aimee M.; Urban, Jennifer A.; Larschan, Erica; Park, Peter J.; Kingston, Robert E.; Tolstorukov, Michael Y.

    2016-01-01

    Chromatin accessibility plays a fundamental role in gene regulation. Nucleosome placement, usually measured by quantifying protection of DNA from enzymatic digestion, can regulate accessibility. We introduce a metric that uses micrococcal nuclease (MNase) digestion in a novel manner to measure chromatin accessibility by combining information from several digests of increasing depths. This metric, MACC (MNase accessibility), quantifies the inherent heterogeneity of nucleosome accessibility in which some nucleosomes are seen preferentially at high MNase and some at low MNase. MACC interrogates each genomic locus, measuring both nucleosome location and accessibility in the same assay. MACC can be performed either with or without a histone immunoprecipitation step, and thereby compares histone and non-histone protection. We find that changes in accessibility at enhancers, promoters and other regulatory regions do not correlate with changes in nucleosome occupancy. Moreover, high nucleosome occupancy does not necessarily preclude high accessibility, which reveals novel principles of chromatin regulation. PMID:27151365

  17. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility.

    PubMed

    Mieczkowski, Jakub; Cook, April; Bowman, Sarah K; Mueller, Britta; Alver, Burak H; Kundu, Sharmistha; Deaton, Aimee M; Urban, Jennifer A; Larschan, Erica; Park, Peter J; Kingston, Robert E; Tolstorukov, Michael Y

    2016-01-01

    Chromatin accessibility plays a fundamental role in gene regulation. Nucleosome placement, usually measured by quantifying protection of DNA from enzymatic digestion, can regulate accessibility. We introduce a metric that uses micrococcal nuclease (MNase) digestion in a novel manner to measure chromatin accessibility by combining information from several digests of increasing depths. This metric, MACC (MNase accessibility), quantifies the inherent heterogeneity of nucleosome accessibility in which some nucleosomes are seen preferentially at high MNase and some at low MNase. MACC interrogates each genomic locus, measuring both nucleosome location and accessibility in the same assay. MACC can be performed either with or without a histone immunoprecipitation step, and thereby compares histone and non-histone protection. We find that changes in accessibility at enhancers, promoters and other regulatory regions do not correlate with changes in nucleosome occupancy. Moreover, high nucleosome occupancy does not necessarily preclude high accessibility, which reveals novel principles of chromatin regulation. PMID:27151365

  18. [The effect of DNA supercoiling DNA on nucleosome structure].

    PubMed

    Sivolob, A V; Khrapunov, S N

    1991-01-01

    The circular DNA which contains nucleosomes and additional supercoils has been considered theoretically. The different possible effect of increased negative supercoiling on the nucleosome structure have been studied. According to the model proposed all supercoils in the nucleosome-containing circular DNA are realized as torsional deformations of the double helix. The free energy of both supercoiling (torsional deformations) and nucleosome stabilization have been taken into consideration to obtain the equation for free energy of nucleosome-containing circular DNA. The analysis of this equation and the experimental data by Garner et al. (II Psoc. Natl. Acad. Sci. USA. 1987. P. 2620-2623) about the maximum amount of supercoiling obtained by DNA-topoisomerase II treatment of nucleosome-containing pBR322 plasmid has been performed. It has been shown that two possibilities are consistent with both the equation and experimental data. These are: (1) the increased supercoiling induces the torsional strains not only in linker regions but also in nucleosome DNA and thus supercoiling causes an instability on nucleosome structure; (2) increased supercoiling induces a structural change of nucleosome which is accompanied by nucleosome DNA unwinding and its transition into form with approximately 11 base pairs per turn of double helix. It has been evaluated that in the first case the average torsional rigidity of nucleosome DNA should be approximately 2.5 times as much and in the second case--much more than the rigidity of naked DNA. Both types of nucleosome structural changes may cause its transition to a potentially active state for transcription. It is suggested that increased supercoiling can be a switch mechanism of chromatin activation. PMID:1654518

  19. The effect of DNA supercoiling on nucleosome structure and stability

    NASA Astrophysics Data System (ADS)

    Elbel, Tabea; Langowski, Jörg

    2015-02-01

    Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.

  20. Nucleosome immobilization strategies for single-pair FRET microscopy.

    PubMed

    Koopmans, Wiepke J A; Schmidt, Thomas; van Noort, John

    2008-10-01

    All genomic transactions in eukaryotes take place in the context of the nucleosome, the basic unit of chromatin, which is responsible for DNA compaction. Overcoming the steric hindrance that nucleosomes present for DNA-processing enzymes requires significant conformational changes. The dynamics of these have been hard to resolve. Single-pair Fluorescence Resonance Energy Transfer (spFRET) microscopy is a powerful technique for observing conformational dynamics of the nucleosome. Nucleosome immobilization allows the extension of observation times to a limit set only by photobleaching, and thus opens the possibility of studying processes occurring on timescales ranging from milliseconds to minutes. It is crucial however, that immobilization itself does not introduce artifacts in the dynamics. Here we report on various nucleosome immobilization strategies, such as single-point attachment to polyethylene glycol (PEG) or surfaces coated with bovine serum albumin (BSA), and confinement in porous agarose or polyacrylamide gels. We compare the immobilization specificity and structural integrity of immobilized nucleosomes. A crosslinked star polyethylene glycol coating performs best with respect to tethering specificity and nucleosome integrity, and enables us to reproduce for the first time bulk nucleosome unwrapping kinetics in single nucleosomes without immobilization artifacts. PMID:18792054

  1. A positioned +1 nucleosome enhances promoter-proximal pausing

    PubMed Central

    Jimeno-González, Silvia; Ceballos-Chávez, María; Reyes, José C.

    2015-01-01

    Chromatin distribution is not uniform along the human genome. In most genes there is a promoter-associated nucleosome free region (NFR) followed by an array of nucleosomes towards the gene body in which the first (+1) nucleosome is strongly positioned. The function of this characteristic chromatin distribution in transcription is not fully understood. Here we show in vivo that the +1 nucleosome plays a role in modulating RNA polymerase II (RNAPII) promoter-proximal pausing. When a +1 nucleosome is strongly positioned, elongating RNAPII has a tendency to stall at the promoter-proximal region, recruits more negative elongation factor (NELF) and produces less mRNA. The nucleosome-induced pause favors pre-mRNA quality control by promoting the addition of the cap to the nascent RNA. Moreover, the uncapped RNAs produced in the absence of a positioned nucleosome are degraded by the 5′-3′ exonuclease XRN2. Interestingly, reducing the levels of the chromatin remodeler ISWI factor SNF2H decreases +1 nucleosome positioning and increases RNAPII pause release. This work demonstrates a function for +1 nucleosome in regulation of transcription elongation, pre-mRNA processing and gene expression. PMID:25735750

  2. United Arab Emirates expansion curtailed but production still exceeds quota

    SciTech Connect

    Vielvoye, R.

    1987-08-24

    This article reports that oil and gas activity in the United Arab Emirates has been hit be declining exploration, curtailed development schedules, and the shutdown of production facilities. But despite a mothballing program, production is still running way ahead of the quota set by OPEC for the UAE. According to OPEC's schedule, first half 1987 production should not have exceeded 902,000 b/d. And the increased quotas for the second half of the year would permit output to average 948,000 b/d. But production averaged 1.2 million b/d during the first half of the year, and there is no sign of a significant reduction. Rising output when most other OPEC members are attempting to discipline themselves stems from the failure of Abu Dhabi and Dubai to agree on how the quota should be split. Details are provided on the regions of production activity.

  3. A deformation energy-based model for predicting nucleosome dyads and occupancy

    PubMed Central

    Liu, Guoqing; Xing, Yongqiang; Zhao, Hongyu; Wang, Jianying; Shang, Yu; Cai, Lu

    2016-01-01

    Nucleosome plays an essential role in various cellular processes, such as DNA replication, recombination, and transcription. Hence, it is important to decode the mechanism of nucleosome positioning and identify nucleosome positions in the genome. In this paper, we present a model for predicting nucleosome positioning based on DNA deformation, in which both bending and shearing of the nucleosomal DNA are considered. The model successfully predicted the dyad positions of nucleosomes assembled in vitro and the in vitro map of nucleosomes in Saccharomyces cerevisiae. Applying the model to Caenorhabditis elegans and Drosophila melanogaster, we achieved satisfactory results. Our data also show that shearing energy of nucleosomal DNA outperforms bending energy in nucleosome occupancy prediction and the ability to predict nucleosome dyad positions is attributed to bending energy that is associated with rotational positioning of nucleosomes. PMID:27053067

  4. Genome Wide Nucleosome Mapping for HSV-1 Shows Nucleosomes Are Deposited at Preferred Positions during Lytic Infection

    PubMed Central

    Oh, Jaewook; Sanders, Iryna F.; Chen, Eric Z.; Li, Hongzhe; Tobias, John W.; Isett, R. Benjamin; Penubarthi, Sindura; Sun, Hao; Baldwin, Don A.; Fraser, Nigel W.

    2015-01-01

    HSV is a large double stranded DNA virus, capable of causing a variety of diseases from the common cold sore to devastating encephalitis. Although DNA within the HSV virion does not contain any histone protein, within 1 h of infecting a cell and entering its nucleus the viral genome acquires some histone protein (nucleosomes). During lytic infection, partial micrococcal nuclease (MNase) digestion does not give the classic ladder band pattern, seen on digestion of cell DNA or latent viral DNA. However, complete digestion does give a mono-nucleosome band, strongly suggesting that there are some nucleosomes present on the viral genome during the lytic infection, but that they are not evenly positioned, with a 200bp repeat pattern, like cell DNA. Where then are the nucleosomes positioned? Here we perform HSV-1 genome wide nucleosome mapping, at a time when viral replication is in full swing (6hr PI), using a microarray consisting of 50mer oligonucleotides, covering the whole viral genome (152kb). Arrays were probed with MNase-protected fragments of DNA from infected cells. Cells were not treated with crosslinking agents, thus we are only mapping tightly bound nucleosomes. The data show that nucleosome deposition is not random. The distribution of signal on the arrays suggest that nucleosomes are located at preferred positions on the genome, and that there are some positions that are not occupied (nucleosome free regions -NFR or Nucleosome depleted regions -NDR), or occupied at frequency below our limit of detection in the population of genomes. Occupancy of only a fraction of the possible sites may explain the lack of a typical MNase partial digestion band ladder pattern for HSV DNA during lytic infection. On average, DNA encoding Immediate Early (IE), Early (E) and Late (L) genes appear to have a similar density of nucleosomes. PMID:25710170

  5. Genome wide nucleosome mapping for HSV-1 shows nucleosomes are deposited at preferred positions during lytic infection.

    PubMed

    Oh, Jaewook; Sanders, Iryna F; Chen, Eric Z; Li, Hongzhe; Tobias, John W; Isett, R Benjamin; Penubarthi, Sindura; Sun, Hao; Baldwin, Don A; Fraser, Nigel W

    2015-01-01

    HSV is a large double stranded DNA virus, capable of causing a variety of diseases from the common cold sore to devastating encephalitis. Although DNA within the HSV virion does not contain any histone protein, within 1 h of infecting a cell and entering its nucleus the viral genome acquires some histone protein (nucleosomes). During lytic infection, partial micrococcal nuclease (MNase) digestion does not give the classic ladder band pattern, seen on digestion of cell DNA or latent viral DNA. However, complete digestion does give a mono-nucleosome band, strongly suggesting that there are some nucleosomes present on the viral genome during the lytic infection, but that they are not evenly positioned, with a 200 bp repeat pattern, like cell DNA. Where then are the nucleosomes positioned? Here we perform HSV-1 genome wide nucleosome mapping, at a time when viral replication is in full swing (6 hr PI), using a microarray consisting of 50mer oligonucleotides, covering the whole viral genome (152 kb). Arrays were probed with MNase-protected fragments of DNA from infected cells. Cells were not treated with crosslinking agents, thus we are only mapping tightly bound nucleosomes. The data show that nucleosome deposition is not random. The distribution of signal on the arrays suggest that nucleosomes are located at preferred positions on the genome, and that there are some positions that are not occupied (nucleosome free regions -NFR or Nucleosome depleted regions -NDR), or occupied at frequency below our limit of detection in the population of genomes. Occupancy of only a fraction of the possible sites may explain the lack of a typical MNase partial digestion band ladder pattern for HSV DNA during lytic infection. On average, DNA encoding Immediate Early (IE), Early (E) and Late (L) genes appear to have a similar density of nucleosomes. PMID:25710170

  6. Training-free atomistic prediction of nucleosome occupancy.

    PubMed

    Minary, Peter; Levitt, Michael

    2014-04-29

    Nucleosomes alter gene expression by preventing transcription factors from occupying binding sites along DNA. DNA methylation can affect nucleosome positioning and so alter gene expression epigenetically (without changing DNA sequence). Conventional methods to predict nucleosome occupancy are trained on observed DNA sequence patterns or known DNA oligonucleotide structures. They are statistical and lack the physics needed to predict subtle epigenetic changes due to DNA methylation. The training-free method presented here uses physical principles and state-of-the-art all-atom force fields to predict both nucleosome occupancy along genomic sequences as well as binding to known positioning sequences. Our method calculates the energy of both nucleosomal and linear DNA of the given sequence. Based on the DNA deformation energy, we accurately predict the in vitro occupancy profile observed experimentally for a 20,000-bp genomic region as well as the experimental locations of nucleosomes along 13 well-established positioning sequence elements. DNA with all C bases methylated at the 5 position shows less variation of nucleosome binding: Strong binding is weakened and weak binding is strengthened compared with normal DNA. Methylation also alters the preference of nucleosomes for some positioning sequences but not others. PMID:24733939

  7. Rigid-body molecular dynamics of DNA inside a nucleosome.

    PubMed

    Fathizadeh, Arman; Berdy Besya, Azim; Reza Ejtehadi, Mohammad; Schiessel, Helmut

    2013-03-01

    The majority of eukaryotic DNA, about three quarter, is wrapped around histone proteins forming so-called nucleosomes. To study nucleosomal DNA we introduce a coarse-grained molecular dynamics model based on sequence-dependent harmonic rigid base pair step parameters of DNA and nucleosomal binding sites. Mixed parametrization based on all-atom molecular dynamics and crystallographic data of protein-DNA structures is used for the base pair step parameters. The binding site parameters are adjusted by experimental B-factor values of the nucleosome crystal structure. The model is then used to determine the energy cost for placing a twist defect into the nucleosomal DNA which allows us to use Kramers theory to calculate nucleosome sliding caused by such defects. It is shown that the twist defect scenario together with the sequence-dependent elasticity of DNA can explain the slow time scales observed for nucleosome mobility along DNA. With this method we also show how the twist defect mechanism leads to a higher mobility of DNA in the presence of sin mutations near the dyad axis. Finally, by performing simulations on 5s rDNA, 601, and telomeric base pair sequences, it is demonstrated that the current model is a powerful tool to predict nucleosome positioning. PMID:23475204

  8. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells.

    PubMed

    Dalal, Yamini; Wang, Hongda; Lindsay, Stuart; Henikoff, Steven

    2007-08-01

    Centromeres, the specialized chromatin structures that are responsible for equal segregation of chromosomes at mitosis, are epigenetically maintained by a centromere-specific histone H3 variant (CenH3). However, the mechanistic basis for centromere maintenance is unknown. We investigated biochemical properties of CenH3 nucleosomes from Drosophila melanogaster cells. Cross-linking of CenH3 nucleosomes identifies heterotypic tetramers containing one copy of CenH3, H2A, H2B, and H4 each. Interphase CenH3 particles display a stable association of approximately 120 DNA base pairs. Purified centromeric nucleosomal arrays have typical "beads-on-a-string" appearance by electron microscopy but appear to resist condensation under physiological conditions. Atomic force microscopy reveals that native CenH3-containing nucleosomes are only half as high as canonical octameric nucleosomes are, confirming that the tetrameric structure detected by cross-linking comprises the entire interphase nucleosome particle. This demonstration of stable half-nucleosomes in vivo provides a possible basis for the instability of centromeric nucleosomes that are deposited in euchromatic regions, which might help maintain centromere identity. PMID:17676993

  9. Octamer displacement and redistribution in transcription of single nucleosomes.

    PubMed Central

    O'Donohue, M F; Duband-Goulet, I; Hamiche, A; Prunell, A

    1994-01-01

    Single nucleosomes were assembled on a 357bp DNA fragment containing a 5S RNA gene from sea urchin and a promoter for SP6 RNA polymerase, and were fractionated as a function of their positions by gel electrophoresis. Transcribed nucleosome positions were detected by observing band disappearance in gels, which in turn provided evidence for the displacement of the histone octamer upon transcription. Differential band disappearance showed that nucleosomes closer to the promoter were harder to transcribe, and transcription was blocked when the nucleosome proximal boundary was at the start site. Nucleosomes located at discrete positions were also eluted from the gel bands and transcribed. In this case, new bands appeared as a consequence of octamer redistribution. Such redistribution occurred over all untranscribed positions, as well as over transcribed positions close enough to the promoter. Similar conclusions were derived from another previously investigated fragment containing a Xenopus 5S RNA gene. Images PMID:8152924

  10. Modeling the dynamics of the nucleosome at various levels.

    NASA Astrophysics Data System (ADS)

    Onufriev, Alexey; Fenley, Andrew; Zmuda-Ruscio, Jory; Adams, David

    2007-03-01

    The primary level of DNA compaction in eukaryotic organisms is the nucleosome, yet details of its dynamics are not fully understood. While the whole nucleosome must be highly stable, protective of its genetic material, at the same time its tightly wrapped DNA should be highly accessible, easily revealing its information content. A combination of atom-level classical molecular dynamics and a course-grained continuum description provide insights into the functioning of the system. In particular, the nucleosomal DNA appears to be considerably more flexible than what can be expected based on its canonical persistence length. A coarse-grained electrostatic model of the nucleosome explains how its stability can be modulated with small environmental changes as well as post-translational modifications. Implications for the nucleosome assembly process in vivo are discussed.

  11. Transfer of nucleosomes from parental to replicated chromatin.

    PubMed Central

    Krude, T; Knippers, R

    1991-01-01

    Simian virus 40 (SV40) minichromosomes were used as the substrate for in vitro replication. Protein-free SV40 DNA or plasmids, carrying the SV40 origin of replication, served as controls. Replicated minichromosomal DNA possessed constrained negative superhelicity indicative of the presence of nucleosomes. The topological state of replicated minichromosomal DNA was precisely determined by two-dimensional gel electrophoresis. We show that most or all nucleosomes, present on the replicated minichromosomal DNA, were derived from the parental minichromosome substrate. The mode and the rate of nucleosome transfer from parental to minichromosomal daughter DNA were not influenced by high concentrations of competing replicating and nonreplicating protein-free DNA, indicating that nucleosomes remain associated with DNA during the replication process. The data also show that parental nucleosomes were segregated to the replicated daughter DNA strands in a dispersive manner. Images PMID:1658628

  12. 75 FR 4375 - Transmission Loading Relief Reliability Standard and Curtailment Priorities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... before firm transmission services, and firm point-to-point and network integration transmission service... Transmission Provider will curtail service to Network Customers and Transmission Customers taking Firm Point-To-Point Transmission Service on a basis comparable to the curtailment of service to the...

