Sample records for acetylcholine sodium nitroprusside

  1. Influence of vehicle resistance on transdermal iontophoretic delivery of acetylcholine and sodium nitroprusside in humans.

    PubMed

    Khan, Faisel; Newton, David J; Smyth, Emily C; Belch, Jill J F

    2004-09-01

    Iontophoresis is a valuable method of noninvasive drug delivery for assessment of skin microvascular function, but it is important to consider and minimize its potential nonspecific electrical effects on blood flow. The use of sodium chloride (NaCl) instead of water as the iontophoresis vehicle has been reported to reduce these effects because it has a lower electrical resistance. However, this argument may not be valid when an agonist is added to the vehicle because its resistance will be changed. The aim of our study was to determine whether there is a difference in resistance between water and NaCl when used as vehicles for iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP). Four cumulative doses of each drug, dissolved in either water or NaCl, were delivered via iontophoresis to the forearm skin of 14 healthy volunteers. We measured the resulting blood flow responses by using laser-Doppler imaging and the voltage across the electrodes for each delivery as an index of resistance. For ACh and SNP, there were no significant differences between the voltages measured when either water or NaCl was used as the vehicle. However, the blood flow responses to both agonists were significantly lower with NaCl (ACh: 25% lower, P < 0.001; SNP: 15% lower, P = 0.019). The use of NaCl is therefore unlikely to decrease any nonspecific electrical effects, and it may in fact reduce the effective dose of drug delivered. Deionized water is a better iontophoresis vehicle for the assessment of microvascular function in skin when using ACh and SNP.

  2. Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta

    PubMed Central

    Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae

    2015-01-01

    We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. l-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase. PMID:26273653

  3. Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta.

    PubMed

    Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae

    2015-01-01

    We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. L-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase.

  4. Treatment with sodium nitroprusside improves the endothelial function in aortic rings with endothelial dysfunction.

    PubMed

    Buzinari, Tereza Cristina; Oishi, Jorge Camargo; De Moraes, Thiago Francisco; Vatanabe, Izabela Pereira; Selistre-de-Araújo, Heloisa Sobreiro; Pestana, Cezar Rangel; Rodrigues, Gerson Jhonatan

    2017-07-15

    Verify if sodium nitroprusside (SNP) is able to improve endothelial function and if this effect is independent of nitric oxide (NO) release of the compound. Normotensive (2K) and hypertensive (2K-1C) wistar rats were used. Intact endothelium aortas were placed in a myograph and incubated with SNP: 0.1nM; 1nM or 10nM during 30min. Cumulative concentration-effect curves for acetylcholine (Ach) were realized to measure the relaxing capacity. Intracellular NO were measured (by DAF-2DA probe) in HUVEC treated with SNP 0.1nM or DETA/NO 0.1μM. The detection of intracellular superoxide radical (O 2 •- ) was obtained by using DHE probe. Treatment of 2K-1C aortic rings with SNP (0.1; 1.0 and 10nM) improved endothelium dependent relaxation induced by acetylcholine. This improvement induced by SNP was verified at the concentration of 0.1nM, which does not release NO, suggesting that this effect was not induced due to NO release by SNP compound. Besides, we show that the cell treatment with 0.1nM of SNP decreased the fluorescence intensity to DHE in cells stimulated with angiotensin II. These results indicate that SNP decreases the concentration of O 2 •- in HUVEC cells. The SNP at a concentration that does not release NO inside the cells is able to attenuate endothelial dysfunction. Acetylcholine (Ach) (PubChem CID:6060); angiotensin II human (Ang II) (PubChem CID: 16211177); diethylenetriamine/nitric oxide (DETA-NO) (PubChem CID 4518); dihydroethidium (DHE) (PubChem CID: 128682); phenylephrine (Phe) (PubChem CID: 5284443); sodium nitroprusside (SNP) (PubChem CID: 11963579); Thiazolyl Blue Tetrazolium Bromide (MTT) (PubChem CID: 64965); 4,5-diaminofluorescein diacetate (DAF-2DA); 4-hidroxy-Tempo (Tempol) (PubChem CID: 137994), were purchased from Sigma-Aldrich (St. Louis, MO, USA). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Clevidipine as a therapeutic and cost-effective alternative to sodium nitroprusside in patients with acute aortic syndromes.

    PubMed

    Alviar, Carlos L; Gutierrez, Alejandra; Cho, Leslie; Krishnaswamy, Amar; Saleh, Amr; Lincoff, Michael A; Roselli, Eric; Militello, Michael; Menon, Venu

    2018-06-01

    Sodium nitroprusside is the preferred agent for the treatment of high blood pressure during acute aortic syndrome if blood pressure remains elevated after heart rate control with beta-blockers. The increasing cost of sodium nitroprusside in the USA led us to assess the efficacy and safety of intravenous clevidipine, a calcium channel blocker with quick onset of action, short half-life and significantly lower costs than sodium nitroprusside, in patients presenting with acute aortic syndrome. We performed a retrospective chart review of consecutive patients admitted to the Cleveland Clinic Cardiac Intensive Care Unit from 2013-2016 with a diagnosis of acute aortic syndrome. Patients who received intravenous sodium nitroprusside were compared with those receiving intravenous clevidipine. The primary outcome was a significant difference in blood pressure at one, three and six hours. Secondary outcomes included time to achieving blood pressure target and in hospital mortality with rates of hypotension and bradycardia as safety endpoints. A total of 85 patients with suspected acute aortic pathology received clevidipine and 50 received sodium nitroprusside. Clinical and demographic characteristics were similar in both groups, except for a higher incidence of abdominal aortic aneurysm in the clevidipine group and for a trend towards higher use of labetalol in the clevidipine group. There were no significant differences in blood pressure or heart rate at one, three and six hours after starting either infusion. The rates of hypotension, bradycardia and in-hospital mortality did not differ. Time to achieve blood pressure control were also similar between groups. Intravenous clevidipine appears to be a safe and effective alternative to sodium nitroprusside for the management of high blood pressure during acute aortic dissection. In the USA, clevidipine could represent a cost effective therapy providing similar outcomes than sodium nitroprusside.

  6. Use of sodium nitroprusside in neurosurgical cases during anesthesia with enflurane.

    PubMed

    Vandesteene, A; Mouawad, E; Noterman, J; Deloof, T; Ewalenko, P; Genette, F

    1980-01-01

    In patients operated for cerebral aneurysm or angioma, the same basic method of anesthesia has been used. Premedication consisted of Thalamonal or diazepam. After induction with thiopentone, curarisation with pancuronium and tracheal intubation, anesthesia was maintained with N2O 70%, O2 30% and enflurane 1%. Small doses of fentanyl or Thalamonal were given at the beginning of anesthesia, but no more within 30 minutes before starting controlled hypotension. Adjuvant drugs and methods to reduce intracranial pressure were also used, such as dexamethasone, mannitol and cerebro-spinal fluid subtraction. The approach and dissection of the vascular lesion was done under controlled hypotension with sodium nitroprusside 0.01% solution. The mean dose of sodium nitroprusside to maintain a mean blood pressure at about 50 Torr was 1.37 mcg/kg/min.

  7. Cannabidiol and Sodium Nitroprusside: Two Novel Neuromodulatory Pharmacological Interventions to Treat and Prevent Psychosis.

    PubMed

    Crippa, José Alexandre; Hallak, Jaime Eduardo Cecílio; Abílio, Vanessa Costhek; de Lacerda, Acioly Luiz Tavares; Zuardi, Antonio Waldo

    2015-01-01

    Since most patients with schizophrenia do not respond properly to treatment, scientific effort has been driven to the development of new compounds acting on pharmacological targets beyond the dopaminergic system. Therefore, the aim is to review basic and clinical research findings from studies evaluating the effects of cannabidiol (CBD), an inhibitor of the reuptake and metabolism of anandamide and several other effects on nervous system, and sodium nitroprusside, a nitric oxide donor, on the prevention and treatment of psychosis. Animal and human research supports that CBD and sodium nitroprusside might be effective in the prevention and treatment of psychosis in general and especially in schizophrenia. The evidence available to date shows that CBD and sodium nitroprusside act in pathways associated with psychotic symptoms and that they may be important agents in the management of prodromal psychotic states and psychosis. This underscores the relevance of further research on the effects of these agents and others that mediate the activity of the cannabinoid system and of nitric oxide, as well as comparative studies of their antipsychotic effects and those of other antipsychotic drugs currently used to treat schizophrenia.

  8. Effect of sodium nitroprusside and 8-bromo cyclic GMP on nerve-mediated and acetylcholine-evoked secretory responses in the rat pancreas

    PubMed Central

    Yago, Maria D; Tapia, Jose A; Salido, Gines M; Adeghate, Ernest; Juma, Lubna M O; Martinez-Victoria, Emilio; Mañas, Mariano; Singh, Jaipaul

    2002-01-01

    The effects of sodium nitroprusside (SNP) and 8-bromo-guanosine 3′5′ cyclic monophosphate (8-Br-cyclic GMP) on nerve-mediated and acetylcholine (ACh)-evoked amylase secretion, tritiated choline ([3H]-choline) release and on intracellular free calcium concentration ([Ca2+]i) in the isolated rat pancreas were investigated.Electrical field stimulation (EFS; 10 Hz) and ACh (1×10−5 M) caused large increases in amylase output from pancreatic segments. The response to ACh was blocked by atropine (1×10−5 M) whereas the EFS-evoked response was markedly reduced but not abolished. In contrast, pretreatment with tetrodotoxin (1×10−6 M) abolished the secretory effect of EFS.Either SNP (1×10−3 M) or 8-Br-cyclic GMP (1×10−4 M) inhibited amylase secretion compared to basal. Combining either SNP or 8-Br-cyclic GMP with EFS resulted in a marked decrease in amylase output compared to EFS alone. In contrast, either SNP or 8-Br-cyclic GMP had no significant effect on the amylase response to ACh. When extracellular Ca2+ concentration ([Ca2+]o) was elevated from 2.56 mM to 5.12 mM, SNP failed to inhibit the response to EFS.EFS stimulated the release of 3H from pancreatic segments preloaded with [3H]-choline. Either SNP or 8-Br-cyclic GMP had no effect on basal 3H release but significantly reduced the EFS-evoked response.In fura-2 loaded acinar cells, SNP elicited a small decrease in [Ca2+]i compared to basal and had no effect on the ACh-induced [Ca2+]i peak response.Nitric oxide may modulate the release of endogenous neural ACh in response to EFS in the rat pancreas. PMID:11976267

  9. Flow dependence of forearm noradrenaline overflow, as assessed during mental stress and sodium nitroprusside infusion.

    PubMed

    Lindqvist, M; Melcher, A; Hjemdahl, P

    1999-01-01

    To evaluate the influence of blood flow on measurements of regional sympathetic nerve activity by radiotracer methodology ([3H]noradrenaline). Ten healthy men were studied under two conditions of elevated forearm blood flow: mental stress (Stroop colour word conflict test) and an intra-arterial infusion of sodium nitroprusside. Arterial blood pressure was measured invasively and forearm blood flow with strain-gauge plethysmography. Arterial and venous plasma adrenaline and noradrenaline were measured with high-performance liquid chromatography, and regional and total noradrenaline spillover were calculated. During mental stress, mean arterial pressure increased by 17%, heart rate by 16 beats/min, forearm blood flow by 117%, while forearm vascular resistance decreased by 44% (P < 0.001 for all). Sodium nitroprusside increased forearm blood flow dose-dependently, but elicited only minor effects on systemic haemodynamics. Mental stress increased arterial plasma noradrenaline by 52% (P < 0.001), and total body noradrenaline spillover by 75% (P < 0.001). During sodium nitroprusside infusion, arterial plasma noradrenaline increased only slightly and total body noradrenaline spillover was unaffected Forearm noradrenaline overflow increased from 5.4 +/- 0.9 to 16.9 +/- 2.6 pmol/min per I (P < 0.001) during mental stress and from 6.6 +/- 0.8 to 16.9 +/- 3.7 pmol/min per I (P < 0.001) during the second dose-step of sodium nitroprusside infusion. By intra-individual comparisons of forearm noradrenaline overflow increases during mental stress and during sodium nitroprusside infusion, with similar forearm blood flow increases, the flow dependence of forearm noradrenaline overflow was estimated. During mental stress, about 60% (median value, range 29-112%) of the increase in forearm noradrenaline overflow was attributed to the increase in forearm blood flow, whereas 40% was considered to reflect increased sympathetic nerve activity. There seems to be a considerable flow

  10. Skin blood flow responses to the iontophoresis of acetylcholine and sodium nitroprusside in man: possible mechanisms.

    PubMed

    Morris, S J; Shore, A C

    1996-10-15

    1. The mechanisms involved in the human skin blood flow responses to iontophoretic application of acetylcholine (ACH; delivered using an anodal charge) or sodium nitroprusside (SNP; administered with a cathodal charge) are unclear. The aims of this study were to investigate possible contributions of prostaglandin production to the increase in skin blood flow induced following the iontophoresis of ACh and to investigate possible contributions from local sensory nerves to the perfusion responses induced by ACh, SNP and their vehicles. 2. The contribution of prostaglandins to the ACh response was determined in a randomized double-blind study of eight healthy subjects, who were studied on two occasions. Basal responses to ACh were measured before the oral administration of 600 mg soluble aspirin in diluted orange juice (1 occasion or orange juice (1 occasion) and again 30 min after the drink. The contribution of local sensory nerve activation to the responses to ACh and ACh vehicle (8 subjects) and to SNP and SNP vehicle (7 subjects) was assessed. EMLA (5%) (a eutectic mixture of lignocaine and prilocaine) and placebo cream were applied to two separate areas on the forearm in a double-blind randomized manner 2 h before drug responses were measured. In all studies the skin microcirculation responses to iontophoretically applied drug vehicle (1 site) and drug (2 sites) were recorded by laser Doppler perfusion imaging. 3. The increase in forearm skin perfusion (P < 0.001) in response to the iontophoresis of ACh minus the response to ACh vehicle was not significantly different following placebo or aspirin administration. The increase in forearm skin red blood cell flux (P < 0.001) in response to the iontophoresis of ACh minus the response to ACh vehicle was not significantly different at the placebo-compared with the EMLA-treated site. THe small increase in perfusion (P < 0.001) in response to the iontophoresis of ACh vehicle was significantly inhibited at the EMLA

  11. Stability of Sodium Nitroprusside in 5% Dextrose Stored at 4°C in Polypropylene Syringes Protected from Light.

    PubMed

    Anderson, Collin R; Collins, Deborah; Laursen, Trevor; Arave, Trevor; Helm, Michael

    2016-01-01

    Sodium nitroprusside is a potent vasodilator employed intraoperatively and within critical care areas. The photolabile pharmaceutical agent has been used for decades and various stability studies have been executed. Due to potential shortages and the desire to batch compound sodium nitroprusside at a concentration of 1 mg/mL in polypropylene syringes, a new stability study was performed. Chromatographic analysis was conducted on a C18 column, with elution via an aqueous phase of 0.01 M sodium phosphate monobasic, adjusted to pH 6.5 with sodium hydroxide, and methanol (97.5:2.5) at a rate of 1 mL/min, and subsequent ultraviolet detection at 210 nm. Triplicate determinations of four samples, stored under refrigeration at 4°C, were obtained initially and on days 2, 5, and 9. Turbidity and pH measurements were performed in conjunction with visual observation on days of chromatographic analysis. Results demonstrate that sodium nitroprusside compounded in 5% dextrose at a concentration of 1 mg/mL, stored at 4°C protected from light in polypropylene syringes, is physically and chemically stable for at least 9 days. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  12. Vascular smooth muscle relaxation mediated by nitric oxide donors: a comparison with acetylcholine, nitric oxide andnitroxyl ion

    PubMed Central

    Wanstall, Janet C; Jeffery, Trina K; Gambino, Agatha; Lovren, Fina; Triggle, Christopher R

    2001-01-01

    Vasorelaxant properties of three nitric oxide (NO) donor drugs (glyceryl trinitrate, sodium nitroprusside and spermine NONOate) in mouse aorta (phenylephrine pre-contracted) were compared with those of endothelium-derived NO (generated with acetylcholine), NO free radical (NO·; NO gas solution) and nitroxyl ion (NO−; from Angeli's salt). The soluble guanylate cyclase inhibitor, ODQ (1H-(1,2,4-)oxadiazolo(4,3-a)-quinoxalin-1-one; 0.3, 1 and 10 μM), concentration-dependently inhibited responses to all agents. 10 μM ODQ abolished responses to acetylcholine and glyceryl trinitrate, almost abolished responses to sodium nitroprusside but produced parallel shifts (to a higher concentration range; no depression in maxima) in the concentration-response curves for NO gas solution, Angeli's salt and spermine NONOate. The NO· scavengers, carboxy-PTIO, (2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide; 100 μM) and hydroxocobalamin (100 μM), both inhibited responses to NO gas solution and to the three NO donor drugs, but not Angeli's salt. Hydroxocobalamin, but not carboxy-PTIO, also inhibited responses to acetylcholine. The NO− inhibitor, L-cysteine (3 mM), inhibited responses to Angeli's salt, acetylcholine and the three NO donor drugs, but not NO gas solution. The data suggest that, in mouse aorta, responses to all three NO donors involve (i) activation of soluble guanylate cyclase, but to differing degrees and (ii) generation of both NO· and NO−. Glyceryl trinitrate and sodium nitroprusside, which generate NO following tissue bioactivation, have profiles resembling the profile of endothelium-derived NO more than that of exogenous NO. Spermine NONOate, which generates NO spontaneously outside the tissue, was the drug that most closely resembled (but was not identical to) exogenous NO. PMID:11588100

  13. Dissimilarities between methylene blue and cyanide on relaxation and cyclic GMP formation in endothelium-intact intrapulmonary artery caused by nitrogen oxide-containing vasodilators and acetylcholine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignarro, L.J.; Harbison, R.G.; Wood, K.S.

    1986-01-01

    The objective of the present study was to ascertain whether cyanide shares the properties of methylene blue as a selective inhibitor of vascular smooth muscle relaxation elicited by agents that stimulate the formation of cyclic GMP. Experiments were performed with endothelium-intact rings prepared from bovine intrapulmonary artery. Methylene blue, a good inhibitor of soluble guanylate cyclase, antagonized both arterial relaxation and cyclic GMP accumulation in response to sodium nitroprusside, glyceryl trinitrate, S-nitroso-N-acetylpenicillamine and acetylcholine. In contrast, cyanide inhibited only the responses to sodium nitroprusside. Increasing concentrations of methylene blue depressed resting arterial levels of cyclic GMP and caused slowly developingmore » but marked contractions whereas cyanide was without effect. Contractile responses to phenylephrine, potassium and U46619 were potentiated by methylene blue but not by cyanide. Preincubation of dilute solutions of cyanide containing sodium nitroprusside in oxygenated Krebs' buffer at 37 degrees C for 15 min before addition to bath chambers depressed relaxation and cyclic GMP accumulation caused by sodium nitroprusside markedly. Similar treatment of glyceryl trinitrate, however, failed to alter its effects in arterial rings. A chemical inactivation of sodium nitroprusside by cyanide appears to account for the specific inhibitory action of cyanide on arterial responses to sodium nitroprusside. This study indicates clearly that cyanide does not share the properties of methylene blue as an inhibitor of arterial relaxation elicited by vasodilators that stimulate cyclic GMP formation.« less

  14. Nitroprusside and ECS-induced retrograde amnesia.

    PubMed

    Sudha, S; Andrade, C; Anand, A; Guido, S; Venkataraman, B V

    2001-03-01

    Previous research found that the administration of verapamil and felodipine immediately before electroconvulsive shocks (ECS) attenuated ECS-induced retrograde amnesia. This study examined whether sodium nitroprusside, an antihypertensive drug that does not affect calcium channels, has a similar action. Adult male Sprague-Dawley rats received nitroprusside (0.5 mg/kg ip) or saline 3 minutes before each of three once-daily true or sham ECS. Retention of pre-ECS learning was studied 1 day after ECS using a passive avoidance task. Nitroprusside was associated with increased seizure duration in ECS-treated rats, and with enhanced recall in both true and sham ECS groups. The latter finding suggests that nitroprusside nonspecifically improves cognitive functions, and does not support the hypothesis that ECS-induced cognitive impairment is a result of blood-brain barrier breach. Nitric oxide mechanisms may underlie the benefits purveyed by nitroprusside.

  15. Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro.

    PubMed

    Shodehinde, Sidiqat Adamson; Oboh, Ganiyu

    2013-06-01

    To evaluate and compare antioxidant activities of the aqueous extracts of unripe plantain (Musa paradisiaca), assess their inhibitory action on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro and to characterize the main phenolic constituents of the plantain products using gas chromatography analysis. Aqueous extracts of plantain products (raw, elastic pastry, roasted and boiled) flour of 0.1 g/mL (each) were used to determine their total phenol, total flavonoid, 1,1 diphenyl-2 picrylhydrazyl (DPPH) and hydroxyl (OH) radical scavenging ability. The inhibitory effect of the extracts on sodium nitroprusside induced lipid peroxidation was also determined. The results revealed that all the aqueous extracts showed antioxidant activity. The boiled flour had highest DPPH and OH radical scavenging ability while raw flour had the highest Fe(2+) chelating ability, sodium nitroprusside inhibitory effect and vitamin C content. The antioxidant results showed that elastic pastry had the highest total phenol and total flavonoid content. Characterization of the unripe plantain products for polyphenol contents using gas chromatography showed varied quantity of apigenin, myricetin, luteolin, capsaicin, isorhaemnetin, caffeic acid, kampferol, quercetin, p-hydroxybenzoic acid, shogaol, glycitein and gingerol per product on the spectra. Considering the antioxidant activities and ability to inhibit lipid peroxidation of unripe plantain, this could justify their traditional use in the management/prevention of diseases related to stress.

  16. Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro

    PubMed Central

    Shodehinde, Sidiqat Adamson; Oboh, Ganiyu

    2013-01-01

    Objective To evaluate and compare antioxidant activities of the aqueous extracts of unripe plantain (Musa paradisiaca), assess their inhibitory action on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro and to characterize the main phenolic constituents of the plantain products using gas chromatography analysis. Methods Aqueous extracts of plantain products (raw, elastic pastry, roasted and boiled) flour of 0.1 g/mL (each) were used to determine their total phenol, total flavonoid, 1,1 diphenyl-2 picrylhydrazyl (DPPH) and hydroxyl (OH) radical scavenging ability. The inhibitory effect of the extracts on sodium nitroprusside induced lipid peroxidation was also determined. Results The results revealed that all the aqueous extracts showed antioxidant activity. The boiled flour had highest DPPH and OH radical scavenging ability while raw flour had the highest Fe2+ chelating ability, sodium nitroprusside inhibitory effect and vitamin C content. The antioxidant results showed that elastic pastry had the highest total phenol and total flavonoid content. Characterization of the unripe plantain products for polyphenol contents using gas chromatography showed varied quantity of apigenin, myricetin, luteolin, capsaicin, isorhaemnetin, caffeic acid, kampferol, quercetin, p-hydroxybenzoic acid, shogaol, glycitein and gingerol per product on the spectra. Conclusions Considering the antioxidant activities and ability to inhibit lipid peroxidation of unripe plantain, this could justify their traditional use in the management/prevention of diseases related to stress. PMID:23730557

  17. Inhibition by sodium nitroprusside of the expression of inducible nitric oxide synthase in rat neutrophils.

    PubMed Central

    Mariotto, S; Cuzzolin, L; Adami, A; Del Soldato, P; Suzuki, H; Benoni, G

    1995-01-01

    A well-known nitric oxide (NO)-releasing compound, sodium nitroprusside (SNP), decreases in a dose-dependent manner NO synthase (NOS) activity induced in rat neutrophils by treatment with lipopolysaccharide (LPS). This inhibitory action of SNP seems not to be due to its direct effect on the enzyme activity. The strong nitrosonium ion (NO+) character of SNP could be responsible for its inhibition of NOS induction in neutrophils. PMID:7542530

  18. 77 FR 60441 - Pediatric Studies of Sodium Nitroprusside Conducted in Accordance With Section 409I of the Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0284] Pediatric Studies of Sodium Nitroprusside Conducted in Accordance With Section 409I of the Public Health... accordance with the Public Health Service Act (the PHS Act) and submitted to the Director of the National...

  19. [The effects of sildenafil citrate on the isolated rat aorta: comparative in vitro study].

    PubMed

    Ozbek, H; Güler, N; Aydin, S; Eryonucu, B; Bilge, M

    2001-03-01

    Sildenafil, an inhibitor of cGMP-specific phosphodiesterase 5 (PDE5), is currently being used as oral therapy for penile erectile dysfunction. The aim of this study was to investigate the relaxing effect of sildenafil on vascular tissue and compare it with the known vasodilatator agents, sodium nitroprusside and acetylcholine. Rat thoracic aorta samples were cut into rings, mounted on steel hooks, and immersed in aerated Krebs solution maintained at 37 degree C. Isometric responses were recorded by strain gauge transducers connected to a polygraph. Graded relaxations were induced using increasing concentrations of acetylcholine sodium nitroprusside and sildenafil. The agents all does-dependently relaxed rat aorta strips. The relaxing potential of sildenafil was found to be similar to sodium nitroprusside, but higher than acetylcholine. In the absence of regulatory mechanisms, sildenafil citrate has noticeable vasodilatatory effect in vitro.

  20. Nitric oxide donors, sodium nitroprusside and S-nitroso-N-acetylpencillamine, stimulate myoblast proliferation in vitro

    NASA Technical Reports Server (NTRS)

    Ulibarri, J. A.; Mozdziak, P. E.; Schultz, E.; Cook, C.; Best, T. M.

    1999-01-01

    Nitric oxide (NO) is an inter- and intracellular messenger involved in a variety of physiologic and pathophysiologic conditions. The effect of two NO donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) and their effect on myoblast proliferation was examined. Both donors stimulated an increase in myoblast cell number over a range (1-10 microM) of donor concentrations. However, 50 microM SNAP inhibited myoblast proliferation. Cell numbers from cultures treated with degraded 10 microM SNAP were equivalent to the control. Therefore, it appears NO can stimulate as well as inhibit myoblast proliferation.

  1. Formation of peroxynitrite during thiol-mediated reduction of sodium nitroprusside.

    PubMed

    Aleryani, S; Milo, E; Kostka, P

    1999-10-18

    Aerobic incubations of equimolar concentrations (5-500 microM) of sodium nitroprusside (SNP) and dithiothreitol (DTT) carried out at pH 7.4 in the absence of light caused a concentration-dependent increase in the rates of oxidation of dihydrorhodamine-123. The enhancement of the rates of oxidation under such conditions was only partially sensitive to the inhibition by 100 mM dimethyl sulfoxide implying the involvement of both peroxynitrite and hydroxyl radicals in the observed effects. The oxidation of dihydrorhodamine-123 in the presence of SNP and DTT was nearly completely abolished by superoxide dismutase (20 U/ml). It was found that such an effect of the enzyme was related primarily to the stabilization of an intermediate of SNP reduction formed upstream to the liberation of nitrosonium ligand. Increased rates of oxidation of dihydrorhodamine-123 were also observed during the reduction of SNP with either L-cysteine or glutathione. It is concluded that thiol-mediated reduction of SNP under aerobic conditions is accompanied by the formation of oxygen-derived free radicals. Nitrosonium ligand liberated from the product(s) of SNP reduction is, under such conditions, converted to peroxynitrite.

  2. Effect of infusion pump fill-stroke flow interruption on response to sodium nitroprusside in surgical patients.

    PubMed

    Mann, H J; Fuhs, D W; Cerra, F B

    1988-03-01

    The influence of the piston-cassette pump fill stroke on the pharmacodynamic response to sodium nitroprusside was evaluated prospectively in 10 adult patients in the surgical intensive-care unit. Simultaneous analog recordings of blood pressure and fill stroke were made over three complete pump fill cycles in each patient. Sodium nitroprusside flow rates and concentrations were recorded throughout the data-collection period. Analysis was based on the maximum pressure obtained during the two-minute baseline period before a fill stroke (Pmax baseline), the pressure at the initiation of the fill stroke (P initial), and the maximum pressure obtained during the two-minute period after the fill stroke (Pmax postfill). The maximum systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) during the baseline and post-fill-stroke periods were significantly different. The mean (+/- S.D.) variability in pressure between the time periods Pmax baseline and Pmax postfill was 3.9 +/- 5.8 mm Hg for SBP (range, -8 to +16), 3.5 +/- 5.7 mm Hg for DBP (range, -7 to +13), and 3.6 +/- 5.6 mm Hg for MBP (range, -7 to +14). The likelihood of a pharmacodynamic change was inconsistent both between and within patients. Within patients the difference between cycles for the variability between time periods ranged from a minimum of 2 mm Hg to a maximum of 16 mm Hg for SBP, 2 mm Hg to 17 mm Hg for DBP, and 1 mm Hg to 17 mm Hg for MBP. The variability within the baseline period (Pmax baseline - P initial) in SBP was significantly greater than the variability between the time periods, while the differences for DBP and MBP were not significant.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Blood pressure and mesenteric resistance arterial function after spaceflight

    NASA Technical Reports Server (NTRS)

    Hatton, Daniel C.; Yue, Qi; Chapman, Justin; Xue, Hong; Dierickx, Jacqueline; Roullet, Chantal; Coste, Sarah; Roullet, Jean Baptiste; McCarron, David A.

    2002-01-01

    Ground studies indicate that spaceflight may diminish vascular contraction. To examine that possibility, vascular function was measured in spontaneously hypertensive rats immediately after an 18-day shuttle flight. Isolated mesenteric resistance arterial responses to cumulative additions of norepinephrine, acetylcholine, and sodium nitroprusside were measured using wire myography within 17 h of landing. After flight, maximal contraction to norepinephrine was attenuated (P < 0.001) as was relaxation to acetylcholine (P < 0.001) and sodium nitroprusside (P < 0.05). At high concentrations, acetylcholine caused vascular contraction in vessels from flight animals but not in vessels from vivarium control animals (P < 0.05). The results are consistent with data from ground studies and indicate that spaceflight causes both endothelial-dependent and endothelial-independent alterations in vascular function. The resulting decrement in vascular function may contribute to orthostatic intolerance after spaceflight.

  4. Effects of nitroglycerin and nitroprusside on vascular capacitance of anesthetized ganglion-blocked dogs.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1991-10-01

    To determine whether changes in vascular capacitance induced by nitroglycerin (NTG) and nitroprusside were due to changes in compliance or unstressed vascular volume, doses producing similar reductions in arterial pressure (Psa) were studied on separate days in six dogs anesthetized and ventilated with pentobarbital after splenectomy during ganglion blockade with hexamethonium. Mean circulatory filling pressure (Pmcf) was determined during transient circulatory arrest induced by acetylcholine at baseline blood volumes and after increases of 5 and 10 ml/kg. Central blood volumes (CBVs, pulmonary artery to aortic root) were determined from transit times, and separately measured cardiac output (CO) was estimated by thermodilution (right atrium to pulmonary artery). NTG and nitroprusside produced similar reductions in Psa and Pmcf without significantly altering right atrial pressure (Pra), pressure gradient for venous return, or CO. Total vascular compliance was not altered, but total vascular capacitance was increased on an average of 4.0 +/- 1.4 ml/kg after NTG and 3.0 +/- 1.3 ml/kg after nitroprusside by increases in unstressed volume. Both drugs caused a variable reduction in CBV, averaging 2 ml/kg. Thus, both drugs produced a large increase in peripheral venous capacitance by increasing unstressed vascular volume without altering total vascular compliance.

  5. Effect of medication on microvascular vasodilatation in patients with systemic lupus erythematosus.

    PubMed

    Bengtsson, Christine; Andersson, Sven E; Edvinsson, Lars; Edvinsson, Marie-Louise; Sturfelt, Gunnar; Nived, Ola

    2010-12-01

    The aim of this study was to investigate the microvascular responses in the skin, to local heat, iontophoretically administered acetylcholine and to sodium nitroprusside in relation to cardiovascular damage in patients with systemic lupus erythematosus (SLE) and matched controls. We also wanted to examine if the ongoing medication in SLE patients influenced this vascular response. We investigated 30 women with SLE and compared them with 20 age and sex-matched controls. The cutaneous blood flow response to local heat (+44°C), iontophoretically administered endothelium-dependent (acetylcholine), as well as independent (sodium nitroprusside) vasodilatation, was measured by laser Doppler flowmetry. Clinical data and medication were retrieved from the clinical database and patient records. The cutaneous microvascular reactivity did not differ between SLE patients and a group of matched controls nor did it correlate with cardiovascular damage [assessed by Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SLICC/ACR-DI)]. However, patients on antimalarial drugs (hydroxychloroquine n = 8 and chloroquine diphosphate n = 3) responded more strongly to sodium nitroprusside (endothelium-independent vasodilatation) compared with those without antimalarial drugs (p < 0.01). The response to acetylcholine was higher among patients on warfarin compared with those without (p < 0.05), whereas glucocorticoid use (≥5 mg daily) was associated with reduced response to acetylcholine (p < 0.05). Smokers in general tended to have a lower response to acetylcholine (p = 0.064). Smoking SLE patients versus non-smoking SLE patients had a significantly lower response to acetylcholine (p = 0.01). Medication with antimalarial drugs-enhanced endothelium-independent vasodilatation, while glucocorticoid use was associated with reduction and warfarin-treatment with enhancement of endothelium-dependent vasodilatation. Therefore, despite there is no

  6. Coronary responses to endothelin-1 and acetylcholine during partial coronary ischaemia and reperfusion in anaesthetized goats.

    PubMed

    Martínez, Maria Angeles; Fernández, Nuria; Monge, Luis; García-Villalón, Angel Luis; Sanz, Elena; Diéguez, Godofredo

    2002-08-01

    To examine coronary reactivity to acetylcholine and endothelin-1 (ET-1) during partial ischaemia and reperfusion, flow in the left circumflex coronary artery was measured electromagnetically, and coronary partial ischaemia was induced by stenosis of this artery in anaesthetized goats. In eight animals not treated with N(G)-nitro-l-arginine methyl ester (l-NAME), coronary stenosis reduced coronary flow by 45%, mean arterial pressure by 16% and coronary vascular conductance by 34%. During this ischaemia, coronary vasodilatation to acetylcholine (0.003-0.1 microg) and sodium nitroprusside (SNP; 1-10 microg) was markedly reduced, and coronary vasoconstriction to ET-1 (0.01-0.3 nmol) was attenuated. After 30 min of reperfusion, coronary flow, mean arterial pressure and coronary vascular conductance remained decreased, and the effects of acetylcholine, SNP and ET-1 were as in control animals. In six goats treated with N(G)-nitro-l-arginine methyl ester, coronary stenosis reduced coronary flow by 26% and coronary vascular conductance by 24%, but did not affect mean arterial pressure. During this ischaemia, coronary vasodilatation to acetylcholine and SNP was also markedly reduced, but vasoconstriction to ET-1 was unaffected. After 30 min of reperfusion, coronary flow and coronary vascular conductance remained decreased and mean arterial pressure was normal; in addition, the effects of acetylcholine were lower, those of SNP were similar and those of ET-1 were higher than in control animals. Therefore partial ischaemia reduces the coronary vasodilator reserve and blunts coronary vasoconstriction to ET-1, and reperfusion does not alter the endothelium-dependent and -independent coronary vasodilatation or vasoconstriction to ET-1.

  7. Low abundance of mitochondrial DNA changes mitochondrial status and renders cells resistant to serum starvation and sodium nitroprusside insult.

    PubMed

    Lee, Sung Ryul; Heo, Hye Jin; Jeong, Seung Hun; Kim, Hyoung Kyu; Song, In Sung; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Han, Jin

    2015-07-01

    Mutation or depletion of mitochondrial DNA (mtDNA) can cause severe mitochondrial malfunction, originating from the mitochondrion itself, or from the crosstalk between nuclei and mitochondria. However, the changes that would occur if the amount of mtDNA is diminished are less known. Thus, we generated rat myoblast H9c2 cells containing lower amounts of mtDNA via ethidium bromide and uridine supplementation. After confirming the depletion of mtDNA by quantitative PCR and gel electrophoresis analysis, we investigated the changes in mitochondrial physical parameters by using flow cytometry. We also evaluated the resistance of these cells to serum starvation and sodium nitroprusside. H9c2 cells with diminished mtDNA contents showed decreased mitochondrial membrane potential, mass, free calcium, and zinc ion contents as compared to naïve H9c2 cells. Furthermore, cytosolic and mitochondrial reactive oxygen species levels were significantly higher in mtDNA-lowered H9c2 cells than in the naïve cells. Although the oxygen consumption rate and cell proliferation were decreased, mtDNA-lowered H9c2 cells were more resistant to serum deprivation and nitroprusside insults than the naïve H9c2 cells. Taken together, we conclude that the low abundance of mtDNA cause changes in cellular status, such as changes in reactive oxygen species, calcium, and zinc ion levels inducing resistance to stress. © 2015 International Federation for Cell Biology.

  8. Evidence for a possible role for nitric oxide in the modulation of heart activity in Achatina fulica and Helix aspersa.

    PubMed

    White, A R; Curtis, S A; Walker, R J

    2004-02-01

    The effects of nitric oxide (NO) donors, S-nitroso-N-acetylpenicillamine, S-nitroso-l-glutathione, sodium nitroprusside and sodium nitrite were investigated on the activity of the isolated hearts of Achatina fulica and Helix aspersa. NO donors inhibited heart activity in a concentration-dependent manner. The only exception was sodium nitroprusside, which excited H. aspersa heart. The inhibitory effects of these NO donors were reduced by the NO scavenger, methylene blue, the guanylyl cyclase inhibitor, 1H-(1,2,4) Oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), and potentiated by 8-Br-cGMP and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Acetylcholine also inhibited the heart activity, and this inhibition was reduced by methylene blue and ODQ. Positive NADPH-diaphorase staining was located in the outer pericardial layer of the heart of A. fulica. The present results provide evidence that NO may modulate the activity of gastropod hearts, and this modulation may modify the inhibitory action of acetylcholine on heart activity.

  9. Sex-specific effects of cardiovascular risk factors on endothelium-dependent dilation and endothelin activity in middle-aged women and men.

    PubMed

    Brar, Vijaywant; Gill, Sartaj; Cardillo, Carmine; Tesauro, Manfredi; Panza, Julio A; Campia, Umberto

    2015-01-01

    Healthy middle-aged postmenopausal women have higher endothelium-dependent dilation and lower vasoconstrictor activity of endothelin-1 than men. Whether these sex-specific differences extend to patients with cardiovascular risk factors has not been investigated. The current study aimed to determine whether, in patients with cardiovascular risk factors, sex-specific differences exist in endothelium-dependent dilation and endothelin-1 activity. Forearm blood flow responses were measured by strain-gauge plethysmography during the intra-arterial infusion of acetylcholine, sodium nitroprusside, and the selective endothelin type A receptor blocker BQ-123 in 50 women and 64 men with cardiovascular risk factors. Acetylcholine and sodium nitroprusside induced a significant vasodilation in women and men alike (p < 0.01 for both). Also BQ-123 caused a significant vasodilation (p < 0.001) in both groups. The vasodilator response to acetylcholine was greater in women compared to men; however there were no differences in the response to sodium nitroprusside and BQ-123 (p = NS for both) between the two sex groups. Middle-aged women with cardiovascular risk factors have significantly higher endothelium-dependent dilation than middle-aged men; however, vascular endothelin 1 activity is similar in the two groups. These findings suggest that the presence of cardiovascular risk factors is associated with sex-specific effects on endothelium-dependent dilation but not on endothelin 1 activity. Further study is needed to confirm our findings and to characterize the mechanisms underlying this sex-specific regulation of endothelial function.

  10. Effect of isoproterenol, phenylephrine, and sodium nitroprusside on fundus pulsations in healthy volunteers.

    PubMed Central

    Schmetterer, L; Wolzt, M; Salomon, A; Rheinberger, A; Unfried, C; Zanaschka, G; Fercher, A F

    1996-01-01

    AIMS/BACKGROUND: Recently a laser interferometric method for topical measurement of fundus pulsations has been developed. Fundus pulsations in the macular region are caused by the inflow and outflow of blood into the choroid. The purpose of this work was to study the influence of a peripheral vasoconstricting (the alpha 1 adrenoceptor agonist phenylephrine), a predominantly positive inotropic (the non-specific beta adrenoceptor agonist isoproterenol), and a non-specific vasodilating (sodium nitroprusside) model drug on ocular fundus pulsations to determine reproducibility and sensitivity of the method. METHODS: In a double masked randomised crossover study the drugs were administered in stepwise increasing doses to 10 male and nine female healthy volunteers. Systemic haemodynamic variables and fundus pulsations were measured at all infusion steps. RESULTS: Fundus pulsation increased during infusion of isoproterenol with statistical significance versus baseline at the lowest dose of 0.1 microgram/min. Neither peripheral vasoconstriction nor peripheral vasodilatation affected the ocular fundus pulsations. CONCLUSIONS: Measurements of fundus pulsations is a highly reproducible method in healthy subjects with low ametropy. Changes of local pulsatile ocular blood flow were detectable with our method following the infusion of isoproterenol. As systemic pharmacological vasodilatation or vasoconstriction did not change fundus pulsations, further experimental work has to be done to evaluate the sensitivity of the laser interferometric fundus pulsation measurement in various eye diseases. PMID:8703859

  11. Effect of isoproterenol, phenylephrine, and sodium nitroprusside on fundus pulsations in healthy volunteers.

    PubMed

    Schmetterer, L; Wolzt, M; Salomon, A; Rheinberger, A; Unfried, C; Zanaschka, G; Fercher, A F

    1996-03-01

    Recently a laser interferometric method for topical measurement of fundus pulsations has been developed. Fundus pulsations in the macular region are caused by the inflow and outflow of blood into the choroid. The purpose of this work was to study the influence of a peripheral vasoconstricting (the alpha 1 adrenoceptor agonist phenylephrine), a predominantly positive inotropic (the non-specific beta adrenoceptor agonist isoproterenol), and a non-specific vasodilating (sodium nitroprusside) model drug on ocular fundus pulsations to determine reproducibility and sensitivity of the method. In a double masked randomised crossover study the drugs were administered in stepwise increasing doses to 10 male and nine female healthy volunteers. Systemic haemodynamic variables and fundus pulsations were measured at all infusion steps. Fundus pulsation increased during infusion of isoproterenol with statistical significance versus baseline at the lowest dose of 0.1 microgram/min. Neither peripheral vasoconstriction nor peripheral vasodilatation affected the ocular fundus pulsations. Measurements of fundus pulsations is a highly reproducible method in healthy subjects with low ametropy. Changes of local pulsatile ocular blood flow were detectable with our method following the infusion of isoproterenol. As systemic pharmacological vasodilatation or vasoconstriction did not change fundus pulsations, further experimental work has to be done to evaluate the sensitivity of the laser interferometric fundus pulsation measurement in various eye diseases.

  12. Acetylcholine released from cholinergic nerves contributes to cutaneous vasodilation during heat stress

    NASA Technical Reports Server (NTRS)

    Shibasaki, Manabu; Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Nitric oxide (NO) contributes to active cutaneous vasodilation during a heat stress in humans. Given that acetylcholine is released from cholinergic nerves during whole body heating, coupled with evidence that acetylcholine causes vasodilation via NO mechanisms, it is possible that release of acetylcholine in the dermal space contributes to cutaneous vasodilation during a heat stress. To test this hypothesis, in seven subjects skin blood flow (SkBF) and sweat rate were simultaneously monitored over three microdialysis membranes placed in the dermal space of dorsal forearm skin. One membrane was perfused with the acetylcholinesterase inhibitor neostigmine (10 microM), the second membrane was perfused with the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME; 10 mM) dissolved in the aforementioned neostigmine solution (l-NAME(Neo)), and the third membrane was perfused with Ringer solution as a control site. Each subject was exposed to approximately 20 min of whole body heating via a water-perfused suit, which increased mean body temperature from 36.4 +/- 0.1 to 37.5 +/- 0.1 degrees C (P < 0.05). After the heat stress, SkBF at each site was normalized to its maximum value, identified by administration of 28 mM sodium nitroprusside. Mean body temperature threshold for cutaneous vasodilation was significantly lower at the neostigmine-treated site relative to the other sites (neostigmine: 36.6 +/- 0.1 degrees C, l-NAME(Neo): 37.1 +/- 0.1 degrees C, control: 36.9 +/- 0.1 degrees C), whereas no significant threshold difference was observed between the l-NAME(Neo)-treated and control sites. At the end of the heat stress, SkBF was not different between the neostigmine-treated and control sites, whereas SkBF at the l-NAME(Neo)-treated site was significantly lower than the other sites. These results suggest that acetylcholine released from cholinergic nerves is capable of modulating cutaneous vasodilation via NO synthase mechanisms early in the heat stress but

  13. A selective spectrophotometric method for determination of rosoxacin antibiotic using sodium nitroprusside as a chromogenic reagent

    NASA Astrophysics Data System (ADS)

    Askal, Hassan F.; Refaat, Ibrahim H.; Darwish, Ibrahim A.; Marzouq, Mostafa A.

    2008-04-01

    A selective spectrophotometric method for the determination of rosoxacin (ROS), a 4-quinolone antimicrobial agent, has been developed and validated. The method was based on the reaction of ROS with alkaline sodium nitroprusside (SNP) reagent at room temperature forming a red colored chromogen measured at 455 nm. The conditions affecting the reaction (SNP concentration, pH, color-developing time, temperature, diluting solvent and chromogen stability time) were optimized. Under the optimum conditions, good linear relationship ( r = 0.9987) was obtained between the absorbance and the concentration of ROS in the range of 20-50 μg ml -1. The assay limits of detection and quantitation were 2.5 and 8.4 μg ml -1, respectively. The method was successfully applied to the analysis of bulk drug and laboratory-prepared tablets; the mean percentage recoveries were 100.1 ± 0.33 and 101.24 ± 1.28%, respectively. The results were compared favourably with those obtained by the reported method; no significant difference in the accuracy and precision as revealed by the accepted values of t- and F-tests, respectively. The robustness and ruggedness of the method was checked and satisfactory results were obtained. The proposed method was found to be highly selective for ROS among the fluoroquinolone antibiotics. The reaction mechanism was proposed and it proceeded in two steps; the formation of nitroferrocyanide by the action of sodium hydroxide alkalinity on SNP and the subsequent formation of the colored nitrosyl-ROS derivative by the attack at position 6 of ROS.

  14. Huperzine A derivative M3 protects PC12 cells against sodium nitroprusside-induced apoptosis

    PubMed Central

    Ning, Na; Hu, Jin-feng; Yuan, Yu-he; Zhang, Xin-yuan; Dai, Jun-gui; Chen, Nai-hong

    2012-01-01

    Aim: To investigate the effects of M3, a derivative of huperzine A, on the apoptosis induced by sodium nitroprusside (SNP) in PC12 cells. Methods: Cell viability was detected using MTT method. Apoptosis was examined with annexin V/prodium iodide (PI) stain. The levels of reactive oxygen species (ROS) were measured using fluorophotometric quantitation. The amount of malonaldehyde (MDA) was determined with MDA detection kits. The expression of caspase-3 and Hsp70 were analyzed using Western blotting. Results: Exposure of PC12 cells to SNP (200 μmol/L) for 24 h decreased the cell viability to 69.0% of that in the control group. Pretreatment with M3 (10 μmol/L) or huperzine A (10 μmol/L) significantly protected the cells against SNP-induced injury and apoptosis; the ratio of apoptotic bodies in PC12 cells was decreased from 27.3% to 15.0%. Pretreatment with M3 (10 μmol/L) significantly decreased ROS and MDA levels, and increased the expression of Hsp70 in the cells. Quercetin (10 μmol/L) blocked the protective effect of M3, while did not influence on that of huperzine A. Conclusion: M3 protects PC12 cells against SNP-induced apoptosis, possible due to ROS scavenging and Hsp70 induction. PMID:22120967

  15. Sodium ion transport participates in non-neuronal acetylcholine release in the renal cortex of anesthetized rabbits.

    PubMed

    Shimizu, Shuji; Akiyama, Tsuyoshi; Kawada, Toru; Sata, Yusuke; Turner, Michael James; Fukumitsu, Masafumi; Yamamoto, Hiromi; Kamiya, Atsunori; Shishido, Toshiaki; Sugimachi, Masaru

    2017-09-01

    This study examined the mechanism of release of endogenous acetylcholine (ACh) in rabbit renal cortex by applying a microdialysis technique. In anesthetized rabbits, a microdialysis probe was implanted into the renal cortex and perfused with Ringer's solution containing high potassium concentration, high sodium concentration, a Na + /K + -ATPase inhibitor (ouabain), or an epithelial Na + channel blocker (benzamil). Dialysate samples were collected at baseline and during exposure to each agent, and ACh concentrations in the samples were measured by high-performance liquid chromatography. High potassium had no effect on renal ACh release. High sodium increased dialysate ACh concentrations significantly. Ouabain increased dialysate ACh concentration significantly. Benzamil decreased dialysate ACh concentrations significantly both at baseline and under high sodium. The finding that high potassium-induced depolarization does not increase ACh release suggests that endogenous ACh is released in renal cortex mainly by non-neuronal mechanism. Sodium ion transport may be involved in the non-neuronal ACh release.

  16. Metabolic activation of sodium nitroprusside to nitric oxide in vascular smooth muscle.

    PubMed

    Kowaluk, E A; Seth, P; Fung, H L

    1992-09-01

    Sodium nitroprusside (SNP) is thought to exert its vasodilating activity, at least in part, by vascular activation to nitric oxide (NO), but the activation mechanism has not been delineated. This study has examined the potential for vascular metabolism of SNP to NO in bovine coronary arterial smooth muscle subcellular fractions using a sensitive and specific redox-chemiluminescence assay for NO. SNP was readily metabolized to NO in subcellular fractions, and the dominant site of metabolism appeared to be located in the membrane fractions. NO-generating activity was significantly enhanced by, but did not absolutely require, the addition of a NADPH-regenerating system, NADPH per se, NADH or cysteine. A correlation analysis of NO-generating activity (in the presence of a NADPH-regenerating system) with marker enzyme activities indicated that the SNP-directed NO-generating activity was primarily membrane-associated. Radiation inactivation target-size analysis revealed that the microsomal SNP-directed NO-generating activity was relatively insensitive to inactivation by radiation exposure, suggesting that the functioning catalytic unit might be quite small. A molecular weight of 5 to 11 kDa was estimated. NO-generating activity could be solubilized from the crude microsomes with 3-[(3-cholamidopropyl)- dimethylammonio]-1-propane sulfonate, and the solubilized extract was subjected to gel filtration chromatography. NO-generating activity was eluted in two peaks: one peak corresponding to an approximate molecular weight of 4 kDa, thus confirming the existence of a small molecular weight NO-generating activity, and a second activity peak corresponding to a molecular weight of 112 to 169 kDa, the functional significance of which is unclear at present.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Neuroprotective effects of curcumin and highly bioavailable curcumin on oxidative stress induced by sodium nitroprusside in rat striatal cell culture.

    PubMed

    Nazari, Qand Agha; Kume, Toshiaki; Izuo, Naotaka; Takada-Takatori, Yuki; Imaizumi, Atsushi; Hashimoto, Tadashi; Izumi, Yasuhiko; Akaike, Akinori

    2013-01-01

    Curcumin, a polyphenolic compound extracted from Curcuma longa, has several pharmacological activities such as anticancer, anti-inflammatory, and antioxidant effects. The purpose of this study was to investigate the protective effects of curcumin and THERACURMIN, a highly bioavailable curcumin, against sodium nitroprusside (SNP)-induced oxidative damage in primary striatal cell culture. THERACURMIN as well as curcumin significantly prevented SNP-induced cytotoxicity. To elucidate the cytoprotective effects of curcumin and THERACURMIN, we measured the intracellular glutathione level in striatal cells. Curcumin and THERACURMIN significantly elevated the glutathione level, which was decreased by treatment with SNP. Moreover, curcumin showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging ability. Finally, a ferrozine assay showed that curcumin (10-100 µg/mL) has potent Fe(2+)-chelating ability. These results suggest that curcumin and THERACURMIN exert potent protective effects against SNP-induced cytotoxicity by free radical-scavenging and iron-chelating activities.

  18. Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation

    PubMed Central

    Mills, Nicholas L.; Miller, Mark R.; Lucking, Andrew J.; Beveridge, Jon; Flint, Laura; Boere, A. John F.; Fokkens, Paul H.; Boon, Nicholas A.; Sandstrom, Thomas; Blomberg, Anders; Duffin, Rodger; Donaldson, Ken; Hadoke, Patrick W.F.; Cassee, Flemming R.; Newby, David E.

    2011-01-01

    Aim Exposure to road traffic and air pollution may be a trigger of acute myocardial infarction, but the individual pollutants responsible for this effect have not been established. We assess the role of combustion-derived-nanoparticles in mediating the adverse cardiovascular effects of air pollution. Methods and results To determine the in vivo effects of inhalation of diesel exhaust components, 16 healthy volunteers were exposed to (i) dilute diesel exhaust, (ii) pure carbon nanoparticulate, (iii) filtered diesel exhaust, or (iv) filtered air, in a randomized double blind cross-over study. Following each exposure, forearm blood flow was measured during intra-brachial bradykinin, acetylcholine, sodium nitroprusside, and verapamil infusions. Compared with filtered air, inhalation of diesel exhaust increased systolic blood pressure (145 ± 4 vs. 133 ± 3 mmHg, P< 0.05) and attenuated vasodilatation to bradykinin (P= 0.005), acetylcholine (P= 0.008), and sodium nitroprusside (P< 0.001). Exposure to pure carbon nanoparticulate or filtered exhaust had no effect on endothelium-dependent or -independent vasodilatation. To determine the direct vascular effects of nanoparticulate, isolated rat aortic rings (n= 6–9 per group) were assessed in vitro by wire myography and exposed to diesel exhaust particulate, pure carbon nanoparticulate and vehicle. Compared with vehicle, diesel exhaust particulate (but not pure carbon nanoparticulate) attenuated both acetylcholine (P< 0.001) and sodium-nitroprusside (P= 0.019)-induced vasorelaxation. These effects were partially attributable to both soluble and insoluble components of the particulate. Conclusion Combustion-derived nanoparticulate appears to predominately mediate the adverse vascular effects of diesel exhaust inhalation. This provides a rationale for testing environmental health interventions targeted at reducing traffic-derived particulate emissions. PMID:21753226

  19. Sodium nitroprusside affects the level of photosynthetic enzymes and glucose metabolism in Phaseolus aureus (mung bean).

    PubMed

    Lum, Hon-Kei; Lee, Chi-Ho; Butt, Yoki Kwok-Chu; Lo, Samuel Chun-Lap

    2005-06-01

    Nitric oxide (NO) is an important signaling molecule in plants. The present study aims to investigate the downstream signaling pathways of NO in plants using a proteomic approach. Phaseolus aureus (mung bean) leaf was treated with sodium nitroprusside (SNP), which releases nitric oxide in the form of nitrosonium cation (NO+) upon light irradiation. Changes in protein expression profiles of the SNP treated mung bean leaf were analyzed by two-dimensional gel electrophoresis (2-DE). Comparison of 2-DE electropherograms revealed seven down-regulated and two up-regulated proteins after treatment with 0.5 mM SNP for 6 h. The identities of these proteins were analyzed by a combination of peptide mass fingerprinting and post-source decay using a matrix-assisted-laser-desorption-ionisation-time-of-flight (MALDI-TOF) mass spectrometer. Six out of these nine proteins found are involved in either photosynthesis or cellular metabolism. We have taken our investigation further by studying the effect of NO+ on glucose contents in mung bean leaves. Our results clearly demonstrated that NO+ rapidly and drastically decrease the amount of glucose in mung bean leaves. Moreover, four out of nine of these proteins are chloroplastic isoforms. These results suggested that chloroplasts might be one of the main sub-cellular targets of NO in plants.

  20. Effect of N-acetylcysteine on vascular endothelium function in aorta from oophorectomized rats.

    PubMed

    Delgado, J L; Landeras, J; Carbonell, L F; Parilla, J J; Abad, L; Quesada, T; Fiol, G; Hernández, I

    1999-01-01

    1. Experiments were performed to examine and to compare vascular endothelial function in aortic rings from oophorectomized and from ovary-intact rats and to test the effect of thiol compound as N-acetylcysteine on endothelial function. 2. In precontracted aortic rings from oophorectomized and intact rats, vascular endothelial function was evaluated by measuring changes in isometric force in response to cumulative doses of superoxide dismutase, acetylcholine and sodium nitroprusside. 3. In studies designed to assess the tone-related release of nitric oxide from aortic rings moderately precontracted with phenylephrine, superoxide dismutase produced a lower concentration-related relaxant response in aortic rings from oophorectomized rats than from ovary intact rats. 4. Acetylcholine caused a concentration- and endothelium-dependent relaxation of less magnitude in aortic rings from oophorectomized animals compared with those from ovary-intact rats. Addition of N-omega-nitro-L-arginine methyl ester eliminated the relaxation induced by both superoxide dismutase and acetylcholine. 5. No differences between groups were noticed in the concentration-relaxation curve induced by sodium nitroprusside. 6. Preincubation with N-acetylcysteine normalized the depressed vasorelaxant response to acetylcholine in the aortic rings from oophorectomized rats, whereas the concentration-response curve for acetylcholine in aortic rings from ovary-intact rats did not alter. 7. These results suggest that the absence of ovary estrogens is associated with a vascular endothelium dysfunction that can be reverted by addition of N-acetylcysteine, a thiol-containing compound with a free radical scavenger effect.

  1. Effects of sodium nitroprusside on splanchnic microcirculation in a resuscitated porcine model of septic shock.

    PubMed

    Assadi, A; Desebbe, O; Kaminski, C; Rimmelé, T; Bénatir, F; Goudable, J; Chassard, D; Allaouchiche, B

    2008-01-01

    We tested the hypothesis that sodium nitroprusside (SNP) might improve the impairment of hepatosplanchnic microcirculatory blood flow (MBF) in septic shock. Fourteen pigs were anaesthetized and their lungs mechanically ventilated. Sepsis was induced with i.v. infusion of live Pseudomonas aeruginosa [1x10(8) colony forming units (CFU) ml(-1) kg(-1)] for 1 h. Sixty minutes later, the animals received in a random succession either SNP or normal saline for 30 min. Mean arterial pressure (MAP), cardiac index (CI), mean pulmonary artery pressure (MPAP), carbon dioxide tension of the ileal mucosa (PCO2; by gas tonometry), ileal mucosal and hepatic MBF by laser Doppler flowmetry, blood gases, and lactates were assessed before, during administration, and 30 min after discontinuing the test drug. Bacterial infusion promoted hypodynamic shock (MAP -18%, CI -33%, ileal MBF -19%, and hepatic MBF -27%), which was converted to normodynamic shock by resuscitation. During SNP infusion, ileal mucosal MBF significantly increased (+19%) compared with control (P = 0.033). Although hepatic MBF increased (+42% from baseline), this did not differ from control. In order to maintain a constant central venous pressure and MAP, fluid loading and norepinephrine (P < 0.01) were increased. Acid-base status was not altered by SNP. In a resuscitated porcine model of the early phase of septic shock, SNP improved ileal mucosal MBF but required a concomitant increase in fluid and norepinephrine supplements to maintain constant systemic haemodynamic parameters.

  2. Effects of sodium nitroprusside (SNP) pretreatment on UV-B stress tolerance in lettuce (Lactuca sativa L.) seedlings.

    PubMed

    Esringu, Aslıhan; Aksakal, Ozkan; Tabay, Dilruba; Kara, Ayse Aydan

    2016-01-01

    Ultraviolet-B (UV-B) radiation is one of the most important abiotic stress factors that could influence plant growth, development, and productivity. Nitric oxide (NO) is an important plant growth regulator involved in a wide variety of physiological processes. In the present study, the possibility of enhancing UV-B stress tolerance of lettuce seedlings by the exogenous application of sodium nitroprusside (SNP) was investigated. UV-B radiation increased the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and total phenolic concentrations, antioxidant capacity, and expression of phenylalanine ammonia lyase (PAL) gene in seedlings, but the combination of SNP pretreatment and UV-B enhanced antioxidant enzyme activities, total phenolic concentrations, antioxidant capacity, and PAL gene expression even more. Moreover, UV-B radiation significantly inhibited chlorophylls, carotenoid, gibberellic acid (GA), and indole-3-acetic acid (IAA) contents and increased the contents of abscisic acid (ABA), salicylic acid (SA), malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide radical (O2•(-)) in lettuce seedlings. When SNP pretreatment was combined with the UV-B radiation, we observed alleviated chlorophylls, carotenoid, GA, and IAA inhibition and decreased content of ABA, SA, MDA, H2O2, and O2•(-) in comparison to non-pretreated stressed seedlings.

  3. Effect of L-arginine on the relaxation caused by sodium nitroprusside on isolated rat renal artery.

    PubMed

    Orescanin, Z; Milovanović, S R

    2006-12-01

    In the present study we investigated the mechanism of nitric oxide induced relaxation of renal arteries, with or without endothelium, taken from normotensive and spontaneously hypertensive (SH) rats. With this purpose in mind, the effects of the nitric oxide donor, sodium nitroprusside (SNP), with and without L-arg in the medium, on isolated rat renal artery relaxation were studied. Relaxing effect of SNP was higher in normotensive (10(-5) M of SNP caused 220% of relaxation in the cases with endothelium and 240% without endothelium), in comparison with SH rats (100% of relaxation with endothelium and 150% without). L-arg antagonized the relaxing effect of SNP in the examined renal arteries, more in normotensive (100-160% with endothelium and 110-195% without) than in hypertensive ones (0-10% with endothelium and 35-75% without) at SNP concentrations 10(-7) - 10(-5) M, respectively (*P < 0.05; **P < 0.001). L-arg did not significantly change relaxing effect of SNP in the isolated renal arteries with endothelium taken from SH rats, which show that L-arg, by modifying the chemical versatility of NO into redox active forms -nitrosonium (NO+) and -nitroxyl (NO-), produces different relaxing effects in normotensive and hypertensive isolated arteries of rats, with or without endothelium, potentiating the role of nitroxyl induced relaxation in SH rats.

  4. Effects of minoxidil and nitroprusside on reflex increases in myocardial contractility.

    PubMed Central

    Robie, N W

    1978-01-01

    1 The effects of nitroprusside and minoxidil on increases in myocardial contractility resulting from carotid artery occlusion were investigated in anaesthetized dogs. The results were compared with those produced by intravenous influsion of noradrenaline. 2 Nitroprusside and minoxidil attenuated the pressor responses produced by carotid artery occlusion. 3 Nitroprusside, but not minoxidil, attenuated the maximal myocardial contractility resulting from carotid occlusion. 4 The pressor and contractility responses to noradrenaline infusion were unaffected by either agent. 5 Nitroprusside failed to alter the myocardial responses produced by dimethylphenylpiperazinium. 6 These results, in conjunction with those of other investigators who have demonstrated that nitroprusside does not affect the release of noradrenaline from adrenergic neurons, suggest that nitroprusside may inhibit sympathetic nervous system reflex activity via an afferent and/or central component. PMID:620094

  5. The NO donor sodium nitroprusside: evaluation of skeletal muscle vascular and metabolic dysfunction

    PubMed Central

    Hirai, Daniel M.; Copp, Steven W.; Ferguson, Scott K.; Holdsworth, Clark T.; Musch, Timothy I.; Poole, David C.

    2012-01-01

    The nitric oxide (NO) donor sodium nitroprusside (SNP) may promote cyanide-induced toxicity and systemic and/or local responses approaching maximal vasodilation. The hypotheses were tested that SNP superfusion of the rat spinotrapezius muscle exerts 1) residual impairments in resting and contracting blood flow, oxygen utilization (V̇O2) and microvascular O2 pressure (PO2mv); and 2) marked hypotension and elevation in resting PO2mv. Two superfusion protocols were performed: 1) Krebs-Henseleit (control 1), SNP (300 µM; a dose used commonly in superfusion studies) and Krebs-Henseleit (control 2), in this order; 2) 300 and 1200 µM SNP in random order. Spinotrapezius muscle blood flow (radiolabeled microspheres), V̇O2 (Fick calculation) and PO2mv (phosphorescence quenching) were determined at rest and during electrically-induced (1 Hz) contractions. There were no differences in spinotrapezius blood flow, V̇O2 or PO2mv at rest and during contractions pre- and post-SNP condition (control 1 and control 2; p>0.05 for all). With regard to dosing, SNP produced a graded elevation in resting PO2mv (p<0.05) with a reduction in mean arterial pressure only at the higher concentration (p<0.05). Contrary to our hypothesis, skeletal muscle superfusion with the NO donor SNP (300 µM) improved microvascular oxygenation during the transition from rest to contractions (PO2mv kinetics) without precipitating residual impairment of muscle hemodynamic or metabolic control or compromising systemic hemodynamics. These data suggest that SNP superfusion (300 µM) constitutes a valid and important tool for assessing the functional roles of NO in resting and contracting skeletal muscle function without incurring residual alterations consistent with cyanide accumulation and poisoning. PMID:23174313

  6. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside induced lipid peroxidation in rats' pancreas by phenolic extracts of avocado pear leaves and fruit.

    PubMed

    Oboh, Ganiyu; Isaac, Adelusi Temitope; Akinyemi, Ayodele Jacobson; Ajani, Richard Akinlolu

    2014-09-01

    Persea americana fruit and leaves had been known in folk medicine for their anti-diabetic prowess. Therefore, this study sought to investigate the inhibitory effect of phenolic extract from avocado pear (Persea americana) leaves and fruits on some key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase); and sodium nitroprusside (SNP) induced lipid peroxidation in rats' pancreas in vitro. The phenolic extracts of Persea americana fruit and leaves were extracted using methanol and 1M HCl (1:1 v/v). Thereafter, their inhibitory effects on sodium nitroprusside induced lipid peroxidation and key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) were determined in vitro. The result revealed that the leaves had fruit of avocado pear inhibit both α-amylase and α-glucosidase activities in a dose dependent manner. However, the Peel had the highest α-amylase inhibitory activity while the leaf had the highest α-glucosidase inhibitory activity as revealed by their IC50 value. Furthermore, incubation of the rat pancreas in the presence of 5 mM SNP caused an increase in the malondialdehyde (MDA) content in the tissue, however, introduction of the phenolic extracts inhibited MDA produced in a dose dependent manner. The additive and/or synergistic action of major phenolic compounds such as syringic acid, eugenol, vnillic acid, isoeugenol, guaiacol, kaemferol, catechin, ρ-hydroxybenzoic acid, ferulic acid, apigenin, naringenin, epigallocatechin, epicatechin, lupeol and epigallocatechin-3-O-gallate in avocado pear using gas chromatography (GC) could have contributed to the observed medicinal properties of the plant. Therefore, inhibition of some key enzymes linked to type 2 diabetes and prevention of oxidative stress in the pancreas could be some of the possible mechanism by which they exert their anti-diabetic properties.

  7. Inhibition of Key Enzymes Linked to Type 2 Diabetes and Sodium Nitroprusside Induced Lipid Peroxidation in Rats’ Pancreas by Phenolic Extracts of Avocado Pear Leaves and Fruit

    PubMed Central

    Oboh, Ganiyu; Isaac, Adelusi Temitope; Akinyemi, Ayodele Jacobson; Ajani, Richard Akinlolu

    2014-01-01

    Persea americana fruit and leaves had been known in folk medicine for their anti-diabetic prowess. Therefore, this study sought to investigate the inhibitory effect of phenolic extract from avocado pear (Persea americana) leaves and fruits on some key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase); and sodium nitroprusside (SNP) induced lipid peroxidation in rats’ pancreas in vitro. The phenolic extracts of Persea americana fruit and leaves were extracted using methanol and 1M HCl (1:1 v/v). Thereafter, their inhibitory effects on sodium nitroprusside induced lipid peroxidation and key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) were determined in vitro. The result revealed that the leaves had fruit of avocado pear inhibit both α-amylase and α-glucosidase activities in a dose dependent manner. However, the Peel had the highest α-amylase inhibitory activity while the leaf had the highest α-glucosidase inhibitory activity as revealed by their IC50 value. Furthermore, incubation of the rat pancreas in the presence of 5 mM SNP caused an increase in the malondialdehyde (MDA) content in the tissue, however, introduction of the phenolic extracts inhibited MDA produced in a dose dependent manner. The additive and/or synergistic action of major phenolic compounds such as syringic acid, eugenol, vnillic acid, isoeugenol, guaiacol, kaemferol, catechin, ρ-hydroxybenzoic acid, ferulic acid, apigenin, naringenin, epigallocatechin, epicatechin, lupeol and epigallocatechin-3-O-gallate in avocado pear using gas chromatography (GC) could have contributed to the observed medicinal properties of the plant. Therefore, inhibition of some key enzymes linked to type 2 diabetes and prevention of oxidative stress in the pancreas could be some of the possible mechanism by which they exert their anti-diabetic properties PMID:25324703

  8. PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside.

    PubMed

    Vaishnav, Anukool; Kumari, Sarita; Jain, Shekhar; Varma, Ajit; Tuteja, Narendra; Choudhary, Devendra Kumar

    2016-11-01

    Increasing evidence shows that nitric oxide (NO), a typical signaling molecule plays important role in development of plant and in bacteria-plant interaction. In the present study, we tested the effect of sodium nitroprusside (SNP)-a nitric oxide donor, on bacterial metabolism and its role in establishment of PGPR-plant interaction under salinity condition. In the present study, we adopted methods namely, biofilm formation assay, GC-MS analysis of bacterial volatiles, chemotaxis assay of root exudates (REs), measurement of electrolyte leakage and lipid peroxidation, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for gene expression. GC-MS analysis revealed that three new volatile organic compounds (VOCs) were expressed after treatment with SNP. Two VOCs namely, 4-nitroguaiacol and quinoline were found to promote soybean seed germination under 100 mM NaCl stress. Chemotaxis assay revealed that SNP treatment, altered root exudates profiling (SS-RE), found more attracted to Pseudomonas simiae bacterial cells as compared to non-treated root exudates (S-RE) under salt stress. Expression of Peroxidase (POX), catalase (CAT), vegetative storage protein (VSP), and nitrite reductase (NR) genes were up-regulated in T6 treatment seedlings, whereas, high affinity K + transporter (HKT1), lipoxygenase (LOX), polyphenol oxidase (PPO), and pyrroline-5-carboxylate synthase (P5CS) genes were down-regulated under salt stress. The findings suggest that NO improves the efficiency and establishment of PGPR strain in the plant environment during salt condition. This strategy may be applied on soybean plants to increase their growth during salinity stress. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Predictors of Arterial Blood Pressure Control During Deliberate Hypotension with Sodium Nitroprusside in Children

    PubMed Central

    Spielberg, David R; Barrett, Jeffrey S; Hammer, Gregory B; Drover, David R; Reece, Tammy; Cohane, Carol A; Schulman, Scott R

    2014-01-01

    Background Sodium nitroprusside (SNP) is used to decrease arterial blood pressure (BP) during certain surgical procedures. There are limited data regarding efficacy of BP control with SNP. There are no data on patient and clinician factors that affect BP control. We evaluated the dose-response relationship of SNP in infants and children undergoing major surgery and performed a quantitative assessment of BP control. Methods One hundred fifty-three subjects at 7 sites received a blinded infusion followed by open-label SNP during operative procedures requiring controlled hypotension. SNP was administered by continuous infusion and titrated to maintain BP control (mean arterial BP [MAP] within ±10% of clinician-defined target). BP was recorded using an arterial catheter. Statistical Process Control methodology was used to quantify BP control. A multivariable model assessed the effects of patient and procedural factors. Results BP was controlled an average 45.4% (SD 23.9%, 95% CI 41.5%-49.18%) of the time. Larger changes in infusion rate were associated with worse BP control (7.99% less control for 1 mcg•kg−•min− increase in average titration size, p=0.0009). A larger difference between a patient's baseline and target MAP predicted worse BP control (0.93% worse control per 1 mmHg increase in MAP difference, p=0.0013). Both effects persisted in multivariable models. Conclusions : SNP was effective in reducing BP. However, BP was within the target range less than half of the time. No clinician or patient factors were predictive of BP control, although two inverse relationships were identified. These relationships require additional study and may be best coupled with exposure-response modeling to propose improved dosing strategies when using SNP for controlled hypotension in the pediatric population. PMID:25099924

  10. Predictors of arterial blood pressure control during deliberate hypotension with sodium nitroprusside in children.

    PubMed

    Spielberg, David R; Barrett, Jeffrey S; Hammer, Gregory B; Drover, David R; Reece, Tammy; Cohane, Carol A; Schulman, Scott R

    2014-10-01

    Sodium nitroprusside (SNP) is used to decrease arterial blood pressure (BP) during certain surgical procedures. There are limited data regarding efficacy of BP control with SNP. There are no data on patient and clinician factors that affect BP control. We evaluated the dose-response relationship of SNP in infants and children undergoing major surgery and performed a quantitative assessment of BP control. One hundred fifty-three subjects at 7 sites received a blinded infusion followed by open-label SNP during operative procedures requiring controlled hypotension. SNP was administered by continuous infusion and titrated to maintain BP control (mean arterial BP [MAP] within ±10% of clinician-defined target). BP was recorded using an arterial catheter. Statistical process control methodology was used to quantify BP control. A multivariable model assessed the effects of patient and procedural factors. BP was controlled an average 45.4% (SD 23.9%; 95% CI, 41.5%-49.18%) of the time. Larger changes in infusion rate were associated with worse BP control (7.99% less control for 1 μg·kg·min increase in average titration size, P = 0.0009). A larger difference between a patient's baseline and target MAP predicted worse BP control (0.93% worse control per 1-mm Hg increase in MAP difference, P = 0.0013). Both effects persisted in multivariable models. SNP was effective in reducing BP. However, BP was within the target range less than half of the time. No clinician or patient factors were predictive of BP control, although 2 inverse relationships were identified. These relationships require additional study and may be best coupled with exposure-response modeling to propose improved dosing strategies when using SNP for controlled hypotension in the pediatric population.

  11. Abnormalities in arterial-ventricular coupling in older healthy persons are attenuated by sodium nitroprusside

    PubMed Central

    Chantler, Paul D.; Nussbacher, Amit; Gerstenblith, Gary; Schulman, Steven P.; Becker, Lewis C.; Ferrucci, Luigi; Fleg, Jerome L.; Najjar, Samer S.

    2011-01-01

    The coupling between arterial elastance (EA; net afterload) and left ventricular elastance (ELV; pump performance), known as EA/ELV, is a key determinant of cardiovascular performance and shifts during exercise due to a greater increase in ELV versus EA. This normal exercise-induced reduction in EA/ELV decreases with advancing age. We hypothesized that sodium nitroprusside (SNP) can acutely ameliorate the age-associated deficits in EA/ELV. At rest and during graded exercise to exhaustion, EA was characterized as end-systolic pressure/stroke volume and ELV as end-systolic pressure/end-systolic volume. Resting EA/ELV did not differ between old (70 ± 8 yr, n = 15) and young (30 ± 5 yr, n = 17) subjects because of a tandem increase in EA and ELV in older subjects. During peak exercise, a blunted increase in ELV in old (7.8 ± 3.1 mmHg/ml) versus young (11.4 ± 6.5 mmHg/ml) subjects blunted the normal exercise-induced decline in EA/ELV in old (0.25 ± 0.11) versus young (0.16 ± 0.05) subjects. SNP administration to older subjects lowered resting EA/ELV by 31% via a reduction in EA (10%) and an increase in ELV (47%) and lowered peak exercise EA/ELV (36%) via an increase in ELV (68%) without a change in EA. Importantly, SNP attenuated the age-associated deficits in EA/ELV and ELV during exercise, and at peak exercise EA/ELV in older subjects on drug administration did not differ from young subjects without drug administration. In conclusion, some age-associated deficiencies in EA/ELV, EA, and ELV, in older subjects can be acutely abolished by SNP infusion. This is relevant to common conditions in older subjects associated with a significant impairment of exercise performance such as frailty or heart failure with preserved ejection fraction. PMID:21378146

  12. Clinical Investigation Program. Annual Progress Report

    DTIC Science & Technology

    1990-10-01

    1990 (C) Stevens EL, Venkataraman BW, Southgate M, Nakamura KT: Ontogeny of Sodium Nitroprusside and Atriopeptin III Relaxation in Guinea Pig Airway...of Nephrology Conference, Dec 89 Malinowski TR: Rhabdomyolysis Following Vaccination for Influenza. Hawaii Chapter Scientific Meeting, American College...Muscle Response to Acetylcholine and Histamine. Society for Pediatric Research Meeting, Anaheim, CA, May 90 (C) Stevens EL, Venkataraman BW, Southgate M

  13. Autonomic Blockade Reverses Endothelial Dysfunction in Obesity-Associated Hypertension.

    PubMed

    Gamboa, Alfredo; Figueroa, Rocío; Paranjape, Sachin Y; Farley, Ginnie; Diedrich, Andre; Biaggioni, Italo

    2016-10-01

    Impaired nitric oxide (NO) vasodilation (endothelial dysfunction) is associated with obesity and thought to be a factor in the development of hypertension. We previously found that NO synthesis inhibition had similar pressor effects in obese hypertensives compared with healthy control during autonomic blockade, suggesting that impaired NO vasodilation is secondary to sympathetic activation. We tested this hypothesis by determining the effect of autonomic blockade (trimethaphan 4 mg/min IV) on NO-mediated vasodilation (increase in forearm blood flow to intrabrachial acetylcholine) compared with endothelial-independent vasodilation (intrabrachial sodium nitroprusside) in obese hypertensive subjects (30Acetylcholine and sodium nitroprusside were given at equipotent doses (10, 30, and 50 μg/min and 1, 2, and 3 μg/min, respectively) to 14 obese subjects (49±3.6 years, 34±1 kg/m(2), 165/94±7/6 mm Hg), on separate occasions 1 month apart, randomly assigned. Autonomic blockade increased basal forearm blood flow (from 3.9±0.7 to 5.2±1.2 mL/100 mL per minute, P=0.078). As expected, NO-mediated vasodilation was blunted on the intact day compared with NO-independent vasodilation; forearm blood flow increased from 3.6±0.6 to 10.1±1.1 with the highest dose of nitroprusside, but only from 3.7±0.4 to 7.2±0.8 mL/100 mL per minute with the highest dose of acetylcholine, P<0.05. In contrast, forearm blood flow responses to acetylcholine were restored by autonomic blockade and were no longer different to nitroprusside (from 6.2±1.1 to 11.4±1.6 mL/100 mL per minute and from 5.2±0.9 to 12.5±0.9, respectively, P=0.58). Our results support the concept that sympathetic activation contributes to the impairment in NO-mediated vasodilation seen in obesity-associated hypertension and provides further rationale to explore it as a therapeutic target. © 2016 American Heart Association, Inc.

  14. Identification of the Muscarinic Acetylcholine Receptor Subtype Mediating Cholinergic Vasodilation in Murine Retinal Arterioles

    PubMed Central

    Sniatecki, Jan J.; Goloborodko, Evgeny; Steege, Andreas; Zavaritskaya, Olga; Vetter, Jan M.; Grus, Franz H.; Patzak, Andreas; Wess, Jürgen; Pfeiffer, Norbert

    2011-01-01

    Purpose. To identify the muscarinic acetylcholine receptor subtype that mediates cholinergic vasodilation in murine retinal arterioles. Methods. Muscarinic receptor gene expression was determined in murine retinal arterioles using real-time PCR. To assess the functional relevance of muscarinic receptors for mediating vascular responses, retinal vascular preparations from muscarinic receptor–deficient mice were studied in vitro. Changes in luminal arteriole diameter in response to muscarinic and nonmuscarinic vasoactive substances were measured by video microscopy. Results. Only mRNA for the M3 receptor was detected in retinal arterioles. Thus, M3 receptor–deficient mice (M3R−/−) and respective wild-type controls were used for functional studies. Acetylcholine concentration-dependently dilated retinal arterioles from wild-type mice. In contrast, vasodilation to acetylcholine was almost completely abolished in retinal arterioles from M3R−/− mice, whereas responses to the nitric oxide (NO) donor nitroprusside were retained. Carbachol, an acetylcholinesterase-resistant analog of acetylcholine, also evoked dilation in retinal arterioles from wild-type, but not from M3R−/−, mice. Vasodilation responses from wild-type mice to acetylcholine were negligible after incubation with the non–subtype-selective muscarinic receptor blocker atropine or the NO synthase inhibitor Nω-nitro-l-arginine methyl ester, and were even reversed to contraction after endothelial damage with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Conclusions. These findings provide evidence that endothelial M3 receptors mediate cholinergic vasodilation in murine retinal arterioles via activation of NO synthase. PMID:21873683

  15. Dilator and constrictor response of renal vasculature during acute renal hypotension in anesthetized goats. Role of nitric oxide.

    PubMed

    Diéguez, Godofredo; García-Villalón, Angel Luis

    2011-01-01

    The relative role of NO derived from endothelium NO synthase (eNOS) and neuronal NO synthase (nNOS) in renovascular reactivity during renal hypotension is unknown. To examine this issue, we recorded the effects of unspecific inhibitor of NO synthase N(w)-nitro-L-arginine methyl esther (L-NAME) and inhibitor of nNOS 7-nitroindazole monosodium salt (7-NINA) on renal vasodilator and vasoconstrictor responses in anesthetized goats during renal hypotension by constricting the abdominal aorta. Intrarenal administration of L-NAME and hypotension, either untreated or treated with L-NAME, decreased resting renal blood flow, and the increases in renal blood flow by acetylcholine but not those by sodium nitroprusside were tempered, and the decreases by norepinephrine and angiotensin II were augmented. Intraperitoneal administration of 7-NINA did not affect, and 7-NINA+hypotension decreased renal blood flow, and under these conditions the increases in renal blood flow by acetylcholine and sodium nitroprusside were not modified, and the decreases by norepinephrine and angiotensin II were slightly (during 7-NINA) or consistently augmented (7-NINA+hypotension). Therefore, NO derived from eNOS plays a significant role, while that derived from nNOS plays a little role, if any, to regulate renal blood flow and to mediate acetylcholine-induced vasodilation, as well to modulate renal vasoconstriction by norepinephrine and angiotensin II. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Isometric responses of isolated intrapulmonary bronchioles from cats with and without adult heartworm infection.

    PubMed

    Wooldridge, Anne A; Dillon, A Ray; Tillson, D Michael; Zhong, Qiao; Barney, Sharron R

    2012-03-01

    To determine the isometric responses of isolated intrapulmonary bronchioles from cats with and without adult heartworm infection. 13 purpose-bred adult cats. Cats were infected with 100 third-stage larvae or received a sham inoculation, and the left caudal lung lobe was collected 278 to 299 days after infection. Isometric responses of intrapulmonary bronchiolar rings were studied by use of a wire myograph. Three cycles of contractions induced by administration of 10 μM acetylcholine were followed by administration of the contractile agonists acetylcholine, histamine, and 5-hydroxy-tryptamine. To evaluate relaxation, intrapulmonary bronchiolar rings were constricted by administration of 10 μM 5-hydroxytryptamine, and concentration-response curves were generated from administration of sodium nitroprusside, isoproterenol, and substance P. Compared with tissues from control cats, contractile responses to acetylcholine and 5-hydroxytryptamine were reduced in tissues from heartworm-infected cats. Relaxation to isoproterenol was significantly reduced in tissues from heartworm-infected cats. Relaxation to substance P was increased in tissues from heartworm-infected cats, but relaxation to sodium nitroprusside was unchanged. Results suggested that despite increased bronchiolar wall thickness in heartworm-infected cats, a hyperreactive response of the bronchiolar smooth muscle is not the primary mechanism of respiratory tract clinical signs. Reduced response of the airway to isoproterenol may indicate refractoriness to bronchiolar relaxation in heartworm-infected cats.

  17. Thiopental sodium preserves the responsiveness to glutamate but not acetylcholine in rat primary cultured neurons exposed to hypoxia.

