Proteins can be acetylated at the alpha-amino group of the N-terminal amino acid (methionine or the penultimate amino acid after methionine removal) or at the epsilon-amino group of internal lysines. In eukaryotes the majority of proteins are N-terminally acetylated, while this is extremely rare in bacteria. A ...
PubMed Central
Protein N-terminal acetylation is a major modification of eukaryotic proteins. Its functional implications include regulation of protein-protein interactions and targeting to membranes, as demonstrated by studies of a handful of proteins. Fifty years after its discovery, a ...
PubMed
Protein N-terminal acetylation is a major modification of eukaryotic proteins. Its functional implications include regulation of protein�protein interactions and targeting to membranes, as demonstrated by studies of a handful of ...
SUMMARYHuntington�s disease (HD) is an incurable neurodegenerative disease caused by neuronal accumulation of the mutant protein huntingtin. Improving clearance of the mutant protein is expected to prevent cellular dysfunction and neurodegeneration in HD. We report here that such clearance can be achieved by posttranslational modification of the mutant ...
Smad proteins regulate gene expression in response to TGFbeta signaling. Here we present evidence that Smad7 interacts with the transcriptional coactivator p300, resulting in acetylation of Smad7 on two lysine residues in its N terminus. Acetylation or mutation of these lysine residues stabilizes Smad7 and protects it from ...
Cotranslational protein N-terminal modifications, including proteolytic maturation such as initiator methionine excision by methionine aminopeptidases and N-terminal blocking, occur universally. Protein alpha-N-acetylation, or the transfer of the acetyl moiety of acetyl-coenzyme?A to nascent ...
ABSTRACT: The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT), there has ...
The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT), there has been a surge ...
Acetylation of nascent protein N?-termini is a common modification among archae and eukaryotes and can influence the structure and function of target proteins. This modification has been studied on an individual protein or (synthetic) peptide level or on a proteome scale ...
Like phosphorylation, acetylation of lysine residues within a protein is considered a biologically relevant modification that controls the activity of target proteins. During stress of cells, massive protein acetylation takes place. Here, we show that p38 mitogen-activated ...
Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%�80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic ...
The chromosomal translocations found in acute myelogenous leukemia (AML) generate oncogenic fusion transcription factors with aberrant transcriptional regulatory properties. Although therapeutic targeting of most leukemia fusion proteins remains elusive, the posttranslational modifications that control their function could be ...
Recent proteomics studies have revealed that protein acetylation is an abundant and evolutionarily conserved post-translational modification from prokaryotes to eukaryotes. Although an astonishing number of acetylated proteins have been identified in those studies, the acetyltransferases that ...
Acetylation of lysine residues is a post-translational modification with broad relevance to cellular signalling and disease biology. Enzymes that 'write' (histone acetyltransferases, HATs) and 'erase' (histone deacetylases, HDACs) acetylation sites are an area of extensive research in current drug development, but very few potent inhibitors that modulate ...
Acetylation of lysine residues is a post-translational modification with broad relevance to cellular signalling and disease biology. Enzymes that �write� (histone acetyltransferases, HATs) and �erase� (histone deacetylases, HDACs) acetylation sites are an area of extensive research in current drug development, ...
Lysine acetylation/deacetylation is increasingly being recognized as common post-translational modification that appears to be broadly operational throughout the cell. The functional roles of these modifications, outside of the nucleus, have not been extensively studied. Moreover, as acetyl-CoA donates the acetyl group for ...
Acetylation of histone and nonhistone proteins is an important posttranslational modification affecting many cellular processes. Here, we report that NuA4 acetylation of Sip2, a regulatory ? subunit of the Snf1 complex (yeast AMP-activated protein kinase), decreases as cells age. Sip2 ...
Protein acetylation has emerged as a major mechanism in regulating cellular metabolism. Whereas most glycolytic steps are reversible, the reaction catalyzed by pyruvate kinase is irreversible, and the reverse reaction requires phosphoenolpyruvate carboxykinase (PEPCK1) to commit for gluconeogenesis. Here, we show that acetylation ...
Overexpression of ornithine decarboxylase (ODC), resulting in increased polyamine metabolism, is a common feature of epithelial tumors. Polyamines play a complex role in promoting tumor development, affecting diverse cellular processes, including gene expression. One way polyamines may affect gene expression is to modulate the multiprotein complexes comprised of transcription factors and ...
Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate ...