  13. Statistical physics of nucleosome positioning and chromatin structure

    NASA Astrophysics Data System (ADS)

    Morozov, Alexandre

    2012-02-01

    Genomic DNA is packaged into chromatin in eukaryotic cells. The fundamental building block of chromatin is the nucleosome, a 147 bp-long DNA molecule wrapped around the surface of a histone octamer. Arrays of nucleosomes are positioned along DNA according to their sequence preferences and folded into higher-order chromatin fibers whose structure is poorly understood. We have developed a framework for predicting sequence-specific histone-DNA interactions and the effective two-body potential responsible for ordering nucleosomes into regular higher-order structures. Our approach is based on the analogy between nucleosomal arrays and a one-dimensional fluid of finite-size particles with nearest-neighbor interactions. We derive simple rules which allow us to predict nucleosome occupancy solely from the dinucleotide content of the underlying DNA sequences.Dinucleotide content determines the degree of stiffness of the DNA polymer and thus defines its ability to bend into the nucleosomal superhelix. As expected, the nucleosome positioning rules are universal for chromatin assembled in vitro on genomic DNA from baker's yeast and from the nematode worm C.elegans, where nucleosome placement follows intrinsic sequence preferences and steric exclusion. However, the positioning rules inferred from in vivo C.elegans chromatin are affected by global nucleosome depletion from chromosome arms relative to central domains, likely caused by the attachment of the chromosome arms to the nuclear membrane. Furthermore, intrinsic nucleosome positioning rules are overwritten in transcribed regions, indicating that chromatin organization is actively managed by the transcriptional and splicing machinery.

  14. The structural plasticity of SCA7 domains defines their differential nucleosome-binding properties

    PubMed Central

    Bonnet, Jacques; Wang, Ying-Hui; Spedale, Gianpiero; Atkinson, R Andrew; Romier, Christophe; Hamiche, Ali; Pijnappel, W W M Pim; Timmers, H Th Marc; Tora, László; Devys, Didier; Kieffer, Bruno

    2010-01-01

    SAGA (Spt–Ada–Gcn5 acetyltransferase), a coactivator complex involved in chromatin remodelling, harbours both histone acetylation and deubiquitination activities. ATXN7/Sgf73 and ATXN7L3, two subunits of the SAGA deubiquitination module, contain an SCA7 domain characterized by an atypical zinc-finger. We show that the yeast Sgf73–SCA7 domain is not required to recruit Sgf73 into SAGA. Instead, it binds to nucleosomes, a property that is conserved in the human ATXN7–SCA7 domain but is lost in the ATXN7L3 domain. The solution structures of the SCA7 domain of both ATXN7 and ATXN7L3 reveal a new, common zinc-finger motif at the heart of two distinct folds, providing a molecular basis for the observed functional differences. PMID:20634802

  15. Regulatory analysis for review and establishment of natural gas curtailment priorities. Volume 1

    SciTech Connect

    1980-05-01

    This report discusses important differences among alternatives for establishing natural gas curtailment priorities to deal with long-run supply shortages and short-run capacity shortages. Results from surveys and simulation of shortage costs for each alternative curtailment plan produced and major findings that are directly relevant for considering possible changes in the present curtailment system are discussed. This volume should be used to identify basic alternatives, to review findings which can guide review of any proposed policy change, and to gain a basic understanding of how curtailment alternatives were evaluated. This volume is sufficient for gaining an overall understanding of the effect that natural gas curtailment can have on both users and suppliers.

  16. Single-cell nucleosome mapping reveals the molecular basis of gene expression heterogeneity

    PubMed Central

    Small, Eliza C.; Xi, Liqun; Wang, Ji-Ping; Widom, Jonathan; Licht, Jonathan D.

    2014-01-01

    Nucleosomes, the basic unit of chromatin, have a critical role in the control of gene expression. Nucleosome positions have generally been determined by examining bulk populations of cells and then correlated with overall gene expression. Here, we describe a technique to determine nucleosome positioning in single cells by virtue of the ability of the nucleosome to protect DNA from GpC methylation. In the acid phosphatase inducible PHO5 gene, we find that there is significant cell-to-cell variation in nucleosome positions and shifts in nucleosome positioning correlate with changes in gene expression. However, nucleosome positioning is not absolute, and even with major shifts in gene expression, some cells fail to change nucleosome configuration. Mutations of the PHO5 promoter that introduce a poly(dA:dT) tract-stimulated gene expression under nonpermissive conditions led to shifts of positioned nucleosomes similar to induction of PHO5. By contrast, mutations that altered AA/TT/AT periodicity reduced gene expression upon PHO5 induction and stabilized nucleosomes in most cells, suggesting that enhanced nucleosome affinity for DNA antagonizes chromatin remodelers. Finally, we determined nucleosome positioning in two regions described as “fuzzy” or nucleosome-free when examined in a bulk assay. These regions consisted of distinct nucleosomes with a larger footprint for potential location and an increase population of cells lacking a nucleosome altogether. These data indicate an underlying complexity of nucleosome positioning that may contribute to the flexibility and heterogeneity of gene expression. PMID:24889621

  17. Histone acetylation: from code to web and router via intrinsically disordered regions.

    PubMed

    Horikoshi, Masami

    2013-01-01

    Structural changes of chromatin, which consists of nucleosomes and nucleosome-associated factors, lead to functional changes that are important determinants of eukaryotic gene regulation. These structural changes are regulated by modifications of histones and DNA, both of which are components of nucleosomes, as well as by replacement of histone variants and the actions of noncoding RNAs. In studies of chromatin modifications, a great deal of attention has been paid to histone acetylation. Progress in understanding this subject has been extensive, including i) elucidation of the relationship of histone acetylation and gene activity; ii) the first isolation of a histonemodifying enzyme; iii) the first identification of a factor that recognizes a modified site; iv) elucidation of the mechanism by which histone modification leads to structural changes in nucleosomes; and v) elucidation of the mechanism of border formation between euchromatin and heterochromatin. Histone acetylation is considered to be fundamental in several fields, including studies of a) the role of chromatin and epigenetics in higher-order biochemical systems such as transcription, DNA replication, and repair; b) biological phenomena such as cell proliferation and differentiation; and c) cancer and aging, potentially leading to clinical applications. In this review, I will discuss the histone code hypothesis, at one time believed to represent a unified theory regarding the functions of histone modification. In addition, I will describe the "modification web theory, " by which the problems in the histone code hypothesis can be overcome, as well as the "signal router theory, " which explains the mechanisms of formation, development, and evolution of the modification web from a structural viewpoint. Lastly, I will illustrate how these novel theories partially explain the robustness of biological systems against various perturbations, and elucidate the strategy that a cell employs to avoid fatal

  18. Evaluating the effectiveness of localized control strategies to curtail chikungunya

    PubMed Central

    Ndeffo-Mbah, Martial L.; Durham, David P.; Skrip, Laura A.; Nsoesie, Elaine O.; Brownstein, John S.; Fish, Durland; Galvani, Alison P.

    2016-01-01

    Chikungunya, a re-emerging arbovirus transmitted to humans by Aedes aegypti and Ae. albopictus mosquitoes, causes debilitating disease characterized by an acute febrile phase and chronic joint pain. Chikungunya has recently spread to the island of St. Martin and subsequently throughout the Americas. The disease is now affecting 42 countries and territories throughout the Americas. While chikungunya is mainly a tropical disease, the recent introduction and subsequent spread of Ae. albopictus into temperate regions has increased the threat of chikungunya outbreaks beyond the tropics. Given that there are currently no vaccines or treatments for chikungunya, vector control remains the primary measure to curtail transmission. To investigate the effectiveness of a containment strategy that combines disease surveillance, localized vector control and transmission reduction measures, we developed a model of chikungunya transmission dynamics within a large residential neighborhood, explicitly accounting for human and mosquito movement. Our findings indicate that prompt targeted vector control efforts combined with measures to reduce transmission from symptomatic cases to mosquitoes may be highly effective approaches for controlling outbreaks of chikungunya, provided that sufficient detection of chikungunya cases can be achieved. PMID:27045523

  19. Changes in taste preference and steps taken after sleep curtailment.

    PubMed

    Smith, Shannon L; Ludy, Mary-Jon; Tucker, Robin M

    2016-09-01

    A substantial proportion of the population does not achieve the recommended amount of sleep. Previous work demonstrates that sleep alterations perturb energy balance by disrupting appetite hormones, increasing energy intake, and decreasing physical activity. This study explored the influence of sleep duration on taste perception as well as effects on dietary intake and physical activity. Participants (n=24 habitual short sleepers and n=27 habitual long sleepers, 82.4% female, 88.2% white, 25.2±7.7years) completed two randomized taste visits; one following short sleep duration (≤7h) and one following long sleep duration (>7h). Taste perception measures included sweet and salt detection thresholds (ascending 3-alternative, forced-choice method), as well as sweet preference (Monell 2-series, forced-choice, paired-comparison, tracking method). Steps and sleep were tracked via FitBit, an activity monitoring device. Dietary intake was assessed using 24-hour recalls and analyzed using Nutritionist Pro. Habitual long-sleepers had a higher sweet taste preference (p=0.042) and took fewer steps (p=0.036) following sleep curtailment compared to the night where they slept >7h but did not experience changes in dietary intake or detection thresholds. Habitual short-sleepers did not experience changes in taste perception, activity, or dietary intake following sleep alteration. Habitual long-sleepers may be at greater risk of gaining weight when typical sleep patterns are disrupted. PMID:27184237

  20. Nucleosome positioning by genomic excluding-energy barriers.

    PubMed

    Milani, Pascale; Chevereau, Guillaume; Vaillant, Cédric; Audit, Benjamin; Haftek-Terreau, Zofia; Marilley, Monique; Bouvet, Philippe; Argoul, Françoise; Arneodo, Alain

    2009-12-29

    Recent genome-wide nucleosome mappings along with bioinformatics studies have confirmed that the DNA sequence plays a more important role in the collective organization of nucleosomes in vivo than previously thought. Yet in living cells, this organization also results from the action of various external factors like DNA-binding proteins and chromatin remodelers. To decipher the code for intrinsic chromatin organization, there is thus a need for in vitro experiments to bridge the gap between computational models of nucleosome sequence preferences and in vivo nucleosome occupancy data. Here we combine atomic force microscopy in liquid and theoretical modeling to demonstrate that a major sequence signaling in vivo are high-energy barriers that locally inhibit nucleosome formation rather than favorable positioning motifs. We show that these genomic excluding-energy barriers condition the collective assembly of neighboring nucleosomes consistently with equilibrium statistical ordering principles. The analysis of two gene promoter regions in Saccharomyces cerevisiae and the human genome indicates that these genomic barriers direct the intrinsic nucleosome occupancy of regulatory sites, thereby contributing to gene expression regulation. PMID:20018700

  1. Nucleosome positioning changes during human embryonic stem cell differentiation.

    PubMed

    Zhang, Wenjuan; Li, Yaping; Kulik, Michael; Tiedemann, Rochelle L; Robertson, Keith D; Dalton, Stephen; Zhao, Shaying

    2016-06-01

    Nucleosomes are the basic unit of chromatin. Nucleosome positioning (NP) plays a key role in transcriptional regulation and other biological processes. To better understand NP we used MNase-seq to investigate changes that occur as human embryonic stem cells (hESCs) transition to nascent mesoderm and then to smooth muscle cells (SMCs). Compared to differentiated cell derivatives, nucleosome occupancy at promoters and other notable genic sites, such as exon/intron junctions and adjacent regions, in hESCs shows a stronger correlation with transcript abundance and is less influenced by sequence content. Upon hESC differentiation, genes being silenced, but not genes being activated, display a substantial change in nucleosome occupancy at their promoters. Genome-wide, we detected a shift of NP to regions of higher G+C content as hESCs differentiate to SMCs. Notably, genomic regions with higher nucleosome occupancy harbor twice as many G↔C changes but fewer than half A↔T changes, compared to regions with lower nucleosome occupancy. Finally, our analysis indicates that the hESC genome is not rearranged and has a sequence mutation rate resembling normal human genomes. Our study reveals another unique feature of hESC chromatin, and sheds light on the relationship between nucleosome occupancy and sequence G+C content. PMID:27088311

  2. Sequence structure of Lowary/Widom clones forming strong nucleosomes.

    PubMed

    Trifonov, Edward N

    2016-04-01

    Lowary and Widom selected from random sequences those which form exceptionally stable nucleosomes, including clone 601, the current champion of strong nucleosome (SN) sequences. This unique sequence database (LW sequences) carries sequence elements which confer stability on the nucleosomes formed on the sequences, and, thus, may serve as source of information on the structure of "ideal" or close to ideal nucleosome DNA sequence. An important clue is also provided by crystallographic study of Vasudevan and coauthors on clone 601 nucleosomes. It demonstrated that YR·YR dinucleotide stacks (primarily TA·TA) follow one another at distances 10 or 11 bases or multiples thereof, such that they all are located on the interface between DNA and histone octamer. Combining this important information with alignment of the YR-containing 10-mers and 11-mers from LW sequences, the bendability matrices of the stable nucleosome DNA are derived. The matrices suggest that the periodically repeated TA (YR), RR, and YY dinucleotides are the main sequence features of the SNs. This consensus coincides with the one for recently discovered SNs with visibly periodic DNA sequences. Thus, the experimentally observed stable LW nucleosomes and SNs derived computationally appear to represent the same entity - exceptionally stable SNs. PMID:26208855

  3. Probing Nucleosome Remodeling by Unzipping Single DNA Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Michelle

    2006-03-01

    At the core of eukaryotic chromatin is the nucleosome, which consists of 147 bp of DNA wrapped 1.65 turns around an octamer of histone proteins. Even this lowest level of genomic compaction presents a strong barrier to DNA-binding cellular factors that are required for essential processes such as transcription, DNA replication, recombination and repair. Chromatin remodeling enzymes use the energy of ATP hydrolysis to regulate accessibility of the genetic code by altering chromatin structure. While remodeling enzymes have been the subject of extensive research in recent years, their precise mechanism remains unclear. In order to probe the structure of individual nucleosomes and their remodeling, we assembled a histone octamer onto a DNA segment containing a strong nucleosome positioning sequence. As the DNA double helix was unzipped through the nucleosome using a feedback-enhanced optical trap, the presence of the nucleosome was detected as a series of dramatic increases in the tension in the DNA, followed by sudden tension reductions. Analysis of the unzipping force throughout the disruption accurately revealed the spatial location and fine structure of the nucleosome to near base pair precision. Using this approach, we investigate how remodeling enzymes may alter the location and structure of a nucleosome.

  4. Predicting Nucleosome Positioning Based on Geometrically Transformed Tsallis Entropy

    PubMed Central

    Wu, Jing; Zhang, Yusen; Mu, Zengchao

    2014-01-01

    As the fundamental unit of eukaryotic chromatin structure, nucleosome plays critical roles in gene expression and regulation by controlling physical access to transcription factors. In this paper, based on the geometrically transformed Tsallis entropy and two index-vectors, a valid nucleosome positioning information model is developed to describe the distribution of A/T-riched and G/C-riched dimeric and trimeric motifs along the DNA duplex. When applied to train the support vector machine, the model achieves high AUCs across five organisms, which have significantly outperformed the previous studies. Besides, we adopt the concept of relative distance to describe the probability of arbitrary DNA sequence covered by nucleosome. Thus, the average nucleosome occupancy profile over the S.cerevisiae genome is calculated. With our peak detection model, the isolated nucleosomes along genome sequence are located. When compared with some published results, it shows that our model is effective for nucleosome positioning. The index-vector component is identified to be an important influencing factor of nucleosome organizations. PMID:25380134

  5. DPNuc: Identifying Nucleosome Positions Based on the Dirichlet Process Mixture Model.

    PubMed

    Chen, Huidong; Guan, Jihong; Zhou, Shuigeng

    2015-01-01

    Nucleosomes and the free linker DNA between them assemble the chromatin. Nucleosome positioning plays an important role in gene transcription regulation, DNA replication and repair, alternative splicing, and so on. With the rapid development of ChIP-seq, it is possible to computationally detect the positions of nucleosomes on chromosomes. However, existing methods cannot provide accurate and detailed information about the detected nucleosomes, especially for the nucleosomes with complex configurations where overlaps and noise exist. Meanwhile, they usually require some prior knowledge of nucleosomes as input, such as the size or the number of the unknown nucleosomes, which may significantly influence the detection results. In this paper, we propose a novel approach DPNuc for identifying nucleosome positions based on the Dirichlet process mixture model. In our method, Markov chain Monte Carlo (MCMC) simulations are employed to determine the mixture model with no need of prior knowledge about nucleosomes. Compared with three existing methods, our approach can provide more detailed information of the detected nucleosomes and can more reasonably reveal the real configurations of the chromosomes; especially, our approach performs better in the complex overlapping situations. By mapping the detected nucleosomes to a synthetic benchmark nucleosome map and two existing benchmark nucleosome maps, it is shown that our approach achieves a better performance in identifying nucleosome positions and gets a higher F-score. Finally, we show that our approach can more reliably detect the size distribution of nucleosomes. PMID:26671796

  6. Multiscale modelling of nucleosome core particle aggregation

    NASA Astrophysics Data System (ADS)

    Lyubartsev, Alexander P.; Korolev, Nikolay; Fan, Yanping; Nordenskiöld, Lars

    2015-02-01

    The nucleosome core particle (NCP) is the basic building block of chromatin. Under the influence of multivalent cations, isolated mononucleosomes exhibit a rich phase behaviour forming various columnar phases with characteristic NCP-NCP stacking. NCP stacking is also a regular element of chromatin structure in vivo. Understanding the mechanism of nucleosome stacking and the conditions leading to self-assembly of NCPs is still incomplete. Due to the complexity of the system and the need to describe electrostatics properly by including the explicit mobile ions, novel modelling approaches based on coarse-grained (CG) methods at the multiscale level becomes a necessity. In this work we present a multiscale CG computer simulation approach to modelling interactions and self-assembly of solutions of NCPs induced by the presence of multivalent cations. Starting from continuum simulations including explicit three-valent cobalt(III)hexammine (CoHex3+) counterions and 20 NCPs, based on a previously developed advanced CG NCP model with one bead per amino acid and five beads per two DNA base pair unit (Fan et al 2013 PLoS One 8 e54228), we use the inverse Monte Carlo method to calculate effective interaction potentials for a ‘super-CG’ NCP model consisting of seven beads for each NCP. These interaction potentials are used in large-scale simulations of up to 5000 NCPs, modelling self-assembly induced by CoHex3+. The systems of ‘super-CG’ NCPs form a single large cluster of stacked NCPs without long-range order in agreement with experimental data for NCPs precipitated by the three-valent polyamine, spermidine3+.