    PubMed

    Morita, Tomotaka; Shibuta, Satoshi; Kosaka, Jun; Fujino, Yuji

    2016-06-15

    Although many in vitro studies demonstrated that thiopental sodium (TPS) is a promising neuroprotective agent, clinical attempts to use TPS showed mainly unsatisfactory results. We investigated the neuroprotective effects of TPS against hypoxic insults (HI), and the responses of the neurons to l-glutamate and acetylcholine application. Neurons prepared from E17 Wistar rats were used after 2weeks in culture. The neurons were exposed to 12-h HI with or without TPS. HI-induced neurotoxicity was evaluated morphologically. Moreover, we investigated the dynamics of the free intracellular calcium ([Ca(2+)]i) in the surviving neurons after HI with or without TPS pretreatment following the application of neurotransmitters. TPS was neuroprotective against HI according to the morphological examinations (0.73±0.06 vs. 0.52±0.07, P=0.04). While the response to l-glutamate was maintained (0.89±0.08 vs. 1.02±0.09, P=0.60), the [Ca(2+)]i response to acetylcholine was notably impaired (0.59±0.02 vs. 0.94±0.04, P<0.01). Though TPS to cortical cultures was neuroprotective against HI morphologically, the [Ca(2+)]i response not to l-glutamate but to acetylcholine was impaired. This may partially explain the inconsistent results regarding the neuroprotective effects of TPS between experimental studies and clinical settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Hydrogen-Bonding System in Barium Nitroprusside 6.5-Hydrate

    NASA Astrophysics Data System (ADS)

    Navaza, A.; Chevrier, G.; Guida, J. A.

    1995-01-01

    The hydrogen-bond system in barium nitroprusside 6.5-hydrate, [Ba 2(H 2O) 10][Fe(CN) 5NOl 23H 2O], has been determined by neutron diffraction on monocrystals. Results show the compound to be orthorhombic, space group Cmc2 1 (36), a = 16.008(43), b = 11.550(3), c = 16.648(5) Å, V = 3078(3) Å 3, Z = 4. Refinement of the structure, using 973 observed structure factors, converged to the final RW factor of 0.058. The 2 independent barium atoms, separated 4.60 Å, share a plane of three water molecules forming dimeric tetravalent units. The nitroprusside anions deviate from the C4r ideal symmetry, but this deviation is less than that observed in other nitroprussides. The 10 crystallographically independent water molecules have been classified according to their coordination. Analysis of the H-bond strength, together with a comparison of the packing of the two known barium nitroprusside hydrates (3-hydrate and 6.5-hydrate), suggests that the water molecules labeled as W(1), W(7), W(8), and W(9) could be lost during the partial dehydration of 6.5-hydrate into 3-hydrate.

  19. Acetylcholine and acetylcarnitine transport in peritoneum: Role of the SLC22A4 (OCTN1) transporter.

    PubMed

    Pochini, Lorena; Scalise, Mariafrancesca; Di Silvestre, Sara; Belviso, Stefania; Pandolfi, Assunta; Arduini, Arduino; Bonomini, Mario; Indiveri, Cesare

    2016-04-01

    A suitable experimental tool based on proteoliposomes for assaying Organic Cation Transporter Novel member 1 (OCTN1) of peritoneum was pointed out. OCTN1, recently acknowledged as acetylcholine transporter, was immunodetected in rat peritoneum. Transport was assayed following flux of radiolabelled TEA, acetylcholine or acetylcarnitine in proteoliposomes reconstituted with peritoneum extract. OCTN1 mediated, besides TEA, also acetylcholine and a slower acetylcarnitine transport. External sodium inhibited acetylcholine uptake but not its release from proteoliposomes. Differently, sodium did not affect acetylcarnitine uptake. These results suggested that physiologically, acetylcholine should be released while acetylcarnitine was taken up by peritoneum cells. Transport was impaired by OCTN1 inhibitors, butyrobetaine, spermine, and choline. Biotin was also found as acetylcholine transport inhibitor. Anti-OCTN1 antibody specifically inhibited acetylcholine transport confirming the involvement of OCTN1. The transporter was also immunodetected in human mesothelial primary cells. Extract from these cells was reconstituted in proteoliposomes. Transport features very similar to those found with rat peritoneum were observed. Validation of the proteoliposome model for peritoneal transport study was then achieved assaying transport in intact mesothelial cells. TEA, butyrobetaine and Na(+) inhibited acetylcholine transport in intact cells while efflux was Na(+) insensitive. Therefore transport features in intact cells overlapped those found in proteoliposomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Responses to Nitroprusside Following Hemorrhage in Anesthetized Pigs

    DTIC Science & Technology

    1991-08-01

    well as SPC Bharatkumar Gandhi and SPC Johnny Singson. We also thank Mary Thomas for her secretarial assistance and Charles E. Wade, Ph.D., for his...anesthesia and operation in the head-up position. Anesth Analg 1977; 56:391-394. 9. Larsen R, Teichmann J, Hilfiker 0, Busse C, Sonntag H. Nitroprusside...JN, Burke LP. Nitroprusside. Ann Intern Med 1979; 91:752-757. O’Benar et al .-- Page 26 OFFICIAI. DISTRIBUTION I.IST (’o mmander US Army Medical

  1. Abnormalities in arterial-ventricular coupling in older healthy persons are attenuated by sodium nitroprusside.

    PubMed

    Chantler, Paul D; Nussbacher, Amit; Gerstenblith, Gary; Schulman, Steven P; Becker, Lewis C; Ferrucci, Luigi; Fleg, Jerome L; Lakatta, Edward G; Najjar, Samer S

    2011-05-01

    The coupling between arterial elastance (E(A); net afterload) and left ventricular elastance (E(LV); pump performance), known as E(A)/E(LV), is a key determinant of cardiovascular performance and shifts during exercise due to a greater increase in E(LV) versus E(A). This normal exercise-induced reduction in E(A)/E(LV) decreases with advancing age. We hypothesized that sodium nitroprusside (SNP) can acutely ameliorate the age-associated deficits in E(A)/E(LV). At rest and during graded exercise to exhaustion, E(A) was characterized as end-systolic pressure/stroke volume and E(LV) as end-systolic pressure/end-systolic volume. Resting E(A)/E(LV) did not differ between old (70 ± 8 yr, n = 15) and young (30 ± 5 yr, n = 17) subjects because of a tandem increase in E(A) and E(LV) in older subjects. During peak exercise, a blunted increase in E(LV) in old (7.8 ± 3.1 mmHg/ml) versus young (11.4 ± 6.5 mmHg/ml) subjects blunted the normal exercise-induced decline in E(A)/E(LV) in old (0.25 ± 0.11) versus young (0.16 ± 0.05) subjects. SNP administration to older subjects lowered resting E(A)/E(LV) by 31% via a reduction in E(A) (10%) and an increase in E(LV) (47%) and lowered peak exercise E(A)/E(LV) (36%) via an increase in E(LV) (68%) without a change in E(A). Importantly, SNP attenuated the age-associated deficits in E(A)/E(LV) and E(LV) during exercise, and at peak exercise E(A)/E(LV) in older subjects on drug administration did not differ from young subjects without drug administration. In conclusion, some age-associated deficiencies in E(A)/E(LV), E(A), and E(LV), in older subjects can be acutely abolished by SNP infusion. This is relevant to common conditions in older subjects associated with a significant impairment of exercise performance such as frailty or heart failure with preserved ejection fraction.

  2. Artemisinin conferred ERK mediated neuroprotection to PC12 cells and cortical neurons exposed to sodium nitroprusside-induced oxidative insult.

    PubMed

    Zheng, Wenhua; Chong, Cheong-Meng; Wang, Haitao; Zhou, Xuanhe; Zhang, Lang; Wang, Rikang; Meng, Qian; Lazarovici, Philip; Fang, Jiankang

    2016-08-01

    The production of nitric oxide (NO) is one of the primary mediators of ischemic damage, glutamate neurotoxicity and neurodegeneration and therefore inhibition of NO-induced neurotoxicity may be considered a therapeutic target for reducing neuronal cell death (neuroprotection). In this study, artemisinin, a well-known anti-malaria drug was found to suppress sodium nitroprusside (SNP, a nitric oxide donor)-induced cell death in the PC12 cells and brain primary cortical neuronal cultures. Pretreatment of PC12 cells with artemisinin significantly suppressed SNP-induced cell death by decreasing the extent of oxidation, preventing the decline of mitochondrial membrane potential, restoring abnormal changes in nuclear morphology and reducing lactate dehydrogenase release and inhibiting caspase 3/7 activities. Western blotting analysis revealed that artemisinin was able to activate extracellular regulated protein kinases (ERK) pathway. Furthermore, the ERK inhibitor PD98059 blocked the neuroprotective effect of artemisinin whereas the PI3K inhibitor LY294002 had no effect. Cumulatively these findings support the notion that artemisinin confers neuroprotection from SNP-induce neuronal cell death insult, a phenomenon coincidentally related to activation of ERK phosphorylation. This SNP-induced oxidative insult in PC12 cell culture model may be useful to investigate molecular mechanisms of NO-induced neurotoxicity and drug-induced neuroprotection, and to generate novel therapeutic concepts for ischemic disease treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Vildagliptin Improves Endothelium-Dependent Vasodilatation in Type 2 Diabetes

    PubMed Central

    van Poppel, Pleun C.M.; Netea, Mihai G.; Smits, Paul; Tack, Cees J.

    2011-01-01

    OBJECTIVE To investigate whether the dipeptidyl peptidase-4 inhibitor vildagliptin improves endothelium-dependent vasodilatation in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Sixteen subjects with type 2 diabetes (age 59.8 ± 6.8 years, BMI 29.1 ± 4.8 kg/m2, HbA1c 6.97 ± 0.61) on oral blood glucose–lowering treatment were included. Participants received vildagliptin 50 mg b.i.d. or acarbose 100 mg t.i.d. for four consecutive weeks in a randomized, double-blind, cross-over design. At the end of each treatment period, we measured forearm vasodilator responses to intra-arterially administered acetylcholine (endothelium-dependent vasodilator) and sodium nitroprusside (endothelium-independent vasodilator). RESULTS Infusion of acetylcholine induced a dose-dependent increase in forearm blood flow in the experimental arm, which was higher during vildagliptin (3.1 ± 0.7, 7.9 ± 1.1, and 12.6 ± 1.4 mL ⋅ dL−1 ⋅ min−1 in response to three increasing dosages of acetylcholine) than during acarbose (2.0 ± 0.7, 5.0 ± 1.2, and 11.7 ± 1.6 mL ⋅ dL−1 ⋅ min−1, respectively; P = 0.01 by two-way ANOVA). Treatment with vildagliptin did not significantly change the vascular responses to sodium nitroprusside. CONCLUSIONS Four weeks’ treatment with vildagliptin improves endothelium-dependent vasodilatation in subjects with type 2 diabetes. This observation might have favorable cardiovascular implications. PMID:21788633

  4. The relaxant actions of ethanolic extract of Tridax procumbens (Linn.) on rat corpus cavernosum smooth muscle contraction.

    PubMed

    Salahdeen, Hussein M; Idowu, Gbolahan O; Yemitan, Omoniyi K; Murtala, Babatunde A; Alada, Abdul Rasak A

    2015-03-01

    The effect of Tridax procumbens aqueous ethanolic extract on the rat corpus cavernosum smooth muscles was evaluated in the present study. Corpus cavernosum strips obtained from healthy, young, adult male Wistar albino rats (250-300 g) were precontracted with phenylephrine (10-7 M) or KCl (60 mM) and then treated with various concentrations of T. procumbens extract (0.15-1.05 mg/mL). The change in corpus cavernosum strip tension was recorded. The interactions between T. procumbens extract with acetylcholine and with sodium nitroprusside were also evaluated. The results indicated that corpus cavernosum strips relaxation induced by T. procumbens extract was concentration-dependent and this was significant (p<0.5). Pre-treatment with a nitric oxide synthase (NOS) inhibitor (N(1) nitro-L-arginine-methyl ester, l-NAME), did not completely inhibit the relaxation. However, T. procumbens extract (0.6 mg/mL) significantly (p<0.5) enhanced both acetylcholine- and sodium nitroprusside-induced corpus cavernosum strips relaxation. RESULTS suggest that T. procumbens extract has a concentration-dependent relaxant effect on the isolated rat corpus cavernosum. The mechanism of action of T. procumbens extract is complex. A part of its relaxing effect is mediated directly by the release of NO from endothelium which may improve erectile dysfunction.

  5. Ascorbic acid prevents vascular dysfunction induced by oral glucose load in healthy subjects.

    PubMed

    De Marchi, Sergio; Prior, Manlio; Rigoni, Anna; Zecchetto, Sara; Rulfo, Fanny; Arosio, Enrico

    2012-01-01

    To examine the effects of oral glucose load on forearm circulatory regulation before and after ascorbic acid administration in healthy subjects. Microcirculation study with laser Doppler was performed at the hand in basal conditions, after ischemia and after acetylcholine and nitroprusside; strain gauge plethysmography was performed at basal and after ischemia. The tests were repeated in the same sequence 2 hour after oral administration of glucose (75 g). The subjects were randomised for administration of ascorbic acid (1 g bid) or placebo (sodium bicarbonate 1 g bid) for 10 days. After that, the tests were repeated before and after a new oral glucose load. Blood pressure and heart rate were monitored. Macrocirculatory flux, pressure values and heart rate were unvaried throughout the study. The glucose load caused a reduction in the hyperemic peak flow with laser Doppler and plethysmography; it reduced flux recovery time and hyperemic curve area after ischemia; acetylcholine elicited a minor increase in flux with laser Doppler. The response to nitroprusside was unvaried after glucose load as compared to basal conditions. Treatment with ascorbic acid prevented the decrease in hyperemia after glucose, detected with laser Doppler and plethysmography. Ascorbic acid prevented the decreased response to acetylcholine after glucose, the response to nitroprusside was unaffected by ascorbic acid. Results after placebo were unvaried. Oral glucose load impairs endothelium dependent dilation and hyperaemia at microcirculation, probably via oxidative stress; ascorbic acid can prevent it. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  6. Role of chloride transport proteins in the vasorelaxant action of nitroprusside in isolated rat aorta.

    PubMed

    Valero, Marta; Pereboom, Désirée; Garay, Ricardo P; Alda, José Octavio

    2006-12-28

    Chloride ions play a key role in smooth muscle contraction, but little is known concerning their role in smooth muscle relaxation. Here we investigated the effect of chloride transport inhibitors on the vasorelaxant responses to nitroprusside in isolated and endothelium-denuded rat aorta, precontracted with phenylephrine 1 muM. Incubation of aortic rings in NO(3)(-) media strongly potentiated the vasorelaxant responses to nitroprusside. Bumetanide, DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) and acetazolamide strongly potentiated the vasorelaxant responses to nitroprusside (by 70-100%). EC(50) were 2.3+/-0.5 microM for bumetanide, 26+/-15 microM for DIDS and 510+/-118 microM for acetazolamide (n=6 for condition). Niflumic acid, a selective inhibitor of ClCa (calcium-activated chloride channels), potentiated nitroprusside relaxation to a similar extent as chloride transport inhibitors, in a non-additive manner. Zinc and nickel ions, both modestly potentiated nitroprusside vasorelaxation (by 20-30%). Cobaltum had negligible effect on nitroprusside vasorelaxation. CPA (p-chlorophenoxy-acetic acid), an inhibitor of volume-sensitive chloride channels (ClC), slightly potentiated nitroprusside vasorelaxation (by 15%), and the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel inhibitors CFTR(inh)172 (5-[(4-Carboxyphenyl)methylene]-2-thioxo-3-[(3-trifluoromethyl)phenyl-4-thiazolidinone), DPC (diphenylamine-2,2'-dicarboxylic acid) and glibenclamide were without significant effect. In conclusion, inhibition of chloride transport proteins strongly potentiates the vasorelaxant responses to nitroprusside in isolated rat aorta. This effect seems mediated by chloride depletion and inhibition of a chloride channel activated by both, calcium and cyclic GMP (cGMP).

  7. Sodium nitroprusside increases human skeletal muscle blood flow, but does not change flow distribution or glucose uptake.

    PubMed

    Pitkanen, O P; Laine, H; Kemppainen, J; Eronen, E; Alanen, A; Raitakari, M; Kirvela, O; Ruotsalainen, U; Knuuti, J; Koivisto, V A; Nuutila, P

    1999-12-15

    1. The role of blood flow as a determinant of skeletal muscle glucose uptake is at present controversial and results of previous studies are confounded by possible direct effects of vasoactive agents on glucose uptake. Since increase in muscle blood flow can be due to increased flow velocity or recruitment of new capillaries, or both, it would be ideal to determine whether the vasoactive agent affects flow distribution or only increases the mean flow. 2. In the present study blood flow, flow distribution and glucose uptake were measured simultaneously in both legs of 10 healthy men (aged 29 +/- 1 years, body mass index 24 +/- 1 kg m-2) using positron emission tomography (PET) combined with [15O]H2O and [18F]fluoro-2-deoxy-D-glucose (FDG). The role of blood flow in muscle glucose uptake was studied by increasing blood flow in one leg with sodium nitroprusside (SNP) and measuring glucose uptake simultaneously in both legs during euglycaemic hyperinsulinaemia (insulin infusion 6 pmol kg-1 min-1). 3. SNP infusion increased skeletal muscle blood flow by 86 % (P < 0.01), but skeletal muscle flow distribution and insulin-stimulated glucose uptake (61.4 +/- 7. 5 vs. 67.0 +/- 7.5 micromol kg-1 min-1, control vs. SNP infused leg, not significant), as well as flow distribution between different tissues of the femoral region, remained unchanged. The effect of SNP infusion on blood flow and distribution were unchanged during infusion of physiological levels of insulin (duration, 150 min). 4. Despite a significant increase in mean blood flow induced by an intra-arterial infusion of SNP, glucose uptake and flow distribution remained unchanged in resting muscles of healthy subjects. These findings suggest that SNP, an endothelium-independent vasodilator, increases non-nutritive, but not nutritive flow or capillary recruitment.

  8. Mechanisms underlying sodium nitroprusside-induced tolerance in the mouse aorta: Role of ROS and cyclooxygenase-derived prostanoids.

    PubMed

    Diniz, Mariana C; Olivon, Vania C; Tavares, Lívia D; Simplicio, Janaina A; Gonzaga, Natália A; de Souza, Daniele G; Bendhack, Lusiane M; Tirapelli, Carlos R; Bonaventura, Daniella

    2017-05-01

    To determine the role of reactive oxygen species (ROS) on sodium nitroprusside (SNP)-induced tolerance. Additionally, we evaluated the role of ROS on NF-κB activation and pro-inflammatory cytokines production during SNP-induced tolerance. To induce in vitro tolerance, endothelium-intact or -denuded aortic rings isolated from male Balb-c mice were incubated for 15, 30, 45 or 60min with SNP (10nmol/L). Tolerance to SNP was observed after incubation of endothelium-denuded, but not endothelium-intact aortas for 60min with this inorganic nitrate. Pre-incubation of denuded rings with tiron (superoxide anion (O 2 - ) scavenger), and the NADPH oxidase inhibitors apocynin and atorvastatin reversed SNP-induced tolerance. l-NAME (non-selective NOS inhibitor) and l-arginine (NOS substrate) also prevented SNP-induced tolerance. Similarly, ibuprofen (non-selective cyclooxygenase (COX) inhibitor), nimesulide (selective COX-2 inhibitor), AH6809 (prostaglandin PGF 2 α receptor antagonist) or SQ29584 [PGH 2 /thromboxane TXA 2 receptor antagonist] reversed SNP-induced tolerance. Increased ROS generation was detected in tolerant arteries and both tiron and atorvastatin reversed this response. Tiron prevented tolerance-induced increase on O 2 - and hydrogen peroxide (H 2 O 2 ) levels. The increase onp65/NF-κB expression and TNF-α production in tolerant arteries was prevented by tiron. The major new finding of our study is that SNP-induced tolerance is mediated by NADPH-oxidase derived ROS and vasoconstrictor prostanoids derived from COX-2, which are capable of reducing the vasorelaxation induced by SNP. Additionally, we found that ROS mediate the activation of NF-κB and the production of TNF-α in tolerant arteries. These findings identify putative molecular mechanisms whereby SNP induces tolerance in the vasculature. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effect of intracoronary nitroprusside injection on flow recovery during primary PCI in acute STEMI patients.

    PubMed

    Yang, Lixia; Mu, Lihua; Sun, Linhui; Qi, Feng; Guo, Ruiwei

    2017-04-01

    The no/slow reflow phenomenon during primary percutaneous coronary intervention (PPCI) causes the destruction of the coronary microcirculation and further myocardial damage. Some studies have shown that intracoronary nitroprusside infusion is a safe and effective method for managing the no/slow reflow phenomenon. However, it is uncertain whether the injection of nitroprusside at a specific time point during PPCI can most effectively prevent no-reflow. In this study, we investigated the effect of the timing of an intracoronary nitroprusside injection on flow recovery during PPCI in patients with ST elevation acute myocardial infarction (STEMI). One hundred twenty consecutive patients with STEMI who underwent PPCI were enrolled in the study. Patients who fulfilled the eligibility criteria were randomly allocated to three groups: control group (N.=40) received no nitroprusside before they completed PCI; the second group (N.=40) received nitroprusside before balloon dilatation; and the third group (N.=40) received nitroprusside after each balloon dilatation and before contrast agent refilling. The baseline clinical variables and the details of the PCI procedure were collected. The thrombolysis in myocardial infarction (TIMI) flow grades and the corrected TIMI frame count (cTFC) were evaluated immediately after stent implantation was completed. There were no significant differences in the baseline characteristics, antithrombotic drugs given before PCI, and details of the PCI procedure among the three groups (P>0.05). The incidence of TIMI grade 3 after PCI was significantly higher in the nitroprusside group than in the control group (P=0.025), whereas cTFC was significantly lower in the nitroprusside group (26.6±15.2) than in the control group (38.1±21.3, P=0.001). The incidence of TIMI grade 3 after PCI was significantly higher in the third group than in the second group (P=0.045), and cTFC was significantly lower in the third group (21.5±9.5) than in the second

  10. Sodium Nitroprusside Enhanced Cardiopulmonary Resuscitation Improves Short Term Survival in a Porcine Model of Ischemic Refractory Ventricular Fibrillation

    PubMed Central

    Yannopoulos, Demetris; Bartos, Jason A.; George, Stephen A.; Sideris, George; Voicu, Sebastian; Oestreich, Brett; Matsuura, Timothy; Shekar, Kadambari; Rees, Jennifer; Aufderheide, Tom P.

    2017-01-01

    Introduction Sodium nitroprusside (SNP) enhanced CPR (SNPeCPR) demonstrates increased vital organ blood flow and survival in multiple porcine models. We developed a new, coronary occlusion/ischemia model of prolonged resuscitation, mimicking the majority of out-of-hospital cardiac arrests presenting with shockable rhythms. Hypothesis SNPeCPR will increase short term (4-hour) survival compared to standard 2015 Advanced Cardiac Life Support (ACLS) guidelines in an ischemic refractory ventricular fibrillation (VF), prolonged CPR model. Methods Sixteen anesthetized pigs had the ostial left anterior descending artery occluded leading to ischemic VF arrest. VF was untreated for 5 minutes. Basic life support was performed for 10 minutes. At minute 10 (EMS arrival), animals received either SNPeCPR (n=8) or standard ACLS (n=8). Defibrillation (200J) occurred every 3 minutes. CPR continued for a total of 45 minutes, then the balloon was deflated simulating revascularization. CPR continued until return of spontaneous circulation (ROSC) or a total of 60 minutes, if unsuccessful. SNPeCPR animals received 2 mg of SNP at minute 10 followed by 1 mg every 5 minutes until ROSC. Standard ACLS animals received 0.5 mg epinephrine every 5 minutes until ROSC. Primary endpoints were ROSC and 4-hour survival. Results All SNPeCPR animals (8/8) achieved sustained ROSC versus 2/8 standard ACLS animals within one hour of resuscitation (p=0.04). The 4-hour survival was significantly improved with SNPeCPR compared to standard ACLS, 7/8 versus 1/8 respectively, p=0.0019. Conclusion SNPeCPR significantly improved ROSC and 4-hour survival compared with standard ACLS CPR in a porcine model of prolonged ischemic, refractory VF cardiac arrest. PMID:27771299

  11. Sodium nitroprusside enhanced cardiopulmonary resuscitation improves short term survival in a porcine model of ischemic refractory ventricular fibrillation.

    PubMed

    Yannopoulos, Demetris; Bartos, Jason A; George, Stephen A; Sideris, George; Voicu, Sebastian; Oestreich, Brett; Matsuura, Timothy; Shekar, Kadambari; Rees, Jennifer; Aufderheide, Tom P

    2017-01-01

    Sodium nitroprusside (SNP) enhanced CPR (SNPeCPR) demonstrates increased vital organ blood flow and survival in multiple porcine models. We developed a new, coronary occlusion/ischemia model of prolonged resuscitation, mimicking the majority of out-of-hospital cardiac arrests presenting with shockable rhythms. SNPeCPR will increase short term (4-h) survival compared to standard 2015 Advanced Cardiac Life Support (ACLS) guidelines in an ischemic refractory ventricular fibrillation (VF), prolonged CPR model. Sixteen anesthetized pigs had the ostial left anterior descending artery occluded leading to ischemic VF arrest. VF was untreated for 5min. Basic life support was performed for 10min. At minute 10 (EMS arrival), animals received either SNPeCPR (n=8) or standard ACLS (n=8). Defibrillation (200J) occurred every 3min. CPR continued for a total of 45min, then the balloon was deflated simulating revascularization. CPR continued until return of spontaneous circulation (ROSC) or a total of 60min, if unsuccessful. SNPeCPR animals received 2mg of SNP at minute 10 followed by 1mg every 5min until ROSC. Standard ACLS animals received 0.5mg epinephrine every 5min until ROSC. Primary endpoints were ROSC and 4-h survival. All SNPeCPR animals (8/8) achieved sustained ROSC versus 2/8 standard ACLS animals within one hour of resuscitation (p=0.04). The 4-h survival was significantly improved with SNPeCPR compared to standard ACLS, 7/8 versus 1/8 respectively, p=0.0019. SNPeCPR significantly improved ROSC and 4-h survival compared with standard ACLS CPR in a porcine model of prolonged ischemic, refractory VF cardiac arrest. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Role of aminophylline in refractory heart failure: a comparison to the vasodilator sodium nitroprusside, the old and the new.

    PubMed

    DiBianco, R; Rosenfeld, S P; Katz, R J; Simpson, A G; Fletcher, R D; Singh, S

    1980-08-01

    Aminophylline [(theophylline ethylene diamine (TED)] reportedly improved cardiac hemodynamics by lowering vascular resistances and increasing contractility. TED as used clinically has not been compared to the vasodilator sodium nitroprusside (NP). To assess the relative hemodynamic effects of these two commonly used agents, the following comparison was made. Ten patients with congestive cardiomyopathy in chronic refractory heart failure [New York Heart Association (NYHA) class IV] were studied. All patients demonstrated cardiomegaly by chest x ray and echocardiography (LVd = 6.3 +/- 0.7 cm) and markedly abnormal hemodynamics during baseline observations (see Table I). Hemodynamic measurements at baseline were compared after TED infusion (mean blood level = 16 +/- 12 micrograms/m/TED) and during intravenous NP. No significant changes in heart rate occurred during either therapeutic intervention; a fall in mean arterial pressure of 10 mmHg (p < 0.01) was observed during NP therapy; atrioventricular (AV) block with ventricular fibrillation was successfully treated in one patient after TED. Theophylline ethylene diamine demonstrated no detectable cardiac hemodynamic effects 60--90 min post infusion despite proven blood levels, whereas NP exhibited distinctly beneficial effects in this patient group. Previous studies demonstrating improved hemodynamics occurring with TED have been limited to the time of infusion or within the following 40 min, a time when TED blood levels are maximum and therefore closest to toxicity. The results of this study suggest that TED demonstrates no beneficial hemodynamic effects in refractory heart failure as early as 1 h after infusion despite blood levels in the therapeutic range.

  13. Nitroprusside inhibits calcium-induced impairment of red blood cell deformability.

    PubMed

    Barodka, Viachaslau; Mohanty, Joy G; Mustafa, Asif K; Santhanam, Lakshmi; Nyhan, Aoibhinn; Bhunia, Anil K; Sikka, Gautam; Nyhan, Daniel; Berkowitz, Dan E; Rifkind, Joseph M

    2014-02-01

    Red blood cell (RBC) deformation is critical for microvascular perfusion and oxygen delivery to tissues. Abnormalities in RBC deformability have been observed in aging, sickle cell disease, diabetes, and preeclampsia. Although nitric oxide (NO) prevents decreases in RBC deformability, the underlying mechanism is unknown. As an experimental model, we used ionophore A23187-mediated calcium influx in RBCs to reduce their deformability and investigated the role of NO donor sodium nitroprusside (SNP) and KCa3.1 (Gardos) channel blockers on RBC deformability (measured as elongation index [EI] by microfluidic ektacytometry). RBC intracellular Ca(2+) and extracellular K(+) were measured by inductively coupled plasma mass spectrometry and potassium ion selective electrode, respectively. SNP treatment of RBCs blocked the Ca(2+) (approx. 10 μmol/L)-induced decrease in RBC deformability (EI 0.34 ± 0.02 vs. 0.09 ± 0.01, control vs. Ca(2+) loaded, p < 0.001; and EI 0.37 ± 0.02 vs. 0.30 ± 0.01, SNP vs. SNP plus Ca(2+) loaded) as well as Ca(2+) influx and K(+) efflux. The SNP effect was similar to that observed after pharmacologic blockade of the KCa3.1 channel (with charybdotoxin or extracellular medium containing isotonic K(+) concentration). In RBCs from KCa3.1(-/-) mice, 10 μmol/L Ca(2+) loading did not decrease cellular deformability. A preliminary attempt to address the molecular mechanism of SNP protection suggests the involvement of cell surface thiols. Our results suggest that nitroprusside treatment of RBCs may protect them from intracellular calcium increase-mediated stiffness, which may occur during microvascular perfusion in diseased states, as well as during RBC storage. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  14. Effects of perilymphatic pressure, sodium nitroprusside, and bupivacaine on cochlear fluid pH of guinea pigs.

    PubMed

    Suzuki, Masaaki; Kotani, Ryosuke

    2015-01-01

    Hydrostatic positive pressure and vasoconstrictor acidified the cochlear fluids, whereas the vasodilator made the fluids alkaline. CBF might play a role in regulating cochlea fluid pH. Cochlea fluid pH is highly dependent on the HCO3(-)/CO2 buffer system. Cochlear blood flow (CBF) supplies O2 and removes CO2. It is speculated that cochlear blood flow changes might affect the balance of the HCO3(-)/CO2 buffer system in the cochlea. It is known that the elevation of inner ear pressure decreases the CBF, and local application of vasodilating or vasoconstricting agents directly to the cochlea changes the CBF. The purpose of this study was to elucidate the effect of positive hydrostatic inner ear pressure and application of a vasodilator and vasoconstrictor of cochlear vessels on the pH of the endolymph and perilymph. The authors performed animal physiological experiments on 30 guinea pigs. Hydrostatic positive pressure was infused through a glass capillary tube inserted into the scala tympani of the basal turn. The vasodilator, nitric oxide donor (sodium nitroprusside; SNP), and the vasoconstrictor, bupivacaine, were placed topically onto the round window of the guinea pig cochlea. Endolymph pH (pHe) and endocochlear potential (EP) were monitored by double-barreled ion-selective microelectrodes in the second turn of the guinea pig cochlea. During the topical application study, scala vestibuli perilymph pH (pHv) was also measured simultaneously in the second turn. The application of hydrostatic positive pressure caused a decrease in pHe and EP. Positive perilymphatic pressure caused the endolymph to become acidic pressure-dependently. Application of 3.0% SNP evoked an increase in both the pHe and pHv, following by a gradual recovery to baseline levels. On the other hand, 0.5% bupivacaine caused a decrease in both the pHe and pHv. The EP during topical application showed slight, non-significant changes.

  15. Control of synthesis and release of radioactive acetylcholine in brain slices from the rat. Effects of neurotropic drugs

    PubMed Central

    Grewaal, D. S.; Quastel, J. H.

    1973-01-01

    1. Studies of the synthesis and release of radioactive acetylcholine in rat brain-cortex slices incubated in Locke–bicarbonate–[U-14C]glucose media, containing paraoxon as cholinesterase inhibitor, revealed the following phenomena: (a) dependence of K+-or protoveratrine-stimulated acetylcholine synthesis and release on the presence of Na+ and Ca2+ in the incubation medium, (b) enhanced release of radioactive acetylcholine by substances that promote depolarization at the nerve cell membrane (e.g. high K+, ouabain, protoveratrine, sodium l-glutamate, high concentration of acetylcholine), (c) failure of acetylcholine synthesis to keep pace with acetylcholine release under certain conditions (e.g. the presence of ouabain or lack of Na+). 2. Stimulation by K+ of radioactive acetylcholine synthesis was directly proportional to the external concentration of Na+, but some synthesis and release of radioactive acetylcholine occurred in the absence of Na+ as well as in the absence of Ca2+. 3. The Na+ dependence of K+-stimulated acetylcholine synthesis was partly due to suppression of choline transport, as addition of small concentrations of choline partly neutralized the effect of Na+ lack, and partly due to the suppression of the activity of the Na+ pump. 4. Protoveratrine caused a greatly increased release of radioactive acetylcholine without stimulating total radioactive acetylcholine synthesis. Protoveratrine was ineffective in the absence of Ca2+ from the incubation medium. It completely blocked K+ stimulation of acetylcholine synthesis and release. 5. Tetrodotoxin abolished the effects of protoveratrine on acetylcholine release. It had blocking effects (partial or complete) on the action of high K+, sodium l-glutamate and lack of Ca2+ on acetylcholine synthesis and release. 6. Unlabelled exogenous acetylcholine did not diminish the content of labelled tissue acetylcholine, derived from labelled glucose, suggesting that no exchange with vesicular acetylcholine took

  16. Sodium nitroprusside is effective in preventing and/or reversing the development of schizophrenia-related behaviors in an animal model: The SHR strain.

    PubMed

    Diana, Mariana C; Peres, Fernanda F; Justi, Veronica; Bressan, Rodrigo A; Lacerda, Acioly L T; Crippa, José Alexandre; Hallak, Jaime E C; Abilio, Vanesssa Costhek

    2018-04-14

    The treatment of schizophrenia with antipsychotics is still unsatisfactory. Therefore, the search for new treatments and prevention is crucial, and animal models are fundamental tools for this objective. Preclinical and clinical data evidence the antipsychotic profile of sodium nitroprusside (SNP), a nitric oxide (NO) donor. We aimed to investigate SNP in treating and/or preventing the schizophrenia-related behaviors presented by the spontaneously hypertensive rats (SHR) strain. Wistar rats (WR) and SHRs were submitted to two schemes of treatment: (i) a single injection of SNP or vehicle in adulthood; (ii) a long-term early treatment from 30 to 60 postnatal day with SNP or vehicle. The following behaviors were evaluated 24 hours after the acute treatment or 30 days after the long-term treatment: locomotion, social interaction, and contextual fear conditioning. Spontaneously hypertensive rats presented hyperlocomotion, decreased social interaction, and impaired contextual fear conditioning. Single injection of SNP decreased social interaction in both strains and induced a deficit in contextual fear conditioning in WR. Oppositely, early treatment with SNP prevented the behavioral abnormalities in adult SHRs without promoting any effects in WR. Our preclinical data point to SNP as a preventive and safe strategy with a broad range of effectiveness to the positive, negative, and cognitive symptoms of schizophrenia. © 2018 John Wiley & Sons Ltd.

  17. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culturemore » of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.« less

  18. Quercetin and pioglitazone synergistically reverse endothelial dysfunction in isolated aorta from fructose-streptozotocin (F-STZ)-induced diabetic rats.

    PubMed

    Kunasegaran, Thubasni; Mustafa, Mohd Rais; Achike, Francis I; Murugan, Dharmani Devi

    2017-03-15

    Pioglitazone is an anti-diabetic drug with potential to cause adverse effects following prolonged use. This study, therefore, investigated the effects of combination treatment of a subliminal concentration of pioglitazone and quercetin, a potent antioxidant, on vascular reactivity of aorta isolated from fructose-streptozotocin (F-STZ)-induced diabetic rats. Relaxation to acetylcholine and sodium nitroprusside, and contraction to phenylephrine were tested in organ bath chambers following pre-incubation with vehicle (DMSO; 0.05%), quercetin (10-7 M), pioglitazone (10-7 M), or their combination (P+Q; 10-7 M each drug). Subliminal concentration of quercetin or pioglitazone did not alter the acetylcholine- induced relaxation nor the phenylephrine-induced contraction in both normal rat and diabetic F-STZ induced tissues. However, P+Q combination synergistically improved the impaired acetylcholine-induced relaxation and decreased the elevated phenylephrine-induced contraction in aortic rings from diabetic, but not in the normal rats. Neither mono nor combination treatment altered sodium nitroprusside-induced relaxation. The combination also synergistically decreased superoxide anion and increased nitric oxide production compared to the individual treatments in aorta from diabetic rats. Overall, these data demonstrated a synergistic effect, in which, a combination (P+Q; 10-7 M each drug) caused a significantly greater effect than 10-6 M of either agent in improving endothelial function of isolated diabetic aorta. In conclusion, a combination of subliminal concentrations of pioglitazone and quercetin is able to decrease oxidative stress and provide synergistic vascular protection in type 2 diabetes mellitus and thus the possibility of using quercetin as a supplement to pioglitazone in the treatment of diabetes with the goal of reducing pioglitazone toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. MK-801-induced impairments on the trial-unique, delayed nonmatching-to-location task in rats: effects of acute sodium nitroprusside.

    PubMed

    Hurtubise, Jessica L; Marks, Wendie N; Davies, Don A; Catton, Jillian K; Baker, Glen B; Howland, John G

    2017-01-01

    The cognitive symptoms observed in schizophrenia are not consistently alleviated by conventional antipsychotics. Following a recent pilot study, sodium nitroprusside (SNP) has been identified as a promising adjunct treatment to reduce the working memory impairments experienced by schizophrenia patients. The present experiments were designed to explore the effects of SNP on the highly translatable trial-unique, delayed nonmatching-to-location (TUNL) task in rats with and without acute MK-801 treatment. SNP (0.5, 1.0, 2.0, 4.0, and 5.0 mg/kg) and MK-801 (0.05, 0.075, and 0.1 mg/kg) were acutely administered to rats trained on the TUNL task. Acute MK-801 treatment impaired TUNL task accuracy. Administration of SNP (2.0 mg/kg) with MK-801 (0.1 mg/kg) failed to rescue performance on TUNL. SNP (5.0 mg/kg) administration nearly 4 h prior to MK-801 (0.05 mg/kg) treatment had no preventative effect on performance impairments. SNP (2.0 mg/kg) improved performance on a subset of trials. These results suggest that SNP may possess intrinsic cognitive-enhancing properties but is unable to block the effects of acute MK-801 treatment on the TUNL task. These results are inconsistent with the effectiveness of SNP as an adjunct therapy for working memory impairments in schizophrenia patients. Future studies in rodents that assess SNP as an adjunct therapy will be valuable in understanding the mechanisms underlying the effectiveness of SNP as a treatment for schizophrenia.

  20. Human sympathetic and vagal baroreflex responses to sequential nitroprusside and phenylephrine

    NASA Technical Reports Server (NTRS)

    Rudas, L.; Crossman, A. A.; Morillo, C. A.; Halliwill, J. R.; Tahvanainen, K. U.; Kuusela, T. A.; Eckberg, D. L.

    1999-01-01

    We evaluated a method of baroreflex testing involving sequential intravenous bolus injections of nitroprusside followed by phenylephrine and phenylephrine followed by nitroprusside in 18 healthy men and women, and we drew inferences regarding human sympathetic and vagal baroreflex mechanisms. We recorded the electrocardiogram, photoplethysmographic finger arterial pressure, and peroneal nerve muscle sympathetic activity. We then contrasted least squares linear regression slopes derived from the depressor (nitroprusside) and pressor (phenylephrine) phases with 1) slopes derived from spontaneous fluctuations of systolic arterial pressures and R-R intervals, and 2) baroreflex gain derived from cross-spectral analyses of systolic pressures and R-R intervals. We calculated sympathetic baroreflex gain from integrated muscle sympathetic nerve activity and diastolic pressures. We found that vagal baroreflex slopes are less when arterial pressures are falling than when they are rising and that this hysteresis exists over pressure ranges both below and above baseline levels. Although pharmacological and spontaneous vagal baroreflex responses correlate closely, pharmacological baroreflex slopes tend to be lower than those derived from spontaneous fluctuations. Sympathetic baroreflex slopes are similar when arterial pressure is falling and rising; however, small pressure elevations above baseline silence sympathetic motoneurons. Vagal, but not sympathetic baroreflex gains vary inversely with subjects' ages and their baseline arterial pressures. There is no correlation between sympathetic and vagal baroreflex gains. We recommend repeated sequential nitroprusside followed by phenylephrine doses as a simple, efficientmeans to provoke and characterize human vagal and sympathetic baroreflex responses.

  1. Improvement of Acetylcholine-Induced Vasodilation by Acute Exercise in Ovariectomized Hypertensive Rats.

    PubMed

    Cheng, Tsung-Lin; Lin, Yi-Yuan; Su, Chia-Ting; Hu, Chun-Che; Yang, Ai-Lun

    2016-06-30

    Postmenopause is associated with the development of cardiovascular disease, such as hypertension. However, limited information is available regarding effects of exercise on cardiovascular responses and its underlying mechanisms in the simultaneous postmenopausal and hypertensive status. We aimed to investigate whether acute exercise could enhance vasodilation mediated by acetylcholine (ACh) and sodium nitroprusside (SNP) in ovariectomized hypertensive rats. The fifteen-week-old female spontaneously hypertensive rats (SHR) were bilaterally ovariectomized, at the age of twenty-four weeks, and randomly divided into sedentary (SHR-O) and acute exercise (SHR-OE) groups. Age-matched WKY rats were used as the normotensive control group. The SHR-OE group ran on a motor-driven treadmill at a speed of 24 m/min for one hour in a moderate-intensity program. Following a single bout of exercise, rat aortas were isolated for the evaluation of the endothelium-dependent (ACh-induced) and endothelium-independent (SNP-induced) vasodilation by the organ bath system. Also, the serum levels of oxidative stress and antioxidant activities, including malondialdehyde (MDA), superoxide dismutase (SOD), and catalase, were measured after acute exercise among the three groups. We found that acute exercise significantly enhanced the ACh-induced vasodilation, but not the SNP-induced vasodilation, in ovariectomized hypertensive rats. This increased vasodilation was eliminated after the inhibition of nitric oxide synthase (NOS). Also, the activities of SOD and catalase were significantly increased after acute exercise, whereas the level of MDA was comparable among the three groups. These results indicated that acute exercise improved the endothelium-dependent vasodilating response to ACh through the NOS-related pathway in ovariectomized hypertensive rats, which might be associated with increased serum antioxidant activities.

  2. BP and Vascular Function Following Space Flight

    NASA Technical Reports Server (NTRS)

    Hatton, Daniel C.; Yue, Qi; Chapman, Justin; Xue, Hong; Dierickx, Jacqueline; Roullet, Chantal; Roullet, Jean-Baptiste; Phanouvong, Thongchanh; Watanabe, Mitsuaki; Otsuka, Keiichi; hide

    1997-01-01

    Blood pressure and mesenteric resistance artery function were assessed in 9-week-old spontaneously hypertensive rats following an 18 day shuttle flight on STS-80. Blood pressure was measured twice, first in conscious animals using a tail-cuff method and then while the animals were anesthetized with 2% halothane in O2. Isolated mesenteric resistance artery responses to cumulative additions of norepinephrine, acetylcholine, sodium nitroprusside, and calcium were measured within 17 hours of landing using wire myography. Blood pressure was slightly reduced in conscious animals following flight (p=0.056) but was significantly elevated (p less than.001) above vivarium control group values in anesthetized animals. Maximal contraction of mesenteric arteries to norepinephrine was attenuated in the flight animals (p less than.001)aswasrelaxationtoacetylcholine(p less than .001)andcalcium(p less than .05). There was no difference between flight and control animals in the vessel response to sodium nitroprusside (p greater than .05). The results suggest that there may have been an increase in synthesis and release of nitric oxide in the flight animals.

  3. Aerosolized PGE1, PGI2 and nitroprusside protect against vascular leakage in lung ischaemia-reperfusion.

    PubMed

    Schütte, H; Löckinger, A; Seeger, W; Grimminger, F

    2001-07-01

    High permeability oedema is an important feature in lung injury secondary to ischaemia-reperfusion. This study investigated the influence of aerosolized prostaglandin E1 (PGE1), prostaglandin I2 (PCI2) and the nitric oxide (NO)-donor, sodium nitroprusside (SNP) on microvascular barrier function in pulmonary ischaemia-reperfusion. Buffer-perfused rabbit lungs were exposed to 180 or 210 min of warm ischaemia while maintaining anoxic ventilation and a positive intravascular pressure. Reperfusion provoked a transient, mostly precapillary elevation of vascular resistance, followed by a severe increase of the capillary filtration coefficient (Kfc) versus nonischaemic controls (3.17+/-0.34 versus 0.85+/-0.05 cm3 x s(-1) cmH2O(-1) x g(-1) x 10(-4) after 30 min of reperfusion), and progressive oedema formation. Short-term aerosolization of SNP, PGE1 or PGI2 at the beginning of ischaemia largely suppressed the Kfc increase (1.36+/-0.22, 1.32+/-0.23 and 1.32+/-0.22 cm3 x s(-1) x cmH2O(-1) x g(-1) x 10(-4), respectively) and oedema formation. In contrast, application prior to reperfusion was much less effective, with some reduction of Kfc increase by PGI2 and SNP and no effect of PGE, (1.79+/-0.31, 2.2+/-0.53 and 3.2+/-0.05 cm3 x s(-1) x cmH2O(-1) x g(-1) x 10(-4), respectively). Haemodynamics, including microvascular pressure, were only marginally affected by the chosen doses of aerosolized vasodilators. It is concluded that short-term aerosolization of prostaglandin E1, prostaglandin I2 and sodium nitroprusside at the onset of ischaemia is highly effective in maintaining endothelial barrier properties in pulmonary ischaemia-reperfusion. This effect is apparently attributable to nonvasodilatory mechanisms exerted by these agents. Alveolar deposition of prostaglandins and/or nitric oxide donors by the aerosol technique may offer pulmonary protection in ischaemia-reperfusion injury.

  4. Acute and repeated exposure with the nitric oxide (NO) donor sodium nitroprusside (SNP) differentially modulate responses in a rat model of anxiety.

    PubMed

    Orfanidou, Martha A; Lafioniatis, Anastasios; Trevlopoulou, Aikaterini; Touzlatzi, Ntilara; Pitsikas, Nikolaos

    2017-09-30

    The nitric oxide (NO) donor sodium nitroprusside (SNP) actually is under investigation for the treatment of schizophrenia. That anxiety disorders are noted to occur commonly in schizophrenia patients is known. Contradictory results were reported however, concerning the effects of SNP in animal models of anxiety disorders. The present study investigated the effects of acute and repeated administration of SNP on anxiety-like behaviour in rats assessed in the light/dark test. The effects of SNP on motility in a locomotor activity chamber were also investigated in rats. Acute administration of 1 mg/kg SNP 30 but not 60 min before testing induced anxiolytic-like behaviour which cannot be attributed to changes in locomotor activity. Conversely, a single injection of 3 mg/kg SNP at 30 min before testing depressed rats' general activity, while at 60 min this dose did not influence performance of animals either in the light/dark or in the motor activity test. Repeated application of SNP (1 and 3 mg/kg, for 5 consecutive days) did not alter rodents' performance in the above described behavioural paradigms. The present results suggest that the effects exerted by SNP in the light/dark test in rats are dose, time and treatment schedule-dependent. The current findings propose also a narrow therapeutic window for SNP in this animal model of anxiety. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Differential actions of L-cysteine on responses to nitric oxide, nitroxyl anions and EDRF in the rat aorta

    PubMed Central

    Ellis, Anthie; Guang Li, Chun; Rand, Michael J

    2000-01-01

    The effects of L-cysteine were tested in rat aortic rings on responses to nitric oxide free radical (NO•), nitroxyl (NO−) derived from Angeli's salt and endothelium-derived relaxing factor (EDRF) activated by acetylcholine, ATP and the calcium ionophore A23187. Concentrations of 300 μM or less of L-cysteine had no effect on responses. Relaxations produced by exogenous NO• (0.25–2.5 μM) were markedly prolonged and relaxations produced by sodium nitroprusside (0.001–0.3 μM) were enhanced by 1 and 3 mM L-cysteine. The enhancements by L-cysteine of responses to NO• and sodium nitroprusside may be attributed to the formation of S-nitrosocysteine. Relaxations mediated by the nitroxyl anion (0.3 μM) donated from Angeli's salt were more prolonged than those produced by NO•, and nitroxyl-induced relaxations were reduced by L-cysteine (1 and 3 mM). EDRF-mediated relaxations produced by acetylcholine (0.01–10 μM), ATP (3–100 μM) and the calcium ionophore A23187 (0.1 μM) were significantly reduced by 3 mM L-cysteine. The similarity between the inhibitory effects of L-cysteine on responses to EDRF and on those to nitroxyl suggests that a component of the response to EDRF may be mediated by nitroxyl anion. PMID:10694238

  6. Long-term treatment with nebivolol improves arterial reactivity and reduces ventricular hypertrophy in spontaneously hypertensive rats.

    PubMed

    Guerrero, Estela; Voces, Felipe; Ardanaz, Noelia; Montero, María José; Arévalo, Miguel; Sevilla, María Angeles

    2003-09-01

    The aim of this study was to assess the effects of long-term nebivolol therapy on high blood pressure, impaired endothelial function in aorta, and damage observed in heart and conductance arteries in spontaneously hypertensive rats (SHR). For this purpose, SHR were treated for 9 weeks with nebivolol (8 mg/kg per day). Untreated SHR and Wistar Kyoto rats were used as hypertensive and normotensive controls, respectively. The left ventricle/body weight ratio was used as an index of cardiac hypertrophy, and to evaluate vascular function, responses induced by potassium chloride, noradrenaline, acetylcholine, and sodium nitroprusside were tested on aortic rings. Aortic morphometry and fibrosis were determined in parallel by a quantitative technique. Systolic blood pressure, measured by the tail-cuff method, was lower in treated SHR than in the untreated group (194 +/- 3 versus 150 +/- 4 mm Hg). The cardiac hypertrophy index was significantly reduced by the treatment. In aortic rings, treatment with nebivolol significantly reduced the maximal response to both KCl and NA in SHR. In vessels precontracted with phenylephrine relaxant, activity due to acetylcholine was higher in normotensive rats than in SHR and the treatment significantly improved this response. The effect of sodium nitroprusside on aortic rings was similar in all groups. Medial thickness and collagen content were significantly reduced in comparison with SHR. In conclusion, the chronic antihypertensive effect of nebivolol in SHR was accompanied by an improvement in vascular structure and function and in the cardiac hypertrophy index.

  7. Study of carbon dioxide adsorption on a Cu-nitroprusside polymorph

    DOE PAGES

    Roque-Malherbe, R.; Lozano, C.; Polanco, R.; ...

    2011-03-26

    A careful structural characterization was carried out to unequivocally determine the structure of the synthesized material. The TGA, DRIFTS and a Pawley fitting of the XRD powder profiles indicate that the hydrated and in situ dehydrated polymorph crystallizes in the orthorhombic space group Pnma. Meanwhile, the CO 2 isosteric heat of adsorption appears to be independent of loading with an average value of 30 kJ/mol. This translates to a physisorption type interaction, where the adsorption energy corresponding to wall and lateral interactions are mutually compensated to produce, an apparently, homogeneous adsorption energy. The somewhat high adsorption energy is probably duemore » to the confinement of the CO 2 molecules in the nitroprusside pores. Statistical Physics and the Dubinin theory for pore volume filling allowed model the CO 2 equilibrium adsorption process in Cu-nitroprusside. A DRIFTS test for the adsorbed CO 2 displayed a peak at about 2338 cm -1 that was assigned to a contribution due to physical adsorption of the molecule. Another peak found at 2362 cm -1 evidenced that this molecule interacts with the Cu 2+, which appears to act as an electron accepting Lewis acid site. In conclusion, the aim of the present paper is to report a Pnma stable Cu-nitroprusside polymorph obtained by the precipitation method that can adsorb carbon dioxide.« less

  8. Afferent vagal stimulation, vasopressin, and nitroprusside alter cerebrospinal fluid kinin.

    PubMed

    Thomas, G R; Thibodeaux, H; Margolius, H S; Webb, J G; Privitera, P J

    1987-07-01

    The effects of afferent vagal stimulation, cerebroventricular vasopressin, and intravenous nitroprusside on cerebrospinal fluid (CSF) kinin levels, mean arterial pressure (MAP), and heart rate (HR) were determined in anesthetized dogs in which a ventriculocisternal perfusion system (VP) was established. Following bilateral vagotomy, stimulation of the central ends of both vagi for 60 min significantly increased MAP and CSF perfusate levels of kinin and norepinephrine (NE). MAP was increased a maximum of 32 +/- 4 mmHg, and the rates of kinin and NE appearance into the CSF perfusate increased from 4.2 +/- 1.4 to 22.1 +/- 6.9 and from 28 +/- 5 to 256 +/- 39 pg/min, respectively. A significant correlation was found between CSF kinin and NE levels in these experiments. In other experiments the addition of arginine vasopressin to the VP system caused a significant increase in CSF perfusate kinin without affecting MAP or HR. Intravenous infusion of nitroprusside lowered MAP without affecting kinin levels in the CSF. However, on cessation of nitroprusside infusion, CSF kinin increased significantly in association with the return in MAP to predrug level. Collectively the data are consistent with the hypothesis that central nervous system kinins have some role in cardiovascular regulation, and furthermore that this role may involve an interaction between brain kinin and central noradrenergic neuronal pathways.

  9. Allopurinol improves endothelial dysfunction in chronic heart failure.

    PubMed

    Farquharson, Colin A J; Butler, Robert; Hill, Alexander; Belch, Jill J F; Struthers, Allan D

    2002-07-09

    Increased oxidative stress in chronic heart failure is thought to contribute to endothelial dysfunction. Xanthine oxidase produces oxidative stress and therefore we examined whether allopurinol improved endothelial dysfunction in chronic heart failure. We performed a randomized, placebo-controlled, double-blind crossover study on 11 patients with New York Heart Association class II-III chronic heart failure, comparing 300 mg allopurinol daily (1 month) versus placebo. Endothelial function was assessed by standard forearm venous occlusion plethysmography with acetylcholine, nitroprusside, and verapamil. Plasma malondialdehyde levels were also compared to assess significant changes in oxidative stress. Allopurinol significantly increased the forearm blood flow response to acetylcholine (percentage change in forearm blood flow [mean+/-SEM]: 181+/-19% versus 120+/-22% allopurinol versus placebo; P=0.003). There were no significant differences in the forearm blood flow changes between the placebo and allopurinol treatment arms with regard to sodium nitroprusside or verapamil. Plasma malondialdehyde was significantly reduced with allopurinol treatment (346+/-128 nmol/L versus 461+/-101 nmol/L, allopurinol versus placebo; P=0.03), consistent with reduced oxidative stress with allopurinol therapy. We have shown that allopurinol improves endothelial dysfunction in chronic heart failure. This raises the distinct possibility that allopurinol might reduce cardiovascular events and even improve exercise capacity in chronic heart failure.

  10. [Effect of nitric oxide on the somatic membrane of rat DRG neurons].

    PubMed

    Cheng, Hong-Ju; Ma, Ke-Tao; Zhao, Lei; Li, Li; Cao, Ying-Ying; Si, Jun-Qiang

    2009-11-01

    To observe the role of nitric oxide in dorsal root ganglion (DRG) neurons and its related ionic mechanisms, and explore the function of NO in pain transmission process. In freshly isolated rat DRG samples, using intracellular recording technique, we perfused sodium nitroprusside (NO donor) to observe the role of NO in DRG neurons. In 77.45% of the bath cells, application of sodium nitroprusside (10 -100 mmol/L) induced concentration-dependent membrane hyperpolarization (79/102), and remaining neurons had no response. The membrane conductance increased from control value of (21.06 +/- 1.94) nS to (23.08 +/- 0.92) nS during sodium nitroprusside induced hyperpolarization. L-NAME (1 mmol/L), CdCl2 (0.1 mmol/L) and non-sodium BSS failed to change the amplitude of sodium nitroprusside induced hyperpolarization. When BSS containing 10 mmol/L TEA was used, sodium nitroprusside induced hyperpolarization was obviously inhibited. Sodium nitroprusside could cause concentration-dependent hyperpolarization in DRG neurons by activating K+ channels.

  11. Acetylcholine affects osteocytic MLO-Y4 cells via acetylcholine receptors.

    PubMed

    Ma, Yuanyuan; Li, Xianxian; Fu, Jing; Li, Yue; Gao, Li; Yang, Ling; Zhang, Ping; Shen, Jiefei; Wang, Hang

    2014-03-25

    The identification of the neuronal control of bone remodeling has become one of the many significant recent advances in bone biology. Cholinergic activity has recently been shown to favor bone mass accrual by complex cellular regulatory networks. Here, we identified the gene expression of the muscarinic and nicotinic acetylcholine receptors (m- and nAChRs) in mice tibia tissue and in osteocytic MLO-Y4 cells. Acetylcholine, which is a classical neurotransmitter and an osteo-neuromediator, not only influences the mRNA expression of the AChR subunits but also significantly induces the proliferation and viability of osteocytes. Moreover, acetylcholine treatment caused the reciprocal regulation of RANKL and OPG mRNA expression, which resulted in a significant increase in the mRNA ratio of RANKL:OPG in osteocytes via acetylcholine receptors. The expression of neuropeptide Y and reelin, which are two neurogenic markers, was also modulated by acetylcholine via m- and nAChRs in MLO-Y4 cells. These results indicated that osteocytic acetylcholine receptors might be a new valuable mediator for cell functions and even for bone remodeling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer's disease and some pro-oxidant induced oxidative stress in rats' brain-in vitro.

    PubMed

    Oboh, Ganiyu; Agunloye, Odunayo M; Akinyemi, Ayodele J; Ademiluyi, Adedayo O; Adefegha, Stephen A

    2013-02-01

    This study sought to investigate and compare the interaction of caffeic acid and chlorogenic acid on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and some pro-oxidants (FeSO(4), sodium nitroprusside and quinolinic acid) induced oxidative stress in rat brain in vitro. The result revealed that caffeic acid and chlorogenic acid inhibited AChE and BChE activities in dose-dependent manner; however, caffeic acid had a higher inhibitory effect on AChE and BChE activities than chlorogenic acid. Combination of the phenolic acids inhibited AChE and BChE activities antagonistically. Furthermore, pro-oxidants such as, FeSO(4), sodium nitroprusside and quinolinic acid caused increase in the malondialdehyde (MDA) contents of the brain which was significantly decreased dose-dependently by the phenolic acids. Inhibition of AChE and BChE activities slows down acetylcholine and butyrylcholine breakdown in the brain. Therefore, one possible mechanism through which the phenolic acids exert their neuroprotective properties is by inhibiting AChE and BChE activities as well as preventing oxidative stress-induced neurodegeneration. However, esterification of caffeic acid with quinic acid producing chlorogenic acid affects these neuroprotective properties.

  13. In vitro cytoprotective effects of acetylsalicylic acid, carprofen, meloxicam, or robenacoxib against apoptosis induced by sodium nitroprusside in canine cruciate ligament cells.

    PubMed

    Waldherr, Katrin; Zurbriggen, Andreas; Spreng, David E; Forterre, Simone

    2012-11-01

    To determine whether incubation of cruciate ligament cells with acetylsalicylic acid, carprofen, meloxicam, or robenacoxib provides protection against apoptosis induced by sodium nitroprusside (SNP). Explants of cranial (CCL) and caudal (CaCL) cruciate ligaments from eight 1-day-old Beagles. Primary cultures of CCL and CaCL cells were created via enzymatic dissociation of cruciate explants. Purified cell cultures were incubated for 2 hours without (controls) or with 1 of 3 concentrations of 1 of 4 NSAIDs (10, 100, or 200 μg of acetylsalicylic acid/mL; 0.1, 1, or 10 μg of carprofen/mL; 0.1, 1, or 10 μg of meloxicam/mL; or 0.1, 1, or 10 μg of robenacoxib/mL) and subsequently incubated for 18 hours with 1 of 3 concentrations of SNP in an attempt to induce mild, moderate, or severe cytotoxic effects. Cell viability and apoptosis were analyzed via a cell proliferation assay and flow cytometry, respectively. Prostaglandin E(2) concentrations were measured via an ELISA. Cytoprotective effects of NSAIDs were dependent on the extent of SNP-induced apoptosis and were greatest in CCL and CaCL cell cultures with moderate SNP-induced cytotoxic effects. Preincubation with an NSAID improved cell viability by 15% to 45% when CCL and CaCL cells were subsequently incubated with SNP. Carprofen (10 μg/mL) had the greatest cytoprotective effects for CCL and CaCL cells. Incubation with NSAIDs resulted in a nonsignificant decrease in PGE(2) production from SNP-damaged cells. Results indicated that carprofen, meloxicam, and robenacoxib may reduce apoptosis in cells originating from canine cruciate ligaments.

  14. Acetylcholine release from the rabbit isolated superior cervical ganglion preparation.

    PubMed

    Dawes, P M; Vizi, E S

    1973-06-01

    1. The rabbit isolated superior cervical ganglion preparation has been used to measure the release of acetylcholine from the tissue at rest and during preganglionic nerve stimulation.2. In the presence of physostigmine, the resting release of acetylcholine was 0.13 +/- 0.01 (nmol/g)/min (10 experiments) and that during stimulation with 300 shocks at 10 Hz was 3.1 +/- 0.4 (pmol/g)/volley in 4 experiments (means +/- S.E.M.). The volley output was independent of the frequency of stimulation over the range 1 to 10 Hz but was higher at 0.3 Hz.3. Tetrodotoxin, 0.8 muM, had no effect on the resting release of acetylcholine but reduced the stimulated release below detectable levels (2 pmol). Lowering the temperature of the bathing fluid to 5 degrees C reduced to below detectable levels both the resting release and that produced by nerve stimulation.4. The resting release of acetylcholine was increased by a potassium-rich (49.4 mM K(+)) bathing solution and by replacing the sodium chloride in the solution with lithium chloride (113 mM Li(+)).5. (-)-Noradrenaline bitartrate, 3 muM, and (+/-)-adrenaline bitartrate, 1.5 muM, reduced by 70% the output of acetylcholine induced by stimulation at 0.3 Hz, but failed to reduce the resting release or that evoked by stimulation at 10 Hz. The inhibition was reversed by phentolamine.6. It is concluded that the rabbit superior cervical ganglion in vitro is a suitable preparation for studying transmitter release and that the ganglion blocking effect of catecholamines is due to a reduction in transmitter release.

  15. Inhibition of overexpression of Giα proteins and nitroxidative stress contribute to sodium nitroprusside-induced attenuation of high blood pressure in SHR.

    PubMed

    Hossain, Ekhtear; Sarkar, Oli; Li, Yuan; Anand-Srivastava, Madhu B

    2018-03-01

    We earlier showed that vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit enhanced expression of Giα proteins which was attributed to the decreased levels of nitric oxide (NO), because elevation of the intracellular levels of NO by NO donors; sodium nitroprusside (SNP) and S-Nitroso-N-acetyl-DL-penicillamine (SNAP), attenuated the enhanced expression of Giα proteins. Since the enhanced expression of Giα proteins is implicated in the pathogenesis of hypertension, the present study was undertaken to investigate if treatment of SHR with SNP could also attenuate the development of high blood pressure (BP) and explore the underlying molecular mechanisms. Intraperitoneal injection of SNP at a concentration of 0.5 mg/kg body weight twice a week for 2 weeks into SHR attenuated the high blood pressure by about 80 mmHg without affecting the BP in WKY rats. SNP treatment also attenuated the enhanced levels of superoxide anion (O 2 - ), hydrogen peroxide (H 2 O 2 ), peroxynitrite (ONOO - ), and NADPH oxidase activity in VSMC from SHR to control levels. In addition, the overexpression of different subunits of NADPH oxidase; Nox-1, Nox-2, Nox-4, P 22phox , and P 47phox , and Giα proteins in VSMC from SHR were also attenuated by SNP treatment. On the other hand, SNP treatment augmented the decreased levels of intracellular NO, eNOS, and cGMP in VSMC from SHR. These results suggest that SNP treatment attenuates the development of high BP in SHR through the elevation of intracellular levels of cGMP and inhibition of the enhanced levels of Giα proteins and nitroxidative stress. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Acetylcholine release from the rabbit isolated superior cervical ganglion preparation

    PubMed Central

    Dawes, P. M.; Vizi, E. S.

    1973-01-01

    1. The rabbit isolated superior cervical ganglion preparation has been used to measure the release of acetylcholine from the tissue at rest and during preganglionic nerve stimulation. 2. In the presence of physostigmine, the resting release of acetylcholine was 0·13 ± 0·01 (nmol/g)/min (10 experiments) and that during stimulation with 300 shocks at 10 Hz was 3·1 ± 0·4 (pmol/g)/volley in 4 experiments (means ± S.E.M.). The volley output was independent of the frequency of stimulation over the range 1 to 10 Hz but was higher at 0·3 Hz. 3. Tetrodotoxin, 0·8 μM, had no effect on the resting release of acetylcholine but reduced the stimulated release below detectable levels (2 pmol). Lowering the temperature of the bathing fluid to 5° C reduced to below detectable levels both the resting release and that produced by nerve stimulation. 4. The resting release of acetylcholine was increased by a potassium-rich (49·4 mM K+) bathing solution and by replacing the sodium chloride in the solution with lithium chloride (113 mM Li+). 5. (-)-Noradrenaline bitartrate, 3 μM, and (±)-adrenaline bitartrate, 1·5 μM, reduced by 70% the output of acetylcholine induced by stimulation at 0·3 Hz, but failed to reduce the resting release or that evoked by stimulation at 10 Hz. The inhibition was reversed by phentolamine. 6. It is concluded that the rabbit superior cervical ganglion in vitro is a suitable preparation for studying transmitter release and that the ganglion blocking effect of catecholamines is due to a reduction in transmitter release. PMID:4733726

  17. Effects of different frequencies of transcutaneous electrical nerve stimulation on venous vascular reactivity

    PubMed Central

    Franco, O.S.; Paulitsch, F.S.; Pereira, A.P.C.; Teixeira, A.O.; Martins, C.N.; Silva, A.M.V.; Plentz, R.D.M.; Irigoyen, M.C.; Signori, L.U.

    2014-01-01

    Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia. PMID:24820225

  18. Continuous positive airway pressure improves vascular function in obstructive sleep apnoea/hypopnoea syndrome: a randomised controlled trial.

    PubMed

    Cross, M D; Mills, N L; Al-Abri, M; Riha, R; Vennelle, M; Mackay, T W; Newby, D E; Douglas, N J

    2008-07-01

    The obstructive sleep apnoea/hypopnoea syndrome (OSAHS) is associated with hypertension and increased cardiovascular risk, particularly when accompanied by marked nocturnal hypoxaemia. The mechanisms of these associations are unclear. We hypothesised that OSAHS combined with severe nocturnal hypoxaemia causes impaired vascular function that can be reversed by continuous positive airways pressure (CPAP) therapy. We compared vascular function in two groups of patients with OSAHS: 27 with more than 20 4% desaturations/h (desaturator group) and 19 with no 4% and less than five 3% desaturations/h (non-desaturator group). In a randomised, double blind, placebo controlled, crossover trial, the effect of 6 weeks of CPAP therapy on vascular function was determined in the desaturator group. In all studies, vascular function was assessed invasively by forearm venous occlusion plethysmography during intra-arterial infusion of endothelium dependent (acetylcholine 5-20 microg/min and substance P 2-8 pmol/min) and independent (sodium nitroprusside 2-8 microg/min) vasodilators. Compared with the non-desaturator group, patients with OSAHS and desaturations had reduced vasodilatation to all agonists (p = 0.007 for all). The apnoea/hypopnoea index and desaturation frequency were inversely related to peak vasodilatation with acetylcholine (r = -0.44, p = 0.002 and r = -0.43, p = 0.003) and sodium nitroprusside (r = -0.42, p = 0.009 and r = -0.37, p = 0.02). In comparison with placebo, CPAP therapy improved forearm blood flow to all vasodilators (p = 0.01). Patients with OSAHS and frequent nocturnal desaturations have impaired endothelial dependent and endothelial independent vasodilatation that is proportional to hypoxaemia and is improved by CPAP therapy. Impaired vascular function establishes an underlying mechanism for the adverse cardiovascular consequences of OSAHS.

  19. Structural and functional changes in the microcirculation of lepromatous leprosy patients - Observation using orthogonal polarization spectral imaging and laser Doppler flowmetry iontophoresis

    PubMed Central

    Treu, Curt; de Souza, Maria das Graças Coelho; Lupi, Omar; Sicuro, Fernando Lencastre; Maranhão, Priscila Alves; Kraemer-Aguiar, Luiz Guilherme; Bouskela, Eliete

    2017-01-01

    Leprosy is a chronic granulomatous infection of skin and peripheral nerves caused by Mycobacterium leprae and is considered the main infectious cause of disability worldwide. Despite the several studies regarding leprosy, little is known about its effects on microvascular structure and function in vivo. Thus, we have aimed to compare skin capillary structure and functional density, cutaneous vasomotion (spontaneous oscillations of arteriolar diameter), which ensures optimal blood flow distribution to skin capillaries) and cutaneous microvascular blood flow and reactivity between ten men with lepromatous leprosy (without any other comorbidity) and ten age- and gender-matched healthy controls. Orthogonal polarization spectral imaging was used to evaluate skin capillary morphology and functional density and laser Doppler flowmetry to evaluate blood flow, vasomotion and spectral analysis of flowmotion (oscillations of blood flow generated by vasomotion) and microvascular reactivity, in response to iontophoresis of acetylcholine and sodium nitroprusside. The contribution of different frequency components of flowmotion (endothelial, neurogenic, myogenic, respiratory and cardiac) was not statistically different between groups. However, endothelial-dependent and -independent vasodilatations elicited by acetylcholine and sodium nitroprusside iontophoresis, respectively, were significantly reduced in lepromatous leprosy patients compared to controls, characterizing the existence of microvascular dysfunction. These patients also presented a significant increase in the number of capillaries with morphological abnormalities and in the diameters of the dermal papilla and capillary bulk when compared to controls. Our results suggest that lepromatous leprosy causes severe microvascular dysfunction and significant alterations in capillary structure. These structural and functional changes are probably induced by exposure of the microvascular bed to chronic inflammation evoked by

  20. Ventilatory effects of substance P, vasoactive intestinal peptide, and nitroprusside in humans.

    PubMed

    Maxwell, D L; Fuller, R W; Dixon, C M; Cuss, F M; Barnes, P J

    1990-01-01

    Animal studies suggest that the neuropeptides, substance P and vasoactive intestinal peptide (VIP), may influence carotid body chemoreceptor activity and that substance P may take part in the carotid body response to hypoxia. The effects of these peptides on resting ventilation and on ventilatory responses to hypoxia and to hypercapnia have been investigated in six normal humans. Infusions of substance P (1 pmol.kg-1.min-1) and of VIP (6 pmol.kg-1.min-1) were compared with placebo and with nitroprusside (5 micrograms.kg-1.min-1) as a control for the hypotensive action of the peptides. Both peptides caused significantly less hypotension than nitroprusside. Substance P and nitroprusside caused significantly greater increases in ventilation and in the hypoxic ventilatory response than VIP. No changes were seen in hypercapnic sensitivity. The stimulation of ventilation and the differential effects on ventilatory chemosensitivity that accompanied hypotension are consistent either with stimulation of carotid body chemoreceptor activity or with an interaction with peripheral chemoreceptor input to the respiratory center, as is seen in animals. The similar cardiovascular but different ventilatory effects of the peptides suggest that substance P may also stimulate the carotid body in a manner independent of the effect of hypotension. This is consistent with a role of substance P in the hypoxic ventilatory response in humans.

  1. Insufficient sleep is associated with impaired nitric oxide-mediated endothelium-dependent vasodilation.

    PubMed

    Bain, Anthony R; Weil, Brian R; Diehl, Kyle J; Greiner, Jared J; Stauffer, Brian L; DeSouza, Christopher A

    2017-10-01

    Habitual short nightly sleep duration is associated with increased atherosclerotic cardiovascular disease risk and morbidity. Vascular endothelial dysfunction represents an important mechanism that may underlie this heightened cardiovascular risk. Impaired endothelium-dependent vasodilation, particularly NO-mediated vasodilation, contributes to the development and progression of atherosclerotic vascular disease and acute vascular events. We tested the hypothesis that chronic insufficient sleep is associated with impaired NO-mediated endothelium-dependent vasodilation in middle-aged adults. Thirty adult men were studied: 15 with normal nightly sleep duration (age: 58 ± 2 y; sleep duration: 7.7 ± 0.2 h/night) and 15 with short nightly sleep duration (55 ± 2 y; 6.1 ± 0.2 h/night). Forearm blood flow (FBF) responses to intra-arterial infusion of acetylcholine, in the absence and presence of the endothelial NO synthase inhibitor N G -monomethyl-L-arginine (L-NMMA), as well as responses to sodium nitroprusside, were determined by strain-gauge venous occlusion plethysmography. The FBF response to acetylcholine was lower (∼20%; p<0.05) in the short sleep duration group (from 4.6 ± 0.3 to 11.7 ± 1.0 ml/100 ml tissue/min) compared with normal sleep duration group (from 4.4 ± 0.3 to 14.5 ± 0.5 ml/100 ml tissue/min). L-NMMA significantly reduced the FBF response to acetylcholine in the normal sleep duration group (∼40%), but not the short sleep duration group. There were no group differences in the vasodilator response to sodium nitroprusside. These data indicate that short nightly sleep duration is associated with endothelial-dependent vasodilator dysfunction due, in part, to diminished NO bioavailability. Impaired NO-mediated endothelium-dependent vasodilation may contribute to the increased cardiovascular risk with insufficient sleep. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Neuromuscular block after intra-arterially injected acetylcholine

    PubMed Central

    Pinelli, P.; Tonali, P.; Gambi, D.

    1973-01-01

    It has been suggested that the effect of ACTH in myasthenia gravis may be ascribed to an action involving neuromuscular transmission which favours repolarization processes, with a tendency towards hyperpolarization of the membranes of muscle fibres and motor nerve endings. A similar mechanism has been postulated for the action of ACTH in epilepsy (Klein, 1970). A direct or indirect action on nerve membrane would interfere with depolarization. There is evidence of raised concentration of intracellular potassium and increased outflow of sodium ions which would cause hyperpolarization of the membrane. This paper studies the effect of ACTH on the late block of neuromuscular transmission caused by acetylcholine (ACTH). Images PMID:4350704

  3. Inhibition of the gap junctional component of endothelium-dependent relaxations in rabbit iliac artery by 18-α glycyrrhetinic acid

    PubMed Central

    Taylor, Hannah J; Chaytor, Andrew T; Evans, W Howard; Griffith, Tudor M

    1998-01-01

    The gap junction inhibitor 18-α-glycyrrhetinic acid (α-GA, 100 μM) attenuated endothelium-dependent relaxations to acetylcholine and cyclopiazonic acid by ∼20% in rings of pre-constricted rabbit iliac artery. The nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 300 μM) inhibited relaxations to both agents by ∼65% and these were further attenuated by α-GA to <10% of control. In endothelium-denuded preparations, relaxations to sodium nitroprusside were not affected by α-GA. Heterocellular gap junctional communication may therefore account for nitric oxide-independent relaxations evoked both by receptor-dependent and -independent mechanisms in rabbit iliac artery. PMID:9776336

  4. Developmental stage- and concentration-specific sodium nitroprusside application results in nitrate reductase regulation and the modification of nitrate metabolism in leaves of Medicago truncatula plants

    PubMed Central

    Antoniou, Chrystalla; Filippou, Panagiota; Mylona, Photini; Fasoula, Dionysia; Ioannides, Ioannis; Polidoros, Alexios; Fotopoulos, Vasileios

    2013-01-01

    Nitric oxide (NO) is a bioactive molecule involved in numerous biological events that has been reported to display both pro-oxidant and antioxidant properties in plants. Several reports exist which demonstrate the protective action of sodium nitroprusside (SNP), a widely used NO donor, which acts as a signal molecule in plants responsible for the expression regulation of many antioxidant enzymes. This study attempts to provide a novel insight into the effect of application of low (100 μΜ) and high (2.5 mM) concentrations of SNP on the nitrosative status and nitrate metabolism of mature (40 d) and senescing (65 d) Medicago truncatula plants. Higher concentrations of SNP resulted in increased NO content, cellular damage levels and reactive oxygen species (ROS) concentration, further induced in older tissues. Senescing M. truncatula plants demonstrated greater sensitivity to SNP-induced oxidative and nitrosative damage, suggesting a developmental stage-dependent suppression in the plant’s capacity to cope with free oxygen and nitrogen radicals. In addition, measurements of the activity of nitrate reductase (NR), a key enzyme involved in the generation of NO in plants, indicated a differential regulation in a dose and time-dependent manner. Furthermore, expression levels of NO-responsive genes (NR, nitrate/nitrite transporters) involved in nitrogen assimilation and NO production revealed significant induction of NR and nitrate transporter during long-term 2.5 mM SNP application in mature plants and overall gene suppression in senescing plants, supporting the differential nitrosative response of M. truncatula plants treated with different concentrations of SNP. PMID:23838961

  5. The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction.

    PubMed

    Obis, Teresa; Hurtado, Erica; Nadal, Laura; Tomàs, Marta; Priego, Mercedes; Simon, Anna; Garcia, Neus; Santafe, Manel M; Lanuza, Maria A; Tomàs, Josep

    2015-12-01

    Various protein kinase C (PKC) isoforms contribute to the phosphorylating activity that modulates neurotransmitter release. In previous studies we showed that nPKCε is confined in the presynaptic site of the neuromuscular junction and its presynaptic function is activity-dependent. Furthermore, nPKCε regulates phorbol ester-induced acetylcholine release potentiation, which further indicates that nPKCε is involved in neurotransmission. The present study is designed to examine the nPKCε involvement in transmitter release at the neuromuscular junction. We use the specific nPKCε translocation inhibitor peptide εV1-2 and electrophysiological experiments to investigate the involvement of this isoform in acetylcholine release. We observed that nPKCε membrane translocation is key to the synaptic potentiation of NMJ, being involved in several conditions that upregulate PKC isoforms coupling to acetylcholine (ACh) release (incubation with high Ca(2+), stimulation with phorbol esters and protein kinase A, stimulation with adenosine 3',5'-cyclic monophosphorothioate, 8-Bromo-, Rp-isomer, sodium salt -Sp-8-BrcAMP-). In all these conditions, preincubation with the nPKCε translocation inhibitor peptide (εV1-2) impairs PKC coupling to acetylcholine release potentiation. In addition, the inhibition of nPKCε translocation and therefore its activity impedes that presynaptic muscarinic autoreceptors and adenosine autoreceptors modulate transmitter secretion. Together, these results point to the importance of nPKCε isoform in the control of acetylcholine release in the neuromuscular junction.

  6. Antioxidant properties of Taraxacum officinale fruit extract are involved in the protective effect against cellular death induced by sodium nitroprusside in brain of rats.

    PubMed

    Colle, Dirleise; Arantes, Letícia Priscilla; Rauber, Ricardo; de Mattos, Sérgio Edgar Campos; Rocha, João Batista Teixeira da; Nogueira, Cristina Wayne; Soares, Félix Alexandre Antunes

    2012-07-01

    Taraxacum officinale Weber (Asteraceae), known as dandelion, is used for medicinal purposes due to its choleretic, diuretic, antitumor, antioxidant, antiinflammatory, and hepatoprotective properties. We sought to investigate the protective activity of T. officinale fruit extract against sodium nitroprusside (SNP)-induced decreased cellular viability and increased lipid peroxidation in the cortex, hippocampus, and striatum of rats in vitro. To explain the mechanism of the extract's antioxidant activity, its putative scavenger activities against NO, DPPH·, OH·, and H(2)O(2) were determined. Slices of cortex, hippocampus, and striatum were treated with 50 μM SNP and T. officinale fruit ethanolic extract (1-20 µg/mL) to determine cellular viability by MTT reduction assay. Lipid peroxidation was measure in cortical, hippocampal and striatal slices incubates with SNP (5 µM) and T. officinale fruit extract (1-20 µg/mL). We also determined the scavenger activities of T. officinale fruit extract against NO·, DPPH·, OH·, and H(2)O(2), as well as its iron chelating capacity. The extract (1, 5, 10, and 20 μg/mL) protected against SNP-induced decreases in cellular viability and increases in lipid peroxidation in the cortex, hippocampus, and striatum of rats. The extract had scavenger activity against DPPH· and NO· at low concentrations and was able to protect against H(2)O(2) and Fe(2+)-induced deoxyribose oxidation. T. officinale fruit extract has antioxidant activity and protects brain slices against SNP-induced cellular death. Possible mechanisms of action include its scavenger activities against reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are attributed to the presence of phenolic compounds in the extract.

  7. The nitric oxide donor sodium nitroprusside attenuates recognition memory deficits and social withdrawal produced by the NMDA receptor antagonist ketamine and induces anxiolytic-like behaviour in rats.

    PubMed

    Trevlopoulou, Aikaterini; Touzlatzi, Ntilara; Pitsikas, Nikolaos

    2016-03-01

    Experimental evidence indicates that the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine impairs cognition and can mimic certain aspects of positive and negative symptoms of schizophrenia in rodents. Nitric oxide (NO) is considered as an intracellular messenger in the brain, and its abnormalities have been linked to schizophrenia. The present study was designed to investigate the ability of the NO donor sodium nitroprusside (SNP) to counteract schizophrenia-like behavioural deficits produced by ketamine in rats. The ability of SNP to reverse ketamine-induced memory deficits and social withdrawal were assessed using the novel object recognition task (NORT) and the social interaction test, respectively. Furthermore, since anxiety disorders are noted to occur commonly in schizophrenics, the effects of SNP on anxiety-like behaviour were examined using the light/dark test. Locomotor activity was also assessed as an independent measure of the potential motoric effects of this NO donor. SNP (0.3 and 1 mg/kg) reversed ketamine (3 mg/kg)-induced short-term recognition memory deficits. SNP (1 mg/kg) counteracted the ketamine (8 mg/kg)-induced social isolation in the social interaction test. The anxiolytic-like effects in the light/dark test of SNP (1 mg/kg) cannot be attributed to changes in locomotor activity. Our findings illustrate a functional interaction between the nitrergic and glutamatergic system that may be of relevance for schizophrenia-like behavioural deficits. The data also suggest a role of NO in anxiety.

  8. Protective effect of N-acetylcysteine against oxygen radical-mediated coronary artery injury.

    PubMed

    Rodrigues, A J; Evora, P R B; Schaff, H V

    2004-08-01

    The present study investigated the protective effect of N-acetylcysteine (NAC) against oxygen radical-mediated coronary artery injury. Vascular contraction and relaxation were determined in canine coronary arteries immersed in Kreb's solution (95% O2-5% CO2), incubated or not with NAC (10 mM), and exposed to free radicals (FR) generated by xanthine oxidase (100 mU/ml) plus xanthine (0.1 mM). Rings not exposed to FR or NAC were used as controls. The arteries were contracted with 2.5 microM prostaglandin F2alpha. Subsequently, concentration-response curves for acetylcholine, calcium ionophore and sodium fluoride were obtained in the presence of 20 microM indomethacin. Concentration-response curves for bradykinin, calcium ionophore, sodium nitroprusside, and pinacidil were obtained in the presence of indomethacin plus Nomega-nitro-L-arginine (0.2 mM). The oxidative stress reduced the vascular contraction of arteries not exposed to NAC (3.93 +/- 3.42 g), compared to control (8.56 +/- 3.16 g) and to NAC group (9.07 +/- 4.0 g). Additionally, in arteries not exposed to NAC the endothelium-dependent nitric oxide (NO)-dependent relaxation promoted by acetylcholine (1 nM to 10 microM) was also reduced (maximal relaxation of 52.1 +/- 43.2%), compared to control (100%) and NAC group (97.0 +/- 4.3%), as well as the NO/cyclooxygenase-independent receptor-dependent relaxation provoked by bradykinin (1 nM to 10 microM; maximal relaxation of 20.0 +/- 21.2%), compared to control (100%) and NAC group (70.8 +/- 20.0%). The endothelium-independent relaxation elicited by sodium nitroprusside (1 nM to 1 microM) and pinacidil (1 nM to 10 microM) was not affected. In conclusion, the vascular dysfunction caused by the oxidative stress, expressed as reduction of the endothelium-dependent relaxation and of the vascular smooth muscle contraction, was prevented by NAC.