The ubiquitin-like molecule, SUMO-1, a small protein essential for a variety of biological processes, is covalently conjugated to many intracellular proteins, especially to regulatory components of the transcriptional machinery, such as histones and transcription factors. Sumoylation provides either a stimulatory or an inhibitory signal for proliferation ...
The pRb (retinoblastoma protein) tumour suppressor protein has a crucial role in regulating the G1- to S-phase transition, and its phosphorylation by cyclin-dependent kinases is an established and important mechanism in controlling pRb activity. In addition, the targeted acetylation of lysine (K) residues 873/874 ...
eIF5A (eukaryotic translation initiation factor 5A) is the only cellular protein containing hypusine [N?-(4-amino-2-hydroxybutyl)lysine]. eIF5A is activated by the post-translational synthesis of hypusine and the hypusine modification is essential for cell proliferation. In the present study, we report selective acetylation of the hypusine and/or ...
SYNOPSISThe eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein containing hypusine, [N?-(4-amino-2-hydroxybutyl)lysine]. eIF5A is activated by the posttranslational synthesis of hypusine and the hypusine modification is essential for cell proliferation. In this study, we report selective acetylation of ...
The microtubule associated protein tau promotes neuronal survival through binding and stabilization of MTs. Phosphorylation regulates tau�microtubule interactions and hyperphosphorylation contributes to the aberrant formation of insoluble tau aggregates in Alzheimer�s disease (AD) and related tauopathies1. However, other pathogenic post-translational ...
There is emerging recognition of a novel fuel and redox sensing regulatory program that controls cellular adaptation via nonhistone protein lysine residue acetyl posttranslation modifications. This program functions in tissues with high energy demand and oxidative capacity and is highly enriched in the heart. Deacetylation is regulated by NAD(+)-dependent ...
There is emerging recognition of a novel fuel and redox sensing regulatory program that controls cellular adaptation via non-histone protein lysine-residue acetyl post-translation modifications. This program functions in tissues with high energy demand and oxidative capacity and is highly enriched in the heart. Deacetylation is regulated by ...
Histone deacetylases (HDACs) play a key role in homeostasis of protein acetylation in histone and nonhistone proteins and in regulating fundamental cellular activities. In this paper we review and discuss intriguing recent developments in the use of histone deacetylase inhibitors (HDACIs) to combat some critical conditions in an animal ...
Epidemiological and clinical observations provide consistent evidence that regular intake of aspirin may effectively inhibit the occurrence of epithelial tumors; however, the molecular mechanisms are not completely understood. In the present study, we determined the ability of aspirin to acetylate and post-translationally modify cellular proteins in ...
A method has been developed for the selective delivery of lipophilic immunomodulators to macrophages, which results in the induction of antitumor activity. This method utilizes exhaustively acetylated low density lipoprotein (acetyl-LDL) to deliver the lipophilic immunomodulator, muramyl tripeptide phosphatidylethanolamine (MTP-PtdEtn; amide composed of ...
N-terminal acetylation (N-Ac) is a highly abundant eukaryotic protein modification. Proteomics revealed a significant increase in the occurrence of N-Ac from lower to higher eukaryotes, but evidence explaining the underlying molecular mechanism(s) is currently lacking. We first analysed protein N-termini and their ...
The tumor suppressor p53 induces apo pto sis by altering the transcription of pro-apo pto tic targets in the nucleus and by a direct, nontranscriptional role at the mitochondria. Although the post-translational modifications regulating nuclear apo pto tic functions of p53 have been thoroughly characterized, little is known of how transcription-independent functions are ...
The role of lysines 2 and 81 as target sites for acetylation in full-length HMGB1 and truncated tail-less protein, respectively, has been studied by mutation analysis for the abilities of these proteins to bind and bend DNA. The DNA bending ability of truncated tail-less HMGB1 containing Lys-2 mutated to alanine ...
Epigenetic modifications like DNA methylation and histone acetylation play an important role in a wide range of brain disorders. Histone deacetylases (HDACs) regulate the homeostasis of histone acetylation. Histone deacetylase inhibitors, which initially were used as anticancer drugs, are recently suggested to act as neuroprotectors by enhancing synaptic ...
Romidepsin inhibited HDAC activity, produced acetylation of the histone proteins, up-regulated p21, and down-regulated cyclins B1 and D1, resulting in proliferation inhibition and apoptosis activation in 11z immortalized epithelial endometriotic cells. Our findings provide evidence that endometriotic cells are sensitive to the epigenetic effects of ...