  7. Single-molecule decoding of combinatorially modified nucleosomes.

    PubMed

    Shema, Efrat; Jones, Daniel; Shoresh, Noam; Donohue, Laura; Ram, Oren; Bernstein, Bradley E

    2016-05-01

    Different combinations of histone modifications have been proposed to signal distinct gene regulatory functions, but this area is poorly addressed by existing technologies. We applied high-throughput single-molecule imaging to decode combinatorial modifications on millions of individual nucleosomes from pluripotent stem cells and lineage-committed cells. We identified definitively bivalent nucleosomes with concomitant repressive and activating marks, as well as other combinatorial modification states whose prevalence varies with developmental potency. We showed that genetic and chemical perturbations of chromatin enzymes preferentially affect nucleosomes harboring specific modification states. Last, we combined this proteomic platform with single-molecule DNA sequencing technology to simultaneously determine the modification states and genomic positions of individual nucleosomes. This single-molecule technology has the potential to address fundamental questions in chromatin biology and epigenetic regulation. PMID:27151869

  8. Multiplexing Genetic and Nucleosome Positioning Codes: A Computational Approach.

    PubMed

    Eslami-Mossallam, Behrouz; Schram, Raoul D; Tompitak, Marco; van Noort, John; Schiessel, Helmut

    2016-01-01

    Eukaryotic DNA is strongly bent inside fundamental packaging units: the nucleosomes. It is known that their positions are strongly influenced by the mechanical properties of the underlying DNA sequence. Here we discuss the possibility that these mechanical properties and the concomitant nucleosome positions are not just a side product of the given DNA sequence, e.g. that of the genes, but that a mechanical evolution of DNA molecules might have taken place. We first demonstrate the possibility of multiplexing classical and mechanical genetic information using a computational nucleosome model. In a second step we give evidence for genome-wide multiplexing in Saccharomyces cerevisiae and Schizosacharomyces pombe. This suggests that the exact positions of nucleosomes play crucial roles in chromatin function. PMID:27272176

  9. Multiplexing Genetic and Nucleosome Positioning Codes: A Computational Approach

    PubMed Central

    Eslami-Mossallam, Behrouz; Schram, Raoul D.; Tompitak, Marco; van Noort, John; Schiessel, Helmut

    2016-01-01

    Eukaryotic DNA is strongly bent inside fundamental packaging units: the nucleosomes. It is known that their positions are strongly influenced by the mechanical properties of the underlying DNA sequence. Here we discuss the possibility that these mechanical properties and the concomitant nucleosome positions are not just a side product of the given DNA sequence, e.g. that of the genes, but that a mechanical evolution of DNA molecules might have taken place. We first demonstrate the possibility of multiplexing classical and mechanical genetic information using a computational nucleosome model. In a second step we give evidence for genome-wide multiplexing in Saccharomyces cerevisiae and Schizosacharomyces pombe. This suggests that the exact positions of nucleosomes play crucial roles in chromatin function. PMID:27272176

  10. DNA damage may drive nucleosomal reorganization to facilitate damage detection

    NASA Astrophysics Data System (ADS)

    LeGresley, Sarah E.; Wilt, Jamie; Antonik, Matthew

    2014-03-01

    One issue in genome maintenance is how DNA repair proteins find lesions at rates that seem to exceed diffusion-limited search rates. We propose a phenomenon where DNA damage induces nucleosomal rearrangements which move lesions to potential rendezvous points in the chromatin structure. These rendezvous points are the dyad and the linker DNA between histones, positions in the chromatin which are more likely to be accessible by repair proteins engaged in a random search. The feasibility of this mechanism is tested by considering the statistical mechanics of DNA containing a single lesion wrapped onto the nucleosome. We consider lesions which make the DNA either more flexible or more rigid by modeling the lesion as either a decrease or an increase in the bending energy. We include this energy in a partition function model of nucleosome breathing. Our results indicate that the steady state for a breathing nucleosome will most likely position the lesion at the dyad or in the linker, depending on the energy of the lesion. A role for DNA binding proteins and chromatin remodelers is suggested based on their ability to alter the mechanical properties of the DNA and DNA-histone binding, respectively. We speculate that these positions around the nucleosome potentially serve as rendezvous points where DNA lesions may be encountered by repair proteins which may be sterically hindered from searching the rest of the nucleosomal DNA. The strength of the repositioning is strongly dependent on the structural details of the DNA lesion and the wrapping and breathing of the nucleosome. A more sophisticated evaluation of this proposed mechanism will require detailed information about breathing dynamics, the structure of partially wrapped nucleosomes, and the structural properties of damaged DNA.

  11. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility.

    PubMed

    Ngo, Thuy T M; Zhang, Qiucen; Zhou, Ruobo; Yodh, Jaya G; Ha, Taekjip

    2015-03-12

    Dynamics of the nucleosome and exposure of nucleosomal DNA play key roles in many nuclear processes, but local dynamics of the nucleosome and its modulation by DNA sequence are poorly understood. Using single-molecule assays, we observed that the nucleosome can unwrap asymmetrically and directionally under force. The relative DNA flexibility of the inner quarters of nucleosomal DNA controls the unwrapping direction such that the nucleosome unwraps from the stiffer side. If the DNA flexibility is similar on two sides, it stochastically unwraps from either side. The two ends of the nucleosome are orchestrated such that the opening of one end helps to stabilize the other end, providing a mechanism to amplify even small differences in flexibility to a large asymmetry in nucleosome stability. Our discovery of DNA flexibility as a critical factor for nucleosome dynamics and mechanical stability suggests a novel mechanism of gene regulation by DNA sequence and modifications. PMID:25768909

  12. Asymmetric Unwrapping of Nucleosomes under Tension Directed by DNA Local Flexibility

    PubMed Central

    Ngo, Thuy T. M.; Zhang, Qiucen; Zhou, Ruobo

    2015-01-01

    Summary Dynamics of the nucleosome and exposure of nucleosomal DNA play key roles in many nuclear processes but local dynamics of the nucleosome and its modulation by DNA sequence are poorly understood. Using single-molecule assays we observed that the nucleosome can unwrap asymmetrically and directionally under force. The relative DNA flexibility of the inner quarters of nucleosomal DNA controls the unwrapping direction such that the nucleosome unwraps from the stiffer side. If the DNA flexibility is similar on two sides, it stochastically unwraps from either side. The two ends of the nucleosome are orchestrated such that the opening of one end helps to stabilize the other end, providing a mechanism to amplify even small differences in flexibility to a large asymmetry in nucleosome stability. Our discovery of DNA flexibility as a critical factor for nucleosome dynamics and mechanical stability suggests a novel mechanism of gene regulation by DNA sequence and modifications. PMID:25768909

  13. Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions

    PubMed Central

    Lorch, Yahli; Maier-Davis, Barbara; Kornberg, Roger D.

    2014-01-01

    AT-rich DNA is concentrated in the nucleosome-free regions (NFRs) associated with transcription start sites of most genes. We tested the hypothesis that AT-rich DNA engenders NFR formation by virtue of its rigidity and consequent exclusion of nucleosomes. We found that the AT-rich sequences present in many NFRs have little effect on the stability of nucleosomes. Rather, these sequences facilitate the removal of nucleosomes by the RSC chromatin remodeling complex. RSC activity is stimulated by AT-rich sequences in nucleosomes and inhibited by competition with AT-rich DNA. RSC may remove NFR nucleosomes without effect on adjacent ORF nucleosomes. Our findings suggest that many NFRs are formed and maintained by an active mechanism involving the ATP-dependent removal of nucleosomes rather than a passive mechanism due to the intrinsic instability of nucleosomes on AT-rich DNA sequences. PMID:25403179

  14. Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions.

    PubMed

    Lorch, Yahli; Maier-Davis, Barbara; Kornberg, Roger D

    2014-11-15

    AT-rich DNA is concentrated in the nucleosome-free regions (NFRs) associated with transcription start sites of most genes. We tested the hypothesis that AT-rich DNA engenders NFR formation by virtue of its rigidity and consequent exclusion of nucleosomes. We found that the AT-rich sequences present in many NFRs have little effect on the stability of nucleosomes. Rather, these sequences facilitate the removal of nucleosomes by the RSC chromatin remodeling complex. RSC activity is stimulated by AT-rich sequences in nucleosomes and inhibited by competition with AT-rich DNA. RSC may remove NFR nucleosomes without effect on adjacent ORF nucleosomes. Our findings suggest that many NFRs are formed and maintained by an active mechanism involving the ATP-dependent removal of nucleosomes rather than a passive mechanism due to the intrinsic instability of nucleosomes on AT-rich DNA sequences. PMID:25403179

  15. 41 CFR 101-39.105 - Discontinuance or curtailment of service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105 Discontinuance or curtailment of service....

  16. Nucleosome alterations caused by mutations at modifiable histone residues in Saccharomyces cerevisiae

    PubMed Central

    Liu, Hongde; Wang, Pingyan; Liu, Lingjie; Min, Zhu; Luo, Kun; Wan, Yakun

    2015-01-01

    Nucleosome organization exhibits dynamic properties depending on the cell state and environment. Histone proteins, fundamental components of nucleosomes, are subject to chemical modifications on particular residues. We examined the effect of substituting modifiable residues of four core histones with the non-modifiable residue alanine on nucleosome dynamics. We mapped the genome-wide nucleosomes in 22 histone mutants of Saccharomyces cerevisiae and compared the nucleosome alterations relative to the wild-type strain. Our results indicated that different types of histone mutation resulted in different phenotypes and a distinct reorganization of nucleosomes. Nucleosome occupancy was altered at telomeres, but not at centromeres. The first nucleosomes upstream (−1) and downstream (+1) of the transcription start site (TSS) were more dynamic than other nucleosomes. Mutations in histones affected the nucleosome array downstream of the TSS. Highly expressed genes, such as ribosome genes and genes involved in glycolysis, showed increased nucleosome occupancy in many types of histone mutant. In particular, the H3K56A mutant exhibited a high percentage of dynamic genomic regions, decreased nucleosome occupancy at telomeres, increased occupancy at the +1 and −1 nucleosomes, and a slow growth phenotype under stress conditions. Our findings provide insight into the influence of histone mutations on nucleosome dynamics. PMID:26498326

  17. Nucleosomes determine their own patch size in base excision repair

    PubMed Central

    Meas, Rithy; Smerdon, Michael J.

    2016-01-01

    Base excision repair (BER) processes non-helix distorting lesions (e.g., uracils and gaps) and is composed of two subpathways that differ in the number of nucleotides (nts) incorporated during the DNA synthesis step: short patch (SP) repair incorporates 1 nt and long patch (LP) repair incorporates 2–12 nts. This choice for either LP or SP repair has not been analyzed in the context of nucleosomes. Initial studies with uracil located in nucleosome core DNA showed a distinct DNA polymerase extension profile in cell-free extracts that specifically limits extension to 1 nt, suggesting a preference for SP BER. Therefore, we developed an assay to differentiate long and short repair patches in ‘designed’ nucleosomes containing a single-nucleotide gap at specific locations relative to the dyad center. Using cell-free extracts or purified enzymes, we found that DNA lesions in the nucleosome core are preferentially repaired by DNA polymerase β and there is a significant reduction in BER polymerase extension beyond 1 nt, creating a striking bias for incorporation of short patches into nucleosomal DNA. These results show that nucleosomes control the patch size used by BER. PMID:27265863

  18. Nucleosomes determine their own patch size in base excision repair.

    PubMed

    Meas, Rithy; Smerdon, Michael J

    2016-01-01

    Base excision repair (BER) processes non-helix distorting lesions (e.g., uracils and gaps) and is composed of two subpathways that differ in the number of nucleotides (nts) incorporated during the DNA synthesis step: short patch (SP) repair incorporates 1 nt and long patch (LP) repair incorporates 2-12 nts. This choice for either LP or SP repair has not been analyzed in the context of nucleosomes. Initial studies with uracil located in nucleosome core DNA showed a distinct DNA polymerase extension profile in cell-free extracts that specifically limits extension to 1 nt, suggesting a preference for SP BER. Therefore, we developed an assay to differentiate long and short repair patches in 'designed' nucleosomes containing a single-nucleotide gap at specific locations relative to the dyad center. Using cell-free extracts or purified enzymes, we found that DNA lesions in the nucleosome core are preferentially repaired by DNA polymerase β and there is a significant reduction in BER polymerase extension beyond 1 nt, creating a striking bias for incorporation of short patches into nucleosomal DNA. These results show that nucleosomes control the patch size used by BER. PMID:27265863

  19. Comprehensive nucleosome mapping of the human genome in cancer progression

    PubMed Central

    Druliner, Brooke R.; Vera, Daniel; Johnson, Ruth; Ruan, Xiaoyang; Apone, Lynn M.; Dimalanta, Eileen T.; Stewart, Fiona J.; Boardman, Lisa; Dennis, Jonathan H.

    2016-01-01

    Altered chromatin structure is a hallmark of cancer, and inappropriate regulation of chromatin structure may represent the origin of transformation. Important studies have mapped human nucleosome distributions genome wide, but the role of chromatin structure in cancer progression has not been addressed. We developed a MNase-Transcription Start Site Sequence Capture method (mTSS-seq) to map the nucleosome distribution at human transcription start sites genome-wide in primary human lung and colon adenocarcinoma tissue. Here, we confirm that nucleosome redistribution is an early, widespread event in lung (LAC) and colon (CRC) adenocarcinoma. These altered nucleosome architectures are consistent between LAC and CRC patient samples indicating that they may serve as important early adenocarcinoma markers. We demonstrate that the nucleosome alterations are driven by the underlying DNA sequence and potentiate transcription factor binding. We conclude that DNA-directed nucleosome redistributions are widespread early in cancer progression. We have proposed an entirely new hierarchical model for chromatin-mediated genome regulation. PMID:26735342

  20. The universality of nucleosome organization: from yeast to human

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan

    The basic units of DNA packaging are called nucleosomes. Their locations on the chromosomes play an essential role in gene regulation. We study nucleosome positioning in yeast, fly, mouse, and human, and build biophysical models in order to explain the genome-wide nucleosome organization. We show that DNA sequence alone is not able to generate the phased arrays of nucleosomes observed in vivo near the transcription start sites. We discuss simple models which can account for the formation of nucleosome depleted regions and nucleosome phasing at the gene promoters. We show that the same principles apply to different organisms. References: [1] RV Chereji, D Tolkunov, G Locke, AV Morozov - Phys. Rev. E 83, 050903 (2011) [2] RV Chereji, AV Morozov - J. Stat. Phys. 144, 379 (2011) [3] RV Chereji, AV Morozov - Proc. Natl. Acad. Sci. U.S.A. 111, 5236 (2014) [4] RV Chereji, T-W Kan, et al. - Nucleic Acids Res. (2015) doi: 10.1093/nar/gkv978 [5] RV Chereji, AV Morozov - Brief. Funct. Genomics 14, 50 (2015) [6] HA Cole, J Ocampo, JR Iben, RV Chereji, DJ Clark - Nucleic Acids Res. 42, 12512 (2014) [7] D Ganguli, RV Chereji, J Iben, HA Cole, DJ Clark - Genome Res. 24, 1637 (2014)

  1. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function

    PubMed Central

    Isaac, R Stefan; Jiang, Fuguo; Doudna, Jennifer A; Lim, Wendell A; Narlikar, Geeta J; Almeida, Ricardo

    2016-01-01

    The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allow Cas9 to effectively act on chromatin in vivo. DOI: http://dx.doi.org/10.7554/eLife.13450.001 PMID:27130520

  2. Binding of NF-κB to Nucleosomes: Effect of Translational Positioning, Nucleosome Remodeling and Linker Histone H1

    PubMed Central

    Lone, Imtiaz Nisar; Shukla, Manu Shubhdarshan; Charles Richard, John Lalith; Peshev, Zahary Yordanov; Dimitrov, Stefan; Angelov, Dimitar

    2013-01-01

    NF-κB is a key transcription factor regulating the expression of inflammatory responsive genes. How NF-κB binds to naked DNA templates is well documented, but how it interacts with chromatin is far from being clear. Here we used a combination of UV laser footprinting, hydroxyl footprinting and electrophoretic mobility shift assay to investigate the binding of NF-κB to nucleosomal templates. We show that NF-κB p50 homodimer is able to bind to its recognition sequence, when it is localized at the edge of the core particle, but not when the recognition sequence is at the interior of the nucleosome. Remodeling of the nucleosome by the chromatin remodeling machine RSC was not sufficient to allow binding of NF-κB to its recognition sequence located in the vicinity of the nucleosome dyad, but RSC-induced histone octamer sliding allowed clearly detectable binding of NF-κB with the slid particle. Importantly, nucleosome dilution-driven removal of H2A–H2B dimer led to complete accessibility of the site located close to the dyad to NF-κB. Finally, we found that NF-κB was able to displace histone H1 and prevent its binding to nucleosome. These data provide important insight on the role of chromatin structure in the regulation of transcription of NF-κB dependent genes. PMID:24086160

  3. Characterization of Nucleosome Unwrapping within Chromatin Fibers Using Magnetic Tweezers

    PubMed Central

    Chien, Fan-Tso; van der Heijden, Thijn

    2014-01-01

    Nucleosomal arrays fold into chromatin fibers and the higher-order folding of chromatin plays a strong regulatory role in all processes involving DNA access, such as transcription and replication. A fundamental understanding of such regulation requires insight into the folding properties of the chromatin fiber in molecular detail. Despite this, the structure and the mechanics of chromatin fibers remain highly disputed. Single-molecule force spectroscopy experiments have the potential to provide such insight, but interpretation of the data has been hampered by the large variations in experimental force-extension traces. Here we explore the possibility that chromatin fibers are composed of both single-turn and fully wrapped histone octamers. By characterizing the force-dependent behavior of in vitro reconstituted chromatin fibers and reanalyzing existing data, we show the unwrapping of the outer turn of nucleosomal DNA at 3 pN. We present a model composed of two freely-jointed chains, which reveals that nucleosomes within the chromatin fiber show identical force-extension behavior to mononucleosomes, indicating that nucleosome-nucleosome interactions are orders-of-magnitude smaller than previously reported and therefore can be overcome by thermal fluctuations. We demonstrate that lowering the salt concentration externally increases the wrapping energy significantly, indicative of the electrostatic interaction between the wrapped DNA and the histone octamer surface. We propose that the weak interaction between nucleosomes could allow easy access to nucleosomal DNA, while DNA unwrapping from the histone core could provide a stable yet dynamic structure during DNA maintenance. PMID:25028879

  4. Intracellular Hmgb1 Inhibits Inflammatory Nucleosome Release and Limits Acute Pancreatitis in Mice

    PubMed Central

    Kang, Rui; Zhang, Qiuhong; Hou, Wen; Yan, Zhenwen; Chen, Ruochan; Bonaroti, Jillian; Bansal, Preeti; Billiar, Timothy R.; Tsung, Allan; Wang, Qingde; Bartlett, David L.; Whitcomb, David C; Chang, Eugene B.; Zhu, Xiaorong; Wang, Haichao; Lu, Ben; Tracey, Kevin J.; Cao, Lizhi; Fan, Xue-Gong; Lotze, Michael T.; Zeh, Herbert J.; Tang, Daolin