  9. Atorvastatin restores arsenic-induced vascular dysfunction in rats: Modulation of nitric oxide signaling and inflammatory mediators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy

    We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91{sup st} day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOSmore » and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E{sub max} of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce

  10. Favorable Vascular Actions of Angiotensin-(1-7) in Human Obesity.

    PubMed

    Schinzari, Francesca; Tesauro, Manfredi; Veneziani, Augusto; Mores, Nadia; Di Daniele, Nicola; Cardillo, Carmine

    2018-01-01

    Obese patients have vascular dysfunction related to impaired insulin-stimulated vasodilation and increased endothelin-1-mediated vasoconstriction. In contrast to the harmful vascular actions of angiotensin (Ang) II, the angiotensin-converting enzyme 2 product Ang-(1-7) has shown to exert cardiovascular and metabolic benefits in experimental models through stimulation of the Mas receptor. We, therefore, examined the effects of exogenous Ang-(1-7) on vasodilator tone and endothelin-1-dependent vasoconstriction in obese patients. Intra-arterial infusion of Ang-(1-7) (10 nmol/min) resulted in significant increase in unstimulated forearm flow ( P =0.03), an effect that was not affected by the Mas receptor antagonist A779 (10 nmol/min; P >0.05). In the absence of hyperinsulinemia, however, forearm flow responses to graded doses of acetylcholine and sodium nitroprusside were not different during Ang-(1-7) administration compared with saline (both P >0.05). During infusion of regular insulin (0.15 mU/kg per minute), by contrast, endothelium-dependent vasodilator response to acetylcholine was significantly enhanced by Ang-(1-7) ( P =0.04 versus saline), whereas endothelium-independent response to sodium nitroprusside was not modified ( P =0.91). Finally, Ang-(1-7) decreased the vasodilator response to endothelin A receptor blockade (BQ-123; 10 nmol/min) compared with saline (6±1% versus 93±17%; P <0.001); nitric oxide inhibition by l- N -monomethylarginine (4 µmol/min) during concurrent endothelin A antagonism resulted in similar vasoconstriction in the absence or presence of Ang-(1-7 Ang-(1-7) ( P =0.69). Our findings indicate that in obese patients Ang-(1-7) has favorable effects not only to improve insulin-stimulated endothelium-dependent vasodilation but also to blunt endothelin-1-dependent vasoconstrictor tone. These findings provide support for targeting Ang-(1-7) to counteract the hemodynamic abnormalities of human obesity. © 2017 American Heart Association, Inc.

  11. Effects of chronic administration of ethanolic extract of kolanut (Cola nitida) and caffeine on vascular function.

    PubMed

    Salahdeen, H M; Omoaghe, A O; Isehunwa, G O; Murtala, B A; Alada, A R A

    2014-03-01

    Kolanut (Cola nitida) is consumed in virtually every part of the world. The caffeine content of kolanut is scarce and the number of investigations studying the health benefits of kolanut is negligible compared to coffee. The present study was designed to identify the caffeine content of kolanut and evaluate the effect of its chronic consumption on cardiovascular functions in rats. The caffeine content of kolanut was determined by Gas chromatography-mass spectrometry (GC-MS). Wistar albino rats were divided into four groups (10 Rats/group). Kolanut extract (11.9 mg/kg), caffeine extracted from kolanut (7.5 mg/kg), decaffeinated of kolanut extract (6 mg/kg) and distilled water (control) was administered orally to each group for six-weeks. Effect of treatment on body weight, blood pressure and relaxation response to acetylcholine (ACh) and sodium nitroprusside (SNP) of the aortic rings was assessed. The total caffeine content of kolanut extract was found to be 51% and it was 96% pure from GC-MS analysis. Chronic consumption of kolanut and caffeine significantly (p < 0.05) decreased body weight. Similarly, kolanut extract decaffeinated kolanut and caffeine significantly (p < 0.05) reduced the contractile response to noradrenaline and higher potassium solution. Kolanut extract and caffeine also significantly (p < 0.05) increased the mean arterial blood pressure. Caffeine and kolanut consumption reduced the relaxation response to both acetylcholine and sodium nitroprusside. Atropine and L-NAME considerably inhibit the ACh-induced relaxation of the rat aortic ring suggesting the involvement of cholinergic mechanism. However, indomethacin (10(-4)M) also attenuated the ACh response indicating involvement of protanoids. The results suggest that treatment with both kolanut extract and caffeine had similar characteristics between the two groups with no significant differences in the ACh-induced relaxation of thering suggesting that the action of kolanut extract is due to its

  12. Neuroprotective and anti-apoptotic propensity of Bacopa monniera extract against sodium nitroprusside induced activation of iNOS, heat shock proteins and apoptotic markers in PC12 cells.

    PubMed

    Pandareesh, M D; Anand, T

    2014-05-01

    Sodium nitroprusside (SNP) is a widely used nitric oxide (NO) donor, known to exert nitrative stress by up-regulation of inducible nitric oxide synthase (iNOS). Nω-nitro-L-arginine-methyl esther (L-NAME) is a NO inhibitor, which inhibits iNOS expression, is used as positive control. The present study was designed to assess neuroprotective propensity of Bacopa monniera extract (BME) in SNP-induced neuronal damage and oxido-nitrative stress in PC12 cells via modulation of iNOS, heat shock proteins and apoptotic markers. Our results elucidate that pre-treatment of PC12 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by SNP (200 μM) as evidenced by MTT and LDH assays. BME pre-treatment inhibited NO generation by down regulating iNOS expression. BME replenished the depleted antioxidant status induced by SNP treatment. SNP-induced damage to cellular, nuclear and mitochondrial integrity was also restored by BME, which was confirmed by ROS estimation, comet assay and mitochondrial membrane potential assays respectively. BME pre-treatment efficiently attenuated the SNP-induced apoptotic protein biomarkers such as Bax, Bcl-2, cytochrome-c and caspase-3, which orchestrate the proteolytic damage of the cell. Q-PCR results further elucidated up-regulation of neuronal cell stress markers like HO-1 and iNOS and down-regulation of BDNF upon SNP exposure was attenuated by BME pre-treatment. By considering all these findings, we report that BME protects PC12 cells against SNP-induced toxicity via its free radical scavenging and neuroprotective mechanism.

  13. pH-dependent hydrolysis of acetylcholine: Consequences for non-neuronal acetylcholine.

    PubMed

    Wessler, Ignaz; Michel-Schmidt, Rosmarie; Kirkpatrick, Charles James

    2015-11-01

    Acetylcholine is inactivated by acetylcholinesterase and butyrylcholinesterase and thereby its cellular signalling is stopped. One distinguishing difference between the neuronal and non-neuronal cholinergic system is the high expression level of the esterase activity within the former and a considerably lower level within the latter system. Thus, any situation which limits the activity of both esterases will affect the non-neuronal cholinergic system to a much greater extent than the neuronal one. Both esterases are pH-dependent with an optimum at pH above 7, whereas at pH values below 6 particularly the specific acetylcholinesterase is more or less inactive. Thus, acetylcholine is prevented from hydrolysis at such low pH values. The pH of the surface of the human skin is around 5 and therefore non-neuronal acetylcholine released from keratinocytes can be detected in a non-invasive manner. Several clinical conditions like metabolic acidosis, inflammation, fracture-related haematomas, cardiac ischemia and malignant tumours are associated with local or systemic pH values below 7. Thus, the present article describes some consequences of an impaired inactivation of extracellular non-neuronal acetylcholine. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings.

    PubMed

    Mostofa, Mohammad Golam; Seraj, Zeba Islam; Fujita, Masayuki

    2014-11-01

    Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 μM CuSO4 alone and in combination with 200 μM SNP (an NO donor) and 200 μM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 (•-)) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP + GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 (•-), H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while

  15. Development of a polydimethylsiloxane-thymol/nitroprusside composite based sensor involving thymol derivatization for ammonium monitoring in water samples.

    PubMed

    Prieto-Blanco, M C; Jornet-Martínez, N; Moliner-Martínez, Y; Molins-Legua, C; Herráez-Hernández, R; Verdú Andrés, J; Campins-Falcó, P

    2015-01-15

    This report describes a polydimethylsiloxane (PDMS)-thymol/nitroprusside delivery composite sensor for direct monitoring of ammonium in environmental water samples. The sensor is based on a PDMS support that contains the Berthelot's reaction reagents. To prepare the PDMS-thymol/nitroprusside composite discs, thymol and nitroprusside have been encapsulated in the PDMS matrix, forming a reagent release support which significantly simplifies the analytical measurements, since it avoids the need to prepare derivatizing reagents and sample handling is reduced to the sampling step. When, the PDMS-thymol/nitroprusside composite was introduced in water samples spontaneous release of the chromophore and catalyst was produced, and the derivatization reaction took place to form the indothymol blue. Thus, qualitative analysis of NH4(+) could be carried out by visual inspection, but also, it can be quantified by measuring the absorbance at 690 nm. These portable devices provided good sensitivity (LOD<0.4 mg L(-1)) and reproducibility (RSD <10%) for the rapid detection of ammonium. The PDMS-NH4(+) sensor has been successfully applied to determine ammonium in water samples and in the aqueous extracts of particulate matter PM10 samples. Moreover, the reliability of the method for qualitative analysis has been demonstrated. Finally, the advantages of the PDMS-NH4(+) sensor have been examined by comparing some analytical and complementary characteristics with the properties of well-established ammonium determination methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Lack of effect of sodium nitroprusside on insulin-mediated blood flow and glucose disposal in the elderly.

    PubMed

    Meneilly, G S; Battistini, B; Floras, J S

    2000-03-01

    Insulin increases skeletal muscle blood flow in healthy young subjects by a nitric oxide (NO)-dependent mechanism. Impairment of this mechanism may contribute to the insulin resistance of normal aging, a state characterized by reduced endothelial production of NO, an attenuated effect of insulin on skeletal muscle blood flow, and resistance to insulin-mediated glucose uptake (IMGU). We tested the hypothesis that the NO donor sodium nitroprusside (SNP) would augment insulin-mediated vasodilation and thus increase IMGU in healthy elderly subjects. Experiments were performed with young (n = 9; age, 25 +/- 1 years; body mass index [BMI], 24 +/- 1 kg/m2) and old (n = 10; age, 78 +/- 2 years; BMI, 25 +/- 1 kg/m2) healthy subjects. Each group underwent two studies in random order. In one study (control), insulin was infused using the euglycemic clamp protocol for 240 minutes at a rate of 40 mU/m2/min (young) and 34 mU/m2/min (old). In the other study (SNP), SNP was coinfused with insulin from 120 to 240 minutes. At regular intervals in each study, blood samples were obtained and calf blood flow was measured using venous occlusion plethysmography. Glucose and insulin values were similar in control and SNP studies in both age groups. In the young, SNP had no effect on blood flow to the calf, but its action in calf resistance vessels augmented insulin-mediated vasodilation, since incremental calf vascular conductance was greater during SNP infusion (control v SNP, 0.027 +/- 0.002 v 0.040 +/- 0.008 mL/100 mL/min/mm Hg, P< .0001). However, SNP had no effect on insulin-mediated glucose disposal. In the elderly, SNP reduced the blood flow to the calf, but this was countered by its effect on calf resistance vessels such that vascular conductance was unaffected (control v SNP, 0.012 +/- 0.003 v 0.011 +/- 0.003 mL/100 mL/min/mm Hg, P = nonsignificant [NS]). Steady-state (180 to 240 minutes) glucose disposal (control v SNP, 7.47 +/- 0.47 v 6.54 +/- 0.56 mg/kg/min, P < .01) rates

  17. Regional relation between skin blood flow and sweating to passive heating and local administration of acetylcholine in young, healthy humans.

    PubMed

    Smith, Caroline J; Kenney, W Larry; Alexander, Lacy M

    2013-04-01

    Regional variation in sweating over the human body is widely recognized yet variation in vasomotor responses and mechanisms causing this variation remain unclear. This study aimed to explore the relation between regional sweating rates (RSR) and skin blood flow (SkBF) responses to thermal and pharmacological stimuli in young, healthy subjects. In nine subjects (23 ± 3 yr), intradermal microdialysis (MD) probes were inserted into the ventral forearm, abdomen, thigh, and lower back and perfused with lactated Ringer solution. RSR over each MD membrane were measured using ventilated capsules with a laser Doppler probe housed in each capsule for measurement of red cell flux (laser Doppler flux, LDF) as an index of SkBF. Subjects completed a whole body heating protocol to 1°C rise in oral temperature and an acetylcholine dose response (ACh 1 × 10(-7)-0.1 M; mean skin temperature 34°C). Maximal LDF were obtained at the end of both protocols (50 mM sodium nitroprusside).During heating RSR varied among sites (P < 0.0001) and was greater on the back versus other sites (P < 0.05), but LDF was similar between sites (P = 0.343). RSR and SkBF showed a strong relation during initial (arm: r = 0.77 ± 0.09, thigh: r = 0.81 ± 0.08, abdomen: r = 0.89 ± 0.04, back: r = 0.86 ± 0.04) but not latter stages of heating. No differences in RSR (P = 0.160) or SkBF (LDF, P = 0.841) were observed between sites during ACh perfusion. Taken together, these data suggest that increases in SkBF are necessary to initiate and increase sweating, but further rises in RSR are not fully dependent on SkBF in a dose-response manner. Furthermore, RSR cannot be explained by cholinergic sensitivity or variation in SkBF.

  18. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, B.P.

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digestsmore » of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.« less

  19. Impairment of the vascular relaxation and differential expression of caveolin-1 of the aorta of diabetic +db/+db mice.

    PubMed

    Lam, Tze Yan; Seto, Sai Wang; Lau, Yee Man; Au, Lai Shan; Kwan, Yiu Wa; Ngai, Sai Ming; Tsui, Kwong Wing

    2006-09-28

    In this study, we compared the endothelium-dependent and -independent relaxation of the isolated thoracic aorta of control (+db/+m) and diabetic (+db/+db) (C57BL/KsJ) mice. The gene expression (mRNA and protein) level of the muscarinic M(3) receptors, endothelial nitric oxide synthase (eNOS) and caveolin-1 of the aorta was also evaluated. Acetylcholine caused a concentration-dependent, N(G)-nitro-L-arginine methyl-ester (20 microM)-sensitive relaxation, with approximately 100% relaxation at 10 microM, in +db/+m mice. In +db/+db mice, the acetylcholine-induced relaxation was significantly smaller (maximum relaxation: approximately 80%). The sodium nitroprusside-mediated relaxation was slightly diminished in +db/+db mice, compared to +db/+m mice. However, there was no significant difference in the isoprenaline- and cromakalim-induced relaxation observed in both species. The mRNA and protein expression levels of caveolin-1 were significantly higher in the aorta of +db/+db mice. In contrast, there was no difference in the mRNA and protein expression levels of eNOS and muscarinic M(3) receptors between these mice. Our results demonstrate that the impairment of the acetylcholine-induced, endothelium-dependent aortic relaxation observed in +db/+db mice was probably associated with an enhanced expression of caveolin-1 mRNA and protein.

  20. Acetylcholine-induced current in perfused rat myoballs

    PubMed Central

    1980-01-01

    Spherical "myoballs" were grown under tissue culture conditions from striated muscle of neonatal rat thighs. The myoballs were examined electrophysiologically with a suction pipette which was used to pass current and perfuse internally. A microelectrode was used to record membrane potential. Experiments were performed with approximately symmetrical (intracellular and extracellular) sodium aspartate solutions. The resting potential, acetylcholine (ACh) reversal potential, and sodium channel reversal potential were all approximately 0 mV. ACh-induced currents were examined by use of both voltage jumps and voltage ramps in the presence of iontophoretically applied agonist. The voltage-jump relaxations had a single exponential time-course. The time constant, tau, was exponentially related to membrane potential, increasing e-fold for 81 mV hyperpolarization. The equilibrium current- voltage relationship was also approximately exponential, from -120 to +81 mV, increasing e-fold for 104 mV hyperpolarization. The data are consistent with a first-order gating process in which the channel opening rate constant is slightly voltage dependent. The instantaneous current-voltage relationship was sublinear in the hyperpolarizing direction. Several models are discussed which can account for the nonlinearity. Evidence is presented that the "selectivity filter" for the ACh channel is located near the intracellular membrane surface. PMID:7381423

  1. [Role of acetylcholine in gelsenicine-induced death in mice].

    PubMed

    Lai, Zhou-Yi; Wang, Hai-Bo; Lv, Rui-Ling; Tan, Qiu-Chan; Deng, Zhi-Qin; Wang, Yuan; Sun, Xiao-Xue; Wu, Jia-Bao; Zhu, Lin-Yan; Wang, Lei; Chen, Li-Xin; Ye, Wen-Cai; Wang, Li-Wei

    2016-06-25

    The aim of this study was to investigate the relationship between the acetylcholine concentration in the blood and gelsenicine-induced death in mice. Kunming mice were given intraperitoneal injections of normal saline, gelsenicine or different doses of acetylcholine chloride. Atropine was given to the mice which received gelsenicine or medium dose acetylcholine chloride injection. The blood was sampled immediately when the mice died or survived for 20 min after injection. The acetylcholine concentration and acetylcholinesterase activity in the blood were measured by the testing kits, and the mortality was calculated and analyzed. The results showed that half lethal dose of gelsenicine (0.15 mg/kg) reduced the acetylcholinesterase activity and increased the blood acetylcholine concentration. The blood acetylcholine concentration of the dead mice in the gelsenicine group was increased to 43.0 μg/mL (from 31.1 μg/mL in the control), which was lower than that (53.9 μg/mL) of the dead mice in the medium dose acetylcholine chloride group, but almost equal to that (42.7 μg/mL) of the survival mice in the medium dose acetylcholine chloride group. Atropine could successfully rescue the mice from acetylcholine poisoning, but its efficiency of rescuing the mice from gelsenicine intoxication was weak. These results suggest that gelsenicine can inhibit acetylcholinesterase activity and increase blood acetylcholine concentration, but the accumulation of acetylcholine may not be the only or main cause of the death induced by gelsenicine in mice.

  2. Acetylcholine in adrenergic terminals of the cat iris

    PubMed Central

    Ehinger, B.; Falck, B.; Persson, H.; Rosengren, A.-M.; Sporrong, B.

    1970-01-01

    1. Acetylcholine was bio-assayed in the normal cat iris, and also after selective sympathetic or parasympathetic denervation. Sympathetic denervation caused no significant change in the acetylcholine content of the cat iris, whereas selective parasympathetic denervation reduced the acetylcholine content below the level of detectability, which on the average was at about 5% of the acetylcholine content of the normal iris. 2. It is concluded that if adrenergic terminals contain any acetylcholine, it is less than what is detectable with the methods available at present, and most certainly less than 6% of the acetylcholine content of cholinergic neurones. 3. On the basis of these and other recently obtained observations, the hypothesis of Burn & Rand (1965) of a cholinergic link in the adrenergic transmission is discussed. It is proposed that it is more reasonable to suppose an interaction between peripheral adrenergic and cholinergic terminals than to presume a cholinergic mechanism within adrenergic nerve fibres. PMID:5503282

  3. Acetylcholine in adrenergic terminals of the cat iris.

    PubMed

    Ehinger, B; Falck, B; Persson, H; Rosengren, A M; Sporrong, B

    1970-08-01

    1. Acetylcholine was bio-assayed in the normal cat iris, and also after selective sympathetic or parasympathetic denervation. Sympathetic denervation caused no significant change in the acetylcholine content of the cat iris, whereas selective parasympathetic denervation reduced the acetylcholine content below the level of detectability, which on the average was at about 5% of the acetylcholine content of the normal iris.2. It is concluded that if adrenergic terminals contain any acetylcholine, it is less than what is detectable with the methods available at present, and most certainly less than 6% of the acetylcholine content of cholinergic neurones.3. On the basis of these and other recently obtained observations, the hypothesis of Burn & Rand (1965) of a cholinergic link in the adrenergic transmission is discussed. It is proposed that it is more reasonable to suppose an interaction between peripheral adrenergic and cholinergic terminals than to presume a cholinergic mechanism within adrenergic nerve fibres.

  4. Presence of cardiovascular structural changes in essential hypertensive patients with coronary microvascular disease and effects of long-term treatment.

    PubMed

    Virdis, A; Ghiadoni, L; Lucarini, A; Di Legge, V; Taddei, S; Salvetti, A

    1996-04-01

    In asymptomatic essential hypertensive patients with angiographically normal coronary arteries and without left ventricular hypertrophy, dipyridamole-induced ischemic-like ST segment depression may be a marker of coronary microvascular disease. In this study we evaluated, first, whether this cardiac abnormality is linked to structural or functional vascular abnormalities, and second, the effect of antihypertensive treatment by 12-month administration of the angiotensin converting enzyme (ACE) inhibitor captopril (50 mg twice a day orally). In essential hypertensives with dipypridamole echocardiography stress test (DET) (DET+, n = 8) and without (DET-, n = 8) ST segment depression greater than 0.1 mV during intravenous dipyridamole infusion (0.84 mg/kg over 10 min), we studied the forearm blood flow (FBF, venous plethysmography, mL/100) modifications induced by intrabrachial acetylcholine (Ach) (0.15, 0.45, 1.5, 4.5, 15 micrograms/100 mL/min x 5 min each), an endothelium-dependent vasodilator, and by sodium nitroprusside (SNP) (1, 2, 4 micrograms/100 mL/min x 5 min each), a smooth muscle cell relaxant compound. Minimal forearm vascular resistances (MFVR), an index of arteriolar structural changes, were also calculated. Both Ach and SNP caused greater vasodilation in DET- as compared to DET+ while MFVRs were lower in DET- compared to DET+. After treatment, both DET+ and DET- patients showed a significant and similar reduction in blood pressure and left ventricular mass index, while vasodilation to acetylcholine and sodium nitroprusside was increased only in the DET+ group. In addition, forearm minimal vascular resistances were significantly reduced only in DET+ patients, who showed disappearance of dipyridamole-induced ischemic-like ST segment depression. In conclusion, these data confirm that essential hypertensive patients with microvascular coronary disease are characterized by the presence of structural changes in the forearm vascular bed. Our results also

  5. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions

    PubMed Central

    2010-01-01

    Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3) or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin) and endothelial-independent (sodium nitroprusside and verapamil) vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P < 0.001), bradykinin (P < 0.05), sodium nitroprusside (P < 0.05) and verapamil (P < 0.001). In addition, the net release of tissue plasminogen activator during bradykinin infusion was impaired following diesel exhaust exposure (P < 0.05). Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust

  6. Effects of aging and exercise training on spinotrapezius muscle microvascular Po2 dynamics and vasomotor control

    PubMed Central

    McCullough, Danielle J.; Davis, Robert T.; Dominguez, James M.; Stabley, John N.; Bruells, Christian S.

    2011-01-01

    With advancing age, there is a reduction in exercise tolerance, resulting, in part, from a perturbed ability to match O2 delivery to uptake within skeletal muscle. In the spinotrapezius muscle (which is not recruited during incline treadmill running) of aged rats, we tested the hypotheses that exercise training will 1) improve the matching of O2 delivery to O2 uptake, evidenced through improved microvascular Po2 (PmO2), at rest and throughout the contractions transient; and 2) enhance endothelium-dependent vasodilation in first-order arterioles. Young (Y, ∼6 mo) and aged (O, >24 mo) Fischer 344 rats were assigned to control sedentary (YSED; n = 16, and OSED; n = 15) or exercise-trained (YET; n = 14, and OET; n = 13) groups. Spinotrapezius blood flow (via radiolabeled microspheres) was measured at rest and during exercise. Phosphorescence quenching was used to quantify PmO2 in vivo at rest and across the rest-to-twitch contraction (1 Hz, 5 min) transition in the spinotrapezius muscle. In a follow-up study, vasomotor responses to endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) stimuli were investigated in vitro. Blood flow to the spinotrapezius did not increase above resting values during exercise in either young or aged groups. Exercise training increased the precontraction baseline PmO2 (OET 37.5 ± 3.9 vs. OSED 24.7 ± 3.6 Torr, P < 0.05); the end-contracting PmO2 and the time-delay before PmO2 fell in the aged group but did not affect these values in the young. Exercise training improved maximal vasodilation in aged rats to acetylcholine (OET 62 ± 16 vs. OSED 27 ± 16%) and to sodium nitroprusside in both young and aged rats. Endurance training of aged rats enhances the PmO2 in a nonrecruited skeletal muscle and is associated with improved vascular smooth muscle function. These data support the notion that improvements in vascular function with exercise training are not isolated to the recruited muscle. PMID:21212242

  7. Metabolism of acetylcholine in human erythrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, E.S.

    1990-01-01

    In order to examine the possible role of erythrocyte acetylcholinesterase in the maintenance of membrane phospholipid content and membrane fluidity, experiments were performed to monitor the activity of the enzyme and follow the fate of one of its hydrolytic products, choline. Intact human erythrocytes were incubated with acetylcholine (choline methyl-{sup 14}C). The incubation resulted in the hydrolysis of acetylcholine to acetate and choline; the reaction was catalyzed by membrane acetylcholinesterase. The studies demonstrate the further metabolism of choline. Experiments were carried out to determine rate of hydrolysis of acetylcholine, uptake of choline, identification of intracellular metabolites of choline, and identificationmore » of radiolabeled membrane components. Erythrocytes at a 25% hematocrit were incubated in an isoosmotic bicarbonate buffer pH 7.4, containing glucose, adenosine, streptomycin and penicillin with 0.3 {mu}Ci of acetylcholine (choline methyl-{sup 14}C), for 24 hours. Aliquots of the erythrocyte suspension were taken throughout for analysis. Erythrocytes were washed free of excess substrate, lysed, and the hemolysate was extracted for choline and its metabolites. Blank samples containing incubation buffer and radiolabeled acetylcholine only, and erythrocyte hemolysate extracts were analyzed for choline content, the difference between blank samples and hemolysate extracts was the amount of choline originating from acetylcholine and attributable to acetylcholinesterase activity. The conversion of choline to {sup 14}C-betaine is noted after several minutes of incubation; at 30 minutes, more than 80% of {sup 14}C-choline is taken up and after several hours, detectable levels of radiolabeled S-adenosylmethionine were present in the hemolysate extract.« less

  8. Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors

    PubMed Central

    Moaddel, Ruin; Abdrakhmanova, Galia; Kozak, Joanna; Jozwiak, Krzysztof; Toll, Lawrence; Jimenez, Lucita; Rosenberg, Avraham; Tran, Thao; Xiao, Yingxian; Zarate, Carlos A.; Wainer, Irving W.

    2012-01-01

    The effect of the (R,S)-ketamine metabolites (R,S)-norketamine, (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)- hydroxynorketamine on the activity of α7 and α3β4 neuronal nicotinic acetylcholine receptors was investigated using patch-clamp techniques. The data indicated that (R,S)-dehydronorketamine inhibited acetylcholine-evoked currents in α7-nicotinic acetylcholine receptor, IC50 = 55 ± 6 nM, and that (2S,6S)-hydroxynorketamine, (2R,6R)-hydroxynorketamine and (R,S)-norketamine also inhibited α7-nicotinic acetylcholine receptor function at concentrations ≤1μM, while (R,S)-ketamine was inactive at these concentrations. The inhibitory effect of (R,S)-dehydronorketamine was voltage-independent and the compound did not competitively displace selective α7-nicotinic acetylcholine receptor ligands [125I]-α-bungarotoxin and [3H]-epibatidine indicating that (R,S)-dehydronorketamine is a negative allosteric modulator of the α7-nicotinic acetylcholine receptor. (R,S)-Ketamine and (R,S)-norketamine inhibited (S)-nicotine-induced whole-cell currents in cells expressing α3β4-nicotinic acetylcholine receptor, IC50 3.1 and 9.1μM, respectively, while (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine were weak inhibitors, IC50 >100μM. The binding affinities of (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine at the NMDA receptor were also determined using rat brain membranes and the selective NMDA receptor antagonist [3H]-MK-801. The calculated Ki values were 38.95 μM for (S)-dehydronorketamine, 21.19 μM for (2S,6S)-hydroxynorketamine and > 100 μM for (2R,6R)-hydroxynorketamine. The results suggest that the inhibitory activity of ketamine metabolites at the α7-nicotinic acetylcholine receptor may contribute to the clinical effect of the drug. PMID:23183107

  9. Ikarisoside A inhibits acetylcholine-induced catecholamine secretion and synthesis by suppressing nicotinic acetylcholine receptor-ion channels in cultured bovine adrenal medullary cells.

    PubMed

    Li, Xiaojia; Toyohira, Yumiko; Horisita, Takafumi; Satoh, Noriaki; Takahashi, Keita; Zhang, Han; Iinuma, Munekazu; Yoshinaga, Yukari; Ueno, Susumu; Tsutsui, Masato; Sata, Takeyoshi; Yanagihara, Nobuyuki

    2015-12-01

    Ikarisoside A is a natural flavonol glycoside derived from plants of the genus Epimedium, which have been used in Traditional Chinese Medicine as tonics, antirheumatics, and aphrodisiacs. Here, we report the effects of ikarisoside A and three other flavonol glycosides on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. We found that ikarisoside A (1-100 μM), but not icariin, epimedin C, or epimedoside A, concentration-dependently inhibited the secretion of catecholamines induced by acetylcholine, a physiological secretagogue and agonist of nicotinic acetylcholine receptors. Ikarisoside A had little effect on catecholamine secretion induced by veratridine and 56 mM K(+). Ikarisoside A (1-100 μM) also inhibited (22)Na(+) influx and (45)Ca(2+) influx induced by acetylcholine in a concentration-dependent manner similar to that of catecholamine secretion. In Xenopus oocytes expressing α3β4 nicotinic acetylcholine receptors, ikarisoside A (0.1-100 μM) directly inhibited the current evoked by acetylcholine. It also suppressed (14)C-catecholamine synthesis and tyrosine hydroxylase activity induced by acetylcholine at 1-100 μM and 10-100 μM, respectively. The present findings suggest that ikarisoside A inhibits acetylcholine-induced catecholamine secretion and synthesis by suppression of nicotinic acetylcholine receptor-ion channels in bovine adrenal medullary cells.

  10. Nicotinic Acetylcholine Receptors in Sensory Cortex

    ERIC Educational Resources Information Center

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  11. A specific role for septohippocampal acetylcholine in memory?

    PubMed Central

    Easton, Alexander; Douchamps, Vincent; Eacott, Madeline; Lever, Colin

    2012-01-01

    Acetylcholine has long been implicated in memory, including hippocampal-dependent memory, but the specific role for this neurotransmitter is difficult to identify in human neuropsychology. Here, we review the evidence for a mechanistic model of acetylcholine function within the hippocampus and consider its explanatory power for interpreting effects resulting from both pharmacological anticholinergic manipulations and lesions of the cholinergic input to the hippocampus in animals. We argue that these effects indicate that acetylcholine is necessary for some, but not all, hippocampal-dependent processes. We review recent evidence from lesion, pharmacological and electrophysiological studies to support the view that a primary function of septohippocampal acetylcholine is to reduce interference in the learning process by adaptively timing and separating encoding and retrieval processes. We reinterpret cholinergic-lesion based deficits according to this view and propose that acetylcholine reduces the interference elicited by the movement of salient locations between events. PMID:22884957

  12. Acetylcholine activity in selective striatal regions supports behavioral flexibility.

    PubMed

    Ragozzino, Michael E; Mohler, Eric G; Prior, Margaret; Palencia, Carlos A; Rozman, Suzanne

    2009-01-01

    Daily living often requires individuals to flexibly respond to new circumstances. There is considerable evidence that the striatum is part of a larger neural network that supports flexible adaptations. Cholinergic interneurons are situated to strongly influence striatal output patterns which may enable flexible adaptations. The present experiments investigated whether acetylcholine actions in different striatal regions support behavioral flexibility by measuring acetylcholine efflux during place reversal learning. Acetylcholine efflux selectively increased in the dorsomedial striatum, but not dorsolateral or ventromedial striatum during place reversal learning. In order to modulate the M2-class of autoreceptors, administration of oxotremorine sesquifumurate (100 nM) into the dorsomedial striatum, concomitantly impaired reversal learning and an increase in acetylcholine output. These effects were reversed by the m(2) muscarinic receptor antagonist, AF-DX-116 (20 nM). The effects of oxotremorine sesquifumurate and AF-DX-116 on acetylcholine efflux were selective to behaviorally-induced changes as neither treatment affected acetylcholine output in a resting condition. In contrast to reversal learning, acetylcholine efflux in the dorsomedial striatum did not change during place acquisition. The results reveal an essential role for cholinergic activity and define its locus of control to the dorsomedial striatum in cognitive flexibility.

  13. Thiopental inhibits nitric oxide production in rat aorta.

    PubMed

    Castillo, C; Asbun, J; Escalante, B; Villalón, C M; López, P; Castillo, E F

    1999-12-01

    We studied whether thiopental affects endothelial nitric oxide dependent vasodilator responses and nitrite production (an indicator of nitric oxide production) elicited by acetylcholine, histamine, and A23187 in rat aorta (artery in which nitric oxide is the main endothelial relaxant factor). In addition, we evaluated the barbiturate effect on nitric oxide synthase (NOS) activity in both rat aorta and kidney homogenates. Thiopental (10-100 microg/mL) reversibly inhibited the endothelium-dependent relaxation elicited by acetylcholine, histamine, and A23187. On the contrary, this anesthetic did not modify the endothelium-independent but cGMP-dependent relaxation elicited by sodium nitroprusside (1 nM - 1 microM) and nitroglycerin (1 nM - 1 microM), thus excluding an effect of thiopental on guanylate cyclase of vascular smooth muscle. Thiopental (100 microg/mL) inhibited both basal (87.8+/-14.3%) and acetylcholine- or A23187-stimulated (78.6+/-3.9 and 39.7+/-5.6%, respectively) production of nitrites in aortic rings. In addition the barbiturate inhibited (100 microg/mL) the NOS (45+/-4 and 42.8+/-9%) in aortic and kidney homogenates, respectively (measured as 14C-labeled citrulline production). In conclusion, thiopental inhibition of endothelium-dependent relaxation and nitrite production in aortic rings strongly suggests an inhibitory effect on NOS. Thiopental inhibition of the NOS provides further support to this contention.

  14. Effects of epidermal growth factor, interleukin 1 and nitric oxide on prostaglandin production by guinea-pig uterus.

    PubMed

    Keeble, J E; Poyser, N L

    2002-08-01

    Initial experiments in the present study investigated the effects of epidermal growth factor (EGF), interleukin 1beta (IL-1beta) and sodium nitroprusside (a nitric oxide donor) on the output of prostaglandins from guinea-pig uterus on day 7 of the oestrous cycle. Superfusion of day 7 guinea-pig uterus in vitro with either EGF or sodium nitroprusside increased the output of PGF(2alpha) and 6-keto-PGF(1alpha), but not of PGE(2). IL-1beta had no effect on the output of these three prostaglandins. EGF still increased the output of PGF(2alpha), but did not increase the output of 6-keto-PGF(1alpha) in a calcium-depleted superfusate. Subsequent experiments investigated the effect of sodium nitroprusside on contractile activity of day 7 guinea-pig uterus. Basal spontaneous activity of both the intact uterus and isolated myometrium superfused in vitro was low. Sodium nitroprusside increased the contractile activity of these tissues two- to fourfold. EGF did not affect the contractile activity of the uterus, indicating that sodium nitroprusside-induced contractions are not due to increased prostaglandin production. Overall, the findings indicate that EGF and nitric oxide may act as mediators in the mechanism by which oestradiol acting on a progesterone-primed uterus stimulates the increase in PGF(2alpha) production by the guinea-pig uterus necessary for luteolysis. Nitric oxide may increase the spontaneous activity of the uterus when this activity is low.

  15. General anaesthetics and the acetylcholine-sensitivity of cortical neurons.

    PubMed Central

    Smaje, J C

    1976-01-01

    1The effects of general anaesthetics on neuronal responses to iontophoretically-applied acetylcholine have been examined in slices of guinea-pig olfactory cortex maintained in vitro. 2 Acetylcholine excited 61% of the prepiriform neurones tested. The excitation was blocked by atropine, but not by dihydro-beta-erythroidine or gallamine. 3 Alphaxalone reversibly depressed the acetylcholine-sensitivity of prepiriform neurones. Pentobarbitone did not consistently depress the acetylcholine sensitivity of these cells. 4 Ether, methoxyflurane, trichloroethylene and halothane caused a dose-related augmentation of acetylcholine-induced firing. 5 These results show that general anaesthetics do not necessarily depress the sensitivity of nerve cells to all excitatory substances and that different anaesthetics may affect a particular excitatory process in various ways. PMID:990586

  16. Acetylcholine Activity in Selective Striatal Regions Supports Behavioral Flexibility

    PubMed Central

    Ragozzino, Michael E.; Mohler, Eric G.; Prior, Margaret; Palencia, Carlos A.; Rozman, Suzanne

    2009-01-01

    Daily living often requires individuals to flexibly respond to new circumstances. There is considerable evidence that the striatum is part of a larger neural network that supports flexible adaptations. Cholinergic interneurons are situated to strongly influence striatal output patterns which may enable flexible adaptations. The present experiments investigated whether acetylcholine actions in different striatal regions support behavioral flexibility by measuring acetylcholine efflux during place reversal learning. Acetylcholine efflux selectively increased in the dorsomedial striatum, but not dorsolateral or ventromedial striatum during place reversal learning. In order to modulate the M2-class of autoreceptors, administration of oxotremorine sesquifumurate (100 nM) into the dorsomedial striatum, concomitantly impaired reversal learning and an increase in acetylcholine output. These effects were reversed by the m2 muscarinic receptor antagonist, AF-DX-116 (20 nM). The effects of oxotremorine sesquifumurate and AF-DX-116 on acetylcholine efflux were selective to behaviorally-induced changes as neither treatment affected acetylcholine output in a resting condition. In contrast to reversal learning, acetylcholine efflux in the dorsomedial striatum did not change during place acquisition. The results reveal an essential role for cholinergic activity and define its locus of control to the dorsomedial striatum in cognitive flexibility. PMID:18845266

  17. Acetylcholine receptor antibody

    MedlinePlus

    ... found in the blood of most people with myasthenia gravis . The antibody affects a chemical that sends signals ... Performed This test is used to help diagnose myasthenia gravis . Normal Results Normally, there is no acetylcholine receptor ...

  18. Enzyme-linked DNA dendrimer nanosensors for acetylcholine

    PubMed Central

    Walsh, Ryan; Morales, Jennifer M.; Skipwith, Christopher G.; Ruckh, Timothy T.; Clark, Heather A.

    2015-01-01

    It is currently difficult to measure small dynamics of molecules in the brain with high spatial and temporal resolution while connecting them to the bigger picture of brain function. A step towards understanding the underlying neural networks of the brain is the ability to sense discrete changes of acetylcholine within a synapse. Here we show an efficient method for generating acetylcholine-detecting nanosensors based on DNA dendrimer scaffolds that incorporate butyrylcholinesterase and fluorescein in a nanoscale arrangement. These nanosensors are selective for acetylcholine and reversibly respond to levels of acetylcholine in the neurophysiological range. This DNA dendrimer architecture has the potential to overcome current obstacles to sensing in the synaptic environment, including the nanoscale size constraints of the synapse and the ability to quantify the spatio-temporal fluctuations of neurotransmitter release. By combining the control of nanosensor architecture with the strategic placement of fluorescent reporters and enzymes, this novel nanosensor platform can facilitate the development of new selective imaging tools for neuroscience. PMID:26442999

  19. Enzyme-linked DNA dendrimer nanosensors for acetylcholine.

    PubMed

    Walsh, Ryan; Morales, Jennifer M; Skipwith, Christopher G; Ruckh, Timothy T; Clark, Heather A

    2015-10-07

    It is currently difficult to measure small dynamics of molecules in the brain with high spatial and temporal resolution while connecting them to the bigger picture of brain function. A step towards understanding the underlying neural networks of the brain is the ability to sense discrete changes of acetylcholine within a synapse. Here we show an efficient method for generating acetylcholine-detecting nanosensors based on DNA dendrimer scaffolds that incorporate butyrylcholinesterase and fluorescein in a nanoscale arrangement. These nanosensors are selective for acetylcholine and reversibly respond to levels of acetylcholine in the neurophysiological range. This DNA dendrimer architecture has the potential to overcome current obstacles to sensing in the synaptic environment, including the nanoscale size constraints of the synapse and the ability to quantify the spatio-temporal fluctuations of neurotransmitter release. By combining the control of nanosensor architecture with the strategic placement of fluorescent reporters and enzymes, this novel nanosensor platform can facilitate the development of new selective imaging tools for neuroscience.

  20. Enzyme-linked DNA dendrimer nanosensors for acetylcholine

    NASA Astrophysics Data System (ADS)

    Walsh, Ryan; Morales, Jennifer M.; Skipwith, Christopher G.; Ruckh, Timothy T.; Clark, Heather A.

    2015-10-01

    It is currently difficult to measure small dynamics of molecules in the brain with high spatial and temporal resolution while connecting them to the bigger picture of brain function. A step towards understanding the underlying neural networks of the brain is the ability to sense discrete changes of acetylcholine within a synapse. Here we show an efficient method for generating acetylcholine-detecting nanosensors based on DNA dendrimer scaffolds that incorporate butyrylcholinesterase and fluorescein in a nanoscale arrangement. These nanosensors are selective for acetylcholine and reversibly respond to levels of acetylcholine in the neurophysiological range. This DNA dendrimer architecture has the potential to overcome current obstacles to sensing in the synaptic environment, including the nanoscale size constraints of the synapse and the ability to quantify the spatio-temporal fluctuations of neurotransmitter release. By combining the control of nanosensor architecture with the strategic placement of fluorescent reporters and enzymes, this novel nanosensor platform can facilitate the development of new selective imaging tools for neuroscience.

  1. Exercise and neuromodulators: choline and acetylcholine in marathon runners

    NASA Technical Reports Server (NTRS)

    Conlay, L. A.; Sabounjian, L. A.; Wurtman, R. J.

    1992-01-01

    Certain neurotransmitters (i.e., acetylcholine, catecholamines, and serotonin) are formed from dietary constituents (i.e., choline, tyrosine and tryptophan). Changing the consumption of these precursors alters release of their respective neurotransmitter products. The neurotransmitter acetylcholine is released from the neuromuscular junction and from brain. It is formed from choline, a common constituent in fish, liver, and eggs. Choline is also incorporated into cell membranes; membranes may likewise serve as an alternative choline source for acetylcholine synthesis. In trained athletes, running a 26 km marathon reduced plasma choline by approximately 40%, from 14.1 to 8.4 uM. Changes of similar magnitude have been shown to reduce acetylcholine release from the neuromuscular junction in vivo. Thus, the reductions in plasma choline associated with strenuous exercise may reduce acetylcholine release, and could thereby affect endurance or performance.

  2. Antioxidative role of nitric oxide on copper toxicity to a chlorophycean alga, Chlorella.

    PubMed

    Singh, Akhilesh kumar; Sharma, Laxuman; Mallick, Nirupama

    2004-10-01

    The response of Chlorella vulgaris to copper exposure was investigated under laboratory batch culture conditions. Increased toxicity of Cu with respect to photosynthetic carbon fixation, O(2) evolution, chlorophyll fluorescence, and oxidative burst was observed for N-NH(4)(+)-grown cultures. The addition of sodium nitroprusside, a nitric oxide (NO) donor, in combination with Cu to N-NH(4)(+)-grown Chlorella not only lowered the inhibition levels of carbon fixation, O(2) evolution, and maximum quantum yield of PS II, but also significantly reduced the oxidative burst. The protective action of sodium nitroprusside was, however, arrested in cultures in which sodium nitroprusside was supplemented in combination with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a specific scavenger of NO in the experimental system. The N-NO(3)(-)-grown Chlorella depicted less sensitivity to Cu compared to its N-NH(4)(+)-grown counterpart. The N-NO(3)(-)-, N-NH(4)(+)-, and N-NH(4)(+)+sodium nitroprusside-grown Chlorella did not show any significant differences with respect to their Cu uptake potential. The role of NO as an antioxidant is discussed.

  3. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  4. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  5. Determination of picomole quantities of acetylcholine and choline in physiologic salt solutions.

    PubMed

    Gilberstadt, M L; Russell, J A

    1984-04-01

    An assay capable of detecting tens-of-picomole quantities of choline and acetylcholine in milliliter volumes of a physiological salt solution has been developed. Silica column chromatography was used to bind and separate 10-3000 pmol [14C]choline and [14C]acetylcholine standards made up in 3 ml of a bicarbonate-buffered Krebs-Ringer solution. The silica columns bound 95-98% of both choline and acetylcholine. Of the bound choline 84-87% was eluted in 1.5 ml of 0.075 N HCl, whereas 95-98% of the bound acetylcholine was eluted in a subsequent wash with 1.5 ml of 0.030 N HCl in 10% 2-butanone. Vacuum centrifugation of the eluants yielded small white pellets with losses of choline and acetylcholine of only 1%. Dried pellets of unlabeled choline and acetylcholine standards were assayed radioenzymatically using [gamma-32P]ATP, choline kinase, and acetylcholinesterase. The net disintegrations per minute of choline[32P]phosphate product was proportional to both the acetylcholine (10-3000 pmol) and choline (30-3000 pmol) standards. The "limit sensitivity" was 8.5 pmol for acetylcholine and 11.4 pmol for choline. Cross-contamination of the choline assay by acetylcholine averaged 1.3%, whereas contamination of the acetylcholine assay by choline averaged 3.1%.

  6. Axon Response to Guidance Cues Is Stimulated by Acetylcholine in Caenorhabditis elegans

    PubMed Central

    Xu, Yan; Ren, Xing-Cong; Quinn, Christopher C.; Wadsworth, William G.

    2011-01-01

    Gradients of acetylcholine can stimulate growth cone turning when applied to neurons grown in culture, and it has been suggested that acetylcholine could act as a guidance cue. However, the role acetylcholine plays in directing axon migrations in vivo is not clear. Here, we show that acetylcholine positively regulates signaling pathways that mediate axon responses to guidance cues in Caenorhabditis elegans. Mutations that disrupt acetylcholine synthesis, transportation, and secretion affect circumferential axon guidance of the AVM neuron and in these mutants exogenously supplied acetylcholine improves AVM circumferential axon guidance. These effects are not observed for the circumferential guidance of the DD and VD motor neuron axons, which are neighbors of the AVM axon. Circumferential guidance is directed by the UNC-6 (netrin) and SLT-1 (slit) extracellular cues, and exogenously supplied acetylcholine can improve AVM axon guidance in mutants when either UNC-6– or SLT-1–induced signaling is disrupted, but not when both signaling pathways are perturbed. Not in any of the mutants does exogenously supplied acetylcholine improve DD and VD axon guidance. The ability of acetylcholine to enhance AVM axon guidance only in the presence of either UNC-6 or SLT-1 indicates that acetylcholine potentiates UNC-6 and SLT-1 guidance activity, rather than acting itself as a guidance cue. Together, our results show that for specific neurons acetylcholine plays an important role in vivo as a modulator of axon responses to guidance cues. PMID:21868605

  7. Synthesis and characterization of a novel potato starch derivative with cationic acetylcholine groups.

    PubMed

    Zhang, Bing; Ni, Boli; Lü, Shaoyu; Cui, Dapeng; Liu, Mingzhu; Gong, Honghong; Han, Fei

    2012-04-01

    A novel substance, cationic acetylcholine potato starch (CAPS), was developed for the first time. The synthesis process had three steps: first, carboxymethyl potato starch (CMPS) was synthesized under sodium hydroxide alkaline condition and in isopropyl alcohol organic media; second, bromocholine chloride (BCC) was synthesized with sulphuric acid as a catalytic agent; finally, CAPS was synthesized by the reaction of CMPS with BCC in N,N'-dimethylformamide (DMF). The degree of substitution (DS) of CAPS was determined by ammonia gas-sensing electrode and elemental analysis. CAPS was characterized by Fourier transformed infrared (FTIR) and near infrared (FTNIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside-induced lipid peroxidation in rat pancreas by water extractable phytochemicals from some tropical spices.

    PubMed

    Adefegha, Stephen Adeniyi; Oboh, Ganiyu

    2012-07-01

    Spices have been used as food adjuncts and in folklore for ages. Inhibition of key enzymes (α-amylase and α-glucosidase) involved in the digestion of starch and protection against free radicals and lipid peroxidation in pancreas could be part of the therapeutic approach towards the management of hyperglycemia and dietary phenolics have shown promising potentials. This study investigated and compared the inhibitory properties of aqueous extracts of some tropical spices: Xylopia aethiopica [Dun.] A. Rich (Annonaceae), Monodora myristica (Gaertn.) Dunal (Annonaceae), Syzygium aromaticum [L.] Merr. et Perry (Myrtaceae), Piper guineense Schumach. et Thonn (Piperaceae), Aframomum danielli K. Schum (Zingiberaceae) and Aframomum melegueta (Rosc.) K. Schum (Zingiberaceae) against α-amylase, α-glucosidase, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and sodium nitroprusside (SNP)-induced lipid peroxidation in rat pancreas--in vitro using different spectrophotometric method. Aqueous extract of the spices was prepared and the ability of the spice extracts to inhibit α-amylase, α-glucosidase, DPPH radicals and SNP-induced lipid peroxidation in rat pancreas--in vitro was investigated using various spectrophotometric methods. All the spice extracts inhibited α-amylase (IC(50) = 2.81-4.83 mg/mL), α-glucosidase (IC(50) = 2.02-3.52 mg/mL), DPPH radicals (EC(50) = 15.47-17.38 mg/mL) and SNP-induced lipid peroxidation (14.17-94.38%), with the highest α-amylase & α-glucosidase inhibitory actions and DPPH radical scavenging ability exhibited by X. aethiopica, A. danielli and S. aromaticum, respectively. Also, the spices possess high total phenol (0.88-1.3 mg/mL) and flavonoid (0.24-0.52 mg/mL) contents with A. melegueta having the highest total phenolic and flavonoid contents. The inhibitory effects of the spice extracts on α-amylase, α-glucosidase, DPPH radicals and SNP-induced lipid peroxidation in pancreas (in vitro) could be attributed to the presence of biologically

  9. Organophosphate acetylcholine esterase inhibitor poisoning from a home-made shampoo

    PubMed Central

    Sadaka, Yair; Broides, Arnon; Tzion, Raffi Lev; Lifshitz, Matitiahu

    2011-01-01

    Organophosphate acetylcholine esterase inhibitor poisoning is a major health problem in children. We report an unusual cause of organophosphate acetylcholine esterase inhibitor poisoning. Two children were admitted to the pediatric intensive care unit due to organophosphate acetylcholine esterase inhibitor poisoning after exposure from a home-made shampoo that was used for the treatment of head lice. Owing to no obvious source of poisoning, the diagnosis of organophosphate acetylcholine esterase inhibitor poisoning in one of these patients was delayed. Both patients had an uneventful recovery. Organophosphate acetylcholine esterase inhibitor poisoning from home-made shampoo is possible. In cases where the mode of poisoning is unclear, direct questioning about the use of home-made shampoo is warranted, in these cases the skin and particularly the scalp should be rinsed thoroughly as soon as possible. PMID:21887044

  10. Organophosphate acetylcholine esterase inhibitor poisoning from a home-made shampoo.

    PubMed

    Sadaka, Yair; Broides, Arnon; Tzion, Raffi Lev; Lifshitz, Matitiahu

    2011-07-01

    Organophosphate acetylcholine esterase inhibitor poisoning is a major health problem in children. We report an unusual cause of organophosphate acetylcholine esterase inhibitor poisoning. Two children were admitted to the pediatric intensive care unit due to organophosphate acetylcholine esterase inhibitor poisoning after exposure from a home-made shampoo that was used for the treatment of head lice. Owing to no obvious source of poisoning, the diagnosis of organophosphate acetylcholine esterase inhibitor poisoning in one of these patients was delayed. Both patients had an uneventful recovery. Organophosphate acetylcholine esterase inhibitor poisoning from home-made shampoo is possible. In cases where the mode of poisoning is unclear, direct questioning about the use of home-made shampoo is warranted, in these cases the skin and particularly the scalp should be rinsed thoroughly as soon as possible.

  11. Beneficial Effects of Apelin on Vascular Function in Patients With Central Obesity.

    PubMed

    Schinzari, Francesca; Veneziani, Augusto; Mores, Nadia; Barini, Angela; Di Daniele, Nicola; Cardillo, Carmine; Tesauro, Manfredi

    2017-05-01

    Patients with central obesity have impaired insulin-stimulated vasodilation and increased ET-1 (endothelin 1) vasoconstriction, which may contribute to insulin resistance and vascular damage. Apelin enhances insulin sensitivity and glucose disposal but also acts as a nitric oxide (NO)-dependent vasodilator and a counter-regulator of AT 1 (angiotensin [Ang] II type 1) receptor-induced vasoconstriction. We, therefore, examined the effects of exogenous (Pyr 1 )apelin on NO-mediated vasodilation and Ang II- or ET-1-dependent vasoconstrictor tone in obese patients. In the absence of hyperinsulinemia, forearm blood flow responses to graded doses of acetylcholine and sodium nitroprusside were not different during saline or apelin administration (both P >0.05). During intra-arterial infusion of regular insulin, however, apelin enhanced the vasodilation induced by both acetylcholine and nitroprusside (both P <0.05). Interestingly, the vasodilator effect of concurrent blockade of AT 1 (telmisartan) and AT 2 (PD 123,319) receptors was blunted by apelin (3±5% versus 32±9%; P <0.05). Similarly, during apelin administration, blockade of ET A receptors (BQ-123) resulted in lower vasodilator response than during saline (23±10% versus 65±12%; P <0.05). NO synthase inhibition by L-NMMA (l- N -monometylarginine) during the concurrent blockade of either Ang II or ET A receptors resulted in similar vasoconstriction in the absence or presence of apelin ( P >0.05). In conclusion, in patients with central obesity, apelin has favorable effects not only to improve insulin-stimulated endothelium-dependent and endothelium-independent vasodilator responses but also to blunt Ang II- and ET-1-dependent vasoconstriction by a mechanism not involving NO. Taken together, our results suggest that targeting the apelin system might favorably impact some hemodynamic abnormalities of insulin-resistant states like obesity. © 2017 American Heart Association, Inc.

  12. Autoradiographic identification of acetylcholine in the rabbit retina

    PubMed Central

    1979-01-01

    Rabbit retinas were studied in vitro under conditions known to maintain their physiological function. Retinas incubated in the presence of [3H]choline synthesized substantial amounts of both [3H]phosphorylcholine and [3H]acetylcholine. With time, [3H]phosphorylcholine proceeded into phospholipids, primarily phosphatidylcholine. Retinas pulse-labeled by a 15-min exposure to 0.3 microM [3H]choline were incubated for a subsequent hour under chase conditions designed either to retain newly synthesized acetylcholine within synapses or to promote its release. At the end of this time the two groups of retinas were found to contain equal amounts of radioactivity in the phospholipid pathway, but only the retinas incubated under the acetylcholine-protecting conditions contained [3H]acetylcholine. Freeze-dried, vacuum-embedded tissue from each retina was autoradiographed on dry emulsion. All retinas showed silver grains over the photoreceptor cells and faint labeling of all ganglion cells. In the retinas that contained [3H]acetylcholine, silver grains also accumulated densely over a few cells with the position of amacrine cells, over a subset of the cells of the ganglion cell layer, and in two bands over the inner plexiform layer. Fixation of the retina with aqueous osmium tetroxide retained only the radioactive compounds located in the photoreceptor and ganglion cells. Sections from freeze- dried tissue lost their water-soluble choline metabolites when exposed to water, and autoradiography of such sections again revealed radioactivity primarily in the photoreceptor and ganglion cells. Radioactive compounds extracted from the sections were found to faithfully reflect those present in the tissue before processing; analysis of the compounds eluted from sections microdissected along the outer plexiform layer showed [3H]acetylcholine to have been synthesized only by cells of the inner retina. Taken together, these results indicate that the photoreceptor and ganglion cells are

  13. Acetylcholine-Like Molecular Arrangement in Psychomimetic Anticholinergic Drugs

    PubMed Central

    Maayani, Saul; Weinstein, Harel; Cohen, Sasson; Sokolovsky, Mordechai

    1973-01-01

    A study of the relation between the psychotropic activity and the antagonism to acetylcholine observed for some heterocyclic amino esters and compounds of the phencyclidine series suggests some common molecular structural requirements for their properties. Criteria obtained from quantum mechanical calculations of acetylcholine-like molecules indicate that their molecular reactivity with the cholinergic receptor site follows a certain dynamic interaction pattern. This pattern suggests a certain molecular arrangement essential for the interaction, which is based on the electronic properties of the molecules and therefore remains valid for the evaluation of compounds which lack any apparent similarity to acetylcholine. This type of molecular arrangement is shown to be shared by both activators and inhibitors of the acetylcholine receptor discussed here, thus supporting the hypothesis of their binding to a common receptor. The differences in biological activity are attributed to the effect of molecular structural factors which are not commonly included in the molecular arrangement based on the active groups of acetylcholine. The role of such factors is revealed by a study of the observed differences in the cholinergic and psychomimetic activities of related pairs of isomers and enantiomers of the molecules investigated. Structural factors which interfere with the conformational changes occurring in the receptor protein induced by an activator are characterized through differences obtained by the comparative investigation of the activities of the agonist acetate and the antagonist benzilate amino esters of quinuclidine, tropine, and pseudotropine. The same factors are shown in studies of the phencyclidine series to contribute to the antagonism to acetylcholine activity that is closely related to the psychomimetic activity of these drugs in the central nervous system. Similarly, phencyclidine derivatives in which the characteristic acetylcholine-like molecular

  14. Polyamine FTX-3.3 and polyamine amide sFTX-3.3 inhibit presynaptic calcium currents and acetylcholine release at mouse motor nerve terminals.

    PubMed

    Fatehi, M; Rowan, E G; Harvey, A L; Moya, E; Blagbrough, I S

    1997-02-01

    FTX-3.3 is the proposed structure of a calcium-channel blocking toxin that has been isolated from the funnel web spider (Agelenopsis aperta). The effects of FTX-3.3 and one of its analogues, sFTX-3.3, on acetylcholine release, on presynaptic currents at mouse motor nerve terminals and on whole-cell sodium currents in SK.N.SH cells (a human neuroblastoma cell line) have been studied. FTX-3.3 (10-30 microM) and sFTX-3.3 (100-300 microM) reversibly reduced release of acetylcholine by approximately 70-90% and 40-60%, respectively. FTX-3.3 (10 microM) blocked the fast component of presynaptic calcium currents by approximately 60%. sFTX-3.3 (100 microM) reduced the duration of the slow component of presynaptic calcium currents by about 50% of the control and also reduced presynaptic sodium current by approximately 20% of the control. sFTX-3.3 (100 microM) reduced whole-cell sodium current recorded from SK.N.SH cells by approximately 15%, whereas FTX-3.3, even at 200 microM, did not affect this current. Since the only difference in chemical structures of these toxins is that sFTX-3.3 has an amide function which is absent in FTX-3.3, the amide function may be responsible for the reduced potency and selectivity of sFTX-3.3. This study also provides further support for the existence of P-type calcium channels at mouse motor nerve terminals.

  15. EVP-6124, a novel and selective α7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of α7 nicotinic acetylcholine receptors.

    PubMed

    Prickaerts, Jos; van Goethem, Nick P; Chesworth, Richard; Shapiro, Gideon; Boess, Frank G; Methfessel, Christoph; Reneerkens, Olga A H; Flood, Dorothy G; Hilt, Dana; Gawryl, Maria; Bertrand, Sonia; Bertrand, Daniel; König, Gerhard

    2012-02-01

    EVP-6124, (R)-7-chloro-N-quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide, is a novel partial agonist of α7 neuronal nicotinic acetylcholine receptors (nAChRs) that was evaluated here in vitro and in vivo. In binding and functional experiments, EVP-6124 showed selectivity for α7 nAChRs and did not activate or inhibit heteromeric α4β2 nAChRs. EVP-6124 had good brain penetration and an adequate exposure time. EVP-6124 (0.3 mg/kg, p.o.) significantly restored memory function in scopolamine-treated rats (0.1 mg/kg, i.p.) in an object recognition task (ORT). Although donepezil at 0.1 mg/kg, p.o. or EVP-6124 at 0.03 mg/kg, p.o. did not improve memory in this task, co-administration of these sub-efficacious doses fully restored memory. In a natural forgetting test, an ORT with a 24 h retention time, EVP-6124 improved memory at 0.3 mg/kg, p.o. This improvement was blocked by the selective α7 nAChR antagonist methyllycaconitine (0.3 mg/kg, i.p. or 10 μg, i.c.v.). In co-application experiments of EVP-6124 with acetylcholine, sustained exposure to EVP-6124 in functional investigations in oocytes caused desensitization at concentrations greater than 3 nM, while lower concentrations (0.3-1 nM) caused an increase in the acetylcholine-evoked response. These actions were interpreted as representing a co-agonist activity of EVP-6124 with acetylcholine on α7 nAChRs. The concentrations of EVP-6124 that resulted in physiological potentiation were consistent with the free drug concentrations in brain that improved memory performance in the ORT. These data suggest that the selective partial agonist EVP-6124 improves memory performance by potentiating the acetylcholine response of α7 nAChRs and support new therapeutic strategies for the treatment of cognitive impairment. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Oxidative stress is not associated with vascular dysfunction in a model of alloxan-induced diabetic rats.

    PubMed

    Capellini, Verena Kise; Baldo, Caroline Floreoto; Celotto, Andréa Carla; Batalhão, Marcelo Eduardo; Cárnio, Evelin Capellari; Rodrigues, Alfredo José; Evora, Paulo Roberto Barbosa

    2010-08-01

    To verify if an experimental model of alloxan-diabetic rats promotes oxidative stress, reduces nitric oxide bioavailability and causes vascular dysfunction, and to evaluate the effect of N-acetylcysteine (NAC) on these parameters. Alloxan-diabetic rats were treated or not with NAC for four weeks. Plasmatic levels of malondialdehyde (MDA) and nitrite/nitrate (NOx), the endothelial and inducible nitric oxide synthase (eNOS and iNOS) immunostaining and the vascular reactivity of aorta were compared among diabetic (D), treated diabetic (TD) and control (C) rats. MDA levels increased in D and TD. NOx levels did not differ among groups. Endothelial eNOS immunostaining reduced and adventitial iNOS increased in D and TD. The responsiveness of rings to acetylcholine, sodium nitroprusside, and phenylephrine did not differ among groups. NAC had no effect on the evaluated parameters and this experimental model did not promote vascular dysfunction despite the development of oxidative stress.

  17. Oxotremorine does not enhance acetylcholine release from rat diaphragm preparations.

    PubMed Central

    Gundersen, C. B.; Jenden, D. J.

    1980-01-01

    We have reinvestigated the dramatic effect of oxotremorine on acetylcholine release from the rat diaphragm reported by Das, Ganguly & Vedasiromoni (1978), using a rigorous gas chromatographic mass spectrometric/isotope dilution method for identification and measurement of acetylcholine and choline. Oxotremorine (10 microM) causes no significant change in the spontaneous or evoked (1 or 10 Hz) release or in the tissue levels of acetylcholine or choline. PMID:7426831

  18. Effect of atherosclerosis on endothelium-dependent inhibition of platelet activation in humans.

    PubMed

    Diodati, J G; Dakak, N; Gilligan, D M; Quyyumi, A A

    1998-07-07

    We investigated whether luminal release of nitric oxide (NO) contributes to inhibition of platelet activation and whether these effects are reduced in patients with atherosclerosis. Femoral blood flow velocity and ex vivo whole blood platelet aggregation by impedance aggregometry were measured in femoral venous blood during femoral arterial infusion of acetylcholine (ACh; 30 microg/min) in 30 patients, 19 of whom had angiographic atherosclerosis. Measurements were repeated with sodium nitroprusside (40 microg/min), L-arginine (160 micromol/min), and N(G)-monomethyl-L-arginine (L-NMMA; 16 micromol/min). There was significant inhibition of collagen-induced platelet aggregation with ACh (45+/-9.5% lower, P<0.001), and this inhibition was greater in patients without atherosclerosis (68.7+/-10.4% reduction) than in those with atherosclerosis (32.5+/-8.1%, P=0.04). The magnitude of inhibition correlated with vasodilation with ACh, indicating an association between the smooth muscle and antiplatelet effects of endothelium-dependent stimulation. Neither L-NMMA nor sodium nitroprusside altered platelet aggregation. L-Arginine inhibited platelet aggregation equally in vitro (34+/-8% reduction, P<0.01) and in vivo (37+/-13% reduction, P<0.01). Stimulation of NO release into the vascular lumen with ACh inhibits platelet aggregation, an effect that is attenuated in patients with atherosclerosis and endothelial dysfunction. Basal NO release does not appear to contribute to platelet passivation in vivo. L-Arginine inhibited platelet aggregation by its direct action on platelets. These findings provide a pathophysiological basis for the observed increase in thrombotic events in atherosclerosis. Use of L-arginine and other strategies to improve endothelial NO activity may impact favorably on thrombotic events in atherosclerosis.

  19. Interactions between oxiracetam, aniracetam and scopolamine on behavior and brain acetylcholine.

    PubMed

    Spignoli, G; Pepeu, G

    1987-07-01

    The effect of cognition-enhancing agents oxiracetam and aniracetam on scopolamine-induced amnesia and brain acetylcholine decrease was investigated in the rat. Acetylcholine levels were measured by means of a gas-chromatographic method. Scopolamine (0.63 mg/kg IP 60 min before training) prevented the acquisition of a passive avoidance conditioned response ("step through": retest 30 min after training) and brought about a 64, 56 and 42% decrease in acetylcholine level in the cortex, hippocampus and striatum respectively. Oxiracetam (50 and 100 mg/kg IP) administered 30 min before scopolamine reduced the scopolamine-induced amnesic effect and decrease in acetylcholine level in the cortex and hippocampus, but not in the striatum. Lower and higher doses of oxiracetam were ineffective. Aniracetam (100 mg/kg PO) also prevented scopolamine-induced amnesia but attenuated acetylcholine decrease in the hippocampus only. Aniracetam (300 mg PO) reduced acetylcholine decrease in the hippocampus but did not prevent scopolamine-amnesia. In conclusion, oxiracetam and aniracetam exert a stimulatory effect on specific central cholinergic pathways. However, a direct relationship between cognition-enhancing properties and cholinergic activation needs further confirmation.

  20. Beta-phenylethylamine stimulates striatal acetylcholine release through activation of the AMPA glutamatergic pathway.

    PubMed

    Ishida, Kota; Murata, Mikio; Kato, Masatoshi; Utsunomiya, Iku; Hoshi, Keiko; Taguchi, Kyoji

    2005-09-01

    Using an in vivo intra-striatal microdialysis technique, we examined the effects of systemically administered beta-phenylethylamine (beta-PEA), a psychomotor stimulating trace amine, on striatal acetylcholine release in freely moving rats. Infusion of N-methyl-D-aspartic acid (NMDA; 10(-5) M) significantly increased acetylcholine release. In addition, locally applied amino-3-hydroxy-5-methylisozasole-4-propionic acid (AMPA; 10(-5) M) significantly increased acetylcholine release in the striatum. Intra-striatal application of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10(-5) M), an AMPA-type glutamatergic receptor antagonist, had little effect on acetylcholine release, while application of MK-801 (10(-5) M, 10(-6) M), an NMDA-type glutamatergic receptor antagonist, significantly reduced acetylcholine release. Acetylcholine within striatal perfusate was significantly increased by intraperitoneal administration of beta-PEA in a dose-dependent manner. This increase in acetylcholine release was completely blocked by application of CNQX (10(-5) M) through the microdialysis probe into the striatum. However, increased acetylcholine response to systemic beta-PEA was unaltered by addition of MK-801 to the perfusion medium. These results suggest a regulatory function of beta-PEA, mediated by AMPA-type glutamatergic receptors, on the release of acetylcholine in the rat striatum.

  1. Acetylcholine and lobster sensory neurones

    PubMed Central

    Barker, David L.; Herbert, Edward; Hildebrand, John G.; Kravitz, Edward A.

    1972-01-01

    Experiments are presented in support of the hypothesis that acetylcholine functions as a sensory transmitter in the lobster nervous system. 1. Several different peripheral sensory structures incorporate radioactive choline into acetylcholine. The preparation most enriched in sensory as opposed to other nervous elements (the antennular sense organs of the distal outer flagellum) does not incorporate significant amounts of glutamate, tyrosine or tryptophan into any of the other major transmitter candidates. 2. There is a parallel between the distribution of the enzyme choline acetyltransferase and the proportion of sensory fibres in nervous tissue from many parts of the lobster nervous system. 3. Isolated sensory axons contain at least 500 times as much choline acetyltransferase per cm of axon as do efferent excitatory and inhibitory fibres. 4. Abdominal ganglia and root stumps show a decline in the rate of incorporation of choline into acetylcholine 2 to 8 weeks after severing the first and second roots bilaterally (leaving the connectives and third roots intact). Extracts of the root stumps exhibit a significantly lower level of choline acetyltransferase 2 weeks after this operation. 5. Curare and atropine partially block an identified sensory synapse in the lobster abdominal ganglion. ImagesText-fig. 4Text-fig. 5Plate 1 PMID:4343316

  2. Acetylcholine is released from taste cells, enhancing taste signalling

    PubMed Central

    Dando, Robin; Roper, Stephen D

    2012-01-01

    Acetylcholine (ACh), a candidate neurotransmitter that has been implicated in taste buds, elicits calcium mobilization in Receptor (Type II) taste cells. Using RT-PCR analysis and pharmacological interventions, we demonstrate that the muscarinic acetylcholine receptor M3 mediates these actions. Applying ACh enhanced both taste-evoked Ca2+ responses and taste-evoked afferent neurotransmitter (ATP) secretion from taste Receptor cells. Blocking muscarinic receptors depressed taste-evoked responses in Receptor cells, suggesting that ACh is normally released from taste cells during taste stimulation. ACh biosensors confirmed that, indeed, taste Receptor cells secrete acetylcholine during gustatory stimulation. Genetic deletion of muscarinic receptors resulted in significantly diminished ATP secretion from taste buds. The data demonstrate a new role for acetylcholine as a taste bud transmitter. Our results imply specifically that ACh is an autocrine transmitter secreted by taste Receptor cells during gustatory stimulation, enhancing taste-evoked responses and afferent transmitter secretion. PMID:22570381

  3. Melatonin modulates rat myotube-acetylcholine receptors by inhibiting calmodulin.

    PubMed

    de Almeida-Paula, Lidiana Duarte; Costa-Lotufo, Leticia V; Silva Ferreira, Zulma; Monteiro, Amanda Elisa G; Isoldi, Mauro Cesar; Godinho, Rosely O; Markus, Regina P

    2005-11-21

    Melatonin, the pineal gland hormone, modulates alpha-bungarotoxin sensitive nicotinic acetylcholine receptors in sympathetic nerve terminals, cerebellum and chick retina imposing a diurnal variation in functional responses [Markus, R.P., Zago, W.M., Carneiro, R.C., 1996. Melatonin modulation of presynaptic nicotinic acetylcholine receptors in the rat vas deferens. J. Pharmacol. Exp. Ther. 279, 18-22; Markus, R.P., Santos, J.M., Zago, W., Reno, L.A., 2003. Melatonin nocturnal surge modulates nicotinic receptors and nicotine-induced [3HI] glutamate release in rat cerebellum slices. J. Pharmacol. Exp. Ther. 305, 525-530; Sampaio, L.F.S., Hamassaki-Britto, D.E., Markus, R.P., 2005. Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells. Braz. J. Med. Biol. Res. 38, 603-613]. Here we show that in rat myotubes forskolin and melatonin reduced the number of nicotinic acetylcholine receptors expressed in plasma membrane. In addition, these cells expressed melatonin MT1 receptors, which are known to be coupled to G(i)-protein. However, the pharmacological profile of melatonin analogs regarding the reduction in cyclic AMP accumulation and number of nicotinic acetylcholine receptors did not point to a mechanism mediated by activation of G(i)-protein coupled receptors. On the other hand, calmidazolium, a classical inhibitor of calmodulin, reduced in a similar manner both effects. Considering that one isoform of adenylyl cyclase present in rat myotubes is regulated by Ca2+/calmodulin, we propose that melatonin modulates the number of nicotinic acetylcholine receptors via reduction in cyclic AMP accumulation.

  4. Specific stimulated uptake of acetylcholine by Torpedo electric organ synaptic vesicles.

    PubMed Central

    Parsons, S M; Koenigsberger, R

    1980-01-01

    The specificity of acetylcholine uptake by synaptic vesicles isolated from the electric organ of Torpedo californica was studied. In the absence of cofactors, [3H]acetylcholine was taken up identically to[14C]choline in the same solution (passive uptake), and the equilibrium concentration achieved inside the vesicles was equal to the concentration outside. In the presence of MgATP, [3H]acetylcholine and [14C]choline in the same solution were taken up identically, except only about half as much of each was taken up (suppressed uptake). [3H]Acetylcholine uptake was stimulated by MgATP and HCO3- about 4-fold relative to suppressed uptake, for a net concentrative uptake of about 2:1 (stimulated uptake). Uptake of [14C]choline in the same solution remained at the suppressed level. [3H]Acetylcholine taken up under stimulated conditions migrated with vesicles containing [14C]mannitol on analytical glycerol density gradients during centrifugation. Vesicle were treated with nine protein modification reagents under mild conditions. Two reagents had no effect on, dithiothreitol potentiated, and six reagents strongly inhibited subsequent stimulated uptake of [3H]acetylcholine. The results indicate that uptake of acetylcholine is conditionally specific for the transported substrate, is carried out by the synaptic vesicles rather than a contaminant of the preparation, and requires a functional protein system containing a critical sulfhydryl group. PMID:6934549

  5. Intracoronary Acetylcholine Provocation Testing for Assessment of Coronary Vasomotor Disorders.

    PubMed

    Ong, Peter; Athanasiadis, Anastasios; Sechtem, Udo

    2016-08-18

    Intracoronary acetylcholine provocation testing (ACH-test) is an established method for assessment of epicardial coronary artery spasm in the catheterization laboratory which was introduced more than 30 years ago. Due to the short half-life of acetylcholine it can only be applied directly into the coronary arteries. Several studies have demonstrated the safety and clinical usefulness of this test. However, acetylcholine testing is only rarely applied in the U.S. or Europe. Nevertheless, it has been shown that 62% of Caucasian patients with stable angina and unobstructed coronary arteries on coronary angiography suffer from coronary vasomotor disorders that can be diagnosed with acetylcholine testing. In recent years it has been appreciated that the ACH-test not only assesses the presence of epicardial spasm but that it can also be useful for the detection of coronary microvascular spam. In such cases no epicardial spasm is seen after injection of acetylcholine but ischemic ECG shifts are present together with a reproduction of the patient's symptoms during the test. This article describes the experience with the ACH-test and its implementation in daily clinical routine.

  6. Progesterone Modulates a Neuronal Nicotinic Acetylcholine Receptor

    NASA Astrophysics Data System (ADS)

    Valera, S.; Ballivet, M.; Bertrand, D.

    1992-10-01

    The major brain nicotinic acetylcholine receptor is assembled from two subunits termed α 4 and nα 1. When expressed in Xenopus oocytes, these subunits reconstitute a functional acetylcholine receptor that is inhibited by progesterone levels similar to those found in serum. In this report, we show that the steroid interacts with a site located on the extracellular part of the protein, thus confirming that inhibition by progesterone is not due to a nonspecific perturbation of the membrane bilayer or to the activation of second messengers. Because inhibition by progesterone does not require the presence of agonist, is voltage-independent, and does not alter receptor desensitization, we conclude that the steroid is not an open channel blocker. In addition, we show that progesterone is not a competitive inhibitor but may interact with the acetylcholine binding site and that its effect is independent of the ionic permeability of the receptor.

  7. Overview of the pharmacological spasm provocation test: Comparisons between acetylcholine and ergonovine.

    PubMed

    Sueda, Shozo; Kohno, Hiroaki; Ochi, Takaaki; Uraoka, Tadao; Tsunemitsu, Kensuke

    2017-01-01

    The spasm provocation tests of ergonovine and acetylcholine have been employed in the cardiac catheterization laboratory. Ergonovine acts through the serotogenic receptors, while acetylcholine acts through the muscarinic cholinergic receptors. Different mediators may have the potential to cause different coronary responses. However, there are few reports concerning the coronary response between ergonovine and acetylcholine in the same patients. Acetylcholine is supersensitive for females; spasm provoked by ergonovine is focal and proximal, whereas provoked spasm by acetylcholine is diffuse and distal. We should use both tests as supplementary in the clinic because ergonovine and acetylcholine have self-limitations to induce coronary spasms during daily life. The maximal pharmacological doses, administration methods, and the angiographical positive definition are remarkably different for each institution in the world. We recommend the pharmacological spasm provocation tests as Class I in the guidelines in patients with vasospastic angina throughout the world. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  8. EFFECT OF AT1 RECEPTOR BLOCKADE ON INTERMITTENT HYPOXIA-INDUCED ENDOTHELIAL DYSFUNCTION

    PubMed Central

    Marcus, Noah J.; Philippi, Nathan R.; Bird, Cynthia E.; Li, Yu-Long; Schultz, Harold D.; Morgan, Barbara J.

    2012-01-01

    Chronic intermittent hypoxia (CIH) raises arterial pressure, impairs vasodilator responsiveness, and increases circulating angiotensin II (Ang II); however, the role of Ang II in CIH-induced vascular dysfunction is unknown. Rats were exposed to CIH or room air (NORM), and a subset of these animals was treated with losartan (Los) during the exposure period. After 28 days, vasodilatory responses to acetylcholine or nitroprusside were measured in isolated gracilis arteries. Superoxide levels and Ang II receptor protein expression were measured in saphenous arteries. After 28 days, arterial pressure was increased and acetylcholine-induced vasodilation was blunted in CIH vs. NORM, and this was prevented by Los. Responses to nitroprusside and superoxide levels did not differ between CIH and NORM. Expression of AT2R was decreased and the AT1R:AT2R ratio was increased in CIH vs. NORM, but this was unaffected by Los. These results indicate that the blood pressure elevation and endothelial dysfunction associated with CIH is dependent, at least in part, on RAS signaling. PMID:22728949

  9. Acetylcholine beyond bronchoconstriction: roles in inflammation and remodeling.

    PubMed

    Kistemaker, Loes E M; Gosens, Reinoud

    2015-03-01

    Acetylcholine is the primary parasympathetic neurotransmitter in the airways, where it not only induces bronchoconstriction and mucus secretion, but also regulates airway inflammation and remodeling. In this review, we propose that these effects are all primarily mediated via the muscarinic M3 receptor. Acetylcholine promotes inflammation and remodeling via direct effects on airway cells, and via mechanical stress applied to the airways sequential to bronchoconstriction. The effects on inflammation and remodeling are regulated by both neuronal and non-neuronal acetylcholine. Taken together, we believe that the combined effects of anticholinergic therapy on M3-mediated bronchoconstriction, mucus secretion, inflammation, and remodeling may account for the positive outcome of treatment with these drugs for patients with chronic pulmonary obstructive disease (COPD) or asthma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Stimulation of the Nonneuronal Cholinergic System by Highly Diluted Acetylcholine in Keratinocytes.

    PubMed

    Uberti, Francesca; Bardelli, Claudio; Morsanuto, Vera; Ghirlanda, Sabrina; Cochis, Andrea; Molinari, Claudio

    2017-01-01

    The physiological effects of acetylcholine on keratinocytes depend on the presence of nicotinic and muscarinic receptors. The role of nonneuronal acetylcholine in keratinocytes could have important clinical implications for patients with various skin disorders such as nonhealing wounds. In order to evaluate the efficacy of highly diluted acetylcholine solutions obtained by sequential kinetic activation, we aimed to investigate the effects of these solutions on normal human keratinocytes. Two different concentrations (10 fg/mL and 1 pg/mL) and formulations (kinetically activated and nonkinetically activated) of acetylcholine were used to verify keratinocyte viability, proliferation, and migration and the intracellular pathways involved using MTT, crystal violet, wound healing, and Western blot compared to 147 ng/mL acetylcholine. The activated formulations (1 pg/mL and 10 fg/mL) revealed a significant capacity to increase migration, cell viability, and cell proliferation compared to 147 ng/mL acetylcholine, and these effects were more evident after a single administration. Sequential kinetic activation resulted in a statistically significant decrease in reactive oxygen species production accompanied by an increase in mitochondrial membrane potential and a decrease in oxygen consumption compared to 147 ng/mL acetylcholine. The M1 muscarinic receptor was involved in these effects. Finally, the involvement of ERK/mitogen-activated protein kinases (MAPK) and KI67 confirmed the effectiveness of the single treatment on cell proliferation. The intracellular pathways of calcium were investigated as well. Our results indicate for the first time that highly diluted and kinetically activated acetylcholine seems to play an active role in an in vitro model of wound healing. Moreover, the administration of acetylcholine within the physiological range may not only be effective but is also likely to be safe. © 2016 S. Karger AG, Basel.

  11. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    PubMed

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice

    PubMed Central

    Siegel, Jessica A.; Park, Byung S.; Raber, Jacob

    2013-01-01

    Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males. PMID:21824143

  13. Effect of diabetes on the cutaneous microcirculation of the feet in patients with intermittent claudication.

    PubMed

    Klonizakis, M; Manning, G; Lingam, K; Donnelly, R; Yeung, J M C

    2015-01-01

    To evaluate endothelial-dependent and - independent cutaneous vasodilator responses in the feet of patients with peripheral arterial disease (PAD) with or without Type 2 diabetes. Cutaneous microvascular responses in the dorsum of both lower limbs were measured in the supine position using Laser Doppler Fluximetry combined with iontophoretic administration of endothelial-dependent (acetylcholine, Ach) and -independent (sodium nitroprusside, SNP) vasodilators in diabetic (n = 19) and non diabetic (n = 17) patients with PAD (presenting as unilateral calf intermittent claudication (IC). In patients with diabetes and IC, endothelial-dependent vasodilation was significantly impaired in the symptomatic limb [74 (57,105) vs 68 (24,81) PU, Z =-2.79, p = 0.005] compared to the asymptomatic limb. Patients without diabetes showed no impairment of vasodilation. Resting ankle-brachial pressure index did not identify the presence of abnormalities in microvascular function. The combination of diabetes and PAD is associated with a reduction in endothelial-dependent cutaneous vasodilation in the feet without an associated reduction in endothelial independent vasodilation.

  14. Agelenopsis aperta venom and FTX, a purified toxin, inhibit acetylcholine release in Torpedo synaptosomes.

    PubMed

    Moulian, N; Gaudry-Talarmain, Y M

    1993-06-01

    The presence of P-type calcium channels in synaptosomes prepared from electric organ of Torpedo marmorata was investigated by using the venom of Agelenopsis aperta, a toxin purified from it, FTX, and its synthetic analog. We analysed the action of these agents on acetylcholine release which was continuously followed using a chemiluminescent assay. Agelenopsis aperta venom, FTX and synthetic FTX inhibit acetylcholine release from synaptosomes induced by a presynaptic membrane depolarization with 60 mM KCl. A stronger inhibition of acetylcholine release was observed with the venom than with FTX (70 and 50%, respectively). Another way of triggering acetylcholine release from Torpedo synaptosomes is to insert in the presynaptic membrane a calcium ionophore A23187 which allows the bypass of the natural calcium channels. The venom of Agelenopsis aperta inhibits A23187-evoked acetylcholine release. Purified and synthetic FTX does not possess this property, suggesting that this inhibition of acetylcholine release was due to other toxins of the venom. Another type of pharmacological sensitivity of Torpedo calcium channels was also demonstrated using omega-conotoxin GVIA. At a concentration of 20 microM, this toxin was able to inhibit about 35% of KCl-evoked acetylcholine release. When FTX + omega-conotoxin GVIA were applied together, the inhibitory effect on KCl-evoked acetylcholine release was not significantly increased in comparison with the one observed with FTX alone. In conclusion, we examined the effect of different agents on acetylcholine release from Torpedo marmorata electric organ synaptosomes; acetylcholine release was elicited with KCl depolarization and followed continuously with a chemiluminescent assay.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Electrophysiological and mechanical effects of substance P and acetylcholine on rabbit aorta.