Transforming growth factor-?1 (TGF-?1) promotes tissue fibrosis through the Smad3 signaling pathway. While phosphorylation is known to regulate Smad3 function, recent in vitro studies have suggested that acetylation may also regulate Smad3 function. This study investigated Smad3 acetylation in renal fibrosis. TGF-?1 stimulation of renal fibroblasts and ...
A number of bacteriophages have been identified that target the Vi capsular antigen of Salmonella enterica serovar Typhi. Here we show that these Vi phages represent a remarkably diverse set of phages belonging to three phage families, including Podoviridae and Myoviridae. Genome analysis facilitated the further classification of these phages and highlighted aspects of their ...
Histone acetyltransferases (HATs) catalyze the transfer of an acetyl group from an acetyl-coenzyme A donor molecule to specific lysine residues within proteins. The acetylation state of proteins, particularly histones, is known to modulate their intermolecular binding properties and control ...
The thyroid hormone receptor (TR)-alpha is a nuclear receptor that mediates both transrepression and ligand-dependent transactivation. Here we show that TRalpha is posttranslationally modified by acetylation in response to its own ligand (T(3)). Acetylation increases binding to DNA. Using mutagenesis, we identified three conserved lysine residues in the ...
SUMMARYHistone acetyltransferases (HATs) and histone deacetylases (HDACs) conduct many critical functions through nonhistone substrates in metazoans, but only chromatin-associated nonhistone substrates are known in Saccharomyces cerevisiae. Using yeast proteome microarrays, we identified and validated many nonchromatin substrates of the essential nucleosome acetyltransferase of H4 (NuA4) complex. ...
Histone lysine acetylation and methylation are important during gene transcription in a chromatin context1,2. Our knowledge about the types of protein modules that can interact with acetyl-lysine has so far been limited to bromodomains1. Recently, a tandem PHD (plant homeodomain) finger3 (PHD12) of human DPF3b, which functions in ...
An acetyl-histone peptide library was used to determine the thermodynamic parameters that define acetylation-dependent bromodomain-histone interactions. Bromodomains interact with histones by binding acetylated lysines. The bromodomain used in this study, BrD3, is derived from the polybromo-1 protein, which is a ...
The growing epidemic of obesity and metabolic diseases calls for a better understanding of adipocyte biology. The regulation of transcription in adipocytes is particularly important, as it is a target for several therapeutic approaches. Transcriptional outcomes are influenced by both histone modifications and transcription factor binding. Although the epigenetic states and ...
Hypoxia-inducible factor 1 alpha (HIF1?) is an essential part of the HIF-1 transcriptional complex that regulates angiogenesis, cellular metabolism and cancer development. In VHL-null kidney cancer cell lines, we previously reported that HIF1? proteins can be acetylated and inhibited by histone deacetylase inhibitors (HDACi) or specific siRNA against ...
Changes in expression levels of genes encoding for proteins that control metabolic pathways are essential to maintain nutrient and energy homeostasis in individual cells as well as in organisms. An important regulated step in this process is accomplished through covalent chemical modifications of proteins that form complexes with the chromatin of gene ...
Histone deacetylases (HDACs) play a key role in homeostasis of protein acetylation in histones and other proteins and in regulating fundamental cellular activities such as transcription. Imbalances in protein acetylation levels and dysfunctions in transcription are associated with a wide ...
Effects of Histone Acetylation on the Equilibrium Accessibility of Nucleosomal DNA Target Sites J Northwestern University Evanston, IL 60208, USA Posttranslational acetylation of the conserved core histone N accessibility of buried DNA target sites, histone acetylation could result in an ...
E-print Network
One consequence of the dramatic rise of antibiotic-resistant pathogenic bacteria is the need for new targets for antibiotics. Because membrane lipid biogenesis is essential for bacterial growth, enzymes of the fatty acid biosynthetic pathway offer attractive possibilities for the development of new antibiotics. Acetyl-coenzyme A carboxylase (ACC) catalyzes ...
The antioxidant N-acetyl-l-cysteine prevented the autophagy-dependent delivery of mitochondria to the vacuoles, as examined by fluorescence microscopy of mitochondria-targeted green fluorescent protein, transmission electron microscopy, and Western blot analysis of mitochondrial proteins. The effect of ...
Runx2 is a key transcription factor regulating osteoblast differentiation and skeletal morphogenesis, and FGF2 is one of the most important regulators of skeletal development. The importance of the ERK mitogen-activated protein (MAP) kinase pathway in cranial suture development was demonstrated by the findings that the inhibition of FGF/FGF receptor (FGFR) signaling by a MEK ...