    2014-01-01

    BACKGROUND & AIMS: High mobility group box 1 (HMGB1) is an abundant protein that regulates chromosome architecture and also functions as a damage-associated molecular pattern molecule. Little is known about its intracellular roles in response to tissue injury or during subsequent local and systemic inflammatory responses. We investigated the function of Hmgb1 in mice following induction of acute pancreatitis. METHODS: We utilized a Cre/LoxP system to create mice with pancreas-specific disruption in Hmbg1 (Pdx1-Cre; HMGB1flox/flox mice). Acute pancreatitis was induced in these mice (HMGB1flox/flox mice served as controls) following injection of L-arginine or cerulein. Pancreatic tissues and acinar cells were collected and analyzed by histologic, immunoblot, and immunohistochemical analyses. RESULTS: Following injection of L-arginine or cerulein, Pdx1-Cre; HMGB1flox/flox mice developed acute pancreatitis more rapidly than controls, with increased mortality. Pancreatic tissues of these mice also had higher levels of serum amylase, acinar cell death, leukocyte infiltration, and interstitial edema than controls. Pancreatic tissues and acinar cells collected from the Pdx1-Cre; HMGB1flox/flox mice following L-arginine- or cerulein injection demonstrated nuclear catastrophe with greater nucleosome release when compared with controls, along with increased phosphorylation/activation of RELA Nfκb, degradation of Iκb, and phosphorylation of Mapk. Inhibitors of reactive oxygen species (N-acetyl-L-cysteine) blocked L-arginine–induced DNA damage, necrosis, apoptosis, release of nucleosomes, and activation of Nfκb in pancreatic tissues and acinar cells from Pdx1-Cre; HMGB1flox/flox and control mice. Exogenous genomic DNA and recombinant histone H3 proteins significantly induced release of HMGB1 from mouse macrophages; administration of antibodies against H3 to mice reduced serum levels of HMGB1 and increased survival following L-arginine injection. CONCLUSIONS: In 2 mouse

  5. Integrated molecular mechanism directing nucleosome reorganization by human FACT

    PubMed Central

    Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke

    2016-01-01

    Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT–histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3–H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid–H2A steric collision on the H2A-docking surface of the H3–H4 tetramer within the nucleosome induces H2A–H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone. PMID:26966247

  6. Nucleosome-driven transcription factor binding and gene regulation.

    PubMed

    Ballaré, Cecilia; Castellano, Giancarlo; Gaveglia, Laura; Althammer, Sonja; González-Vallinas, Juan; Eyras, Eduardo; Le Dily, Francois; Zaurin, Roser; Soronellas, Daniel; Vicent, Guillermo P; Beato, Miguel

    2013-01-10

    Elucidating the global function of a transcription factor implies the identification of its target genes and genomic binding sites. The role of chromatin in this context is unclear, but the dominant view is that factors bind preferentially to nucleosome-depleted regions identified as DNaseI-hypersensitive sites (DHS). Here we show by ChIP, MNase, and DNaseI assays followed by deep sequencing that the progesterone receptor (PR) requires nucleosomes for optimal binding and function. In breast cancer cells treated with progestins, we identified 25,000 PR binding sites (PRbs). The majority of these sites encompassed several copies of the hexanucleotide TGTYCY, which is highly abundant in the genome. We found that functional PRbs accumulate around progesterone-induced genes, mainly in enhancers. Most of these sites overlap with DHS but exhibit high nucleosome occupancy. Progestin stimulation results in remodeling of these nucleosomes with displacement of histones H1 and H2A/H2B dimers. Our results strongly suggest that nucleosomes are crucial for PR binding and hormonal gene regulation. PMID:23177737

  7. Measuring genome-wide nucleosome turnover using CATCH-IT.

    PubMed

    Teves, Sheila S; Deal, Roger B; Henikoff, Steven

    2012-01-01

    The dynamic interplay between DNA-binding proteins and nucleosomes underlies essential nuclear processes such as transcription, replication, and DNA repair. Manifestations of this interplay include the assembly, eviction, and replacement of nucleosomes. Hence, measurements of nucleosome turnover kinetics can lead to insights into the regulation of dynamic chromatin processes. In this chapter, we describe a genome-wide method for measuring nucleosome turnover that uses metabolic labeling followed by capture of newly synthesized histones, which we have termed Covalent Attachment of Tagged Histones to Capture and Identify Turnover (CATCH-IT). Although CATCH-IT can be used with any genome-wide mapping procedure, high-resolution profiling is attainable using paired-end sequencing of native chromatin. Our protocol also includes an efficient Solexa DNA sequencing library preparation protocol that can be used for single base-pair resolution mapping of both nucleosome and subnucleosomal particles. We not only describe the use of these protocols in the context of a Drosophila cell line but also provide the necessary changes for adaptation to other model systems. PMID:22929769

  8. Integrated molecular mechanism directing nucleosome reorganization by human FACT.

    PubMed

    Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke

    2016-03-15

    Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT-histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3-H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid-H2A steric collision on the H2A-docking surface of the H3-H4 tetramer within the nucleosome induces H2A-H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone. PMID:26966247

  9. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation

    PubMed Central

    Sun, Jian; Zhang, Qing; Schlick, Tamar

    2005-01-01

    Although numerous experiments indicate that the chromatin fiber displays salt-dependent conformations, the associated molecular mechanism remains unclear. Here, we apply an irregular Discrete Surface Charge Optimization (DiSCO) model of the nucleosome with all histone tails incorporated to describe by Monte Carlo simulations salt-dependent rearrangements of a nucleosomal array with 12 nucleosomes. The ensemble of nucleosomal array conformations display salt-dependent condensation in good agreement with hydrodynamic measurements and suggest that the array adopts highly irregular 3D zig-zag conformations at high (physiological) salt concentrations and transitions into the extended “beads-on-a-string” conformation at low salt. Energy analyses indicate that the repulsion among linker DNA leads to this extended form, whereas internucleosome attraction drives the folding at high salt. The balance between these two contributions determines the salt-dependent condensation. Importantly, the internucleosome and linker DNA–nucleosome attractions require histone tails; we find that the H3 tails, in particular, are crucial for stabilizing the moderately folded fiber at physiological monovalent salt. PMID:15919827

  10. The energetic implications of curtailing versus storing wind- and solar-generated electricity

    NASA Astrophysics Data System (ADS)

    Barnhart, C. J.; Dale, M.; Brandt, A. R.; Benson, S. M.

    2013-12-01

    Rapid deployment of power generation technologies harnessing wind and solar resources continues to reduce the carbon intensity of the power grid. But as these technologies comprise a larger fraction of power supply, their variable, weather-dependent nature poses challenges to power grid operation. Today, during times of power oversupply or unfavorable market conditions, power grid operators curtail these resources. Rates of curtailment are expected to increase with increased renewable electricity production. That is unless technologies are implemented that can provide grid flexibility to balance power supply with power demand. Curtailment is an obvious forfeiture of energy and it decreases the profitability of electricity from curtailed generators. What are less obvious are the energetic costs for technologies that provide grid flexibility. We present a theoretical framework to calculate how storage affects the energy return on energy investment (EROI) ratios of wind and solar resources. Our methods identify conditions under which it is more energetically favorable to store energy than it is to simply curtail electricity production. Electrochemically based storage technologies result in much smaller EROI ratios than large-scale geologically based storage technologies like compressed air energy storage (CAES) and pumped hydroelectric storage (PHS). All storage technologies paired with solar photovoltaic (PV) generation yield EROI ratios that are greater than curtailment. Due to their low energy stored on electrical energy invested (ESOIe) ratios, conventional battery technologies reduce the EROI ratios of wind generation below curtailment EROI ratios. To yield a greater net energy return than curtailment, battery storage technologies paired with wind generation need an ESOIe>80. We identify improvements in cycle life as the most feasible way to increase battery ESOIe. Depending upon the battery's embodied energy requirement, an increase of cycle life to 10

  11. Statistical mechanics of chromatin: Inferring free energies of nucleosome formation from high-throughput data sets

    NASA Astrophysics Data System (ADS)

    Morozov, Alexandre

    2009-03-01

    Formation of nucleosome core particles is a first step towards packaging genomic DNA into chromosomes in living cells. Nucleosomes are formed by wrapping 147 base pairs of DNA around a spool of eight histone proteins. It is reasonable to assume that formation of single nucleosomes in vitro is determined by DNA sequence alone: it costs less elastic energy to wrap a flexible DNA polymer around the histone octamer, and more if the polymer is rigid. However, it is unclear to which extent this effect is important in living cells. Cells have evolved chromatin remodeling enzymes that expend ATP to actively reposition nucleosomes. In addition, nucleosome positioning on long DNA sequences is affected by steric exclusion - many nucleosomes have to form simultaneously without overlap. Currently available bioinformatics methods for predicting nucleosome positions are trained on in vivo data sets and are thus unable to distinguish between extrinsic and intrinsic nucleosome positioning signals. In order to see the relative importance of such signals for nucleosome positioning in vivo, we have developed a model based on a large collection of DNA sequences from nucleosomes reconstituted in vitro by salt dialysis. We have used these data to infer the free energy of nucleosome formation at each position along the genome. The method uses an exact result from the statistical mechanics of classical 1D fluids to infer the free energy landscape from nucleosome occupancy. We will discuss the degree to which in vitro nucleosome occupancy profiles are predictive of in vivo nucleosome positions, and will estimate how many nucleosomes are sequence-specific and how many are positioned purely by steric exclusion. Our approach to nucleosome energetics should be applicable across multiple organisms and genomic regions.

  12. PGC-1alpha induces dynamic protein interactions on the ERRalpha gene multi-hormone response element nucleosome in kidney cells.

    PubMed

    Wang, Liangli; Li, Yin; Hu, Peng; Teng, Christina T

    2008-12-15

    ERR (oestrogen-related receptor)-alpha modulates the oestrogen signalling pathway and regulates genes participating in the physiological energy balance programme. Oestrogen and PGC-1alpha (peroxisome proliferator-activated receptor-gamma coactivator-1alpha), the master regulator of the energy homoeostasis programme, both regulate the expression of ERRalpha through the MHRE (multi-hormone response element) of the ERRalpha gene. Although the molecular mechanism of oestrogen action on ERRalpha regulation is well characterized, the mechanism of PGC-1alpha induction is unclear. In this study, we examine chromatin structural changes and protein interactions at the MHRE nucleosome in response to PGC-1alpha expression in HK2 human kidney cells. We mapped the nucleosome positions of the ERRalpha gene promoter and examined the changes of histone acetylation in response to PGC-1alpha expression. The interactions of DNA-binding proteins, ERRalpha and ERRgamma, co-activators {CBP [CREB (cAMP-response-element-binding protein)-binding protein], p300, PCAF (p300/CBP-associated factor)}, co-repressor [RIP140 (receptor-interacting protein of 140 kDa)] and RNA polymerase II at the MHRE nucleosome region were investigated over time before and after PGC-1alpha expression in the HK2 cells. We found a dynamic cyclic interaction of these proteins shortly after PGC-1alpha expression and a slower cycling interaction, with fewer proteins involved, 20 h later. By using the siRNA (small interfering RNA) knockdown approach, we discovered that ERRgamma was involved in the initial phase, but not in the later phase, of PGC-1alpha-induced ERRalpha expression. PMID:18673300

  13. Hierarchical regulation of the genome: global changes in nucleosome organization potentiate genome response

    PubMed Central

    Sexton, Brittany S.; Druliner, Brooke R.; Vera, Daniel L.; Avey, Denis; Zhu, Fanxiu; Dennis, Jonathan H.

    2016-01-01

    Nucleosome occupancy is critically important in regulating access to the eukaryotic genome. Few studies in human cells have measured genome-wide nucleosome distributions at high temporal resolution during a response to a common stimulus. We measured nucleosome distributions at high temporal resolution following Kaposi's-sarcoma-associated herpesvirus (KSHV) reactivation using our newly developed mTSS-seq technology, which maps nucleosome distribution at the transcription start sites (TSS) of all human genes. Nucleosomes underwent widespread changes in organization 24 hours after KSHV reactivation and returned to their basal nucleosomal architecture 48 hours after KSHV reactivation. The widespread changes consisted of an indiscriminate remodeling event resulting in the loss of nucleosome rotational phasing signals. Additionally, one in six TSSs in the human genome possessed nucleosomes that are translationally remodeled. 72% of the loci with translationally remodeled nucleosomes have nucleosomes that moved to positions encoded by the underlying DNA sequence. Finally we demonstrated that these widespread alterations in nucleosomal architecture potentiated regulatory factor binding. These descriptions of nucleosomal architecture changes provide a new framework for understanding the role of chromatin in the genomic response, and have allowed us to propose a hierarchical model for chromatin-based regulation of genome response. PMID:26771136

  14. Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster

    PubMed Central

    Chereji, Răzvan V.; Kan, Tsung-Wai; Grudniewska, Magda K.; Romashchenko, Alexander V.; Berezikov, Eugene; Zhimulev, Igor F.; Guryev, Victor; Morozov, Alexandre V.; Moshkin, Yuri M.

    2016-01-01

    Nucleosomal DNA is thought to be generally inaccessible to DNA-binding factors, such as micrococcal nuclease (MNase). Here, we digest Drosophila chromatin with high and low concentrations of MNase to reveal two distinct nucleosome types: MNase-sensitive and MNase-resistant. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C-containing dinucleotides, whereas MNase-sensitive nucleosomes form on A/T-rich sequences found at transcription start and termination sites, enhancers and DNase I hypersensitive sites. Estimates of nucleosome formation energies indicate that MNase-sensitive nucleosomes tend to be less stable than MNase-resistant ones. Strikingly, a decrease in cell growth temperature of about 10°C makes MNase-sensitive nucleosomes less accessible, suggesting that observed variations in MNase sensitivity are related to either thermal fluctuations of chromatin fibers or the activity of enzymatic machinery. In the vicinity of active genes and DNase I hypersensitive sites nucleosomes are organized into periodic arrays, likely due to ‘phasing’ off potential barriers formed by DNA-bound factors or by nucleosomes anchored to their positions through external interactions. The latter idea is substantiated by our biophysical model of nucleosome positioning and energetics, which predicts that nucleosomes immediately downstream of transcription start sites are anchored and recapitulates nucleosome phasing at active genes significantly better than sequence-dependent models. PMID:26429969

  15. Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini.

    PubMed

    Panchenko, Tanya; Sorensen, Troy C; Woodcock, Christopher L; Kan, Zhong-Yuan; Wood, Stacey; Resch, Michael G; Luger, Karolin; Englander, S Walter; Hansen, Jeffrey C; Black, Ben E

    2011-10-01

    Centromere protein A (CENP-A) is a histone H3 variant that marks centromere location on the chromosome. To study the subunit structure and folding of human CENP-A-containing chromatin, we generated a set of nucleosomal arrays with canonical core histones and another set with CENP-A substituted for H3. At the level of quaternary structure and assembly, we find that CENP-A arrays are composed of octameric nucleosomes that assemble in a stepwise mechanism, recapitulating conventional array assembly with canonical histones. At intermediate structural resolution, we find that CENP-A-containing arrays are globally condensed relative to arrays with the canonical histones. At high structural resolution, using hydrogen-deuterium exchange coupled to mass spectrometry (H/DX-MS), we find that the DNA superhelical termini within each nucleosome are loosely connected to CENP-A, and we identify the key amino acid substitution that is largely responsible for this behavior. Also the C terminus of histone H2A undergoes rapid hydrogen exchange relative to canonical arrays and does so in a manner that is independent of nucleosomal array folding. These findings have implications for understanding CENP-A-containing nucleosome structure and higher-order chromatin folding at the centromere. PMID:21949362

  16. Histone H1 null vertebrate cells exhibit altered nucleosome architecture

    PubMed Central

    Hashimoto, Hideharu; Takami, Yasunari; Sonoda, Eiichiro; Iwasaki, Tomohito; Iwano, Hidetomo; Tachibana, Makoto; Takeda, Shunichi; Nakayama, Tatsuo; Kimura, Hiroshi; Shinkai, Yoichi

    2010-01-01

    In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes, and chromatin fibers are thought to be stabilized by linker histones of the H1 type. Higher eukaryotes express multiple variants of histone H1; chickens possess six H1 variants. Here, we generated and analyzed the phenotype of a complete deletion of histone H1 genes in chicken cells. The H1-null cells showed decreased global nucleosome spacing, expanded nuclear volumes, and increased chromosome aberration rates, although proper mitotic chromatin structure appeared to be maintained. Expression array analysis revealed that the transcription of multiple genes was affected and was mostly downregulated in histone H1-deficient cells. This report describes the first histone H1 complete knockout cells in vertebrates and suggests that linker histone H1, while not required for mitotic chromatin condensation, plays important roles in nucleosome spacing and interphase chromatin compaction and acts as a global transcription regulator. PMID:20156997

  17. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes

    PubMed Central

    Grigoryev, Sergei A.; Bascom, Gavin; Buckwalter, Jenna M.; Schubert, Michael B.; Woodcock, Christopher L.; Schlick, Tamar

    2016-01-01

    The architecture of higher-order chromatin in eukaryotic cell nuclei is largely unknown. Here, we use electron microscopy-assisted nucleosome interaction capture (EMANIC) cross-linking experiments in combination with mesoscale chromatin modeling of 96-nucleosome arrays to investigate the internal organization of condensed chromatin in interphase cell nuclei and metaphase chromosomes at nucleosomal resolution. The combined data suggest a novel hierarchical looping model for chromatin higher-order folding, similar to rope flaking used in mountain climbing and rappelling. Not only does such packing help to avoid tangling and self-crossing, it also facilitates rope unraveling. Hierarchical looping is characterized by an increased frequency of higher-order internucleosome contacts for metaphase chromosomes compared with chromatin fibers in vitro and interphase chromatin, with preservation of a dominant two-start zigzag organization associated with the 30-nm fiber. Moreover, the strong dependence of looping on linker histone concentration suggests a hierarchical self-association mechanism of relaxed nucleosome zigzag chains rather than longitudinal compaction as seen in 30-nm fibers. Specifically, concentrations lower than one linker histone per nucleosome promote self-associations and formation of these looped networks of zigzag fibers. The combined experimental and modeling evidence for condensed metaphase chromatin as hierarchical loops and bundles of relaxed zigzag nucleosomal chains rather than randomly coiled threads or straight and stiff helical fibers reconciles aspects of other models for higher-order chromatin structure; it constitutes not only an efficient storage form for the genomic material, consistent with other genome-wide chromosome conformation studies that emphasize looping, but also a convenient organization for local DNA unraveling and genome access. PMID:26787893

  18. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes.