    PubMed Central

    Bény, J L; Brunet, P C

    1988-01-01

    1. The mechanical and electrical properties of smooth muscle cells of the rabbit aorta were recorded simultaneously using respectively a force transducer and a 3 M-KCl-filled glass microelectrode. 2. Acetylcholine had two effects depending on concentration. At low concentration, it caused a persistent endothelium-dependent relaxation and hyperpolarization. At higher concentrations the acetylcholine endothelium-dependent relaxation summed with an endothelium-independent contraction. 3. Substance P caused a transient endothelium-dependent relaxation and hyperpolarization. 4. Acetylcholine and substance P depolarized and contracted de-endothelialized smooth muscle. When the de-endothelialized strip was pre-contracted by noradrenaline, acetylcholine depolarized the muscle but substance P did not. 5. In a 'cascade' experiment, the perfusate from an upstream intact aorta passed over a downstream de-endothelialized strip. Acetylcholine and substance P relaxed the downstream strip showing that they released an endothelial humoral factor which relaxes smooth muscle. 6. The results suggest a constant release of a factor from the endothelial cells which hyperpolarizes the smooth muscle cells in the media. Activation of acetylcholine and substance P receptors on the endothelium accelerates the release of this factor and causes vasodilatation. PMID:2455799

  16. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhard, Catherine; Staehli, Barbara E.; Zurich Center for Integrative Human Physiology

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings weremore » suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.« less

  17. Synthesis of poly(ester-carbonate) with a pendant acetylcholine analog for promoting neurite growth.

    PubMed

    Xing, Dongming; Ma, Lie; Gao, Changyou

    2014-10-01

    The modification of biodegradable polyesters with bioactive molecules has become an important strategy for controlling neuron adhesion and neurite outgrowth in nerve regeneration. In this study we report a biodegradable poly(ester-carbonate) with a pendant acetylcholine analog, which a neurotransmitter for the enhancement of neuron adhesion and outgrowth. The acetylcholine-functionalized poly(ester-carbonate) (Ach-P(LA-ClTMC)) was prepared by copolymerizing l-lactide (LA) and 5-methyl-5-chloroethoxycarbonyl trimethylene carbonate (ClTMC), followed by quaternization with trimethylamine. The acetylcholine analog content could be modulated by changing the molar feeding fraction of ClTMC. The incorporation of the acetylcholine analog improved the hydrophilicity of the films, but the acetylcholine analog content did not significantly influence the surface morphology of the acetylcholine-functionalized films. The results of PC12 cell culture showed that the acetylcholine analog promoted cell viability and neurite outgrowth in a concentration-dependent manner. The longest length of neurite and the percentage of cells bearing neurites were obtained on the Ach-P(LA-ClTMC)-10 film. All the results indicate that the integration of the acetylcholine analog at an appropriate fraction could be an effective strategy for optimizing the existing biodegradable polyesters for nerve regeneration applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Galanin antagonizes acetylcholine on a memory task in basal forebrain-lesioned rats.

    PubMed

    Mastropaolo, J; Nadi, N S; Ostrowski, N L; Crawley, J N

    1988-12-01

    Galanin coexists with acetylcholine in medial septal neurons projecting to the ventral hippocampus, a projection thought to modulate memory functions. Neurochemical lesions of the nucleus basalis-medial septal area in rats impaired choice accuracy on a delayed alternation t-maze task. Acetylcholine (7.5 or 10 micrograms intraventricularly or 1 micrograms micro-injected into the ventral hippocampus) significantly improved performance in the lesioned rats. Atropine (5 mg/kg intraperitoneally or 10 micrograms intraventricularly), but not mecamylamine (3 mg/kg intraperitoneally or 20 micrograms intraventricularly), blocked this action of acetylcholine, suggesting involvement of a muscarinic receptor. Galanin (100-500 ng intraventricularly or 200 ng into the ventral hippocampus) attenuated the ability of acetylcholine to reverse the deficit in working memory in the lesioned rats. The antagonistic interaction between galanin and acetylcholine suggests that endogenous galanin may inhibit cholinergic function in memory processes, particularly in pathologies such as Alzheimer disease that involve degeneration of basal forebrain neurons.

  19. Oxotremorine suppresses thalamocortical oscillations via thalamic muscarinic acetylcholine receptors.

    PubMed

    Puoliväli, J; Jäkälä, P; Koivisto, E; Riekkinen, P

    1998-12-01

    We investigated whether the local intrathalamic infusion of a muscarinic acetylcholine receptor agonist (oxotremorine) at either the reticular nucleus of thalamus (NRT) or the ventroposteromedial nucleus of thalamus (VPM) suppresses thalamocortically generated neocortical high-voltage spindles (HVSs). In addition, we studied whether the intracerebroventricular (ICV) infusion of a selective muscarinic M2 acetylcholine receptor antagonist (methoctramine) could block the suppression of HVSs induced by either systemic (IP) administration of an anticholinesterase drug [tetrahydroaminoacridine (THA)] or ICV infusion of oxotremorine in rats. Intrathalamic administration of oxotremorine at 3 and 15 microg in the NRT, and at 15 microg in the VPM suppressed HVSs. ICV oxotremorine at 30 and 100 microg and IP THA at 3 mg/kg decreased HVSs. ICV methoctramine at 100 microg increased HVSs and completely blocked the decrease in HVSs produced by oxotremorine 100 microg and THA 3 mg/kg. The results suggest that activation of muscarinic M2 acetylcholine receptors in thalamic nuclei (NRT and VPM) can suppress thalamocortical oscillations and that ICV or systemically administered drugs that activate either directly (oxotremorine and methoctramine) or indirectly (THA) the muscarinic M2 acetylcholine receptors may modulate neocortical HVSs via the thalamus.

  20. Capsaicin modulates acetylcholine release at the myoneural junction.

    PubMed

    Thyagarajan, Baskaran; Potian, Joseph G; Baskaran, Padmamalini; McArdle, Joseph J

    2014-12-05

    Transient receptor potential (TRP) proteins are non-selective cation channel proteins that are expressed throughout the body. Previous studies demonstrated the expression of TRP Vanilloid 1 (TRPV1), capsaicin (CAP) receptor, in sensory neurons. Recently, we reported TRPV1 expression in mouse motor nerve terminals [MNTs; (Thyagarajan et al., 2009)], where we observed that CAP protected MNTs from botulinum neurotoxin A (BoNT/A). Phrenic nerve diaphragm nerve muscle preparations (NMP) isolated from isoflurane anesthetized adult mice were analyzed for twitch tension, spontaneous (mEPCs) and nerve stimulus evoked (EPCs) acetylcholine release. When acutely applied to isolated NMP, CAP produced a concentration-dependent decline of twitch tension and produced a significant decline in the amplitude of EPCs and quantal content without any effect on the mEPCs. The suppression of nerve stimulus evoked acetylcholine release by CAP was antagonized by capsazepine (CPZ), a TRPV1 antagonist. CAP did not suppress phrenic nerve stimulus evoked acetylcholine release in TRPV1 knockout mice. Also, CAP treatment, in vitro, interfered with the localization of adapter protein 2 in cholinergic Neuro 2a cells. Wortmannin, (WMN; non-selective phosphoinositol kinase inhibitor), mimicked the effects of CAP by inhibiting the acetylcholine exocytosis. Our data suggest that TRPV1 proteins expressed at the MNT are coupled to the exo-endocytic mechanisms to regulate neuromuscular functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effect of nitrofurans and NO generators on biofilm formation by Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370.

    PubMed

    Zaitseva, Julia; Granik, Vladimir; Belik, Alexandr; Koksharova, Olga; Khmel, Inessa

    2009-06-01

    Antibacterial drugs in the nitrofuran series, such as nitrofurazone, furazidin, nitrofurantoin and nifuroxazide, as well as the nitric oxide generators sodium nitroprusside and isosorbide mononitrate in concentrations that do not suppress bacterial growth, were shown to increase the capacity of pathogenic bacteria Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370 to form biofilms. At 25-100microg/ml, nitrofurans 2-2.5-fold enhanced biofilm formation of P. aeruginosa PAO1, and NO donors 3-6-fold. For B. cenocepacia 370, the enhancement was 2-5-fold (nitrofurans) and 4.5-fold (sodium nitroprusside), respectively.

  2. Nanosensors for the Chemical Imaging of Acetylcholine Using Magnetic Resonance Imaging.

    PubMed

    Luo, Yi; Kim, Eric H; Flask, Chris A; Clark, Heather A

    2018-06-06

    A suite of imaging tools for detecting specific chemicals in the central nervous system could accelerate the understanding of neural signaling events critical to brain function and disease. Here, we introduce a class of nanoparticle sensors for the highly specific detection of acetylcholine in the living brain using magnetic resonance imaging. The nanosensor is composed of acetylcholine-catalyzing enzymes and pH-sensitive gadolinium contrast agents co-localized onto the surface of polymer nanoparticles, which leads to changes in T 1 relaxation rate (1/ T 1 ). The mechanism of the sensor involves the enzymatic hydrolysis of acetylcholine leading to a localized decrease in pH which is detected by the pH-sensitive gadolinium chelate. The concomitant change in 1/ T 1 in vitro measured a 20% increase from 0 to 10 μM acetylcholine concentration. The applicability of the nanosensors in vivo was demonstrated in the rat medial prefrontal cortex showing distinct changes in 1/ T 1 induced by pharmacological stimuli. The highly specific acetylcholine nanosensor we present here offers a promising strategy for detection of cholinergic neurotransmission and will facilitate our understanding of brain function through chemical imaging.

  3. Dimethylaminoethanol (deanol) metabolism in rat brain and its effect on acetylcholine synthesis.

    PubMed

    Jope, R S; Jenden, D J

    1979-12-01

    Specific methods utilizing combined gas chromatography mass spectrometry were used to measure the metabolism of [2H6] deanol and its effects on acetylcholine concentration in vitro and in vivo. In vitro [2H6]deanol was rapidly taken up by rat brain synaptosomes, but was neither methylated nor acetylated. [2H6]Deanol was a weak competitive inhibitor of the high affinity transport of [2H4]choline, thus reducing the synthesis of [2H4]acetylcholine. In vivo [2H6]deanol was present in the brain after i.p. or p.o. administration, but was not methylated or acetylated. Treatment of rats with [2H6]deanol significantly increased the concentration of choline in the plasma and brain but did not alter the concentration of acetylcholine in the brain. Treatment of rats with atropine (to stimulate acetylcholine turnover) or with hemicholinium-3 (to inhibit the high affinity transport of choline) did not reveal any effect of [2H6]deanol on acetylcholine synthesis in vivo. However, since [2H6]deanol did increase brain choline, it may prove therapeutically useful when the production of choline is reduced or when the utilization of choline for the synthesis of acetylcholine is impaired.

  4. Back to the future: Rational maps for exploring acetylcholine receptor space and time.

    PubMed

    Tessier, Christian J G; Emlaw, Johnathon R; Cao, Zhuo Qian; Pérez-Areales, F Javier; Salameh, Jean-Paul J; Prinston, Jethro E; McNulty, Melissa S; daCosta, Corrie J B

    2017-11-01

    Global functions of nicotinic acetylcholine receptors, such as subunit cooperativity and compatibility, likely emerge from a network of amino acid residues distributed across the entire pentameric complex. Identification of such networks has stymied traditional approaches to acetylcholine receptor structure and function, likely due to the cryptic interdependency of their underlying amino acid residues. An emerging evolutionary biochemistry approach, which traces the evolutionary history of acetylcholine receptor subunits, allows for rational mapping of acetylcholine receptor sequence space, and offers new hope for uncovering the amino acid origins of these enigmatic properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Phosphodiesterase-3 inhibitor cilostazol reverses endothelial dysfunction with ageing in rat mesenteric resistance arteries.

    PubMed

    Moreira, Hicla S; Lima-Leal, Geórgia A; Santos-Rocha, Juliana; Gomes-Pereira, Leonardo; Duarte, Gloria P; Xavier, Fabiano E

    2018-03-05

    Ageing impairs endothelial function, which is considered a hallmark of the development of cardiovascular diseases in elderly. Cilostazol, a phosphodiesterase-3 inhibitor, has antiplatelet, antithrombotic and protective effects on endothelial cells. Here, we hypothesized that cilostazol could improve endothelial function in mesenteric resistance arteries (MRA) from old rats. Using eight-week cilostazol-treated (100mg/kg/day) or untreated 72-week-old Wistar rats, we evaluate the relaxation to acetylcholine, sodium nitroprusside (SNP), forskolin and isoproterenol and the noradrenaline-induced contraction in MRA. Superoxide anion and nitric oxide (NO) was measured by dihydroethidium- and diaminofluorescein-2-emitted fluorescence, respectively. Normotensive old rats had impaired acetylcholine-induced NO- and EDHF-mediated relaxation and increased noradrenaline vasoconstriction than young rats. This age-associated endothelial dysfunction was restored by cilostazol treatment. Relaxation to SNP, forskolin or isoproterenol remained unmodified by cilostazol. Diaminofluorescein-2-emitted fluorescence was increased while dihydroethidium-emitted was decreased by cilostazol, indicating increased NO and reduced superoxide generation, respectively. Cilostazol improves endothelial function in old MRA without affecting blood pressure. This protective effect of cilostazol could be attributed to reduced oxidative stress, increased NO bioavailability and EDHF-type relaxation. Although these results are preliminary, we believe that should stimulate further interest in cilostazol as an alternative for the treatment of age-related vascular disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Subunit profiling and functional characteristics of acetylcholine receptors in GT1-7 cells.

    PubMed

    Arai, Yuki; Ishii, Hirotaka; Kobayashi, Makito; Ozawa, Hitoshi

    2017-03-01

    GnRH neurons form a final common pathway for the central regulation of reproduction. Although the involvement of acetylcholine in GnRH secretion has been reported, direct effects of acetylcholine and expression profiles of acetylcholine receptors (AChRs) still remain to be studied. Using immortalized GnRH neurons (GT1-7 cells), we analyzed molecular expression and functionality of AChRs. Expression of the mRNAs were identified in the order α7 > β2 = β1 ≧ α4 ≧ α5 = β4 = δ > α3 for nicotinic acetylcholine receptor (nAChR) subunits and m4 > m2 for muscarinic acetylcholine receptor (mAChR) subtypes. Furthermore, this study revealed that α7 nAChRs contributed to Ca 2+ influx and GnRH release and that m2 and m4 mAChRs inhibited forskolin-induced cAMP production and isobutylmethylxanthine-induced GnRH secretion. These findings demonstrate the molecular profiles of AChRs, which directly contribute to GnRH secretion in GT1-7 cells, and provide one possible regulatory action of acetylcholine in GnRH neurons.

  7. Why we forget our dreams: Acetylcholine and norepinephrine in wakefulness and REM sleep.

    PubMed

    Becchetti, Andrea; Amadeo, Alida

    2016-01-01

    The ascending fibers releasing norepinephrine and acetylcholine are highly active during wakefulness. In contrast, during rapid-eye-movement sleep, the neocortical tone is sustained mainly by acetylcholine. By comparing the different physiological features of the norepinephrine and acetylcholine systems in the light of the GANE (glutamate amplifies noradrenergic effects) model, we suggest how to interpret some functional differences between waking and rapid-eye-movement sleep.

  8. Differential effects of subtype-specific nicotinic acetylcholine receptor agonists on early and late hippocampal LTP.

    PubMed

    Kroker, Katja S; Rast, Georg; Rosenbrock, Holger

    2011-12-05

    Brain nicotinic acetylcholine receptors are involved in several neuropsychiatric disorders, e.g. Alzheimer's and Parkinson's diseases, Tourette's syndrome, schizophrenia, depression, autism, attention deficit hyperactivity disorder, and anxiety. Currently, approaches selectively targeting the activation of specific nicotinic acetylcholine receptors are in clinical development for treatment of memory impairment of Alzheimer's disease patients. These are α4β2 and α7 nicotinic acetylcholine receptor agonists which are believed to enhance cholinergic and glutamatergic neurotransmission, respectively. In order to gain a better insight into the mechanistic role of these two nicotinic acetylcholine receptors in learning and memory, we investigated the effects of the α4β2 nicotinic acetylcholine receptor agonist TC-1827 and the α7 nicotinic acetylcholine receptor partial agonist SSR180711 on hippocampal long-term potentiation (LTP), a widely accepted cellular experimental model of memory formation. Generally, LTP is distinguished in an early and a late form, the former being protein-synthesis independent and the latter being protein-synthesis dependent. TC-1827 was found to increase early LTP in a bell-shaped dose dependent manner, but did not affect late LTP. In contrast, the α7 nicotinic acetylcholine receptor partial agonist SSR180711 showed enhancing effects on both early and late LTP in a bell-shaped manner. Furthermore, SSR180711 not only increased early LTP, but also transformed it into late LTP, which was not observed with the α4β2 nicotinic acetylcholine receptor agonist. Therefore, based on these findings α7 nicotinic acetylcholine receptor (partial) agonists appear to exhibit stronger efficacy on memory improvement than α4β2 nicotinic acetylcholine receptor agonists. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Loss of Acetylcholine Signaling Reduces Cell Clearance Deficiencies in Caenorhabditis elegans.

    PubMed

    Pinto, Sérgio M; Almendinger, Johann; Cabello, Juan; Hengartner, Michael O

    2016-01-01

    The ability to eliminate undesired cells by apoptosis is a key mechanism to maintain organismal health and homeostasis. Failure to clear apoptotic cells efficiently can cause autoimmune diseases in mammals. Genetic studies in Caenorhabditis elegans have greatly helped to decipher the regulation of apoptotic cell clearance. In this study, we show that the loss of levamisole-sensitive acetylcholine receptor, but not of a typical neuronal acetylcholine receptor causes a reduction in the number of persistent cell corpses in worms suffering from an engulfment deficiency. This reduction is not caused by impaired or delayed cell death but rather by a partial restoration of the cell clearance capacity. Mutants in acetylcholine turn-over elicit a similar phenotype, implying that acetylcholine signaling is the process responsible for these observations. Surprisingly, tissue specific RNAi suggests that UNC-38, a major component of the levamisole-sensitive receptor, functions in the dying germ cell to influence engulfment efficiency. Animals with loss of acetylcholine receptor exhibit a higher fraction of cell corpses positive for the "eat-me" signal phosphatidylserine. Our results suggest that modulation by ion channels of ion flow across plasma membrane in dying cells can influence the dynamics of phosphatidylserine exposure and thus clearance efficiency.

  10. Acetylcholine protects mesenteric arteries against hypoxia/reoxygenation injury via inhibiting calcium-sensing receptor.

    PubMed

    Zhao, Ming; He, Xi; Yang, Yong-Hua; Yu, Xiao-Jiang; Bi, Xue-Yuan; Yang, Yang; Xu, Man; Lu, Xing-Zhu; Sun, Qiang; Zang, Wei-Jin

    2015-04-01

    The Ca(2+)-sensing receptor (CaSR) plays an important role in regulating vascular tone. In the present study, we investigated the positive effects of the vagal neurotransmitter acetylcholine by suppressing CaSR activation in mesenteric arteries exposed to hypoxia/reoxygenation (H/R). The artery rings were exposed to a modified 'ischemia mimetic' solution and an anaerobic environment to simulate an H/R model. Our results showed that acetylcholine (10(-6) mol/L) significantly reduced the contractions induced by KCl and phenylephrine and enhanced the endothelium-dependent relaxation induced by acetylcholine. Additionally, acetylcholine reduced CaSR mRNA expression and activity when the rings were subjected to 4 h of hypoxia and 12 h of reoxygenation. Notably, the CaSR antagonist NPS2143 significantly reduced the contractions but did not improve the endothelium-dependent relaxation. When a contractile response was achieved with extracellular Ca(2+), both acetylcholine and NPS2143 reversed the H/R-induced abnormal vascular vasoconstriction, and acetylcholine reversed the calcimimetic R568-induced abnormal vascular vasoconstriction in the artery rings. In conclusion, this study suggests that acetylcholine ameliorates the dysfunctional vasoconstriction of the arteries after H/R, most likely by decreasing CaSR expression and activity, thereby inhibiting the increase in intracellular calcium concentration. Our findings may be indicative of a novel mechanism underlying ACh-induced vascular protection. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  11. The challenges of modulating the 'rest and digest' system: acetylcholine receptors as drug targets.

    PubMed

    VanPatten, Sonya; Al-Abed, Yousef

    2017-01-01

    Acetylcholine, a major neurotransmitter of the parasympathetic and sympathetic nervous systems, was discovered in the early 1900s. Over the years, researchers have revealed much about its regulation, properties of its receptors and features of the downstream signaling that influence its terminal effects. The acetylcholine system, traditionally associated with neuromuscular communication, is now known to play a crucial part in modulation of the immune system and other 'rest and digest' effects. Recent research seeks to elucidate the system's role in brain functions including cognition, sleep, arousal, motivation, reward and pain. We highlight clinically approved and experimental drugs that modulate the acetylcholine receptors. The complexities in targeting the acetylcholine receptors are vast and finding future indications for drug development associated with specific acetylcholine receptors remains a challenge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Acetylcholine Mediates a Slow Synaptic Potential in Hippocampal Pyramidal Cells

    NASA Astrophysics Data System (ADS)

    Cole, A. E.; Nicoll, R. A.

    1983-09-01

    The hippocampal slice preparation was used to study the role of acetylcholine as a synaptic transmitter. Bath-applied acetylcholine had three actions on pyramidal cells: (i) depolarization associated with increased input resistance, (ii) blockade of calcium-activated potassium responses, and (iii) blockade of accommodation of cell discharge. All these actions were reversed by the muscarinic antagonist atropine. Stimulation of sites in the slice known to contain cholinergic fibers mimicked all the actions. Furthermore, these evoked synaptic responses were enhanced by the cholinesterase inhibitor eserine and were blocked by atropine. These findings provide electrophysiological support for the role of acetylcholine as a synaptic transmitter in the brain and demonstrate that nonclassical synaptic responses involving the blockade of membrane conductances exist in the brain.

  13. Nitric oxide alleviates wheat yield reduction by protecting photosynthetic system from oxidation of ozone pollution.

    PubMed

    Li, Caihong; Song, Yanjie; Guo, Liyue; Gu, Xian; Muminov, Mahmud A; Wang, Tianzuo

    2018-05-01

    Accelerated industrialization has been increasing releases of chemical precursors of ozone. Ozone concentration has risen nowadays, and it's predicted that this trend will continue in the next few decades. The yield of many ozone-sensitive crops suffers seriously from ozone pollution, and there are abundant reports exploring the damage mechanisms of ozone to these crops, such as winter wheat. However, little is known on how to alleviate these negative impacts to increase grain production under elevated ozone. Nitric oxide, as a bioactive gaseous, mediates a variety of physiological processes and plays a central role in response to biotic and abiotic stresses. In the present study, the accumulation of endogenous nitric oxide in wheat leaves was found to increase in response to ozone. To study the functions of nitric oxide, its precursor sodium nitroprusside was spayed to wheat leaves under ozone pollution. Wheat leaves spayed with sodium nitroprusside accumulated less hydrogen peroxide, malondialdehyde and electrolyte leakage under ozone pollution, which can be accounted for by the higher activities of superoxide dismutase and peroxidase than in leaves treated without sodium nitroprusside. Consequently, net photosynthetic rate of wheat treated using sodium nitroprusside was much higher, and yield reduction was alleviated under ozone fumigation. These findings are important for our understanding of the potential roles of nitric oxide in responses of crops in general and wheat in particular to ozone pollution, and provide a viable method to mitigate the detrimental effects on crop production induced by ozone pollution, which is valuable for keeping food security worldwide. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Functional Expression of Two Neuronal Nicotinic Acetylcholine Receptors from cDNA Clones Identifies a Gene Family

    NASA Astrophysics Data System (ADS)

    Boulter, Jim; Connolly, John; Deneris, Evan; Goldman, Dan; Heinemann, Steven; Patrick, Jim

    1987-11-01

    A family of genes coding for proteins homologous to the α subunit of the muscle nicotinic acetylcholine receptor has been identified in the rat genome. These genes are transcribed in the central and peripheral nervous systems in areas known to contain functional nicotinic receptors. In this paper, we demonstrate that three of these genes, which we call alpha3, alpha4, and beta2, encode proteins that form functional nicotinic acetylcholine receptors when expressed in Xenopus oocytes. Oocytes expressing either alpha3 or alpha4 protein in combination with the beta2 protein produced a strong response to acetylcholine. Oocytes expressing only the alpha4 protein gave a weak response to acetylcholine. These receptors are activated by acetylcholine and nicotine and are blocked by Bungarus toxin 3.1. They are not blocked by α -bungarotoxin, which blocks the muscle nicotinic acetylcholine receptor. Thus, the receptors formed by the alpha3, alpha4, and beta2 subunits are pharmacologically similar to the ganglionic-type neuronal nicotinic acetylcholine receptor. These results indicate that the alpha3, alpha4, and beta2 genes encode functional nicotinic acetylcholine receptor subunits that are expressed in the brain and peripheral nervous system.

  15. Comparison of (/sup 3/H)nicotine and (/sup 3/H)acetylcholine binding in mouse brain: regional distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sershen, H.; Reith, M.E.; Hashim, A.

    1985-06-01

    In a continuing study of nicotine binding sites, the authors determined the relative amount of nicotine binding and acetylcholine binding in various brain regions of C57/BL and of DBA mice. Although midbrain showed the highest and cerebellum the lowest binding for both (/sup 3/H)nicotine and (/sup 3/H)acetylcholine, the ratio of nicotine to acetylcholine binding showed a three-fold regional variation. Acetylcholine inhibition of (/sup 3/H)nicotine binding indicated that a portion of nicotine binding was not inhibited by acetylcholine. These results indicate important differences between the binding of (+/-)-(/sup 3/H)nicotine and that of (/sup 3/H)acetylcholine.

  16. Electrolyte and protein secretion by the perfused rabbit mandibular gland stimulated with acetylcholine or catecholamines

    PubMed Central

    Case, R. M.; Conigrave, A. D.; Novak, I.; Young, J. A.

    1980-01-01

    1. A method is described for the isolation and vascular perfusion in vitro of the mandibular gland of the rabbit. The perfusate is a physiological salt solution containing glucose as the only metabolic substrate. 2. During perfusion with solutions containing acetylcholine, the gland secretes vigorously at a rate and in a manner similar to that seen in vivo. Although the gland becomes oedematous during perfusion, the extent of this oedema appears to have no influence on secretory ability: the perfused glands were capable of functioning for at least 4 h, and often for more than 6 h. 3. Acetylcholine evoked a small secretory response at a concentration of 8 × 10-9 mol l-1 and a maximum response at 8 × 10-7 mol l-1. Eserine (2 × 10-5 mol l-1) evoked secretory responses comparable to those evoked by acetylcholine in a concentration of 8 × 10-9 mol l-1. Secretion, whether unstimulated or evoked by acetylcholine or eserine, could be blocked completely by atropine. 4. During prolonged stimulation with acetylcholine, the fluid secretory response declined rapidly over a period of about 15 min from an initial high value to a much lower plateau value. After 3 or more hours of stimulation, the secretory response began once more to decline, this time towards zero. If, before the second period of decline begins, stimulation is interrupted for about 30 min, the gland recovers its initial responsiveness to further stimulation with acetylcholine. 5. The Na, K, Cl and HCO3 concentrations and the osmolality of acetylcholine evoked saliva exhibited flow-dependency similar to that seen in vivo. The concentrations of Na and Cl, but not K and HCO3, increased by about 25 mmol l-1 during periods of prolonged stimulation with acetylcholine even though the salivary secretory rate was constant. The concentrations of K and HCO3, but not Na and Cl, increased progressively as the concentration of infused acetylcholine was increased. 6. Salivary protein secretion increased with increasing

  17. Local cardiac effects of substance P: roles of acetylcholine and noradrenaline.

    PubMed Central

    Chiao, H; Caldwell, R W

    1995-01-01

    1. The local cardiac actions of substance P were examined in isolated perfused hearts and atria of the guinea-pig. 2. In both hearts and right atria, substance P caused negative inotropic and chronotropic effects. 3. Atropine (10(-6) M) or depletion of acetylcholine, by electrical stimulation and hemicholinium-3 perfusion, significantly attenuated the negative inotropic and chronotropic effects of substance P. alpha- and beta-adrenoceptor blockade by nadolol and phentolamine (10(-6) M each) did not prevent the negative inotropic and chronotropic effects of substance P. This indicates that cholinergic neurones, but not adrenergic neurones, partially mediate the effects of substance P. 4. There was no significant difference in the effects of substance P observed between groups with acetylcholine depletion and with cholinoceptor blockade. This suggests that substance P elicits its effects mainly through release of acetylcholine. 5. These results indicate that substance P has negative inotropic and chronotropic effects in guinea-pig hearts and right atria mediated partly by release of acetylcholine. Substance P also appears to have direct effects on cardiac tissue. PMID:7533612

  18. Radiochemical micro assays for the determination of choline acetyltransferase and acetylcholinesterase activities

    PubMed Central

    Fonnum, F.

    1969-01-01

    1. The methods for the assay of choline acetyltransferase were based on the reaction between labelled acetyl-CoA and unlabelled choline to give labelled acetylcholine. 2. Both synthetic acetyl-CoA and acetyl-CoA formed from sodium [1-14C]acetate or sodium [3H]acetate by incubation with CoA, ATP, Mg2+ and extract from acetone-dried pigeon liver were used. 3. [1-14C]Acetylcholine was isolated by extraction with ketonic sodium tetraphenylboron. 4. [3H]Acetylcholine was precipitated with sodium tetraphenylboron to remove a ketone-soluble contaminant in sodium [3H]acetate and then extracted with ketonic sodium tetraphenylboron. 5. The values of choline acetyltransferase activity obtained in the presence of sodium cyanide or EDTA and synthetic acetyl-CoA were similar to those obtained with acetyl-CoA synthesized in situ. 6. The assay of acetylcholinesterase was based on the formation of labelled acetate from labelled acetylcholine. The labelled acetylcholine could be quantitatively removed from the acetate by extraction with ketonic sodium tetraphenylboron. 7. The methods were tested with samples from central and peripheral nervous tissues and purified enzymes. 8. The blank values for choline acetyltransferase and acetylcholinesterase corresponded to the activities in 20ng. and 5ng. of brain tissue respectively. PMID:4982085

  19. An ab initio study of the conformational energy map of acetylcholine

    NASA Astrophysics Data System (ADS)

    Segall, M. D.; Payne, M. C.; Boyes, R. N.

    An ab initio density functional theory study is reported of the conformational energy map of acetylcholine, with respect to the two central dihedral angles of the molecule. The acetylcholine molecule pays a central role in neurotransmission and has been studied widely using semi-empirical computational modelling. The ab initio results are compared with a number of previous investigations and with experiment. The ab initio data indicate that the most stable conformation of acetylcholine is the trans , gauche arrangement of the central dihedral angles. Furthermore, Mulliken population analysis of the electronic structure of the molecule in this conformation indicates that the positive charge of the molecule is spread over the exterior of the cationic head of the molecule.

  20. Acetylcholine attenuated TNF-α-induced intracellular Ca2+ overload by inhibiting the formation of the NCX1-TRPC3-IP3R1 complex in human umbilical vein endothelial cells.

    PubMed

    Zhao, Ming; Jia, Hang-Huan; Liu, Long-Zhu; Bi, Xue-Yuan; Xu, Man; Yu, Xiao-Jiang; He, Xi; Zang, Wei-Jin

    2017-06-01

    The endoplasmic reticulum (ER) forms discrete junctions with the plasma membrane (PM) that play a critical role in the regulation of Ca 2+ signaling during cellular bioenergetics, apoptosis and autophagy. We have previously confirmed that acetylcholine can inhibit ER stress and apoptosis after inflammatory injury. However, limited research has focused on the effects of acetylcholine on ER-PM junctions. In this work, we evaluated the structure and function of the supramolecular sodium-calcium exchanger 1 (NCX1)-transient receptor potential canonical 3 (TRPC3)-inositol 1,4,5-trisphosphate receptor 1 (IP3R1) complex, which is involved in regulating Ca 2+ homeostasis during inflammatory injury. The width of the ER-PM junctions of human umbilical vein endothelial cells (HUVECs) was measured in nanometres using transmission electron microscopy and a fluorescent probe for Ca 2+ . Protein-protein interactions were assessed by immunoprecipitation. Ca 2+ concentration was measured using a confocal microscope. An siRNA assay was employed to silence specific proteins. Our results demonstrated that the peripheral ER was translocated to PM junction sites when induced by tumour necrosis factor-alpha (TNF-α) and that NCX1-TRPC3-IP3R1 complexes formed at these sites. After down-regulating the protein expression of NCX1 or IP3R1, we found that the NCX1-mediated inflow of Ca 2+ and the release of intracellular Ca 2+ stores were reduced in TNF-α-treated cells. We also observed that acetylcholine attenuated the formation of NCX1-TRPC3-IP3R1 complexes and maintained calcium homeostasis in cells treated with TNF-α. Interestingly, the positive effects of acetylcholine were abolished by the selective M3AChR antagonist darifenacin and by AMPK siRNAs. These results indicate that acetylcholine protects endothelial cells from TNF-alpha-induced injury, [Ca 2+ ] cyt overload and ER-PM interactions, which depend on the muscarinic 3 receptor/AMPK pathway, and that acetylcholine may be a new

  1. Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment.

    PubMed

    Lombardo, Sylvia; Maskos, Uwe

    2015-09-01

    Alzheimer's Disease (AD) is the major form of senile dementia, characterized by neuronal loss, extracellular deposits, and neurofibrillary tangles. It is accompanied by a loss of cholinergic tone, and acetylcholine (ACh) levels in the brain, which were hypothesized to be responsible for the cognitive decline observed in AD. Current medication is restricted to enhancing cholinergic signalling for symptomatic treatment of AD patients. The nicotinic acetylcholine receptor family (nAChR) and the muscarinic acetylcholine receptor family (mAChR) are the target of ACh in the brain. Both families of receptors are affected in AD. It was demonstrated that amyloid beta (Aβ) interacts with nAChRs. Here we discuss how Aβ activates or inhibits nAChRs, and how this interaction contributes to AD pathology. We will discuss the potential role of nAChRs as therapeutic targets. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Nonenzymatic all-solid-state coated wire electrode for acetylcholine determination in vitro.

    PubMed

    He, Cheng; Wang, Zhan; Wang, You; Hu, Ruifen; Li, Guang

    2016-11-15

    A nonenzymatic all-solid-state coated wire acetylcholine electrode was investigated. Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT/PSS) as conducting polymer was coated on one end of a gold wire (0.5mm in diameter). The acetylcholine selective membrane containing heptakis(2,3,6-tri-Ο-methyl)-β-cyclodextrin as an ionophore covered the conducting polymer layer. The electrode could work stably in a pH range of 6.5-8.5 and a temperature range of 15-40°C. It covered an acetylcholine concentration range of 10(-5)-10(-1)M with a slope of 54.04±1.70mV/decade, while detection limit was 5.69±1.06µM. The selectivity, dynamic response, reproducibility and stability were evaluated. The electrode could work properly in the rat brain homogenate to detect different concentrations of acetylcholine. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior

    PubMed Central

    Picciotto, Marina R.; Higley, Michael J.; Mineur, Yann S.

    2012-01-01

    Acetylcholine in the brain alters neuronal excitability, influences synaptic transmission, induces synaptic plasticity and coordinates the firing of groups of neurons. As a result, it changes the state of neuronal networks throughout the brain and modifies their response to internal and external inputs: the classical role of a neuromodulator. Here we identify actions of cholinergic signaling on cellular and synaptic properties of neurons in several brain areas and discuss the consequences of this signaling on behaviors related to drug abuse, attention, food intake, and affect. The diverse effects of acetylcholine depend on the site of release, the receptor subtypes, and the target neuronal population, however, a common theme is that acetylcholine potentiates behaviors that are adaptive to environmental stimuli and decreases responses to ongoing stimuli that do not require immediate action. The ability of acetylcholine to coordinate the response of neuronal networks in many brain areas makes cholinergic modulation an essential mechanism underlying complex behaviors. PMID:23040810

  4. B-973, a novel piperazine positive allosteric modulator of the α7 nicotinic acetylcholine receptor.

    PubMed

    Post-Munson, Debra J; Pieschl, Rick L; Molski, Thaddeus F; Graef, John D; Hendricson, Adam W; Knox, Ronald J; McDonald, Ivar M; Olson, Richard E; Macor, John E; Weed, Michael R; Bristow, Linda J; Kiss, Laszlo; Ahlijanian, Michael K; Herrington, James

    2017-03-15

    The alpha7 (α7) nicotinic acetylcholine receptor is a therapeutic target for cognitive disorders. Here we describe 3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propanamide (B-973), a novel piperazine-containing molecule that acts as a positive allosteric modulator of the α7 receptor. We characterize the action of B-973 on the α7 receptor using electrophysiology and radioligand binding. At 0.1mM acetylcholine, 1μM B-973 potentiated peak acetylcholine-induced currents 6-fold relative to maximal acetylcholine (3mM) and slowed channel desensitization, resulting in a 6900-fold increase in charge transfer. The EC 50 of B-973 was approximately 0.3μM at acetylcholine concentrations ranging from 0.03 to 3mM. At a concentration of 1μM, B-973 shifted the acetylcholine EC 50 of peak currents from 0.30mM in control to 0.007mM. B-973 slowed channel deactivation upon acetylcholine removal (τ=50s) and increased the affinity of the α7 agonist [ 3 H]A-585539. In the absence of exogenously added acetylcholine, application of B-973 at concentrations >1μM induced large methyllycaconitine-sensitive currents, suggesting B-973 can function as an Ago-PAM at high concentrations. B-973 will be a useful probe for investigating the biological consequences of increasing α7 receptor activity through allosteric modulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Dietary sodium loading impairs microvascular function independent of blood pressure in humans: role of oxidative stress

    PubMed Central

    Greaney, Jody L; DuPont, Jennifer J; Lennon-Edwards, Shannon L; Sanders, Paul W; Edwards, David G; Farquhar, William B

    2012-01-01

    Animal studies have reported dietary salt-induced reductions in vascular function independent of increases in blood pressure (BP). The purpose of this study was to determine if short-term dietary sodium loading impairs cutaneous microvascular function in normotensive adults with salt resistance. Following a control run-in diet, 12 normotensive adults (31 ± 2 years) were randomized to a 7 day low-sodium (LS; 20 mmol day−1) and 7 day high-sodium (HS; 350 mmol day−1) diet (controlled feeding study). Salt resistance, defined as a ≤5 mmHg change in 24 h mean BP determined while on the LS and HS diets, was confirmed in all subjects undergoing study (LS: 84 ± 1 mmHg vs. HS: 85 ± 2 mmHg; P > 0.05). On the last day of each diet, subjects were instrumented with two microdialysis fibres for the local delivery of Ringer solution and 20 mm ascorbic acid (AA). Laser Doppler flowmetry was used to measure red blood cell flux during local heating-induced vasodilatation (42°C). After the established plateau, 10 mm l-NAME was perfused to quantify NO-dependent vasodilatation. All data were expressed as a percentage of maximal cutaneous vascular conductance (CVC) at each site (28 mm sodium nitroprusside; 43°C). Sodium excretion increased during the HS diet (P < 0.05). The plateau % CVCmax was reduced during HS (LS: 93 ± 1 % CVCmax vs. HS: 80 ± 2 % CVCmax; P < 0.05). During the HS diet, AA improved the plateau % CVCmax (Ringer: 80 ± 2 % CVCmax vs. AA: 89 ± 3 % CVCmax; P < 0.05) and restored the NO contribution (Ringer: 44 ± 3 % CVCmax vs. AA: 59 ± 6 % CVCmax; P < 0.05). These data demonstrate that dietary sodium loading impairs cutaneous microvascular function independent of BP in normotensive adults and suggest a role for oxidative stress. PMID:22907057

  6. Polyester with Pendent Acetylcholine-Mimicking Functionalities Promotes Neurite Growth.

    PubMed

    Wang, Shaofei; Jeffries, Eric; Gao, Jin; Sun, Lijie; You, Zhengwei; Wang, Yadong

    2016-04-20

    Successful regeneration of nerves can benefit from biomaterials that provide a supportive biochemical and mechanical environment while also degrading with controlled inflammation and minimal scar formation. Herein, we report a neuroactive polymer functionalized by covalent attachment of the neurotransmitter acetylcholine (Ach). The polymer was readily synthesized in two steps from poly(sebacoyl diglyceride) (PSeD), which previously demonstrated biocompatibility and biodegradation in vivo. Distinct from prior acetylcholine-biomimetic polymers, PSeD-Ach contains both quaternary ammonium and free acetyl moieties, closely resembling native acetylcholine structure. The polymer structure was confirmed via (1)H nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Hydrophilicity, charge, and thermal properties of PSeD-Ach were determined by tensiometer, zetasizer, differential scanning calorimetry, and thermal gravimetric analysis, respectively. PC12 cells exhibited the greatest proliferation and neurite outgrowth on PSeD-Ach and laminin substrates, with no significant difference between these groups. PSeD-Ach yielded much longer neurite outgrowth than the control polymer containing ammonium but no the acetyl group, confirming the importance of the entire acetylcholine-like moiety. Furthermore, PSeD-Ach supports adhesion of primary rat dorsal root ganglions and subsequent neurite sprouting and extension. The sprouting rate is comparable to the best conditions from previous report. Our findings are significant in that they were obtained with acetylcholine-like functionalities in 100% repeating units, a condition shown to yield significant toxicity in prior publications. Moreover, PSeD-Ach exhibited favorable mechanical and degradation properties for nerve tissue engineering application. Humidified PSeD-Ach had an elastic modulus of 76.9 kPa, close to native neural tissue, and could well recover from cyclic dynamic compression. PSeD-Ach showed a gradual in

  7. Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells

    NASA Technical Reports Server (NTRS)

    Koh, T. J.; Tidball, J. G.

    2000-01-01

    We tested the hypothesis that nitric oxide can inhibit cytoskeletal breakdown in skeletal muscle cells by inhibiting calpain cleavage of talin. The nitric oxide donor sodium nitroprusside prevented many of the effects of calcium ionophore on C(2)C(12) muscle cells, including preventing talin proteolysis and release into the cytosol and reducing loss of vinculin, cell detachment, and loss of cellular protein. These results indicate that nitric oxide inhibition of calpain protected the cells from ionophore-induced proteolysis. Calpain inhibitor I and a cell-permeable calpastatin peptide also protected the cells from proteolysis, confirming that ionophore-induced proteolysis was primarily calpain mediated. The activity of m-calpain in a casein zymogram was inhibited by sodium nitroprusside, and this inhibition was reversed by dithiothreitol. Previous incubation with the active site-targeted calpain inhibitor I prevented most of the sodium nitroprusside-induced inhibition of m-calpain activity. These data suggest that nitric oxide inhibited m-calpain activity via S-nitrosylation of the active site cysteine. The results of this study indicate that nitric oxide produced endogenously by skeletal muscle and other cell types has the potential to inhibit m-calpain activity and cytoskeletal proteolysis.

  8. Role of nitric oxide in adenosine-induced vasodilation in humans

    NASA Technical Reports Server (NTRS)

    Costa, F.; Biaggioni, I.; Robertson, D. (Principal Investigator)

    1998-01-01

    Vasodilation is one of the most prominent effects of adenosine and one of the first to be recognized, but its mechanism of action is not completely understood. In particular, there is conflicting information about the potential contribution of endothelial factors. The purpose of this study was to explore the role of nitric oxide in the vasodilatory effect of adenosine. Forearm blood flow responses to intrabrachial adenosine infusion (125 microg/min) were assessed with venous occlusion plethysmography during intrabrachial infusion of saline or the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) (12.5 mg/min). Intrabrachial infusions of acetylcholine (50 microg/min) and nitroprusside (3 microg/min) were used as a positive and negative control, respectively. These doses were chosen to produce comparable levels of vasodilation. In a separate study, a second saline infusion was administered instead of L-NMMA to rule out time-related effects. As expected, pretreatment with L-NMMA reduced acetylcholine-induced vasodilation; 50 microg/min acetylcholine increased forearm blood flow by 150+/-43% and 51+/-12% during saline and L-NMMA infusion, respectively (P<.01, n=6). In contrast, L-NMMA did not affect the increase in forearm blood flow produced by 3 microg/min nitroprusside (165+/-30% and 248+/-41% during saline and L-NMMA, respectively) or adenosine (173+/-48% and 270+/-75% during saline and L-NMMA, respectively). On the basis of our observations, we conclude that adenosine-induced vasodilation is not mediated by nitric oxide in the human forearm.

  9. A standardized procedure for using human corpus cavernosum strips to evaluate drug activity.

    PubMed

    Mirone, V; Sorrentino, R; di Villa Bianca, R; Imbimbo, C; Palmieri, A; Fusco, F; Tajana, G; Cirino, G

    2000-01-01

    The main problem of using human corpus cavernosum (HCC) tissue to perform bioassay is linked to its limited availability further complicated by the heterogeneous source of the tissues used. Here, we show that gender reassignment is a reliable source of human tissue without major ethical problems. Indeed, the entire corpus cavernosum is obtained from the surgery procedure, which allows creating a standardized procedure to prepare HCC strip. In addition, human tissue, if kept in the fridge in the condition described, does not loose its ability to contract to phenylephrine (PE; alpha agonist), angiotensin II (AG II) and KCl up to 4 days. Furthermore, once contracted with PE, HCC relaxes to acetylcholine (endothelium-dependent mechanism); sodium nitroprusside (endothelium-independent mechanism); cromakalim (CRK), a K(ATP) channel opener; or alprostadil, a synthetic PGE2 (ALPR). In conclusion, we have standardized a procedure that allows the use of HCC strips to evaluate drug activity and/or to study pathophysiological mechanisms with an intact functional human tissue up to 4 days from the surgery procedure.

  10. Activation of alpha-latrotoxin receptors in neuromuscular synapses leads to a prolonged splash acetylcholine release.

    PubMed

    Lelyanova, V G; Thomson, D; Ribchester, R R; Tonevitsky, E A; Ushkaryov, Y A

    2009-06-01

    The mechanisms of acetylcholine release in presynaptic terminals of motoneurons induced by mutant alpha-latrotoxin (LT(N4C)) were analyzed. In contrast to wild-type alpha-latrotoxin that causes both continuous and splash secretion of acetylcholine and necessarity block neuromuscular transmission, LT(N4C) causes only splash release lasting over many hours. Thus, activation of alpha-latrotoxin receptors controls long-lasting enhanced secretion of acetylcholine.

  11. Interactions between acetylcholine, 5-hydroxytryptamine, nicotine and morphine on isolated rabbit atria

    PubMed Central

    Chittal, S. M.; Dadkar, N. K.; Gaitondé, B. B.

    1968-01-01

    1. The effects of 5-hydroxytryptamine (5-HT) and morphine on the responses to acetylcholine and nicotine of isolated rabbit atria were studied. 2. 5-Hydroxytryptamine (10 μg/ml.) and morphine (20 μg/ml.) blocked the negative chronotropic and inotropic actions of acetylcholine. 3. Nicotine (20 μg/ml.) produced stimulation of the atria, which was blocked by dichlorisoprenaline, morphine, 5-HT, bretylium and hemicholinium. Hemicholinium block was reversed by choline. 4. In reserpinized preparations, nicotine produced inhibition of atria and this action was also blocked by atropine, 5-HT and morphine. Inhibition induced by nicotine was potentiated by physostigmine. 5. 5-Hydroxytryptamine (20 μg/ml.) produced stimulation of atria. This was blocked by bretylium and reduced by hemicholinium. Hemicholinium block was reversed by choline. 6. It is concluded that 5-HT in low concentrations acts as a weak agonist at the cholinoceptive receptors and therefore blocks the action of acetylcholine. Furthermore, nicotine and larger doses of 5-HT have actions on ganglionic structures and liberate acetylcholine, which in turn releases catecholamines. PMID:4386371

  12. beta-Phenylethylamine modulates acetylcholine release in the rat striatum: involvement of a dopamine D(2) receptor mechanism.

    PubMed

    Kato, M; Ishida, K; Chuma, T; Abe, K; Shigenaga, T; Taguchi, K; Miyatake, T

    2001-04-20

    We examined the effects of beta-phenylethylamine on striatal acetylcholine release in freely moving rats using in vivo microdialysis. beta-Phenylethylamine at 12.5 mg/kg, i.p. did not affect acetylcholine release in the striatum, whereas 25 and 50 mg/kg, i.p. immediately induced an increase in acetylcholine release in the striatum at 15-45 min. This increase following intraperitoneal administration of beta-phenylethylamine (25 mg/kg) was not affected by locally applied SCH-23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine, 10 microM), a dopamine D(1) receptor antagonist, nor by raclopride (10 microM), a dopamine D(2) receptor antagonist. The increased release of acetylcholine induced by beta-phenylethylamine was suppressed by local infusion of tetrodotoxin (1 microM). In contrast, the extracellular acetylcholine level in the striatum was significantly decreased by local application of beta-phenylethylamine (10 and 100 microM) in the striatum via a microdialysis probe. The decrease was completely blocked by local co-application of raclopride (10 microM). The beta-phenylethylamine-induced decrease in striatal acetylcholine release was not affected by co-perfusion with SCH-23390 (10 microM). These results indicate that systemic administration of beta-phenylethylamine increases acetylcholine release, whereas locally applied beta-phenylethylamine decreases striatal acetylcholine release in freely moving rats. Furthermore, the dopaminergic system, through the dopamine D(2) receptor, is involved in the locally applied beta-phenylethylamine-induced decrease in acetylcholine in the striatum.

  13. Decreased acetylcholine release delays the consolidation of object recognition memory.

    PubMed

    De Jaeger, Xavier; Cammarota, Martín; Prado, Marco A M; Izquierdo, Iván; Prado, Vania F; Pereira, Grace S

    2013-02-01

    Acetylcholine (ACh) is important for different cognitive functions such as learning, memory and attention. The release of ACh depends on its vesicular loading by the vesicular acetylcholine transporter (VAChT). It has been demonstrated that VAChT expression can modulate object recognition memory. However, the role of VAChT expression on object recognition memory persistence still remains to be understood. To address this question we used distinct mouse lines with reduced expression of VAChT, as well as pharmacological manipulations of the cholinergic system. We showed that reduction of cholinergic tone impairs object recognition memory measured at 24h. Surprisingly, object recognition memory, measured at 4 days after training, was impaired by substantial, but not moderate, reduction in VAChT expression. Our results suggest that levels of acetylcholine release strongly modulate object recognition memory consolidation and appear to be of particular importance for memory persistence 4 days after training. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES✩

    PubMed Central

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2013-01-01

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5–10 mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2− interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors. PMID:22732654

  15. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.

    PubMed

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2014-06-05

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Increased acetylcholine levels in skin biopsies of patients with atopic dermatitis.

    PubMed

    Wessler, Ignaz; Reinheimer, Torsten; Kilbinger, Heinz; Bittinger, Fernando; Kirkpatrick, Charles James; Saloga, Joachim; Knop, Jürgen

    2003-03-28

    Recent experimental evidence indicates that non-neuronal acetylcholine is involved in the regulation of basic cell functions. Here we investigated the cholinergic system in the skin of healthy volunteers and patients with atopic dermatitis (AD). The synthesizing enzyme, choline-acetyltransferase (ChAT), was studied by anti-ChAT immunohistochemistry and enzyme assay. Skin biopsies taken from healthy volunteers and from AD patients were separated into the 2 mm superfical (epidermis and upper dermis) and 3 mm underlying portion (deeper dermis and subcutis). ChAT enzyme activity was detected in homogenized skin and subcutaneous fat (about 13 nmol/mg protein/h). ChAT immunoreactivity was expressed in keratinocytes, hair papilla, sebaceous and eccrine sweat glands, endothelial cells and mast cells. In healthy volunteers the superficial and underlying portion of skin biopsies contained 130 +/- 30 and 550 +/- 170 pmol/g acetylcholine (n = 12), respectively. In AD patients (n = 7) acetylcholine was increased 14-fold in the superficial and 3-fold in the underlying biopsy portion. The present study demonstrates the widespread expression of ChAT protein in the vast majority of human skin cells. Tissue levels of acetylcholine are greatly (14-fold) enhanced in the superficial 2 mm skin of AD patients. Copyright 2003 Elsevier Science Inc.

  17. Effects of acute chlorpyrifos exposure on in vivo acetylcholine accumulation in rat striatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karanth, Subramanya; Liu, Jing; Mirajkar, Nikita

    2006-10-01

    This study examined the acute effects of chlorpyrifos (CPF) on cholinesterase inhibition and acetylcholine levels in the striatum of freely moving rats using in vivo microdialysis. Adult, male Sprague-Dawley rats were treated with vehicle (peanut oil, 2 ml/kg) or CPF (84, 156 or 279 mg/kg, sc) and functional signs of toxicity, body weight and motor activity recorded. Microdialysis was conducted at 1, 4 and 7 days after CPF exposure for measurement of acetylcholine levels in striatum. Rats were then sacrificed and the contralateral striatum and diaphragm were collected for biochemical measurements. Few overt signs of cholinergic toxicity were noted inmore » any rats. Body weight gain was significantly affected in the high-dose (279 mg/kg) group only, while motor activity (nocturnal rearing) was significantly reduced in all CPF-treated groups at one day (84 mg/kg) or from 1-4 days (156 and 279 mg/kg) after dosing. Cholinesterase activities in both diaphragm and striatum were markedly inhibited (50-92%) in a time-dependent manner, but there were relatively minimal dose-related changes. In contrast, time- and dose-dependent changes in striatal acetylcholine levels were noted, with significantly higher levels noted in the high-dose group compared to other groups. Maximal increases in striatal acetylcholine levels were observed at 4-7 days after dosing (84 mg/kg, 7-9-fold; 156 mg/kg, 10-13-fold; 279 mg/kg, 35-57-fold). Substantially higher acetylcholine levels were noted when an exogenous cholinesterase inhibitor was included in the perfusion buffer, but CPF treatment-related differences were substantially lower in magnitude under those conditions. The results suggest that marked differences in acetylcholine accumulation can occur with dosages of CPF eliciting relatively similar degrees of cholinesterase inhibition. Furthermore, the minimal expression of classic signs of cholinergic toxicity in the presence of extensive brain acetylcholine accumulation suggests that

  18. Ultra-long acting calcium channel blockers may decrease accuracy of the acetylcholine provocation test.

    PubMed

    Kurabayashi, Manabu; Asano, Mitsutoshi; Shimura, Tsukasa; Suzuki, Hidetoshi; Aoyagi, Hideshi; Yamauchi, Yasuteru; Okishige, Kaoru; Ashikaga, Takashi; Isobe, Mitsuaki

    2017-06-01

    When drug-induced coronary spasm provocation tests are performed, a washout period of >48h for calcium channel blockers (CCBs) is uniformly recommended. However, each CCB has a distinct half-life, and little is known about the influence of prior oral administration of CCBs on acetylcholine provocation test to evaluate coronary vasomotor reaction. We examined 245 consecutive patients with suspected vasospastic angina who had undergone acetylcholine provocation test. Of those patients, 29 patients had been on amlodipine, an ultra-long term acting CCB (group A), 34 on other CCBs (group O), and 182 patients on no CCB (group N). After CCBs had been withheld > 48h, we performed acetylcholine provocation, which resulted in 152 positive, 36 intermediate, and 57 negative reactions. We evaluated coronary artery tone calculated as follows: (luminal diameter after nitrate-baseline luminal diameter)÷(luminal diameter after nitrate)×100 (%). In group A patients, coronary artery tone was lower (A:9.1±6.9% vs. O:11.7±8.3% vs. N:12.1±8.5%, p=0.0011) and the positive rate of acetylcholine provocation test was lower than group O and group N (A:41% vs. O:68% vs. N:64%, p=0.047). Multivariate logistic analysis showed that taking amlodipine until 2days before acetylcholine provocation test was a significant inverse predictor for acetylcholine-provoked coronary spasm (odds ratio 0.327; 95% confidence interval 0.125-0.858, p=0.023). Residual vasodilatory effects of ultra-long acting CCB may decrease coronary artery tone and the vasoconstrictive reaction to acetylcholine suggesting that a 2-day pre-test drug holiday may not be long enough. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. alpha 4 beta 2 subunit combination specific pharmacology of neuronal nicotinic acetylcholine receptors in N1E-115 neuroblastoma cells.

    PubMed

    Zwart, R; Abraham, D; Oortgiesen, M; Vijverberg, H P

    1994-08-22

    Pharmacological characteristics of native neuronal nicotinic acetylcholine receptor-mediated ion currents in mouse N1E-115 neuroblastoma cells have been investigated by superfusion of voltage clamped cells with known concentrations of the agonists acetylcholine, nicotine and cytisine, and the antagonists alpha-bungarotoxin and neuronal bungarotoxin. The sensitivity of the nicotinic acetylcholine receptor for agonists followed the agonist potency rank-order: nicotine approximately acetylcholine > cytisine. The EC50 values of acetylcholine and nicotine are 78 microM and 76 microM, respectively. Equal concentrations of acetylcholine and nicotine induce inward currents with approximately the same peak amplitude whereas cytisine induces much smaller inward currents. Acetylcholine-induced currents are unaffected by high concentrations of alpha-bungarotoxin. Conversely, at 10 and 90 nM neuronal bungarotoxin reduces the amplitude of the 1 mM acetylcholine-induced inward current to 47% and 11% of control values, respectively. Both the agonist potency rank-order and the differential sensitivity to snake toxins of nicotinic receptors in N1E-115 cells are consistent with the known pharmacological profile of alpha 4 beta 2 nicotinic receptors expressed in Xenopus oocytes and distinct from those of all other nicotinic acetylcholine receptors of known functional subunit compositions. All data indicate that the native nicotinic acetylcholine receptor in N1E-115 cells is an assembly of alpha 4 and beta 2 subunits, the putative major subtype of nicotinic acetylcholine receptor in the brain.

  20. In vivo release of non-neuronal acetylcholine from the human skin as measured by dermal microdialysis: effect of botulinum toxin

    PubMed Central

    Schlereth, Tanja; Birklein, Frank; Haack, Katrin an; Schiffmann, Susanne; Kilbinger, Heinz; Kirkpatrick, Charles James; Wessler, Ignaz

    2005-01-01

    Acetylcholine is synthesized in the majority of non-neuronal cells, for example in human skin. In the present experiments, the in vivo release of acetylcholine was measured by dermal microdialysis. Two microdialysis membranes were inserted intradermally at the medial shank of volunteers. Physiological saline containing 1 μM neostigmine was perfused at a constant rate of 4 μl min−1 and the effluent was collected in six subsequent 20 min periods. Acetylcholine was measured by high-pressure liquid chromatography (HPLC) combined with bioreactors and electrochemical detection. Analysis of the effluent by HPLC showed an acetylcholine peak that disappeared, when the analytical column was packed with acetylcholine-specific esterase, confirming the presence of acetylcholine. In the absence of neostigmine, 71±51 pmol acetylcholine (n=4) was found during a 120 min period. The amount increased to 183±43 pmol (n=34), when the perfusion medium contained 1 μM neostigmine. Injection of 100 MU botulinum toxin subcutaneously blocked sweating completely, but the release of acetylcholine was not affected (botulinum toxin treated skin: 116±70 pmol acetylcholine/120 min; untreated skin: 50±20 pmol; n=4). Quinine (1 mM), inhibitor of organic cation transporters, and carnitine (0.1 mM), substrate of the Na+-dependent carnitine transporter OCTN2, tended to reduce acetylcholine release (by 40%, not significant). Our experiments demonstrate, for the first time, the in vivo release of non-neuronal acetylcholine in human skin. Organic cation transporters are not predominantly involved in the release of non-neuronal acetylcholine from the human skin. PMID:16273117

  1. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model

    PubMed Central

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F.; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon

    2015-01-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections. PMID:26092919

  2. Molecular properties of muscarinic acetylcholine receptors

    PubMed Central

    HAGA, Tatsuya

    2013-01-01

    Muscarinic acetylcholine receptors, which comprise five subtypes (M1-M5 receptors), are expressed in both the CNS and PNS (particularly the target organs of parasympathetic neurons). M1-M5 receptors are integral membrane proteins with seven transmembrane segments, bind with acetylcholine (ACh) in the extracellular phase, and thereafter interact with and activate GTP-binding regulatory proteins (G proteins) in the intracellular phase: M1, M3, and M5 receptors interact with Gq-type G proteins, and M2 and M4 receptors with Gi/Go-type G proteins. Activated G proteins initiate a number of intracellular signal transduction systems. Agonist-bound muscarinic receptors are phosphorylated by G protein-coupled receptor kinases, which initiate their desensitization through uncoupling from G proteins, receptor internalization, and receptor breakdown (down regulation). Recently the crystal structures of M2 and M3 receptors were determined and are expected to contribute to the development of drugs targeted to muscarinic receptors. This paper summarizes the molecular properties of muscarinic receptors with reference to the historical background and bias to studies performed in our laboratories. PMID:23759942

  3. The effects of atropine and oxotremorine on acetylcholine release in rat phrenic nerve-diaphragm preparations.

    PubMed Central

    Abbs, E. T.; Joseph, D. N.

    1981-01-01

    1 Atropine (10(-5) M) enhanced the release of [3H]-acetylcholine from rat isolated hemidiaphragms, previously incubated with [3H-methyl]-choline, stimulated via their phrenic nerves. 2 Oxotremorine (10(-5) M) did not affect the stimulated release of [3H]-acetylcholine but antagonized the facilitatory effects of atropine (10(-5) M). 3 It is suggested that there are presynaptic inhibitory muscarinic receptors that modulate the release of acetylcholine in the phrenic nerves of the rat. PMID:7236997

  4. Acetylcholine test in patients with angina pectoris and normal coronary angiography

    NASA Astrophysics Data System (ADS)

    Barbieri, Enrico; Destro, Gianni; Oliva, Massimo; Zardini, Piero

    1994-02-01

    Angina pectoris with normal coronary artery on the coronary angiography is an intriguing issue. Intracoronary infusion of acetylcholine has recently been used to test the integrity of endothelial cells. We studied 16 patients with this syndrome. A relationship has been found between the acetylcholine test and the exercise stress test in normotensive patients. The presence of hypertension makes the evaluation of the test more unpredictable, probably because of the damage on the endothelial cells related to systemic hypertension.

  5. FRET-based sensors for the human M1-, M3-, and M5-acetylcholine receptors.

    PubMed

    Ziegler, Nicole; Bätz, Julia; Zabel, Ulrike; Lohse, Martin J; Hoffmann, Carsten

    2011-02-01

    Based on the recently developed approach to generate fluorescence resonance energy transfer (FRET)-based sensors to measure GPCR activation, we generated sensor constructs for the human M(1)-, M(3)-, and M(5)-acetylcholine receptor. The receptors were labeled with cyan fluorescent protein (CFP) at their C-terminus, and with fluorescein arsenical hairpin binder (FlAsH) via tetra-cysteine tags inserted in the third intracellular loop. We then measured FRET between the donor CFP and the acceptor FlAsH in living cells and real time. Agonists like acetylcholine, carbachol, or muscarine activate each receptor construct with half-maximal activation times between 60 and 70ms. Removal of the agonist caused the reversal of the signal. Compared with all other agonists, oxotremorine M differed in two major aspects: it caused significantly slower signals at M(1)- and M(5)-acetylcholine receptors and the amplitude of these signals was larger at the M(1)-acetylcholine receptor. Concentration-response curves for the agonists reveal that all agonists tested, with the mentioned exception of oxotremorine M, caused similar maximal FRET-changes as acetylcholine for the M(1)-, M(3)- and M(5)-acetylcholine receptor constructs. Taken together our data support the notion that orthosteric agonists behave similar at different muscarinic receptor subtypes but that kinetic differences can be observed for receptor activation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Acetylcholine content and viability of cholinergic neurons are influenced by the activity of protein histidine phosphatase

    PubMed Central

    2012-01-01

    Background The first mammalian protein histidine phosphatase (PHP) was discovered in the late 90s of the last century. One of the known substrates of PHP is ATP-citrate lyase (ACL), which is responsible - amongst other functions - for providing acetyl-CoA for acetylcholine synthesis in neuronal tissues. It has been shown in previous studies that PHP downregulates the activity of ACL by dephosphorylation. According to this our present work focused on the influence of PHP activity on the acetylcholine level in cholinergic neurons. Results The amount of PHP in SN56 cholinergic neuroblastoma cells was increased after overexpression of PHP by using pIRES2-AcGFP1-PHP as a vector. We demonstrated that PHP overexpression reduced the acetylcholine level and induced cell death. The acetylcholine content of SN56 cells was measured by fast liquid chromatography-tandem mass spectrometry method. Overexpression of the inactive H53A-PHP mutant also induced cell damage, but in a significantly reduced manner. However, this overexpression of the inactive PHP mutant did not change the acetylcholine content of SN56 cells significantly. In contrast, PHP downregulation, performed by RNAi-technique, did not induce cell death, but significantly increased the acetylcholine content in SN56 cells. Conclusions We could show for the first time that PHP downregulation increased the acetylcholine level in SN56 cells. This might be a potential therapeutic strategy for diseases involving cholinergic deficits like Alzheimer's disease. PMID:22436051

  7. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model.

    PubMed

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon; Nile, Christopher

    2015-08-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Agonist activation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site

    PubMed Central

    Gill, JasKiran K.; Savolainen, Mari; Young, Gareth T.; Zwart, Ruud; Sher, Emanuele; Millar, Neil S.

    2011-01-01

    Conventional nicotinic acetylcholine receptor (nAChR) agonists, such as acetylcholine, act at an extracellular “orthosteric” binding site located at the interface between two adjacent subunits. Here, we present evidence of potent activation of α7 nAChRs via an allosteric transmembrane site. Previous studies have identified a series of nAChR-positive allosteric modulators (PAMs) that lack agonist activity but are able to potentiate responses to orthosteric agonists, such as acetylcholine. It has been shown, for example, that TQS acts as a conventional α7 nAChR PAM. In contrast, we have found that a compound with close chemical similarity to TQS (4BP-TQS) is a potent allosteric agonist of α7 nAChRs. Whereas the α7 nAChR antagonist metyllycaconitine acts competitively with conventional nicotinic agonists, metyllycaconitine is a noncompetitive antagonist of 4BP-TQS. Mutation of an amino acid (M253L), located in a transmembrane cavity that has been proposed as being the binding site for PAMs, completely blocks agonist activation by 4BP-TQS. In contrast, this mutation had no significant effect on agonist activation by acetylcholine. Conversely, mutation of an amino acid located within the known orthosteric binding site (W148F) has a profound effect on agonist potency of acetylcholine (resulting in a shift of ∼200-fold in the acetylcholine dose-response curve), but had little effect on the agonist dose-response curve for 4BP-TQS. Computer docking studies with an α7 homology model provides evidence that both TQS and 4BP-TQS bind within an intrasubunit transmembrane cavity. Taken together, these findings provide evidence that agonist activation of nAChRs can occur via an allosteric transmembrane site. PMID:21436053

  9. Amphetamine regulation of acetylcholine and gamma-aminobutyric acid in nucleus accumbens.

    PubMed

    Lindefors, N; Hurd, Y L; O'Connor, W T; Brené, S; Persson, H; Ungerstedt, U

    1992-01-01

    In situ hybridization histochemistry and in vivo microdialysis were combined to study the effect of amphetamine on the expression of choline acetyltransferase and glutamate decarboxylase67 mRNA and in vivo release of acetylcholine and GABA in rat medial nucleus accumbens. Differential effects on acetylcholine and GABA neurons by a single challenge injection of amphetamine (1.5 mg/kg, s.c.) were apparent in saline-pretreated and amphetamine-pretreated (same dose, twice daily for the previous seven days) rats. Extracellular acetylcholine levels were increased up to 50% over a prolonged period following both single and repeated amphetamine. In contrast, extracellular concentrations of GABA were gradually decreased to half the control values, but only in rats receiving repeated amphetamine. Although the increase of acetylcholine release was not associated with any change in choline acetyltransferase mRNA levels, the number of neurons expressing high levels of glutamate decarboxylase67 mRNA was decreased (28%) following repeated injections. Thus we suggest that amphetamine decreases extracellular GABA levels by a slow mechanism, associated with the decreased expression of glutamate decarboxylase67 mRNA in a subpopulation of densely labeled neurons in the medial nucleus accumbens. The delayed response by GABA to amphetamine may reflect supersensitivity in the activity of postsynaptic gamma-aminobutyric acid-containing neurons in nucleus accumbens as a consequence of the repeated amphetamine treatment.

  10. Evidence against nitrergic neuromodulation in the rat vas deferens.

    PubMed

    Ventura, S; Burnstock, G

    1997-09-03

    Electrical field stimulation (60 V, 1 ms, single pulses or 20 s trains of 1-10 Hz) of the nerve terminals within the rat vas deferens produced biphasic contractions in preparations oriented to measure either longitudinal or circular muscle contractions. In confirmation of earlier reports, these contractions were blocked by tetrodotoxin (1 microM). The initial fast purinergic contraction was dominant in prostatic halves of the vas deferens while the second slower noradrenergic contraction was greater in epididymal halves. Although previous studies have shown nitric oxide synthase immuno-positive nerves in the vas deferens, electrical field stimulation-induced contractions were unaffected by L-arginine, sodium nitroprusside, N-nitro-L-arginine methyl ester (L-NAME) or superoxide dismutase in concentrations up to I mM. In concentrations above 1 mM, L-NAME reduced the size of the field stimulation-induced contractions but this effect could not be reversed by either L-arginine or sodium nitroprusside. Furthermore, L-arginine, sodium nitroprusside and L-NAME did not affect the contractions induced by exogenous application of noradrenaline (10 microM), ATP (1 mM) or BaCl2 (1-10 mM). We conclude that nitric oxide does not act as a neuromodulator in isolated preparations of rat vas deferens.

  11. Alternative splicing in nicotinic acetylcholine receptor subunits from Locusta migratoria and its influence on acetylcholine potencies.

    PubMed

    Zhang, Yixi; Liu, Yang; Bao, Haibo; Sun, Huahua; Liu, Zewen

    2017-01-18

    Due to the great abundance within insect central nervous system (CNS), nicotinic acetylcholine receptors (nAChRs) play key roles in insect CNS, which makes it to be the targets of several classes of insecticides, such as neonicotinoids. Insect nAChRs are pentameric complexes consisting of five subunits, and a dozen subunits in one insect species can theoretically comprise diverse nAChRs. The alternative splicing in insect nAChR subunits may increase the diversity of insect nAChRs. In the oriental migratory locust (Locusta migratoria manilensis Meyen), a model insect species with agricultural importance, the alternative splicing was found in six α subunits among nine α and two β subunits, such as missing conserved residues in Loop D from Locα1, Locα6 and Locα9, a 34-residue insertion in Locα8 cytoplasmic loop, and truncated transcripts for Locα4, Locα7 and Locα9. Hybrid nAChRs were successfully constructed in Xenopus oocytes through co-expression with rat β2 and one α subunit from L. migratoria, which included Locα1, Locα2, Locα3, Locα4, Locα5, Locα8 and Locα9. Influences of alternative splicing in Locα1, Locα8 and Locα9 on acetylcholine potency were tested on hybrid nAChRs. The alternative splicing in Locα1 and Locα9 could increase acetylcholine sensitivities on recombinant receptors, while the splicing in Locα8 showed significant influences on the current amplitudes of oocytes. The results revealed that the alternative splicing at or close to the ligand-binding sites, as well as at cytoplasmic regions away from the ligand-binding sites, in insect nAChR subunits would change the agonist potencies on the receptors, which consequently increased nAChR diversity in functional and pharmacological properties. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. α7 Nicotinic Acetylcholine Receptor Signaling Inhibits Inflammasome Activation by Preventing Mitochondrial DNA Release

    PubMed Central

    Lu, Ben; Kwan, Kevin; Levine, Yaakov A; Olofsson, Peder S; Yang, Huan; Li, Jianhua; Joshi, Sonia; Wang, Haichao; Andersson, Ulf; Chavan, Sangeeta S; Tracey, Kevin J

    2014-01-01

    The mammalian immune system and the nervous system coevolved under the influence of cellular and environmental stress. Cellular stress is associated with changes in immunity and activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, a key component of innate immunity. Here we show that α7 nicotinic acetylcholine receptor (α7 nAchR)-signaling inhibits inflammasome activation and prevents release of mitochondrial DNA, an NLRP3 ligand. Cholinergic receptor agonists or vagus nerve stimulation significantly inhibits inflammasome activation, whereas genetic deletion of α7 nAchR significantly enhances inflammasome activation. Acetylcholine accumulates in macrophage cytoplasm after adenosine triphosphate (ATP) stimulation in an α7 nAchR-independent manner. Acetylcholine significantly attenuated calcium or hydrogen oxide–induced mitochondrial damage and mitochondrial DNA release. Together, these findings reveal a novel neurotransmitter-mediated signaling pathway: acetylcholine translocates into the cytoplasm of immune cells during inflammation and inhibits NLRP3 inflammasome activation by preventing mitochondrial DNA release. PMID:24849809

  13. Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse.

    PubMed

    Santafe, M M; Priego, M; Obis, T; Garcia, N; Tomàs, M; Lanuza, M A; Tomàs, J

    2015-07-01

    Adenosine receptors (ARs) are present in the motor terminals at the mouse neuromuscular junction. ARs and the presynaptic muscarinic acetylcholine receptors (mAChRs) share the functional control of the neuromuscular junction. We analysed their mutual interaction in transmitter release modulation. In electrophysiological experiments with unaltered synaptic transmission (muscles paralysed by blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB), we found that: (i) a collaborative action between different AR subtypes reduced synaptic depression at a moderate activity level (40 Hz); (ii) at high activity levels (100 Hz), endogenous adenosine production in the synaptic cleft was sufficient to reduce depression through A1 -type receptors (A1 Rs) and A2 A-type receptors (A2 A Rs); (iii) when the non-metabolizable 2-chloroadenosine (CADO) agonist was used, both the quantal content and depression were reduced; (iv) the protective effect of CADO on depression was mediated by A1 Rs, whereas A2 A Rs seemed to modulate A1 Rs; (v) ARs and mAChRs absolutely depended upon each other for the modulation of evoked and spontaneous acetylcholine release in basal conditions and in experimental conditions with CADO stimulation; (vi) the purinergic and muscarinic mechanisms cooperated in the control of depression by sharing a common pathway although the purinergic control was more powerful than the muscarinic control; and (vii) the imbalance of the ARs created by using subtype-selective and non-selective inhibitory and stimulatory agents uncoupled protein kinase C from evoked transmitter release. In summary, ARs (A1 Rs, A2 A Rs) and mAChRs (M1 , M2 ) cooperated in the control of activity-dependent synaptic depression and may share a common protein kinase C pathway. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Replacement of salt by a novel potassium- and magnesium-enriched salt alternative improves the cardiovascular effects of ramipril.

    PubMed Central

    Mervaala, E. M.; Paakkari, I.; Laakso, J.; Nevala, R.; Teräväinen, T. M.; Fyhrquist, F.; Vapaatalo, H.; Karppanen, H.

    1994-01-01

    1. The influence of salt (sodium chloride; NaCl) (an additional 6% in the diet) and that of a novel sodium-reduced, potassium-, magnesium-, and L-lysine-enriched salt alternative on the cardiovascular effects of ramipril was studied in stroke-prone spontaneously hypertensive rats in a 6-week study. The intake of sodium chloride was adjusted to the same level by adding the salt alternative at a 1.75 times higher amount than regular salt. 2. Salt produced a marked rise in blood pressure and induced cardiac hypertrophy and significant mortality, while the salt alternative neither increased blood pressure nor caused any mortality and produced less cardiac hypertrophy than salt. 3. Ramipril treatment at a daily dose of 3 mg kg-1 normalized blood pressure and prevented the development of cardiac hypertrophy of rats on control diet. These effects of ramipril were blocked by the addition of salt but were only slightly attenuated by the addition of the salt alternative. The mortality in the salt group was prevented by ramipril. 4. Responses of mesenteric arterial rings in vitro were examined at the end of the study. Salt, but not the salt alternative, increased vascular contractile responses to noradrenaline. Ramipril treatment improved the arterial relaxation responses to acetylcholine and to sodium nitroprusside. The vascular relaxation enhancing effect of ramipril was blocked by salt but only slightly attenuated by the salt alternative. 5. Ramipril treatment did not significantly increase plasma renin activity in the presence or in the absence of salt supplementation. The salt alternative did not cause hyperkalaemia, either alone or in combination with ramipril treatment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8032605

  15. Endogenous acetylcholine increases alveolar epithelial fluid transport via activation of alveolar epithelial Na,K-ATPase in mice.

    PubMed

    Li, Xia; Yan, Xi Xin; Li, Hong Lin; Li, Rong Qin

    2015-10-01

    The contribution of endogenous acetylcholine to alveolar fluid clearance (AFC) and related molecular mechanisms were explored. AFC was measured in Balb/c mice after vagotomy and vagus nerve stimulation. Effects of acetylcholine chloride on AFC in Kunming mice and Na,K-ATPase function in A549 alveolar epithelial cells also were determined. AFC significantly decreased in mice with left cervical vagus nerve transection compared with controls (48.69 ± 2.57 vs. 66.88 ± 2.64, P ≤ 0.01), which was reversed by stimulation of the peripheral (60.81 ± 1.96, P ≤ 0.01). Compared with control, acetylcholine chloride dose-dependently increased AFC and elevated Na,K-ATPase activity, and these increases were blocked or reversed by atropine. These effects were accompanied by recruitment of Na,K-ATPase α1 to the cell membrane. Thus, vagus nerves participate in alveolar epithelial fluid transport by releasing endogenous acetylcholine in the infusion-induced pulmonary edema mouse model. Effects of endogenous acetylcholine on AFC are likely mediated by Na,K-ATPase function through activation of muscarinic acetylcholine receptors on alveolar epithelia. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Functional characterization of mongoose nicotinic acetylcholine receptor alpha-subunit: resistance to alpha-bungarotoxin and high sensitivity to acetylcholine.

    PubMed

    Asher, O; Lupu-Meiri, M; Jensen, B S; Paperna, T; Fuchs, S; Oron, Y

    1998-07-24

    The mongoose is resistant to snake neurotoxins. The mongoose muscle nicotinic acetylcholine receptor (AChR) alpha-subunit contains a number of mutations in the ligand-binding domain and exhibits poor binding of alpha-bungarotoxin (alpha-BTX). We characterized the functional properties of a hybrid (alpha-mongoose/beta gamma delta-rat) AChR. Hybrid AChRs, expressed in Xenopus oocytes, respond to acetylcholine with depolarizing current, the mean maximal amplitude of which was greater than that mediated by the rat AChR. The IC50 of alpha-BTX to the hybrid AChR was 200-fold greater than that of the rat, suggesting much lower affinity for the toxin. Hybrid AChRs exhibited an apparent higher rate of desensitization and higher affinity for ACh (EC50 1.3 vs. 23.3 microM for the rat AChR). Hence, changes in the ligand-binding domain of AChR not only affect the binding properties of the receptor, but also result in marked changes in the characteristics of the current.

  17. Neuromodulation: acetylcholine and memory consolidation.

    PubMed

    Hasselmo

    1999-09-01

    Clinical and experimental evidence suggests that hippocampal damage causes more severe disruption of episodic memories if those memories were encoded in the recent rather than the more distant past. This decrease in sensitivity to damage over time might reflect the formation of multiple traces within the hippocampus itself, or the formation of additional associative links in entorhinal and association cortices. Physiological evidence also supports a two-stage model of the encoding process in which the initial encoding occurs during active waking and deeper consolidation occurs via the formation of additional memory traces during quiet waking or slow-wave sleep. In this article I will describe the changes in cholinergic tone within the hippocampus in different stages of the sleep-wake cycle and will propose that these changes modulate different stages of memory formation. In particular, I will suggest that the high levels of acetylcholine that are present during active waking might set the appropriate dynamics for encoding new information in the hippocampus, by partially suppressing excitatory feedback connections and so facilitating encoding without interference from previously stored information. By contrast, the lower levels of acetylcholine that are present during quiet waking and slow-wave sleep might release this suppression and thereby allow a stronger spread of activity within the hippocampus itself and from the hippocampus to the entorhinal cortex, thus facilitating the process of consolidation of separate memory traces.

  18. Coordinated Acetylcholine Release in Prefrontal Cortex and Hippocampus Is Associated with Arousal and Reward on Distinct Timescales.

    PubMed

    Teles-Grilo Ruivo, Leonor M; Baker, Keeley L; Conway, Michael W; Kinsley, Peter J; Gilmour, Gary; Phillips, Keith G; Isaac, John T R; Lowry, John P; Mellor, Jack R

    2017-01-24

    Cholinergic neurotransmission throughout the neocortex and hippocampus regulates arousal, learning, and attention. However, owing to the poorly characterized timing and location of acetylcholine release, its detailed behavioral functions remain unclear. Using electrochemical biosensors chronically implanted in mice, we made continuous measurements of the spatiotemporal dynamics of acetylcholine release across multiple behavioral states. We found that tonic levels of acetylcholine release were coordinated between the prefrontal cortex and hippocampus and maximal during training on a rewarded working memory task. Tonic release also increased during REM sleep but was contingent on subsequent wakefulness. In contrast, coordinated phasic acetylcholine release occurred only during the memory task and was strongly localized to reward delivery areas without being contingent on trial outcome. These results show that coordinated acetylcholine release between the prefrontal cortex and hippocampus is associated with reward and arousal on distinct timescales, providing dual mechanisms to support learned behavior acquisition during cognitive task performance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Palmitic acid acutely inhibits acetylcholine- but not GLP-1-stimulated insulin secretion in mouse pancreatic islets

    PubMed Central

    Qin, Wei; Vinogradov, Sergei A.; Wilson, David F.; Matschinsky, Franz M.

    2010-01-01

    Fatty acids, acetylcholine, and GLP-1 enhance insulin secretion in a glucose-dependent manner. However, the interplay between glucose, fatty acids, and the neuroendocrine regulators of insulin secretion is not well understood. Therefore, we studied the acute effects of PA (alone or in combination with glucose, acetylcholine, or GLP-1) on isolated cultured mouse islets. Two different sets of experiments were designed. In one, a fixed concentration of 0.5 mM of PA bound to 0.15 mM BSA was used; in the other, a PA ramp from 0 to 0.5 mM was applied at a fixed albumin concentration of 0.15 mM so that the molar PA/BSA ratio changed within the physiological range. At a fixed concentration of 0.5 mM, PA markedly inhibited acetylcholine-stimulated insulin release, the rise of intracellular Ca2+, and enhancement of cAMP production but did not influence the effects of GLP-1 on these parameters of islet cell function. 2-ADB, an IP3 receptor inhibitor, reduced the effect of acetylcholine on insulin secretion and reversed the effect of PA on acetylcholine-stimulated insulin release. Islet perfusion for 35–40 min with 0.5 mM PA significantly reduced the calcium storage capacity of ER measured by the thapsigargin-induced Ca2+ release. Oxygen consumption due to low but not high glucose was reduced by PA. When a PA ramp from 0 to 0.5 mM was applied in the presence of 8 mM glucose, PA at concentrations as low as 50 μM significantly augmented glucose-stimulated insulin release and markedly reduced acetylcholine's effects on hormone secretion. We thus demonstrate that PA acutely reduces the total oxygen consumption response to glucose, glucose-dependent acetylcholine stimulation of insulin release, Ca2+, and cAMP metabolism, whereas GLP-1's actions on these parameters remain unaffected or potentiated. We speculate that acute emptying of the ER calcium by PA results in decreased glucose stimulation of respiration and acetylcholine potentiation of insulin secretion. PMID:20606076

  20. 77 FR 16039 - Abbott Laboratories et al.; Withdrawal of Approval of 35 New Drug Applications and 64 Abbreviated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-19

    ... Do. nitroprusside for Injection USP), 50 mg. ANDA 071015 Haloperidol Oral Teva Pharmaceuticals... 075065 Acyclovir Sodium for Do. Injection. ANDA 075176 Haloperidol Do. Decanoate Injection, 50 mg/mL and...