Incubation of HbS (or HbA) with aspirin leads to incorporation of acetyl groups into the protein. Incorporation was followed by the use of aspirin labeled with 14C in the acetyl group. The acetylated hemoglobins show an increase in oxygen affinity compared to the parent ...
A wide variety of nuclear regulators and enzymes are subjected to acetylation of the lysine residue, which regulates different aspects of protein functions. The MYST family histone acetyltransferase, human ortholog of MOF (hMOF), plays critical roles in transcription activation by acetylating nucleosomal H4K16. In this study, we found ...
... POLYMERIZATION, PROTEINS, MUTATIONS, GENES, RIBONUCLEIC ACIDS, ACETYLATION, HISTONES, TRANSFERASES, TRANSCRIPTION ...
DTIC Science & Technology
Protein acetylation now rivals phosphorylation in frequency of occurrence but is incompletely understood. A�picture is presented in which protein acetylation is linked to available energy via the NAD-dependent deacetylases. This model suggests that protein acetylation ...
We used two chemical modifiers, tetranitromethane (TNM) and acetic anhydride, which specifically target accessible tyrosine and lysine residues, respectively, to modify Syrian hamster recombinant PrP(90-231) (rPrP) and PrP27-30, aiming at finding locations of conformational change. Modified proteins...
Technology Transfer Automated Retrieval System (TEKTRAN)
Insect chitin is a potential target for resistance plant proteins, but plant-derived chitin degrading enzymes active against insects are virtually unknown. Commercial beta-N-acetylhexosaminidase (NAHA, a chitin-degrading enzyme) from jack bean Canavalia ensiformis caused significant mortality of fa...
Polycomb group (PcG) proteins are transcriptional repressors, which regulate proliferation and cell fate decisions during development, and their deregulated expression is a frequent event in human tumours. The Polycomb repressive complex 2 (PRC2) catalyzes trimethylation (me3) of histone H3 lysine 27 (K27), and it is believed that this activity mediates transcriptional ...
SIRT1, a histone/protein deacetylase, and AMP-activated protein kinase (AMPK) are key enzymes responsible for longevity and energy homeostasis. We examined whether a mechanistic connection exists between these molecules that involves the major AMPK kinase LKB1. Initial studies demonstrated that LKB1 is acetylated in cultured ...
Abstract. We have identified a novel peroxisomal tar-geting sequence (PTS) at the extreme COOH terminus of human catalase. The last four amino acids of this protein (-KANL) are necessary and sufficient to effect targeting to peroxisomes in both human fibroblasts and Saccharomyces cerevisiae, when appended to the COOH terminus of the ...
Systemic lupus erythematosus (SLE) is a prototypic autoimmune inflammatory disease characterized by the production of autoantibodies directed against nuclear antigens such as nucleosomes, DNA and histone proteins found within the body's cells and plasma. Autoantibodies may induce disease by forming immune complexes that lodge in target organs or by ...
Systemic lupus erythematosus (SLE) is a prototypic autoimmune inflammatory disease characterized by the production of autoantibodies directed against nuclear antigens such as nucleosomes, DNA and histone proteins found within the body�s cells and plasma. Autoantibodies may induce disease by forming immune complexes that lodge in target organs or by ...
The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. Degradation signals (degrons) that are targeted by the N-end rule pathway include a set called N-degrons. The main determinant of an N-degron is a destabilizing N-terminal residue of a protein. In eukaryotes, the N-end ...
... recruitment of the checkpoint adaptor protein 53BP1; and acetylation of several lysine residues in the N-terminal ... to the repair machinery. Accessibility of Damaged Sites Acetylation of histone tail...
NBII National Biological Information Infrastructure
Inactivation of HIV-1 by repetitive intracellular acetyl transfer from acetyl-CoA to the nucleocapsid protein through a small molecule catalyst. Nature Chemical Biology. 2010. In Press.
Cancer.gov
Clostridial glycine reductase consists of proteins A, B, and C and catalyzes the reaction glycine + P{sub i} + 2e{sup {minus}} {yields} acetyl phosphate + NH{sub 4}{sup +}. Evidence was previously obtained that is consistent with the involvement of an acyl enzyme intermediate in this reaction. The authors now demonstrate that protein C ...
Energy Citations Database
Histone acetylation is a posttranslational modification that plays a role in regulating gene expression. More recently, other nonhistone proteins have been identified to be acetylated which can regulate their function, stability, localization, or interaction with other molecules. Modulating acetylation with ...