    PubMed

    Grigoryev, Sergei A; Bascom, Gavin; Buckwalter, Jenna M; Schubert, Michael B; Woodcock, Christopher L; Schlick, Tamar

    2016-02-01

    The architecture of higher-order chromatin in eukaryotic cell nuclei is largely unknown. Here, we use electron microscopy-assisted nucleosome interaction capture (EMANIC) cross-linking experiments in combination with mesoscale chromatin modeling of 96-nucleosome arrays to investigate the internal organization of condensed chromatin in interphase cell nuclei and metaphase chromosomes at nucleosomal resolution. The combined data suggest a novel hierarchical looping model for chromatin higher-order folding, similar to rope flaking used in mountain climbing and rappelling. Not only does such packing help to avoid tangling and self-crossing, it also facilitates rope unraveling. Hierarchical looping is characterized by an increased frequency of higher-order internucleosome contacts for metaphase chromosomes compared with chromatin fibers in vitro and interphase chromatin, with preservation of a dominant two-start zigzag organization associated with the 30-nm fiber. Moreover, the strong dependence of looping on linker histone concentration suggests a hierarchical self-association mechanism of relaxed nucleosome zigzag chains rather than longitudinal compaction as seen in 30-nm fibers. Specifically, concentrations lower than one linker histone per nucleosome promote self-associations and formation of these looped networks of zigzag fibers. The combined experimental and modeling evidence for condensed metaphase chromatin as hierarchical loops and bundles of relaxed zigzag nucleosomal chains rather than randomly coiled threads or straight and stiff helical fibers reconciles aspects of other models for higher-order chromatin structure; it constitutes not only an efficient storage form for the genomic material, consistent with other genome-wide chromosome conformation studies that emphasize looping, but also a convenient organization for local DNA unraveling and genome access. PMID:26787893

  19. Protein Acetylation and Acetyl Coenzyme A Metabolism in Budding Yeast

    PubMed Central

    Galdieri, Luciano; Zhang, Tiantian; Rogerson, Daniella; Lleshi, Rron

    2014-01-01

    Cells sense and appropriately respond to the physical conditions and availability of nutrients in their environment. This sensing of the environment and consequent cellular responses are orchestrated by a multitude of signaling pathways and typically involve changes in transcription and metabolism. Recent discoveries suggest that the signaling and transcription machineries are regulated by signals which are derived from metabolism and reflect the metabolic state of the cell. Acetyl coenzyme A (CoA) is a key metabolite that links metabolism with signaling, chromatin structure, and transcription. Acetyl-CoA is produced by glycolysis as well as other catabolic pathways and used as a substrate for the citric acid cycle and as a precursor in synthesis of fatty acids and steroids and in other anabolic pathways. This central position in metabolism endows acetyl-CoA with an important regulatory role. Acetyl-CoA serves as a substrate for lysine acetyltransferases (KATs), which catalyze the transfer of acetyl groups to the epsilon-amino groups of lysines in histones and many other proteins. Fluctuations in the concentration of acetyl-CoA, reflecting the metabolic state of the cell, are translated into dynamic protein acetylations that regulate a variety of cell functions, including transcription, replication, DNA repair, cell cycle progression, and aging. This review highlights the synthesis and homeostasis of acetyl-CoA and the regulation of transcriptional and signaling machineries in yeast by acetylation. PMID:25326522

  20. Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions.

    PubMed

    Shaytan, Alexey K; Armeev, Grigoriy A; Goncearenco, Alexander; Zhurkin, Victor B; Landsman, David; Panchenko, Anna R

    2016-01-16

    An octamer of histone proteins wraps about 200bp of DNA into two superhelical turns to form nucleosomes found in chromatin. Although the static structure of the nucleosomal core particle has been solved, details of the dynamic interactions between histones and DNA remain elusive. We performed extensively long unconstrained, all-atom microsecond molecular dynamics simulations of nucleosomes including linker DNA segments and full-length histones in explicit solvent. For the first time, we were able to identify and characterize the rearrangements in nucleosomes on a microsecond timescale including the coupling between the conformation of the histone tails and the DNA geometry. We found that certain histone tail conformations promoted DNA bulging near its entry/exit sites, resulting in the formation of twist defects within the DNA. This led to a reorganization of histone-DNA interactions, suggestive of the formation of initial nucleosome sliding intermediates. We characterized the dynamics of the histone tails upon their condensation on the core and linker DNA and showed that tails may adopt conformationally constrained positions due to the insertion of "anchoring" lysines and arginines into the DNA minor grooves. Potentially, these phenomena affect the accessibility of post-translationally modified histone residues that serve as important sites for epigenetic marks (e.g., at H3K9, H3K27, H4K16), suggesting that interactions of the histone tails with the core and linker DNA modulate the processes of histone tail modifications and binding of the effector proteins. We discuss the implications of the observed results on the nucleosome function and compare our results to different experimental studies. PMID:26699921

  1. Protein acetylation sites mediated by Schistosoma mansoni GCN5

    SciTech Connect

    Moraes Maciel, Renata de; Furtado Madeiro da Costa, Rodrigo; Meirelles Bastosde Oliveira, Francisco; Rumjanek, Franklin David; Fantappie, Marcelo Rosado

    2008-05-23

    The transcriptional co-activator GCN5, a histone acetyltransferase (HAT), is part of large multimeric complexes that are required for chromatin remodeling and transcription activation. As in other eukaryotes, the DNA from the parasite Schistosome mansoni is organized into nucleosomes and the genome encodes components of chromatin-remodeling complexes. Using a series of synthetic peptides we determined that Lys-14 of histone H3 was acetylated by the recombinant SmGCN5-HAT domain. SmGCN5 was also able to acetylate schistosome non-histone proteins, such as the nuclear receptors SmRXR1 and SmNR1, and the co-activator SmNCoA-62. Electron microscopy revealed the presence of SmGCN5 protein in the nuclei of vitelline cells. Within the nucleus, SmGCN5 was found to be located in interchromatin granule clusters (IGCs), which are transcriptionally active structures. The data suggest that SmGCN5 is involved in transcription activation.

  2. Nucleosome Presence at AML-1 Binding Sites Inversely Correlates with Ly49 Expression: Revelations from an Informatics Analysis of Nucleosomes and Immune Cell Transcription Factors

    PubMed Central

    Ioshikhes, Ilya; Makrigiannis, Andrew P.

    2016-01-01

    Beyond its role in genomic organization and compaction, the nucleosome is believed to participate in the regulation of gene transcription. Here, we report a computational method to evaluate the nucleosome sensitivity for a transcription factor over a given stretch of the genome. Sensitive factors are predicted to be those with binding sites preferentially contained within nucleosome boundaries and lacking 10 bp periodicity. Based on these criteria, the Acute Myeloid Leukemia-1a (AML-1a) transcription factor, a regulator of immune gene expression, was identified as potentially sensitive to nucleosomal regulation within the mouse Ly49 gene family. This result was confirmed in RMA, a cell line with natural expression of Ly49, using MNase-Seq to generate a nucleosome map of chromosome 6, where the Ly49 gene family is located. Analysis of this map revealed a specific depletion of nucleosomes at AML-1a binding sites in the expressed Ly49A when compared to the other, silent Ly49 genes. Our data suggest that nucleosome-based regulation contributes to the expression of Ly49 genes, and we propose that this method of predicting nucleosome sensitivity could aid in dissecting the regulatory role of nucleosomes in general. PMID:27124577

  3. Nucleosome eviction in mitosis assists condensin loading and chromosome condensation.

    PubMed

    Toselli-Mollereau, Esther; Robellet, Xavier; Fauque, Lydia; Lemaire, Sébastien; Schiklenk, Christoph; Klein, Carlo; Hocquet, Clémence; Legros, Pénélope; N'Guyen, Lia; Mouillard, Léo; Chautard, Emilie; Auboeuf, Didier; Haering, Christian H; Bernard, Pascal

    2016-07-15

    Condensins associate with DNA and shape mitotic chromosomes. Condensins are enriched nearby highly expressed genes during mitosis, but how this binding is achieved and what features associated with transcription attract condensins remain unclear. Here, we report that condensin accumulates at or in the immediate vicinity of nucleosome-depleted regions during fission yeast mitosis. Two transcriptional coactivators, the Gcn5 histone acetyltransferase and the RSC chromatin-remodelling complex, bind to promoters adjoining condensin-binding sites and locally evict nucleosomes to facilitate condensin binding and allow efficient mitotic chromosome condensation. The function of Gcn5 is closely linked to condensin positioning, since neither the localization of topoisomerase II nor that of the cohesin loader Mis4 is altered in gcn5 mutant cells. We propose that nucleosomes act as a barrier for the initial binding of condensin and that nucleosome-depleted regions formed at highly expressed genes by transcriptional coactivators constitute access points into chromosomes where condensin binds free genomic DNA. PMID:27266525

  4. Comparative analysis of methods for genome-wide nucleosome cartography.

    PubMed

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use. PMID:25296770

  5. Routes to DNA Accessibility: Alternative Pathways for Nucleosome Unwinding

    PubMed Central

    Schlingman, Daniel J.; Mack, Andrew H.; Kamenetska, Masha; Mochrie, Simon G.J.; Regan, Lynne

    2014-01-01

    The dynamic packaging of DNA into chromatin is a key determinant of eukaryotic gene regulation and epigenetic inheritance. Nucleosomes are the basic unit of chromatin, and therefore the accessible states of the nucleosome must be the starting point for mechanistic models regarding these essential processes. Although the existence of different unwound nucleosome states has been hypothesized, there have been few studies of these states. The consequences of multiple states are far reaching. These states will behave differently in all aspects, including their interactions with chromatin remodelers, histone variant exchange, and kinetic properties. Here, we demonstrate the existence of two distinct states of the unwound nucleosome, which are accessible at physiological forces and ionic strengths. Using optical tweezers, we measure the rates of unwinding and rewinding for these two states and show that the rewinding rates from each state are different. In addition, we show that the probability of unwinding into each state is dependent on the applied force and ionic strength. Our results demonstrate not only that multiple unwound states exist but that their accessibility can be differentially perturbed, suggesting possible roles for these states in gene regulation. For example, different histone variants or modifications may facilitate or suppress access to DNA by promoting unwinding into one state or the other. We anticipate that the two unwound states reported here will be the basis for future models of eukaryotic transcriptional control. PMID:25028880

  6. Promoter nucleosome dynamics regulated by signalling through the CTD code.

    PubMed

    Materne, Philippe; Anandhakumar, Jayamani; Migeot, Valerie; Soriano, Ignacio; Yague-Sanz, Carlo; Hidalgo, Elena; Mignion, Carole; Quintales, Luis; Antequera, Francisco; Hermand, Damien

    2015-01-01

    The phosphorylation of the RNA polymerase II C-terminal domain (CTD) plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phospho-S2 CTD nearby the promoter impairs the phospho-S5 CTD-dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription. The early increase of phospho-S2 results from the phosphorylation of the CTD S2 kinase Lsk1 by MAP kinase in response to cellular signalling. The artificial tethering of the Lsk1 kinase at the ste11 promoter is sufficient to activate transcription. Therefore, signalling through the CTD code regulates promoter nucleosomes dynamics. PMID:26098123

  7. Promoter nucleosome dynamics regulated by signalling through the CTD code

    PubMed Central

    Materne, Philippe; Anandhakumar, Jayamani; Migeot, Valerie; Soriano, Ignacio; Yague-Sanz, Carlo; Hidalgo, Elena; Mignion, Carole; Quintales, Luis; Antequera, Francisco; Hermand, Damien

    2015-01-01

    The phosphorylation of the RNA polymerase II C-terminal domain (CTD) plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phospho-S2 CTD nearby the promoter impairs the phospho-S5 CTD-dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription. The early increase of phospho-S2 results from the phosphorylation of the CTD S2 kinase Lsk1 by MAP kinase in response to cellular signalling. The artificial tethering of the Lsk1 kinase at the ste11 promoter is sufficient to activate transcription. Therefore, signalling through the CTD code regulates promoter nucleosomes dynamics. DOI: http://dx.doi.org/10.7554/eLife.09008.001 PMID:26098123

  8. Effect of the Spiroiminodihydantoin Lesion on Nucleosome Stability and Positioning.

    PubMed

    Norabuena, Erika M; Barnes Williams, Sara; Klureza, Margaret A; Goehring, Liana J; Gruessner, Brian; Radhakrishnan, Mala L; Jamieson, Elizabeth R; Núñez, Megan E

    2016-04-26

    DNA is constantly under attack by oxidants, generating a variety of potentially mutagenic covalently modified species, including oxidized guanine base products. One such product is spiroiminodihydantoin (Sp), a chiral, propeller-shaped lesion that strongly destabilizes the DNA helix in its vicinity. Despite its unusual shape and thermodynamic effect on double-stranded DNA structure, DNA duplexes containing the Sp lesion form stable nucleosomes upon being incubated with histone octamers. Indeed, among six different combinations of lesion location and stereochemistry, only two duplexes display a diminished ability to form nucleosomes, and these only by ∼25%; the other four are statistically indistinguishable from the control. Nonetheless, kinetic factors also play a role: when the histone proteins have less time during assembly of the core particle to sample both lesion-containing and normal DNA strands, they are more likely to bind the Sp lesion DNA than during slower assembly processes that better approximate thermodynamic equilibrium. Using DNase I footprinting and molecular modeling, we discovered that the Sp lesion causes only a small perturbation (±1-2 bp) on the translational position of the DNA within the nucleosome. Each diastereomeric pair of lesions has the same effect on nucleosome positioning, but lesions placed at different locations behave differently, illustrating that the location of the lesion and not its shape serves as the primary determinant of the most stable DNA orientation. PMID:27074396

  9. Nucleosome interactions in chromatin: fiber stiffening and hairpin formation.

    PubMed

    Mergell, Boris; Everaers, Ralf; Schiessel, Helmut

    2004-07-01

    We use Monte Carlo simulations to study attractive and excluded volume interactions between nucleosome core particles in 30-nm chromatin fibers. The nucleosomes are treated as disklike objects having an excluded volume and short-range attraction modeled by a variant of the Gay-Berne potential. The nucleosomes are connected via bendable and twistable linker DNA in the crossed linker fashion. We investigate the influence of the nucleosomal excluded volume on the stiffness of the fiber. For parameter values that correspond to chicken erythrocyte chromatin, we find that the persistence length is governed to a large extent by that excluded volume whereas the soft linker backbone elasticity plays only a minor role. We further find that internucleosomal attraction can induce the formation of hairpin configurations. Tension-induced opening of such configurations into straight fibers manifests itself in a quasiplateau in the force-extension curve that resembles results from recent micromanipulation experiments. Such hairpins may play a role in the formation of higher-order structures in chromosomes like chromonema fibers. PMID:15324096

  10. Mapping post-translational modifications of mammalian testicular specific histone variant TH2B in tetraploid and haploid germ cells and their implications on the dynamics of nucleosome structure.

    PubMed

    Pentakota, Satya Krishna; Sandhya, Sankaran; P Sikarwar, Arun; Chandra, Nagasuma; Satyanarayana Rao, Manchanahalli R

    2014-12-01

    Histones regulate a variety of chromatin templated events by their post-translational modifications (PTMs). Although there are extensive reports on the PTMs of canonical histones, the information on the histone variants remains very scanty. Here, we report the identification of different PTMs, such as acetylation, methylation, and phosphorylation of a major mammalian histone variant TH2B. Our mass spectrometric analysis has led to the identification of both conserved and unique modifications across tetraploid spermatocytes and haploid spermatids. We have also computationally derived the 3-dimensional model of a TH2B containing nucleosome in order to study the spatial orientation of the PTMs identified and their effect on nucleosome stability and DNA binding potential. From our nucleosome model, it is evident that substitution of specific amino acid residues in TH2B results in both differential histone-DNA and histone-histone contacts. Furthermore, we have also observed that acetylation on the N-terminal tail of TH2B weakens the interactions with the DNA. These results provide direct evidence that, similar to somatic H2B, the testis specific histone TH2B also undergoes multiple PTMs, suggesting the possibility of chromatin regulation by such covalent modifications in mammalian male germ cells. PMID:25252820

  11. 41 CFR 101-39.105 - Discontinuance or curtailment of service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105 Discontinuance or curtailment of service. (a... efficiencies are realized from the operation of any fleet management system, the Administrator, GSA,...

  12. 41 CFR 101-39.105-1 - Transfers from discontinued or curtailed fleet management systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... discontinued or curtailed fleet management systems. 101-39.105-1 Section 101-39.105-1 Public Contracts and... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105-1 Transfers...

  13. 41 CFR 101-39.105 - Discontinuance or curtailment of service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105 Discontinuance or curtailment of service. (a... efficiencies are realized from the operation of any fleet management system, the Administrator, GSA,...

  14. 41 CFR 101-39.105 - Discontinuance or curtailment of service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105 Discontinuance or curtailment of service. (a... efficiencies are realized from the operation of any fleet management system, the Administrator, GSA,...

  15. 41 CFR 101-39.105-1 - Transfers from discontinued or curtailed fleet management systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105-1 Transfers from... discontinued or curtailed fleet management systems. 101-39.105-1 Section 101-39.105-1 Public Contracts...

  16. 41 CFR 101-39.105 - Discontinuance or curtailment of service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105 Discontinuance or curtailment of service. (a... efficiencies are realized from the operation of any fleet management system, the Administrator, GSA,...

  17. 41 CFR 101-39.105-1 - Transfers from discontinued or curtailed fleet management systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105-1 Transfers from... discontinued or curtailed fleet management systems. 101-39.105-1 Section 101-39.105-1 Public Contracts...

  18. 41 CFR 101-39.105-1 - Transfers from discontinued or curtailed fleet management systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105-1 Transfers from... discontinued or curtailed fleet management systems. 101-39.105-1 Section 101-39.105-1 Public Contracts...

  19. 41 CFR 101-39.105-1 - Transfers from discontinued or curtailed fleet management systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... discontinued or curtailed fleet management systems. 101-39.105-1 Section 101-39.105-1 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS...

  20. Aristotelian-Inspired Model for Curtailing Academic Dishonesty in the United States

    ERIC Educational Resources Information Center

    Sanders, Maria A.