  1. Concomitant Release of Ventral Tegmental Acetylcholine and Accumbal Dopamine by Ghrelin in Rats

    PubMed Central

    Jerlhag, Elisabet; Janson, Anna Carin; Waters, Susanna; Engel, Jörgen A.

    2012-01-01

    Ghrelin, an orexigenic peptide, regulates energy balance specifically via hypothalamic circuits. Growing evidence suggest that ghrelin increases the incentive value of motivated behaviours via activation of the cholinergic-dopaminergic reward link. It encompasses the cholinergic afferent projection from the laterodorsal tegmental area (LDTg) to the dopaminergic cells of the ventral tegmental area (VTA) and the mesolimbic dopamine system projecting from the VTA to nucleus accumbens (N.Acc.). Ghrelin receptors (GHS-R1A) are expressed in these reward nodes and ghrelin administration into the LDTg increases accumbal dopamine, an effect involving nicotinic acetylcholine receptors in the VTA. The present series of experiments were undertaken directly to test this hypothesis. Here we show that ghrelin, administered peripherally or locally into the LDTg concomitantly increases ventral tegmental acetylcholine as well as accumbal dopamine release. A GHS-R1A antagonist blocks this synchronous neurotransmitter release induced by peripheral ghrelin. In addition, local perfusion of the unselective nicotinic antagonist mecamylamine into the VTA blocks the ability of ghrelin (administered into the LDTg) to increase N.Acc.-dopamine, but not VTA-acetylcholine. Collectively our data indicate that ghrelin activates the LDTg causing a release of acetylcholine in the VTA, which in turn activates local nicotinic acetylcholine receptors causing a release of accumbal dopamine. Given that a dysfunction in the cholinergic-dopaminergic reward system is involved in addictive behaviours, including compulsive overeating and alcohol use disorder, and that hyperghrelinemia is associated with such addictive behaviours, ghrelin-responsive circuits may serve as a novel pharmacological target for treatment of alcohol use disorder as well as binge eating. PMID:23166710

  2. Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors

    PubMed Central

    Matsuda, K; Buckingham, S D; Freeman, J C; Squire, M D; Baylis, H A; Sattelle, D B

    1998-01-01

    Imidacloprid is a new insecticide with selective toxicity for insects over vertebrates. Recombinant (α4β2) chicken neuronal nicotinic acetylcholine receptors (AChRs) and a hybrid nicotinic AChR formed by co-expression of a Drosophila melanogaster neuronal α subunit (SAD) with the chicken β2 subunit were heterologously expressed in Xenopus oocytes by nuclear injection of cDNAs. The agonist actions of imidacloprid and other nicotinic AChR ligands ((+)-epibatidine, (−)-nicotine and acetylcholine) were compared on both recombinant nicotinic AChRs by use of two-electrode, voltage-clamp electrophysiology. Imidacloprid alone of the 4 agonists behaved as a partial agonist on the α4β2 receptor; (+)-epibatidine, (−)-nicotine and acetylcholine were all full, or near full, agonists. Imidacloprid was also a partial agonist of the hybrid Drosophila SAD chicken β2 receptor, as was (−)-nicotine, whereas (+)-epibatidine and acetylcholine were full agonists. The EC50 of imidacloprid was decreased by replacing the chicken α4 subunit with the Drosophila SAD α subunit. This α subunit substitution also resulted in an increase in the EC50 for (+)-epibatidine, (−)-nicotine and acetylcholine. Thus, the Drosophila (SAD) α subunit contributes to the greater apparent affinity of imidacloprid for recombinant insect/vertebrate nicotinic AChRs. Imidacloprid acted as a weak antagonist of ACh-mediated responses mediated by SADβ2 hybrid receptors and as a weak potentiator of ACh responses mediated by α4β2 receptors. This suggests that imidacloprid has complex effects upon these recombinant receptors, determined at least in part by the α subunit. PMID:9504393

  3. [Effect of glutamate on membrane potential and volume of the skeletal muscle fibers in rats following NO-synthase inhibition in vivo].

    PubMed

    Khairova, P A; Malomuzh, A I; Naumenko, N V; Urazaev, A Kh

    2002-11-01

    Cross-sectional area (CSA) of muscle fibers incubated in culture medium 199 for 3 hours dramatically increases, whereas resting membrane potential (RMP) decreases compared to "freshly-isolated" muscles. Both glutamate and sodium nitroprusside prevent these changes. MK-801, a specific inhibitor of NMDA-receptors, eliminates protective effects of glutamate on both CSA and RMP. NO-synthase inhibition in vivo promotes an increase of initial CSA and decrease of mean RMP. Under these conditions, effects of glutamate and sodium nitroprusside on CSA and RMP of denervated muscles are less obvious. It has been concluded that synaptic glutamate is able to participate in regulation of RMP and cell volume in muscle fibers through the activation of postsynaptic NMDA-receptors and muscle NO-synthase.

  4. Choline acetyltransferase and organic cation transporters are responsible for synthesis and propionate-induced release of acetylcholine in colon epithelium.

    PubMed

    Bader, Sandra; Klein, Jochen; Diener, Martin

    2014-06-15

    Acetylcholine is not only a neurotransmitter, but is found in a variety of non-neuronal cells. For example, the enzyme choline acetyltransferase (ChAT), catalyzing acetylcholine synthesis, is expressed by the colonic epithelium of different species. These cells release acetylcholine across the basolateral membrane after luminal exposure to propionate, a short-chain fatty acid. The functional consequence is the induction of chloride secretion, measurable as increase in short-circuit current (Isc) in Ussing chamber experiments. It is unclear how acetylcholine is produced and released by colonic epithelium. Therefore, the aim of the present study was the identification (on mRNA and protein level) and functional characterization (in Ussing chamber experiments combined with HPLC detection of acetylcholine) of transporters/enzymes in the cholinergic system of rat colonic epithelium. Immunohistochemical staining as well as RT-PCR revealed the expression of high-affinity choline transporter, ChAT, carnitine acetyltransferase (CarAT), vesicular acetylcholine transporter (VAChT), and organic cation transporters (OCT 1, 2, 3) in colonic epithelium. In contrast to blockade of ChAT with bromoacetylcholine, inhibition of CarAT with mildronate did not inhibit the propionate-induced increase in Isc, suggesting a predominant synthesis of epithelial acetylcholine by ChAT. Although being expressed, blockade of VAChT with vesamicol was ineffective, whereas inhibition of OCTs with omeprazole and corticosterone inhibited propionate-induced Isc and the release of acetylcholine into the basolateral compartment. In summary, OCTs seem to be involved in regulated acetylcholine release by colonic epithelium, which is assumed to be involved in chemosensing of luminal short-chain fatty acids by the intestinal epithelium. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming human beta cell function

    PubMed Central

    Rodriguez-Diaz, Rayner; Dando, Robin; Jacques-Silva, M. Caroline; Fachado, Alberto; Molina, Judith; Abdulreda, Midhat; Ricordi, Camillo; Roper, Stephen D.; Berggren, Per-Olof; Caicedo, Alejandro

    2011-01-01

    Acetylcholine is a neurotransmitter that plays a major role in the function of the insulin secreting pancreatic beta cell1,2. Parasympathetic innervation of the endocrine pancreas, the islets of Langerhans, has been shown to provide cholinergic input to the beta cell in several species1,3,4, but the role of autonomic innervation in human beta cell function is at present unclear. Here we show that, in contrast to mouse islets, cholinergic innervation of human islets is sparse. Instead, we find that the alpha cells of the human islet provide paracrine cholinergic input to surrounding endocrine cells. Human alpha cells express the vesicular acetylcholine transporter and release acetylcholine when stimulated with kainate or a lowering in glucose concentration. Acetylcholine secretion by alpha cells in turn sensitizes the beta cell response to increases in glucose concentration. Our results demonstrate that in human islets acetylcholine is a paracrine signal that primes the beta cell to respond optimally to subsequent increases in glucose concentration. We anticipate these results to revise models about neural input and cholinergic signaling in the endocrine pancreas. Cholinergic signaling within the islet represents a potential therapeutic target in diabetes5, highlighting the relevance of this advance to future drug development. PMID:21685896

  6. Retinal co-mediator acetylcholine evokes muscarinic inhibition of recurrent excitation in frog tectum column.

    PubMed

    Baginskas, Armantas; Kuras, Antanas

    2016-08-26

    Acetylcholine receptors contribute to the control of neuronal and neuronal network activity from insects to humans. We have investigated the action of acetylcholine receptors in the optic tectum of Rana temporaria (common frog). Our previous studies have demonstrated that acetylcholine activates presynaptic nicotinic receptors, when released into the frog optic tectum as a co-mediator during firing of a single retinal ganglion cell, and causes: a) potentiation of retinotectal synaptic transmission, and b) facilitation of transition of the tectum column to a higher level of activity. In the present study we have shown that endogenous acetylcholine also activates muscarinic receptors, leading to a delayed inhibition of recurrent excitatory synaptic transmission in the tectum column. The delay of muscarinic inhibition was evaluated to be of ∼80ms, with an extent of inhibition of ∼2 times. The inhibition of the recurrent excitation determines transition of the tectum column back to its resting state, giving a functional sense for the inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. A computational model of the nicotinic acetylcholine binding site

    NASA Astrophysics Data System (ADS)

    Gálvez-ruano, Enrique; Iriepa-Canalda, Isabel; Morreale, Antonio; Lipkowitz, Kenny B.

    1999-01-01

    We have derived a model of the nicotinic acetylcholine binding site. This was accomplished by using three known agonists (acetylcholine, nicotine and epibatidine) as templates around which polypeptide side chains, found to be part of the receptor cavity from published molecular biology studies, are allowed to flow freely in molecular dynamics simulations and mold themselves around these templates. The resulting supramolecular complex should thus be a complement, both in terms of steric effects as well as electronic effects, to the agonists and it should be a good estimation of the true receptor cavity structure. The shapes of those minireceptor cavities equilibrated rapidly on the simulation time scale and their structural congruence is very high, implying that a satisfactory model of the nicotinic acetylcholine binding site has been achieved. The computational methodology was internally tested against two rigid and specific antagonists (dihydro-β-erytroidine and erysoidine), that are expected to give rise to a somewhat differently shaped binding site compared to that derived from the agonists. Using these antagonists as templates there were structural reorganizations of the initial receptor cavities leading to distinctly different cavities compared to agonists. This indicates that adequate times and temperatures were used in our computational protocols to achieve equilibrium structures for the agonists. Overall, both minireceptor geometries for agonists and antagonists are similar with the exception of one amino acid (ARG209).

  8. Regulation of Neuronal Muscarinic Acetylcholine Receptors

    DTIC Science & Technology

    1989-01-01

    N1E - 115 cells with pertussis toxin blocks mAChR-mediated inhibition of adenylate cyclase but not mAChR-mediated stimulation of PI turnover...determine the effects of electrical depolarization on muscarinic acetylcholine receptors (mAChR) in the cultured neuroblastoma cell line, N E- 115 ...evidence that Gi and Go may differentially regulate cellular signaling mechanisms, these results suggest that depolarization may regulate specific

  9. Nicotinic acetylcholine receptors in porcine hypophyseal intermediate lobe cells.

    PubMed Central

    Zhang, Z W; Feltz, P

    1990-01-01

    1. Acetylcholine (ACh) was found to depolarize isolated porcine intermediate lobe cells maintained in primary cells culture. We investigated the ACh-induced responses in both whole-cell and cell-attached configurations of the patch-clamp technique. 2. From noise analysis of ACh-evoked whole-cell currents, we estimated an elementary conductance of 20 pS and a channel open duration of about 1.7 ms at -60 mV. From single-channel recordings, we obtained a slope conductance of 26 pS and a mean open time of 1.8 ms at membrane potentials between -60 and -80 mV. 3. ACh-evoked responses were blocked by d-tubocurarine (d-TC), hexamethonium and mecamylamine, but were insensitive to alpha-bungarotoxin. These characteristics define a neuronal type of nicotinic receptors. 4. The whole-cell current induced by ACh showed a strong inward rectification with no outward current being obtained. This phenomenon was observed when the intracellular ion is either sodium or caesium, and even when Ca2+ and Mg2+ were totally removed from the intracellular medium. 5. ACh-gated channels in intermediate lobe cells were cation selective and were permeable to Na+ and Cs+. In Ca2(+)-free extracellular solution, single-channel conductances were much larger (46 pS) than in the presence of 2 mM-Ca2+ (26 pS). 6. The possibility of an excitatory cholinergic control of intermediate lobe cells is discussed. PMID:1693685

  10. N-acetylcysteine improves coronary and peripheral vascular function.

    PubMed

    Andrews, N P; Prasad, A; Quyyumi, A A

    2001-01-01

    We investigated whether N-acetylcysteine (NAC), a reduced thiol that modulates redox state and forms adducts of nitric oxide (NO), improves endothelium-dependent vasomotion. Coronary atherosclerosis is associated with endothelial dysfunction and reduced NO activity. In 16 patients undergoing cardiac catheterization, seven with and nine without atherosclerosis, we assessed endothelium-dependent vasodilation with acetylcholine (ACH) and endothelium-independent vasodilation with nitroglycerin (NTG) and sodium nitroprusside (SNP) before and after intracoronary NAC. In 14 patients femoral vascular responses to ACH, NTG and SNP were measured before and after NAC. Intraarterial NAC did not change resting coronary or peripheral vascular tone. N-acetylcysteine potentiated ACH-mediated coronary vasodilation; coronary blood flow was 36 +/- 11% higher (p < 0.02), and epicardial diameter changed from -1.2 +/- 2% constriction to 4.7 +/- 2% dilation after NAC (p = 0.03). Acetylcholine-mediated femoral vasodilation was similarly potentiated by NAC (p = 0.001). Augmentation of the ACH response was similar in patients with or without atherosclerosis. N-acetylcysteine did not affect NTG-mediated vasodilation in either the femoral or coronary circulations and did not alter SNP responses in the femoral circulation. In contrast, coronary vasodilation with SNP was significantly greater after NAC (p < 0.05). Thiol supplementation with NAC improves human coronary and peripheral endothelium-dependent vasodilation. Nitroglycerin responses are not enhanced, but SNP-mediated responses are potentiated only in the coronary circulation. These NO-enhancing effects of thiols reflect the importance of the redox state in the control of vascular function and may be of therapeutic benefit in treating acute and chronic manifestations of atherosclerosis.

  11. Nitrergic cardiovascular regulation in the African lungfish, Protopterus aethiopicus.

    PubMed

    Filogonio, Renato; Joyce, William; Wang, Tobias

    2017-05-01

    As a ubiquitous signaling molecule, nitric oxide (NO) exerts various important effects on the cardiovascular system and is involved in the regulation of vascular tone and myocardial metabolism in vertebrates. Lungfishes are closely related to tetrapods and provide an interesting possibility to understand the transition from water to land. Lungfishes are endowed with both systemic and pulmonary circulations, and their incompletely divided ventricle allows for blood to bypass either circuit. Lungfishes inhabit ephemeral waterbodies that may enforce prolonged aestivation during drought, throughout which nitric oxide synthase (NOS) expression is upregulated. To better understand the physiological relevance of NO on cardiovascular regulation in this transitory group, we measured vascular reactivity to muscarinic agonist acetylcholine, α- and β-adrenergic agonists (phenylephrine and isoproterenol, respectively), or the NO donor, sodium nitroprusside (SNP) on four vessel segments-efferent branchial arteries, gill artery, ductus arteriosus and pulmonary artery-from the African lungfish, Protopterus aethiopicus. In a simultaneous study, we measured oxygen consumption and twitch force in myocardial preparations in the presence and absence of an NOS inhibitor (asymmetric dimethylarginine; ADMA). Only the ductus arteriosus vasodilated in response to SNP. Isoproterenol caused vasodilation, whereas acetylcholine and phenylephrine vasoconstricted all vessel segments. NOS inhibition decreased myocardial force relative to oxygen consumption, indicating a lowered efficiency. We provide novel evidence that NO affects the vasculature of lungfish that may be derived from perivascular nitrergic nerves limited to the ductus arteriosus. Our data also suggests that NO exerts a tonic dampening of myocardial oxygen consumption which may be particularly important during aestivation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Nitric oxide donor augments antineoplastic effects of arginine deprivation in human melanoma cells.

    PubMed

    Mayevska, Oksana; Chen, Oleh; Karatsai, Olena; Bobak, Yaroslav; Barska, Maryna; Lyniv, Liliana; Pavlyk, Iuliia; Rzhepetskyy, Yuriy; Igumentseva, Natalia; Redowicz, Maria Jolanta; Stasyk, Oleh

    2017-06-15

    Anticancer therapy based on recombinant arginine-degrading enzymes has been proposed for the treatment of several types of malignant cells deficient in arginine biosynthesis. One of the predicted side effects of such therapy is restricted bioavailability of nitric oxide as arginine catabolic product. Prolonged NO limitation may lead to unwanted disturbances in NO-dependent vasodilation, cardiovascular and immune systems. This problem can be overcome by co-supplementation with exogenous NO donor. However, NO may potentially counteract anticancer effects of therapy based on arginine deprivation. In this study, we evaluate for the first time the effects of an exogenous NO donor, sodium nitroprusside, on viability and metastatic properties of two human melanoma cell lines SK-MEL-28 and WM793 under arginine-deprived conditions. It was revealed that NO did not rescue melanoma cells from specific effects evoked by arginine deprivation, namely decreased viability and induction of apoptosis, dramatically reduced motility, invasiveness and clonogenic potential. Moreover, sodium nitroprusside co-treatment augmented several of these antineoplastic effects. We report that a combination of NO-donor and arginine deprivation strongly and specifically impaired metastatic behavior of melanoma cells. Thus, sodium nitroprusside can be considered as an adjuvant for the more efficient treatment of malignant melanoma and possibly other tumors with arginine-degrading enzymes. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Changes in Acetylcholine Extracellular Levels during Cognitive Processes

    ERIC Educational Resources Information Center

    Pepeu, Giancarlo; Giovannini, Maria Grazia

    2004-01-01

    Measuring the changes in neurotransmitter extracellular levels in discrete brain areas is considered a tool for identifying the neuronal systems involved in specific behavioral responses or cognitive processes. Acetylcholine (ACh) is the first neurotransmitter whose diffusion from the central nervous system was investigated and whose extracellular…

  14. Na+/K+ ATPase regulates the expression and localization of acetylcholine receptors in a pump activity-independent manner

    PubMed Central

    Doi, Motomichi; Iwasaki, Kouichi

    2008-01-01

    Na+/K+ ATPase is a plasma membrane-localized sodium pump that maintains the ion gradients between the extracellular and intracellular environments, which in turn controls the cellular resting membrane potential. Recent evidence suggests that the pump is also localized at synapses and regulates synaptic efficacy. However, its precise function at the synapse is unknown. Here we show that two mutations in the α subunit of the eat-6 Na+/K+ ATPase in Caenorhabditis elegans dramatically increase the sensitivity to acetylcholine (Ach) agonists and alter the localization of nicotinic Ach receptors at the neuromuscular junction (NMJ). These defects can be rescued by mutated EAT-6 proteins which lack its pump activity, suggesting the presence of a novel function for Ach signaling. The Na+/K+ ATPase accumulates at postsynaptic sites and appears to surround Ach receptors to maintain rigid clusters at the NMJ. Our findings suggest a critical pump activity-independent, allele –specific role for Na+/K+ ATPase on postsynaptic organization and synaptic efficacy. PMID:18599311

  15. The synthesis of acetylcholine by plants.

    PubMed Central

    Smallman, B N; Maneckjee, A

    1981-01-01

    Choline acetyltransferase was demonstrated in nettles (Urtica dioica), peas (Pisum sativum), spinach (Spinacia oleracea), sunflower (Helianthus annuus) and blue--green algae by using a Sepharose--CoASH affinity column. The column effected a 1500-fold purification of the enzyme from nettle homogenates and was required for demonstrating activity in the other higher plants. Demonstration of the enzyme in blue-green algae suggests that acetylcholine was a biochemical necessity in the earliest photosynthetic organisms. PMID:6796060

  16. The synthesis of acetylcholine by plants.

    PubMed

    Smallman, B N; Maneckjee, A

    1981-01-15

    Choline acetyltransferase was demonstrated in nettles (Urtica dioica), peas (Pisum sativum), spinach (Spinacia oleracea), sunflower (Helianthus annuus) and blue--green algae by using a Sepharose--CoASH affinity column. The column effected a 1500-fold purification of the enzyme from nettle homogenates and was required for demonstrating activity in the other higher plants. Demonstration of the enzyme in blue-green algae suggests that acetylcholine was a biochemical necessity in the earliest photosynthetic organisms.

  17. THE EFFECT OF IONIZING RADIATION ON ACETYLCHOLINE METABOLISM IN MACACA- RHESUS MONKEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demin, N.N.; Korneeva, N.V.; Shaternikov, V.A.

    1961-11-01

    In macaca-rhesus monkeys the normal content of free acetylcholine in the mucosa of the small intestine was higher, as it was in brain and liver, than bound acetyl choline. The total cholinesterase activity and, particularly, the activity of acetylcholinesterase and non-specific cholinesterase in control monkeys is highest in brain, followed by intestinal mucosa and liver. One to three days after gamma -irradiation of the monkey at a dose of 600 r the amount of free and bound acetylcholine in the mucosa of the small intestine increased, while it decreased in liver. The total cholinesterase activity in the mucosa of themore » small intestine during this period increased, in general because of the increase in the activity of non-specific cholinesterase. In the liver the increase in total cholinesterase activity also occurred because of an increase in non-specific cholinesterase activity, but was less clear-cut and occurred later (the third day after irradiation). In animals irradiated 2 to 3 years before the investigation, an increased concentration of free acetylcholine in brain, liver, and mucosa of the small intestine was noted; but there were no ehanges in bound acetylcholine. The total cholinesterase activity increased in liver as a result of acetyl cholinesterase increase and non-specific enzymes, and in mucosa of the small intestine only as a result of acetylcholinesterase activity. In brain the total cholinesterase activity decreased as a consequence of a decrease in acetylcholinesterase activity. (auth)« less

  18. Blood vessel adaptation to gravity in a semi-arboreal snake

    NASA Technical Reports Server (NTRS)

    Conklin, D. J.; Lillywhite, H. B.; Olson, K. R.; Ballard, R. E.; Hargens, A. R.

    1996-01-01

    The effects of vasoactive agonists on systemic blood vessels were examined with respect to anatomical location and gravity acclimation in the semi-arboreal snake, Elaphe Obsoleta. Major blood vessels were reactive to putative neurotransmitters, hormones or local factors in vessel specific patterns. Catecholamines, adenosine triphosphate, histamine and high potassium (80 mM) stimulated significantly greater tension per unit vessel mass in posterior than anterior arteries. Anterior vessels were significantly more sensitive to catecholamines than midbody and posterior vessels. Angiotensin II stimulated significantly greater tension in carotid artery than in midbody and posterior dorsal aorta. Arginine vasotocin strongly contracted the left and right aortic arches and anterior dorsal aorta. Veins were strongly contracted by catecholamines, high potassium and angiotensin II, but less so by adenosine triphosphate, arginine vasotocin and histamine. Precontracted vessel were relaxed by acetylcholine and sodium nitroprusside, but not by atrial natriuretic peptide or bradykinin. Chronic exposure of snakes to intermittent hypergravity stress ( + 1.5 Gz at tail) did not affect the majority of vessel responses. These data demonstrate that in vitro tension correlates with that catecholamines, as well as other agonists, are important in mediating vascular responses to gravitational stresses in snakes.

  19. The urea decomposition product cyanate promotes endothelial dysfunction

    PubMed Central

    El-Gamal, Dalia; Rao, Shailaja Prabhakar; Holzer, Michael; Hallström, Seth; Haybaeck, Johannes; Gauster, Martin; Wadsack, Christian; Kozina, Andrijana; Frank, Saša; Schicho, Rudolf; Schuligoi, Rufina; Heinemann, Akos; Marsche, Gunther

    2014-01-01

    The dramatic cardiovascular mortality of chronic kidney disease patients is attributable in a significant proportion to endothelial dysfunction. Cyanate, a reactive species in equilibrium with urea, is formed in excess in chronic kidney disease. Cyanate is thought to have a causal role in promoting cardiovascular disease, but the underlying mechanisms remain unclear. Immunohistochemical analysis performed in the present study revealed that carbamylated epitopes associate mainly with endothelial cells in human atherosclerotic lesions. Cyanate treatment of human coronary artery endothelial cells reduced expression of endothelial nitric oxide synthase and increased tissue factor and plasminogen activator inhibitor-1 expression. In mice, administration of cyanate - promoting protein carbamylation at levels observed in uremic patients - attenuated arterial vasorelaxation of aortic rings in response to acetylcholine, without affecting sodium nitroprusside-induced relaxation. Total endothelial nitric oxide synthase and nitric oxide production were significantly reduced in aortic tissue of cyanate-treated mice. This coincided with a marked increase of tissue factor and plasminogen activator inhibitor-1 protein levels in aortas of cyanate-treated mice. These data provide evidence that cyanate compromises endothelial functionality in vitro and in vivo and may contribute to the dramatic cardiovascular risk of patients suffering from chronic kidney disease. PMID:24940796

  20. Effects of exercise training and detraining on cutaneous microvascular function in man: the regulatory role of endothelium-dependent dilation in skin vasculature.

    PubMed

    Wang, Jong-Shyan

    2005-01-01

    This study investigated how exercise training and detraining affect the cutaneous microvascular function and the regulatory role of endothelium-dependent dilation in skin vasculature. Ten healthy sedentary subjects cycled on an ergometer at 50% of maximal oxygen uptake (VO(2max)) for 30 min daily, 5 days a week, for 8 weeks, and then detrained for 8 weeks. Plasma nitric oxide (NO) metabolites (nitrite plus nitrate) were measured by a microplate fluorometer. The cutaneous microvascular perfusion responses to six graded levels of iontophoretically applied 1% acetylcholine (ACh) and 1% sodium nitroprusside (SNP) in the forearm skin were determined by laser Doppler. After training, (1) resting heart rate and blood pressure were reduced, whereas VO(2max), skin blood flow and cutaneous vascular conductance to acute exercise were enhanced; (2) plasma NO metabolite levels and ACh-induced cutaneous perfusion were increased; (3) skin vascular responses to SNP did not change significantly. However, detraining reversed these effects on cutaneous microvascular function and plasma NO metabolite levels. The results suggest that endothelium-dependent dilation in skin vasculature is enhanced by moderate exercise training and reversed to the pretraining state with detraining.

  1. Metrifonate, like acetylcholine, up-regulates neurotrophic activity of cultured rat astrocytes.

    PubMed

    Mele, Tina; Jurič, Damijana Mojca

    2014-08-01

    Metrifonate is an inhibitor of acetylcholinesterase (AChE). Several studies confirmed its positive effects on cognitive impairment in Alzheimer's disease but it was due to adverse events withdrawn from clinical trials. Based on the importance of astrocytes in physiological and pathological brain activities we investigated the impact of metrifonate and, for comparison, acetylcholine on intrinsic neurotrophic activity in these cells. Metabolic activity, intracellular adenosine 5'-triphosphate (ATP) levels and lactate dehydrogenase (LDH) release was measured to examine the impact of metrifonate on viability and integrity of cultured rat cortical astrocytes. The influence of metrifonate, acetylcholine and selective cholinergic ligands on nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) synthesis and secretion was determined by specific two-site enzyme immunoassays. Exposure of cultured astrocytes to metrifonate displayed no toxic effects on cell viability. Metrifonate and acetylcholine potently and transiently elevated NGF and BDNF, but not NT-3, protein levels and secretion with different intensity and time frame of their maximal response. Stimulatory effect on NGF was mimicked by selective nicotinic receptor agonist nicotine and completely blocked by nicotinic antagonist mecamylamine. The impact on BDNF synthesis was mimicked by muscarinic receptor agonist pilocarpine and abolished by selective muscarinic antagonist scopolamine. Metrifonate up-regulates astrocytic NGF and BDNF synthesis in the same manner as acetylcholine, their effect depends on different cholinergic pathways. These results suggest a trophic role of metrifonate, based on a well-known neurotrophic activity of NGF and BDNF in vivo. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles.

    PubMed

    Llopis-Lorente, Antoni; Díez, Paula; de la Torre, Cristina; Sánchez, Alfredo; Sancenón, Félix; Aznar, Elena; Marcos, María D; Martínez-Ruíz, Paloma; Martínez-Máñez, Ramón; Villalonga, Reynaldo

    2017-03-28

    This work reports a new gated nanodevice for acetylcholine-triggered cargo delivery. We prepared and characterized Janus Au-mesoporous silica nanoparticles functionalized with acetylcholinesterase on the Au face and with supramolecular β-cyclodextrin:benzimidazole inclusion complexes as caps on the mesoporous silica face. The nanodevice is able to selectively deliver the cargo in the presence of acetylcholine via enzyme-mediated acetylcholine hydrolysis, locally lowering the pH and opening the supramolecular gate. Given the key role played by ACh and its relation with Parkinson's disease and other nervous system diseases, we believe that these findings could help design new therapeutic strategies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of basal forebrain stimulation on extracellular acetylcholine release and blood flow in the olfactory bulb.

    PubMed

    Uchida, Sae; Kagitani, Fusako

    2017-05-12

    The olfactory bulb receives cholinergic basal forebrain input, as does the neocortex; however, the in vivo physiological functions regarding the release of extracellular acetylcholine and regulation of regional blood flow in the olfactory bulb are unclear. We used in vivo microdialysis to measure the extracellular acetylcholine levels in the olfactory bulb of urethane-anesthetized rats. Focal chemical stimulation by microinjection of L-glutamate into the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, which is the main source of cholinergic input to the olfactory bulb, increased extracellular acetylcholine release in the ipsilateral olfactory bulb. When the regional cerebral blood flow was measured using laser speckle contrast imaging, the focal chemical stimulation of the HDB did not significantly alter the blood flow in the olfactory bulb, while increases were observed in the neocortex. Our results suggest a functional difference between the olfactory bulb and neocortex regarding cerebral blood flow regulation through the release of acetylcholine by cholinergic basal forebrain input.

  4. Changes in Extracellular Striatal Acetylcholine and Brain Seizure Activity Following Acute Exposure to Nerve Against in Freely Moving Guinea Pigs

    DTIC Science & Technology

    2010-01-01

    Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Changes in extracellular striatal acetylcholine and brain seizure activity following...Acetylcholine, acetylcholinesterase, choline, guinea pig, in vivo microdialysis, nerve agents, organophosphorus compounds, sarin, seizure activity ...RESEARCH ARTICLE Changes in extracellular striatal acetylcholine and brain seizure activity following acute exposure to nerve agents in freely

  5. ExPPNing how acetylcholine improves gait in Parkinson's disease: An Editorial Highlight for 'Deletion of the Vesicular Acetylcholine Transporter from Pedunculopontine/laterodorsal tegmental neurons modifies gait'.

    PubMed

    Falkenburger, Björn

    2017-03-01

    Read the highlighted article 'Deletion of the Vesicular Acetylcholine Transporter from Pedunculopontine/laterodorsal tegmental neurons modifies gait' on page 787. © 2017 International Society for Neurochemistry.

  6. Topical Non-Iontophoretic Application of Acetylcholine and Nitroglycerin via a Translucent Patch: A New Means for Assessing Microvascular Reactivity

    PubMed Central

    Schonberger, Robert B.; Worden, William S.; Shahmohammadi, Kaveh; Menn, Kirsten; Silverman, Tyler J.; Stout, Robert G.; Shelley, Kirk H.; Silverman, David G.

    2007-01-01

    Objective: Assessments of endothelial cell function with acetylcholine have typically used systemic, regional intra-arterial, or iontophoretic delivery of drug. Each of these techniques induces systemic and/or local changes that compromise their safety or effectiveness. Using translucent drug preparations applied under laser Doppler flowmetry (LDF) probes, we tested whether local vasodilation can be induced with non-iontophoretic transdermal delivery of acetylcholine and how such dilation would compare to the dilation achieved with topical nitroglycerin in healthy volunteers. Methods: Ten subjects without known vascular disease were recruited for LDF monitoring at sites of drug application for this preliminary investigation. Topical acetylcholine chloride, nitroglycerin, and placebo were applied via translucent patches to the forehead directly below LDF probes. Results: LDF readings increased by 406 percent (245 percent to 566 percent) and 36 percent (26 percent to 46 percent), respectively, at the acetylcholine and placebo sites (p = .005 by Wilcoxon Signed Rank Test (WSRT) for acetylcholine vs. placebo); and they increased by 365 percent (179 percent to 550 percent) at the nitroglycerin site (p = .005 by WSRT for nitroglycerin vs. placebo; p = .6 vs. acetylcholine). Conclusion: Transdermal delivery of acetylcholine can induce significant local vasodilatory responses comparable to those achieved with nitroglycerin without requiring iontophoresis. The means of transdermal delivery and monitoring described herein may constitute a new minimally invasive way to interrogate the microvasculature and thereby assess the microcirculatory changes induced by various disorders and therapeutic interventions. PMID:17876370

  7. Deletion of muscarinic type 1 acetylcholine receptors alters splenic lymphocyte functions and splenic noradrenaline concentration.

    PubMed

    Hainke, Susanne; Wildmann, Johannes; Del Rey, Adriana

    2015-11-01

    The existence of interactions between the immune and the sympathetic nervous systems is well established. Noradrenaline can promote or inhibit the immune response, and conversely, the immune response itself can affect noradrenaline concentration in lymphoid organs, such as the spleen. It is also well known that acetylcholine released by pre-ganglionic neurons can modulate noradrenaline release by the postsynaptic neuron. The spleen does not receive cholinergic innervation, but it has been reported that lymphocytes themselves can produce acetylcholine, and express acetylcholine receptors and acetylcholinesterase. We found that the spleen of not overtly immunized mice in which muscarinic type 1 acetylcholine receptors have been knocked out (M1KO) has higher noradrenaline concentrations than that of the wildtype mice, without comparable alterations in the heart, in parallel to a decreased number of IgG-producing B cells. Splenic lymphocytes from M1KO mice displayed increased in vitro-induced cytotoxicity, and this was observed only when CD4(+) T cells were present. In contrast, heterozygous acetylcholinesterase (AChE+/-) mice, had no alterations in splenic noradrenaline concentration, but the in vitro proliferation of AChE+/- CD4(+) T cells was increased. It is theoretically conceivable that reciprocal effects between neuronally and non-neuronally derived acetylcholine and noradrenaline might contribute to the results reported. Our results emphasize the need to consider the balance between the effects of these mediators for the final immunoregulatory outcome. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Regulation of synaptic acetylcholine concentrations by acetylcholine transport in rat striatal cholinergic transmission.

    PubMed

    Muramatsu, Ikunobu; Uwada, Junsuke; Masuoka, Takayoshi; Yoshiki, Hatsumi; Sada, Kiyonao; Lee, Kung-Shing; Nishio, Matomo; Ishibashi, Takaharu; Taniguchi, Takanobu

    2017-10-01

    In addition to hydrolysis by acetylcholine esterase (AChE), acetylcholine (ACh) is also directly taken up into brain tissues. In this study, we examined whether the uptake of ACh is involved in the regulation of synaptic ACh concentrations. Superfusion experiments with rat striatal segments pre-incubated with [ 3 H]choline were performed using an ultra-mini superfusion vessel, which was developed to minimize superfusate retention within the vessel. Hemicholinium-3 (HC-3) at concentrations less than 1 μM, selectively inhibited the uptake of [ 3 H]choline by the high affinity-choline transporter 1 and had no effect on basal and electrically evoked [ 3 H]efflux in superfusion experiments. In contrast, HC-3 at higher concentrations, as well as tetraethylammonium (>10 μM), which inhibited the uptake of both [ 3 H]choline and [ 3 H]ACh, increased basal [ 3 H]overflow and potentiated electrically evoked [ 3 H]efflux. These effects of HC-3 and tetraethylammonium were also observed under conditions where tissue AChE was irreversibly inactivated by diisopropylfluorophosphate. Specifically, the potentiation of evoked [ 3 H]efflux was significantly higher in AChE-inactivated preparations and was attenuated by atropine. On the other hand, striatal segments pre-incubated with [ 3 H]ACh failed to increase [ 3 H]overflow in response to electrical stimulation. These results show that synaptic ACh concentrations are significantly regulated by the postsynaptic uptake of ACh, as well as by AChE hydrolysis and modulation of ACh release mediated through presynaptic muscarinic ACh receptors. In addition, these data suggest that the recycling of ACh-derived choline may be minor in cholinergic terminals. This study reveals a new mechanism of cholinergic transmission in the central nervous system. © 2017 International Society for Neurochemistry.

  9. IRAP inhibition using HFI419 prevents moderate to severe acetylcholine mediated vasoconstriction in a rabbit model.

    PubMed

    El-Hawli, Aisha; Qaradakhi, Tawar; Hayes, Alan; Rybalka, Emma; Smith, Renee; Caprnda, Martin; Opatrilova, Radka; Gazdikova, Katarina; Benckova, Maria; Kruzliak, Peter; Zulli, Anthony

    2017-02-01

    Coronary artery vasospasm (constriction) caused by reduced nitric oxide bioavailability leads to myocardial infarction. Reduced endothelial release of nitric oxide by the neurotransmitter acetylcholine, leads to paradoxical vasoconstriction as it binds to smooth muscle cell M3 receptors. Thus, inhibition of coronary artery vasospasm will improve clinical outcomes. Inhibition of insulin regulated aminopeptidase has been shown to improve vessel function, thus we tested the hypothesis that HFI419, an inhibitor of insulin regulated aminopeptidase, could reduce blood vessel constriction to acetylcholine. The abdominal aorta was excised from New Zealand white rabbits (n=15) and incubated with 3mM Hcy to induce vascular dysfunction in vitro for 1h. HFI419 was added 5min prior to assessment of vascular function by cumulative doses of acetylcholine. In some rings, vasoconstriction to acetylcholine was observed in aortic rings after pre-incubation with 3mM homocysteine. Incubation with HFI419 inhibited the vasoconstrictive response to acetylcholine, thus improving, but not normalizing, vascular function (11.5±8.9% relaxation vs 79.2±37% constriction, p<0.05). Similarly, in another group with mild vasoconstriction, HFI419 inhibited this effect (34.9±4.6% relaxation vs 11.1±5.2%, constriction, p<0.05). HFI419 had no effect on control aorta or aorta with mild aortic dysfunction. The present study shows that HFI419 prevents acetylcholine mediated vasoconstriction in dysfunctional blood vessels. HFI419 had no effect on normal vasodilation. Our results indicate a therapeutic potential of HFI419 in reducing coronary artery vasospasm. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. [Intern(euron)al affairs : The role of specific neocortical interneuron classes in the interaction between acetylcholine and GABAergic anesthetics].

    PubMed

    Liebig, L; Grasshoff, C; Hentschke, H

    2016-08-01

    Acetylcholine is a neuromodulator which is released throughout the central nervous system and plays an essential role in consciousness and cognitive processes including attention and learning. Due to its 'activating' effect on the neuronal and behavioral level its interaction with anesthetics has long been of interest to anesthesiologists. It is widely held that a reduction of the release of acetylcholine by general anesthetics constitutes part of the anesthetic effect. This notion is backed by numerous human and animal studies, but is also in seeming contradiction to findings that acetylcholine activates specific classes of inhibitory neurons: if acetylcholine excites elements within the neuronal network responsible for the release of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), its withdrawal should diminish, not enhance, the effect of anesthetics.Focusing on cortical circuits, we present an overview of recent advances in cellular neurophysiology, particularly the interactions between inhibitory neuron classes, which provide insights on the interaction between acetylcholine and GABA.

  11. Central nervous system promotes thermotolerance via FoxO/DAF-16 activation through octopamine and acetylcholine signaling in Caenorhabditis elegans.

    PubMed

    Furuhashi, Tsubasa; Sakamoto, Kazuichi

    2016-03-25

    The autonomic nervous system (ANS) responds to many kinds of stressors to maintain homeostasis. Although the ANS is believed to regulate stress tolerance, the exact mechanism underlying this is not well understood. To understand this, we focused on longevity genes, which have functions such as lifespan extension and promotion of stress tolerance. To understand the relationship between ANS and longevity genes, we analyzed stress tolerance of Caenorhabditis elegans treated with octopamine, which has an affinity to noradrenaline in insects, and acetylcholine. Octopamine and acetylcholine did not show resistance against H2O2, but the neurotransmitters promoted thermotolerance via DAF-16. However, chronic treatment with octopamine and acetylcholine did not extend the lifespan, although DAF-16 plays an important role in longevity. In conclusion, our results show that octopamine and acetylcholine activate DAF-16 in response to stress, but chronic induction of octopamine and acetylcholine is not beneficial for increasing longevity. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Species differences in the negative inotropic effect of acetylcholine and soman in rat, guinea pig, and rabbit hearts. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, D.M.; Thomsen, R.H.; Baskin, S.I.

    1991-12-31

    Acetylcholine reduced atrial contractions by 82.5% in guinea pig, 50.8% in rat, and 41.5% in rabbit. 2. The EC50, values for the negative inotropic effect of acetylcholine were 3.3 x 10(-7) M in rat and guinea pig atria and 4.1 x 10(-6) M in rabbit atria. 3. There was no correlation between the species differences in the negative inotropic effect of acetylcholine in atria and the density or affinity of acetylcholinesterase or muscarinic receptors. 4. Inhibition of atrial acetylcholinesterase with soman reduced the EC50 of acetylcholine three-fold in all species, but did not change the maximal inotropic effect of acetylcholine.more » 5. Species differences in the negative inotropic effect of acetylcholine may be caused by differences in the coupling between myocardial muscarinic receptors and the ion channels that mediate negative inotropy. Acetylcholine, cardiovascular response, species variation negative inotropic response.« less

  13. A constitutively active G protein-coupled acetylcholine receptor regulates motility of larval Schistosoma mansoni.

    PubMed

    MacDonald, Kevin; Kimber, Michael J; Day, Tim A; Ribeiro, Paula

    2015-07-01

    The neuromuscular system of helminths controls a variety of essential biological processes and therefore represents a good source of novel drug targets. The neuroactive substance, acetylcholine controls movement of Schistosoma mansoni but the mode of action is poorly understood. Here, we present first evidence of a functional G protein-coupled acetylcholine receptor in S. mansoni, which we have named SmGAR. A bioinformatics analysis indicated that SmGAR belongs to a clade of invertebrate GAR-like receptors and is related to vertebrate muscarinic acetylcholine receptors. Functional expression studies in yeast showed that SmGAR is constitutively active but can be further activated by acetylcholine and, to a lesser extent, the cholinergic agonist, carbachol. Anti-cholinergic drugs, atropine and promethazine, were found to have inverse agonist activity towards SmGAR, causing a significant decrease in the receptor's basal activity. An RNAi phenotypic assay revealed that suppression of SmGAR activity in early-stage larval schistosomulae leads to a drastic reduction in larval motility. In sum, our results provide the first molecular evidence that cholinergic GAR-like receptors are present in schistosomes and are required for proper motor control in the larvae. The results further identify SmGAR as a possible candidate for antiparasitic drug targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Acetylcholine Attenuates Hydrogen Peroxide-Induced Intracellular Calcium Dyshomeostasis Through Both Muscarinic and Nicotinic Receptors in Cardiomyocytes.

    PubMed

    Palee, Siripong; Apaijai, Nattayaporn; Shinlapawittayatorn, Krekwit; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-01-01

    Oxidative stress induced intracellular Ca2+ overload plays an important role in the pathophysiology of several heart diseases. Acetylcholine (ACh) has been shown to suppress reactive oxygen species generation during oxidative stress. However, there is little information regarding the effects of ACh on the intracellular Ca2+ regulation in the presence of oxidative stress. Therefore, we investigated the effects of ACh applied before or after hydrogen peroxide (H2O2) treatment on the intracellular Ca2+ regulation in isolated cardiomyocytes. Single ventricular myocytes were isolated from the male Wistar rats for the intracellular Ca2+ transient study by a fluorimetric ratio technique. H2O2 significantly decreased both of intracellular Ca2+ transient amplitude and decay rate. ACh applied before, but not after, H2O2 treatment attenuated the reduction of intracellular Ca2+ transient amplitude and decay rate. Both atropine (a muscarinic acetylcholine receptor blocker) and mecamylamine (a nicotinic acetylcholine receptor blocker) significantly decreased the protective effects of acetylcholine on the intracellular Ca2+ regulation. Moreover, the combination of atropine and mecamylamine completely abolished the protective effects of acetylcholine on intracellular Ca2+ transient amplitude and decay rate. ACh pretreatment attenuates H2O2-induced intracellular Ca2+ dyshomeostasis through both muscarinic and nicotinic receptors. © 2016 The Author(s) Published by S. Karger AG, Basel.

  15. Imaging of cerebral α4β2* nicotinic acetylcholine receptors with (-)-[(18)F]Flubatine PET: Implementation of bolus plus constant infusion and sensitivity to acetylcholine in human brain.

    PubMed

    Hillmer, A T; Esterlis, I; Gallezot, J D; Bois, F; Zheng, M Q; Nabulsi, N; Lin, S F; Papke, R L; Huang, Y; Sabri, O; Carson, R E; Cosgrove, K P

    2016-11-01

    The positron emission tomography (PET) radioligand (-)-[(18)F]flubatine is specific to α4β2(⁎) nicotinic acetylcholine receptors (nAChRs) and has promise for future investigation of the acetylcholine system in neuropathologies such as Alzheimer's disease, schizophrenia, and substance use disorders. The two goals of this work were to develop a simplified method for α4β2(⁎) nAChR quantification with bolus plus constant infusion (B/I) (-)-[(18)F]flubatine administration, and to assess the radioligand's sensitivity to acetylcholine fluctuations in humans. Healthy human subjects were imaged following either bolus injection (n=8) or B/I (n=4) administration of (-)-[(18)F]flubatine. The metabolite-corrected input function in arterial blood was measured. Free-fraction corrected distribution volumes (VT/fP) were estimated with modeling and graphical analysis techniques. Next, sensitivity to acetylcholine was assessed in two ways: 1. A bolus injection paradigm with two scans (n=6), baseline (scan 1) and physostigmine challenge (scan 2; 1.5mg over 60min beginning 5min prior to radiotracer injection); 2. A single scan B/I paradigm (n=7) lasting up to 240min with 1.5mg physostigmine administered over 60min beginning at 125min of radiotracer infusion. Changes in VT/fP were measured. Baseline VT/fP values were 33.8±3.3mL/cm(3) in thalamus, 12.9±1.6mL/cm(3) in cerebellum, and ranged from 9.8 to 12.5mL/cm(3) in other gray matter regions. The B/I paradigm with equilibrium analysis at 120min yielded comparable VT/fP values with compartment modeling analysis of bolus data in extrathalamic gray matter regions (regional means <4% different). Changes in VT/fP following physostigmine administration were small and most pronounced in cortical regions, ranging from 0.8 to 4.6% in the two-scan paradigm and 2.8 to 6.5% with the B/I paradigm. These results demonstrate the use of B/I administration for accurate quantification of (-)-[(18)F]flubatine VT/fP in 120min, and suggest

  16. Copper(II) cyanido-bridged bimetallic nitroprusside-based complexes: Syntheses, X-ray structures, magnetic properties, {sup 57}Fe Moessbauer spectroscopy and thermal studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travnicek, Zdenek, E-mail: zdenek.travnicek@upol.c; Herchel, Radovan; Mikulik, Jiri

    2010-05-15

    Three heterobimetallic cyanido-bridged copper(II) nitroprusside-based complexes of the compositions [Cu(tet)Fe(CN){sub 5}NO].H{sub 2}O (1), where tet=N,N'-bis(3-aminopropyl)ethylenediamine, [Cu(hto)Fe(CN){sub 5}NO].2H{sub 2}O (2), where hto=1,3,6,9,11,14-hexaazatricyclo[12.2.1.1{sup 6,9}]octadecane and [Cu(nme){sub 2}Fe(CN){sub 5}NO].H{sub 2}O (3), where nme=N-methylethylenediamine, were synthesized and characterized by elemental analyses, {sup 57}Fe Moessbauer and FTIR spectroscopies, thermal analysis, magnetic measurements and single-crystal X-ray analysis. The products of thermal degradation processes of 2 and 3 were studied by XRD, {sup 57}Fe Moessbauer spectroscopy, SEM and EDS, and they were identified as mixtures of CuFe{sub 2}O{sub 4} and CuO. - Three heterobimetallic cyano-bridged copper(II) nitroprusside-based complexes of the general compositions of [Cu(L)Fe(CN){sub 5}NO].xH{sub 2}O, wheremore » L=N,N'-bis(3-aminopropyl)ethylenediamine (complex 1), 1,3,6,9,11,14-hexaazatricyclo[12.2.1.1{sup 6,9}]-octadecane (complex 2) and N-methylethylenediamine (complex 3), were synthesized, and fully structurally and magnetically characterized. SEM, EDS, XRD and {sup 57}Fe Moessbauer experiments were used for characterization of thermal decomposition products of complexes 2 and 3.« less

  17. Acetylcholine-modulated plasticity in reward-driven navigation: a computational study.

    PubMed

    Zannone, Sara; Brzosko, Zuzanna; Paulsen, Ole; Clopath, Claudia

    2018-06-21

    Neuromodulation plays a fundamental role in the acquisition of new behaviours. In previous experimental work, we showed that acetylcholine biases hippocampal synaptic plasticity towards depression, and the subsequent application of dopamine can retroactively convert depression into potentiation. We also demonstrated that incorporating this sequentially neuromodulated Spike-Timing-Dependent Plasticity (STDP) rule in a network model of navigation yields effective learning of changing reward locations. Here, we employ computational modelling to further characterize the effects of cholinergic depression on behaviour. We find that acetylcholine, by allowing learning from negative outcomes, enhances exploration over the action space. We show that this results in a variety of effects, depending on the structure of the model, the environment and the task. Interestingly, sequentially neuromodulated STDP also yields flexible learning, surpassing the performance of other reward-modulated plasticity rules.

  18. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  19. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structuremore » of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.« less

  20. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes

    PubMed Central

    Courtot, Elise; Charvet, Claude L.; Beech, Robin N.; Harmache, Abdallah; Wolstenholme, Adrian J.; Holden-Dye, Lindy; O’Connor, Vincent; Peineau, Nicolas; Woods, Debra J.; Neveu, Cedric

    2015-01-01

    Acetylcholine receptors are pentameric ligand–gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR. PMID:26625142

  1. Uptake of /sup 3/H-choline and synthesis of /sup 3/H-acetylcholine by human penile corpus cavernosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanco, R.; Saenz de Tejada, I.; Azadzoi, K.

    1986-03-05

    The neuroeffectors which relax penile smooth muscle and lead to erection are unknown; physiological studies of human corpus cavernosum, in vitro, have suggested a significant role of cholinergic neurotransmission. To further characterize the importance of cholinergic nerves, biopsies of human corpus cavernosum were obtained at the time of penile prosthesis implantation. Tissues were incubated in /sup 3/H-choline (10/sup -5/M, 80 Ci/mmol) in oxygenated physiological salt solution at 37/sup 0/C, pH 7.4 for 1 hour. Radiolabelled compounds were extracted with perchloric acid (0.4 M) and acetylcholine and choline were separated by HPLC; /sup 14/C-acetylcholine was used as internal standard. /sup 3/H-cholinemore » was accumulated by the tissues (20 +/- 1.9 fmol/mg), and /sup 3/H-acetylcholine was synthesized (4.0 +/- 1.1 fmol/mg). In control experiments, heating of the tissue blocked synthesis of /sup 3/H-acetylcholine. Inhibition of high affinity choline transport by hemicholinium-3 (10/sup -5/M) diminished tissue accumulation of /sup 3/H-choline and significantly reduced the synthesis of /sup 3/H-acetylcholine (0.5 +/ 0.2 fmol/mg, p < 0.05). These results provide direct evidence of neuronal accumulation of choline and enzymatic conversion to acetylcholine in human corpus cavernosum. Taken together with the physiological studies, it can be concluded that cholinergic neurotransmission in human corpus cavernosum plays a role in penile erection.« less

  2. Sigma receptor ligand N,N'-di-(ortho-tolyl)guanidine inhibits release of acetylcholine in the guinea pig ileum.

    PubMed

    Cambell, B G; Keana, J F; Weber, E

    1991-11-26

    The inhibition of stimulated contractions of the guinea pig ileum longitudinal muscle/myenteric plexus preparation by sigma receptor ligands has been previously described. In this study, the stimulated release of [3H]acetylcholine from cholinergic nerve terminals in this same preparation was monitored in the presence and absence of sigma receptor ligands. N,N'-Di-(orthotolyl)guanidine (DTG) and other compounds selective for the sigma receptor inhibited stimulated [3H]acetylcholine release. These results suggest that their inhibition of stimulated contractions in this preparation was mediated by inhibition of acetylcholine release.

  3. Blockade of beta-adrenoceptors enhances cAMP signal transduction in vivo

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1998-01-01

    The aim of this study was to determine whether the blockade of beta-adrenoceptors would enhance cAMP-mediated signal transduction processes in vivo. The administration of the membrane permeable cAMP analogue, 8-(4-chlorophenylthiol)-cAMP (8-CPT-cAMP, 10 micromol/kg, i.v.) produced an increase in heart rate (+27 +/- 2%, P < 0.05), a fall in mean arterial blood pressure (-21 +/- 3%, P < 0.05) and falls in hindquarter (-12 +/- 3%, P < 0.05) and mesenteric (-32 +/- 3%, P < 0.05) vascular resistances in pentobarbital-anesthetized rats. The beta-adrenoceptor antagonist, propranolol (1 mg/kg, i.v.) lowered heart rate (-12 +/- 3%, P < 0.05) but did not affect mean arterial blood pressure or vascular resistances. The tachycardia, hypotension and vasodilation produced by 8-CPT-cAMP were exaggerated after administration of propranolol (P < 0.05 for all comparisons). The nitric oxide-donor, sodium nitroprusside (2 microg/kg, i.v.), produced falls in mean arterial blood pressure and vascular resistances of similar magnitude to those produced by 8-CPT-cAMP. These sodium nitroprusside-induced responses were unaffected by propranolol (P < 0.05 for all comparisons). Sodium nitroprusside also produced a minor increase in heart rate (+5 +/- 1%, P < 0.05) which was abolished by propranolol. These findings suggest that 8-CPT-cAMP directly increases heart rate and that blockade of beta-adrenoceptors enhances the potency of cAMP within the heart and vasculature.

  4. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors.

    PubMed

    Vulfius, Catherine A; Kasheverov, Igor E; Kryukova, Elena V; Spirova, Ekaterina N; Shelukhina, Irina V; Starkov, Vladislav G; Andreeva, Tatyana V; Faure, Grazyna; Zouridakis, Marios; Tsetlin, Victor I; Utkin, Yuri N

    2017-01-01

    Phospholipases A2 (PLA2s) are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs) and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely β-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic β-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 μM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and β-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which should be proved by

  5. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír

    2017-01-01

    Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands.

  6. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: ( sup 3 H)nicotine as an agonist photoaffinity label

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, R.E.; Cohen, J.B.

    1991-07-16

    The agonist ({sup 3}H)nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). ({sup 3}H)Nicotine binds at equilibrium with K{sub eq} = 0.6 {mu}M to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with ({sup 3}H)nicotine resulted in covalent incorporation into the {alpha}- and {gamma}-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the {alpha}-subunit was labeled via both agonist sites but the {gamma}-subunit was labeled only via the site that binds d-tubocurarine with highmore » affinity. Chymotryptic digestion of the {alpha}-subunit confirmed that Try-198 was the principal amino acid labeled by ({sup 3}H)nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde ({sup 3}H)Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.« less

  7. Raman scattering-based multiconformational analysis for probing the structural differences between acetylcholine and acetylthiocholine.

    PubMed

    Hernández, Belén; Houzé, Pascal; Pflüger, Fernando; Kruglik, Sergei G; Ghomi, Mahmoud

    2017-05-10

    Acetylcholine is the first discovered neurotransmitter that has received a great attention regarding its capability of binding to several cellular targets. The chemical composition of acetylcholine, including a positively charged trimethylammonium and a carbonyl group, as well as its conformational flexibility was pointed out as the key factors in the stabilization of its interactions. Here, the possibilities offered by a Raman scattering-based multiconformatioal analysis to access the most stable conformers of acetylcholine, is discussed. To control the validity of this protocol, acetylcholine and one of its closely structured analogues, acetylthiocholine, were simultaneously analyzed. Solution Raman spectra revealed distinct and well resolved strong markers for each molecule. Density functional theory calculations were consistent with the fact that the energy order of the low energy conformers is considerably affected by the acyloxy oxygen→sulfur atom substitution. Raman spectra were calculated on the basis of the thermal average of the spectra arising from the low energy conformers. It has been evidenced that the carbonyl and trimethylammonium groups are the most favorable hydration sites in aqueous environment. Taking into account the large gap between the carbonyl bond-stretch and aliphatic bending bands, Raman spectra also allowed separation of the HOH bending vibrations arising from the bound and bulk water molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Imaging of cerebral α4β2* nicotinic acetylcholine receptors with (−)-[18F]Flubatine PET: Implementation of bolus plus constant infusion and sensitivity to acetylcholine in human brain☆

    PubMed Central

    Hillmer, A.T.; Esterlis, I.; Gallezot, J.D.; Bois, F.; Zheng, M.Q.; Nabulsi, N.; Lin, S.F.; Papke, R.L.; Huang, Y.; Sabri, O.; Carson, R.E.; Cosgrove, K.P.

    2016-01-01

    The positron emission tomography (PET) radioligand (−)-[18F]flubatine is specific to α4β2∗ nicotinic acetylcholine receptors (nAChRs) and has promise for future investigation of the acetylcholine system in neuropathologies such as Alzheimer's disease, schizophrenia, and substance use disorders. The two goals of this work were to develop a simplified method for α4β2∗ nAChR quantification with bolus plus constant infusion (B/I) (−)-[18F]flubatine administration, and to assess the radioligand's sensitivity to acetylcholine fluctuations in humans. Healthy human subjects were imaged following either bolus injection (n = 8) or B/I (n = 4) administration of (−)-[18F]flubatine. The metabolite-corrected input function in arterial blood was measured. Free-fraction corrected distribution volumes (VT/fP) were estimated with modeling and graphical analysis techniques. Next, sensitivity to acetylcholine was assessed in two ways: 1. A bolus injection paradigm with two scans (n = 6), baseline (scan 1) and physostigmine challenge (scan 2; 1.5 mg over 60 min beginning 5 min prior to radiotracer injection); 2. A single scan B/I paradigm (n = 7) lasting up to 240 min with 1.5 mg physostigmine administered over 60 min beginning at 125 min of radiotracer infusion. Changes in VT/fP were measured. Baseline VT/fP values were 33.8 ± 3.3 mL/cm3 in thalamus, 12.9 ± 1.6 mL/cm3 in cerebellum, and ranged from 9.8 to 12.5 mL/cm3 in other gray matter regions. The B/I paradigm with equilibrium analysis at 120 min yielded comparable VT/fP values with compartment modeling analysis of bolus data in extrathalamic gray matter regions (regional means <4% different). Changes in VT/fP following physostigmine administration were small and most pronounced in cortical regions, ranging from 0.8 to 4.6% in the two-scan paradigm and 2.8 to 6.5% with the B/I paradigm. These results demonstrate the use of B/I administration for accurate quantification of (−)-[18F]flubatine VT/fP in 120 min, and

  9. Antigenic Structure of the Human Muscle Nicotinic Acetylcholine Receptor Main Immunogenic Region

    PubMed Central

    Luo, Jie; Lindstrom, Jon

    2009-01-01

    The main immunogenic region on the α1 subunits of muscle nicotinic acetylcholine receptors provokes half or more of the autoantibodies in myasthenia gravis and its animal model. Many of these autoantibodies depend on the native conformation of the receptor for their ability to bind with high affinity. We mapped this region and explained the conformation-dependence of its epitopes by making chimeras in which sequences of human muscle α1 subunits were replaced in human neuronal α7 subunits or Aplysia acetylcholine binding protein. These chimeras also revealed that the main immunogenic region can play a major role in promoting conformational maturation, and, consequently, assembly of receptor subunits. PMID:19705087

  10. Evaluation of the sensitivity of the novel α4β2* nicotinic acetylcholine receptor PET radioligand 18F-(-)-NCFHEB to increases in synaptic acetylcholine levels in rhesus monkeys.

    PubMed

    Gallezot, Jean-Dominique; Esterlis, Irina; Bois, Frederic; Zheng, Ming-Qiang; Lin, Shu-Fei; Kloczynski, Tracy; Krystal, John H; Huang, Yiyun; Sabri, Osama; Carson, Richard E; Cosgrove, Kelly P

    2014-11-01

    18F-(-)-NCFHEB (also known as 18F-(-)-Flubatine) is a new radioligand to image α4β2* nicotinic acetylcholine receptors in vivo with positron emission tomography (PET), with faster kinetics than previous radioligands such as 18F-2-F-A85380. The goal of this study was to assess the sensitivity of 18F-(-)-NCFHEB-PET to increases in synaptic acetylcholine concentration induced by acetylcholinesterase inhibitors. Two rhesus monkeys were scanned four times each on a Focus 220 scanner: first at baseline, then during two bolus plus infusions of physostigmine (0.06-0.28 mg/kg), and finally following a bolus injection of donepezil (0.25 mg/kg). The arterial input function and the plasma free fraction fP were measured. 18F-(-)-NCFHEB volume of distribution VT was estimated using the multilinear analysis MA1 and then normalized by plasma free fraction fP . 18F-(-)-NCFHEB fP was 0.89±0.04. At baseline, 18F-(-)-NCFHEB VT /fP ranged from 7.9±1.3 mL plasma/cm3 tissue in the cerebellum to 34.3±8.4 mL plasma/cm3 tissue in the thalamus. Physostigmine induced a dose-dependent reduction of 18F-(-)-NCFHEB VT /fP of 34±9% in the putamen, 32±8% in the thalamus, 25±8% in the cortex, and 23±10% in the hippocampus. With donepezil, 18F-(-)-NCFHEB VT /fP was reduced by 24±2%, 14+3% and 14±5%, 10±6% in the same regions. 18F-(-)-NCFHEB can be used to detect changes in synaptic acetylcholine concentration and is a promising tracer to study acetylcholine dynamics with shorter scan durations than previous radioligands. © 2014 Wiley Periodicals, Inc.

  11. Regular exercise enhances blood pressure lowering effect of acetylcholine by increased contribution of nitric oxide.

    PubMed

    Dörnyei, G; Monos, E; Kaley, G; Koller, A

    2000-01-01

    This study is aimed to test the hypothesis, that short-term daily bouts of exercise alter the endothelial regulation of peripheral vascular resistance by nitric oxide. Rats ran on a treadmill once a day, 5 days a week, for an average of three weeks with gradually increasing intensity (EX), while a control group remained sedentary (SED). Dose dependent reductions in mean arterial blood pressure (resting MABP; SED: 120.0 +/- 3.4 and EX: 127.8 +/- 4.0 mm Hg) of pentobarbital anesthetized rats to intravenous endothelium independent dilator sodium nitropmsside (SNP; 0.6-3.0 microg/kg) were not different in EX and SED animals. In contrast, dose dependent reductions in MABP to endothelium dependent dilator acetylcholine (ACh) were significantly enhanced in EX compared to those in SED rats (at 0.5 and 1.0 microg/kg ACh: 60.3 +/- 2.4 and 66.5 +/- 1.8 vs 52.8 +/- 2.0 and 59.8 +/- 1.7 mmHg, respectively, p<0.01). There was no significant difference in the heart rate (HR) response to ACh and SNP in the two groups of rats. Intravenous administration of 20 mg/kg Nomega-nitro-L-arginine (L-NNA, a nitric oxide synthase inhibitor) elicited a similar increase (approximately 30%) in the MABP in the two groups and eliminated the difference between ACh-induced blood pressure lowering responses in EX and SED rats (at 0.5 and 1.0 microg/kg ACh: 44.6 +/- 4.7 and 56.3 +/- 4.4 vs 50.9 +/- 4.5 and 59.4 +/- 3.6 mm Hg, respectively). Thus, we suggest that the enhanced acetylcholine-induced decrease in systemic blood pressure following regular daily exercise is primarily due to the augmented synthesis of nitric oxide in the endothelium of peripheral vasculature. This change in the function of endothelium could be important in the adaptation of circulation to exercise training.

  12. Amperometric determination of acetylcholine-A neurotransmitter, by chitosan/gold-coated ferric oxide nanoparticles modified gold electrode.

    PubMed

    Chauhan, Nidhi; Pundir, C S

    2014-11-15

    An amperometric acetylcholine biosensor was constructed by co-immobilizing covalently, a mixture of acetylcholinesterase (AChE) and choline oxidase (ChO) onto nanocomposite of chitosan (CHIT)/gold-coated ferric oxide nanoparticles (Fe@AuNPs) electrodeposited onto surface of a Au electrode and using it as a working electrode, Ag/AgCl as reference electrode and Pt wire as auxiliary electrode connected through potentiostat. The biosensor is based on electrochemical measurement of H2O2 generated from oxidation of choline by immobilized ChO, which in turn is produced from hydrolysis of acetylcholine by immobilized AChE. The biosensor exhibited optimum response within 3s at +0.2V, pH 7.0 and 30°C. The enzyme electrode had a linear working range of 0.005-400 µM, with a detection limit of 0.005 µM for acetylcholine. The biosensor measured plasma acetylcholine in apparently healthy and persons suffering from Alzheimer's disease. The enzyme electrode was unaffected by a number of serum substances but lost 50% of its initial activity after its 100 uses over a period of 3 months, when stored at 4°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Homocysteine impaired endothelial function through compromised vascular endothelial growth factor/Akt/endothelial nitric oxide synthase signalling.

    PubMed

    Yan, Ting-Ting; Li, Qian; Zhang, Xuan-Hong; Wu, Wei-Kang; Sun, Juan; Li, Lin; Zhang, Quan; Tan, Hong-Mei

    2010-11-01

    1. Hyperhomocysteinaemia (HHcy) is associated with endothelial dysfunction and has been recognized as a risk factor of cardiovascular disease. The present study aimed to investigate the effect of homocysteine (Hcy) on endothelial function in vivo and in vitro, and the underlying signalling pathways. 2. The HHcy animal model was established by intragastric administration with l-methionine in rats. Plasma Hcy and nitric oxide (NO) concentration were measured by fluorescence immunoassay or nitrate reductase method, respectively. Vasorelaxation in response to acetylcholine and sodium nitroprusside were carried out on aortic rings. Human umbilical vein endothelial cells (HUVEC) were treated with indicated concentrations of Hcy in the in vitro experiments. Intracellular NO level and NO concentration in culture medium were assayed. The alterations of possible signalling proteins were detected by western blot analysis. 3. l-methionine administration induced a significant increase in plasma Hcy and decrease in plasma NO. Endothelium-dependent relaxation of aortic rings in response to acetylcholine was impaired in l-methionine-administrated rats. The in vitro study showed that Hcy reduced both intracellular and culture medium NO levels. Furthermore, Hcy decreased phosphorylation of endothelial nitric oxide synthase (eNOS) at serine-1177 and phosphorylation of Akt at serine-473. Hcy-induced dephosphorylation of eNOS at Ser-1177 was partially reversed by insulin (Akt activator) and GF109203X (PKC inhibitor). Furthermore, Hcy reduced vascular endothelial growth factor (VEGF) expression in a dose-dependent manner. 4. In conclusion, Hcy impaired endothelial function through compromised VEGF/Akt/endothelial nitric oxide synthase signalling. These findings will be beneficial for further understanding the role of Hcy in cardiovascular disease. © 2010 Blackwell Publishing Asia Pty Ltd.

  14. Epigallocatechin gallate attenuates ET-1-induced contraction in carotid artery from type 2 diabetic OLETF rat at chronic stage of disease.

    PubMed

    Matsumoto, Takayuki; Watanabe, Shun; Kawamura, Ryusuke; Taguchi, Kumiko; Kobayashi, Tsuneo

    2014-11-24

    There is a growing body of evidence suggesting that epigallocatechin gallate (EGCG), a major catechin isolated from green tea, has several beneficial effects, such as anti-oxidant and anti-inflammatory activities. However, whether treatment with EGCG can suppress the endothelin-1 (ET-1)-induced contraction in carotid arteries from type 2 diabetic rats is unknown, especially at the chronic stage of the disease. We hypothesized that long-term treatment with EGCG would attenuate ET-1-induced contractions in type 2 diabetic arteries. Otsuka Long-Evans Tokushima fatty (OLETF) rats (43 weeks old) were treated with EGCG (200 mg/kg/day for 2 months, p.o.), and the responsiveness to ET-1, phenylephrine (PE), acetylcholine (ACh) and sodium nitroprusside (SNP) was measured in common carotid artery (CA) from EGCG-treated and -untreated OLETF rats and control Long-Evans Tokushima Otsuka (LETO) rats. In OLETF rats, EGCG attenuated responsiveness to ET-1 in CA compared to untreated groups. However, EGCG did not alter PE-induced contractions in CA from OLETF rats. In endothelium-denuded arteries, EGCG did not affect ET-1-induced contractions in either the OLETF or LETO group. Acetylcholine-induced relaxation was increased by EGCG treatment in CA from the OLETF group. The expressions of ET receptors, endothelial nitric oxide synthase, superoxide dismutases, and gp91(phox) [an NAD(P)H oxidase component] in CA were not altered by EGCG treatment in either group. Our data suggest that, within the timescale investigated here, EGCG attenuates ET-1-induced contractions in CA from type 2 diabetic rats, and one of the mechanisms may involve normalizing endothelial function. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Are acetylcholine-induced acetyl groups driving fuel cells in the systems of transducin, t and G proteins?

    PubMed

    Nyberg-Swenson, B E

    2002-05-01

    Life is completely dependent on a support of energy which is generated by the direct absorption of light or by the reduction of oxygen. Metabolized food yields ac(et)yl groups which are utilized in the reduction of oxygen with the assistance of many other compounds. Acetylcholine appears to be an important substance for the transportation of acetyl groups. Acetylcholine activates systems regulated by transducin, t and G proteins, probably Se enzymes, reacting by similar mechanisms in triggered reactions ending in nerve or muscle signals. These activations are performed by GTP (or ATP), probably resulting from the reactions of acetylcholine-induced acetyl groups. The inactivation-activation states of these systems are regulated by changes of GTP to cGMP to GMP which form a loop.Diminished support of energy to systems, because of impaired charge transfer to oxygen, may be responsible for many diseases. For example, there is a low level of acetylcholine in the brains of patients with Alzheimer's disease. Copyright 2002 Elsevier Science Ltd. All Rights reserved.

  16. Reduction of Mitochondria-Endoplasmic Reticulum Interactions by Acetylcholine Protects Human Umbilical Vein Endothelial Cells From Hypoxia/Reoxygenation Injury.

    PubMed

    He, Xi; Bi, Xue-Yuan; Lu, Xing-Zhu; Zhao, Ming; Yu, Xiao-Jiang; Sun, Lei; Xu, Man; Wier, W Gil; Zang, Wei-Jin

    2015-07-01

    We explored the role of endoplasmic reticulum (ER)-mitochondria Ca(2+) cross talk involving voltage-dependent anion channel-1 (VDAC1)/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 in endothelial cells during hypoxia/reoxygenation (H/R), and investigated the protective effects of acetylcholine. Acetylcholine treatment during reoxygenation prevented intracellular and mitochondrial Ca(2+) increases and alleviated ER Ca(2+) depletion during H/R in human umbilical vein endothelial cells. Consequently, acetylcholine enhanced mitochondrial membrane potential and inhibited proapoptotic cascades, thereby reducing cell death and preserving endothelial ultrastructure. This effect was likely mediated by the type-3 muscarinic acetylcholine receptor and the phosphatidylinositol 3-kinase/Akt pathway. In addition, interactions among members of the VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex were increased after H/R and were associated with mitochondrial Ca(2+) overload and cell death. Inhibition of the partner of the Ca(2+) channeling complex (VDAC1 siRNA) or a reduction in ER-mitochondria tethering (mitofusin 2 siRNA) prevented the increased protein interaction within the complex and reduced mitochondrial Ca(2+) accumulation and subsequent endothelial cell death after H/R. Intriguingly, acetylcholine could modulate ER-mitochondria Ca(2+) cross talk by inhibiting the VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 expression. Phosphatidylinositol 3-kinase siRNA diminished acetylcholine-mediated inhibition of mitochondrial Ca(2+) overload and VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex formation induced by H/R. Our data suggest that ER-mitochondria interplay plays an important role in reperfusion injury in the endothelium and may be a novel molecular target for endothelial protection. Acetylcholine attenuates

  17. Dairy cheese consumption ameliorates single-meal sodium-induced cutaneous microvascular dysfunction by reducing ascorbate-sensitive oxidants in healthy older adults

    PubMed Central

    Stanhewicz, Anna E.; Alba, Billie K.; Kenney, W. Larry; Alexander, Lacy M.

    2018-01-01

    Chronic dairy intake is associated with improved cardiovascular outcomes while high dietary-sodium impairs endothelial function through increased oxidative stress and reduced nitric oxide (NO) bioavailability. The purpose of this study was to compare the effect of acute cheese consumption with consumption of sodium from non-dairy sources on microvascular function. We hypothesized that dairy-cheese ingestion would augment NO-dependent vasodilation compared to sodium from non-dairy sources. On 5 separate visits, 14 healthy subjects (61±2yrs, 8M/6F) consumed either 85g dairy cheese (560mg Na), 85g soy cheese (560mg Na), 65g pretzels (560mg Na), 170g dairy cheese (1120mg Na), or 130g pretzels (1120mg Na). Two intradermal microdialysis fibers were inserted in the ventral forearm for delivery of lactated Ringer’s or 10mM ascorbate (antioxidant) during local skin heating (~50 min). Red cell flux was measured continuously by laser-Doppler flowmetry (LDF) and cutaneous vascular conductance (CVC=LDF/MAP) was normalized as %CVCmax (28mM sodium nitroprusside). Following a plateau in CVC, 15mM NG-nitro-L-arginine methyl ester was perfused to quantify NO-dependent vasodilation (~45 min). NO-dependent vasodilation was greater following dairy (560mg Na 57±3%) (1120mg Na 55±5%) compared to soy (560mg Na 42±3%; p=0.002) or pretzel (560mg Na 43±4%; p=0.004) (1120mg Na 46±3%; p=0.04). Ascorbate augmented NO-dependent vasodilation following soy (control: 42±3 vs. ascorbate: 54±3%; p=0.01) or pretzel (560mg Na; control: 43±4 vs. ascorbate: 56±3%; p=0.006) (1120mg Na; control: 46±5 vs. ascorbate: 56±3%; p=0.02), but not dairy. Sodium ingestion in dairy was associated with greater NO-dependent vasodilation compared to non-dairy sodium, a difference that was ameliorated with ascorbate perfusion. Dairy nutrients may protect against sodium-induced reductions in NO-dependent dilation through ascorbate-sensitive mechanisms. PMID:27363679

  18. Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta-Gamma Coupling during Cue Detection.

    PubMed

    Howe, William M; Gritton, Howard J; Lusk, Nicholas A; Roberts, Erik A; Hetrick, Vaughn L; Berke, Joshua D; Sarter, Martin

    2017-03-22

    The capacity for using external cues to guide behavior ("cue detection") constitutes an essential aspect of attention and goal-directed behavior. The cortical cholinergic input system, via phasic increases in prefrontal acetylcholine release, plays an essential role in attention by mediating such cue detection. However, the relationship between cholinergic signaling during cue detection and neural activity dynamics in prefrontal networks remains unclear. Here we combined subsecond measures of cholinergic signaling, neurophysiological recordings, and cholinergic receptor blockade to delineate the cholinergic contributions to prefrontal oscillations during cue detection in rats. We first confirmed that detected cues evoke phasic acetylcholine release. These cholinergic signals were coincident with increased neuronal synchrony across several frequency bands and the emergence of theta-gamma coupling. Muscarinic and nicotinic cholinergic receptors both contributed specifically to gamma synchrony evoked by detected cues, but the effects of blocking the two receptor subtypes were dissociable. Blocking nicotinic receptors primarily attenuated high-gamma oscillations occurring during the earliest phases of the cue detection process, while muscarinic (M1) receptor activity was preferentially involved in the transition from high to low gamma power that followed and corresponded to the mobilization of networks involved in cue-guided decision making. Detected cues also promoted coupling between gamma and theta oscillations, and both nicotinic and muscarinic receptor activity contributed to this process. These results indicate that acetylcholine release coordinates neural oscillations during the process of cue detection. SIGNIFICANCE STATEMENT The capacity of learned cues to direct attention and guide responding ("cue detection") is a key component of goal-directed behavior. Rhythmic neural activity and increases in acetylcholine release in the prefrontal cortex contribute to

  19. Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta–Gamma Coupling during Cue Detection

    PubMed Central

    Hetrick, Vaughn L.; Berke, Joshua D.

    2017-01-01

    The capacity for using external cues to guide behavior (“cue detection”) constitutes an essential aspect of attention and goal-directed behavior. The cortical cholinergic input system, via phasic increases in prefrontal acetylcholine release, plays an essential role in attention by mediating such cue detection. However, the relationship between cholinergic signaling during cue detection and neural activity dynamics in prefrontal networks remains unclear. Here we combined subsecond measures of cholinergic signaling, neurophysiological recordings, and cholinergic receptor blockade to delineate the cholinergic contributions to prefrontal oscillations during cue detection in rats. We first confirmed that detected cues evoke phasic acetylcholine release. These cholinergic signals were coincident with increased neuronal synchrony across several frequency bands and the emergence of theta–gamma coupling. Muscarinic and nicotinic cholinergic receptors both contributed specifically to gamma synchrony evoked by detected cues, but the effects of blocking the two receptor subtypes were dissociable. Blocking nicotinic receptors primarily attenuated high-gamma oscillations occurring during the earliest phases of the cue detection process, while muscarinic (M1) receptor activity was preferentially involved in the transition from high to low gamma power that followed and corresponded to the mobilization of networks involved in cue-guided decision making. Detected cues also promoted coupling between gamma and theta oscillations, and both nicotinic and muscarinic receptor activity contributed to this process. These results indicate that acetylcholine release coordinates neural oscillations during the process of cue detection. SIGNIFICANCE STATEMENT The capacity of learned cues to direct attention and guide responding (“cue detection”) is a key component of goal-directed behavior. Rhythmic neural activity and increases in acetylcholine release in the prefrontal cortex

  20. Modeling study of mecamylamine block of muscle type acetylcholine receptors.

    PubMed

    Ostroumov, Konstantin; Shaikhutdinova, Asya; Skorinkin, Andrey

    2008-04-01

    The blocking action of mecamylamine on different types of nicotinic acetylcholine receptors (nAChRs) has been extensively studied and used as a tool to characterize the nAChRs from different synapses. However, mechanism of mecamylamine action was not fully explored for all types of nAChRs. In the present study, we provide brief description of the mecamylamine action on muscle nAChRs expressed at the frog neuromuscular junction. In this preparation mecamylamine block of nAChRs was accompanied by a use-dependent block relief induced by membrane depolarization combined with the activation of nAChRs by endogenous agonist acetylcholine (ACh). Further, three kinetic models of possible mecamylamine interaction with nAChRs were analyzed including simple open channel block, symmetrical trapping block and asymmetrical trapping block. This analysis suggested that mecamylamine action could be described on the basis of trapping mechanism, when the antagonist remained inside the channel even in the absence of bound agonist. Such receptors with trapped mecamylamine inside were predicted to have a closing rate constant about three times faster than resting one and a fast voltage-dependent unblocking rate constant. Specific experimental conditions and morphological organization of the neuromuscular synapses were considered to simulate time course of the mecamylamine block development. Thus, likewise for the neuronal nAChRs, the trapping mechanism determined the action of mecamylamine on synaptic neuromuscular currents evoked by the endogenous agonist acetylcholine (ACh), however specific morphological organization of the synaptic transmission delayed time development of the currents block.

  1. Radiosynthesis and evaluation of novel acetylcholine receptor radioligands

    NASA Astrophysics Data System (ADS)

    Pimlott, Sally L.

    Neuroreceptor single photon emission computed tomography (SPECT) imaging provides a powerful tool for the evaluation of the function of a neurotransmitter system in normal and or disease states in the living human brain. The cholinergic system is involved in the control of a variety of complex functions including learning, memory and modulation of behaviour. Deficits in the cholinergic system have been found in a number of neurological diseases, such as Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease and Epilepsy. Acetylcholine receptors (AChRs) are divided into two classes, muscarinic and nicotinic. The aim of this project was to develop two novel SPECT AChR ligands: (R,R)[123I]I-QNB, a M1 subtype selective muscarinic acetylcholine receptor (mAChR) ligand, and 5-[123I]-A-85380, a alpha4beta2 subtype selective nicotinic receptor (nAChR) ligand, for use in human SPECT imaging studies. The calculation of the binding potential of a ligand can be used to obtain quantitative information from a SPECT scan, enabling comparisons to be made between studies. Methodological issues involved in the calculation of binding potential are therefore crucial for the accuracy of results. A particularly important parameter is the amount of authentic radioligand available to cross the blood brain barrier. This was characterised in the research performed for this thesis. The radiosynthesis of two novel neuroreceptor radioligands has been optimised for use in humans. (R, R)[123I]I-QNB has been used in human studies to provide useful information on the human mAChR function in disease. Pre-clinical evaluation of 5-[123I]-A-85380 provided useful information for in vivo human studies. Both radioligands are concluded to successfully provide novel information on the function of the acetylcholine system. Methodological issues involved in the blood metabolite analysis and measurement of plasma protein binding have been investigated and discussed, with particular reference made

  2. Acetylcholine and the alpha 7 nicotinic receptor: a potential therapeutic target for the treatment of periodontal disease?

    PubMed Central

    2013-01-01

    Objectives The aim of this review is to examine the evidence for a functional cholinergic system operating within the periodontium and determine the evidence for its role in periodontal immunity. Introduction Acetylcholine can influence the immune system via the ‘cholinergic anti-inflammatory pathway’. This pathway is mediated by the vagus nerve which releases acetylcholine to interact with the α7 subunit of the nicotinic acetylcholine receptor (α7nAChR) on proximate immuno-regulatory cells. Activation of the α7nAChR on these cells leads to down-regulated expression of pro-inflammatory mediators and thus regulates localised inflammatory responses. The role of the vagus nerve in periodontal pathophysiology is currently unknown. However, non-neuronal cells can also release acetylcholine and express the α7nAChR; these include keratinocytes, fibroblasts, T cells, B cells and macrophages. Therefore, by both autocrine and paracrine methods non-neuronal acetylcholine can also be hypothesised to modulate the localised immune response. Methods A Pubmed database search was performed for studies providing evidence for a functional cholinergic system operating in the periodontium. In addition, literature on the role of the ‘cholinergic anti-inflammatory pathway’ in modulating the immune response was extrapolated to hypothesise that similar mechanisms of immune regulation occur within the periodontium. Conclusion The evidence suggests a functional nonneuronal ‘cholinergic anti-inflammatory pathway’ may operate in the periodontium and that this may be targeted therapeutically to treat periodontal disease. PMID:22777144

  3. END-PLATE ACETYLCHOLINE RECEPTOR: STRUCTURE, MECHANISM, PHARMACOLOGY, AND DISEASE

    PubMed Central

    Sine, Steven M.