Aberrations in chromatin dynamics play a fundamental role in tumorigenesis, yet relatively little is known of the molecular mechanisms linking histone lysine methylation to neoplastic disease. ING4 (Inhibitor of Growth 4) is a native subunit of an HBO1 histone acetyltransferase (HAT) complex and a tumor suppressor protein. Here we show a critical role for specific recognition ...
SIRT3 is a major mitochondrial NAD{sup +}-dependent protein deacetylase playing important roles in regulating mitochondrial metabolism and energy production and has been linked to the beneficial effects of exercise and caloric restriction. SIRT3 is emerging as a potential therapeutic target to treat metabolic and neurological diseases. We report the first ...
SIRT3 is a major mitochondrial NAD+-dependent protein deacetylase playing important roles in regulating mitochondrial metabolism and energy production and has been linked to the beneficial effects of exercise and caloric restriction. SIRT3 is emerging as a potential therapeutic target to treat metabolic and neurological diseases. We ...
Glucocorticoids influence organ functions through the glucocorticoid receptor, a protein acetylated and deacetylated by several histone acetyltransferases and deacetylases. We reported that the circadian rhythm-related transcription factor "Clock", a key component of the biological CLOCK with inherent histone acetyltransferase activity, ...
The PII protein is a signal integrator involved in the regulation of nitrogen metabolism in bacteria and plants. Upon sensing of cellular carbon and energy availability, PII conveys the signal by interacting with target proteins, thereby modulating their biological activity. Plant PII is located to plastids; therefore, to identify new ...
Alternative translation initiation is a mechanism whereby functionally altered proteins are produced from a single mRNA. Internal initiation of translation generates N-terminally truncated protein isoforms, but such isoforms observed in immunoblot analysis are often overlooked or dismissed as degradation products. We identified an N-terminally truncated ...
Inhibitors of protein deacetylases have recently been established as a novel therapeutic principle for several human diseases, including cancer. The original notion of the mechanism of action of these compounds focused on the epigenetic control of transcriptional processes, especially of tumor suppressor genes, by interfering with the acetylation status of ...
Glucocorticoid (GC) hormones are secreted from the adrenal gland in a characteristic pulsatile pattern. This ultradian secretory activity exhibits remarkable plasticity, with distinct changes in response to both physiological and stressful stimuli in humans and experimental animals. It is therefore important to understand how the pattern of GC exposure regulates intracellular signaling through the ...
... of Yeast Cells by Inhibition of Histone H4 Acetylation. Radiat. Res. 170, 618�627 (2008). Deletion of genes for proteins involved in histone H4 acetylation produces sensitivity to DNA-damaging agents in bo...
The purpose of this proposal is to test the hypothesis that acetylation of PGC-1alpha by the Acetyl Transferase GCN5 associated proteins, Pc3 and WDR18, is a key regulatory modification that controls hepatic glucose production. This investigation has a de...
National Technical Information Service (NTIS)
We previously presented evidence that aspirin (acetylsalicylic acid) inhibits prostaglandin synthetase by acetylating and active site of the enzyme. In the current work, we have labeled the enzyme from an aceton-pentane powder of sheep vesicular gland using [acetyl-3H]aspirin and purified the [3H]acetyl-protein to near homogeneity. The ...
INSM1 is a downstream target gene of neurogenin 3 (ngn3). A promoter construct containing the -426/+40bp region transiently co-transfected into NIH-3T3 cells with a ngn3 expression plasmid resulted in a 12-fold increase in promoter activity. The ngn3/E47 heterodimer selectively binds and activates the E-box3 of the INSM1 promoter. The endogenous ngn3 and CREB-binding ...
Chemoenzymatic synthesis of N-acetyl-d-neuraminic acid from N-acetyl-d-glucosamine using the spore surface displayed N-acetyl-d-neuraminic acid aldolase at a high concentration (53.9 g liter(-1)) was achieved in this study. Thus, displaying a target enzyme on the surface of spores might be an alternative for ...
We have developed a new in-cell NMR method that is applicable to any type of cell and does not require target protein modification or specialized equipment. The stable-isotope-labeled target protein, thymosin beta4 (Tbeta4), was delivered to 293F cells, which were permeabilized by a pore-forming toxin, streptolysin ...
In affinity selection, calcineurin selects from a population of randomly modified calmodulins those species with which it prefers to interact. The method shows that acetylation of lysines affects calmodulin so as to interfere with its ability to interact with calcineurin. Monoacetylation of any lysine of calmodulin reduces its affinity for calcineurin by 5-10-fold. Multiple ...