    2012-01-01

    This dissertation explores the growing epidemic of academic dishonesty in the United States in order to propose an Aristotelian-inspired model for developing moral character to curtail this epidemic. The task is laid out in four parts. Chapter one responds to the problem of "akrasia," adopting a modified version of Devin Henry's…

  1. On Using Stochastic Curtailment to Shorten the SPRT in Sequential Mastery Testing

    ERIC Educational Resources Information Center

    Finkelman, Matthew

    2008-01-01

    Sequential mastery testing (SMT) has been researched as an efficient alternative to paper-and-pencil testing for pass/fail examinations. One popular method for determining when to cease examination in SMT is the truncated sequential probability ratio test (TSPRT). This article introduces the application of stochastic curtailment in SMT to shorten…

  2. More help than hindrance: nucleosomes aid transcriptional regulation.

    PubMed

    Ballaré, Cecilia; Zaurin, Roser; Vicent, Guillermo P; Beato, Miguel

    2013-01-01

    A major challenge of modern human biology is to understand how a differentiated somatic cell integrates the response to external signals in the complex context of basic metabolic and tissue-specific gene expression programs. This requires exploring two interconnected basic processes: the signaling network and the global function of the key transcription factors on which signaling acts to modulate gene expression. An apparently simple model to study these questions has been steroid hormones action, since their intracellular receptors both initiate signaling and are the key transcription factors orchestrating the cellular response. We have used progesterone action in breast cancer cells to elucidate the intricacies of progesterone receptor (PR) signaling crosstalk with protein kinases, histone modifying enzymes and ATP-dependent chromatin remodeling complexes. ( 1) Recently we have described the cistrome of PR in these cells at different times after addition of hormone and its relationship to chromatin structure. ( 2) The role of chromatin in transcription factor binding to the genome is still debated, but the dominant view is that factors bind preferentially to nucleosome-depleted regions, usually identified as DNaseI-hypersensitive sites (DHS). In contrast with this vision, we have shown that PR requires nucleosomes for optimal binding and function. In breast cancer cells treated with progestins we identified 25,000 PR binding sites (PRbs), the majority encompassing several copies of the hexanucleotide TGTYCY, highly abundant in the genome. We found that strong functional PRbs accumulate around progesterone-induced genes mainly in enhancers, are enriched in DHS but exhibit high nucleosome occupancy. Progestin stimulation results in remodeling of these nucleosomes with displacement of histones H1 and H2A/H2B dimers. Our results strongly suggest that nucleosomes play crucial role in PR binding and hormonal gene regulation. PMID:23756349

  3. The world of protein acetylation.

    PubMed

    Drazic, Adrian; Myklebust, Line M; Ree, Rasmus; Arnesen, Thomas

    2016-10-01

    Acetylation is one of the major post-translational protein modifications in the cell, with manifold effects on the protein level as well as on the metabolome level. The acetyl group, donated by the metabolite acetyl-coenzyme A, can be co- or post-translationally attached to either the α-amino group of the N-terminus of proteins or to the ε-amino group of lysine residues. These reactions are catalyzed by various N-terminal and lysine acetyltransferases. In case of lysine acetylation, the reaction is enzymatically reversible via tightly regulated and metabolism-dependent mechanisms. The interplay between acetylation and deacetylation is crucial for many important cellular processes. In recent years, our understanding of protein acetylation has increased significantly by global proteomics analyses and in depth functional studies. This review gives a general overview of protein acetylation and the respective acetyltransferases, and focuses on the regulation of metabolic processes and physiological consequences that come along with protein acetylation. PMID:27296530

  4. Structural mechanics of DNA wrapping in the nucleosome.

    PubMed

    Battistini, Federica; Hunter, Christopher A; Gardiner, Eleanor J; Packer, Martin J

    2010-02-19

    Experimental X-ray crystal structures and a database of calculated structural parameters of DNA octamers were used in combination to analyse the mechanics of DNA bending in the nucleosome core complex. The 1kx5 X-ray crystal structure of the nucleosome core complex was used to determine the relationship between local structure at the base-step level and the global superhelical conformation observed for nucleosome-bound DNA. The superhelix is characterised by a large curvature (597 degrees) in one plane and very little curvature (10 degrees) in the orthogonal plane. Analysis of the curvature at the level of 10-step segments shows that there is a uniform curvature of 30 degrees per helical turn throughout most of the structure but that there are two sharper kinks of 50 degrees at +/-2 helical turns from the central dyad base pair. The curvature is due almost entirely to the base-step parameter roll. There are large periodic variations in roll, which are in phase with the helical twist and account for 500 degrees of the total curvature. Although variations in the other base-step parameters perturb the local path of the DNA, they make minimal contributions to the total curvature. This implies that DNA bending in the nucleosome is achieved using the roll-slide-twist degree of freedom previously identified as the major degree of freedom in naked DNA oligomers. The energetics of bending into a nucleosome-bound conformation were therefore analysed using a database of structural parameters that we have previously developed for naked DNA oligomers. The minimum energy roll, the roll flexibility force constant and the maximum and minimum accessible roll values were obtained for each base step in the relevant octanucleotide context to account for the effects of conformational coupling that vary with sequence context. The distribution of base-step roll values and corresponding strain energy required to bend DNA into the nucleosome-bound conformation defined by the 1kx5 structure

  5. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression.

    PubMed

    Scovell, William M

    2016-05-26

    High mobility group protein 1 (HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N' and N'') remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed (1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (2) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome. PMID:27247709

  6. Nucleosomal regulation of chromatin composition and nuclear assembly revealed by histone depletion.

    PubMed

    Zierhut, Christian; Jenness, Christopher; Kimura, Hiroshi; Funabiki, Hironori

    2014-07-01

    Nucleosomes are the fundamental unit of chromatin, but analysis of transcription-independent nucleosome functions has been complicated by the gene-expression changes resulting from histone manipulation. Here we solve this dilemma by developing Xenopus laevis egg extracts deficient for nucleosome formation and by analyzing the proteomic landscape and behavior of nucleosomal chromatin and nucleosome-free DNA. We show that although nucleosome-free DNA can recruit nuclear-envelope membranes, nucleosomes are required for spindle assembly and for formation of the lamina and of nuclear pore complexes (NPCs). We show that, in addition to the Ran G-nucleotide exchange factor RCC1, ELYS, the initiator of NPC formation, fails to associate with naked DNA but directly binds histone H2A-H2B dimers and nucleosomes. Tethering ELYS and RCC1 to DNA bypasses the requirement for nucleosomes in NPC formation in a synergistic manner. Thus, the minimal essential function of nucleosomes in NPC formation is to recruit RCC1 and ELYS. PMID:24952593

  7. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions

    PubMed Central

    Schep, Alicia N.; Buenrostro, Jason D.; Denny, Sarah K.; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J.

    2015-01-01

    Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimensional nucleosomal “fingerprint” as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base-pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, Schizosaccharomyces pombe, and human cells. We demonstrate the application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding. PMID:26314830

  8. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression

    PubMed Central

    Scovell, William M

    2016-01-01

    High mobility group protein 1 (HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N’ and N’’) remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed (1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (2) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome. PMID:27247709

  9. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions.

    PubMed

    Schep, Alicia N; Buenrostro, Jason D; Denny, Sarah K; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J

    2015-11-01

    Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimensional nucleosomal "fingerprint" as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base-pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, Schizosaccharomyces pombe, and human cells. We demonstrate the application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding. PMID:26314830

  10. Using DNA mechanics to predict intrinsic and extrinsic nucleosome positioning signals

    NASA Astrophysics Data System (ADS)

    Morozov, Alexandre

    2008-03-01

    In eukaryotic genomes, nucleosomes function to compact DNA and to regulate access to it both by simple physical occlusion and by providing the substrate for numerous covalent epigenetic tags. While nucleosome positions in vitro are determined by sequence alone, in vivo competition with other DNA-binding factors and action of chromatin remodeling enzymes play a role that needs to be quantified. We developed a biophysical, DNA mechanics-based model for the sequence dependence of DNA bending energies, and validated it against a collection of in vitro free energies of nucleosome formation and a nucleosome crystal structure; we also successfully designed both strong and poor histone binding sequences ab initio. For in vivo data from S.cerevisiae, the strongest positioning signal came from the competition with other factors rather than intrinsic nucleosome sequence preferences. Based on sequence alone, our model predicts that functional transcription factor binding sites tend to be covered by nucleosomes, yet are uncovered in vivo because functional sites cluster within a single nucleosome footprint and thus make transcription factors bind cooperatively. Similarly a weak enhancement of nucleosome binding in the TATA region becomes a strong depletion when the TATA-binding protein is included, in quantitative agreement with experiment. Our model distinguishes multiple ways in which genomic sequence influences nucleosome positions, and thus provides alternative explanations for several genome-wide experimental findings. In the future our approach will be used to rationally alter gene expression levels in model systems through redesign of nucleosome occupancy profiles.

  11. Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter

    SciTech Connect

    Astrand, Carolina; Belikov, Sergey; Wrange, Orjan

    2009-09-10

    Transcription from the mouse mammary tumor virus (MMTV) promoter is induced by the glucocorticoid receptor (GR). This switch was reconstituted in Xenopus oocytes. Previously, we showed that Nuclear Factor 1 (NF1) and Octamer Transcription Factor 1 (Oct1) bind constitutively to the MMTV promoter and thereby induce translational nucleosome positioning representing an intermediary, i.e. preset, state of nucleosome organization. Here we further characterize this NF1 and Oct1 induced preset chromatin in relation to the inactive and the hormone-activated state. The preset chromatin exhibits increased histone acetylation but does not cause dissociation of histone H1 as oppose to the hormone-activated state. Furthermore, upon hormone induction the preset MMTV chromatin displays an enhanced and prolonged GR binding capacity and transcription during an intrinsic and time-dependent silencing of the injected template. The silencing process correlates with a reduced histone acetylation. However, a histone deacetylase inhibitor, trichostatin A (TSA), does not counteract silencing in spite of its distinct stimulation of GR-DNA binding. The latter indicates the importance of histone acetylation to maintain DNA access for inducible factor binding. We discuss how constitutively bound factors such as NF1 and Oct1 may participate in the maintenance of tissue specificity of hormone responsive genes.

  12. The nature of the interaction of nucleosomes with a eukaryotic RNA polymerase II.

    PubMed Central

    Lilley, D M; Jacobs, M F; Houghton, M

    1979-01-01

    The integrity and stability of nucleosomes under transcription assay conditions has been found to depend on concentration and ionic environment. Rifamycin AF/013, a commonly used inhibitor of initiation, is particularly effective in destabilisation of nucleosomes. Intact nucleosomes are refractory to transcription by wheat RNA polymerase II, the histone core preventing initiation. Template titration suggests that the polymerase can, however, bind to nucleosomes, and a 15--16S complex has been observed on sucrose gradients. DNase I digestion of polymerase-nucleosome incubations indicates that whilst histone is still present in the complex, the nucleosome conformation is altered resulting in enhanced nucleolysis at sites near the DNA centre but reduced overall kinetics of digestion. Images PMID:493150

  13. The structure of nucleosomal core particles within transcribed and repressed gene regions.

    PubMed Central

    Studitsky, V M; Belyavsky, A V; Melnikova, A F; Mirzabekov, A D

    1988-01-01

    The arrangement of histones along DNA in nucleosomal core particles within transcribed heat shock gene (hsp 70) region and repressed insertion within ribosomal genes of Drosophila was analysed by using protein-DNA crosslinking methods combined with hybridization tests. In addition, two-dimensional gel electrophoresis was employed to compare the overall nucleosomal shape and the nucleosomal DNA size. The arrangement of histones along DNA and general compactness of nucleosomes were shown to be rather similar in transcriptionally active and inactive genomic regions. On the other hand, nucleosomes within transcriptionally active chromatin are characterized by a larger size of nucleosomal DNA produced by micrococcal nuclease digestion and some peculiarity in electrophoretic mobility. Images PMID:3144704

  14. Statistical mechanics of nucleosome ordering by chromatin-structure-induced two-body interactions

    NASA Astrophysics Data System (ADS)

    Chereji, Răzvan V.; Tolkunov, Denis; Locke, George; Morozov, Alexandre V.

    2011-05-01

    One-dimensional arrays of nucleosomes (DNA-bound histone octamers separated by stretches of linker DNA) fold into higher-order chromatin structures which ultimately make up eukaryotic chromosomes. Chromatin structure formation leads to 10-11 base pair (bp) discretization of linker lengths caused by the smaller free energy cost of packaging nucleosomes into regular chromatin fibers if their rotational setting (defined by the DNA helical twist) is conserved. We describe nucleosome positions along the fiber using a thermodynamic model of finite-size particles with both intrinsic histone-DNA interactions and an effective two-body potential. We infer one- and two-body energies directly from high-throughput maps of nucleosome positions. We show that higher-order chromatin structure helps explains in vitro and in vivo nucleosome ordering in transcribed regions, and plays a leading role in establishing well-known 10-11 bp genome-wide periodicity of nucleosome positions.

  15. Structure of RCC1 chromatin factor bound to the nucleosome core particle

    SciTech Connect

    Makde, Ravindra D.; England, Joseph R.; Yennawar, Hemant P.; Tan, Song

    2010-11-11

    The small GTPase Ran enzyme regulates critical eukaryotic cellular functions including nuclear transport and mitosis through the creation of a RanGTP gradient around the chromosomes. This concentration gradient is created by the chromatin-bound RCC1 (regulator of chromosome condensation) protein, which recruits Ran to nucleosomes and activates Ran's nucleotide exchange activity. Although RCC1 has been shown to bind directly with the nucleosome, the molecular details of this interaction were not known. Here we determine the crystal structure of a complex of Drosophila RCC1 and the nucleosome core particle at 2.9 {angstrom} resolution, providing an atomic view of how a chromatin protein interacts with the histone and DNA components of the nucleosome. Our structure also suggests that the Widom 601 DNA positioning sequence present in the nucleosomes forms a 145-base-pair nucleosome core particle, not the expected canonical 147-base-pair particle.

  16. Strategies implemented by the textile industry in response to natural-gas curtailments

    SciTech Connect

    Schreibeis, R.L.

    1980-01-01

    An examination is made of specific activities undertaken by textile firms in North and South Carolina and Georgia to insulate themselves against production losses resulting from natural gas curtailments. Results of the research effort focusing on investigating patterns or trends of precautionary activities undertaken by the textile industry in response to fuel interruptions are presented. Chapter II delineates the scope of the project, research design, and nature of the textile industry. One hundred candidate firms for detailed study were identified and 34 discussed their alternate fuel strategies. Information obtained was analyzed by means of two statistical analysis techniques. Methods employed and results are described in Chapter III. Overall results are presented in Chapter IV. Variations in the strategies implemented by various concerns were accounted for in terms of geographic location, plant size, plant type, and the duration and extent of curtailment impacts. Ranges of expenditures for short- and long-term strategies are identified.

  17. An advanced coarse-grained nucleosome core particle model for computer simulations of nucleosome-nucleosome interactions under varying ionic conditions.

    PubMed

    Fan, Yanping; Korolev, Nikolay; Lyubartsev, Alexander P; Nordenskiöld, Lars

    2013-01-01

    In the eukaryotic cell nucleus, DNA exists as chromatin, a compact but dynamic complex with histone proteins. The first level of DNA organization is the linear array of nucleosome core particles (NCPs). The NCP is a well-defined complex of 147 bp DNA with an octamer of histones. Interactions between NCPs are of paramount importance for higher levels of chromatin compaction. The polyelectrolyte nature of the NCP implies that nucleosome-nucleosome interactions must exhibit a great influence from both the ionic environment as well as the positively charged and highly flexible N-terminal histone tails, protruding out from the NCP. The large size of the system precludes a modelling analysis of chromatin at an all-atom level and calls for coarse-grained approximations. Here, a model of the NCP that include the globular histone core and the flexible histone tails described by one particle per each amino acid and taking into account their net charge is proposed. DNA wrapped around the histone core was approximated at the level of two base pairs represented by one bead (bases and sugar) plus four beads of charged phosphate groups. Computer simulations, using a Langevin thermostat, in a dielectric continuum with explicit monovalent (K(+)), divalent (Mg(2+)) or trivalent (Co(NH(3))(6) (3+)) cations were performed for systems with one or ten NCPs. Increase of the counterion charge results in a switch from repulsive NCP-NCP interaction in the presence of K(+), to partial aggregation with Mg(2+) and to strong mutual attraction of all 10 NCPs in the presence of CoHex(3+). The new model reproduced experimental results and the structure of the NCP-NCP contacts is in agreement with available data. Cation screening, ion-ion correlations and tail bridging contribute to the NCP-NCP attraction and the new NCP model accounts for these interactions. PMID:23418426

  18. Genomic approaches for determining nucleosome occupancy in yeast.

    PubMed

    Tsui, Kyle; Durbic, Tanja; Gebbia, Marinella; Nislow, Corey

    2012-01-01

    The basic unit of chromatin is double-stranded DNA wrapped around nucleosome core particles, the -classic "beads-on-a-string" described by Kornberg and colleagues. The history of chromatin studies has experienced many peaks, from the earliest studies by Miescher to the biochemical studies of the 1960s and 1970s, the appreciation for the influence of histone modifications in controlling gene expression in the 1990s to the genome-wide studies that began in 2006 and show no signs of abating with the introduction of next generation sequencing technologies. Genome-wide studies not only have provided a base line to understand relationships between chromatin structure and gene function but also have begun to provide new insights into chromatin remodelling. Here, we describe the use of genome-wide approaches to determining nucleosome occupancy in yeast. PMID:22183606

  19. Role of hMOF-dependent histone H4 lysine 16 acetylation in the maintenance of TMS1/ASC gene activity1

    PubMed Central

    Kapoor-Vazirani, Priya; Kagey, Jacob D.; Powell, Doris R.; Vertino, Paula M.

    2008-01-01

    Epigenetic silencing of tumor suppressor genes in human cancers is associated with aberrant methylation of promoter region CpG islands and local alterations in histone modifications. However, the mechanisms that drive these events remain unclear. Here, we establish an important role for histone H4 lysine 16 acetylation (H4K16Ac) and the histone acetyltransferase hMOF in the regulation of TMS1/ASC, a proapoptotic gene that undergoes epigenetic silencing in human cancers. In the unmethylated and active state, the TMS1 CpG island is spanned by positioned nucleosomes and marked by histone H3K4 methylation. H4K16Ac was uniquely localized to two sharp peaks that flanked the unmethylated CpG island and corresponded to strongly positioned nucleosomes. Aberrant methylation and silencing of TMS1 was accompanied by loss of the H4K16Ac peaks, loss of nucleosome positioning, hypomethylation of H3K4 and hypermethylation of H3K9. In addition, a single peak of histone H4 lysine 20 trimethylation was observed near the transcription start site. Downregulation of hMOF or another component of the MSL complex resulted in a gene-specific decrease in H4K16Ac, loss of nucleosome positioning and silencing of TMS1. Gene silencing induced by H4K16 deacetylation occurred independently of changes in histone methylation and DNA methylation and was reversed upon hMOF re-expression. These results indicate that the selective marking of nucleosomes flanking the CpG island by hMOF is required to maintain TMS1 gene activity, and suggest that the loss of H4K16Ac, mobilization of nucleosomes and transcriptional downregulation may be important events in the epigenetic silencing of certain tumor suppressor genes in cancer. PMID:18701507

  20. Super-coil me: Sizing up centromeric nucleosomes

    PubMed Central

    Williams, Ruth

    2009-01-01

    Every chromosome needs a centromere for proper segregation during cell division. Centromeric chromatin wraps around histones, providing an anchor for kinetochore proteins and spindle attachment. It is clear why cells need centromeres, but how they form and what they look like is less so. Recent reports extend our understanding of chaperones involved in centromere formation. And other accounts of half-sized, right-handed nucleosomes have created an unexpected twist. PMID:19704018

  1. Maintenance of Nucleosomal Balance in cis by Conserved AAA-ATPase Yta7

    PubMed Central

    Lombardi, Laura M.; Davis, Matthew D.; Rine, Jasper

    2015-01-01

    The extent of chromatin compaction is a fundamental driver of nuclear metabolism . Yta7 is a chromatin-associated AAA-ATPase, the human ortholog of which, ANCCA/ATAD2 transcriptionally activates pathways of malignancy in a broad range of cancers. Yta7 directly binds histone H3, and bulk chromatin exhibits increased nucleosomal density in yta7Δ mutants. The suppression of yta7Δ mutant growth and transcriptional phenotypes in budding yeast by decreased dosage of histones H3 and H4 indicates the acute sensitivity of cells to deviations in nucleosome spacing. This study investigated the global changes in chromatin structure upon Yta7 loss or overexpression and determined which of these effects reflected direct Yta7 activity. Metagene analysis of Yta7’s genome-wide localization indicated peak binding of Yta7 just downstream of the transcription start site. Cells lacking Yta7 exhibited increased nucleosome density within genes downstream of the +1 nucleosome, as defined by decreased internucleosomal distance, resulting in progressively 5′-shifted nucleosomes within the gene. In contrast, cells overexpressing Yta7 displayed profound 3′-shifts in nucleosome position and reduced nucleosome density within genes. Importantly, Yta7-bound regions were enriched for nucleosomal shifts, indicating that Yta7 acted locally to modulate nucleosome spacing. The phenotype of cells lacking both Yta7 and Rtt106, the histone H3/H4 chaperone, indicated that Yta7 functions in both Rtt106-dependent and Rtt106-independent ways to modulate nucleosome spacing within genes. This study suggested that Yta7 affected nucleosome density throughout the gene by both blocking Rtt106 from entering the gene, as shown previously at HTA1, and facilitating the loss of nucleosomes from the 5′-end. PMID:25406467