    2012-01-01

    The synapse is a localized neurohumoral contact between a neuron and an effector cell and may be considered the quantum of fast intercellular communication. Analogously, the postsynaptic neurotransmitter receptor may be considered the quantum of fast chemical to electrical transduction. Our understanding of postsynaptic receptors began to develop about a hundred years ago with the demonstration that electrical stimulation of the vagus nerve released acetylcholine and slowed the heart beat. During the past 50 years, advances in understanding postsynaptic receptors increased at a rapid pace, owing largely to studies of the acetylcholine receptor (AChR) at the motor endplate. The endplate AChR belongs to a large superfamily of neurotransmitter receptors, called Cys-loop receptors, and has served as an exemplar receptor for probing fundamental structures and mechanisms that underlie fast synaptic transmission in the central and peripheral nervous systems. Recent studies provide an increasingly detailed picture of the structure of the AChR and the symphony of molecular motions that underpin its remarkably fast and efficient chemoelectrical transduction. PMID:22811427

  4. Acetylcholine contributes to control the physiological inflammatory response during the peri-implantation period.

    PubMed

    Paparini, D; Gori, S; Grasso, E; Scordo, W; Calo, G; Pérez Leirós, C; Ramhorst, R; Salamone, G

    2015-06-01

    Maternal antigen-presenting cells attracted to the pregnant uterus interact with trophoblast cells and modulate their functional profile to favour immunosuppressant responses. Non-neuronal cholinergic system is expressed in human cytotrophoblast cells and in immune cells with homeostatic regulatory functions. The aim of this work was to evaluate whether non-neuronal acetylcholine conditions maternal monocyte and DC migration and activation profiles. We used an in vitro model resembling maternal-placental interface represented by the co-culture of human trophoblast cells (Swan-71 cell line) and monocytes or DC. When cytotrophoblast cells were treated with neostigmine (Neo) to concentrate endogenous acetylcholine levels, monocyte migration was increased. In parallel, high levels of IL-10 and decreased levels of TNF-α were observed upon interaction of maternal monocytes with trophoblast cells. This effect was synergized by Neo and was prevented by atropine, a muscarinic acetylcholine receptor antagonist. Similarly, trophoblast cells increased the migration of DC independently of Neo treatment; however, enhanced IL-10 and MCP-1 synthesis in trophoblast-DC co-cultures with no changes in TNF-α and IL-6 was observed. In fact, there were no changes in HLA-DR, CD86 or CD83 expression. Finally, trophoblast cells treated with Neo increased the expression of two antigen-presenting cells attracting chemokines, MCP-1, MIP-1α and RANTES through muscarinic receptors, and it was prevented by atropine. Our present results support a novel role of acetylcholine synthesized by trophoblast cells to modulate antigen-presenting cell migration and activation favouring an immunosuppressant profile that contributes to immune homeostasis maintenance at the maternal-foetal interface. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  5. Substance P relaxes rat bronchial smooth muscle via epithelial prostanoid synthesis.

    PubMed

    Bodelsson, M; Blomquist, S; Caverius, K; Törnebrandt, K

    1999-01-01

    Substance P is present in bronchial nerve fibres. The physiological actions of substance P are mediated via tachykinin NK(1) receptors. Immunochemical studies have demonstrated tachykinin NK(1) receptors in the rat airway epithelium. To elucidate how epithelial tachykinin NK(1) receptors affect smooth muscle response to substance P. Contractile response of isolated rat bronchial trunk with or without epithelium was recorded. In intact segments precontracted by 5-hydroxytryptamine, relaxation was induced by substance P and the nitric oxide donor, sodium nitroprusside. Removal of the epithelium abolished relaxation induced by substance P but did not affect relaxation induced by sodium nitroprusside. The cyclo-oxygenase inhibitor, indomethacin, but not the nitric oxide synthase inhibitor, L-N(G)-monomethylarginine, reduced the relaxation in response to substance P. Epithelial tachykinin NK(1) receptors mediate substance-P-induced relaxation of rat bronchial smooth muscle via release of prostanoids but not nitric oxide.

  6. An extract of lionfish (Pterois volitans) spine tissue contains acetylcholine and a toxin that affects neuromuscular transmission.

    PubMed

    Cohen, A S; Olek, A J

    1989-01-01

    A soluble toxic extract derived from spine tissue of the lionfish (Pterois volitans) decreased heart rate and force of contraction in isolated clam and frog hearts. These actions were due to the presence of micromolar concentrations of acetylcholine in the extract. Toxicity was retained after hydrolysis of acetylcholine by exogenous acetylcholinesterase, but heart function was no longer affected. Toxin treated in this way induced muscle fibrillation in an isolated nerve-muscle preparation, followed by blockade of neuromuscular transmission. Bursts of transient depolarizations were recorded at the muscle endplate shortly after toxin addition that correlated in time with the duration of toxin-induced muscle fibrillation. These effects are thought to be due to the increased release and then depletion of acetylcholine from the nerve terminal.

  7. Computer modeling of the neurotoxin binding site of acetylcholine receptor spanning residues 185 through 196

    NASA Technical Reports Server (NTRS)

    Garduno-Juarez, R.; Shibata, M.; Zielinski, T. J.; Rein, R.

    1987-01-01

    A model of the complex between the acetylcholine receptor and the snake neurotoxin, cobratoxin, was built by molecular model building and energy optimization techniques. The experimentally identified functionally important residues of cobratoxin and the dodecapeptide corresponding to the residues 185-196 of acetylcholine receptor alpha subunit were used to build the model. Both cis and trans conformers of cyclic L-cystine portion of the dodecapeptide were examined. Binding residues independently identified on cobratoxin are shown to interact with the dodecapeptide AChR model.

  8. Positive inotropic and vasodilator actions of milrinone in patients with severe congestive heart failure. Dose-response relationships and comparison to nitroprusside.

    PubMed Central

    Jaski, B E; Fifer, M A; Wright, R F; Braunwald, E; Colucci, W S

    1985-01-01

    Milrinone is a potent positive inotropic and vascular smooth muscle-relaxing agent in vitro, and therefore, it is not known to what extent each of these actions contributes to the drug's hemodynamic effects in patients with heart failure. In 11 patients with New York Heart Association class III or IV congestive heart failure, incremental intravenous doses of milrinone were administered to determine the dose-response relationships for heart rate, systemic vascular resistance, and inotropic state, the latter measured by peak positive left ventricular derivative of pressure with respect to time (dP/dt). To clarify further the role of a positive inotropic action, the relative effects of milrinone and nitroprusside on left ventricular stroke work and dP/dt were compared in each patient at doses matched to cause equivalent reductions in mean arterial pressure or systemic vascular resistance, indices of left ventricular afterload. Milrinone caused heart rate, stroke volume, and dP/dt to increase, and systemic vascular resistance to decrease in a concentration-related manner. At the two lowest milrinone doses resulting in serum concentrations of 63 +/- 4 and 156 +/- 5 ng/ml, respectively, milrinone caused significant increases in stroke volume and dP/dt, but no changes in systemic vascular resistance or heart rate. At the maximum milrinone dose administered (mean serum concentration, 427 +/- 11 ng/ml), heart rate increased from 92 +/- 4 to 99 +/- 4 bpm (P less than 0.01), mean aortic pressure fell from 82 +/- 3 to 71 +/- 3 mmHg (P less than 0.01), right atrial pressure fell from 15 +/- 2 to 7 +/- 1 mmHg (P less than 0.005), left ventricular end-diastolic pressure fell from 26 +/- 3 to 18 +/- 3 (P less than 0.005), stroke volume index increased from 20 +/- 2 to 30 +/- 2 ml/m2 (P less than 0.005), stroke work index increased from 14 +/- 2 to 21 +/- 2 g X m/m2 (P less than 0.01), and dP/dt increased from 858 +/- 54 to 1,130 +/- 108 mmHg/s (P less than 0.005). When compared

  9. NEURO-GUMORALE SUBSTANCES OF DOG BLOOD DURING ACUTE RADIATION SICKNESS. I. CHANGES IN BLOOD ACETYLCHOLINE AND CHOLINESTERASE SYSTEM (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetzova, N.E.

    1963-01-01

    Experiments carried out on 13 male dogs, 2 to 5 years old and weighing 10 to 20 kg, showed that in the initial stages of chroric radiation sickness the blood content of acetylcholine increased and the cholinesterase decreased. Moreove r, the increase in the acetylcholine level during the first 3 to 4 hrs proceeded at a greater rate than the cholinesterase decrease. Shifts in the enzyme system were more pronounced in dogs with greater resistance. However, during the recovery period acetylcholine and cholinesterase restoration took place at earlier periods in dogs with higher resistance. Not only was the cholinesterase activitymore » restored, but it increased to 1.5 to 2 times the initial level. The level of acetylcholine and cholinesterase was not restored in the blood of dogs during terminal periods. In dogs exposed to subacute doses, 300 r, enzyme normalization took place 29 to 41 days following exposure. Correlation of data on enzyme changes in single and chronic exposures indicated identical trends It was postulated that acetylcholine -cholinesterase participate in compensating reactions of organisms during radiation sickness. (R.V.J.)« less

  10. Effect of chemical sympathectomy on the content of acetylcholine, choline and choline acetyltransferase activity in the cat spleen and iris.

    PubMed

    Consolo, S; Garattini, S; Ladinsky, H; Thoenen, H

    1972-02-01

    1. Acetylcholine and choline were measured in the spleens and irides of normal and 6-hydroxydopamine-treated cats. In addition, choline acetyltransferase activity was measured in the spleens.2. No acetylcholine or choline acetyltransferase activity were found in spleens of normal or treated cats. The choline content of normal spleens was 12.4 +/- 1.5 mug/g wet wt. (mean +/- S.E. of mean), which was not significantly altered by chemical sympathectomy.3. The acetylcholine and choline contents of the cat iris were 3.0 +/- 0.3 mug/g wet wt. and 7.7 +/- 0.9 mug/g wet wt., respectively. There was no difference in acetylcholine and choline concentrations between left and right or normal and sympathectomized irides.4. These results are discussed in relation to the question of a cholinergic link in post-ganglionic sympathetic transmission.

  11. Adenosine A₁ and A₂A receptor-mediated modulation of acetylcholine release in the mice neuromuscular junction.

    PubMed

    Garcia, Neus; Priego, Mercedes; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Besalduch, Nuria; Lanuza, M Angel; Tomàs, Josep

    2013-07-01

    Immunocytochemistry shows that purinergic receptors (P1Rs) type A1 and A2A (A1 R and A2 A R, respectively) are present in the nerve endings at the P6 and P30 Levator auris longus (LAL) mouse neuromuscular junctions (NMJs). As described elsewhere, 25 μm adenosine reduces (50%) acetylcholine release in high Mg(2+) or d-tubocurarine paralysed muscle. We hypothesize that in more preserved neurotransmission machinery conditions (blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB) the physiological role of the P1Rs in the NMJ must be better observed. We found that the presence of a non-selective P1R agonist (adenosine) or antagonist (8-SPT) or selective modulators of A1 R or A2 A R subtypes (CCPA and DPCPX, or CGS-21680 and SCH-58261, respectively) does not result in any changes in the evoked release. However, P1Rs seem to be involved in spontaneous release (miniature endplate potentials MEPPs) because MEPP frequency is increased by non-selective block but decreased by non-selective stimulation, with A1 Rs playing the main role. We assayed the role of P1Rs in presynaptic short-term plasticity during imposed synaptic activity (40 Hz for 2 min of supramaximal stimuli). Depression is reduced by micromolar adenosine but increased by blocking P1Rs with 8-SPT. Synaptic depression is not affected by the presence of selective A1 R and A2 A R modulators, which suggests that both receptors need to collaborate. Thus, A1 R and A2 A R might have no real effect on neuromuscular transmission in resting conditions. However, these receptors can conserve resources by limiting spontaneous quantal leak of acetylcholine and may protect synaptic function by reducing the magnitude of depression during repetitive activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Sorting receptor Rer1 controls surface expression of muscle acetylcholine receptors by ER retention of unassembled alpha-subunits.

    PubMed

    Valkova, Christina; Albrizio, Marina; Röder, Ira V; Schwake, Michael; Betto, Romeo; Rudolf, Rüdiger; Kaether, Christoph

    2011-01-11

    The nicotinic acetylcholine receptor of skeletal muscle is composed of five subunits that are assembled in a stepwise manner. Quality control mechanisms ensure that only fully assembled receptors reach the cell surface. Here, we show that Rer1, a putative Golgi-ER retrieval receptor, is involved in the biogenesis of acetylcholine receptors. Rer1 is expressed in the early secretory pathway in the myoblast line C2C12 and in mouse skeletal muscle, and up-regulated during myogenesis. Upon down-regulation of Rer1 in C2C12 cells, unassembled acetylcholine receptor α-subunits escape from the ER and are transported to the plasma membrane and lysosomes, where they are degraded. As a result, the amount of fully assembled receptor at the cell surface is reduced. In vivo Rer1 knockdown and genetic inactivation of one Rer1 allele lead to significantly smaller neuromuscular junctions in mice. Our data show that Rer1 is a functionally important unique factor that controls surface expression of muscle acetylcholine receptors by localizing unassembled α-subunits to the early secretory pathway.

  13. Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation.

    PubMed

    Collins, Anne L; Aitken, Tara J; Greenfield, Venuz Y; Ostlund, Sean B; Wassum, Kate M

    2016-11-01

    Environmental reward-predictive cues can motivate reward-seeking behaviors. Although this influence is normally adaptive, it can become maladaptive in disordered states, such as addiction. Dopamine release in the nucleus accumbens core (NAc) is known to mediate the motivational impact of reward-predictive cues, but little is known about how other neuromodulatory systems contribute to cue-motivated behavior. Here, we examined the role of the NAc cholinergic receptor system in cue-motivated behavior using a Pavlovian-to-instrumental transfer task designed to assess the motivating influence of a reward-predictive cue over an independently-trained instrumental action. Disruption of NAc muscarinic acetylcholine receptor activity attenuated, whereas blockade of nicotinic receptors augmented cue-induced invigoration of reward seeking. We next examined a potential dopaminergic mechanism for this behavioral effect by combining fast-scan cyclic voltammetry with local pharmacological acetylcholine receptor manipulation. The data show evidence of opposing modulation of cue-evoked dopamine release, with muscarinic and nicotinic receptor antagonists causing suppression and augmentation, respectively, consistent with the behavioral effects of these manipulations. In addition to demonstrating cholinergic modulation of naturally-evoked and behaviorally-relevant dopamine signaling, these data suggest that NAc cholinergic receptors may gate the expression of cue-motivated behavior through modulation of phasic dopamine release.

  14. Modulatory Effect of 2-(4-Hydroxyphenyl)amino-1,4-naphthoquinone on Endothelial Vasodilation in Rat Aorta.

    PubMed

    Palacios, Javier; Cifuentes, Fredi; Valderrama, Jaime A; Benites, Julio; Ríos, David; González, Constanza; Chiong, Mario; Cartes-Saavedra, Benjamín; Lafourcade, Carlos; Wyneken, Ursula; González, Pamela; Owen, Gareth I; Pardo, Fabián; Sobrevia, Luis; Buc Calderon, Pedro

    The vascular endothelium plays an essential role in the control of the blood flow. Pharmacological agents like quinone (menadione) at various doses modulate this process in a variety of ways. In this study, Q7 , a 2-phenylamino-1,4-naphthoquinone derivative, significantly increased oxidative stress and induced vascular dysfunction at concentrations that were not cytotoxic to endothelial or vascular smooth muscle cells. Q7 reduced nitric oxide (NO) levels and endothelial vasodilation to acetylcholine in rat aorta. It also blunted the calcium release from intracellular stores by increasing the phenylephrine-induced vasoconstriction when CaCl 2 was added to a calcium-free medium but did not affect the influx of calcium from extracellular space. Q7 increased the vasoconstriction to BaCl 2 (10 -3  M), an inward rectifying K + channels blocker, and blocked the vasodilation to KCl (10 -2  M) in aortic rings precontracted with BaCl 2 . This was recovered with sodium nitroprusside (10 -8  M), a NO donor. In conclusion, Q7 induced vasoconstriction was through a modulation of cellular mechanisms involving calcium fluxes through K + channels, and oxidative stress induced endothelium damage. These findings contribute to the characterization of new quinone derivatives with low cytotoxicity able to pharmacologically modulate vasodilation.

  15. Asthma causes inflammation of human pulmonary arteries and decreases vasodilatation induced by prostaglandin I2 analogs.

    PubMed

    Foudi, Nabil; Badi, Aouatef; Amrane, Mounira; Hodroj, Wassim

    2017-12-01

    Asthma is a chronic inflammatory disease associated with increased cardiovascular events. This study assesses the presence of inflammation and the vascular reactivity of pulmonary arteries in patients with acute asthma. Rings of human pulmonary arteries obtained from non-asthmatic and asthmatic patients were set up in organ bath for vascular tone monitoring. Reactivity was induced by vasoconstrictor and vasodilator agents. Protein expression of inflammatory markers was detected by western blot. Prostanoid releases and cyclic adenosine monophosphate (cAMP) levels were quantified using specific enzymatic kits. Protein expression of cluster of differentiation 68, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and cyclooxygenase-2 was significantly increased in arteries obtained from asthmatic patients. These effects were accompanied by an alteration of vasodilatation induced by iloprost and treprostinil, a decrease in cAMP levels and an increase in prostaglandin (PG) E 2 and PGI 2 synthesis. The use of forskolin (50 µmol/L) has restored the vasodilatation and cAMP release. No difference was observed between the two groups in reactivity induced by norepinephrine, angiotensin II, PGE 2 , KCl, sodium nitroprusside, and acetylcholine. Acute asthma causes inflammation of pulmonary arteries and decreases vasodilation induced by PGI 2 analogs through the impairment of cAMP pathway.

  16. L-arginine as dietary supplement for improving microvascular function.

    PubMed

    Melik, Ziva; Zaletel, Polona; Virtic, Tina; Cankar, Ksenija

    2017-01-01

    Reduced availability of nitric oxide leads to dysfunction of endothelium which plays an important role in the development of cardiovascular diseases. The aim of the present study was to determine whether the dietary supplement L-arginine improves the endothelial function of microvessels by increasing nitric oxide production. We undertook experiments on 51 healthy male volunteers, divided into 4 groups based on their age and physical activity since regular physical activity itself increases endothelium-dependent vasodilation. The skin laser Doppler flux was measured in the microvessels before and after the ingestion of L-arginine (0.9 g). The endothelium-dependent vasodilation was assessed by acetylcholine iontophoresis and the endothelium-independent vasodilation by sodium nitroprusside iontophoresis. In addition, we measured endothelium-dependent and endothelium-independent vasodilation in 81 healthy subjects divided into four age groups. After the ingestion of L-arginine, the endothelium-dependent vasodilation in the young trained subjects increased (paired t-test, p < 0.05), while in the other groups it remained the same. There were no differences in the endothelium-independent vasodilation after ingestion of L-arginine. With aging endothelium-independent vasodilation decreased while endothelium-dependent vasodilation remained mainly unchanged. Obtained results demonstrated that a single dose of L-arginine influences endothelium-dependent vasodilation predominantly in young, trained individuals.

  17. The effects of anti-obesity intervention with orlistat and sibutramine on microvascular endothelial function.

    PubMed

    Al-Tahami, Belqes Abdullah Mohammad; Ismail, Ab Aziz Al-Safi; Bee, Yvonne Tee Get; Awang, Siti Azima; Salha Wan Abdul Rani, Wan Rimei; Sanip, Zulkefli; Rasool, Aida Hanum Ghulam

    2015-01-01

    Obesity is associated with impaired microvascular endothelial function. We aimed to determine the effects of orlistat and sibutramine treatment on microvascular endothelial function, anthropometric and lipid profile, blood pressure (BP), and heart rate (HR). 76 subjects were recruited and randomized to receive orlistat 120 mg three times daily or sibutramine 10 mg daily for 9 months. Baseline weight, BMI, BP, HR and lipid profile were taken. Microvascular endothelial function was assessed using laser Doppler fluximetry and iontophoresis process. Maximum change (max), percent change (% change) and peak flux (peak) in perfusion to acetylcholine (ACh) and sodium nitroprusside (SNP) iontophoresis were used to quantify endothelium dependent and independent vasodilatations. 24 subjects in both groups completed the trial. After treatment, weight and BMI were decreased for both groups. AChmax, ACh % change and ACh peak were increased in orlistat-treated group but no difference was observed for sibutramine-treated group. BP and total cholesterol (TC) were reduced for orlistat-treated group. HR was reduced for orlistat-treated group but was increased in sibutramine-treated group. 9 months treatment with orlistat significantly improved microvascular endothelial function. This was associated with reductions in weight, BMI, BP, HR, TC and low density lipoprotein cholesterol. No effect was seen in microvascular endothelial function with sibutramine.

  18. Effects of the natural flavonoid delphinidin on diabetic microangiopathy.

    PubMed

    Bertuglia, S; Malandrino, S; Colantuoni, A

    1995-04-01

    The purpose of the present study was to investigate the effects of the flavonoid delphinidin chloride (CAS 528-53-0, IdB 1056) on diabetic microangiopathy. Hamsters were injected with alloxan and cheek pouch microcirculation was observed by a fluorescent microscopy technique 90 days from alloxan. The increase in permeability, the number of adhering leukocytes to venular vessel wall and vasodilatory responses to acetylcholine (Ach) and sodium nitroprusside (SNP) were measured. In diabetic group microvascular permeability and the number of sticking leukocytes to the venular endothelium were increased. Vasoconstriction by Ach was observed while the vasodilation by SNP was significantly attenuated in diabetic animals. These results are consistent for a decreased relaxation and suggest also an impairment in the smooth muscle cell function in diabetic arterioles. IdB 1056 exhibited an inhibitory effect on increased microvascular permeability and on leukocytes adhering to the venular vessels. Indeed, the treatment with IdB 1056 in diabetic hamsters pretreated or not with indometacin, a cyclooxygenase inhibitor, restored the relaxant responses to Ach and SNP. In conclusion, the effects of IdB 1056 observed in vivo at the microcirculatory level prevent the injury to endothelial cell function associated with diabetes and/or oxidative stress.

  19. Effects of Chronic Nitric Oxide Synthase Inhibition on Endothelium-Dependent and -Independent Relaxation in Arteries that Perfuse Skeletal Muscle of Swine

    PubMed Central

    Newcomer, S.C.; Taylor, J.C.; McAllister, R.M.; Laughlin, M.H.

    2012-01-01

    The purpose of this investigation was to test the hypothesis that chronic L-NAME treatment produces differential effects on conduit artery and resistance arteriole relaxation responses to endothelium-dependent and –independent vasodilators in arteries that perfuse skeletal muscle of swine. To test this hypothesis conduit skeletal muscle arteries and second order skeletal muscle arterioles were harvested from 14 Yucatan swine that were chronically administered L-NAME and 16 controls. In vitro assessments of vasorelaxation to increasing doses of acetylcholine (ACH), bradykinin (BK), and sodium nitroprusside (SNP) were performed in both conduit and 2A arterioles. L-NAME treatment produced a significant reduction in both BK and ACH relaxation responses in the conduit arteries. In contrast, the relaxation response and/or sensitivity to SNP were significantly greater in the intact, but not denuded, conduit arterial rings from chronically L-NAME treated swine. There were no significant effects of chronic L-NAME treatment on vasodilation of skeletal muscle arterioles. These findings suggest: (1) that unlike arterioles, skeletal muscle conduit arteries do not functionally compensate for a lack of NO through the upregulation of alternative vasodilator pathways. (2) that the greater relaxation response in conduit arteries of chronically L-NAME treated swine to SNP can be explained by alterations to the endothelium. PMID:18568942

  20. Effect of nabumetone treatment on vascular responses of the thoracic aorta in rat experimental arthritis.

    PubMed

    Ulker, S; Onal, A; Hatip, F B; Sürücü, A; Alkanat, M; Koşay, S; Evinç, A

    2000-04-01

    Nabumetone is a nonsteroidal anti-inflammatory (NSAI) drug which is known to cause less gastrointestinal damage than other NSAI drugs. This study was performed to evaluate whether nabumetone treatment might alter the vascular aberrations related to inflammation in a rat model of adjuvant-induced arthritis. Nabumetone treatment (120 or 240 mg x kg(-1) x day(-1), orally) was initiated on the 15th day of adjuvant inoculation and continued for 14 days. Arthritic lesions, vascular contractile and relaxant responses and gastroduodenal histopathological preparations were evaluated 29 days after adjuvant inoculation. The contractile responses of aortic rings to phenylephrine and KCl were increased in grade 2 arthritic rats. In grade 3 arthritis only the phenylephrine contractility was decreased. The relaxant responses to acetylcholine and sodium nitroprusside were decreased in grades 2 and 3. In healthy rats, nabumetone did not change the vascular responses. After treatment of arthritic rats with nabumetone, both the contractile and relaxant response of the aortic rings returned to normal, and arthritic score and paw swelling were reduced. Gastroduodenal histopathology did not show erosions or ulcers in any of the groups. In conclusion, nabumetone improved the systemic signs and vascular alterations in experimental arthritis without showing any gastrointestinal side effects. Copyright 2000 S. Karger AG, Basel.

  1. Tributyltin contributes in reducing the vascular reactivity to phenylephrine in isolated aortic rings from female rats.

    PubMed

    Rodrigues, Samya Mere L; Ximenes, Carolina F; de Batista, Priscila R; Simões, Fabiana V; Coser, Pedro Henrique P; Sena, Gabriela C; Podratz, Priscila L; de Souza, Leticia N G; Vassallo, Dalton V; Graceli, Jones B; Stefanon, Ivanita

    2014-03-21

    Organotin compounds such as tributyltin (TBT) are used as antifouling paints by shipping companies. TBT inhibits the aromatase responsible for the transformation of testosterone into estrogen. Our hypothesis is that TBT modulates the vascular reactivity of female rats. Female Wistar rats were treated daily (Control; CONT) or TBT (100 ng/kg) for 15 days. Rings from thoracic aortas were incubated with phenylephrine (PHE, 10(-10)-10(-4) M) in the presence and absence of endothelium, and in the presence of N(G)-Nitro-L-Arginine Methyl Ester (L-NAME), tetraethylammonium (TEA) and apocynin. TBT decreased plasma levels of estrogen and the vascular response to PHE. In the TBT group, the vascular reactivity was increased in the absence of endothelium, L-NAME and TEA. The decrease in PHE reactivity during incubation with apocynin was more evident in the TBT group. The sensitivity to acetylcholine (ACh) and sodium nitroprusside (SNP) was reduced in the TBT group. TBT increased collagen, reduced α1-smooth muscle actin. Female rats treated with TBT for 15 days showed morphology alteration of the aorta and decreased their vascular reactivity, probably due to mechanisms dependent on nitric oxide (NO) bioavailability, K(+) channels and an increase in oxidative stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Memantine Inhibits α3β2-nAChRs-Mediated Nitrergic Neurogenic Vasodilation in Porcine Basilar Arteries

    PubMed Central

    Wu, Celeste Yin-Chieh; Chen, Po-Yi; Chen, Mei-Fang; Kuo, Jon-Son; Lee, Tony Jer-Fu

    2012-01-01

    Memantine, an NMDA receptor antagonist used for treatment of Alzheimer’s disease (AD), is known to block the nicotinic acetylcholine receptors (nAChRs) in the central nervous system (CNS). In the present study, we examined by wire myography if memantine inhibited α3β2-nAChRs located on cerebral perivascular sympathetic nerve terminals originating in the superior cervical ganglion (SCG), thus, leading to inhibition of nicotine-induced nitrergic neurogenic dilation of isolated porcine basilar arteries. Memantine concentration-dependently blocked nicotine-induced neurogenic dilation of endothelium-denuded basilar arteries without affecting that induced by transmural nerve stimulation, sodium nitroprusside, or isoproterenol. Furthermore, memantine significantly inhibited nicotine-elicited inward currents in Xenopous oocytes expressing α3β2-, α7- or α4β2-nAChR, and nicotine-induced calcium influx in cultured rat SCG neurons. These results suggest that memantine is a non-specific antagonist for nAChR. By directly inhibiting α3β2-nAChRs located on the sympathetic nerve terminals, memantine blocks nicotine-induced neurogenic vasodilation of the porcine basilar arteries. This effect of memantine is expected to reduce the blood supply to the brain stem and possibly other brain regions, thus, decreasing its clinical efficacy in the treatment of Alzheimer’s disease. PMID:22792283

  3. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    EPA Science Inventory

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.
    A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer
    Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA
    Toluene (TOL...

  4. Adenosine A1 Receptors in Mouse Pontine Reticular Formation Depress Breathing, Increase Anesthesia Recovery Time, and Decrease Acetylcholine Release

    PubMed Central

    Gettys, George C.; Liu, Fang; Kimlin, Ed; Baghdoyan, Helen A.; Lydic, Ralph

    2012-01-01

    Background Clinical and preclinical data demonstrate the analgesic actions of adenosine. Central administration of adenosine agonists, however, suppresses arousal and breathing by poorly understood mechanisms. This study tested the two-tailed hypothesis that adenosine A1 receptors in the pontine reticular formation (PRF) of C57BL/6J mice modulate breathing, behavioral arousal, and PRF acetylcholine release. Methods Three sets of experiments used 51 mice. First, breathing was measured by plethysmography after PRF microinjection of the adenosine A1 receptor agonist N6-sulfophenyl adenosine (SPA) or saline. Second, mice were anesthetized with isoflurane and time to recovery of righting response (RoRR) was quantified after PRF microinjection of SPA or saline. Third, acetylcholine release in the PRF was measured before and during microdialysis delivery of SPA, the adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), or SPA and DPCPX. Results First, SPA significantly decreased respiratory rate (−18%), tidal volume (−12%) and minute ventilation (−16%). Second, SPA concentration accounted for 76% of the variance in RoRR. Third, SPA concentration accounted for a significant amount of the variance in acetylcholine release (52%), RoRR (98%), and breathing rate (86%). DPCPX alone caused a concentration-dependent increase in acetylcholine, decrease in RoRR, and decrease in breathing rate. Coadministration of SPA and DPCPX blocked the SPA-induced decrease in acetylcholine and increase in RoRR. Conclusions Endogenous adenosine acting at adenosine A1 receptors in the PRF modulates breathing, behavioral arousal, and acetylcholine release. The results support the interpretation that an adenosinergic-cholinergic interaction within the PRF comprises one neurochemical mechanism underlying the wakefulness stimulus for breathing. PMID:23263018

  5. Brain nicotinic acetylcholine receptors are involved in stress-induced potentiation of nicotine reward in rats.

    PubMed

    Javadi, Parastoo; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2017-07-01

    The aim of the present study was to examine the possible role of nicotinic acetylcholine receptors of the dorsal hippocampus (CA1 regions), the medial prefrontal cortex or the basolateral amygdala in the effect of acute or sub-chronic stress on nicotine-induced conditioned place preference. Our results indicated that subcutaneous administration of nicotine (0.2 mg/kg) induced significant conditioned place preference. Exposure to acute or sub-chronic elevated platform stress potentiated the response of an ineffective dose of nicotine. Pre-conditioning intra-CA1 (0.5-4 µg/rat) or intra-medial prefrontal cortex (0.2-0.3 µg/rat) microinjection of mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist) reversed acute stress-induced potentiation of nicotine reward as measured in the conditioned place preference paradigm. By contrast, pre-conditioning intra-basolateral amygdala microinjection of mecamylamine (4 µg/rat) potentiated the effects of acute stress on nicotine reward. Our findings also showed that intra-CA1 or intra-medial prefrontal cortex, but not intra-basolateral amygdala, microinjection of mecamylamine (4 µg/rat) prevented the effect of sub-chronic stress on nicotine reward. These findings suggest that exposure to elevated platform stress potentiates the rewarding effect of nicotine which may be associated with the involvement of nicotinic acetylcholine receptors. It seems that there is a different contribution of the basolateral amygdala, the medial prefrontal cortex or the CA1 nicotinic acetylcholine receptors in stress-induced potentiation of nicotine-induced conditioned place preference.

  6. Pharmacological approaches to targeting muscarinic acetylcholine receptors.

    PubMed

    Matera, Carlo; Tata, Ada M

    2014-01-01

    The presence of cholinergic system markers and muscarinic receptor subtypes in several tissues also of nonneuronal type has been largely demonstrated. Acetylcholine, synthesized in the nervous system, can locally contribute to modulate cell proliferation, survival and apoptosis. Considering that the cholinergic system functions are impaired in a number of disorders, the identification of new drugs regulating these functions appears of great clinical relevance. The possible involvement of muscarinic acetylcholine receptors in different pathologies has been proposed in recent years and is becoming an important area of study. However, the lack of selective muscarinic receptor ligands has for long time limited the therapeutic treatment based on muscarinic receptors as targets. To date, some muscarinic ligands such as xanomeline (patent, US5980933) or cevimeline (patents US4855290, US5571918) have been developed for the treatment of several pathologies (Alzheimer's and Sjogren's diseases). The present review will be focused on the potential effects produced by muscarinic receptor activation in different pathologies, including tumors. In fact, the potential use of muscarinic ligands in therapeutic protocols in cancer therapy will be discussed, considering that several muscarinic antagonists, already used in the treatment of genitourinary diseases (e.g. darifenacin, patent, US5096890, US6106864), have also been demonstrated to arrest the tumor growth in vivo. Moreover, the contribution of muscarinic receptors to analgesia is also reviewed. Finally, some of the most significant achievements in the field of bitopic/dualsteric ligands will be discussed and the molecules patented so far will be presented.

  7. Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes

    PubMed Central

    Cash, Derek J.; Hess, George P.

    1980-01-01

    Two molecular processes, the binding of acetylcholine to the membrane-bound acetylcholine receptor protein and the receptor-controlled flux rates of specific inorganic ions, are essential in determining the electrical membrane potential of nerve and muscle cells. The measurements reported establish the relationship between the two processes: the acetylcholine receptor-controlled transmembrane ion flux of 86Rb+ and the concentration of carbamoylcholine, a stable analog of acetylcholine. A 200-fold concentration range of carbamoylcholine was used. The flux was measured in the millisecond-to-minute time region by using a quench flow technique with membrane vesicles prepared from the electric organ of Electrophorus electricus in eel Ringer's solution at pH 7.0 and 1°C. The technique makes possible the study of the transmembrane transport of specific ions, with variable known internal and external ion concentrations, in a system in which a determinable number of receptors is exposed to a known concentration of ligand. The response curve of ion flux to ligand was sigmoidal with an average maximum rate of 84 sec-1. Carbamoylcholine induced inactivation of the receptor with a maximum rate of 2.7 sec-1 and a different ligand dependence so that it was fast relative to ion flux at low ligand concentration but slow relative to ion flux at high ligand concentration. The simplest model that fits the data consists of receptor in the active and inactive states in ligand-controlled equilibria. Receptor inactivation occurs with one or two ligand molecules bound. For channel opening, two ligand molecules bound to the active state are required, and cooperativity results from the channel opening process itself. With carbamoylcholine, apparently, the equilibrium position for the channel opening step is only one-fourth open. The integrated rate equation, based on the model, predicts the time dependence of receptor-controlled ion flux over the concentration range of carbamoylcholine

  8. Inhibitory effects of pine nodule extract and its component, SJ-2, on acetylcholine-induced catecholamine secretion and synthesis in bovine adrenal medullary cells.

    PubMed

    Li, Xiaojia; Horishita, Takafumi; Toyohira, Yumiko; Shao, Hui; Bai, Jie; Bo, Haixia; Song, Xinbo; Ishikane, Shin; Yoshinaga, Yukari; Satoh, Noriaki; Tsutsui, Masato; Yanagihara, Nobuyuki

    2017-04-01

    Extract of pine nodules (matsufushi) formed by bark proliferation on the surface of trees of Pinus tabulaeformis or Pinus massoniana has been used as an analgesic for joint pain, rheumatism, neuralgia, dysmenorrhea and other complaints in Chinese traditional medicine. Here we report the effects of matsufushi extract and its components on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. We found that matsufushi extract (0.0003-0.005%) and its component, SJ-2 (5-hydroxy-3-methoxy-trans-stilbene) (0.3-100 μM), but not the other three, concentration-dependently inhibited catecholamine secretion induced by acetylcholine, a physiological secretagogue. Matsufushi extract (0.0003-0.005%) and SJ-2 (0.3-100 μM) also inhibited 45 Ca 2+ influx induced by acetylcholine in a concentration-dependent manner, similar to its effect on catecholamine secretion. They also suppressed 14 C-catecholamine synthesis and tyrosine hydroxylase activity induced by acetylcholine. In Xenopus oocytes expressing α3β4 nicotinic acetylcholine receptors, matsufushi extract (0.00003-0.001%) and SJ-2 (1-100 μM) directly inhibited the current evoked by acetylcholine. The present findings suggest that SJ-2, as well as matsufushi extract, inhibits acetylcholine-induced catecholamine secretion and synthesis by suppression of nicotinic acetylcholine receptor-ion channels in bovine adrenal medullary cells. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  9. Characterization of Ganglionic Acetylcholine Receptor Autoantibodies

    PubMed Central

    Vernino, Steven; Lindstrom, Jon; Hopkins, Steve; Wang, Zhengbei; Low, Phillip A.

    2008-01-01

    In myasthenia gravis (MG), autoantibodies bind to the α1 subunit and other subunits of the muscle nicotinic acetylcholine receptor (AChR). Autoimmune autonomic ganglionopathy (AAG) is an antibody-mediated neurological disorder caused by antibodies against neuronal AChRs in autonomic ganglia. Subunits of muscle and neuronal AChR are homologous. We examined the specificity of AChR antibodies in patients with MG and AAG. Ganglionic AChR autoantibodies found in AAG patients are specific for AChRs containing the α3 subunit. Muscle and ganglionic AChR antibody specificities are distinct. Antibody crossreactivity between AChRs with different α subunits is uncommon but can occur. PMID:18485491

  10. Acetylcholine molecular arrays enable quantum information processing

    NASA Astrophysics Data System (ADS)

    Tamulis, Arvydas; Majauskaite, Kristina; Talaikis, Martynas; Zborowski, Krzysztof; Kairys, Visvaldas

    2017-09-01

    We have found self-assembly of four neurotransmitter acetylcholine (ACh) molecular complexes in a water molecules environment by using geometry optimization with DFT B97d method. These complexes organizes to regular arrays of ACh molecules possessing electronic spins, i.e. quantum information bits. These spin arrays could potentially be controlled by the application of a non-uniform external magnetic field. The proper sequence of resonant electromagnetic pulses would then drive all the spin groups into the 3-spin entangled state and proceed large scale quantum information bits.

  11. Peptides from puff adder Bitis arietans venom, novel inhibitors of nicotinic acetylcholine receptors.

    PubMed

    Vulfius, Catherine A; Spirova, Ekaterina N; Serebryakova, Marina V; Shelukhina, Irina V; Kudryavtsev, Denis S; Kryukova, Elena V; Starkov, Vladislav G; Kopylova, Nina V; Zhmak, Maxim N; Ivanov, Igor A; Kudryashova, Ksenia S; Andreeva, Tatyana V; Tsetlin, Victor I; Utkin, Yuri N

    2016-10-01

    Phospholipase A 2 (named bitanarin) possessing capability to block nicotinic acetylcholine receptors (nAChRs) was isolated earlier (Vulfius et al., 2011) from puff adder Bitis arietans venom. Further studies indicated that low molecular weight fractions of puff adder venom inhibit nAChRs as well. In this paper, we report on isolation from this venom and characterization of three novel peptides called baptides 1, 2 and 3 that reversibly block nAChRs. To isolate the peptides, the venom of B. arietans was fractionated by gel-filtration and reversed phase chromatography. The amino acid sequences of peptides were established by de novo sequencing using MALDI mass spectrometry. Baptide 1 comprised 7, baptides 2 and 3-10 amino acid residues, the latter being acetylated at the N-terminus. This is the first indication for the presence of such post-translational modification in snake venom proteins. None of the peptides contain cysteine residues. For biological activity studies the peptides were prepared by solid phase peptide synthesis. Baptide 3 and 2 blocked acetylcholine-elicited currents in isolated Lymnaea stagnalis neurons with IC 50 of about 50 μM and 250 μM, respectively. In addition baptide 2 blocked acetylcholine-induced currents in muscle nAChR heterologously expressed in Xenopus oocytes with IC 50 of about 3 μM. The peptides did not compete with radioactive α-bungarotoxin for binding to Torpedo and α7 nAChRs at concentration up to 200 μM that suggests non-competitive mode of inhibition. Calcium imaging studies on α7 and muscle nAChRs heterologously expressed in mouse neuroblastoma Neuro2a cells showed that on α7 receptor baptide 2 inhibited acetylcholine-induced increasing intracellular calcium concentration with IC 50 of 20.6 ± 3.93 μM. On both α7 and muscle nAChRs the suppression of maximal response to acetylcholine by about 50% was observed at baptide 2 concentration of 25 μM, the value being close to IC 50 on α7 nAChR. These data are

  12. Modulatory effect of neuropeptide Y on acetylcholine-induced oedema and vasoconstriction in isolated perfused lungs of rabbit.

    PubMed Central

    Delaunois, A; Gustin, P; Dessy-Doize, C; Ansay, M

    1994-01-01

    1. The modulatory role of neuropeptide Y (NPY) on pulmonary oedema induced by acetylcholine and capsaicin was investigated. The effects of NPY on the haemodynamic response to acetylcholine, phenylephrine and substance P were also investigated. 2. Isolated, ventilated, exsanguinated lungs of the rabbit were perfused with a constant flow of recirculating blood-free perfusate. The double/arterial/venous occlusion method was used to partition the total pressure gradient (delta Pt) into four components: the arterial gradient (delta Pa), the pre- and post-capillary gradients (respectively delta Pa' and delta Pv') and the venous pressure gradient (delta Pv). Endothelial permeability was evaluated by measuring the capillary filtration coefficient (Kf,c). 3. Acetylcholine (10(-8) M to 10(-4) M) and substance P (SP, 10(-10) M to 10(-6) M) induced a concentration-dependent increase in the Kf,c. Capsaicin (10(-4) M) and 5-hydroxytryptamine (5-HT) (10(-4) M) also increased this parameter. NPY (10(-8) M) completely inhibited the effects of acetylcholine and capsaicin on the Kf,c, without preventing the effects of substance P and 5-HT. 4. Acetylcholine induced concentration-dependent vasoconstriction in the precapillary segment. The effect was inhibited by NPY and aspirin, an inhibitor of cyclo-oxygenase, while ketanserin, a 5-HT2 receptor antagonist, and SR140333, a new NK1 antagonist, had no protective effect. Phenylephrine increased delta Pa at high concentration, an effect also inhibited by NPY and aspirin. Substance P had no significant haemodynamic effect. When injected together with NPY, substance P (10(-6) M) induced a significant increase in the total pressure gradient.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 PMID:7532083

  13. List of Error-Prone Abbreviations, Symbols, and Dose Designations

    MedlinePlus

    ... unit dose (e.g., diltiazem 125 mg IV infusion “UD” misin- terpreted as meaning to give the entire infusion as a unit [bolus] dose) Use “as directed” ... Names Intended Meaning Misinterpretation Correction “Nitro” drip nitroglycerin infusion Mistaken as sodium nitroprusside infusion Use complete drug ...

  14. Comparison of Hydrogen Sulfide Analysis Techniques

    ERIC Educational Resources Information Center

    Bethea, Robert M.

    1973-01-01

    A summary and critique of common methods of hydrogen sulfide analysis is presented. Procedures described are: reflectance from silver plates and lead acetate-coated tiles, lead acetate and mercuric chloride paper tapes, sodium nitroprusside and methylene blue wet chemical methods, infrared spectrophotometry, and gas chromatography. (BL)

  15. Adenosine A(1) receptors in mouse pontine reticular formation depress breathing, increase anesthesia recovery time, and decrease acetylcholine release.

    PubMed

    Gettys, George C; Liu, Fang; Kimlin, Ed; Baghdoyan, Helen A; Lydic, Ralph

    2013-02-01

    Clinical and preclinical data demonstrate the analgesic actions of adenosine. Central administration of adenosine agonists, however, suppresses arousal and breathing by poorly understood mechanisms. This study tested the two-tailed hypothesis that adenosine A1 receptors in the pontine reticular formation (PRF) of C57BL/6J mice modulate breathing, behavioral arousal, and PRF acetylcholine release. Three sets of experiments used 51 mice. First, breathing was measured by plethysmography after PRF microinjection of the adenosine A1 receptor agonist N-sulfophenyl adenosine (SPA) or saline. Second, mice were anesthetized with isoflurane and the time to recovery of righting response (RoRR) was quantified after a PRF microinjection of SPA or saline. Third, acetylcholine release in the PRF was measured before and during microdialysis delivery of SPA, the adenosine A1 receptor antagonist 1, 3-dipropyl-8-cyclopentylxanthine, or SPA and 1, 3-dipropyl-8-cyclopentylxanthine. First, SPA significantly decreased respiratory rate (-18%), tidal volume (-12%), and minute ventilation (-16%). Second, SPA concentration accounted for 76% of the variance in RoRR. Third, SPA concentration accounted for a significant amount of the variance in acetylcholine release (52%), RoRR (98%), and breathing rate (86%). 1, 3-dipropyl-8-cyclopentylxanthine alone caused a concentration-dependent increase in acetylcholine, a decrease in RoRR, and a decrease in breathing rate. Coadministration of SPA and 1, 3-dipropyl-8-cyclopentylxanthine blocked the SPA-induced decrease in acetylcholine and increase in RoRR. Endogenous adenosine acting at adenosine A1 receptors in the PRF modulates breathing, behavioral arousal, and acetylcholine release. The results support the interpretation that an adenosinergic-cholinergic interaction within the PRF comprises one neurochemical mechanism underlying the wakefulness stimulus for breathing.

  16. Effect of chemical sympathectomy on the content of acetylcholine, choline and choline acetyltransferase activity in the cat spleen and iris

    PubMed Central

    Consolo, S.; Garattini, S.; Ladinsky, H.; Thoenen, H.

    1972-01-01

    1. Acetylcholine and choline were measured in the spleens and irides of normal and 6-hydroxydopamine-treated cats. In addition, choline acetyltransferase activity was measured in the spleens. 2. No acetylcholine or choline acetyltransferase activity were found in spleens of normal or treated cats. The choline content of normal spleens was 12·4 ± 1·5 μg/g wet wt. (mean ± S.E. of mean), which was not significantly altered by chemical sympathectomy. 3. The acetylcholine and choline contents of the cat iris were 3·0 ± 0·3 μg/g wet wt. and 7·7 ± 0·9 μg/g wet wt., respectively. There was no difference in acetylcholine and choline concentrations between left and right or normal and sympathectomized irides. 4. These results are discussed in relation to the question of a cholinergic link in post-ganglionic sympathetic transmission. PMID:4335730

  17. Probing for and Quantifying Agonist Hydrogen Bonds in α6β2 Nicotinic Acetylcholine Receptors.

    PubMed

    Post, Michael R; Lester, Henry A; Dougherty, Dennis A

    2017-04-04

    Designing subtype-selective agonists for neuronal nicotinic acetylcholine receptors is a challenging and significant goal aided by intricate knowledge of each subtype's binding patterns. We previously reported that in α6β2 receptors, acetylcholine makes a functional cation-π interaction with Trp149, but nicotine and TC299423 do not, suggesting a distinctive binding site. This work explores hydrogen binding at the backbone carbonyl associated with α6β2 Trp149. Substituting residue i + 1, Thr150, with its α-hydroxy analogue (Tah) attenuates the carbonyl's hydrogen bond accepting ability. At α6(T150Tah)β2, nicotine shows a 24-fold loss of function, TC299423 shows a modest loss, and acetylcholine shows no effect. Nicotine was further analyzed via a double-mutant cycle analysis utilizing N'-methylnicotinium, which indicated a hydrogen bond in α6β2 with a ΔΔG of 2.6 kcal/mol. Thus, even though nicotine does not make the conserved cation-π interaction with Trp149, it still makes a functional hydrogen bond to its associated backbone carbonyl.

  18. Binding of quinolizidine alkaloids to nicotinic and muscarinic acetylcholine receptors.

    PubMed

    Schmeller, T; Sauerwein, M; Sporer, F; Wink, M; Müller, W E

    1994-09-01

    Fourteen quinolizidine alkaloids, isolated from Lupinus albus, L. mutabilis, and Anagyris foetida, were analyzed for their affinity for nicotinic and/or muscarinic acetylcholine receptors. Of the compounds tested, the alpha-pyridones, N-methylcytisine and cytisine, showed the highest affinities at the nicotinic receptor, while several quinolizidine alkaloid types were especially active at the muscarinic receptor.

  19. Fornix deep brain stimulation enhances acetylcholine levels in the hippocampus.

    PubMed

    Hescham, Sarah; Jahanshahi, Ali; Schweimer, Judith V; Mitchell, Stephen N; Carter, Guy; Blokland, Arjan; Sharp, Trevor; Temel, Yasin

    2016-11-01

    Deep brain stimulation (DBS) of the fornix has gained interest as a potential therapy for advanced treatment-resistant dementia, yet the mechanism of action remains widely unknown. Previously, we have reported beneficial memory effects of fornix DBS in a scopolamine-induced rat model of dementia, which is dependent on various brain structures including hippocampus. To elucidate mechanisms of action of fornix DBS with regard to memory restoration, we performed c-Fos immunohistochemistry in the hippocampus. We found that fornix DBS induced a selective activation of cells in the CA1 and CA3 subfields of the dorsal hippocampus. In addition, hippocampal neurotransmitter levels were measured using microdialysis before, during and after 60 min of fornix DBS in a next experiment. We observed a substantial increase in the levels of extracellular hippocampal acetylcholine, which peaked 20 min after stimulus onset. Interestingly, hippocampal glutamate levels did not change compared to baseline. Therefore, our findings provide first experimental evidence that fornix DBS activates the hippocampus and induces the release of acetylcholine in this region.

  20. Adult celiac disease with acetylcholine receptor antibody positive myasthenia gravis

    PubMed Central

    Freeman, Hugh J; Gillett, Helen R; Gillett, Peter M; Oger, Joel

    2009-01-01

    Celiac disease has been associated with some autoimmune disorders. A 40-year-old competitive strongman with celiac disease responded to a gluten-free diet, but developed profound and generalized motor weakness with acetylcholine receptor antibody positive myasthenia gravis, a disorder reported to occur in about 1 in 5000. This possible relationship between myasthenia gravis and celiac disease was further explored in serological studies. Frozen stored serum samples from 23 acetylcholine receptor antibody positive myasthenia gravis patients with no intestinal symptoms were used to screen for celiac disease. Both endomysial and tissue transglutaminase antibodies were examined. One of 23 (or, about 4.3%) was positive for both IgA-endomysial and IgA tissue transglutaminase antibodies. Endoscopic studies subsequently showed duodenal mucosal scalloping and biopsies confirmed the histopathological changes of celiac disease. Celiac disease and myasthenia gravis may occur together more often than is currently appreciated. The presence of motor weakness in celiac disease may be a clue to occult myasthenia gravis, even in the absence of intestinal symptoms. PMID:19824105

  1. Regular aerobic exercise reduces endothelin-1-mediated vasoconstrictor tone in overweight and obese adults.

    PubMed

    Dow, Caitlin A; Stauffer, Brian L; Brunjes, Danielle L; Greiner, Jared J; DeSouza, Christopher A

    2017-09-01

    What is the central question of this study? Does aerobic exercise training reduce endothelin-1 (ET-1)-mediated vasoconstrictor tone in overweight/obese adults? And, if so, does lower ET-1 vasoconstriction underlie the exercise-related enhancement in endothelium-dependent vasodilatation in overweight/obese adults? What is the main finding and its importance? Regular aerobic exercise reduces ET-1-mediated vasoconstrictor tone in previously sedentary overweight/obese adults, independent of weight loss. Decreased ET-1 vasoconstriction is an important mechanism underlying the aerobic exercise-induced improvement in endothelium-dependent vasodilator function in overweight/obese adults. Endothelin-1 (ET-1)-mediated vasoconstrictor tone is elevated in overweight and obese adults, contributing to vasomotor dysfunction and increased cardiovascular disease risk. Although the effects of habitual aerobic exercise on endothelium-dependent vasodilatation in overweight/obese adults have been studied, little is known regarding ET-1-mediated vasoconstriction. Accordingly, the aims of the present study were to determine the following: (i) whether regular aerobic exercise training reduces ET-1-mediated vasoconstrictor tone in overweight and obese adults; and, if so, (ii) whether the reduction in ET-1-mediated vasoconstriction contributes to exercise-induced improvement in endothelium-dependent vasodilatation in this population. Forearm blood flow (FBF) in response to intra-arterial infusion of selective ET A receptor blockade (BQ-123, 100 nmol min -1 for 60 min), acetylcholine [4.0, 8.0 and 16.0 μg (100 ml tissue) -1  min -1 ] in the absence and presence of ET A receptor blockade and sodium nitroprusside [1.0, 2.0 and 4.0 μg (100 ml tissue) -1  min -1 ] were determined before and after a 3 month aerobic exercise training intervention in 25 (16 men and nine women) overweight/obese (body mass index 30.1 ± 0.5 kg m -2 ) adults. The vasodilator response to BQ-123 was

  2. Monkey Adrenal Chromaffin Cells Express α6β4* Nicotinic Acetylcholine Receptors

    PubMed Central

    Scadden, Mick´l; Carmona-Hidalgo, Beatriz; McIntosh, J. Michael; Albillos, Almudena

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs. PMID:24727685

  3. Intravenously administered oxotremorine and atropine, in doses known to affect pain threshold, affect the intraspinal release of acetylcholine in rats.

    PubMed

    Abelson, Klas S P; Höglund, A Urban

    2002-04-01

    Both systemically and intrathecally administered cholinergic agonists produce antinociception while cholinergic antagonists decrease pain threshold. The mechanism and the site of action of these substances are not known. In the present study it was hypothesized that systemically administered muscarinic agonists and antagonists modify nociceptive threshold by affecting intraspinal release of acetylcholine (ACh). Catheters were inserted into the femoral vein in rats maintained on isoflurane anaesthesia for administration of oxotremorine (10-300 microg/kg) and atropine (0.1, 10, 5000 microg/kg). Spinal microdialysis probes were placed intraspinally at approximately the C2-C5 spinal level for sampling of acetylcholine and dialysis delivery of atropine (0.1, 1, 10 nM). Additionally, the tail-flick behaviour was tested on conscious rats injected intraperitoneally with saline, atropine (10, 100 and 5000 microg/kg), or subcutaneously with oxotremorine (30, 100, 300 microg/kg). Subcutaneous administration of oxotremorine (30, 100, 300 microg/kg) significantly increased the tail-flick latency. These doses of oxotremorine dose-dependently increased the intraspinal release of acetylcholine. Intravenously administered atropine, in a dose that produced hyperalgesia (5000 microg/kg) in the tail-flick test, significantly decreased the intraspinal release of acetylcholine. Our results suggest an association between pain threshold and acetylcholine release in spinal cord. It is also suggested that an approximately 30% increase in basal ACh release produces antinociception and that a 30% decrease in basal release produces hyperalgesia.

  4. Synergistic effect between 5-HT4 receptor agonist and phosphodiesterase 4-inhibitor in releasing acetylcholine in pig gastric circular muscle in vitro.

    PubMed

    Lefebvre, Romain A; Van Colen, Inge; Pauwelyn, Vicky; De Maeyer, Joris H

    2016-06-15

    5-HT4 receptor agonists have a gastroprokinetic effect by facilitating acetylcholine release from cholinergic nerves innervating gastrointestinal smooth muscle. The role of phosphodiesterase (PDE) 4 in the signal transduction pathway of the 5-HT4 receptors located on the cholinergic neurons towards the circular muscle layer in pig stomach was investigated by analysis of acetylcholine release. Circular muscle strips were prepared from pig proximal stomach and tritium outflow, induced by electrical field stimulation, was studied as a marker for acetylcholine release after incubation with [(3)H]-choline. The PDE4-inhibitor roflumilast concentration-dependently (0.1-1µM) enhanced the facilitating effect of a submaximally effective concentration of the 5-HT4 receptor agonist prucalopride (0.01µM) on electrically induced acetylcholine release. Roflumilast (0.3µM) enhanced acetylcholine release per se but in the combined presence of roflumilast and prucalopride, acetylcholine release was enhanced more than the sum of the effect of the 2 compounds alone. The 5-HT4 receptor agonist velusetrag concentration-dependently (0.01-0.1µM) enhanced acetylcholine release; the effect of the minimally effective concentration (0.01µM) was significantly enhanced by 1µM of the PDE4-inhibitor rolipram, again to a level higher than the sum of the effect of the 2 compounds alone. The synergistic effect between 5-HT4 receptor agonists and PDE4-inhibitors demonstrates that the intracellular pathway of the 5-HT4 receptors located on cholinergic neurons towards pig gastric circular muscle is controlled by PDE4. Combining a 5-HT4 receptor agonist with a PDE4-inhibitor might thus enhance its gastroprokinetic effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Septohippocampal Acetylcholine: Involved in but Not Necessary for Learning and Memory?

    ERIC Educational Resources Information Center

    Parent, Marise B.; Baxter, Mark G.

    2004-01-01

    The neurotransmitter acetylcholine (ACh) has been accorded an important role in supporting learning and memory processes in the hippocampus. Cholinergic activity in the hippocampus is correlated with memory, and restoration of ACh in the hippocampus after disruption of the septohippocampal pathway is sufficient to rescue memory. However, selective…

  6. Possible involvement of endothelium-derived hyperpolarizing factor (EDHF) in the depressor responses to platelet activating factor (PAF) in rats

    PubMed Central

    Tanaka, Yoshio; Hayakawa, Sachiko; Imai, Toshiyasu; Akutsu, Aya; Hirano, Haruko; Tanaka, Hikaru; Nakahara, Tsutomu; Ishii, Kunio; Shigenobu, Koki

    2000-01-01

    In anaesthetized rats, platelet activating factor (PAF; 1 μg kg−1) decreased mean arterial blood pressure by around 60 mmHg (n=18). This depressor response was completely blocked by the PAF antagonist, CV-6209 (1 mg kg−1), indicating the role of PAF-specific receptor in the response.NG-nitro-L-arginine methyl ester (L-NAME; 50 mg kg−1), an NO synthase inhibitor, profoundly elevated systemic blood pressure (n=19), indicating an important role of NO in the basal blood pressure regulation. The depressor response to PAF (1 μg kg−1) normalized against that to sodium nitroprusside (SNP) (10 μg kg−1) was not substantially different between rats treated without and with L-NAME (n=4). In contrast, the depressor effect of acetylcholine (0.03–1.0 μg kg−1) normalized against that of SNP (10 μg kg−1) was significantly attenuated by L-NAME (n=5).Charybdotoxin (0.4 mg kg−1) plus apamin (0.2 mg kg−1) significantly attenuated the depressor response to PAF (1 μg kg−1) (n=5) without affecting the blood pressure change due to SNP (1 mg kg−1) (n=3). Charybdotoxin (0.4 mg kg−1) (n=4) or apamin (0.2 mg kg−1) (n=4) alone did not affect the PAF-induced depressor response.These findings suggest that EDHF may make a significant contribution to the depressor response to PAF in rats. Although NO plays the determinant role in the basal blood pressure regulation, its contribution to PAF-produced depressor response seems to be less as compared with that to the depressor response to acetylcholine. PMID:11082118

  7. Tissue Vibration Induces Carotid Artery Endothelial Dysfunction: A Mechanism Linking Snoring and Carotid Atherosclerosis?

    PubMed Central

    Cho, Jin-Gun; Witting, Paul K.; Verma, Manisha; Wu, Ben J.; Shanu, Anu; Kairaitis, Kristina; Amis, Terence C.; Wheatley, John R.

    2011-01-01

    Study Objectives: We have previously identified heavy snoring as an independent risk factor for carotid atherosclerosis. In order to explore the hypothesis that snoring-associated vibration of the carotid artery induces endothelial dysfunction (an established atherogenic precursor), we utilized an animal model to examine direct effects of peri-carotid tissue vibration on carotid artery endothelial function and structure. Design: In supine anesthetized, ventilated rabbits, the right carotid artery (RCA) was directly exposed to vibrations for 6 h (peak frequency 60 Hz, energy matched to that of induced snoring in rabbits). Similarly instrumented unvibrated rabbits served as controls. Features of OSA such as hypoxemia, large intra-pleural swings and blood pressure volatility were prevented. Carotid endothelial function was then examined: (1) biochemically by measurement of tissue cyclic guanosine monophosphate (cGMP) to acetylcholine (ACh) and sodium nitroprusside (SNP); and (2) functionally by monitoring vessel relaxation with acetylcholine in a myobath. Measurement and Results: Vessel cGMP after stimulation with ACh was reduced in vibrated RCA compared with unvibrated (control) arteries in a vibration energy dose-dependent manner. Vibrated RCA also showed decreased vasorelaxation to ACh compared with control arteries. Notably, after addition of SNP (nitric oxide donor), cGMP levels did not differ between vibrated and control arteries, thereby isolating vibration-induced dysfunction to the endothelium alone. This dysfunction occurred in the presence of a morphologically intact endothelium without increased apoptosis. Conclusions: Carotid arteries subjected to 6 h of continuous peri-carotid tissue vibration displayed endothelial dysfunction, suggesting a direct plausible mechanism linking heavy snoring to the development of carotid atherosclerosis. Citation: Cho JG; Witting PK; Verma M; Wu BJ; Shanu A; Kairaitis K; Amis TC; Wheatley JR. Tissue vibration induces

  8. Effect of melatonin on vascular responses in aortic rings of aging rats.

    PubMed

    Reyes-Toso, Carlos F; Obaya-Naredo, Daniel; Ricci, Conrado R; Planells, Fernando M; Pinto, Jorge E; Linares, Laura M; Cardinali, Daniel P

    2007-04-01

    In old animals a marked reduction in endothelium-dependent relaxation occurs. Since there is evidence that the endothelial dysfunction associated with aging may be partly related to the local formation of reactive oxygen species, the purpose of this study was to examine the effect of the natural antioxidant melatonin (10(-5)mol/l) on in vitro contractility of aged aortic rings under conditions of increased oxidative stress (40 m mol/l glucose concentration in medium). Experiments were carried out in 18-20 months old, Wistar male rats, using adult (6-7 months old) animals as controls. A higher plasma lipid peroxidation was found in aged rats as compared to the younger ones. In a first experiment, dose-response curves for acetylcholine-induced relaxation of aortic rings were conducted. Analyzed as a main factor in a factorial ANOVA, age decreased and melatonin augmented the relaxing response to acetylcholine. melatonin's restoring effect on aortic ring relaxation was found in aged aortic rings only and was more pronounced in the presence of a high glucose medium. In a second experiment, the effect of melatonin on the contractility response to phenylephrine of intact or endothelium-denuded aortic rings obtained from aged or control rats was examined in normal or high glucose medium. A main factor analysis in the factorial ANOVA indicated that age and operation augmented, and melatonin decreased, aortic ring contractility response to phenylephrine. Melatonin's restoring effect on aortic contractility was seen in aged aortic rings. The effect of age or a high glucose medium on phenylephrine-induced contractility was more pronounced in the absence of an intact endothelium. Aging did not affect the relaxant response of intact or endothelium-denuded rings to sodium nitroprusside. The results support the improvement by melatonin of vascular response in aging rats, presumably via its antioxidant activity.

  9. Endothelial Arginine Resynthesis Contributes to the Maintenance of Vasomotor Function in Male Diabetic Mice

    PubMed Central

    Chennupati, Ramesh; Meens, Merlijn J. P. M. T.; Marion, Vincent; Janssen, Ben J.; Lamers, Wouter H.; De Mey, Jo G. R.; Köhler, S. Eleonore

    2014-01-01

    Aim Argininosuccinate synthetase (ASS) is essential for recycling L-citrulline, the by-product of NO synthase (NOS), to the NOS substrate L-arginine. Here, we assessed whether disturbed arginine resynthesis modulates endothelium-dependent vasodilatation in normal and diabetic male mice. Methods and Results Endothelium-selective Ass-deficient mice (Assfl/fl/Tie2Cretg/− = Ass-KOTie2) were generated by crossing Assfl/fl mice ( = control) with Tie2Cre mice. Gene ablation in endothelial cells was confirmed by immunohistochemistry. Blood pressure (MAP) was recorded in 34-week-old male mice. Vasomotor responses were studied in isolated saphenous arteries of 12- and 34-week-old Ass-KOTie2 and control animals. At the age of 10 weeks, diabetes was induced in control and Ass-KOTie2 mice by streptozotocin injections. Vasomotor responses of diabetic animals were studied 10 weeks later. MAP was similar in control and Ass-KOTie2 mice. Depletion of circulating L-arginine by arginase 1 infusion or inhibition of NOS activity with L-NAME resulted in an increased MAP (10 and 30 mmHg, respectively) in control and Ass-KOTie2 mice. Optimal arterial diameter, contractile responses to phenylephrine, and relaxing responses to acetylcholine and sodium nitroprusside were similar in healthy control and Ass-KOTie2 mice. However, in diabetic Ass-KOTie2 mice, relaxation responses to acetylcholine and endothelium-derived NO (EDNO) were significantly reduced when compared to diabetic control mice. Conclusions Absence of endothelial citrulline recycling to arginine did not affect blood pressure and systemic arterial vasomotor responses in healthy mice. EDNO-mediated vasodilatation was significantly more impaired in diabetic Ass-KOTie2 than in control mice demonstrating that endothelial arginine recycling becomes a limiting endothelial function in diabetes. PMID:25033204

  10. Chronic administration of imipramine but not agomelatine and moclobemide affects the nitrergic relaxation of rabbit corpus cavernosum smooth muscle.

    PubMed

    Gocmez, Semil Selcen; Utkan, Tijen; Gacar, Nejat

    2013-08-15

    Sexual dysfunction is a common and underestimated effect of antidepressants. However, the mechanism by which these drugs cause erectile dysfunction is unclear. We investigated the reactivity of the corpus cavernosum of rabbits that were treated with either chronic imipramine, which is a tricyclic agent; agomelatine, which is a melatonergic agonist and serotonin 5HT(2c) antagonist; or moclobemide, which is a reversible inhibitor of monoamine-oxidase A. Twenty rabbits were randomly divided into four groups: the control group (n=5), the imipramine-treated group (n=5), which received i.p. injections of 10 mg/kg/day of imipramine, the moclobemide-treated group (n=5), which received i.p. injections of 20 mg/kg/day of moclobemide, and the agomelatine-treated group (n=5), which was orally administered 10 mg/kg/day of agomelatine. The reactivities of corpus cavernosum tissue obtained from the antidepressant-treated and the control groups were studied in organ chambers after the animals were subjected to 21 days of drug administration. The acetylcholine-induced endothelium-dependent and the electrical field stimulation (EFS)-induced neurogenic relaxation of the corpus cavernosum of the imipramine-treated group was significantly decreased compared with the control group. However, neither the acetylcholine- nor EFS-induced relaxation was changed in the moclobemide- or agomelatine-treated groups. There were no change in the relaxant response to the nitric oxide (NO) donor sodium nitroprusside and contractile response to KCl between the groups. This study suggests that chronic imipramine treatment but not agomelatine and moclobemide treatments causes significant functional changes in the penile erectile tissue of rabbits and that these changes may contribute to the development of impotence. © 2013 Elsevier B.V. All rights reserved.

  11. Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine.

    PubMed

    Bébarová, Markéta; Matejovič, Peter; Švecová, Olga; Kula, Roman; Šimurdová, Milena; Šimurda, Jiří

    2017-05-01

    Nicotine abuse is associated with variety of diseases including arrhythmias, most often atrial fibrillation (AF). Altered inward rectifier potassium currents including acetylcholine-sensitive current I K(Ach) are known to be related to AF pathogenesis. Since relevant data are missing, we aimed to investigate I K(Ach) changes at clinically relevant concentrations of nicotine. Experiments were performed by the whole cell patch clamp technique at 23 ± 1 °C on isolated rat atrial myocytes. Nicotine was applied at following concentrations: 4, 40 and 400 nM; ethanol at 20 mM (∼0.09%). Nicotine at 40 and 400 nM significantly activated constitutively active component of I K(Ach) with the maximum effect at 40 nM (an increase by ∼100%); similar effect was observed at -110 and -50 mV. Changes at 4 nM nicotine were negligible on average. Coapplication of 40 nM nicotine and 20 mM ethanol (which is also known to activate this current) did not show cumulative effect. In the case of acetylcholine-induced component of I K(Ach) , a dual effect of nicotine and its correlation with the current magnitude in control were apparent: the current was increased by nicotine in the cells showing small current in control and vice versa. The effect of 40 and 400 nM nicotine on acetylcholine-induced component of I K(Ach) was significantly different at -110 and -50 mV. We conclude that nicotine at clinically relevant concentrations significantly increased constitutively active component of I K(Ach) and showed a dual effect on its acetylcholine-induced component, similarly as ethanol. Synchronous application of nicotine and ethanol did not cause additive effect.

  12. METHOD FOR REMOVING SODIUM OXIDE FROM LIQUID SODIUM

    DOEpatents

    Bruggeman, W.H.; Voorhees, B.G.

    1957-12-01

    A method is described for removing sodium oxide from a fluent stream of liquid sodium by coldtrapping the sodium oxide. Apparatus utilizing this method is disclosed in United States Patent No. 2,745,552. Sodium will remain in a molten state at temperatures below that at which sodium oxide will crystallize out and form solid deposits, therefore, the contaminated stream of sodium is cooled to a temperature at which the solubility of sodium oxide in sodium is substantially decreased. Thereafter the stream of sodium is passed through a bed of stainless steel wool maintained at a temperature below that of the stream. The stream is kept in contact with the wool until the sodium oxide is removed by crystal growth on the wool, then the stream is reheated and returned to the system. This method is useful in purifying reactor coolants where the sodium oxide would otherwise deposit out on the walls and eventually plug the coolant tubes.

  13. Acetylcholine-producing NK cells attenuate CNS inflammation via modulation of infiltrating monocytes/macrophages.

    PubMed

    Jiang, Wei; Li, Daojing; Han, Ranran; Zhang, Chao; Jin, Wei-Na; Wood, Kristofer; Liu, Qiang; Shi, Fu-Dong; Hao, Junwei

    2017-07-25

    The nonneural cholinergic system of immune cells is pivotal for the maintenance of immunological homeostasis. Here we demonstrate the expression of choline acetyltransferase (ChAT) and cholinergic enzymes in murine natural killer (NK) cells. The capacity for acetylcholine synthesis by NK cells increased markedly under inflammatory conditions such as experimental autoimmune encephalomyelitis (EAE), in which ChAT expression escalated along with the maturation of NK cells. ChAT + and ChAT - NK cells displayed distinctive features in terms of cytotoxicity and chemokine/cytokine production. Transfer of ChAT + NK cells into the cerebral ventricles of CX3CR1 -/- mice reduced brain and spinal cord damage after EAE induction, and decreased the numbers of CNS-infiltrating CCR2 + Ly6C hi monocytes. ChAT + NK cells killed CCR2 + Ly6C hi monocytes directly via the disruption of tolerance and inhibited the production of proinflammatory cytokines. Interestingly, ChAT + NK cells and CCR2 + Ly6C hi monocytes formed immune synapses; moreover, the impact of ChAT + NK cells was mediated by α7-nicotinic acetylcholine receptors. Finally, the NK cell cholinergic system up-regulated in response to autoimmune activation in multiple sclerosis, perhaps reflecting the severity of disease. Therefore, this study extends our understanding of the nonneural cholinergic system and the protective immune effect of acetylcholine-producing NK cells in autoimmune diseases.

  14. Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins.

    PubMed

    Kaczanowska, Katarzyna; Camacho Hernandez, Gisela Andrea; Bendiks, Larissa; Kohs, Larissa; Cornejo-Bravo, Jose Manuel; Harel, Michal; Finn, M G; Taylor, Palmer

    2017-03-15

    Through studies with ligand binding to the acetylcholine binding protein (AChBP), we previously identified a series of 4,6-substituted 2-aminopyrimidines that associate with this soluble surrogate of the nicotinic acetylcholine receptor (nAChR) in a cooperative fashion, not seen for classical nicotinic agonists and antagonists. To examine receptor interactions of this structural family on ligand-gated ion channels, we employed HEK cells transfected with cDNAs encoding three requisite receptor subtypes: α7-nAChR, α4β2-nAChR, and a serotonin receptor (5-HT 3A R), along with a fluorescent reporter. Initial screening of a series of over 50 newly characterized 2-aminopyrimidines with affinity for AChBP showed only two to be agonists on the α7-nAChR below 10 μM concentration. Their unique structural features were incorporated into design of a second subset of 2-aminopyrimidines yielding several congeners that elicited α7 activation with EC 50 values of 70 nM and K d values for AChBP in a similar range. Several compounds within this series exhibit specificity for the α7-nAChR, showing no activation or antagonism of α4β2-nAChR or 5-HT3AR at concentrations up to 10 μM, while others were weaker antagonists (or partial agonists) on these receptors. Analysis following cocrystallization of four ligand complexes with AChBP show binding at the subunit interface, but with an orientation or binding pose that differs from classical nicotinic agonists and antagonists and from the previously analyzed set of 2-aminopyrimidines that displayed distinct cooperative interactions with AChBP. Orientations of aromatic side chains of these complexes are distinctive, suggesting new modes of binding at the agonist-antagonist site and perhaps an allosteric action for heteromeric nAChRs.

  15. Haemodynamic effects of vasoactive agents following chronic state of high cardiac output in anaesthetized rats.

    PubMed

    Guo, Liang; Tabrizchi, Reza

    2008-05-31

    The arteriovenous fistula model of circulation can produce a high output and low peripheral resistance situation. Here, we have examined the effects of noradrenaline, vasopressin and sodium nitroprusside on cardiac index, mean arterial blood pressure, venous tone, resistance to venous return, arterial resistance, and blood volume in chronically shunted anaesthetized rats. The cardiac index of rats with chronic arteriovenous fistula (AVF) was significantly higher (36.65+/-2.28 ml/min per 100 g; (mean+/-S.E.M.; n=24) in comparison to sham-operated rats (20.04+/-0.86 ml/min per 100 g; mean+/-S.E.M.; n=8). Cardiac index did not significantly change during the infusion of noradrenaline (1.0, 3.0 and 10 microg/kg per min), vasopressin (10, 30, 100 ng/kg per min) or sodium nitroprusside (0.1, 0.3 and 1.0 microg/kg per min) compared to saline infusion in AVF animals. Infusion of noradrenaline significantly increased heart rate, dP/dt, mean circulatory filling pressure (Pmcf) and resistance to venous return without affecting mean arterial blood pressure when compared to saline infusion. Administration of vasopressin significantly increased dP/dt, mean arterial blood pressure, and Pmcf without affecting heart rate, resistance to venous return or arterial resistance compared to saline infusion. Infusion of sodium nitroprusside did not significantly affect any haemodynamic parameter measured when compared to saline infusion. The results indicate that the presence of chronic AVF alters responsiveness of the various segments of the circulatory system to vasoactive agents. Moreover, it produces a major impediment to overall changes that can normally be induced following the infusion of such agents.

  16. Load dependence of the effective regurgitant orifice area in a sheep model of aortic regurgitation.

    PubMed

    Reimold, S C; Byrne, J G; Caguioa, E S; Lee, C C; Laurence, R G; Peigh, P S; Cohn, L H; Lee, R T

    1991-10-01

    Treatment of patients with aortic regurgitation with vasodilators reduces regurgitant volume, ventricular dilation and left ventricular mass. Although these effects are presumably due to afterload reduction, it is also possible that the aortic regurgitant orifice area is not constant. To test the latter hypothesis, aortic regurgitation was created in 10 open chest sheep by partial resection of the noncoronary leaflet under direct visualization. Regurgitant flow was measured with an aortic supravalvular electromagnetic probe; aortic and left ventricular pressures were measured with catheter-tipped micromanometer pressure transducers. The effective regurgitant orifice area was calculated by a modification of the continuity equation in a manner similar to the Gorlin equation. The regurgitant orifice area was measured three times: after aortic regurgitation was created, after mean arterial pressure was increased by 15 to 25 mm Hg with intravenous dopamine and after mean arterial pressure was reduced by 15 to 25 mm Hg with intravenous sodium nitroprusside. Comparison of regurgitant volumes and areas obtained after creation of aortic regurgitation and at the conclusion of the experiment in the absence of dopamine or sodium nitroprusside demonstrated no significant change over time. Dopamine administration was associated with an 86 +/- 81% increase in regurgitant volume (p less than 0.01) and a 38 +/- 44% increase in regurgitant orifice area (p less than 0.01). Sodium nitroprusside administration resulted in a 51 +/- 14% decrease in regurgitant volume (p less than 0.001) and a 28 +/- 21% reduction in regurgitant orifice area (p = 0.007). In this model of acute aortic regurgitation, the effective regurgitant orifice area was altered by increasing or decreasing the aortic transvalvular pressure gradient.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Evidence for metaboreceptor stimulation of sweating in normothermic and heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Shibasaki, M.; Kondo, N.; Crandall, C. G.

    2001-01-01

    1. Isometric handgrip (IHG) exercise increases sweat rate and arterial blood pressure, and both remain elevated during post-exercise ischaemia. The purpose of this study was to identify whether the elevation in arterial blood pressure during post-exercise ischaemia contributes to the increase in sweating. 2. In normothermia and during whole-body heating, 2 min IHG exercise at 40% maximal voluntary contraction, followed by 2 min post-exercise ischaemia, was performed with and without bolus intravenous administration of sodium nitroprusside during the ischaemic period. Sodium nitroprusside was administered to reduce blood pressure during post-exercise ischaemia to pre-exercise levels. Sweat rate was monitored over two microdialysis membranes placed in the dermal space of forearm skin. One membrane was perfused with the acetylcholinesterase inhibitor neostigmine, while the other was perfused with the vehicle. 3. In normothermia, IHG exercise increased sweat rate at the neostigmine-treated site but not at the control site. Sweat rate remained elevated during post-exercise ischaemia even after mean arterial blood pressure returned to the pre-IHG exercise baseline. Subsequent removal of the ischaemia stimulus returned sweat rate to pre-IHG exercise levels. Sweat rate during post-exercise ischaemia without sodium nitroprusside administration followed a similar pattern. 4. During whole-body heating, IHG exercise increased sweat rate at both neostigmine-treated and untreated sites. Similarly, regardless of whether mean arterial blood pressure remained elevated or was reduced during post-exercise ischaemia, sweat rate remained elevated during the ischaemic period. 5. These results suggest that sweating in non-glabrous skin during post-IHG exercise ischaemia is activated by metaboreflex stimulation and not via baroreceptor loading.

  18. Absence of arterial baroreflex modulation of skin sympathetic activity and sweat rate during whole-body heating in humans

    NASA Technical Reports Server (NTRS)

    Wilson, T. E.; Cui, J.; Crandall, C. G.

    2001-01-01

    1. Prior findings suggest that baroreflexes are capable of modulating skin blood flow, but the effects of baroreceptor loading/unloading on sweating are less clear. Therefore, this project tested the hypothesis that pharmacologically induced alterations in arterial blood pressure in heated humans would lead to baroreflex-mediated changes in both skin sympathetic nerve activity (SSNA) and sweat rate. 2. In seven subjects mean arterial blood pressure was lowered (approximately 8 mmHg) and then raised (approximately 13 mmHg) by bolus injections of sodium nitroprusside and phenylephrine, respectively. Moreover, in a separate protocol, arterial blood pressure was reduced via steady-state administration of sodium nitroprusside. In both normothermia and heat-stress conditions the following responses were monitored: sublingual and mean skin temperatures, heart rate, beat-by-beat blood pressure, skin blood flow (laser-Doppler flowmetry), local sweat rate and SSNA (microneurography from peroneal nerve). 3. Whole-body heating increased skin and sublingual temperatures, heart rate, cutaneous blood flow, sweat rate and SSNA, but did not change arterial blood pressure. Heart rate was significantly elevated (from 74 +/- 3 to 92 +/- 4 beats x min(-1); P < 0.001) during bolus sodium nitroprusside-induced reductions in blood pressure, and significantly reduced (from 92 +/- 4 to 68 +/- 4 beats x min(-1); P < 0.001) during bolus phenylephrine-induced elevations in blood pressure, thereby demonstrating normal baroreflex function in these subjects. 4. Neither SSNA nor sweat rate was altered by rapid (bolus infusion) or sustained (steady-state infusion) changes in blood pressure regardless of the thermal condition. 5. These data suggest that SSNA and sweat rate are not modulated by arterial baroreflexes in normothermic or moderately heated individuals.

  19. Comparative effects of aluminum and ouabain on synaptosomal choline uptake, acetylcholine release and (Na+/K+)ATPase.

    PubMed

    Silva, Virgília S; Nunes, M Alexandra; Cordeiro, J Miguel; Calejo, Ana I; Santos, Sofia; Neves, Paulo; Sykes, António; Morgado, Fernando; Dunant, Yves; Gonçalves, Paula P

    2007-07-17

    Closing the gap between adverse health effects of aluminum and its mechanisms of action still represents a huge challenge. Cholinergic dysfunction has been implicated in neuronal injury induced by aluminum. Previously reported data also indicate that in vivo and in vitro exposure to aluminum inhibits the mammalian (Na(+)/K(+))ATPase, an ubiquitous plasma membrane pump. This study was undertaken with the specific aim of determining whether in vitro exposure to AlCl(3) and ouabain, the foremost utilized selective inhibitor of (Na(+)/K(+))ATPase, induce similar functional modifications of cholinergic presynaptic nerve terminals, by comparing their effects on choline uptake, acetylcholine release and (Na(+)/K(+))ATPase activity, on subcellular fractions enriched in synaptic nerve endings isolated from rat brain, cuttlefish optic lobe and torpedo electric organ. Results obtained show that choline uptake by rat synaptosomes was inhibited by submillimolar AlCl(3), whereas the amount of choline taken up by synaptosomes isolated from cuttlefish and torpedo remained unchanged. Conversely, choline uptake was reduced by ouabain to a large extent in all synaptosomal preparations analyzed. In contrast to ouabain, which modified the K(+) depolarization evoked release of acetylcholine by rat, cuttlefish and torpedo synaptosomal fractions, AlCl(3) induced reduction of stimulated acetylcholine release was only observed when rat synaptosomes were challenged. Finally, it was observed that the aluminum effect on cuttlefish and torpedo synaptosomal (Na(+)/K(+))ATPase activity was slight when compared to its inhibitory action on mammalian (Na(+)/K(+))ATPase. In conclusion, inhibition of (Na(+)/K(+))ATPase by AlCl(3) and ouabain jeopardized the high-affinity (Na(+)-dependent, hemicholinium-3 sensitive) uptake of choline and the Ca(2+)-dependent, K(+) depolarization evoked release of acetylcholine by rat, cuttlefish and torpedo synaptosomal fractions. The effects of submillimolar AlCl(3

  20. Functional acetylcholine muscarinic receptor subtypes in human brain microcirculation: identification and cellular localization.

    PubMed

    Elhusseiny, A; Cohen, Z; Olivier, A; Stanimirović, D B; Hamel, E

    1999-07-01

    Acetylcholine is an important regulator of local cerebral blood flow. There is, however, limited information available on the possible sites of action of this neurotransmitter on brain intraparenchymal microvessels. In this study, a combination of molecular and functional approaches was used to identify which of the five muscarinic acetylcholine receptors (mAChR) are present in human brain microvessels and their intimately associated astroglial cells. Microvessel and capillary fractions isolated from human cerebral cortex were found by reverse transcriptase-polymerase chain reaction to express m2, m3, and, occasionally, m1 and m5 receptor subtypes. To localize these receptors to a specific cellular compartment of the vessel wall, cultures of human brain microvascular endothelial and smooth muscle cells were used, together with cultured human brain astrocytes. Endothelial cells invariably expressed m2 and m5 receptors, and occasionally the m1 receptor; smooth muscle cells exhibited messages for all except the m4 mAChR subtypes, whereas messages for all five muscarinic receptors were identified in astrocytes. In all three cell types studied, acetylcholine induced a pirenzepine-sensitive increase (62% to 176%, P<0.05 to 0.01) in inositol trisphosphate, suggesting functional coupling of m1, m3, or m5 mAChR to a phospholipase C signaling cascade. Similarly, coupling of m2 or m4 mAChR to adenylate cyclase inhibition in endothelial cells and astrocytes, but not in smooth muscle cells, was demonstrated by the ability of carbachol to significantly reduce (44% to 50%, P<0.05 to 0.01) the forskolin-stimulated increase in cAMP levels. This effect was reversed by the mAChR antagonist AFDX 384. The results indicate that microvessels are able to respond to neurally released acetylcholine and that mAChR, distributed in different vascular and astroglial compartments, could regulate cortical perfusion and, possibly, blood-brain barrier permeability, functions that could become

  1. Muscarinic Acetylcholine Receptors Act in Synergy to Facilitate Learning and Memory

    ERIC Educational Resources Information Center

    Leaderbrand, Katherine; Chen, Helen J.; Corcoran, Kevin A.; Guedea, Anita L.; Jovasevic, Vladimir; Wess, Jurgen; Radulovic, Jelena

    2016-01-01

    Understanding how episodic memories are formed and retrieved is necessary if we are to treat disorders in which they malfunction. Muscarinic acetylcholine receptors (mAChR) in the hippocampus and cortex underlie memory formation, but there is conflicting evidence regarding their role in memory retrieval. Additionally, there is no consensus on…

  2. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandič, Marjana; Aráoz, Romulo; Molgó, Jordi

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC{sub 50} = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials,more » recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC{sub 50} = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1{sub 2}β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC{sub 50} = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1{sub 2}β1γδ) than for the mouse (α1{sub 2}β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.« less

  3. Muscarinic and nicotinic acetylcholine receptor agonists: current scenario in Alzheimer's disease therapy.

    PubMed

    Verma, Stuti; Kumar, Ashwini; Tripathi, Timir; Kumar, Awanish

    2018-04-16

    Alzheimer's disease (AD) has become the primary cause of dementia. It shows a progressive cognitive dysfunction with degenerating neurons. Acetylcholine receptors (AChRs) propagate the cognitive ability and it consists of two primary members namely muscarinic (mAChRs) and nicotinic receptors (nAChRs). Where mAChRs is G-protein coupled receptor, (nAChRs) are ligand-gated ion channels. The conventional therapeutic regimen for AD consists of three acetylcholinestearse inhibitors while a single NMDA receptor antagonist. Researchers around the globe are developing new and modifying the existing AChRs agonists to develop lead candidates with lower risk to benefit ratio where benefits clearly outweigh the adverse events. We have searched PubMed, MEDLINE, Google scholar, Science Direct and, Web of Science with keywords "Muscarinic/Nicotinic acetylcholine receptor, agonists and, AD". The literature search included articles written in English. Scientific relevance for clinical studies, basic science studies is eligibility criteria for articles referred in this paper. M1 is the primary muscarinic subtype while α7 is the primary nAChR subtype that is responsible for cognition and memory and these two have been the major recent experimental targets for mAChR agonist strategy. The last cholinergic receptor agonist to enter phase 3 trial was EVP-6124 (Enceniclin) but was withdrawn due to severe gastrointestinal adverse effects. We aim to present an overview of the efforts and achievements in targeting Muscarinic and Nicotinic acetylcholine receptor in the current review for development of better AD therapeutics. © 2018 Royal Pharmaceutical Society.

  4. Searching for putative binding sites of the bispyridinium compound MB327 in the nicotinic acetylcholine receptor.

    PubMed

    Wein, Thomas; Höfner, Georg; Rappenglück, Sebastian; Sichler, Sonja; Niessen, Karin V; Seeger, Thomas; Worek, Franz; Thiermann, Horst; Wanner, Klaus T

    2018-09-01

    Irreversible inhibition of the acetylcholine esterase upon intoxication with organophosphorus compounds leads to an accumulation of acetylcholine in the synaptic cleft and a subsequent desensitization of nicotinic acetylcholine receptors which may ultimately result in respiratory failure. The bispyridinium compound MB327 has been found to restore functional activity of nAChR thus representing a promising starting point for the development of new drugs for the treatment of organophosphate poisoning. In order to optimize the resensitizing effect of MB327 on nAChR, it would be very helpful to know the MB327 specific binding site to apply structure based molecular modeling. The binding site for MB327 at the nAChR is not known and so far goal of speculations, but it has been shown that MB327 does not bind to the orthosteric acetylcholine binding site. We have used docking calculations to screen the surface of nAChR for possible binding sites of MB327. The results indicate that at least two potential binding sites for MB327 at nAChR are present inside the channel pore. In these binding sites, MB327 intercalates between the γ-α and β-δ subunits of nAChR, respectively. Both putative MB327 binding sites show an unsymmetrical distribution of surrounding hydrophilic and lipophilic amino acids. This suggests that substitution of MB327-related bispyridinium compounds on one of the two pyridinium rings with polar substituents should have a favorable effect on the pharmacological function. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human LYNX1.

    PubMed

    Lyukmanova, Ekaterina N; Shenkarev, Zakhar O; Shulepko, Mikhail A; Mineev, Konstantin S; D'Hoedt, Dieter; Kasheverov, Igor E; Filkin, Sergey Yu; Krivolapova, Alexandra P; Janickova, Helena; Dolezal, Vladimir; Dolgikh, Dmitry A; Arseniev, Alexander S; Bertrand, Daniel; Tsetlin, Victor I; Kirpichnikov, Mikhail P

    2011-03-25

    Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs). At 5-30 μM, ws-LYNX1 competed with (125)I-α-bungarotoxin for binding to the acetylcholine-binding proteins (AChBPs) and to Torpedo nAChR. Exposure of Xenopus oocytes expressing α7 nAChRs to 1 μM ws-LYNX1 enhanced the response to acetylcholine, but no effect was detected on α4β2 and α3β2 nAChRs. Increasing ws-LYNX1 concentration to 10 μM caused a modest inhibition of these three nAChR subtypes. A common feature for ws-LYNX1 and LYNX1 is a decrease of nAChR sensitivity to high concentrations of acetylcholine. NMR and functional analysis both demonstrate that ws-LYNX1 is an appropriate model to shed light on the mechanism of LYNX1 action. Computer modeling, based on ws-LYNX1 NMR structure and AChBP x-ray structure, revealed a possible mode of ws-LYNX1 binding.

  6. Analysis of the negative inotropic effect of acetylcholine on frog atrial fibres.

    PubMed

    Nargeot, J; Garnier, D; Rougier, O

    1981-03-01

    Voltage-clamp experiments have been performed on frog atrial preparations in order to study the mechanism of the inotropic effect of acetylcholine (ACh) at various concentrations. The amplitude of the slow inward current (Is) is reduced even at low ACh concentrations; such low concentrations have little or no effect on potassium permeability. Dose-effect relationships for Is inhibition (Is/Is max) by ACh show a half amplitude dose (K0.5 around 8 X 10(-8) M ACh. The reduction of Is is attributed largely to a decrease of the maximal conductance of the slow channel (gs). Steady-state activation and inactivation parameters are not affected by ACh. Experiments in a Na-free solution (Na replaced by Li ions) or in a Ca-free solution (with EGTA) indicate that the "slow sodium current" is more sensitive to ACh than the "slow Ca current", although these two currents both seem to flow through the slow channel. The decrease of the phasic component of contraction observed in the presence of ACh is very well correlated with the decrease of Is (K0.5 = 8 X 10(-8) M ACh), while the increase of the tonic tension may be related to the outward potassium current induced by high concentrations of ACh. The significant difference between the half amplitude dose (K0.5) observed in the dose effect curves with ACh for Is inhibition (K0.5 = 8 X 10(-8) M) and for ACh-induced extra-current (K0.5 - 10(-6) M) may indicate the presence of two muscarinic receptors.

  7. β-Amyloid-acetylcholine molecular interaction: new role of cholinergic mediators in anti-Alzheimer therapy?

    PubMed

    Grimaldi, Manuela; Marino, Sara Di; Florenzano, Fulvio; Ciotta, Maria Teresa; Nori, Stefania Lucia; Rodriquez, Manuela; Sorrentino, Giuseppe; D'Ursi, Anna Maria; Scrima, Mario

    2016-07-01

    For long time Alzheimer's disease has been attributed to a cholinergic deficit. More recently, it has been considered dependent on the accumulation of the amyloid beta peptide (Aβ), which promotes neuronal loss and impairs neuronal function. Results/methodology: In the present study, using biophysical and biochemical experiments we tested the hypothesis that in addition to its role as a neurotransmitter, acetylcholine may exert its action as an anti-Alzheimer agent through a direct interaction with Aβ. Our data provide evidence that acetylcholine favors the soluble peptide conformation and exerts a neuroprotective effect against the neuroinflammatory and toxic effects of Aβ. The present paper paves the way toward the development of new polyfunctional anti-Alzheimer therapeutics capable of intervening on both the cholinergic transmission and the Aβ aggregation.

  8. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure

    PubMed Central

    Jablonski, Kristen L.; Racine, Matthew L.; Geolfos, Candace J.; Gates, Phillip E.; Chonchol, Michel; McQueen, Matthew B.; Seals, Douglas R.

    2013-01-01

    Objectives We determined the efficacy of dietary sodium restriction (DSR) for improving vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure (SBP; 130–159 mmHg) and the associated physiological mechanisms. Background Vascular endothelial dysfunction develops with advancing age and elevated SBP, contributing to increased cardiovascular risk. DSR lowers BP, but its effect on vascular endothelial function and mechanisms involved are unknown. Methods Seventeen subjects (11M/6F; 62±7 yrs, mean±S.D.) completed a randomized, crossover study of 4 weeks of both low and normal sodium intake. Vascular endothelial function (endothelium-dependent dilation; EDD), nitric oxide (NO)/tetrahydrobiopterin (BH4) bioavailability and oxidative stress-associated mechanisms were assessed following each condition. Results Urinary sodium excretion was reduced by ~50% (to 70±30 mmol/day), and conduit (brachial artery flow-mediated dilation [FMDBA]) and resistance (forearm blood flow responses to acetylcholine [FBFACh]) artery EDD were 68% and 42% (peak FBFACh) higher following the low sodium diet (p<0.005). Low sodium markedly enhanced NO- mediated EDD (greater ΔFBFACh with endothelial NO synthase [eNOS] inhibition) without changing eNOS expression/activation (Ser1177 phosphorylation), restored BH4 bioactivity (less ΔFMDBA with acute BH4), abolished tonic superoxide suppression of EDD (less ΔFMDBA and ΔFBFACh with ascorbic acid infusion), and increased circulating superoxide dismutase activity (p<0.05). These effects were independent of ΔSBP. Other subject characteristics/dietary factors and endothelium-independent dilation were unchanged. Conclusions DSR largely reverses both macro- and microvascular endothelial dysfunction by enhancing NO and BH4 bioavailability and reducing oxidative stress. Our findings support the emerging concept that DSR induces “vascular protection” beyond that attributable to its BP

  9. The effects of postnatal alcohol exposure and galantamine on the context pre-exposure facilitation effect and acetylcholine efflux using in vivo microdialysis.

    PubMed

    Perkins, Amy E; Fadel, Jim R; Kelly, Sandra J

    2015-05-01

    Fetal alcohol spectrum disorders (FASD) are characterized by damage to multiple brain regions, including the hippocampus, which is involved in learning and memory. The acetylcholine neurotransmitter system provides major input to the hippocampus and is a possible target of developmental alcohol exposure. Alcohol (3.0 g/kg/day) was administered via intubation to male rat pups (postnatal day [PD] 2-10; ethanol-treated [ET]). Controls received a sham intubation (IC) or no treatment (NC). Acetylcholine efflux was measured using in vivo microdialysis (PD 32-35). ET animals were not different at baseline, but had decreased K(+)/Ca(2+)-induced acetylcholine efflux compared to NC animals and an enhanced acetylcholine response to galantamine (acetylcholinesterase inhibitor; 2.0 mg/kg) compared to both control groups. A separate cohort of animals was tested in the context pre-exposure facilitation effect task (CPFE; PD 30-32) following postnatal alcohol exposure and administration of galantamine (2.0 mg/kg; PD 11-30). Neither chronic galantamine nor postnatal alcohol exposure influenced performance in the CPFE task. Using immunohistochemistry, we found that neither alcohol exposure nor behavioral testing significantly altered the density of vesicular acetylcholine transporter or alpha7 nicotinic acetylcholine receptor in the ventral hippocampus (CA1). In the medial septum, the average number of choline acetyltransferase (ChAT+) cells was increased in ET animals that displayed the context-shock association; there were no changes in IC and NC animals that learned the context-shock association or in any animals that were in the control task that entailed no learning. Taken together, these results indicate that the hippocampal acetylcholine system is significantly disrupted under conditions of pharmacological manipulations (e.g., galantamine) in alcohol-exposed animals. Furthermore, ChAT was up‑regulated in ET animals that learned the CPFE, which may account for their ability

  10. Thinking in cycles: MWC is a good model for acetylcholine receptor-channels

    PubMed Central

    Auerbach, Anthony

    2012-01-01

    Abstract Neuromuscular acetylcholine receptors have long been a model system for understanding the mechanisms of operation of ligand-gated ion channels and fast chemical synapses. These five subunit membrane proteins have two allosteric (transmitter) binding sites and a distant ion channel domain. Occupation of the binding sites by agonist molecules transiently increases the probability that the channel is ion-permeable. Recent experiments show that the Monod, Wyman and Changeux formalism for allosteric proteins, originally developed for haemoglobin, is an excellent model for acetylcholine receptors. By using mutations and single-channel electrophysiology, the gating equilibrium constants for receptors with zero, one or two bound agonist molecules, and the agonist association and dissociation rate constants from both the closed- and open-channel conformations, have been estimated experimentally. The change in affinity for each transmitter molecule between closed and open conformations provides ∼–5.1 kcal mol−1 towards the global gating isomerization of the protein. PMID:21807612

  11. Prolonged administration of pyridostigmine impairs neuromuscular function with and without down-regulation of acetylcholine receptors.

    PubMed

    Richtsfeld, Martina; Yasuhara, Shingo; Fink, Heidrun; Blobner, Manfred; Martyn, J A Jeevendra

    2013-08-01

    The acetylcholinesterase inhibitor, pyridostigmine, is prophylactically administered to mitigate the toxic effects of nerve gas poisoning. The authors tested the hypothesis that prolonged pyridostigmine administration can lead to neuromuscular dysfunction and even down-regulation of acetylcholine receptors. Pyridostigmine (5 or 25 mg·kg·day) or saline was continuously administered via osmotic pumps to rats, and infused for either 14 or 28 days until the day of neuromuscular assessment (at day 14 or 28), or discontinued 24 h before neuromuscular assessment. Neurotransmission and muscle function were examined by single-twitch, train-of-four stimulation and 100-Hz tetanic stimulation. Sensitivity to atracurium and acetylcholine receptor number (quantitated by I-α-bungarotoxin) provided additional measures of neuromuscular integrity. Specific tetanic tensions (Newton [N]/muscle weight [g]) were significantly (P < 0.05) decreased at 14 (10.3 N/g) and 28 (11.1 N/g) days of 25 mg·kg·day pyridostigmine compared with controls (13.1-13.6 N/g). Decreased effective dose (0.81-1.05 vs. 0.16-0.45 mg/kg; P < 0.05) and decreased plasma concentration (3.02-3.27 vs. 0.45-1.37 μg/ml; P < 0.05) of atracurium for 50% paralysis (controls vs. 25 mg·kg·day pyridostigmine, respectively), irrespective of discontinuation of pyridostigmine, confirmed the pyridostigmine-induced altered neurotransmission. Pyridostigmine (25 mg·kg·day) down-regulated acetylcholine receptors at 28 days. Prolonged administration of pyridostigmine (25 mg·kg·day) leads to neuromuscular impairment, which can persist even when pyridostigmine is discontinued 24 h before assessment of neuromuscular function. Pyridostigmine has the potential to down-regulate acetylcholine receptors, but induces neuromuscular dysfunction even in the absence of receptor changes.

  12. Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter.

    PubMed

    Bedore, Jake; Martyn, Amanda C; Li, Anson K C; Dolinar, Eric A; McDonald, Ian S; Coupland, Stuart G; Prado, Vania F; Prado, Marco A; Hill, Kathleen A

    2015-01-01

    Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT) in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina. A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5) deletion of VAChT (VAChTSix3-Cre-flox/flox) and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP) amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses. This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.

  13. AGE-RELATED EFFECTS OF CHLORPYRIFOS ON ACETYLCHOLINE RELEASE IN RAT BRAIN. (R825811)

    EPA Science Inventory

    Chlorpyrifos (CPF) is an organophosphorus insecticide that elicits toxicity through inhibition of acetylcholinesterase (AChE). Young animals are markedly more sensitive than adults to the acute toxicity of CPF. We evaluated acetylcholine (ACh) release and its muscarinic recept...

  14. Nucleus accumbens acetylcholine and food intake: decreased muscarinic tone reduces feeding but not food-seeking.

    PubMed

    Pratt, Wayne E; Blackstone, Kaitlin

    2009-03-02

    Separate groups of food-deprived rats were given 2h access to food after receiving bilateral nucleus accumbens infusions of the muscarinic antagonist scopolamine methyl bromide (at 0, 1.0, and 10.0 microg/side), the M2-preferring agonist oxotremorine sesquifumarate (Oxo-S; at 0, 1.0, or 10.0 microg/side) or the M2 antagonist AFDX-116 (at 0, 0.2, or 1.0 microg/side). Injections of scopolamine or Oxo-S, but not AFDX-116, reduced food consumption across the 2h. These experiments confirm a critical role for Acb acetylcholine in promoting food ingestion, and suggest that decreased acetylcholine tone at post-synaptic muscarinic receptors disrupts normal consummatory behavior.

  15. Treatment with sodium benzoate leads to malformation of zebrafish larvae.

    PubMed

    Tsay, Huey-Jen; Wang, Yun-Hsin; Chen, Wei-Li; Huang, Mei-Yun; Chen, Yau-Hung

    2007-01-01

    Sodium benzoate (SB) is a commonly used food preservative and anti-microbial agent in many foods from soup to cereals. However, little is known about the SB-induced toxicity and teratogenicity during early embryonic development. Here, we used zebrafish as a model to test the toxicity and teratogenicity because of their transparent eggs; therefore, the organogenesis of zebrafish embryos is easy to observe. After low dosages of SB (1-1000 ppm) treatment, the zebrafish embryos exhibited a 100% survival rate. As the exposure dosages increased, the survival rates decreased. No embryos survived after treatment with 2000 ppm SB. The 50% lethal dose (LD(50)) of zebrafish is found to be in the range of 1400-1500 ppm. Gut abnormalities, malformation of pronephros, defective hatching gland and edema in pericardial sac were observed after treatment with SB. Compared to untreated littermates (vehicle-treated control), SB-treated embryos exhibited significantly reduced tactile sensitivity frequencies of touch-induced movement (vehicle-treated control: 27.60+/-1.98 v.s. 1000 ppm SB: 7.89+/-5.28; N=30). Subtle changes are easily observed by staining with specific monoclonal antibodies F59, Znp1 and alpha6F to detect morphology changes in muscle fibers, motor axons and pronephros, respectively. Our data showed that the treatment of SB led to misalignment of muscle fibers, motor neuron innervations, excess acetyl-choline receptor cluster and defective pronephric tubes. On the basis of these observations, we suggest that sodium benzoate is able to induce neurotoxicity and nephrotoxicity of zebrafish larvae.

  16. Improvement of Aging-Associated Cardiovascular Dysfunction by the Orally Administered Copper(II)-Aspirinate Complex

    PubMed Central

    Gerö, Domokos; Lin, Li-ni; Loganathan, Sivakkanan; Hoppe-Tichy, Torsten; Szabó, Csaba; Karck, Matthias; Sakurai, Hiromu; Szabó, Gábor

    2008-01-01

    Abstract Background Aging-associated nitro-oxidative stress causes tissue injury and activates proinflammatory pathways that play an important role in the pathogenesis of aging-associated cardiovascular dysfunction. It has been recently reported, that the copper(II)–aspirinate complex (CuAsp) exerts not only the well-known anti-inflammatory and platelet antiaggregating effects of aspirin, but, due to its superoxide dismutase mimetic activity, it acts as a potent antioxidant as well. In this study we investigated the effects of CuAsp on aging-associated myocardial and endothelial dysfunction. Methods and Results Aging and young rats were treated for 3 weeks with vehicle, or with CuAsp (200 mg/kg per day per os). Left ventricular pressure–volume relations were measured by using a microtip pressure–volume conductance catheter, and indexes of contractility (e.g., slope of end-systolic pressure–volume relationships [ESPVR] [Ees], and dP/dtmax – end-diastolic volume [EDV]) were calculated. In organ bath experiments for isometric tension with isolated aortic rings, endothelium-dependent and -independent vasorelaxation were investigated by using acetylcholine and sodium nitroprusside. When compared to the young controls, aging rats showed impaired left ventricular contractility (Ees, 0.51 ± 0.04 vs. 2.16 ± 0.28 mmHg/μL; dP/dtmax – EDV, 10.71 ± 2.02 vs. 37.23 ± 4.18 mmHg/sec per μL; p < 0.05) and a marked endothelial dysfunction (maximal relaxation to acetylcholine: 66.66 ± 1.30 vs. 87.09 ± 1.35%; p < 0.05). Treatment with CuAsp resulted in reduced nitro-oxidative stress, improved cardiac function (Ees, 1.21 ± 0.17 vs. 0.51 ± 0.04 mmHg/μL; dP/dtmax – EDV, 23.40 ± 3.34 vs. 10.71 ± 2.02 mmHg/sec per μL; p < 0.05) and higher vasorelaxation to acetylcholine in aging animals (94.83 ± 0.73 vs. 66.66 ± 1.30%; p < 0.05). The treatment did not influence the cardiovascular functions of young rats. Conclusions Our results demonstrate that oxidative stress

  17. PI3K/Akt-Independent NOS/HO Activation Accounts for the Facilitatory Effect of Nicotine on Acetylcholine Renal Vasodilations: Modulation by Ovarian Hormones

    PubMed Central

    Gohar, Eman Y.; El-gowilly, Sahar M.; El-Gowelli, Hanan M.; El-Demellawy, Maha A.; El-Mas, Mahmoud M.

    2014-01-01

    We investigated the effect of chronic nicotine on cholinergically-mediated renal vasodilations in female rats and its modulation by the nitric oxide synthase (NOS)/heme oxygenase (HO) pathways. Dose-vasodilatory response curves of acetylcholine (0.01–2.43 nmol) were established in isolated phenylephrine-preconstricted perfused kidneys obtained from rats treated with or without nicotine (0.5–4.0 mg/kg/day, 2 weeks). Acetylcholine vasodilations were potentiated by low nicotine doses (0.5 and 1 mg/kg/day) in contrast to no effect for higher doses (2 and 4 mg/kg/day). The facilitatory effect of nicotine was acetylcholine specific because it was not observed with other vasodilators such as 5′-N-ethylcarboxamidoadenosine (NECA, adenosine receptor agonist) or papaverine. Increases in NOS and HO-1 activities appear to mediate the nicotine-evoked enhancement of acetylcholine vasodilation because the latter was compromised after pharmacologic inhibition of NOS (L-NAME) or HO-1 (zinc protoporphyrin, ZnPP). The renal protein expression of phosphorylated Akt was not affected by nicotine. We also show that the presence of the two ovarian hormones is necessary for the nicotine augmentation of acetylcholine vasodilations to manifest because nicotine facilitation was lost in kidneys of ovariectomized (OVX) and restored after combined, but not individual, supplementation with medroxyprogesterone acetate (MPA) and estrogen (E2). Together, the data suggests that chronic nicotine potentiates acetylcholine renal vasodilation in female rats via, at least partly, Akt-independent HO-1 upregulation. The facilitatory effect of nicotine is dose dependent and requires the presence of the two ovarian hormones. PMID:24733557

  18. Sodium

    MedlinePlus

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  19. A first principle study on the interaction between acetylcholinesterase and acetylcholine, and also rivastigmine in alzheimer's disease case

    NASA Astrophysics Data System (ADS)

    Khoirunisa, V.; Rusydi, F.; Kasai, H.; Gandaryus, A. G.; Dipojono, H. K.

    2016-08-01

    The catalytic activity of acetylcholinesterase enzyme (AChE) relates to the symptom progress in Alzheimer's disease. Interaction of AChE with rivastigmine (from the medicine) can reduce its catalytic activity toward acetylcholine to decelerate the progression of Alzheimer's disease. This research attempts to study the interaction between AChE and rivastigmine, and also acetylcholine (without the presence of rivastigmine) using density functional theory by simplifying the reaction occurs in the active site, which is assumed to be C2H5OH, C3N2H3(Ch3), and CH3COO-. The results suggest that AChE interacts easier with acetylcholine than with rivastigmine, which implies that the medicine does not effectively reduce the catalytic activity of AChE. At this stage, no experimental data is available to be compared with the calculation results. Nonetheless, this study has shown a good prospect to understand the AChE-substrate interaction using a first-principles calculation.

  20. Simultaneous improvement in production of microalgal biodiesel and high-value alpha-linolenic acid by a single regulator acetylcholine.

    PubMed

    Parsaeimehr, Ali; Sun, Zhilan; Dou, Xiao; Chen, Yi-Feng

    2015-01-01

    Photoautotrophic microalgae are a promising avenue for sustained biodiesel production, but are compromised by low yields of biomass and lipids at present. We are developing a chemical approach to improve microalgal accumulation of feedstock lipids as well as high-value alpha-linolenic acid which in turn might provide a driving force for biodiesel production. We demonstrate the effectiveness of the small bioactive molecule "acetylcholine" on accumulation of biomass, total lipids, and alpha-linolenic acid in Chlorella sorokiniana. The effectiveness exists in different species of Chlorella. Moreover, the precursor and analogs of acetylcholine display increased effectiveness at higher applied doses, with maximal increases by 126, 80, and 60% over controls for biomass, total lipids, and alpha-linolenic acid, respectively. Production of calculated biodiesel was also improved by the precursor and analogs of acetylcholine. The biodiesel quality affected by changes in microalgal fatty acid composition was addressed. The chemical approach described here could improve the lipid yield and biodiesel production of photoautotrophic microalgae if combined with current genetic approaches.

  1. Effects of the 5-HT6 receptor antagonist idalopirdine on extracellular levels of monoamines, glutamate and acetylcholine in the rat medial prefrontal cortex.

    PubMed

    Mørk, Arne; Russell, Rasmus Vinther; de Jong, Inge E M; Smagin, Gennady

    2017-03-15

    Idalopirdine (Lu AE58054) is a high affinity and selective antagonist for the human serotonin 5-HT 6 receptor (K i 0.83nM) in phase III development for mild-to-moderate Alzheimer's disease as an adjunct therapy to acetylcholinesterase inhibitors (AChEIs). We have studied the effects of idalopirdine on extracellular levels of monoamines, glutamate and acetylcholine in the medial prefrontal cortex (mPFC) of freely-moving rats using microdialysis. Idalopirdine (10mg/kg p.o.) increased extracellular levels of dopamine, noradrenaline and glutamate in the mPFC and showed a trend to increase serotonin levels. No effect was observed on acetylcholine levels. The AChEI donepezil (1.3mg/kg s.c.) significantly increased the levels of acetylcholine. Pretreatment with idalopirdine 2h prior to donepezil administration potentiated the effect of donepezil on extracellular acetylcholine levels. The idalopirdine potentiation of donepezil-induced increase in acetylcholine levels was also observed during local infusion of idalopirdine (6µg/ml) into the mPFC by reverse dialysis. The data from the current study may provide a mechanistic model for the pro-cognitive effects observed with administration of idalopirdine in donepezil-treated patients with Alzheimer's disease observed in the phase 2 studies (Wilkinson et al. 2014). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Blood Pressure-Lowering Effect of Orally Ingested Nitrite Is Abolished by a Proton Pump Inhibitor.

    PubMed

    Montenegro, Marcelo F; Sundqvist, Michaela L; Larsen, Filip J; Zhuge, Zhengbing; Carlström, Mattias; Weitzberg, Eddie; Lundberg, Jon O

    2017-01-01

    Inorganic nitrate and nitrite from dietary and endogenous sources are metabolized to NO and other bioactive nitrogen oxides that affect blood pressure. The mechanisms for nitrite bioactivation are unclear, but recent studies in rodents suggest that gastric acidity may influence the systemic effects of this anion. In a randomized, double-blind, placebo-controlled crossover study, we tested the effects of a proton pump inhibitor on the acute cardiovascular effects of nitrite. Fifteen healthy nonsmoking, normotensive subjects, aged 19 to 39 years, were pretreated with placebo or esomeprazole (3×40 mg) before ingesting sodium nitrite (0.3 mg kg -1 ), followed by blood pressure monitoring. Nitrite reduced systolic blood pressure by a maximum of 6±1.3 mm Hg when taken after placebo, whereas pretreatment with esomeprazole blunted this effect. Peak plasma nitrite, nitrate, and nitroso species levels after nitrite ingestion were similar in both interventions. In 8 healthy volunteers, we then infused increasing doses of sodium nitrite (1, 10, and 30 nmol kg -1 min -1 ) intravenously. Interestingly, although plasma nitrite peaked at similar levels as with orally ingested nitrite (≈1.8 µmol/L), no changes in blood pressure were observed. In rodents, esomeprazole did not affect the blood pressure response to the NO donor, DEA NONOate, or vascular relaxation to nitroprusside and acetylcholine, demonstrating an intact downstream NO-signaling pathway. We conclude that the acute blood pressure-lowering effect of nitrite requires an acidic gastric environment. Future studies will reveal if the cardiovascular complications associated with the use of proton pump inhibitors are linked to interference with the nitrate-nitrite-NO pathway. © 2016 American Heart Association, Inc.

  3. The effects of postnatal alcohol exposure and galantamine on the context pre-exposure facilitation effect and acetylcholine efflux using in vivo microdialysis

    PubMed Central

    Perkins, Amy E.; Fadel, Jim R.; Kelly, Sandra J.

    2015-01-01

    Fetal alcohol spectrum disorders (FASD) affect 2–5% of children. FASD have been shown to cause damage to multiple brain regions, but damage to the hippocampus specifically may explain deficits in learning and memory that are hallmark symptoms of FASD. The acetylcholine neurotransmitter system is a major input to the hippocampus and is a possible target of developmental alcohol exposure. Alcohol (3.0 g/kg/day) was administered via intragastric intubation to developing male rat pups (postnatal day [PD] 2–10; ethanol-treated [ET]), with controls receiving a sham intubation (IC) or no treatment (NC). In Experiment 1, in vivo microdialysis was used to measure acetylcholine efflux in adolescents (PD 32–35). During microdialysis, the effects of a high K+/Ca2+ aCSF solution (PD 32–33) and an acute galantamine (acetylcholinesterase [AChE] inhibitor) injection (2.0 mg/kg; PD 34–35) on acetylcholine efflux were measured. Alcohol-exposed animals did not differ in acetylcholine efflux at baseline. However, alcohol-exposed animals had a decrease in K+/Ca2+-induced acetylcholine efflux compared to non-treated controls, and an enhanced acetylcholine response to galantamine compared to both control groups. Experiment 2 tested whether chronic administration of galantamine (2.0 mg/kg; PD 11–30) could attenuate alcohol-induced learning deficits in the context pre-exposure facilitation effect (CPFE; PD 30–32). Neither chronic galantamine nor postnatal alcohol exposure influenced performance in the CPFE task. Immunohistochemistry was used to measure expression of choline acetyltransferase (ChAT; medial septum), vesicular acetylcholine transporter (vAChT; ventral CA1), and the alpha7 nicotinic acetylcholine receptor (α7 nAChR; ventral CA1) following microdialysis (Exp. 1) or chronic galantamine and behavioral testing (Exp. 2). Neither alcohol exposure nor behavioral testing significantly altered the density of vAChT or α7 nAChRs in the ventral CA1 region of the

  4. Acetylcholine Release in the Hippocampus and Striatum during Place and Response Training

    ERIC Educational Resources Information Center

    Pych, Jason C.; Chang, Qing; Colon-Rivera, Cynthia; Haag, Renee; Gold, Paul E.

    2005-01-01

    These experiments examined the release of acetylcholine in the hippocampus and striatum when rats were trained, within single sessions, on place or response versions of food-rewarded mazes. Microdialysis samples of extra-cellular fluid were collected from the hippocampus and striatum at 5-min increments before, during, and after training. These…

  5. Evaluation of the Zeiss retinal vessel analyser

    PubMed Central

    Polak, K.; Dorner, G.; Kiss, B.; Polska, E.; Findl, O.; Rainer, G.; Eichler, H.; Schmetterer, L.

    2000-01-01

    AIM—To investigate the reproducibility and sensitivity of the Zeiss retinal vessel analyser, a new method for the online determination of retinal vessel diameters in healthy subjects.
METHODS—Two model drugs were administered, a peripheral vasoconstrictor (the α receptor agonist phenylephrine) and a peripheral vasodilator (the nitric oxide donor sodium nitroprusside) in stepwise increasing doses. Nine healthy young subjects were studied in a placebo controlled double masked three way crossover design. Subjects received intravenous infusions of either placebo or stepwise increasing doses of phenylephrine (0.5, 1, or 2 µg/kg/min) or sodium nitroprusside (0.5, 1, or 2 µg/kg/min). Retinal vessel diameters were measured with the new Zeiss retinal vessel analyser. Retinal leucocyte velocity, flow, and density were measured with the blue field entoptic technique. The reproducibility of measurements was assessed with coefficients of variation and intraclass correlation coefficients.
RESULTS—Placebo and phenylephrine did not influence retinal haemodynamics, although the α receptor antagonist significantly increased blood pressure. Sodium nitroprusside induced a significant increase in retinal venous and arterial diameters (p<0.001 each), leucocyte density (p=0.001), and leucocyte flow (p=0.024) despite lowering blood pressure to a significant degree. For venous and arterial vessel size measurements short term coefficients of variation were 1.3% and 2.6% and intraclass correlation coefficients were 0.98 and 0.96, respectively. The sensitivity was between 3% and 5% for retinal veins and 5% and 7% for retinal arteries.
CONCLUSIONS—These data indicate that the Zeiss retinal vessel analyser is an accurate system for the assessment of retinal diameters in healthy subjects. In addition, nitric oxide appears to have a strong influence on retinal vascular tone.

 PMID:11049956

  6. Nitric Oxide Contributes to Vasomotor Tone in Hypertensive African Americans Treated With Nebivolol and Metoprolol.

    PubMed

    Neuman, Robert B; Hayek, Salim S; Poole, Joseph C; Rahman, Ayaz; Menon, Vivek; Kavtaradze, Nino; Polhemus, David; Veledar, Emir; Lefer, David J; Quyyumi, Arshed A

    2016-03-01

    Endothelial dysfunction is more prevalent in African Americans (AAs) compared with whites. The authors hypothesized that nebivolol, a selective β1 -antagonist that stimulates nitric oxide (NO), will improve endothelial function in AAs with hypertension when compared with metoprolol. In a double-blind, randomized, crossover study, 19 AA hypertensive patients were randomized to a 12-week treatment period with either nebivolol 10 mg or metoprolol succinate 100 mg daily. Forearm blood flow (FBF) was measured using plethysmography at rest and after intra-arterial infusion of acetylcholine and sodium nitroprusside to estimate endothelium-dependent and independent vasodilation, respectively. Physiologic vasodilation was assessed during hand-grip exercise. Measurements were repeated after NO blockade with L-N(G) -monomethylarginine (L-NMMA) and after inhibition of endothelium-derived hyperpolarizing factor (EDHF) with tetraethylammonium chloride (TEA). NO blockade with L-NMMA produced a trend toward greater vasoconstriction during nebivolol compared with metoprolol treatment (21% vs 12% reduction in FBF, P=.06, respectively). This difference was more significant after combined administration of L-NMMA and TEA (P<.001). Similarly, there was a contribution of NO to exercise-induced vasodilation during nebivolol but not during metoprolol treatment. There were significantly greater contributions of NO and EDHF to resting vasodilator tone and of NO to exercise-induced vasodilation with nebivolol compared with metoprolol in AAs with hypertension. © 2015 Wiley Periodicals, Inc.

  7. Nitric Oxide Contributes to Vasomotor Tone in Hypertensive African Americans Treated With Nebivolol and Metoprolol

    PubMed Central

    Neuman, Robert B.; Hayek, Salim; Poole, Joseph C.; Rahman, Ayaz; Menon, Vivek; Kavtaradze, Nino; Polhemus, David; Veledar, Emir; Lefer, David J.; Quyyumi, Arshed A.

    2015-01-01

    Endothelial dysfunction is more prevalent in African Americans (AA) compared to whites. We hypothesized that nebivolol, a selective β-1 antagonist that stimulates NO, will improve endothelial function in AA with hypertension when compared to metoprolol. In a double-blind, randomized, cross-over study, 19 AA hypertensive subjects were randomized to a 12-week treatment period with either nebivolol 10mg or metoprolol succinate 100mg daily. Forearm blood flow (FBF) was measured using plethysmography at rest and after intra-arterial infusion of acetylcholine, and sodium nitroprusside to estimate endothelium-dependent and independent vasodilation, respectively. Physiologic vasodilation was assessed during hand-grip exercise. Measurements were repeated after NO blockade with L-NG-monomethylarginine (L-NMMA), and after inhibition of endothelium-derived hyperpolarizing factor (EDHF) with tetraethylammonium chloride (TEA). NO blockade with L-NMMA produced a trend toward greater vasoconstriction during nebivolol compared to metoprolol treatment period (21% vs 12% reduction in FBF, p=0.06, respectively). This difference was more significant after combined administration of L-NMMA and TEA (p<0.001). Similarly, there was a contribution of NO to exercise-induced vasodilation during nebivolol but not during metoprolol treatment. There were significantly greater contributions of NO and EDHF to resting vasodilator tone and of NO to exercise-induced vasodilation with nebivolol compared to metoprolol in AA with hypertension. PMID:26285691

  8. Vascular wall function in insulin-resistant JCR:LA-cp rats: role of male and female sex.

    PubMed

    O'Brien, S F; Russell, J C; Dolphin, P J; Davidge, S T

    2000-08-01

    Vascular wall function was assessed in obese insulin-resistant (cp/cp) and lean normal (+/?), male and female, JCR:LA-cp rats. Both male and female cp/cp rats showed enhanced maximum contractility in response to norepinephrine; impaired smooth muscle in response to sodium nitroprusside, a nitric oxide (NO) donor; and impaired relaxation in response to acetylcholine (ACh), compared with their lean counterparts. The abnormalities were similar in male and female cp/cp rats. The NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME), inhibited ACh-mediated relaxation significantly in male rats, both cp/cp and +/?. The inhibition of ACh-mediated relaxation by L-NAME in +/? females was less, with no reduction in maximal relaxation, and was absent in cp/cp females. These effects suggest that the relative importance of NO in the endothelial modulation of smooth muscle contractility is greater in male rats. The results are consistent with a decreased role for endothelial NO in the cp/cp rats of both sexes and a reduction in NO-independent cholinergic relaxation in the male cp/cp rat. This NO-independent mechanism is not affected in the female cp/cp rats. The relatively small differences between males and females in smooth muscle cell and vascular function may contribute to sex-related differences in the atherogenesis, vasospasm, and ischemic damage associated with the obese insulin-resistant state.

  9. Virgin Coconut Oil Prevents Blood Pressure Elevation and Improves Endothelial Functions in Rats Fed with Repeatedly Heated Palm Oil

    PubMed Central

    Nurul-Iman, Badlishah Sham; Kamisah, Yusof; Jaarin, Kamsiah; Qodriyah, Hj Mohd Saad

    2013-01-01

    This study was performed to explore the effects of virgin coconut oil (VCO) in male rats that were fed with repeatedly heated palm oil on blood pressure, plasma nitric oxide level, and vascular reactivity. Thirty-two male Sprague-Dawley rats were divided into four groups: (i) control (basal diet), (ii) VCO (1.42 mL/kg, oral), (iii) five-times-heated palm oil (15%) (5HPO), and (iv) five-times-heated palm oil (15%) and VCO (1.42 mL/kg, oral) (5HPO + VCO). Blood pressure was significantly increased in the group that was given the 5HPO diet compared to the control group. Blood pressure in the 5HPO + VCO group was significantly lower than the 5HPO group. Plasma nitric oxide (NO) level in the 5HPO group was significantly lower compared to the control group, whereas in the 5HPO + VCO group, the plasma NO level was significantly higher compared to the 5HPO group. Aortic rings from the 5HPO group exhibited attenuated relaxation in response to acetylcholine and sodium nitroprusside as well as increased vasoconstriction to phenylephrine compared to the control group. Aortic rings from the 5HPO + VCO group showed only attenuated vasoconstriction to phenylephrine compared to the 5HPO group. In conclusion, VCO prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil. PMID:23861707

  10. Virgin coconut oil prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil.

    PubMed

    Nurul-Iman, Badlishah Sham; Kamisah, Yusof; Jaarin, Kamsiah; Qodriyah, Hj Mohd Saad

    2013-01-01

    This study was performed to explore the effects of virgin coconut oil (VCO) in male rats that were fed with repeatedly heated palm oil on blood pressure, plasma nitric oxide level, and vascular reactivity. Thirty-two male Sprague-Dawley rats were divided into four groups: (i) control (basal diet), (ii) VCO (1.42 mL/kg, oral), (iii) five-times-heated palm oil (15%) (5HPO), and (iv) five-times-heated palm oil (15%) and VCO (1.42 mL/kg, oral) (5HPO + VCO). Blood pressure was significantly increased in the group that was given the 5HPO diet compared to the control group. Blood pressure in the 5HPO + VCO group was significantly lower than the 5HPO group. Plasma nitric oxide (NO) level in the 5HPO group was significantly lower compared to the control group, whereas in the 5HPO + VCO group, the plasma NO level was significantly higher compared to the 5HPO group. Aortic rings from the 5HPO group exhibited attenuated relaxation in response to acetylcholine and sodium nitroprusside as well as increased vasoconstriction to phenylephrine compared to the control group. Aortic rings from the 5HPO + VCO group showed only attenuated vasoconstriction to phenylephrine compared to the 5HPO group. In conclusion, VCO prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil.

  11. Airway structure and function in Eisenmenger's syndrome.

    PubMed

    McKay, K O; Johnson, P R; Black, J L; Glanville, A R; Armour, C L

    1998-10-01

    The responsiveness of airways from patients with Eisenmenger's syndrome (n = 5) was compared with that in airways from organ donors (n = 10). Enhanced contractile responses to cholinergic stimulation were found in airways from patients with Eisenmenger's syndrome. The maximal responses to acetylcholine, carbachol, and parasympathetic nerve stimulation in airway tissue from these patients were 221%, 139%, and 152%, respectively, of the maximal responses obtained in donor tissue. Further, relaxation responses to isoproterenol and levocromakalim were absent (n = 2) or markedly impaired (n = 3) in airways from patients with Eisenmenger's syndrome. This attenuated relaxation response was nonspecific in that it was also absent after vasoactive intestinal peptide, sodium nitroprusside, papaverine, and electrical field application. These observations can most likely be explained by a decrease in intrinsic smooth muscle tone, as precontraction of airways revealed relaxation responses that were equivalent to those obtained in donor tissues. Morphometric analysis of tissues used for the functional studies revealed no differences in the airway dimensions (internal perimeter) or airway wall components (e.g., smooth muscle, cartilage) or total area to explain these observations. Although the mechanism for this observed decrease in intrinsic airway smooth muscle tone is not certain, it may be due to alteration in the substructure of the airway wall or, alternatively, may result from the continued release of depressant factors in the vicinity of the smooth muscle which permanently alters smooth muscle responsiveness.

  12. N-acetylcysteine does not improve the endothelial and smooth muscle function in the human saphenous vein.

    PubMed

    Sharif, Muhammad Anees; Bayraktutan, Ulvi; Young, Ian Stuart; Soong, Chee Voon

    2007-01-01

    Oxidative stress can lead to vein graft dysfunction in the saphenous vein. This ex vivo study is aimed to compare the effects of increasing concentrations of the antioxidant N-acetylcysteine (NAC) with heparinized saline (HS) on endothelial and smooth muscle function in the human saphenous vein. Long saphenous vein segment obtained during infrainguinal bypass surgery was divided into 7 rings; 1 immersed in HS and the remaining 6 in increasing NAC concentrations (0.0025%, 0.005%, 0.01%, 0.02%, 0.03%, and 0.04%). Rings were mounted in an organ bath, and relaxant responses to acetylcholine and sodium nitroprusside were assessed through isometric tension studies. Endothelium-dependent relaxations were observed in 77 vein segments from 11 patients. No significant difference was seen in veins treated with either lower NAC concentrations (0.0025%, 0.005%, 0.01%, 0.02%, and 0.03%) or HS. However, HS-treated veins showed significantly better relaxation compared to those treated with maximum (0.04%) NAC (P < .05). Endothelium-independent relaxations were observed in 91 segments from 13 patients. No difference in relaxation was observed between veins treated with HS or any of the NAC concentrations. In conclusion, lower NAC concentrations do not offer better endothelial protection than HS, whereas the highest NAC concentration has a detrimental effect on endothelium-dependent relaxation. Moreover, NAC did not show beneficial effect on direct smooth muscle relaxation.

  13. Acute effects of coffee on skin blood flow and microvascular function.

    PubMed

    Tesselaar, Erik; Nezirevic Dernroth, Dzeneta; Farnebo, Simon

    2017-11-01

    Studies on the acute effects of coffee on the microcirculation have shown contradicting results. This study aimed to investigate if intake of caffeine-containing coffee changes blood flow and microvascular reactivity in the skin. We measured acute changes in cutaneous vascular conductance (CVC) in the forearm and the tip of the finger, the microvascular response to transdermal iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) and post-occlusive reactive hyperemia (PORH) in the skin, after intake of caffeinated or decaffeinated coffee. Vasodilatation during iontophoresis of ACh was significantly stronger after intake of caffeinated coffee compared to after intake of decaffeinated coffee (1.26±0.20PU/mmHg vs. 1.13±0.38PU/mmHg, P<0.001). Forearm CVC before and after PORH were not affected by caffeinated and decaffeinated coffee. After intake of caffeinated coffee, a more pronounced decrease in CVC in the fingertip was observed compared to after intake of decaffeinated coffee (-1.36PU/mmHg vs. -0.52PU/mmHg, P=0.002). Caffeine, as ingested by drinking caffeinated coffee acutely improves endothelium-dependent microvascular responses in the forearm skin, while endothelium-independent responses to PORH and SNP iontophoresis are not affected. Blood flow in the fingertip decreases markedly during the first hour after drinking caffeinated coffee compared to decaffeinated coffee. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Hydroxy-oleic acid, but not oleic acid, inhibits pharmacologic ...

    EPA Pesticide Factsheets

    Oleic acid (OA) and other fatty acids can become abundant in the systemic circulation after air pollution exposure as endogenously released lipolysis byproducts or by entering the body as a component of air pollution. Vascular damage has been observed with OA infusion, but it is not yet established whether increased circulating OA is able to produce the type of adverse cardiovascular effects associated with exposure to air pollution, or the mechanisms involved with such damage. Based on responses observed upon exposure of cultured endothelial cells, we hypothesized that OA and a hydroxylated metabolite (12-OH OA) would increase vascular tissue injury and impair vascular reactivity. Thoracic descending aorta tissue was collected from male Wistar Kyoto rats, aged 13-16 weeks. Prior to reactivity testing, independent LDH assays were performed with aortic rings to establish a subcytotoxic OA dose. To determine changes in vascular reactivity, aortic ring segments (n=3-4) were exposed for 1 hr to 100 µM OA, 12-OH OA, or an equivalent EtOH vehicle, followed by testing using myography and pharmacologic agents. Only 12-OH OA exposure significantly inhibited acetylcholine-induced endothelium-dependent vasorelaxation in aortic ring segments (25-30% reduction relative to EtOH control), based on maximum relaxation and dose-response. No change was seen in smooth muscle sensitivity to an exogenous nitric oxide source, sodium nitroprusside. Maximum aortic contractile force ge

  15. Time course of vasodilatory responses in skeletal muscle arterioles: role in hyperemia at onset of exercise

    NASA Technical Reports Server (NTRS)

    Wunsch, S. A.; Muller-Delp, J.; Delp, M. D.

    2000-01-01

    At the onset of dynamic exercise, muscle blood flow increases within 1-2 s. It has been postulated that local vasodilatory agents produced by the vascular endothelium or the muscle itself contribute to this response. We hypothesized that only vasodilators that act directly on the vascular smooth muscle could produce vasodilation of skeletal muscle arterioles in <2 s. To test this hypothesis, we determined the time course of the vasodilatory response of isolated skeletal muscle arterioles to direct application of potassium chloride, adenosine, acetylcholine, and sodium nitroprusside. Soleus and gastrocnemius muscles were dissected from the hindlimbs of male Sprague-Dawley rats. First-order arterioles (100-200 microm) were isolated, cannulated on micropipettes, and pressurized to 60 cmH(2)O in an organ bath. Vasodilatory agents were added directly to the bath, and diameter responses of the arterioles were recorded in real time on a videotape recorder. Frame-by-frame analysis of the diameter responses indicated that none of the vasodilator agents tested produced significant diameter increases in <4 s in either soleus or gastrocnemius muscle arterioles. These results indicate that, although these local vasodilators produce significant vasodilation of skeletal muscle resistance arterioles, these responses are not rapid enough (within 1-2 s) to contribute to the initiation of the exercise hyperemic response at the onset of dynamic exercise.

  16. Data set characterizing the systemic alterations of microvascular reactivity and capillary density, in patients presenting with infective endocarditis.

    PubMed

    Tibirica, Eduardo; Barcelos, Amanda; Lamas, Cristiane

    2018-06-01

    This article represents data associated with a prior publication from our research group, under the title: Evaluation of microvascular endothelial function and capillary density in patients with infective endocarditis using laser speckle contrast imaging and video-capillaroscopy [1]. Patients with definite infective endocarditis, under stable clinical conditions, were prospectively included. The clinical and laboratory features are presented for each of them in raw form. Microvascular reactivity was evaluated using a laser speckle contrast imaging (LSCI) system with a laser wavelength of 785 nm. LSCI was used in combination with the iontophoresis of acetylcholine (ACh) or sodium nitroprusside (SNP) for the noninvasive, continuous measurement of cutaneous microvascular perfusion changes in arbitrary perfusion units (APU). The images were analyzed using the manufacturer's software. One skin site on the ventral surface of the forearm was chosen for the experiment. Microvascular reactivity was also evaluated using post-occlusive reactive hyperemia, whereby arterial occlusion was achieved with supra-systolic pressure (50 mmHg above the systolic arterial pressure) using a sphygmomanometer for three minutes. Following the release of pressure, maximum flux was measured. Data on cutaneous microvascular density were obtained using intravital video-capillaroscopy. The data obtained may be helpful by showing the usefulness of laser-based noninvasive techniques in systemic infectious diseases other than sepsis, in different clinical settings and countries.

  17. Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits.

    PubMed

    El-Awady, Mohammed S; Suddek, Ghada M

    2014-06-01

    The aim of this work was to explore possible effects of agmatine, an endogenous inhibitor of inducible nitric oxide synthase (iNOS), against hypercholesterolemia-induced lipid profile changes and endothelial dysfunction. Hypercholesterolemia was induced by feeding rabbits with a high-cholesterol diet (HCD, 0.5%) for 8 weeks. Another HCD-fed group was orally administered agmatine (10 mg/kg/day) during weeks 5 through 8. Serum lipid profile, malondialdehyde (MDA), nitric oxide (NO) and lactate dehydrogenase (LDH) were determined. Aorta was isolated to analyse vascular reactivity, atherosclerotic lesions and intima/media (I/M) ratio. HCD induced a significant increase in serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides and high-density lipoprotein cholesterol (HDL-C). Agmatine administration significantly decreased HCD-induced elevations in serum TC and LDL-C, MDA, LDH and NO while significantly increased HDL-C levels. Additionally, agmatine significantly protected against HCD-induced attenuation of rabbit aortic endothelium-dependent relaxation to acetylcholine. HCD and agmatine did not significantly influence aortic endothelium-independent relaxation to sodium nitroprusside. Moreover, agmatine significantly reduced the elevation in aortic atherosclerotic lesion area and I/M ratio. This study is the first to reveal that agmatine has the ability to ameliorate hypercholesterolemia-induced lipemic-oxidative and endothelial function injuries possibly by its antioxidant potential and/or iNOS inhibition. © 2014 Royal Pharmaceutical Society.

  18. Mechanisms of the palmitoylcarnitine-induced response in vascular endothelial cells.

    PubMed

    Taki, H; Muraki, K; Imaizumi, Y; Watanabe, M

    1999-09-01

    The mechanisms of Ca2+ mobilization induced by palmitoylcarnitine (Palcar) in rabbit aortic endothelial cells (ETCs) were examined using electrophysiological techniques. The results obtained were compared with those induced by acetylcholine (ACh). When a rabbit aortic muscle preparation with an intact endothelium was treated with 10 microM Palcar, the ACh-induced relaxation was markedly attenuated, whereas endothelium-independent relaxation caused by sodium nitroprusside was not affected. Under perforated-patch whole-cell-clamp conditions, the application of Palcar over the concentration range 0.3 and 10 microM elicited a slowly activating outward current (IPalcar-out), whereas ACh induced a rapidly activating outward current (IACh). A potassium channel blocker, 4-aminopyridine, significantly inhibited both IPalcar-out and IACh. Removal of external Ca2+ almost abolished IPalcar-out. Under the same conditions, however, IACh remained transient. Addition of cation channel blockers SK&F96365 and La3+ inhibited IPalcar-out more effectively than IACh. Application of staurosporine, an inhibitor of protein kinase C, affected neither IACh nor IPalcar-out. In contrast, treatment of ETCs with pertussis toxin (PTX) reduced IACh and almost abolished IPalcar-out. These findings demonstrate that, in ETCs, Palcar induces Ca2+ influx via the activation of PTX-sensitive GTP-binding protein, leading to the activation of Ca(2+)-dependent K+ current and hyperpolarization of the cell.

  19. Influence of physical preconditioning on the responsiveness of rat pulmonary artery after pulmonary ischemia/reperfusion.

    PubMed

    Delbin, Maria Andréia; Moraes, Camila; Camargo, Enilton; Mussi, Ricardo K; Antunes, Edson; de Nucci, Gilberto; Zanesco, Angelina

    2007-07-01

    The aim of this work was to evaluate the effect of physical preconditioning in the responsiveness of rat pulmonary rings submitted to lung ischemia/reperfusion (IR). Wistar rats were divided into three groups: Sedentary sham-operated (SD/SHAM); sedentary submitted to ischemia/reperfusion (SD/IR) and trained submitted to ischemia/reperfusion (TR/IR) animals. Exercise training consisted in sessions of 60 min/day running sessions, 5 days/week for 8 weeks. Left pulmonary IR was performed by occluding for 90 min and reperfusing for 120 min. After that, pulmonary arteries were isolated and concentration-response curves to acetylcholine (ACh), histamine (HIST), sodium nitroprusside (SNP), phenylephrine and U46619 were obtained. Neither potency (-log EC(50)) nor maximal responses (E(max)) were modified for ACh and HIST in all groups. On the other hand, the potency for SNP was significantly increased in TR/IR group (8.23+/-0.06) compared to SD/IR group (7.85+/-0.04). Contractile responses mediated by a-adrenergic receptor were markedly decreased in IR groups (SD/IR: 6.75+/-0.06 and TR/IR: 6.62+/-0.04) compared to SD/SHAM (7.33+/-0.05). No changes were seen for the U46619 in all groups. In conclusion, the present study shows that exercise training has no protective actions in the local blood vessel where the IR process takes place.

  20. Intracellular calcium dynamics and acetylcholine-induced triggered activity in the pulmonary veins of dogs with pacing-induced heart failure

    PubMed Central

    Chou, Chung-Chuan; Nguyen, Bich Lien; Tan, Alex Y.; Chang, Po-Cheng; Lee, Hui-Ling; Lin, Fun-Chung; Yeh, San-Jou; Fishbein, Michael C.; Lin, Shien-Fong; Wu, Delon; Wen, Ming-Shien; Chen, Peng-Sheng

    2009-01-01

    BACKGROUND Heart failure increases autonomic nerve activities and changes intracellular calcium (Cai) dynamics. OBJECTIVE The purpose of this study was to investigate the hypothesis that abnormal Cai dynamics are responsible for triggered activity in the pulmonary veins (PVs) during acetylcholine infusion in a canine model of heart failure. METHODS Simultaneous optical mapping of and membrane Cai potential was performed in isolated Langendorff-perfused PV–left atrial (LA) preparations from nine dogs with ventricular pacing-induced heart failure. Mapping was performed at baseline, during acetylcholine (1 μmol/L) infusion (N = 9), and during thapsigargin and ryanodine infusion (N = 6). RESULTS Acetylcholine abbreviated the action potential. In four tissues, long pauses were followed by elevated diastolic Cai, late phase 3 early afterdepolarizations, and atrial fibrillation (AF). The incidence of PV focal discharges during AF was increased by acetylcholine from 2.4 ± 0.6 beats/s (N = 4) to 6.5 ± 2.2 beats/s (N = 8; P = .003). PV focal discharge and PV–LA microreentry coexisted in 6 of 9 preparations. The spatial distribution of dominant frequency demonstrated a focal source pattern, with the highest dominant frequency areas colocalized with PV focal discharge sites in 35 (95%) of 37 cholinergic AF episodes (N = 8). Thapsigargin and ryanodine infusion eliminated focal discharges in 6 of 6 preparations and suppressed the inducibility of AF in 4 of 6 preparations. PVs with focal discharge have higher densities of parasympathetic nerves than do PVs without focal discharges (P = .01), and periodic acid–Schiff (PAS)-positive cells were present at the focal discharge sites. CONCLUSION Cai dynamics are important in promoting triggered activity during acetylcholine infusion in PVs from pacing-induced heart failure. PV focal discharge sites have PAS-positive cells and high densities of parasympathetic nerves. PMID:18554987

  1. Consumer awareness of salt and sodium reduction and sodium labeling.

    PubMed

    Kim, M K; Lopetcharat, K; Gerard, P D; Drake, M A

    2012-09-01

    Reduction of dietary sodium by reduction of sodium in foods is a current industry target. Quantitative information on consumer knowledge of sodium and reduction of dietary sodium is limited. The objectives of this study were to characterize consumer knowledge and awareness of sodium and salt reduction in foods. Consumers (n = 489) participated in a quantitative internet survey designed to gather knowledge and attitudes towards dietary sodium, sodium in foods, and health. Eating habits and food consumption characteristics, knowledge of salt and sodium, and interest in health and wellness were probed. Saltiness believe and sodium knowledge indices were calculated based on correct responses to salt levels in food products. Kano analysis was conducted to determine the role of nutrition labels and satisfaction/dissatisfaction of foods. Consumers were aware of the presence of sodium in "salty" foods, and that sodium was part of salt. People who had a family history of certain diseases associated with a higher intake of dietary sodium did not necessarily have more knowledge of the relationship between sodium intake and a specific disease compared to consumers with no family history. Sodium content on the food label panel did not influence consumer dissatisfaction; however, sodium content did not necessarily increase consumer product satisfaction either. The addition of a healthy nutrient (that is, whole grain, fiber) into a current food product was appealing to consumers. For nutrient labeling, a "reduced" claim was more appealing to consumers than a "free" claim for "unhealthy" nutrients such as fat, sodium, and sugar. This study demonstrated the current state of consumer knowledge on sodium and salt reduction, and consumer perception of the relationship between diets high in sodium and many chronic diseases. Information that may contribute to consumer satisfaction on nutrition panel labeling was also determined. © 2012 Institute of Food Technologists®

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano, A.; Osiry, H.; Reguera, L.

    The titled compound was prepared by the precipitation method from diluted aqueous solution of sodium nitroprusside and mercury(II) nitrate. The orange solid formed, with formula unit Hg[Fe(CN){sub 5}NO], crystallizes with an orthorhombic unit cell in the Pmna space group with cell parameters: a=11.2788(3), b=6.1965(3), and c=12.3786(6) Å. The unit cell accommodates four formula of the compound (Z=4). Its crystal structure was solved from X-ray powder patterns and then refined by the Rietveld method. The material framework is formed by tetrahedral coordination of Hg atoms at the N end of the equatorial CN groups of the [Fe(CN){sub 5}NO] building block. Thatmore » framework results from the interpenetration of two identical sub-frameworks with a relative shift of (a/2, b/2, c/2). The sub-framework has two types of cavities, ellipsoidal and rhombohedral, with transversal section of ca. 4.5×9.2 Å and ca. 8.5 Å transversal section, respectively. That system of cavities results eclipsed by the relative shift of neighboring sub-frameworks. No transport of H{sub 2} and N{sub 2} molecules through the material framework was observed. The thermal decomposition also reveals limitation for the decomposition products diffusion through the practically compact structure. The structural study was complemented with TG, IR, UV–vis and N{sub 2} and H{sub 2} adsorption data. Neighboring Hg atoms are distant 4.54(3) Å, a relatively large distance to suppose the existence of metal–metal interaction. No previous study on the crystal structure and related properties of mercury(II) nitroprusside has been reported. - Graphical abstract: Mercury(II) nitroprusside framework formed by two identical interpenetrated porous subframeworks where neighboring cavities appear eclipsed. - Highlights: • Interpenetrated frameworks in metal nitroprusside. • Eclipsed porous framework in metal nitroprusside. • Structure and related properties for mercury(II) nitroprusside. • Spectral

  3. Sodium in diet

    MedlinePlus

    Diet - sodium (salt); Hyponatremia - sodium in diet; Hypernatremia - sodium in diet; Heart failure - sodium in diet ... The body uses sodium to control blood pressure and blood volume. Your body also needs sodium for your muscles and nerves to work ...

  4. Chemical stimulation of adherent cells by localized application of acetylcholine from a microfluidic system.

    PubMed

    Zibek, Susanne; Hagmeyer, Britta; Stett, Alfred; Stelzle, Martin

    2010-01-01

    Chemical stimulation of cells is inherently cell type selective in contrast to electro-stimulation. The availability of a system for localized application of minute amounts of chemical stimulants could be useful for dose related response studies to test new compounds. It could also bring forward the development of a novel type of neuroprostheses. In an experimental setup microdroplets of an acetylcholine solution were ejected from a fluidic microsystem and applied to the bottom of a nanoporous membrane. The solution traveled through the pores to the top of the membrane on which TE671 cells were cultivated. Calcium imaging was used to visualize cellular response with temporal and spatial resolution. Experimental demonstration of chemical stimulation for both threshold gated stimulation as well as accumulated dose-response was achieved by either employing acetylcholine as chemical stimulant or applying calcein uptake, respectively. Numerical modeling and simulation of transport mechanisms involved were employed to gain a theoretical understanding of the influence of pore size, concentration of stimulant and droplet volume on the spatial-temporal distribution of stimulant and on the cellular response. Diffusion, pressure driven flow and evaporation effects were taken into account. Fast stimulation kinetic is achieved with pores of 0.82 μm diameter, whereas sustained substance delivery is obtained with nanoporous membranes. In all cases threshold concentrations ranging from 0.01 to 0.015 μM acetylcholine independent of pore size were determined.

  5. M-cholinoreactivity of erythrocytes of non-pregnant and pregnant women evaluated by changes in the rate of erythrocyte agglutination under the influence of acetylcholine.

    PubMed

    Strelnikova, A I; Tsirkin, V I; Krysova, A V; Hlybova, S V; Dmitrieva, S L

    2012-12-01

    Acetylcholine (5.5×10(-10)-5.5×10(-6)M) accelerated erythrocyte agglutination in men, non-pregnant women in follicular phase of the menstrual cycle, and pregnant women in the first trimester. The effect was blocked with atropine (5.5×10(-6)M). Acetylcholine had no effect on the rate of erythrocyte agglutination in non-pregnant women in the luteal phase and pregnant women in the second and third trimesters, which coincided with the development of myometrium refractoriness to acetylcholine in pregnant women. The results indicate that erythrocytes can reflect M-cholinoreactivity of internal organs.

  6. Facilitation of learning and modulation of frontal cortex acetylcholine by ventral pallidal injection of heparin glucosaminoglycan.

    PubMed

    De Souza Silva, M A; Jezek, K; Weth, K; Müller, H W; Huston, J P; Brandao, M L; Hasenöhrl, R U

    2002-01-01

    We examined the effects of heparin on learning and frontal cortex acetylcholine parameters following injection of the glucosaminoglycan into the ventral pallidum. In Experiment 1, possible mnemoactive effects of intrapallidal heparin injection were assessed. Rats with chronically implanted cannulae were administered heparin (0.1, 1.0, 10 ng) or vehicle (0.5 microl) and were tested on a one-trial step-through avoidance task. Two retention tests were carried out in each animal, one at 1.5 h after training to measure short-term memory and another at 24 h to measure long-term memory. Post-trial intrapallidal injection of 1.0 ng heparin improved both short- and long-term retention of the task, whereas the lower and the higher dose of the glucosaminoglycan had no effect. When the effective dose of heparin was injected 5 h, rather than immediately after training, it no longer facilitated long-term retention of the conditioned avoidance response. In Experiment 2, the effects of ventral pallidal heparin injection on frontal cortex acetylcholine and choline concentrations were investigated with in vivo microdialysis in anaesthetized rats. Heparin, administered in the dose of 1.0 ng, which was effective in facilitating avoidance performance, produced a delayed increase in cortical acetylcholine levels ipsi- and contralaterally to the side of intrabasalis injection, resembling the known neurochemical effects obtained for another glycosaminoglycan, chondroitin sulfate, which recently was shown to facilitate inhibitory avoidance learning and to increase frontal cortex acetylcholine. The present findings indicate that heparin, like other extracellular matrix proteoglycans, can exert beneficial effects on memory and strengthen the presumptive relationship between such promnestic effects of proteoglycans and basal forebrain cholinergic mechanisms. The data are discussed with respect to the presumed roles of matrix molecules in extrasynaptic volume transmission and in the 'cross

  7. Hydrothermal recrystallization of transition metal nitroprussides. Formation of the most stable phases

    NASA Astrophysics Data System (ADS)

    Echevarría, F.; Reguera, L.; González M, M.; Galicia, J.; Ávila, M.; Reguera, E.

    2018-02-01

    Hydrothermal recrystallization appears to be an appropriate treatment to explore the structural diversity of porous coordination polymers. In this contribution, such a post-synthesis treatment is applied to divalent transition metal nitroprussides, T[Fe(CN)5NO]•xH2O with T =Mn, Fe, Co, Ni, Cu, Zn, Cd. This family of compounds forms an interesting series of nanoporous coordination polymers with a wide structural diversity, related to the synthesis route used and the solid hydration degree (x). The effect of a hydrothermal recrystallization of previously prepared fine powders using the precipitation method, on their crystal structure and related properties is herein discussed. In this series of coordination polymers, for Fe, Co, Ni the precipitated powders are obtained as cubic phase, with a high porosity related to presence of systematic vacancies for building unit [Fe(CN)5NO]. For Fe and Co a structural transition, from cubic to orthorhombic, was observed, which is associated to formation of a most compact structure. The crystal structure for the new orthorhombic phases was refined from the collected powder HR-XRD patterns. For Ni, the cubic phase remains stable even for large heating time, which is ascribed to the high polarizing power of this metal. The high porosity for the cubic phase allows an easy accommodation for the local deformations around the Ni atom coordination sphere. The structural information from XRD was complemented with CO2 and H2 adsorption and TG data, IR and UV-vis spectra, and magnetic measurements. The magnetic data, through the presence of spin-orbit coupling for Fe and Co in the two phases, provide fine details on the coordination environment for the metal linked at the N ends of the CN group.

  8. Lifetime of Sodium Beta-Alumina Membranes in Molten Sodium Hydroxide

    DTIC Science & Technology

    2008-07-01

    ABSTRACT Summary: Sodium metal can be made by electrolysis of molten sodium hydroxide in sodium beta-alumina membrane electrolysis cells... electrolysis of molten sodium hydroxide in sodium ”-alumina membrane electrolysis cells. However, there are some uncertainties about the lifetime of the...the properties of the membrane degrade upon long term contact with molten sodium hydroxide. Electrolysis cells were designed, but it proved

  9. Endogenous Acetylcholine Controls the Severity of Polymicrobial Sepsisassociated Inflammatory Response in Mice.

    PubMed

    Amaral, Flávio Almeida; Fagundes, Caio Tavares; Miranda, Aline Silva; Costa, Vivian Vasconceios; Resende, Livia; Gloria de Souza, Danielle da; Prado, Vania Ferreira; Teixeira, Mauro Martins; Maximo Prado, Marco Antonio; Teixeira, Antonio Lucio

    2016-01-01

    Acetylcholine (ACh) is the main mediator associated with the anti-inflammatory cholinergic pathway. ACh plays an inhibitory role in several inflammatory conditions. Sepsis is a severe clinical syndrome characterized by bacterial dissemination and overproduction of inflammatory mediators. The aim of the current study was to investigate the participation of endogenous ACh in the modulation of inflammatory response induced by a model of polymicrobial sepsis. Wild type (WT) and vesicular acetylcholine transporter knockdown (VAChT(KD)) mice were exposed to cecal ligation and perforation- induced sepsis. Levels of Tumor Necrosis Factor Alpha (TNF-α) and bacterial growth in peritoneal cavity and serum, and neutrophil recruitment into peritoneal cavity were assessed. The concentration of TNF-α in both compartments was higher in VAChT(KD) in comparison with WT mice. VAChT(KD) mice presented elevated burden of bacteria in peritoneum and blood, and impairment of neutrophil migration to peritoneal cavity. This phenotype was reversed by treatment with nicotine salt. These findings suggest that endogenous ACh plays a major role in the control of sepsis-associated inflammatory response.

  10. Effects of neuronal nicotinic acetylcholine receptor allosteric modulators in animal behavior studies

    PubMed Central

    Pandya, Anshul. A.; Yakel, Jerrel L.

    2013-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation-conducting transmembrane channels from the cys-loop receptor superfamily. The neuronal subtypes of these receptors (e.g. the α7 and α4β2 subtypes) are involved in neurobehavioral processes such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and a number of cognitive functions like learning and memory. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders, and behavioral studies in animals are useful models to assess the effects of compounds that act on these receptors. Allosteric modulators are ligands that bind to the receptors at sites other than the orthosteric site where acetylcholine, the endogenous agonist for the nAChRs, binds. While conventional ligands for the neuronal nAChRs have been studied for their behavioral effects in animals, allosteric modulators for these receptors have only recently gained attention, and research on their behavioral effects is growing rapidly. Here we will discuss the behavioral effects of allosteric modulators of the neuronal nAChRs. PMID:23732296

  11. Evidence that morphine and opioid peptides do not share a common pathway with adenosine in inhibiting acetylcholine release from isolated intestine.

    PubMed

    Vizi, E S; Somogyi, G T; Magyar, K

    1981-12-01

    1 The release of acetylcholine from guinea-pig ileal isolated longitudinal muscle strip with intact Auerbach's plexus was measured by bioassay and by a radioisotope technique. 2 Normorphine (5 x 10(-7)M) and D-Met2, Pro5-enkephalinamide (D-Met, Pro-EA) reduced the release of acetylcholine. Theophylline, an adenosine antagonist, failed to prevent the inhibitory effect of normorphine or D-Met, Pro-EA. 3 Theophylline (1.7 x 10(-4)M) by itself enhanced the twitch responses to field stimulation (0.1 Hz) but did not prevent the inhibitory effect of normorphine and D-Met, Pro-EA. 4 From the results it can be concluded that morphine and opioid peptides do not share a common pathway with adenosine in inhibiting acetylcholine release from axon terminals of Auerbach's plexus.

  12. Impulsive behavior and nicotinic acetylcholine receptors.

    PubMed

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  13. Nafion/lead nitroprusside nanoparticles modified carbon ceramic electrode as a novel amperometric sensor for L-cysteine.

    PubMed

    Razmi, H; Heidari, H

    2009-05-01

    This work describes the electrochemical and electrocatalytic properties of carbon ceramic electrode (CCE) modified with lead nitroprusside (PbNP) nanoparticles as a new electrocatalyst material. The structure of deposited film on the CCE was characterized by energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The cyclic voltammogram (CV) of the PbNP modified CCE showed two well-defined redox couples due to [Fe(CN)5NO](3-)/[Fe(CN)5NO](2-) and Pb(IV)/Pb(II) redox reactions. The modified electrode showed electrocatalytic activity toward the oxidation of L-cysteine and was used as an amperometric sensor. Also, to reduce the fouling effect of L-cysteine and its oxidation products on the modified electrode, a thin film of Nafion was coated on the electrode surface. The sensor response was linearly changed with L-cysteine concentration in the range of 1 x 10(-6) to 6.72 x 10(-5)mol L(-1) with a detection limit (signal/noise ratio [S/N]=3) of 0.46 microM. The sensor sensitivity was 0.17 microA (microM)(-1), and some important advantages such as simple preparation, fast response, good stability, interference-free signals, antifouling properties, and reproducibility of the sensor for amperometric determination of L-cysteine were achieved.

  14. The Perceptual Characteristics of Sodium Chloride to Sodium-Depleted Rats

    PubMed Central

    2017-01-01

    Three experiments assessed potential changes in the rat’s perception of sodium chloride (NaCl) during a state of sodium appetite. In Experiment 1, sodium-sufficient rats licking a range of NaCl concentrations (0.028–0.89M) in 15s trials showed an inverted U-shaped concentration response function peaking at 0.281M. Depleted rats (furosemide) showed an identical function, merely elevated, suggesting altered qualitative or hedonic perception but no change in perceived intensity. In Experiment 2, sodium-depleted rats were tested with NaCl, sodium gluconate, and potassium chloride (KCl; 0.028–0.89M) similar to Experiment 1. KCl was licked at the same rate as water except for a slight elevation at 0.158; sodium gluconate and NaCl were treated similarly, but rats showed more licking for hypertonic sodium gluconate than hypertonic NaCl. Sodium-depleted rats were also tested with NaCl mixed in amiloride (10–300 μM). Amiloride reduced licking but did not alter the shape of the concentration–response function. Collectively, these results suggest that transduction of sodium by epithelial sodium channels (which are blocked by amiloride and are more dominant in sodium gluconate than NaCl transduction) is crucial for the perception of sodium during physiological sodium depletion. In Experiment 3, sodium-deplete rats were tested with NaCl as in Experiment 1 but after taste aversion conditioning to 0.3M NaCl or sucrose. Rats conditioned to avoid NaCl but not sucrose failed to express a sodium appetite, strongly suggesting that NaCl does not undergo a change in taste quality during sodium appetite—rats show no confusion between sucrose and NaCl in this paradigm. PMID:27660150

  15. The Perceptual Characteristics of Sodium Chloride to Sodium-Depleted Rats.

    PubMed

    St John, Steven J

    2017-02-01

    Three experiments assessed potential changes in the rat's perception of sodium chloride (NaCl) during a state of sodium appetite. In Experiment 1, sodium-sufficient rats licking a range of NaCl concentrations (0.028-0.89M) in 15s trials showed an inverted U-shaped concentration response function peaking at 0.281M. Depleted rats (furosemide) showed an identical function, merely elevated, suggesting altered qualitative or hedonic perception but no change in perceived intensity. In Experiment 2, sodium-depleted rats were tested with NaCl, sodium gluconate, and potassium chloride (KCl; 0.028-0.89M) similar to Experiment 1. KCl was licked at the same rate as water except for a slight elevation at 0.158; sodium gluconate and NaCl were treated similarly, but rats showed more licking for hypertonic sodium gluconate than hypertonic NaCl. Sodium-depleted rats were also tested with NaCl mixed in amiloride (10-300 μM). Amiloride reduced licking but did not alter the shape of the concentration-response function. Collectively, these results suggest that transduction of sodium by epithelial sodium channels (which are blocked by amiloride and are more dominant in sodium gluconate than NaCl transduction) is crucial for the perception of sodium during physiological sodium depletion. In Experiment 3, sodium-deplete rats were tested with NaCl as in Experiment 1 but after taste aversion conditioning to 0.3M NaCl or sucrose. Rats conditioned to avoid NaCl but not sucrose failed to express a sodium appetite, strongly suggesting that NaCl does not undergo a change in taste quality during sodium appetite-rats show no confusion between sucrose and NaCl in this paradigm. Published by Oxford University Press on behalf of US Government 2016.

  16. Pharmacological and ionic characterizations of the muscarinic receptors modulating (/sup 3/H)acetylcholine release from rat cortical synaptosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, E.M.; Otero, D.H.

    The muscarinic receptors that modulate acetylcholine release from rat cortical synaptosomes were characterized with respect to sensitivity to drugs that act selectively at M1 or M2 receptor subtypes, as well as to changes in ionic strength and membrane potential. The modulatory receptors appear to be of the M2 type, since they are activated by carbachol, acetylcholine, methacholine, oxotremorine, and bethanechol, but not by pilocarpine, and are blocked by atropine, scopolamine, and gallamine (at high concentrations), but not by pirenzepine or dicyclomine. The ED50S for carbachol, acetylcholine, and oxotremorine are less than 10 microM, suggesting that the high affinity state ofmore » the receptor is functional. High ionic strength induced by raising the NaCl concentration has no effect on agonist (oxotremorine) potency, but increases the efficacy of this compound, which disagrees with receptor-binding studies. On the other hand, depolarization with either KCl or with veratridine (20 microM) reduces agonist potencies by approximately an order of magnitude, suggesting a potential mechanism for receptor regulation.« less

  17. Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro.

    PubMed

    Sun, J; Sakamoto, T; Chung, K F

    1995-08-01

    Sodium metabisulphite (MBS) is known to induce bronchoconstriction in asthmatic patients. The effects of MBS on guinea pig airway smooth muscle and on neurally mediated contraction in vitro have been examined. Tracheal and bronchial airway segments were placed in oxygenated buffer solution and electrical field stimulation was performed in the presence of indomethacin (10(-5) M) and propranolol (10(-6) M) for the measurement of isometric tension. Atropine (10(-6) M) was added to bronchial tissues. Concentrations of MBS up to 10(-3) M had no direct effect on airway smooth muscle contraction and did not alter either tracheal smooth muscle contraction induced by electrical field stimulation at all frequencies or acetylcholine-induced tracheal smooth muscle contraction. There was a similar response in the absence of epithelium, except for potentiation of the response induced by electrical field stimulation at 0.5 Hz (24 (10)% increase). However, MBS (10(-5), 10(-6) and 10(-7) M) augmented neurally-mediated non-adrenergic non-cholinergic contractile responses in the bronchi (13.3 (3.2)%, 23.8 (9.6)%, and 6.4 (1.6)%, respectively). MBS had no effect on the contractile response induced by substance P, but at higher concentrations (10(-3) M and 10(-4) M) it caused a time-dependent attenuation of responses induced by either electrical field stimulation or exogenously applied acetylcholine or substance P. MBS had no direct contractile responses but enhanced bronchoconstriction induced by activation of non-cholinergic neural pathways in the bronchus, probably through increased release of neuropeptides. At high concentrations MBS inhibited contractile responses initiated by receptor or neural stimulation.

  18. Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro.

    PubMed Central

    Sun, J.; Sakamoto, T.; Chung, K. F.

    1995-01-01

    BACKGROUND--Sodium metabisulphite (MBS) is known to induce bronchoconstriction in asthmatic patients. The effects of MBS on guinea pig airway smooth muscle and on neurally mediated contraction in vitro have been examined. METHODS--Tracheal and bronchial airway segments were placed in oxygenated buffer solution and electrical field stimulation was performed in the presence of indomethacin (10(-5) M) and propranolol (10(-6) M) for the measurement of isometric tension. Atropine (10(-6) M) was added to bronchial tissues. RESULTS--Concentrations of MBS up to 10(-3) M had no direct effect on airway smooth muscle contraction and did not alter either tracheal smooth muscle contraction induced by electrical field stimulation at all frequencies or acetylcholine-induced tracheal smooth muscle contraction. There was a similar response in the absence of epithelium, except for potentiation of the response induced by electrical field stimulation at 0.5 Hz (24 (10)% increase). However, MBS (10(-5), 10(-6) and 10(-7) M) augmented neurally-mediated non-adrenergic non-cholinergic contractile responses in the bronchi (13.3 (3.2)%, 23.8 (9.6)%, and 6.4 (1.6)%, respectively). MBS had no effect on the contractile response induced by substance P, but at higher concentrations (10(-3) M and 10(-4) M) it caused a time-dependent attenuation of responses induced by either electrical field stimulation or exogenously applied acetylcholine or substance P. CONCLUSIONS--MBS had no direct contractile responses but enhanced bronchoconstriction induced by activation of non-cholinergic neural pathways in the bronchus, probably through increased release of neuropeptides. At high concentrations MBS inhibited contractile responses initiated by receptor or neural stimulation. Images PMID:7570440

  19. 21 CFR 522.2444b - Sodium thiopental, sodium pentobarbital for injection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium thiopental, sodium pentobarbital for... FORM NEW ANIMAL DRUGS § 522.2444b Sodium thiopental, sodium pentobarbital for injection. (a) Specifications. Each gram of the drug contains 750 milligrams of sodium thiopental and 250 milligrams of sodium...

  20. 21 CFR 522.2444b - Sodium thiopental, sodium pentobarbital for injection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium thiopental, sodium pentobarbital for... FORM NEW ANIMAL DRUGS § 522.2444b Sodium thiopental, sodium pentobarbital for injection. (a) Specifications. Each gram of the drug contains 750 milligrams of sodium thiopental and 250 milligrams of sodium...

  1. Urothelial acetylcholine involvement in ATP-induced contractile responses of the rat urinary bladder.

    PubMed

    Stenqvist, Johanna; Winder, Michael; Carlsson, Thomas; Aronsson, Patrik; Tobin, Gunnar

    2017-08-15

    Both acetylcholine and adenosine 5'-triphosphate (ATP) are released from the urothelium. In in vivo experiments ATP has been shown to evoke contractile responses that are significantly reduced by atropine. Currently, we aimed to examine the cholinergic part of the ATP-evoked contractile response of normal and inflamed (cyclophosphamide-treated rats) bladders. A whole bladder preparation that enabled drug administration either outside or inside the urinary bladder was used. The responses were examined in bladders from control and cyclophosphamide-treated rats that were either intact or urothelium-denuded. The expression of choline acetyltransferase and carnitine acetyltransferase were examined by Western blotting of normal and inflamed bladders. Methacholine evoked larger contractions when administered to the outside of the bladder in comparison to instillation. For ATP, an opposite trend emerged. While atropine substantially reduced the ATP-induced responses at internal administration (7.4±1.1 and 3.7±0.9 mN at 10 -3 M; n=13; P<0.001), it had no effect when administered outside the bladder. The removal of the urothelium caused a similar reduction of the responses to internal administration of ATP as caused by atropine. In cyclophosphamide-treated rats, neither atropine nor urothelium-denudation had any effect on the ATP-evoked responses. No changes in the expressions of the acetylcholine synthesising enzymes were observed. The current study shows that ATP induces a release of urothelial acetylcholine that contributes to the purinergic contractile response in the rat urinary bladder. This atropine-sensitive part of the purinergic contractile response is absent in the inflamed bladder. This may be one pathological mechanism involved in bladder dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Morphine-induced changes in acetylcholine release in the interpeduncular nucleus and relationship to changes in motor behavior in rats

    PubMed Central

    Taraschenko, Olga D.; Rubbinaccio, Heather Y.; Shulan, Joseph M.; Glick, Stanley D.; Maisonneuve, Isabelle M.

    2007-01-01

    Owing to multiple anatomical connections and functional interactions between the habenulo-interpeduncular and the mesolimbic pathways, it has been proposed that these systems could together mediate the reinforcing properties of addictive drugs. 18-Methoxycoronaridine, an agent that reduces morphine self-administration and attenuates dopamine sensitization in the nucleus accumbens in response to repeated morphine, has been shown to produce these effects by acting in the medial habenula and interpeduncular nucleus. Acetylcholine, one of the predominant neurotransmitters in the interpeduncular nucleus, may be a major determinant of these interactions. To determine if and how morphine acts in the interpeduncular nucleus, the effects of acute and repeated administration of morphine on extracellular acetylcholine levels in this brain area were assessed. In addition, the motor behavior of rats receiving repeated morphine administration was monitored during microdialysis sessions. Acutely, morphine produced a biphasic effect on extracellular acetylcholine levels in the interpeduncular nucleus such that low and high doses of morphine (i.e., 5 and 20 mg/kg i.p.) significantly increased and decreased acetylcholine levels, respectively. Repeated administration of the same doses of morphine resulted in tolerance to the inhibitory but not to the stimulatory effects; tolerance was accompanied by sensitization to morphine-induced changes in locomotor activity and stereotypic behavior. The latter results suggest that tolerance to morphine's effect on the cholinergic habenulo-interpeduncular pathway is related to its sensitizing effects on the mesostriatal dopaminergic pathways. PMID:17544456

  3. Enhancement effects of nicotine on neurogenic relaxation responses in the corpus cavernosum in rabbits: the role of nicotinic acetylcholine receptor subtypes.