  2. Toward a unified physical model of nucleosome patterns flanking transcription start sites

    PubMed Central

    Möbius, Wolfram; Osberg, Brendan; Tsankov, Alexander M.; Rando, Oliver J.; Gerland, Ulrich

    2013-01-01

    Recent genome-wide maps of nucleosome positions in different eukaryotes revealed patterns around transcription start sites featuring a nucleosome-free region flanked by a periodic modulation of the nucleosome density. For Saccharomyces cerevisiae, the average in vivo pattern was previously shown to be quantitatively described by a “nucleosome gas” model based on the statistical positioning mechanism. However, this simple physical description is challenged by the fact that the pattern differs quantitatively between species and by recent experiments that appear incompatible with statistical positioning, indicating important roles for chromatin remodelers. We undertake a data-driven search for a unified physical model to describe the nucleosome patterns of 12 yeast species and also consider an extension of the model to capture remodeling effects. We are led to a nucleosome gas that takes into account nucleosome breathing, i.e., transient unwrapping of nucleosomal DNA segments. This known biophysical property of nucleosomes rationalizes a “pressure”-induced dependence of the effective nucleosome size that is suggested by the data. By fitting this model to the data, we find an average energy cost for DNA unwrapping consistent with previous biophysical experiments. Although the available data are not sufficient to reconstruct chromatin remodeling mechanisms, a minimal model extension by one mechanism yields an “active nucleosome gas” that can rationalize the behavior of systems with reduced histone–DNA ratio and remodeler knockouts. We therefore establish a basis for a physical description of nucleosome patterns that can serve as a null model for sequence-specific effects at individual genes and in models of transcription regulation. PMID:23509245

  3. Strong nucleosomes of mouse genome including recovered centromeric sequences.

    PubMed

    Salih, Bilal F; Teif, Vladimir B; Tripathi, Vijay; Trifonov, Edward N

    2015-01-01

    Recently discovered strong nucleosomes (SNs) characterized by visibly periodical DNA sequences have been found to concentrate in centromeres of Arabidopsis thaliana and in transient meiotic centromeres of Caenorhabditis elegans. To find out whether such affiliation of SNs to centromeres is a more general phenomenon, we studied SNs of the Mus musculus. The publicly available genome sequences of mouse, as well as of practically all other eukaryotes do not include the centromere regions which are difficult to assemble because of a large amount of repeat sequences in the centromeres and pericentromeric regions. We recovered those missing sequences using the data from MNase-seq experiments in mouse embryonic stem cells, where the sequence of DNA inside nucleosomes, including missing regions, was determined by 100-bp paired-end sequencing. Those nucleosome sequences, which are not matching to the published genome sequence, would largely belong to the centromeres. By evaluating SN densities in centromeres and in non-centromeric regions, we conclude that mouse SNs concentrate in the centromeres of telocentric mouse chromosomes, with ~3.9 times excess compared to their density in the rest of the genome. The remaining non-centromeric SNs are harbored mainly by introns and intergenic regions, by retro-transposons, in particular. The centromeric involvement of the SNs opens new horizons for the chromosome and centromere structure studies. PMID:24998943

  4. Dynamics of the Competition Between Nucleosome Unwrapping and DNA Binding Proteins

    NASA Astrophysics Data System (ADS)

    Bundschuh, Ralf

    2015-03-01

    In eukaryotic organisms DNA is tightly wrapped into nucleosomes. This bears the question how this DNA can be accessed in order to be copied, transcribed, or repaired. A process that allows access to the DNA is transient unwrapping of the DNA from the histone proteins. We have developed a quantitative model of this unwrapping process which we calibrate by comparison to nucleosome unzipping experiments by the Wang group. We then apply this model to quantitatively explain the dynamics of transcription factor binding within nucleosomal DNA. In this context, it has been well known that nucleosomes reduce the affinity for transcription factors to binding sites covered by the nucleosome. It has been assumed that this is due to a reduction in on-rate since a transcription factor can only bind when a rare thermal fluctuation of the nucleosome makes the DNA accessible. However, recent experimental data surprisingly shows that the off-rate of transcription factors is also strongly affected in the presence of a nucleosome. The application of our nucleosome unwrapping free energy landscape demonstrates that this increase in off-rate by several orders of magnitude is a consequence of a competition between partial binding events of dimeric transcription factors and the nucleosome. This material is based upon work supported by the National Science Foundation under Grant Nos. 1105458 and 1410172.

  5. Preferential Nucleosome Assembly at DNA Triplet Repeats from the Myotonic Dystrophy Gene

    NASA Astrophysics Data System (ADS)

    Wang, Yuh-Hwa; Amirhaeri, Sorour; Kang, Seongman; Wells, Robert D.; Griffith, Jack D.

    1994-07-01

    The expansion of CTG repeats in DNA occurs in or near genes involved in several human diseases, including myotonic dystrophy and Huntington's disease. Nucleosomes, the basic structural element of chromosomes, consist of 146 base pairs of DNA coiled about an octamer of histone proteins and mediate general transcriptional repression. Electron microscopy was used to examine in vitro the nucleosome assembly of DNA containing repeating CTG triplets. The efficiency of nucleosome formation increased with expanded triplet blocks, suggesting that such blocks may repress transcription through the creation of stable nucleosomes.

  6. Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure

    PubMed Central

    North, Justin A.; Šimon, Marek; Ferdinand, Michelle B.; Shoffner, Matthew A.; Picking, Jonathan W.; Howard, Cecil J.; Mooney, Alex M.; van Noort, John; Poirier, Michael G.; Ottesen, Jennifer J.

    2014-01-01

    Nucleosomes contain ∼146 bp of DNA wrapped around a histone protein octamer that controls DNA accessibility to transcription and repair complexes. Posttranslational modification (PTM) of histone proteins regulates nucleosome function. To date, only modest changes in nucleosome structure have been directly attributed to histone PTMs. Histone residue H3(T118) is located near the nucleosome dyad and can be phosphorylated. This PTM destabilizes nucleosomes and is implicated in the regulation of transcription and repair. Here, we report gel electrophoretic mobility, sucrose gradient sedimentation, thermal disassembly, micrococcal nuclease digestion and atomic force microscopy measurements of two DNA–histone complexes that are structurally distinct from nucleosomes. We find that H3(T118ph) facilitates the formation of a nucleosome duplex with two DNA molecules wrapped around two histone octamers, and an altosome complex that contains one DNA molecule wrapped around two histone octamers. The nucleosome duplex complex forms within short ∼150 bp DNA molecules, whereas altosomes require at least ∼250 bp of DNA and form repeatedly along 3000 bp DNA molecules. These results are the first report of a histone PTM significantly altering the nucleosome structure. PMID:24561803

  7. Crystal structures of heterotypic nucleosomes containing histones H2A.Z and H2A

    PubMed Central

    Horikoshi, Naoki; Arimura, Yasuhiro; Taguchi, Hiroyuki; Kurumizaka, Hitoshi

    2016-01-01

    H2A.Z is incorporated into nucleosomes located around transcription start sites and functions as an epigenetic regulator for the transcription of certain genes. During transcriptional regulation, the heterotypic H2A.Z/H2A nucleosome containing one each of H2A.Z and H2A is formed. However, previous homotypic H2A.Z nucleosome structures suggested that the L1 loop region of H2A.Z would sterically clash with the corresponding region of canonical H2A in the heterotypic nucleosome. To resolve this issue, we determined the crystal structures of heterotypic H2A.Z/H2A nucleosomes. In the H2A.Z/H2A nucleosome structure, the H2A.Z L1 loop structure was drastically altered without any structural changes of the canonical H2A L1 loop, thus avoiding the steric clash. Unexpectedly, the heterotypic H2A.Z/H2A nucleosome is more stable than the homotypic H2A.Z nucleosome. These data suggested that the flexible character of the H2A.Z L1 loop plays an essential role in forming the stable heterotypic H2A.Z/H2A nucleosome. PMID:27358293

  8. The Role of Histone H4 Biotinylation in the Structure of Nucleosomes

    PubMed Central

    Filenko, Nina A.; Kolar, Carol; West, John T.; Smith, S. Abbie; Hassan, Yousef I.; Borgstahl, Gloria E. O.; Zempleni, Janos; Lyubchenko, Yuri L.

    2011-01-01

    Background Post-translational modifications of histones play important roles in regulating nucleosome structure and gene transcription. It has been shown that biotinylation of histone H4 at lysine-12 in histone H4 (K12Bio-H4) is associated with repression of a number of genes. We hypothesized that biotinylation modifies the physical structure of nucleosomes, and that biotin-induced conformational changes contribute to gene silencing associated with histone biotinylation. Methodology/Principal Findings To test this hypothesis we used atomic force microscopy to directly analyze structures of nucleosomes formed with biotin-modified and non-modified H4. The analysis of the AFM images revealed a 13% increase in the length of DNA wrapped around the histone core in nucleosomes with biotinylated H4. This statistically significant (p<0.001) difference between native and biotinylated nucleosomes corresponds to adding approximately 20 bp to the classical 147 bp length of nucleosomal DNA. Conclusions/Significance The increase in nucleosomal DNA length is predicted to stabilize the association of DNA with histones and therefore to prevent nucleosomes from unwrapping. This provides a mechanistic explanation for the gene silencing associated with K12Bio-H4. The proposed single-molecule AFM approach will be instrumental for studying the effects of various epigenetic modifications of nucleosomes, in addition to biotinylation. PMID:21298003

  9. Transcription-dependent and transcription-independent nucleosome disruption induced by dioxin.

    PubMed Central

    Morgan, J E; Whitlock, J P

    1992-01-01

    In mouse hepatoma cells, both the regulatory and the transcribed regions of the cyp1a1 gene assume a nucleosomal configuration when the gene is silent; two nucleosomes occupy specific sites at the transcriptional promoter. Activation of transcription by 2,3,7,8-tetrachlorodibenzo-p-dioxin is accompanied by changes in chromatin structure, which depend upon a functional aromatic hydrocarbon (Ah) receptor. In the transcribed region of the gene, nucleosome disruption occurs as a consequence of RNA elongation. In contrast, at the promoter, loss of positioned nucleosome sis independent of transcription and represents an event in the mechanism by which the liganded Ah receptor enhances transcriptional initiation. Images PMID:1454854

  10. Structure of human nucleosome containing the testis-specific histone variant TSH2B

    SciTech Connect

    Urahama, Takashi; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2014-03-25

    The crystal structure of human nucleosome containing the testis-specific TSH2B variant has been determined. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, and induces a local structural difference between TSH2B and H2B in nucleosomes. The human histone H2B variant TSH2B is highly expressed in testis and may function in the chromatin transition during spermatogenesis. In the present study, the crystal structure of the human testis-specific nucleosome containing TSH2B was determined at 2.8 Å resolution. A local structural difference between TSH2B and canonical H2B in nucleosomes was detected around the TSH2B-specific amino-acid residue Ser85. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, but in the canonical nucleosome the H2B Asn84 residue (corresponding to the TSH2B Ser85 residue) forms water-mediated hydrogen bonds with the H4 Arg78 residue. In contrast, the other TSH2B-specific amino-acid residues did not induce any significant local structural changes in the TSH2B nucleosome. These findings may provide important information for understanding how testis-specific histone variants form nucleosomes during spermatogenesis.

  11. The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences

    PubMed Central

    Kensche, Philip Reiner; Hoeijmakers, Wieteke Anna Maria; Toenhake, Christa Geeke; Bras, Maaike; Chappell, Lia; Berriman, Matthew; Bártfai, Richárd

    2016-01-01

    In eukaryotes, the chromatin architecture has a pivotal role in regulating all DNA-associated processes and it is central to the control of gene expression. For Plasmodium falciparum, a causative agent of human malaria, the nucleosome positioning profile of regulatory regions deserves particular attention because of their extreme AT-content. With the aid of a highly controlled MNase-seq procedure we reveal how positioning of nucleosomes provides a structural and regulatory framework to the transcriptional unit by demarcating landmark sites (transcription/translation start and end sites). In addition, our analysis provides strong indications for the function of positioned nucleosomes in splice site recognition. Transcription start sites (TSSs) are bordered by a small nucleosome-depleted region, but lack the stereotypic downstream nucleosome arrays, highlighting a key difference in chromatin organization compared to model organisms. Furthermore, we observe transcription-coupled eviction of nucleosomes on strong TSSs during intraerythrocytic development and demonstrate that nucleosome positioning and dynamics can be predictive for the functionality of regulatory DNA elements. Collectively, the strong nucleosome positioning over splice sites and surrounding putative transcription factor binding sites highlights the regulatory capacity of the nucleosome landscape in this deadly human pathogen. PMID:26578577

  12. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules

    PubMed Central

    Kelly, Theresa K.; Liu, Yaping; Lay, Fides D.; Liang, Gangning; Berman, Benjamin P.; Jones, Peter A.

    2012-01-01

    DNA methylation and nucleosome positioning work together to generate chromatin structures that regulate gene expression. Nucleosomes are typically mapped using nuclease digestion requiring significant amounts of material and varying enzyme concentrations. We have developed a method (NOMe-seq) that uses a GpC methyltransferase (M.CviPI) and next generation sequencing to generate a high resolution footprint of nucleosome positioning genome-wide using less than 1 million cells while retaining endogenous DNA methylation information from the same DNA strand. Using a novel bioinformatics pipeline, we show a striking anti-correlation between nucleosome occupancy and DNA methylation at CTCF regions that is not present at promoters. We further show that the extent of nucleosome depletion at promoters is directly correlated to expression level and can accommodate multiple nucleosomes and provide genome-wide evidence that expressed non-CpG island promoters are nucleosome-depleted. Importantly, NOMe-seq obtains DNA methylation and nucleosome positioning information from the same DNA molecule, giving the first genome-wide DNA methylation and nucleosome positioning correlation at the single molecule, and thus, single cell level, that can be used to monitor disease progression and response to therapy. PMID:22960375

  13. Binding of the wheat basic leucine zipper protein EmBP-1 to nucleosomal binding sites is modulated by nucleosome positioning.

    PubMed Central

    Niu, X; Adams, C C; Workman, J L; Guiltinan, M J

    1996-01-01

    To investigate interactions of the basic leucine zipper transcription factor EmBP-1 with its recognition sites in nucleosomal DNA, we reconstituted an abscisic acid response element and a high-affinity binding site for EmBP-1 into human and wheat nucleosome cores in vitro. DNA binding studies demonstrated that nucleosomal elements can be bound by EmBP-1 at reduced affinities relative to naked DNA. EmBP-1 affinity was lowest when the recognition sites were positioned near the center of the nucleosome. Binding was achieved with a truncated DNA binding domain; however, binding of full-length EmBP-1 caused additional strong DNase I hypersensitivity flanking the binding sites. Similar results were observed with nucleosomes reconstituted with either human or wheat histones, demonstrating a conserved mechanism of transcription factor-nucleosome interactions. We conclude that positioning of recognition sequences on a nucleosome may play an important role in regulating interactions of EmBP-1 with its target sites in plant cells. PMID:8837510

  14. Dynamic Competing Histone H4 K5K8 Acetylation and Butyrylation Are Hallmarks of Highly Active Gene Promoters.

    PubMed

    Goudarzi, Afsaneh; Zhang, Di; Huang, He; Barral, Sophie; Kwon, Oh Kwang; Qi, Shankang; Tang, Zhanyun; Buchou, Thierry; Vitte, Anne-Laure; He, Tieming; Cheng, Zhongyi; Montellier, Emilie; Gaucher, Jonathan; Curtet, Sandrine; Debernardi, Alexandra; Charbonnier, Guillaume; Puthier, Denis; Petosa, Carlo; Panne, Daniel; Rousseaux, Sophie; Roeder, Robert G; Zhao, Yingming; Khochbin, Saadi

    2016-04-21

    Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features. PMID:27105113

  15. Dynamic Competing Histone H4 K5K8 Acetylation and Butyrylation Are Hallmarks of Highly Active Gene Promoters

    PubMed Central

    Goudarzi, Afsaneh; Zhang, Di; Huang, He; Barral, Sophie; Kwon, Oh Kwang; Qi, Shankang; Tang, Zhanyun; Buchou, Thierry; Vitte, Anne-Laure; He, Tieming; Cheng, Zhongyi; Montellier, Emilie; Gaucher, Jonathan; Curtet, Sandrine; Debernardi, Alexandra; Charbonnier, Guillaume; Puthier, Denis; Petosa, Carlo; Panne, Daniel; Rousseaux, Sophie; Roeder, Robert G.; Zhao, Yingming; Khochbin, Saadi

    2016-01-01

    Summary Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features. PMID:27105113

  16. The roles of the monomer length and nucleotide context of plant tandem repeats in nucleosome positioning.

    PubMed

    Levitsky, Victor G; Babenko, Vladimir N; Vershinin, Alexander V

    2014-01-01

    Similar to regularly spaced nucleosomes in chromatin, long tandem DNA arrays are composed of regularly alternating monomers that have almost identical primary DNA structures. Such a similarity in the structural organization makes these arrays especially interesting for studying the role of intrinsic DNA preferences in nucleosome positioning. We have studied the nucleosome formation potential of DNA tandem repeat families with different monomer lengths (ML). In total, 165 plant tandem repeat families from the PlantSat database (http://w3lamc.umbr.cas.cz/PlantSat/) were divided into two classes based on the number of nucleosome repeats in one DNA monomer. For predicting nucleosome formation potential, we developed the Phase method, which combines the advantages of multiple bioinformatics models. The Phase method was able to distinguish interfamily differences and intrafamily monomer variation and identify the influence of nucleotide context on nucleosome formation potential. Three main types of nucleosome arrangement in DNA tandem repeat arrays--regular, partially regular (partial), and flexible--were distinguished among a great variety of Phase profiles. The regular type, in which all nucleosomes of the monomer array are positioned in a context-dependent manner, is the most representative type of the class 1 families, with ML equal to or a multiple of the nucleosome repeat length (NRL). In the partially regular type, nucleotide context influences the positioning of only a subset of nucleosomes. The influence of the nucleotide context on nucleosome positioning has the least effect in the flexible type, which contains the greatest number of families (65). The majority of these families belong to class 2 and have nonmultiple ML to NRL ratios. PMID:23384242

  17. Determinants of nucleosome positioning and their influence on plant gene expression

    PubMed Central

    Liu, Ming-Jung; Seddon, Alexander E.; Tsai, Zing Tsung-Yeh; Major, Ian T.; Floer, Monique; Howe, Gregg A.; Shiu, Shin-Han

    2015-01-01

    Nucleosome positioning influences the access of transcription factors (TFs) to their binding sites and gene expression. Studies in plant, animal, and fungal models demonstrate similar nucleosome positioning patterns along genes and correlations between occupancy and expression. However, the relationships among nucleosome positioning, cis-regulatory element accessibility, and gene expression in plants remain undefined. Here we showed that plant nucleosome depletion occurs on specific 6-mer motifs and this sequence-specific nucleosome depletion is predictive of expression levels. Nucleosome-depleted regions in Arabidopsis thaliana tend to have higher G/C content, unlike yeast, and are centered on specific G/C-rich 6-mers, suggesting that intrinsic sequence properties, such as G/C content, cannot fully explain plant nucleosome positioning. These 6-mer motif sites showed higher DNase I hypersensitivity and are flanked by strongly phased nucleosomes, consistent with known TF binding sites. Intriguingly, this 6-mer-specific nucleosome depletion pattern occurs not only in promoter but also in genic regions and is significantly correlated with higher gene expression level, a phenomenon also found in rice but not in yeast. Among the 6-mer motifs enriched in genes responsive to treatment with the defense hormone jasmonate, there are no significant changes in nucleosome occupancy, suggesting that these sites are potentially preconditioned to enable rapid response without changing chromatin state significantly. Our study provides a global assessment of the joint contribution of nucleosome occupancy and motif sequences that are likely cis-elements to the control of gene expression in plants. Our findings pave the way for further understanding the impact of chromatin state on plant transcriptional regulatory circuits. PMID:26063739

  18. Reactivity in ELISA with DNA-loaded nucleosomes in patients with proliferative lupus nephritis.

    PubMed

    Dieker, Jürgen; Schlumberger, Wolfgang; McHugh, Neil; Hamann, Philip; van der Vlag, Johan; Berden, Jo H

    2015-11-01

    Autoantibodies against nucleosomes are considered a hallmark of systemic lupus erythematosus (SLE). We compared in patients with proliferative lupus nephritis the diagnostic usefulness of a dsDNA-loaded nucleosome ELISA (anti-dsDNA-NcX) with ELISAs in which dsDNA or nucleosomes alone were coated. First, we analysed whether DNA loading on nucleosomes led to masking of epitopes by using defined monoclonal anti-DNA, anti-histone and nucleosome-specific autoantibodies to evaluate the accessibility of nucleosomal epitopes in the anti-dsDNA-NcX ELISA. Second, autoantibody levels were measured in these 3 ELISAs in 100 patients with proliferative lupus nephritis (LN) before immunosuppressive treatment and in 128 non-SLE disease controls. In patients with LN inter-assay comparisons and associations with clinical and serological parameters were analysed. The panel of monoclonal antibodies revealed that all epitopes were equally accessible in the anti-dsDNA-NcX ELISA as in the two other ELISAs. Patients with proliferative lupus nephritis were positive with dsDNA-loaded nucleosomes in 86%, with DNA in 66% and with nucleosomes in 85%. In the non-lupus disease control group these frequencies were 1.6% (2 out of 128) for both the anti-dsDNA-NcX and the anti-dsDNA ELISA and 0% in the anti-nucleosome ELISA. The levels in the anti-dsDNA-NcX ELISA were high in a group of patients with LN that showed absent reactivity in the anti-DNA or low levels in the anti-nucleosome ELISA. Anti-dsDNA-NcX positivity was associated with higher SLEDAI scores within this group. Within nucleosome-based ELISAs, we propose the anti-dsDNA-NcX ELISA as the preferred test system. PMID:26597199

  19. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative.

    PubMed Central

    Adams, C C; Workman, J L

    1995-01-01

    To investigate mechanisms by which multiple transcription factors access complex promoters and enhancers within cellular chromatin, we have analyzed the binding of disparate factors to nucleosome cores. We used a purified in vitro system to analyze binding of four activator proteins, two GAL4 derivatives, USF, and NF-kappa B (KBF1), to reconstituted nucleosome cores containing different combinations of binding sites. Here we show that binding of any two or all three of these factors to nucleosomal DNA is inherently cooperative. Thus, the binuclear Zn clusters of GAL4, the helix-loop-helix/basic domains of USF, and the rel domain of NF-kappa B all participated in cooperative nucleosome binding, illustrating that this effect is not restricted to a particular DNA-binding domain. Simultaneous binding by two factors increased the affinity of individual factors for nucleosomal DNA by up to 2 orders of magnitude. Importantly, cooperative binding resulted in efficient nucleosome binding by factors (USF and NF-kappa B) which independently possess little nucleosome-binding ability. The participation of GAL4 derivatives in cooperative nucleosome binding required only DNA-binding and dimerization domains, indicating that disruption of histone-DNA contacts by factor binding was responsible for the increased affinity of additional factors. Cooperative nucleosome binding required sequence-specific binding of all transcription factors, appeared to have spatial constraints, and was independent of the orientation of the binding sites on the nucleosome. These results indicate that cooperative nucleosome binding is a general mechanism that may play a significant role in loading complex enhancer and promoter elements with multiple diverse factors in chromatin and contribute to the generation of threshold responses and transcriptional synergy by multiple activator sites in vivo. PMID:7862134

  20. BRG1 Governs Nanog Transcription in Early Mouse Embryos and Embryonic Stem Cells via Antagonism of Histone H3 Lysine 9/14 Acetylation

    PubMed Central

    Carey, Timothy S.; Cao, Zubing; Choi, Inchul; Ganguly, Avishek; Wilson, Catherine A.; Paul, Soumen

    2015-01-01

    During mouse preimplantation development, the generation of the inner cell mass (ICM) and trophoblast lineages comprises upregulation of Nanog expression in the ICM and its silencing in the trophoblast. However, the underlying epigenetic mechanisms that differentially regulate Nanog in the first cell lineages are poorly understood. Here, we report that BRG1 (Brahma-related gene 1) cooperates with histone deacetylase 1 (HDAC1) to regulate Nanog expression. BRG1 depletion in preimplantation embryos and Cdx2-inducible embryonic stem cells (ESCs) revealed that BRG1 is necessary for Nanog silencing in the trophoblast lineage. Conversely, in undifferentiated ESCs, loss of BRG1 augmented Nanog expression. Analysis of histone H3 within the Nanog proximal enhancer revealed that H3 lysine 9/14 (H3K9/14) acetylation increased in BRG1-depleted embryos and ESCs. Biochemical studies demonstrated that HDAC1 was present in BRG1-BAF155 complexes and BRG1-HDAC1 interactions were enriched in the trophoblast lineage. HDAC1 inhibition triggered an increase in H3K9/14 acetylation and a corresponding rise in Nanog mRNA and protein, phenocopying BRG1 knockdown embryos and ESCs. Lastly, nucleosome-mapping experiments revealed that BRG1 is indispensable for nucleosome remodeling at the Nanog enhancer during trophoblast development. In summary, our data suggest that BRG1 governs Nanog expression via a dual mechanism involving histone deacetylation and nucleosome remodeling. PMID:26416882

  1. BRG1 Governs Nanog Transcription in Early Mouse Embryos and Embryonic Stem Cells via Antagonism of Histone H3 Lysine 9/14 Acetylation.

    PubMed

    Carey, Timothy S; Cao, Zubing; Choi, Inchul; Ganguly, Avishek; Wilson, Catherine A; Paul, Soumen; Knott, Jason G

    2015-12-01

    During mouse preimplantation development, the generation of the inner cell mass (ICM) and trophoblast lineages comprises upregulation of Nanog expression in the ICM and its silencing in the trophoblast. However, the underlying epigenetic mechanisms that differentially regulate Nanog in the first cell lineages are poorly understood. Here, we report that BRG1 (Brahma-related gene 1) cooperates with histone deacetylase 1 (HDAC1) to regulate Nanog expression. BRG1 depletion in preimplantation embryos and Cdx2-inducible embryonic stem cells (ESCs) revealed that BRG1 is necessary for Nanog silencing in the trophoblast lineage. Conversely, in undifferentiated ESCs, loss of BRG1 augmented Nanog expression. Analysis of histone H3 within the Nanog proximal enhancer revealed that H3 lysine 9/14 (H3K9/14) acetylation increased in BRG1-depleted embryos and ESCs. Biochemical studies demonstrated that HDAC1 was present in BRG1-BAF155 complexes and BRG1-HDAC1 interactions were enriched in the trophoblast lineage. HDAC1 inhibition triggered an increase in H3K9/14 acetylation and a corresponding rise in Nanog mRNA and protein, phenocopying BRG1 knockdown embryos and ESCs. Lastly, nucleosome-mapping experiments revealed that BRG1 is indispensable for nucleosome remodeling at the Nanog enhancer during trophoblast development. In summary, our data suggest that BRG1 governs Nanog expression via a dual mechanism involving histone deacetylation and nucleosome remodeling. PMID:26416882

  2. Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing

    PubMed Central

    Fennessy, Ross T.; Owen-Hughes, Tom

    2016-01-01

    Nucleosomes, the fundamental subunits of eukaryotic chromatin, are organized with respect to transcriptional start sites. A major challenge to the persistence of this organization is the disassembly of nucleosomes during DNA replication. Here, we use complimentary approaches to map the locations of nucleosomes on recently replicated DNA. We find that nucleosomes are substantially realigned with promoters during the minutes following DNA replication. As a result, the nucleosomal landscape is largely re-established before newly replicated chromosomes are partitioned into daughter cells and can serve as a platform for the re-establishment of gene expression programmes. When the supply of histones is disrupted through mutation of the chaperone Caf1, a promoter-based architecture is generated, but with increased inter-nucleosomal spacing. This indicates that the chromatin remodelling enzymes responsible for spacing nucleosomes are capable of organizing nucleosomes with a range of different linker DNA lengths. PMID:27106059

  3. Enzymatic and chemical mapping of nucleosome distribution in purified micro- and macronuclei of the ciliated model organism, Tetrahymena thermophila.

    PubMed

    Chen, Xiao; Gao, Shan; Liu, Yifan; Wang, Yuanyuan; Wang, Yurui; Song, Weibo

    2016-09-01

    Genomic distribution of the nucleosome, the basic unit of chromatin, contains important epigenetic information. To map nucleosome distribution in structurally and functionally differentiated micronucleus (MIC) and macronucleus (MAC) of the ciliate Tetrahymena thermophila, we have purified MIC and MAC and performed micrococcal nuclease (MNase) digestion as well as hydroxyl radical cleavage. Different factors that may affect MNase digestion were examined, to optimize mono-nucleosome production. Mono-nucleosome purity was further improved by ultracentrifugation in a sucrose gradient. As MNase concentration increased, nucleosomal DNA sizes in MIC and MAC converged on 147 bp, as expected for the nucleosome core particle. Both MNase digestion and hydroxyl radical cleavage consistently showed a nucleosome repeat length of ~200 bp in MAC of Tetrahymena, supporting ~50 bp of linker DNA. Our work has systematically tested methods currently available for mapping nucleosome distribution in Tetrahymena, and provided a solid foundation for future epigenetic studies in this ciliated model organism. PMID:27568393

  4. Acetyl transfer in arylamine metabolism

    PubMed Central

    Booth, J.

    1966-01-01

    1. N-Hydroxyacetamidoaryl compounds (hydroxamic acids) are metabolites of arylamides, and an enzyme that transfers the acetyl group from these derivatives to arylamines has been found in rat tissues. The reaction products were identified by thin-layer chromatography and a spectrophotometric method, with 4-amino-azobenzene as acetyl acceptor, was used to measure enzyme activity. 2. The acetyltransferase was in the soluble fraction of rat liver, required a thiol for maximum activity and had a pH optimum between 6·0 and 7·5. 3. The soluble fractions of various rat tissues showed decreasing activity in the following order: liver, adrenal, kidney, lung, spleen, testis, heart; brain was inactive. 4. With the exception of aniline and aniline derivatives all the arylamines tested were effective as acetyl acceptors but aromatic compounds with side-chain amino groups were inactive. 5. The N-hydroxyacetamido derivatives of 2-naphthylamine, 4-amino-biphenyl and 2-aminofluorene were active acetyl donors but N-hydroxyacetanilide showed only slight activity. Acetyl-CoA was not a donor. 6. Some properties of the enzyme are compared with those of other acetyltransferases. PMID:5969287

  5. Fatal Intoxication with Acetyl Fentanyl.

    PubMed

    Cunningham, Susan M; Haikal, Nabila A; Kraner, James C

    2016-01-01

    Among the new psychoactive substances encountered in forensic investigations is the opioid, acetyl fentanyl. The death of a 28-year-old man from recreational use of this compound is reported. The decedent was found in the bathroom of his residence with a tourniquet secured around his arm and a syringe nearby. Postmortem examination findings included marked pulmonary and cerebral edema and needle track marks. Toxicological analysis revealed acetyl fentanyl in subclavian blood, liver, vitreous fluid, and urine at concentrations of 235 ng/mL, 2400 ng/g, 131 ng/mL, and 234 ng/mL, respectively. Acetyl fentanyl was also detected in the accompanying syringe. Death was attributed to recreational acetyl fentanyl abuse, likely through intravenous administration. The blood acetyl fentanyl concentration is considerably higher than typically found in fatal fentanyl intoxications. Analysis of this case underscores the need for consideration of a wide range of compounds with potential opioid-agonist activity when investigating apparent recreational drug-related deaths. PMID:26389815

  6. High mobility group nucleosome-binding family proteins promote astrocyte differentiation of neural precursor cells.

    PubMed

    Nagao, Motoshi; Lanjakornsiripan, Darin; Itoh, Yasuhiro; Kishi, Yusuke; Ogata, Toru; Gotoh, Yukiko

    2014-11-01

    Astrocytes are the most abundant cell type in the mammalian brain and are important for the functions of the central nervous system. Although previous studies have shown that the STAT signaling pathway or its regulators promote the generation of astrocytes from multipotent neural precursor cells (NPCs) in the developing mammalian brain, the molecular mechanisms that regulate the astrocytic fate decision have still remained largely unclear. Here, we show that the high mobility group nucleosome-binding (HMGN) family proteins, HMGN1, 2, and 3, promote astrocyte differentiation of NPCs during brain development. HMGN proteins were expressed in NPCs, Sox9(+) glial progenitors, and GFAP(+) astrocytes in perinatal and adult brains. Forced expression of either HMGN1, 2, or 3 in NPCs in cultures or in the late embryonic neocortex increased the generation of astrocytes at the expense of neurons. Conversely, knockdown of either HMGN1, 2, or 3 in NPCs suppressed astrocyte differentiation and promoted neuronal differentiation. Importantly, overexpression of HMGN proteins did not induce the phosphorylation of STAT3 or activate STAT reporter genes. In addition, HMGN family proteins did not enhance DNA demethylation and acetylation of histone H3 around the STAT-binding site of the gfap promoter. Moreover, knockdown of HMGN family proteins significantly reduced astrocyte differentiation induced by gliogenic signal ciliary neurotrophic factor, which activates the JAK-STAT pathway. Therefore, we propose that HMGN family proteins are novel chromatin regulatory factors that control astrocyte fate decision/differentiation in parallel with or downstream of the JAK-STAT pathway through modulation of the responsiveness to gliogenic signals. PMID:25069414

  7. Coregulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers.

    PubMed

    Barozzi, Iros; Simonatto, Marta; Bonifacio, Silvia; Yang, Lin; Rohs, Remo; Ghisletti, Serena; Natoli, Gioacchino

    2014-06-01

    Transcription factors (TFs) preferentially bind sites contained in regions of computationally predicted high nucleosomal occupancy, suggesting that nucleosomes are gatekeepers of TF binding sites. However, because of their complexity mammalian genomes contain millions of randomly occurring, unbound TF consensus binding sites. We hypothesized that the information controlling nucleosome assembly may coincide with the information that enables TFs to bind cis-regulatory elements while ignoring randomly occurring sites. Hence, nucleosomes would selectively mask genomic sites that can be contacted by TFs and thus be potentially functional. The hematopoietic pioneer TF Pu.1 maintained nucleosome depletion at macrophage-specific enhancers that displayed a broad range of nucleosome occupancy in other cell types and in reconstituted chromatin. We identified a minimal set of DNA sequence and shape features that accurately predicted both Pu.1 binding and nucleosome occupancy genome-wide. These data reveal a basic organizational principle of mammalian cis-regulatory elements whereby TF recruitment and nucleosome deposition are controlled by overlapping DNA sequence features. PMID:24813947

  8. Novel nucleosomal particles containing core histones and linker DNA but no histone H1

    PubMed Central

    Cole, Hope A.; Cui, Feng; Ocampo, Josefina; Burke, Tara L.; Nikitina, Tatiana; Nagarajavel, V.; Kotomura, Naoe; Zhurkin, Victor B.; Clark, David J.

    2016-01-01

    Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these ‘proto-chromatosomes’ are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1. PMID:26400169

  9. Differential Nucleosome Occupancies across Oct4-Sox2 Binding Sites in Murine Embryonic Stem Cells

    PubMed Central

    Sebeson, Amy; Xi, Liqun; Zhang, Quanwei; Sigmund, Audrey; Wang, Ji-Ping; Wang, Xiaozhong

    2015-01-01

    The binding sequence for any transcription factor can be found millions of times within a genome, yet only a small fraction of these sequences encode functional transcription factor binding sites. One of the reasons for this dichotomy is that many other factors, such as nucleosomes, compete for binding. To study how the competition between nucleosomes and transcription factors helps determine a functional transcription factor site from a predicted transcription factor site, we compared experimentally-generated in vitro nucleosome occupancy with in vivo nucleosome occupancy and transcription factor binding in murine embryonic stem cells. Using a solution hybridization enrichment technique, we generated a high-resolution nucleosome map from targeted regions of the genome containing predicted sites and functional sites of Oct4/Sox2 regulation. We found that at Pax6 and Nes, which are bivalently poised in stem cells, functional Oct4 and Sox2 sites show high amounts of in vivo nucleosome displacement compared to in vitro. Oct4 and Sox2, which are active, show no significant displacement of in vivo nucleosomes at functional sites, similar to nonfunctional Oct4/Sox2 binding. This study highlights a complex interplay between Oct4 and Sox2 transcription factors and nucleosomes among different target genes, which may result in distinct patterns of stem cell gene regulation. PMID:25992972

  10. DNA-guided establishment of nucleosome patterns within coding regions of a eukaryotic genome

    PubMed Central

    Beh, Leslie Y.; Müller, Manuel M.; Muir, Tom W.; Kaplan, Noam; Landweber, Laura F.

    2015-01-01

    A conserved hallmark of eukaryotic chromatin architecture is the distinctive array of well-positioned nucleosomes downstream from transcription start sites (TSS). Recent studies indicate that trans-acting factors establish this stereotypical array. Here, we present the first genome-wide in vitro and in vivo nucleosome maps for the ciliate Tetrahymena thermophila. In contrast with previous studies in yeast, we find that the stereotypical nucleosome array is preserved in the in vitro reconstituted map, which is governed only by the DNA sequence preferences of nucleosomes. Remarkably, this average in vitro pattern arises from the presence of subsets of nucleosomes, rather than the whole array, in individual Tetrahymena genes. Variation in GC content contributes to the positioning of these sequence-directed nucleosomes and affects codon usage and amino acid composition in genes. Given that the AT-rich Tetrahymena genome is intrinsically unfavorable for nucleosome formation, we propose that these “seed” nucleosomes—together with trans-acting factors—may facilitate the establishment of nucleosome arrays within genes in vivo, while minimizing changes to the underlying coding sequences. PMID:26330564