    PubMed

    Ozturk Fincan, Gokce Sevim; Vural, Ismail Mert; Ercan, Zeynep Sevim; Sarioglu, Yusuf

    2010-02-10

    Nicotine acts as an agonist of nicotinic acetylcholine receptors, which belong to a superfamily of neurotransmitter-gated ion channels. We previously demonstrated that nicotine increases the electrical field stimulation (EFS)-evoked nitrergic relaxation responses via activation of nicotinic acetylcholine receptors. The aim of the present study is to investigate the subtypes of nicotinic acetylcholine receptors in rabbit corpus cavernosum. EFS-evoked relaxation responses were recorded from corpus cavernosum strips obtained from rabbits with an isometric force displacement transducers. Effects of nicotine on EFS-evoked relaxations were examined in pre-contracted tissues. Then the effect of nicotine on the EFS-evoked relaxations was examined in the presence of hexamethonium, dihydro-beta-erythroidine, mecamylamine or alpha-bungarotoxin. In our study, nicotine (3 x 10(-5), 10(-4)) transiently increased nitrergic relaxations induced by EFS in the rabbit isolated corpus cavernosum. While hexamethonium and mecamylamine near totally inhibited or abolished the neurorelaxation response to nicotine (3 x 10(-5)) on EFS, dihydro-beta-erythroidine and alpha-bungarotoxin partially inhibited these responses. These findings demonstrated that the alpha3-beta4, alpha4-beta2 and alpha7 subunits of nicotinic acetylcholine receptors play role on the nicotine-induced augmentation in EFS-evoked relaxation responses in rabbit corpus cavernosum. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  4. Renal cytochrome P450 omega-hydroxylase and epoxygenase activity are differentially modified by nitric oxide and sodium chloride.

    PubMed

    Oyekan, A O; Youseff, T; Fulton, D; Quilley, J; McGiff, J C

    1999-10-01

    Renal function is perturbed by inhibition of nitric oxide synthase (NOS). To probe the basis of this effect, we characterized the effects of nitric oxide (NO), a known suppressor of cytochrome P450 (CYP) enzymes, on metabolism of arachidonic acid (AA), the expression of omega-hydroxylase, and the efflux of 20-hydroxyeicosatetraenoic acid (20-HETE) from the isolated kidney. The capacity to convert [(14)C]AA to HETEs and epoxides (EETs) was greater in cortical microsomes than in medullary microsomes. Sodium nitroprusside (10-100 microM), an NO donor, inhibited renal microsomal conversion of [(14)C]AA to HETEs and EETs in a dose-dependent manner. 8-bromo cGMP (100 microM), the cell-permeable analogue of cGMP, did not affect conversion of [(14)C]AA. Inhibition of NOS with N(omega)-nitro-L-arginine-methyl ester (L-NAME) significantly increased conversion of [(14)C]AA to HETE and greatly increased the expression of omega-hydroxylase protein, but this treatment had only a modest effect on epoxygenase activity. L-NAME induced a 4-fold increase in renal efflux of 20-HETE, as did L-nitroarginine. Oral treatment with 2% sodium chloride (NaCl) for 7 days increased renal epoxygenase activity, both in the cortex and the medulla. In contrast, cortical omega-hydroxylase activity was reduced by treatment with 2% NaCl. Coadministration of L-NAME and 2% NaCl decreased conversion of [(14)C]AA to HETEs without affecting epoxygenase activity. Thus, inhibition of NOS increased omega-hydroxylase activity, CYP4A expression, and renal efflux of 20-HETE, whereas 2% NaCl stimulated epoxygenase activity.

  5. Inhibition of p53 Mutant Peptide Aggregation In Vitro by Cationic Osmolyte Acetylcholine Chloride.

    PubMed

    Chen, Zhaolin; Kanapathipillai, Mathumai

    2017-01-01

    Mutations of tumor suppressor protein p53 are present in almost about 50% of all cancers. It has been reported that the p53 mutations cause aggregation and subsequent loss of p53 function, leading to cancer progression. Here in this study we focus on the inhibitory effects of cationic osmolyte molecules acetylcholine chloride, and choline on an aggregation prone 10 amino acid p53 mutant peptide WRPILTIITL, and the corresponding wildtype peptide RRPILTIITL in vitro. The characterization tools used for this study include Thioflavin- T (ThT) induced fluorescence, transmission electron microscopy (TEM), congo red binding, turbidity, dynamic light scattering (DLS), and cell viability assays. The results show that acetylcholine chloride in micromolar concentrations significantly inhibit p53 mutant peptide aggregation in vitro, and could be promising candidate for p53 mutant/ misfolded protein aggregation inhibition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Copper(II) cyanido-bridged bimetallic nitroprusside-based complexes: Syntheses, X-ray structures, magnetic properties, 57Fe Mössbauer spectroscopy and thermal studies

    NASA Astrophysics Data System (ADS)

    Trávníček, Zdeněk; Herchel, Radovan; Mikulík, Jiří; Zbořil, Radek

    2010-05-01

    Three heterobimetallic cyanido-bridged copper(II) nitroprusside-based complexes of the compositions [Cu(tet)Fe(CN) 5NO]·H 2O ( 1), where tet= N,N' -bis(3-aminopropyl)ethylenediamine, [Cu(hto)Fe(CN) 5NO]·2H 2O ( 2), where hto=1,3,6,9,11,14-hexaazatricyclo[12.2.1.1 6,9]octadecane and [Cu(nme) 2Fe(CN) 5NO]·H 2O ( 3), where nme= N-methylethylenediamine, were synthesized and characterized by elemental analyses, 57Fe Mössbauer and FTIR spectroscopies, thermal analysis, magnetic measurements and single-crystal X-ray analysis. The products of thermal degradation processes of 2 and 3 were studied by XRD, 57Fe Mössbauer spectroscopy, SEM and EDS, and they were identified as mixtures of CuFe 2O 4 and CuO.

  7. Activation of α7 nicotinic acetylcholine receptors persistently enhances hippocampal synaptic transmission and prevents Aß-mediated inhibition of LTP in the rat hippocampus.

    PubMed

    Ondrejcak, Tomas; Wang, Qinwen; Kew, James N C; Virley, David J; Upton, Neil; Anwyl, Roger; Rowan, Michael J

    2012-02-29

    Nicotinic acetylcholine receptors mediate fast cholinergic modulation of glutamatergic transmission and synaptic plasticity. Here we investigated the effects of subtype selective activation of the α7 nicotinic acetylcholine receptors on hippocampal transmission and the inhibition of synaptic long-term potentiation by the Alzheimer's disease associated amyloid ß-protein (Aß). The α7 nicotinic acetylcholine receptor agonist "compound A" ((R)-N-(1-azabicyclo[2.2.2]oct-3-yl)(5-(2-pyridyl))thiophene-2-carboxamide) induced a rapid-onset persistent enhancement of synaptic transmission in the dentate gyrus in vitro. Consistent with a requirement for activation of α7 nicotinic acetylcholine receptors, the type II α7-selective positive allosteric modulator PheTQS ((3aR, 4S, 9bS)-4-(4-methylphenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) potentiated, and the antagonist methyllycaconitine (MLA) prevented the persistent enhancement. Systemic injection of the agonist also induced a similar MLA-sensitive persistent enhancement of synaptic transmission in the CA1 area in vivo. Remarkably, although compound A did not affect control long-term potentiation (LTP) in vitro, it prevented the inhibition of LTP by Aß1-42 and this effect was inhibited by MLA. These findings strongly indicate that activation of α7 nicotinic acetylcholine receptors is sufficient to persistently enhance hippocampal synaptic transmission and to overcome the inhibition of LTP by Aß. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Acetylcholine receptors in the human retina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchins, J.B.; Hollyfield, J.G.

    1985-11-01

    Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand TH-propylbenzilylcholine mustard (TH-PrBCM) to label muscarinic receptors. TH- or SVI-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that TH-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer ofmore » the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina.« less

  9. Folic acid consumption reduces resistin level and restores blunted acetylcholine-induced aortic relaxation in obese/diabetic mice.

    PubMed

    Seto, Sai Wang; Lam, Tsz Yan; Or, Penelope Mei Yu; Lee, Wayne Yuk Wai; Au, Alice Lai Shan; Poon, Christina Chui Wa; Li, Rachel Wai Sum; Chan, Shun Wan; Yeung, John Hok Keung; Leung, George Pak Heng; Lee, Simon Ming Yuen; Ngai, Sai Ming; Kwan, Yiu Wa

    2010-09-01

    Folic acid supplementation provides beneficial effects on endothelial functions in patients with hyperhomocysteinemia. However, its effects on vascular functions under diabetic conditions are largely unknown. Therefore, the effect(s) of folic acid (5.7 and 71 microg/kg/day for 4 weeks) on aortic relaxation was investigated using obese/diabetic (+db/+db) mice and lean littermate (+db/+m) mice. Acetylcholine-induced relaxation in +db/+db mice was less than that observed in +db/+m mice. The reduced relaxation in +db/+db mice was restored by consumption of 71 microg/kg folic acid. Acetylcholine-induced relaxation (with and without folic acid treatment) was sensitive to N(G)-nitro-L-arginine methyl ester, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one, geldanamycin and triciribine. In addition, acetylcholine-induced relaxation was attenuated by resistin. The plasma level of resistin in +db/+db mice was sevenfold higher than that measured in +db/+m mice, and the elevated plasma level of resistin in +db/+db mice was reduced by 25% after treatment with 71 microg/kg folic acid. Folic acid slightly increased the ratio of reduced glutathione to oxidized glutathione in +db/+db mice. Moreover, folic acid caused a reduction in PTEN (phosphatase and tensin homolog deleted on chromosome 10) expression, an increase in the phosphorylation of endothelial nitric oxide synthase (eNOS(Ser1177)) and Akt(Ser473), and an enhanced interaction of heat shock protein 90 (HSP90) with eNOS in both strains, with greater magnitude observed in +db/+db mice. In conclusion, folic acid consumption improved blunted acetylcholine-induced relaxation in +db/+db mice. The mechanism may be, at least partly, attributed to enhancement of PI3K/HSP90/eNOS/Akt cascade, reduction in plasma resistin level, down-regulation of PTEN and slight modification of oxidative state. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells

    PubMed Central

    Barry, Caswell; Heys, James G.; Hasselmo, Michael E.

    2012-01-01

    Existing pharmacological and lesion data indicate that acetylcholine plays an important role in memory formation. For example, increased levels of acetylcholine in the hippocampal formation are known to be associated with successful encoding while disruption of the cholinergic system leads to impairments on a range of mnemonic tasks. However, cholinergic signaling from the medial septum also plays a central role in generating and pacing theta-band oscillations throughout the hippocampal formation. Recent experimental results suggest a potential link between these distinct phenomena. Environmental novelty, a condition associated with strong cholinergic drive, has been shown to induce an expansion in the firing pattern of entorhinal grid cells and a reduction in the frequency of theta measured from the LFP. Computational modeling suggests the spatial activity of grid cells is produced by interference between neuronal oscillators; scale being determined by theta-band oscillations impinging on entorhinal stellate cells, the frequency of which is modulated by acetylcholine. Here we propose that increased cholinergic signaling in response to environmental novelty triggers grid expansion by reducing the frequency of the oscillations. Furthermore, we argue that cholinergic induced grid expansion may enhance, or even induce, encoding by producing a mismatch between expanded grid cells and other spatial inputs to the hippocampus, such as boundary vector cells. Indeed, a further source of mismatch is likely to occur between grid cells of different native scales which may expand by different relative amounts. PMID:22363266

  11. Acetylcholine modulates gamma frequency oscillations in the hippocampus by activation of muscarinic M1 receptors.

    PubMed

    Betterton, Ruth T; Broad, Lisa M; Tsaneva-Atanasova, Krasimira; Mellor, Jack R

    2017-06-01

    Modulation of gamma oscillations is important for the processing of information and the disruption of gamma oscillations is a prominent feature of schizophrenia and Alzheimer's disease. Gamma oscillations are generated by the interaction of excitatory and inhibitory neurons where their precise frequency and amplitude are controlled by the balance of excitation and inhibition. Acetylcholine enhances the intrinsic excitability of pyramidal neurons and suppresses both excitatory and inhibitory synaptic transmission, but the net modulatory effect on gamma oscillations is not known. Here, we find that the power, but not frequency, of optogenetically induced gamma oscillations in the CA3 region of mouse hippocampal slices is enhanced by low concentrations of the broad-spectrum cholinergic agonist carbachol but reduced at higher concentrations. This bidirectional modulation of gamma oscillations is replicated within a mathematical model by neuronal depolarisation, but not by reducing synaptic conductances, mimicking the effects of muscarinic M1 receptor activation. The predicted role for M1 receptors was supported experimentally; bidirectional modulation of gamma oscillations by acetylcholine was replicated by a selective M1 receptor agonist and prevented by genetic deletion of M1 receptors. These results reveal that acetylcholine release in CA3 of the hippocampus modulates gamma oscillation power but not frequency in a bidirectional and dose-dependent manner by acting primarily through muscarinic M1 receptors. © 2017 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Effects of lisdexamfetamine alone and in combination with s-citalopram on acetylcholine and histamine efflux in the rat pre-frontal cortex and ventral hippocampus.

    PubMed

    Hutson, Peter H; Heins, Mariette S; Folgering, Joost H A

    2015-08-01

    Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by poor attention, impulse control and hyperactivity. A significant proportion of ADHD patients are also co-morbid for other psychiatric problems including mood disorders and these patients may be managed with a combination of psychostimulants and anti-depressants. While it is generally accepted that enhanced catecholamine signalling via the action of psychostimulants is likely responsible for the cognitive improvement in ADHD, other neurotransmitters including acetylcholine and histamine may be involved. In the present study, we have examined the effect of lisdexamfetamine dimesylate (LDX), an amphetamine pro-drug that is approved for the treatment of ADHD on acetylcholine and histamine efflux in pre-frontal cortex and hippocampus alone and in combination with the anti-depressant s-citalopram. LDX increased cortical acetylcholine efflux, an effect that was not significantly altered by co-administration of s-citalopram. Cortical and hippocampal histamine were markedly increased by LDX, an effect that was attenuated in the hippocampus but not in pre-frontal cortex when co-administered with s-citalopram. Taken together, these results suggest that efflux of acetylcholine and histamine may be involved in the therapeutic effects of LDX and are differentially influenced by the co-administration of s-citalopram. Attention deficit hyperactivity disorder (ADHD) is characterized by poor attention, impulse control and hyperactivity. Some ADHD patients are also co-morbid for mood disorders and may be managed with psychostimulants (e.g. lisdexamfetamine, LDX) and anti-depressants (e.g. s-citalopram). LDX increased the efflux of acetylcholine and histamine, neurotransmitters involved in cognitive function, which were differentially influenced when co-administered with s-citalopram. Acetylcholine and histamine may be involved in the therapeutic effects of LDX and are differentially

  13. Identification of amino acids in the nicotinic acetylcholine receptor agonist binding site and ion channel photolabeled by 4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine, a novel photoaffinity antagonist.

    PubMed

    Chiara, David C; Trinidad, Jonathan C; Wang, Dong; Ziebell, Michael R; Sullivan, Deirdre; Cohen, Jonathan B

    2003-01-21

    [(3)H]4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine (TDBzcholine) was synthesized and used as a photoaffinity probe to map the orientation of an aromatic choline ester within the agonist binding sites of the Torpedo nicotinic acetylcholine receptor (nAChR). TDBzcholine acts as a nAChR competitive antagonist that binds at equilibrium with equal affinity to both agonist sites (K(D) approximately 10 microM). Upon UV irradiation (350 nm), nAChR-rich membranes equilibrated with [(3)H]TDBzcholine incorporate (3)H into the alpha, gamma, and delta subunits in an agonist-inhibitable manner. The specific residues labeled by [(3)H]TDBzcholine were determined by N-terminal sequence analysis of subunit fragments produced by enzymatic cleavage and purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and/or reversed-phase high-performance liquid chromatography. For the alpha subunit, [(3)H]TDBzcholine photoincorporated into alphaCys-192, alphaCys-193, and alphaPro-194. For the gamma and delta subunits, [(3)H]TDBzcholine incorporated into homologous leucine residues, gammaLeu-109 and deltaLeu-111. The photolabeling of these amino acids suggests that when the antagonist TDBzcholine occupies the agonist binding sites, the Cys-192-193 disulfide and Pro-194 from the alpha subunit Segment C are oriented toward the agonist site and are in proximity to gammaLeu-109/deltaLeu-111 in Segment E, a conclusion consistent with the structure of the binding site in the molluscan acetylcholine binding protein, a soluble protein that is homologous to the nAChR extracellular domain.

  14. Biosynthesis of acetyl-coenzyme A in the electric organ of Torpedo marmorata in relation to acetylcholine metabolism.

    PubMed Central

    Diebler, M F; Morot-Gaudry, Y

    1977-01-01

    Formation of acetyl-CoA through acetyl-CoA synthetase (forward reaction) and through choline acyltransferase (backward reaction) was investigated in tissue extract from the electric organ of Torpedo marmorata. When the tissue extract was submitted to gel filtration on Sephadex G-25, the formation of acetyl-CoA by acetyl-CoA synthetase appeared fully dependent on ATP and CoA and partially dependent on acetate (an endogenous supply of acetate is discussed). Choline acetyltransferase was a potent source of acetyl-CoA, only requiring acetylcholine and CoA, and was much more efficient than acetyl-CoA synthetase for concentrations of acetylcholine likely to be present in nerve endings. PMID:23101

  15. Far Forward Battlefield Telemedicine: Ultrasonic Guidance in Diagnosis and Emergency Therapeutics

    DTIC Science & Technology

    2008-03-01

    Thomas JD, Garcia MJ. Planimetric assessment of anatomic valve area overestimates effective orifice area in bicuspid aortic stenosis . J Am Soc...Popovic ZB, Khot UN, Novaro GM, Casas F, Greenberg NL, Garcia MJ, Francis GS, Thomas JD. Effects of sodium nitroprusside in aortic stenosis ...aneurysmal ventricles,3 aortic regurgitation,4 hypertrophic cardiomyopathy,5 mitral regurgitation,6 ischemic cardiomyopathy,7 and dilated cardiomyopathy

  16. Cyclic imine toxins from dinoflagellates: a growing family of potent antagonists of the nicotinic acetylcholine receptors.

    PubMed

    Molgó, Jordi; Marchot, Pascale; Aráoz, Rómulo; Benoit, Evelyne; Iorga, Bogdan I; Zakarian, Armen; Taylor, Palmer; Bourne, Yves; Servent, Denis

    2017-08-01

    We present an overview of the toxicological profile of the fast-acting, lipophilic macrocyclic imine toxins, an emerging family of organic compounds associated with algal blooms, shellfish contamination and neurotoxicity. Worldwide, shellfish contamination incidents are expanding; therefore, the significance of these toxins for the shellfish food industry deserves further study. Emphasis is directed to the dinoflagellate species involved in their production, their chemical structures, and their specific mode of interaction with their principal natural molecular targets, the nicotinic acetylcholine receptors, or with the soluble acetylcholine-binding protein, used as a surrogate receptor model. The dinoflagellates Karenia selliformis and Alexandrium ostenfeldii / A. peruvianum have been implicated in the biosynthesis of gymnodimines and spirolides, while Vulcanodinium rugosum is the producer of pinnatoxins and portimine. The cyclic imine toxins are characterized by a macrocyclic skeleton comprising 14-27 carbon atoms, flanked by two conserved moieties, the cyclic imine and the spiroketal ring system. These phycotoxins generally display high affinity and broad specificity for the muscle type and neuronal nicotinic acetylcholine receptors, a feature consistent with their binding site at the receptor subunit interfaces, composed of residues highly conserved among all nAChRs, and explaining the diverse toxicity among animal species. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  17. A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo.

    PubMed

    Gautam, Dinesh; Han, Sung-Jun; Hamdan, Fadi F; Jeon, Jongrye; Li, Bo; Li, Jian Hua; Cui, Yinghong; Mears, David; Lu, Huiyan; Deng, Chuxia; Heard, Thomas; Wess, Jürgen

    2006-06-01

    One of the hallmarks of type 2 diabetes is that pancreatic beta cells fail to release sufficient amounts of insulin in the presence of elevated blood glucose levels. Insulin secretion is modulated by many hormones and neurotransmitters including acetylcholine, the major neurotransmitter of the peripheral parasympathetic nervous system. The physiological role of muscarinic acetylcholine receptors expressed by pancreatic beta cells remains unclear at present. Here, we demonstrate that mutant mice selectively lacking the M3 muscarinic acetylcholine receptor subtype in pancreatic beta cells display impaired glucose tolerance and greatly reduced insulin release. In contrast, transgenic mice selectively overexpressing M3 receptors in pancreatic beta cells show a profound increase in glucose tolerance and insulin release. Moreover, these mutant mice are resistant to diet-induced glucose intolerance and hyperglycemia. These findings indicate that beta cell M3 muscarinic receptors play a key role in maintaining proper insulin release and glucose homeostasis.

  18. Immunolocalization of the vesicular acetylcholine transporter in larval and adult Drosophila neurons.

    PubMed

    Boppana, Sridhar; Kendall, Natalie; Akinrinsola, Opeyemi; White, Daniel; Patel, Krushali; Lawal, Hakeem

    2017-03-16

    Vesicular acetylcholine transporter (VAChT) function is essential for organismal survival, mediating the packaging of acetylcholine (ACh) for exocytotic release. However, its expression pattern in the Drosophila brain has not been fully elucidated. To investigate the localization of VAChT, we developed an antibody against the C terminal region of the protein and we show that this antibody recognizes a 65KDa protein corresponding to VAChT on an immunoblot in both Drosophila head homogenates and in Schneider 2 cells. Further, we report for the first time the expression of VAChT in the antennal lobe and ventral nerve cord of Drosophila larva; and we independently confirm the expression of the protein in mushroom bodies and optic lobes of adult Drosophila. Importantly, we show that VAChT co-localizes with a synaptic vesicle marker in vivo, confirming previous reports of the localization of VAChT to synaptic terminals. Together, these findings help establish the vesicular localization of VAChT in cholinergic neurons in Drosophila and present an important molecular tool with which to dissect the function of the transporter in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes.

    PubMed

    Deckmann, Klaus; Filipski, Katharina; Krasteva-Christ, Gabriela; Fronius, Martin; Althaus, Mike; Rafiq, Amir; Papadakis, Tamara; Renno, Liane; Jurastow, Innokentij; Wessels, Lars; Wolff, Miriam; Schütz, Burkhard; Weihe, Eberhard; Chubanov, Vladimir; Gudermann, Thomas; Klein, Jochen; Bschleipfer, Thomas; Kummer, Wolfgang

    2014-06-03

    Chemosensory cells in the mucosal surface of the respiratory tract ("brush cells") use the canonical taste transduction cascade to detect potentially hazardous content and trigger local protective and aversive respiratory reflexes on stimulation. So far, the urogenital tract has been considered to lack this cell type. Here we report the presence of a previously unidentified cholinergic, polymodal chemosensory cell in the mammalian urethra, the potential portal of entry for bacteria and harmful substances into the urogenital system, but not in further centrally located parts of the urinary tract, such as the bladder, ureter, and renal pelvis. Urethral brush cells express bitter and umami taste receptors and downstream components of the taste transduction cascade; respond to stimulation with bitter (denatonium), umami (monosodium glutamate), and uropathogenic Escherichia coli; and release acetylcholine to communicate with other cells. They are approached by sensory nerve fibers expressing nicotinic acetylcholine receptors, and intraurethral application of denatonium reflexively increases activity of the bladder detrusor muscle in anesthetized rats. We propose a concept of urinary bladder control involving a previously unidentified cholinergic chemosensory cell monitoring the chemical composition of the urethral luminal microenvironment for potential hazardous content.

  20. Crystal structures of the M 1 and M 4 muscarinic acetylcholine receptors

    DOE PAGES

    Thal, David M.; Sun, Bingfa; Feng, Dan; ...

    2016-03-09

    Muscarinic M1–M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer’s disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. In this paper, we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 andmore » M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. Finally, we also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.« less

  1. Crystal structures of the M 1 and M 4 muscarinic acetylcholine receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thal, David M.; Sun, Bingfa; Feng, Dan

    Muscarinic M1–M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer’s disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. In this paper, we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 andmore » M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. Finally, we also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.« less

  2. [Role of calcium ions in the mechanism of action of acetylcholine on energy metabolism in rat liver mitochondria].

    PubMed

    Vatamaniuk, M Z; Artym, V V; Kuka, O B; Doliba, M M; Shostakovs'ka, I V

    1996-01-01

    It is shown that administration of acetylcholine to animals (50 micrograms per 100 g of body weight) leads to the activation of respiration and oxidative phosphorylation in the rat liver mitochondria under oxidation of alpha-ketoglutarate; this effect depends on the concentration of calcium ions in the incubation medium of mitochondria. The rate of ADP-stimulated respiration of mitochondria of experimental animals reaches its maximum level under lower concentrations of Ca2+ than in the control animals. The results of investigation of dependence of acetyl choline effect on respiration of mitochondria on the concentration of alpha-ketoglutarate in calcium and calcium-free incubation medium have shown that the half-maximum effect of acetylcholine is observed in calcium medium at lower concentration of the substrate than in calcium-free medium. The latter indicates to the increase of affinity of alpha-ketoglutarate dehydrogenase to alpha-ketoglutarate under these conditions. It is found out that acetylcholine (1.10(-8) M) increases the rate of ADP- and Ca(2+)-stimulated respiration of mitochondria of isolated perfused rat liver, while mutual effect of verapamyl and niphedipin removes this effect.

  3. Synthesis of Selective Agonists for the α7 Nicotinic Acetylcholine Receptor with In Situ Click-Chemistry on Acetylcholine-Binding Protein Templates

    PubMed Central

    Yamauchi, John G.; Gomez, Kimberly; Grimster, Neil; Dufouil, Mikael; Nemecz, Ákos; Fotsing, Joseph R.; Ho, Kwok-Yiu; Talley, Todd T.; Sharpless, K. Barry; Fokin, Valery V.

    2012-01-01

    The acetylcholine-binding proteins (AChBPs), which serve as structural surrogates for the extracellular domain of nicotinic acetylcholine receptors (nAChRs), were used as reaction templates for in situ click-chemistry reactions to generate a congeneric series of triazoles from azide and alkyne building blocks. The catalysis of in situ azide-alkyne cycloaddition reactions at a dynamic subunit interface facilitated the synthesis of potentially selective compounds for nAChRs. We investigated compound sets generated in situ with soluble AChBP templates through pharmacological characterization with α7 and α4β2 nAChRs and 5-hydroxytryptamine type 3A receptors. Analysis of activity differences between the triazole 1,5-syn- and 1,4-anti-isomers showed a preference for the 1,4-anti-triazole regioisomers among nAChRs. To improve nAChR subtype selectivity, the highest-potency building block for α7 nAChRs, i.e., 3α-azido-N-methylammonium tropane, was used for additional in situ reactions with a mutated Aplysia californica AChBP that was made to resemble the ligand-binding domain of the α7 nAChR. Fourteen of 50 possible triazole products were identified, and their corresponding tertiary analogs were synthesized. Pharmacological assays revealed that the mutated binding protein template provided enhanced selectivity of ligands through in situ reactions. Discrete trends in pharmacological profiles were evident, with most compounds emerging as α7 nAChR agonists and α4β2 nAChR antagonists. Triazoles bearing quaternary tropanes and aromatic groups were most potent for α7 nAChRs. Pharmacological characterization of the in situ reaction products established that click-chemistry synthesis with surrogate receptor templates offered novel extensions of fragment-based drug design that were applicable to multisubunit ion channels. PMID:22784805

  4. Low sodium diet (image)

    MedlinePlus

    ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ...

  5. Effect of a nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    USDA-ARS?s Scientific Manuscript database

    Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChR located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The...

  6. The Actions of Piperidine Alkaloids at Fetal Muscle-Type and Autonomic-Type Nicotinic Acetylcholine Receptors

    USDA-ARS?s Scientific Manuscript database

    Piperidine alkaloids are found in many species of plants including Conium maculatum, Nicotiana spp., and Lupinus spp. A pharmacodynamic comparison was made of the alkaloids ammodendrine, anabasine, anabaseine, and coniine in; SH-SY5Y cells which express autonomic-type nicotinic acetylcholine recept...

  7. Comparison of Extracellular Striatal Acetylcholine and Brain Seizure Activity Following Acute Exposure to the Nerve Agents Cyclosarin and Tabun in Freely Moving Guinea Pigs

    DTIC Science & Technology

    2010-01-01

    Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Comparison of extracellular striatal acetylcholine and brain seizure activity following...lethality; nerve agents; organophosphorus compounds; seizure activity ; tabun 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER...acetylcholine and brain seizure activity following acute exposure to the nerve agents cyclosarin and tabun in freely moving guinea pigs John C

  8. Metabolism of acetylcholine in the nervous system of Aplysia californica. I. Source of choline and its uptake by intact nervous tissue

    PubMed Central

    1975-01-01

    Although acetylcholine is a major neurotransmitter in Aplysia, labeling studies with methionine and serine showed that little choline was synthesized by nervous tissue and indicated that the choline required for the synthesis of acetylcholine must be derived exogenously. Aanglia in the central nervous system (abdominal, cerebral, and pleuropedals) all took up about 0.5 nmol of choline per hour at 9 muM, the concentration of choline we found in hemolymph. This rate was more than two orders of magnitude greater than that of synthesis from the labeled precursors. Ganglia accumulated choline by a process which has two kinetic components, one with a Michaelis constant between 2-8 muM. The other component was not saturated at 420 muM. Presumably the process with the high affinity functions to supply choline for synthesis of transmitter, since the efficiency of conversion to acetylcholine was maximal in the range of external concentrations found in hemolymph. PMID:1117282

  9. Intermittent hydrostatic pressure inhibits shear stress-induced nitric oxide release in human osteoarthritic chondrocytes in vitro.

    PubMed

    Lee, Mel S; Trindade, Michael C D; Ikenoue, Takashi; Schurman, David J; Goodman, Stuart B; Smith, R Lane

    2003-02-01

    To test the effects of intermittent hydrostatic pressure (IHP) on nitric oxide (NO) release induced by shear stress and matrix macromolecule gene expression in human osteoarthritic chondrocytes in vitro. Chondrocytes isolated from cartilage samples from 9 patients with osteoarthritis were cultured and exposed to either shear stress or an NO donor. Nitrite concentration was measured using the Griess reaction. Matrix macromolecule mRNA signal levels were determined using reverse-transcriptase polymerase chain reaction and quantified by imaging analysis software. Exposure to shear stress upregulated NO release in a dose and time-dependent manner. Application of IHP inhibited shear stress induced NO release but did not alter NO release from chondrocytes not exposed to shear stress. Shear stress induced NO or addition of an NO donor (sodium nitroprusside) was associated with decreased mRNA signal levels for the cartilage matrix proteins, aggrecan, and type II collagen. Intermittent hydrostatic pressure blocked the inhibitory effects of sodium nitroprusside but did not alter the inhibitory effects of shear stress on cartilage macromolecule gene expression. Our data show that shear stress and IHP differentially alter chondrocyte metabolism and suggest that a balance of effects between different loading forces preserve cartilage extracellular matrix in vivo.

  10. Urinary Sodium and Potassium Excretion and Dietary Sources of Sodium in Maputo, Mozambique.

    PubMed

    Queiroz, Ana; Damasceno, Albertino; Jessen, Neusa; Novela, Célia; Moreira, Pedro; Lunet, Nuno; Padrão, Patrícia

    2017-08-03

    This study aimed to evaluate the urinary excretion of sodium and potassium, and to estimate the main food sources of sodium in Maputo dwellers. A cross-sectional evaluation of a sample of 100 hospital workers was conducted between October 2012 and May 2013. Sodium and potassium urinary excretion was assessed in a 24-h urine sample; creatinine excretion was used to exclude unlikely urine values. Food intake in the same period of urine collection was assessed using a 24-h dietary recall. The Food Processor Plus ® was used to estimate sodium intake corresponding to naturally occurring sodium and sodium added to processed foods (non-discretionary sodium). Salt added during culinary preparations (discretionary sodium) was computed as the difference between urinary sodium excretion and non-discretionary sodium. The mean (standard deviation) urinary sodium excretion was 4220 (1830) mg/day, and 92% of the participants were above the World Health Organization (WHO) recommendations. Discretionary sodium contributed 60.1% of total dietary sodium intake, followed by sodium from processed foods (29.0%) and naturally occurring sodium (10.9%). The mean (standard deviation) urinary potassium excretion was 1909 (778) mg/day, and 96% of the participants were below the WHO potassium intake recommendation. The mean (standard deviation) sodium to potassium molar ratio was 4.2 (2.4). Interventions to decrease sodium and increase potassium intake are needed in Mozambique.

  11. Urinary Sodium and Potassium Excretion and Dietary Sources of Sodium in Maputo, Mozambique

    PubMed Central

    Queiroz, Ana; Damasceno, Albertino; Jessen, Neusa; Novela, Célia; Moreira, Pedro; Lunet, Nuno

    2017-01-01

    This study aimed to evaluate the urinary excretion of sodium and potassium, and to estimate the main food sources of sodium in Maputo dwellers. A cross-sectional evaluation of a sample of 100 hospital workers was conducted between October 2012 and May 2013. Sodium and potassium urinary excretion was assessed in a 24-h urine sample; creatinine excretion was used to exclude unlikely urine values. Food intake in the same period of urine collection was assessed using a 24-h dietary recall. The Food Processor Plus® was used to estimate sodium intake corresponding to naturally occurring sodium and sodium added to processed foods (non-discretionary sodium). Salt added during culinary preparations (discretionary sodium) was computed as the difference between urinary sodium excretion and non-discretionary sodium. The mean (standard deviation) urinary sodium excretion was 4220 (1830) mg/day, and 92% of the participants were above the World Health Organization (WHO) recommendations. Discretionary sodium contributed 60.1% of total dietary sodium intake, followed by sodium from processed foods (29.0%) and naturally occurring sodium (10.9%). The mean (standard deviation) urinary potassium excretion was 1909 (778) mg/day, and 96% of the participants were below the WHO potassium intake recommendation. The mean (standard deviation) sodium to potassium molar ratio was 4.2 (2.4). Interventions to decrease sodium and increase potassium intake are needed in Mozambique. PMID:28771193

  12. Detection of basal acetylcholine release in the microdialysis of rat frontal cortex by high-performance liquid chromatography using a horseradish peroxidase-osmium redox polymer electrode with pre-enzyme reactor.

    PubMed

    Kato, T; Liu, J K; Yamamoto, K; Osborne, P G; Niwa, O

    1996-06-28

    To determine the basal acetylcholine level in the dialysate of rat frontal cortex, a horseradish peroxidase-osmium redox polymer-modified glassy carbon electrode (HRP-GCE) was employed instead of the conventional platinum electrode used in high-performance liquid chromatography-electrochemical detection (HPLC-ED). In initial experiments, an oxidizable unknown compound interfered with the detection of basal acetylcholine release on HPLC-HRP-GCE. An immobilized peroxidase-choline oxidase precolumn (pre-reactor) was included in the HPLC system, to eliminate the interference from the unknown compound. This combination could detect less than 10 fmol of standard acetylcholine and basal acetylcholine levels in the dialysate from a conventional concentric design microdialysis probe, without the use of cholinesterase inhibitor, and may facilitate physiological investigation of cholinergic neuronal activity in the central nervous system.

  13. Dissolution and ionization of sodium superoxide in sodium-oxygen batteries.

    PubMed

    Kim, Jinsoo; Park, Hyeokjun; Lee, Byungju; Seong, Won Mo; Lim, Hee-Dae; Bae, Youngjoon; Kim, Haegyeom; Kim, Won Keun; Ryu, Kyoung Han; Kang, Kisuk

    2016-02-19

    With the demand for high-energy-storage devices, the rechargeable metal-oxygen battery has attracted attention recently. Sodium-oxygen batteries have been regarded as the most promising candidates because of their lower-charge overpotential compared with that of lithium-oxygen system. However, conflicting observations with different discharge products have inhibited the understanding of precise reactions in the battery. Here we demonstrate that the competition between the electrochemical and chemical reactions in sodium-oxygen batteries leads to the dissolution and ionization of sodium superoxide, liberating superoxide anion and triggering the formation of sodium peroxide dihydrate (Na2O2·2H2O). On the formation of Na2O2·2H2O, the charge overpotential of sodium-oxygen cells significantly increases. This verification addresses the origin of conflicting discharge products and overpotentials observed in sodium-oxygen systems. Our proposed model provides guidelines to help direct the reactions in sodium-oxygen batteries to achieve high efficiency and rechargeability.

  14. A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Beckstein, Oliver; Sansom, Mark S. P.

    2006-06-01

    The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the 'Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, γ-aminobutyric acid and serotonin. Cryo-electron microscopy has yielded a three-dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 Å. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height about 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 Å radius hydrophobic pore can form a functional barrier to the permeation of a 1 Å radius Na+ ion. Using a united-atom force field for the protein instead of an all-atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.

  15. Galanin inhibits acetylcholine release in the ventral hippocampus of the rat: histochemical, autoradiographic, in vivo, and in vitro studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisone, G.; Wu, C.F.; Consolo, S.

    1987-10-01

    A high density of galanin binding sites was found by using /sup 125/I-labeled galanin, iodinated by chloramine-T, followed by autoradiography in the ventral, but not in the dorsal, hippocampus of the rat. Lesions of the fimbria and of the septum caused disappearance of a major population of these binding sites, suggesting that a large proportion of them is localized on cholinergic nerve terminals of septal afferents. As a functional correlate to these putative galanin receptor sites, it was shown, both in vivo and in vitro, that galanin, in a concentration-dependent manner, inhibited the evoked release of acetylcholine in the ventral,more » but not in the dorsal, hippocampus. Intracerebroventricularly applied galanin fully inhibited the scopolamine stimulated release of acetylcholine in the ventral, but not in the dorsal, hippocampus, as measured by the microdialysis technique. In vitro, galanin inhibited the 25 mM K/sup +/-evoked release of (/sup 3/H)acetylcholine from slices of the ventral hippocampus, with an IC/sub 50/ value of approx. = 50 nM. These results are discussed with respect to the colocalization of galanin- and choline acetyltransferase-like immunoreactivity in septal somata projecting to the hippocampus.« less

  16. Study of the Peripheral Nerve Fibers Myelin Structure Changes during Activation of Schwann Cell Acetylcholine Receptors

    PubMed Central

    Verdiyan, Ekaterina E.; Allakhverdiev, Elvin S.; Maksimov, Georgy V.

    2016-01-01

    In the present paper we consider a new type of mechanism by which neurotransmitter acetylcholine (ACh) regulates the properties of peripheral nerve fibers myelin. Our data show the importance of the relationship between the changes in the number of Schwann cell (SC) acetylcholine receptors (AChRs) and the axon excitation (different intervals between action potentials (APs)). Using Raman spectroscopy, an effect of activation of SC AChRs on the myelin membrane fluidity was investigated. It was found, that ACh stimulates an increase in lipid ordering degree of the myelin lipids, thus providing evidence for specific role of the “axon-SC” interactions at the axon excitation. It was proposed, that during the axon excitation, the SC membrane K+- depolarization and the Ca2+—influx led to phospholipase activation or exocytosis of intracellular membrane vesicles and myelin structure reorganization. PMID:27455410

  17. Decreased Spontaneous Electrical Activity and Acetylcholine at Myofascial Trigger Spots after Dry Needling Treatment: A Pilot Study.

    PubMed

    Liu, Qing-Guang; Liu, Lin; Huang, Qiang-Min; Nguyen, Thi-Tham; Ma, Yan-Tao; Zhao, Jia-Min

    2017-01-01

    The aims of this study are to investigate the changes in spontaneous electrical activities (SEAs) and in acetylcholine (ACh), acetylcholine receptor (AChR), and acetylcholine esterase (AChE) levels after dry needling at myofascial trigger spots in model rats. Forty-eight male Sprague-Dawley rats were divided into four groups. Thirty-six rats were assigned to three model groups, which underwent MTrSs modeling intervention. Twelve rats were assigned to the blank control (BC) group. After model construction, the 36 model rats were randomly subdivided into three groups according to treatment: MTrSs model control (MC) and two dry needling groups. One dry needling group received puncturing at MTrSs (DN-M), whereas the other underwent puncturing at non-MTrSs (DN-nM). Dry needling treatment will last for two weeks, once a week. SEAs and ACh, AChR, and AChE levels were measured after one-week rest of dry needling treatment. The amplitudes and frequencies of endplate noise (EPN) and endplate spike (EPS) significantly decreased after dry needling treatment in the DN-M group. Moreover, ACh and AChR levels significantly decreased, whereas AChE significantly increased after dry needling treatment in the DN-M group. Dry needling at the exact MTrSs is more effective than dry needling at non-MTrSs.

  18. Decreased Spontaneous Electrical Activity and Acetylcholine at Myofascial Trigger Spots after Dry Needling Treatment: A Pilot Study

    PubMed Central

    2017-01-01

    Objective The aims of this study are to investigate the changes in spontaneous electrical activities (SEAs) and in acetylcholine (ACh), acetylcholine receptor (AChR), and acetylcholine esterase (AChE) levels after dry needling at myofascial trigger spots in model rats. Materials and Methods Forty-eight male Sprague-Dawley rats were divided into four groups. Thirty-six rats were assigned to three model groups, which underwent MTrSs modeling intervention. Twelve rats were assigned to the blank control (BC) group. After model construction, the 36 model rats were randomly subdivided into three groups according to treatment: MTrSs model control (MC) and two dry needling groups. One dry needling group received puncturing at MTrSs (DN-M), whereas the other underwent puncturing at non-MTrSs (DN-nM). Dry needling treatment will last for two weeks, once a week. SEAs and ACh, AChR, and AChE levels were measured after one-week rest of dry needling treatment. Results The amplitudes and frequencies of endplate noise (EPN) and endplate spike (EPS) significantly decreased after dry needling treatment in the DN-M group. Moreover, ACh and AChR levels significantly decreased, whereas AChE significantly increased after dry needling treatment in the DN-M group. Conclusion Dry needling at the exact MTrSs is more effective than dry needling at non-MTrSs. PMID:28592980

  19. Use of Monoclonal Antibodies to Study the Structure and Function of Nicotinic Acetylcholine Receptors on Electric Organ and Muscle and to Determine the Structure of Nicotinic Acetylcholine Receptors on Neurons

    DTIC Science & Technology

    1988-03-16

    receptors in muscle is responsible for the muscular weakness characteristic of myasthenia gravis . Some insecticides can act like chemical warfare...expresses muscle-like acetyi-.holine receptor by observing that autoantibodies from myasthenia gravis patients reacted as well with these receptors as...Antibodies in sera from patients with myasthenia gravis do not bind to acetylcholine receptors from human brain. J Neuroimmunol 16:205-213. 21. Whiting

  20. Modulation by acetylcholine of the electrically-evoked release of [3H]-acetylcholine from the ileum of the guinea-pig.

    PubMed Central

    Fosbraey, P.; Johnson, E. S.

    1980-01-01

    1 Acetylcholine (ACh) stores within neurones of the myenteric plexus of the guinea-pig were labelled with [3H]-choline and the influence of unlabelled ACh, atropine, or atropine and unlabelled ACh on the electrically-evoked output of [3H]-ACh was evaluated. 2 Electrical transmural stimulation (5 Hz) of the ileum led to an increase in the output of [3H]-ACh over that released spontaneously. Superfusion with unlabelled ACh (6.8 microM) caused a marked reduction in the release of [3H]-ACh which was reversed by atropine (3.5 microM). Atropine itself had no effect on the electrically-evoked [3H]-ACh. 3 These experiments provide further evidence for the existence in the guinea-pig ileum of neuronal muscarinic receptors for ACh subserving an inhibitory role on transmitter release. PMID:7378653

  1. Analysis of erectile responses to BAY 41-8543 and muscarinic receptor stimulation in the rat.

    PubMed

    Lasker, George F; Pankey, Edward A; Allain, Alexander V; Dhaliwal, Jasdeep S; Stasch, Johannes-Peter; Murthy, Subramanyam N; Kadowitz, Philip J

    2013-03-01

    Soluble guanylate cyclase (sGC) is the receptor for nitric oxide (NO) and in pathophysiologic conditions where NO formation or bioavailability is impaired, erectile dysfunction (ED) occurs. The aim of this study was to investigate erectile responses to the sGC stimulator BAY 41-8543 in physiologic and pathophysiologic conditions. Increases in intracavernosal pressure (ICP) in response to intracavernosal (ic) injections of BAY 41-8543 were investigated in the anesthetized rat. Increases in ICP/MAP in response to ic injections of BAY 41-8543 and the interaction of BAY 41-8543 with exogenous and endogenously released NO were investigated and the effect of the sGC stimulator on cavernosal nerve injury was assessed. The mechanism of the increase in ICP/MAP in response to ic injection of acetylcholine was investigated. The ic injections of BAY 41-8543 increased ICP/MAP and the duration of the response. BAY 41-8543 was less potent than sodium nitroprusside (SNP) and ic injections of BAY 41-8543 and SNP produced a larger response than the algebraic sum of responses to either agent alone. Simultaneous ic injection of BAY 41-8543 and cavernosal nerve stimulation produced a greater response than either intervention alone. Atropine and cavernosal nerve crush injury decreased the response to nerve stimulation and ic injection of BAY 41-8543 restored the response. These data show that BAY 41-8543 has significant erectile activity and can synergize with exogenous and endogenously released NO. This study shows that atropine and nerve crush attenuate the response to cavernosal nerve stimulation and that BAY 41-8543 can restore the response. The results with atropine, L-NAME and hexamethonium indicate that the response to ic injection of acetylcholine is mediated by muscarinic receptors and the release of NO with no significant role for nicotinic receptors. These results suggest that BAY 41-8543 would be useful in the treatment of ED. © 2012 International Society for Sexual

  2. Comparison of non-invasive methods for the assessment of haemodynamic drug effects in healthy male and female volunteers: sex differences in cardiovascular responsiveness.

    PubMed Central

    Wolzt, M; Schmetterer, L; Rheinberger, A; Salomon, A; Unfried, C; Breiteneder, H; Ehringer, H; Eichler, H G; Fercher, A F

    1995-01-01

    1. The study was performed to determine the sensitivity and short-term and day-to-day variability of a novel technique based on laser interferometry of ocular fundus pulsations and of non-invasive methods for the quantification of haemodynamic drug effects. An additional aim was to assess sex differences in haemodynamic responsiveness to cardiovascular drugs in male and female healthy volunteers. 2. Ten males and nine females (age range 20-33 years) were studied in a double-blind, randomized, cross-over trial. Simultaneous measurements from systemic haemodynamics, laser interferometry of ocular fundus pulsations, systolic time intervals from mechanocardiography, a/b ratio from oxymetric fingerplethysmography and Doppler sonography of the radial artery were used to describe the haemodynamic effects of cumulative, stepwise increasing intravenous doses of phenylephrine, isoprenaline, sodium nitroprusside and of placebo. 3. Laser interferometry detected the isoprenaline-effects at the lowest dose level of 0.1 micrograms min-1 with a high signal-to-noise ratio. The reproducibility of measurements under baseline was high, no changes were observed after systemically effective doses of phenylephrine or sodium nitroprusside. Systolic time intervals were sensitive and specific for isoprenaline-induced effects, PEP and QS2c-measurements had high reproducibility. Fingerplethysmography proved a sensitive measurement for the detection of the vasodilating effects of sodium nitroprusside, but was not specific, and showed low reproducibility. Measurements from Doppler sonography had lower reproducibility and sensitivity compared with the other applied methods. 4. There was a significant sex difference for several of the haemodynamic parameters under baseline conditions; however, the responsiveness to the drugs under study was not different, when drug effects were expressed as %-change from the baseline. 5. Laser interferometry is a valuable non-invasive, highly sensitive and

  3. Role of nitric oxide in long-term potentiation of the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Pettorossi, V E

    2000-01-01

    In rat brainstem slices, we investigated the role of nitric oxide in long-term potentiation induced in the ventral portion of the medial vestibular nuclei by high-frequency stimulation of the primary vestibular afferents. The nitric oxide scavenger [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide ] and the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester were administered before and after induction of potentiation. Both drugs completely prevented long-term potentiation, whereas they did not impede the potentiation build-up, or affect the already established potentiation. These results demonstrate that the induction, but not the maintenance of vestibular long-term potentiation, depends on the synthesis and release into the extracellular medium of nitric oxide. In addition, we analysed the effect of the nitric oxide donor sodium nitroprusside on vestibular responses. Sodium nitroprusside induced long-term potentiation, as evidenced through the field potential enhancement and unit peak latency decrease. This potentiation was impeded by D, L-2-amino-5-phosphonopentanoic acid, and was reduced under blockade of synaptosomal platelet-activating factor receptors by ginkgolide B and group I metabotropic glutamate receptors by (R,S)-1-aminoindan-1, 5-dicarboxylic acid. When reduced, potentiation fully developed following the washout of antagonist, demonstrating an involvement of platelet-activating factor and group I metabotropic glutamate receptors in its full development. Potentiation induced by sodium nitroprusside was also associated with a decrease in the paired-pulse facilitation ratio, which persisted under ginkgolide B, indicating that nitric oxide increases glutamate release independently of platelet-activating factor-mediated presynaptic events. We suggest that nitric oxide, released after the activation of N-methyl-D-aspartate receptors, acts as a retrograde messenger leading to an enhancement of glutamate release to a

  4. Muscarinic acetylcholine receptor in cerebellar cortex participates in acetylcholine-mediated blood depressor response in rats.

    PubMed

    Zhou, Peiling; Zhu, Qingfeng; Liu, Ming; Li, Jing; Wang, Yong; Zhang, Changzheng; Hua, Tianmiao

    2015-04-23

    Our previous investigations have revealed that cerebellar cholinergic innervation is involved in cardiovascular regulation. This study was performed to examine the effects of the muscarinic cholinergic receptor (mAChR) in the cerebellar cortex on blood pressure (BP) modulation in rats. Acetylcholine (ACh, 100mM), nonselective mAChR agonist (oxotremorine M; Oxo-M, 10, 30 and 100mM) and 100mM ACh mixed with nonselective mAChR antagonist atropine (1, 3 and 10mM) were microinjected into the cerebellar cortex of anesthetized rats. Mean arterial pressure (MAP), maximal decreased MAP (MDMAP), and reaction time (duration required for BP to return to basal values) were measured and analyzed. The results showed that Oxo-M dose-dependently decreased MAP, increased MDMAP, and prolonged reaction time, which displayed a homodromous effect of ACh-mediated blood depressor response; meanwhile, atropine concentration-dependently blocked the effect of ACh on the BP regulation. In conclusion, the present study showed for the first time that mAChRs in cerebellar cortex could modulate somatic BP by participation in ACh-mediated depressor response. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Metabotropic GABAB receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction.

    PubMed

    Malomouzh, Artem I; Petrov, Konstantin A; Nurullin, Leniz F; Nikolsky, Evgeny E

    2015-12-01

    Gamma-aminobutyric acid (GABA) is an amino acid which acts as a neurotransmitter in the central nervous system. Here, we studied the effects of GABA on non-quantal, spontaneous, and evoked quantal acetylcholine (ACh) release from motor nerve endings. We found that while the application of 10 μM of GABA had no effect on spontaneous quantal ACh release, as detected by the frequency of miniature endplate potentials, GABA reduced the non-quantal ACh release by 57%, as determined by the H-effect value. Finally, the evoked quantal ACh release, estimated by calculating the quantal content of full-sized endplate potentials (EPPs), was reduced by 34%. GABA's inhibitory effect remained unchanged after pre-incubation with picrotoxin, an ionotropic GABAA receptor blocker, but was attenuated following application of the GABAB receptor blocker CGP 55845, which itself had no effect on ACh release. An inhibitor of phospholipase C, U73122, completely prevented the GABA-induced decrease in ACh release. Immunofluorescence demonstrated the presence of both subunits of the GABAB receptor (GABAB R1 and GABAB R2) in the neuromuscular junction. These findings suggest that metabotropic GABAB receptors are expressed in the mammalian neuromuscular synapse and their activation results in a phospholipase C-mediated reduction in the intensity of non-quantal and evoked quantal ACh release. We investigated the effect of gamma-aminobutyric acid (GABA) on neuromuscular transmission. GABA reduced the non-quantal and evoked quantal release of acetylcholine. These effects are mediated by GABAB receptors and are implemented via phospholipase C (PLC) activation. Our findings suggest that in the mammalian neuromuscular synapse, metabotropic GABAB receptors are expressed and their activation results in a reduction in the intensity of acetylcholine release. © 2015 International Society for Neurochemistry.

  6. Mechanisms of the anti-hypertensive effect of Hibiscus sabdariffa L. calyces.

    PubMed

    Ajay, M; Chai, H J; Mustafa, A M; Gilani, A H; Mustafa, M R

    2007-02-12

    Previous studies have demonstrated the anti-hypertensive effects of Hibiscus sabdariffa L. (HS) in both humans and experimental animals. To explore the mechanisms of the anti-hypertensive effect of the HS, we examined the effects of a crude methanolic extract of the calyces of HS (HSE) on vascular reactivity in isolated aortas from spontaneously hypertensive rats. HSE relaxed, concentration-dependently, KCl (high K(+), 80 mM)- and phenylephrine (PE, 1 microM)-pre-contracted aortic rings, with a greater potency against the alpha(1)-adrenergic receptor agonist. The relaxant effect of HSE was partly dependent on the presence of a functional endothelium as the action was significantly reduced in endothelium-denuded aortic rings. Pretreatment with atropine (1 microM), L-NAME (10 microM) or methylene blue (10 microM), but not indomethacin (10 microM), significantly blocked the relaxant effects of HSE. Endothelium-dependent and -independent relaxations induced by acetylcholine and sodium nitroprusside, respectively, were significantly enhanced in aortic rings pretreated with HSE when compared to those observed in control aortic rings. The present results demonstrated that HSE has a vasodilator effect in the isolated aortic rings of hypertensive rats. These effects are probably mediated through the endothelium-derived nitric oxide-cGMP-relaxant pathway and inhibition of calcium (Ca(2+))-influx into vascular smooth muscle cells. The present data further supports previous in vivo findings and the traditional use of HS as an anti-hypertensive agent.

  7. Role of sex steroids in modulating tumor necrosis factor alpha induced changes in vascular function and blood pressure

    PubMed Central

    LaMarca, Babbette D.; Chandler, Derrick L.; Grubbs, Lee; Bain, Jennifer; McLemore, Gerald R.; Granger, Joey P.; Ryan, Michael J.

    2007-01-01

    Background We previously showed that infusion of TNF-α induces hypertension and vascular dysfunction in late pregnant but not virgin rats. In the present study we tested the hypothesis that levels of ovarian hormones to mimic pregnancy are required for TNF-α induced changes in vascular function and blood pressure in rats. Methods 21 day release pellets containing 17β-estradiol, progesterone, or both were implanted in ovariectomized (OVX) rats. Sham OVX rats were used as controls. 12 days after implantation, TNF-α or vehicle was infused via osmotic minipumps (days 12-17). On day 18, mean arterial pressure was measured and animals were sacrificed to assess vascular function. Results Average estrogen and progesterone levels across all groups were 106±6 pg/ml and 88±5 ng/ml. TNF-α was 41±7 pg/ml compared to OVX rats infused with vehicle (4±1 pg/ml). The results show that TNF-α did not cause elevated mean arterial pressure in OVX rats with increased estrogen, progesterone, both. Vascular responses to the endothelium dependent and independent agonists, acetylcholine and sodium nitroprusside, were also not changed. Phenylephrine induced contraction was moderately but significantly increased at the highest concentrations (10-4 M) only in TNF-α infused rats. Conclusion These data suggest that increased ovarian hormones to levels observed during pregnancy are not sufficient to promote TNF-α induced increases in blood pressure or vascular dysfunction. PMID:17954370

  8. High-dose atorvastatin is associated with lower IGF-1 levels in patients with type 1 diabetes.

    PubMed

    Bergen, Karin; Brismar, Kerstin; Tehrani, Sara

    2016-08-01

    Insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 1 (IGFBP-1) play an important role in vascular health. Many patients with type 1 diabetes are medicated with HMG-CoA reductase inhibitors, statins, in order to prevent vascular complications. Yet little is known about the effect of statins on the IGF-1/IGFBP-1 axis in these patients. The aim of this study was to evaluate the effect of atorvastatin treatment on IGF-1 and IGFBP-1 with regards to microvascular function. Twenty patients with type 1 diabetes received either placebo or 80mg atorvastatin for two months in a double-blinded cross-over study. IGF-1 and IGFBP-1 levels were assessed before and after each treatment period. Skin microcirculation was studied using Doppler perfusion imaging during iontophoresis of acetylcholine and sodium nitroprusside to assess endothelium-dependent and endothelium-independent microvascular reactivity, respectively. Treatment with high-dose atorvastatin was associated with a significant decrease in IGF-1 levels compared to placebo (p<0.05, ANOVA repeated measures), whereas no effect was seen on IGFBP-1 or the IGF-1/IGFBP-1 ratio. These variables did not correlate with measurements of skin microvascular reactivity. The study found that treatment with high-dose atorvastatin was associated with reduced IGF-1 levels, which may indicate a potential negative effect on microvascular function and long-term risk of microangiopathy development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Tumor necrosis factor-alpha inhibits insulin's stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans.

    PubMed

    Rask-Madsen, Christian; Domínguez, Helena; Ihlemann, Nikolaj; Hermann, Thomas; Køber, Lars; Torp-Pedersen, Christian

    2003-10-14

    Inflammatory mechanisms could be involved in the pathogenesis of both insulin resistance and atherosclerosis. Therefore, we aimed at examining whether the proinflammatory cytokine tumor necrosis factor (TNF)-alpha inhibits insulin-stimulated glucose uptake and insulin-stimulated endothelial function in humans. Healthy, lean male volunteers were studied. On each study day, 3 acetylcholine (ACh) or sodium nitroprusside (SNP) dose-response studies were performed by infusion into the brachial artery. Before and during the last 2 dose-response studies, insulin and/or TNF-alpha were coinfused. During infusion of insulin alone for 20 minutes, forearm glucose uptake increased by 220+/-44%. This increase was completely inhibited during coinfusion of TNF-alpha (started 10 min before insulin) with a more pronounced inhibition of glucose extraction than of blood flow. Furthermore, TNF-alpha inhibited the ACh forearm blood flow response (P<0.001), and this inhibition was larger during insulin infusion (P=0.01) but not further increased by NG-monomethyl-L-arginine acetate (P=0.2). Insulin potentiated the SNP response less than the ACh response and the effect of TNF-alpha was smaller (P<0.001); TNF-alpha had no effect on the SNP response without insulin infusion. Thus, TNF-alpha inhibition of the combined response to insulin and ACh was likely mediated through inhibition of NO production. These results support the concept that TNF-alpha could play a role in the development of insulin resistance in humans, both in muscle and in vascular tissue.

  10. Oral trehalose supplementation improves resistance artery endothelial function in healthy middle-aged and older adults.

    PubMed

    Kaplon, Rachelle E; Hill, Sierra D; Bispham, Nina Z; Santos-Parker, Jessica R; Nowlan, Molly J; Snyder, Laura L; Chonchol, Michel; LaRocca, Thomas J; McQueen, Matthew B; Seals, Douglas R

    2016-06-01

    We hypothesized that supplementation with trehalose, a disaccharide that reverses arterial aging in mice, would improve vascular function in middle-aged and older (MA/O) men and women. Thirty-two healthy adults aged 50-77 years consumed 100 g/day of trehalose (n=15) or maltose (n=17, isocaloric control) for 12 weeks (randomized, double-blind). In subjects with Δbody mass less than 2.3kg (5 lb.), resistance artery endothelial function, assessed by forearm blood flow to brachial artery infusion of acetylcholine (FBFACh), increased ~30% with trehalose (13.3±1.0 vs. 10.5±1.1 AUC, P=0.02), but not maltose (P=0.40). This improvement in FBFACh was abolished when endothelial nitric oxide (NO) production was inhibited. Endothelium-independent dilation, assessed by FBF to sodium nitroprusside (FBFSNP), also increased ~30% with trehalose (155±13 vs. 116±12 AUC, P=0.03) but not maltose (P=0.92). Changes in FBFACh and FBFSNP with trehalose were not significant when subjects with Δbody mass ≥ 2.3kg were included. Trehalose supplementation had no effect on conduit artery endothelial function, large elastic artery stiffness or circulating markers of oxidative stress or inflammation (all P>0.1) independent of changes in body weight. Our findings demonstrate that oral trehalose improves resistance artery (microvascular) function, a major risk factor for cardiovascular diseases, in MA/O adults, possibly through increasing NO bioavailability and smooth muscle sensitivity to NO.

  11. Oral trehalose supplementation improves resistance artery endothelial function in healthy middle-aged and older adults

    PubMed Central

    Kaplon, Rachelle E.; Hill, Sierra D.; Bispham, Nina Z.; Santos-Parker, Jessica R.; Nowlan, Molly J.; Snyder, Laura L.; Chonchol, Michel; LaRocca, Thomas J.; McQueen, Matthew B.; Seals, Douglas R.

    2016-01-01

    We hypothesized that supplementation with trehalose, a disaccharide that reverses arterial aging in mice, would improve vascular function in middle-aged and older (MA/O) men and women. Thirty-two healthy adults aged 50-77 years consumed 100 g/day of trehalose (n=15) or maltose (n=17, isocaloric control) for 12 weeks (randomized, double-blind). In subjects with Δbody mass<2.3kg (5 lb.), resistance artery endothelial function, assessed by forearm blood flow to brachial artery infusion of acetylcholine (FBFACh), increased ∼30% with trehalose (13.3±1.0 vs. 10.5±1.1 AUC, P=0.02), but not maltose (P=0.40). This improvement in FBFACh was abolished when endothelial nitric oxide (NO) production was inhibited. Endothelium-independent dilation, assessed by FBF to sodium nitroprusside (FBFSNP), also increased ∼30% with trehalose (155±13 vs. 116±12 AUC, P=0.03) but not maltose (P=0.92). Changes in FBFACh and FBFSNP with trehalose were not significant when subjects with Δbody mass≥2.3kg were included. Trehalose supplementation had no effect on conduit artery endothelial function, large elastic artery stiffness or circulating markers of oxidative stress or inflammation (all P>0.1) independent of changes in body weight. Our findings demonstrate that oral trehalose improves resistance artery (microvascular) function, a major risk factor for cardiovascular diseases, in MA/O adults, possibly through increasing NO bioavailability and smooth muscle sensitivity to NO. PMID:27208415

  12. Changes in cholinergic and nitrergic systems of defunctionalized colons after colostomy in rabbits.

    PubMed

    Moralıoğlu, Serdar; Vural, İsmail Mert; Özen, İbrahim Onur; Öztürk, Gökçe; Sarıoğlu, Yusuf; Başaklar, Abdullah Can

    2017-01-01

    This study was designed to assess smooth muscle function and motility in defunctionalized colonic segments and subsequent changes in pathways responsible for gastrointestinal motility. Two-month-old New Zealand rabbits were randomly allocated into control and study groups. Sigmoid colostomies were performed in the study group. After a 2-month waiting period, colonic segments were harvested in both groups. For the in vitro experiment, the isolated circular muscle strips which were prepared from the harvested distal colon were used. First, contraction responses were detected using KCl and carbachol; relaxation responses were detected using papaverine, sodium nitroprusside, sildenafil, and l-arginine. The neurologic responses of muscle strips to electrical field stimulation (EFS) were evaluated in an environment with guanethidine and indomethacin. EFS studies were then repeated with atropine, Nω-nitro-l-arginine methyl ester, atropine, and Nω-nitro-l-arginine methyl ester-added environments. Although macroscopic atrophy had developed in the distal colonic segment of the colostomy, the contraction and relaxation capacity of the smooth muscle did not change. EFS-induced nitrergic-peptidergic, cholinergic-peptidergic, and noncholinergic nonnitrergic responses significantly decreased at all frequencies (0.5-32 Hz) in the study group compared with those in the control group (P < 0.05). Although the contraction capacity of the smooth muscle was not affected, the motility of the distal colon deteriorated owing to the defective secretion of presynaptic neurotransmitters such as acetylcholine, nitric oxide, and neuropeptides. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Triiodothyronine Potentiates Vasorelaxation via PKG/VASP Signaling in Vascular Smooth Muscle Cells.

    PubMed

    Samuel, Sherin; Zhang, Kuo; Tang, Yi-Da; Gerdes, A Martin; Carrillo-Sepulveda, Maria Alicia

    2017-01-01

    Vascular relaxation caused by Triiodothyronine (T3) involves direct activation of endothelial cells (EC) and vascular smooth muscle cells (VSMC). Activation of protein kinase G (PKG) has risen as a novel contributor to the vasorelaxation mechanism triggered by numerous stimuli. We hypothesize that T3-induced vasorelaxation involves PKG/vasodilator-stimulated phosphoprotein (VASP) signaling pathway in VSMC. Human aortic endothelial cells (HAEC) and VSMC were treated with T3 for short (2 to 60 minutes) and long term (24 hours). Nitric oxide (NO) production was measured using DAF-FM. Expression of protein targets was determined using western blot. For functional studies, rat aortas were isolated and treated with T3 for 20 minutes and mounted in a wire myograph. Relaxation was measured by a concentration-dependent response to acetylcholine (ACh) and sodium nitroprusside (SNP). Aortas stimulated with T3 exhibited augmented sensitivity to ACh and SNP-induced relaxation, endothelium-dependent and endothelium-independent responses, respectively. T3 directly increased vasorelaxation, which was abolished in the presence of a PKG inhibitor. T3 markedly induced phosphorylation of Akt, eNOS and consequently increased NO production in EC. Likewise, T3 induced phosphorylation of VASP at serine 239 via the PKG pathway in VSMC. Our findings have uncovered a PKG/VASP signaling pathway in VSMC as a key molecular mechanism underlying T3-induced vascular relaxation. © 2017 The Author(s)Published by S. Karger AG, Basel.

  14. Microvascular endothelial function and severity of primary open angle glaucoma.

    PubMed

    Bukhari, S M I; Kiu, K Y; Thambiraja, R; Sulong, S; Rasool, A H G; Liza-Sharmini, A T

    2016-12-01

    PurposeThe role of microvascular endothelial dysfunction on severity of primary open angle glaucoma (POAG) was investigated in this study.Patients and methodsA prospective cohort study was conducted. One hundred and fourteen ethnically Malay patients (114 eyes) with POAG treated at the eye clinic of Hospital University Sains Malaysia between April 2012 and December 2014 were recruited. Patients aged between 40 and 80 years with two consecutive reliable and reproducible Humphrey visual field 24-2 analyses were selected. Patients who were diagnosed with any other type of glaucoma, previous glaucoma-filtering surgery, or other surgeries except uncomplicated cataract and pterygium surgery were excluded. Humphrey visual field analysis 24-2 was used to stratify the severity of glaucoma using Advanced Glaucoma Intervention Study (AGIS) score at the time of recruitment. Microvascular endothelial function was assessed using Laser Doppler fluximetry and iontophoresis. Iontophoresis process with acetylcholine (ACh) and sodium nitroprusside (SNP) was used to measure microvascular endothelium-dependent and -independent vasodilatation, respectively.ResultsBased on the AGIS score, 55 patients showed mild glaucoma, with 29 moderate and 30 severe. There was statistically significant difference in microvascular endothelial function (ACh% and ACh max ) between mild and moderate POAG cases (P=0.023) and between mild and severe POAG cases (P<0.001). There was negative correlation between microvascular endothelial function and severity of POAG (r=-0.457, P<0.001).ConclusionMicrovascular endothelial dysfunction may have a role in influencing the severity of POAG in Malay patients.

  15. The inhibition of inducible nitric oxide synthase and oxidative stress by agmatine attenuates vascular dysfunction in rat acute endotoxemic model.

    PubMed

    El-Awady, Mohammed S; Nader, Manar A; Sharawy, Maha H

    2017-10-01

    Vascular dysfunction leading to hypotension is a major complication in patients with septic shock. Inducible nitric oxide synthase (iNOS) together with oxidative stress play an important role in development of vascular dysfunction in sepsis. Searching for an endogenous, safe and yet effective remedy was the chief goal for this study. The current study investigated the effect of agmatine (AGM), an endogenous metabolite of l-arginine, on sepsis-induced vascular dysfunction induced by lipopolysaccharides (LPS) in rats. AGM pretreatment (10mg/kg, i.v.) 1h before LPS (5mg/kg, i.v.) prevented the LPS-induced mortality and elevations in serum creatine kinase-MB isoenzyme (CK-MB) activity, lactate dehydrogenase (LDH) activity, C-reactive protein (CRP) level and total nitrite/nitrate (NOx) level after 24h from LPS injection. The elevation in aortic lipid peroxidation illustrated by increased malondialdehyde (MDA) content and the decrease in aortic glutathione (GSH) and superoxide dismutase (SOD) were also ameliorated by AGM. Additionally, AGM prevented LPS-induced elevation in mRNA expression of iNOS, while endothelial NOS (eNOS) mRNA was not affected. Furthermore AGM prevented the impaired aortic contraction to KCl and phenylephrine (PE) and endothelium-dependent relaxation to acetylcholine (ACh) without affecting endothelium-independent relaxation to sodium nitroprusside (SNP). AGM may represent a potential endogenous therapeutic candidate for sepsis-induced vascular dysfunction through its inhibiting effect on iNOS expression and oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Acute and chronic effects of flavanol-rich cocoa on vascular function in subjects with coronary artery disease: a randomized double-blind placebo-controlled study.

    PubMed

    Farouque, H M Omar; Leung, Michael; Hope, Sarah A; Baldi, Mauro; Schechter, Clyde; Cameron, James D; Meredith, Ian T

    2006-07-01

    Evidence suggests that flavonoid-containing diets reduce cardiovascular risk, but the mechanisms responsible are unclear. In the present study, we sought to determine the effect of flavanol-rich cocoa on vascular function in individuals with CAD (coronary artery disease). Forty subjects (61+/-8 years; 30 male) with CAD were recruited to a 6-week randomized double-blind placebo-controlled study. Subjects consumed either a flavanol-rich chocolate bar and cocoa beverage daily (total flavanols, 444 mg/day) or matching isocaloric placebos daily (total flavanols, 19.6 mg/day) for 6 weeks. Brachial artery FMD (flow-mediated dilation) and SAC (systemic arterial compliance) were assessed at baseline, 90 min following the first beverage and after 3 and 6 weeks of daily consumption. Soluble cellular adhesion molecules and FBF (forearm blood flow) responses to ACh (acetylcholine chloride; 3-30 microg/min) and SNP (sodium nitroprusside; 0.3-3 microg/min) infusions, forearm ischaemia and isotonic forearm exercise were assessed at baseline and after 6 weeks. FMD, SAC and FBF responses did not differ between groups at baseline. No acute or chronic changes in FMD or SAC were seen in either group. No difference in soluble cellular adhesion molecules, FBF responses to ischaemia, exercise, SNP or ACh was seen in the group receiving flavanol-rich cocoa between baseline and 6 weeks. These data suggest that over a 6-week period, flavanol-rich cocoa does not modify vascular function in patients with established CAD.

  17. The Sophora flavescens flavonoid compound trifolirhizin inhibits acetylcholine induced airway smooth muscle contraction.

    PubMed

    Yang, Nan; Liang, Banghao; Srivastava, Kamal; Zeng, Jia; Zhan, Jixun; Brown, LaVerne; Sampson, Hugh; Goldfarb, Joseph; Emala, Charles; Li, Xiu-Min

    2013-11-01

    Asthma is a serious health problem worldwide, particularly in industrialized countries. Despite a better understanding of the pathophysiology of asthma, there are still considerable gaps in knowledge as well as a need for classes of drugs. ASHMI™ (Anti-asthma Herbal Medicine Intervention) is an aqueous extract of Ganoderma lucidum (Fr.) P. Karst (Ling Zhi), Sophora flavescens Aiton (Ku Shen) and Glycyrrhiza uralensis Fisch. ex DC (Gan Cao). It prevents allergic asthma airway hyper-reactivity in mice and inhibits acetylcholine (ACh) induced airway smooth muscle (ASM) contraction in tracheal rings from allergic asthmatic mice. The purpose of this research was to identify individual herb(s) and their active compound(s) that inhibit ASM contraction. It was found that S. flavescens, but not G. lucidum or G. uralensis aqueous extracts, inhibited ASM contraction in tracheal rings from asthmatic mice. Bioassay-guided isolation and identification of flavonoid fractions/compound(s) via methylene chloride extraction, preparative HPLC fractionation, and LC-MS and NMR spectroscopic analyses showed that trifolirhizin is an active constituent that inhibits acetylcholine mediated ASM contraction or directly relaxes pre-contracted ASM independent of β2-adrenoceptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The Sophora Flavescens flavonoid compound trifolirhizin inhibits acetylcholine induced airway smooth muscle contraction

    PubMed Central

    Zeng, Jia; Zhan, Jixun; Brown, LaVerne; Sampson, Hugh; Goldfarb, Joseph; Emala, Charles; Li, Xiu-Min

    2014-01-01

    Asthma is a serious health problem worldwide, particularly in industrialized countries. Despite a better understanding of the pathophysiology of asthma, there are still considerable gaps in knowledge as well as a need for new classes of drugs. ASHMI™ (Anti-asthma Herbal Medicine Intervention) is an aqueous extract of Ganoderma lucidum (Fr.) P. Karst (Ling Zhi), Sophora flavescens Aiton (Ku Shen) and Glycyrrhiza uralensis Fisch. ex DC (Gan Cao). It prevents allergic asthma airway hyper-reactivity in mice and inhibits acetylcholine (ACh) induced airway smooth muscle (ASM) contraction in tracheal rings from allergic asthmatic mice. The purpose of this research was to identify individual herb(s) and their active compound(s) that inhibit ASM contraction. It was found that Sophora flavescens (S. flavescens), but not Ganoderma lucidum (G. lucidum) or Glycyrrhiza uralensis (G. uralensis) aqueous extracts, inhibited ASM contraction in tracheal rings from asthmatic mice. Bioassay-guided isolation and identification of flavonoid fractions/compound(s) via methylene chloride extraction, preparative HPLC fractionation, and LC-MS and NMR spectroscopic analyses showed that trifolirhizin is an active constituent that inhibits acetylcholine mediated ASM contraction or directly relaxes pre-contracted ASM independent of β2-adrenoceptors. PMID:23993294

  19. Visualization and functional testing of acetylcholine receptor-like molecules in cochlear outer hair cells.

    PubMed

    Plinkert, P K; Gitter, A H; Zimmermann, U; Kirchner, T; Tzartos, S; Zenner, H P

    1990-02-01

    The efferent nerve endings at outer hair cells (OHCs) have been suggested to regulate active mechanical processes in the cochlea. The discovery of acetylcholine (ACh)-producing and -degrading enzymes in these synapses gave rise to the speculation that ACh might be one of the efferent transmitters. However, there has as yet been no identification and characterization of any corresponding receptor in OHCs which is required for further clarification of this question. In the present paper existence, location and first characterization of acetylcholine receptors (AChRs) in OHCs are reported. Using two anti-AChR monoclonal antibodies, AChR epitopes were found forming a cup at the basal end of the OHCs opposite to the efferent nerve endings. Furthermore, the studied molecules could be shown to extend through the cell membrane. In addition, the denervated OHC AChR-epitopes seem to move by lateral diffusion. Application of Carbachol and ACh to the basal pole of OHCs induced a weak, reversible cell contraction. Pharmacological controls revealed, that hte motile responses were mediated by the AChRs.

  20. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from themore » anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.« less

  1. a2* Nicotinic Acetylcholine Receptors Influence Hippocampus-Dependent Learning and Memory in Adolescent Mice

    ERIC Educational Resources Information Center

    Lotfipour, Shahrdad; Mojica, Celina; Nakauchi, Sakura; Lipovsek, Marcela; Silverstein, Sarah; Cushman, Jesse; Tirtorahardjo, James; Poulos, Andrew; Elgoyhen, Ana Belén; Sumikawa, Katumi; Fanselow, Michael S.; Boulter, Jim

    2017-01-01

    The absence of a2* nicotinic acetylcholine receptors (nAChRs) in oriens lacunosum moleculare (OLM) GABAergic interneurons ablate the facilitation of nicotine-induced hippocampal CA1 long-term potentiation and impair memory. The current study delineated whether genetic mutations of a2* nAChRs ("Chrna2"[superscript L9'S/L9'S] and…

  2. Achieving the WHO sodium target: estimation of reductions required in the sodium content of packaged foods and other sources of dietary sodium.

    PubMed

    Eyles, Helen; Shields, Emma; Webster, Jacqui; Ni Mhurchu, Cliona

    2016-08-01

    Excess sodium intake is one of the top 2 dietary risk factors contributing to the global burden of disease. As such, many countries are now developing national sodium reduction strategies, a key component of which is a sodium reduction model that includes sodium targets for packaged foods and other sources of dietary sodium. We sought to develop a sodium reduction model to determine the reductions required in the sodium content of packaged foods and other dietary sources of sodium to reduce adult population salt intake by ∼30% toward the optimal WHO target of 5 g/d. Nationally representative household food-purchasing data for New Zealand were linked with branded food composition information to determine the mean contribution of major packaged food categories to total population sodium consumption. Discretionary salt use and the contribution of sodium from fresh foods and foods consumed away from the home were estimated with the use of national nutrition survey data. Reductions required in the sodium content of packaged foods and other dietary sources of sodium to achieve a 30% reduction in dietary sodium intakes were estimated. A 36% reduction (1.6 g salt or 628 mg Na) in the sodium content of packaged foods in conjunction with a 40% reduction in discretionary salt use and the sodium content of foods consumed away from the home would reduce total population salt intake in New Zealand by 35% (from 8.4 to 5.5 g/d) and thus meet the WHO 2025 30% relative reduction target. Key reductions required include a decrease of 21% in the sodium content of white bread, 27% for hard cheese, 42% for sausages, and 54% for ready-to-eat breakfast cereals. Achieving the WHO sodium target in New Zealand will take considerable efforts by both food manufacturers and consumers and will likely require a national government-led sodium reduction strategy. © 2016 American Society for Nutrition.

  3. Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors.

    PubMed

    Yin, Jiao; Qi, Li; Wang, Hongyu

    2012-05-01

    The lithium-based energy storage technology is currently being considered for electric automotive industry and even electric grid storage. However, the hungry demand for vast energy sources in the modern society will conflict with the shortage of lithium resources on the earth. The first alternative choice may be sodium-related materials. Herein, we propose an electric energy storage system (sodium-ion capacitor) based on porous carbon and sodium titanate nanotubes (Na-TNT, Na(+)-insertion compounds) as positive and negative electrode materials, respectively, in conjunction with Na(+)-containing non-aqueous electrolytes. As a low-voltage (0.1-2 V) sodium insertion nanomaterial, Na-TNT was synthesized via a simple hydrothermal reaction. Compared with bulk sodium titanate, the predominance of Na-TNT is the excellent rate performance, which exactly caters to the need for electrochemical capacitors. The sodium-ion capacitors exhibited desirable energy density and power density (34 Wh kg(-1), 889 W kg(-1)). Furthermore, the sodium-ion capacitors had long cycling life (1000 cycles) and high coulombic efficiency (≈ 98 % after the second cycle). More importantly, the conception of sodium-ion capacitor has been put forward.

  4. Pharmacological profile of zacopride and new quaternarized fluorobenzamide analogues on mammalian α7 nicotinic acetylcholine receptor.

    PubMed

    Bourdin, Céline M; Lebreton, Jacques; Mathé-Allainmat, Monique; Thany, Steeve H

    2015-08-15

    From quaternarization of quinuclidine enantiomers of 2-fluoro benzamide LMA10203 in dichloromethane, the corresponding N-chloromethyl derivatives LMA10227 and LMA10228 were obtained. Here, we compared the agonist action of known zacopride and its 2-fluoro benzamide analogues, LMA10203, LMA10227 and LMA10228 against mammalian homomeric α7 nicotinic acetylcholine receptor expressed in Xenopus oocytes. We found that LMA10203 was a partial agonist of α7 receptor with a pEC50 value of 4.25 ± 0.06 μM whereas LMA10227 and LMA10228 were poorly active on α7 homomeric nicotinic receptor. LMA10227 and LMA10228 were identified as antagonists of acetylcholine-induced currents with IC50 values of 28.4 μM and 39.3 μM whereas LMA10203 and zacopride possessed IC50 values of 8.07 μM and 7.04 μM, respectively. Moreover, despite their IC50 values, LMA10227 was the most potent inhibitor of nicotine-induced current amplitudes (65.7 ± 2.1% inhibition). LMA10203 and LMA10228 had the same inhibitory effects (26.5 ± 7.5% and 33.2 ± 4.1%, respectively), whereas zacopride had no significant inhibitory effect (4.37 ± 4%) on nicotine-induced responses. Our results revealed different pharmacological properties between the four compounds on acetylcholine and nicotine currents. The mode of action of benzamide compounds may need to be reinterpreted with respect to the potential role of α7 receptor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Cholinesterase inhibition and acetylcholine accumulation following intracerebral administration of paraoxon in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, A.; Liu, J.; Karanth, S.

    2009-05-01

    We evaluated the inhibition of striatal cholinesterase activity following intracerebral administration of paraoxon assaying activity either in tissue homogenates ex vivo or by substrate hydrolysis in situ. Artificial cerebrospinal fluid (aCSF) or paraoxon in aCSF was infused unilaterally (0.5 {mu}l/min for 2 h) and ipsilateral and contralateral striata were harvested for ChE assay ex vivo. High paraoxon concentrations were needed to inhibit ipsilateral striatal cholinesterase activity (no inhibition at < 0.1 mM; 27% at 0.1 mM; 79% at 1 mM paraoxon). With 3 mM paraoxon infusion, substantial ChE inhibition was also noted in contralateral striatum. ChE histochemistry generally confirmed thesemore » concentration- and side-dependent effects. Microdialysates collected for up to 4 h after paraoxon infusion inhibited ChE activity when added to striatal homogenate, suggesting prolonged efflux of paraoxon. Since paraoxon efflux could complicate acetylcholine analysis, we evaluated the effects of paraoxon (0, 0.03, 0.1, 1, 10 or 100 {mu}M, 1.5 {mu}l/min for 45 min) administered by reverse dialysis through a microdialysis probe. ChE activity was then monitored in situ by perfusing the colorimetric substrate acetylthiocholine through the same probe and measuring product (thiocholine) in dialysates. Concentration-dependent inhibition was noted but reached a plateau of about 70% at 1 {mu}M and higher concentrations. Striatal acetylcholine was below the detection limit at all times with 0.1 {mu}M paraoxon but was transiently elevated (0.5-1.5 h) with 10 {mu}M paraoxon. In vivo paraoxon (0.4 mg/kg, sc) in adult rats elicited about 90% striatal ChE inhibition measured ex vivo, but only about 10% inhibition measured in situ. Histochemical analyses revealed intense AChE and glial fibrillary acidic protein staining near the cannula track, suggesting proliferation of inflammatory cells/glia. The findings suggest that ex vivo and in situ cholinesterase assays can provide very

  6. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice.

    PubMed

    Dolejší, Eva; Liraz, Ori; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; Michaelson, Daniel M

    2016-02-01

    Apolipoprotein E4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease. We utilized apoE4-targeted replacement mice (approved by the Tel Aviv University Animal Care Committee) to investigate whether cholinergic dysfunction, which increases during aging and is a hallmark of Alzheimer's disease, is accentuated by apoE4. This revealed that levels of the pre-synaptic cholinergic marker, vesicular acetylcholine transporter in the hippocampus and the corresponding electrically evoked release of acetylcholine, are similar in 4-month-old apoE4 and apolipoprotein E3 (apoE3) mice. Both parameters decrease with age. This decrease is, however, significantly more pronounced in the apoE4 mice. The levels of cholinacetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) were similar in the hippocampus of young apoE4 and apoE3 mice and decreased during aging. For ChAT, this decrease was similar in the apoE4 and apoE3 mice, whereas it was more pronounced in the apoE4 mice, regarding their corresponding AChE and BuChE levels. The level of muscarinic receptors was higher in the apoE4 than in the apoE3 mice at 4 months and increased to similar levels with age. However, the relative representation of the M1 receptor subtype decreased during aging in apoE4 mice. These results demonstrate impairment of the evoked release of acetylcholine in hippocampus by apoE4 in 12-month-old mice but not in 4-month-old mice. The levels of ChAT and the extent of the M2 receptor-mediated autoregulation of ACh release were similar in the adult mice, suggesting that the apoE4-related inhibition of hippocampal ACh release in these mice is not driven by these parameters. Evoked ACh release from hippocampal and cortical slices is similar in 4-month-old apoE4 and apoE3 mice but is specifically and significantly reduced in hippocampus, but not cortex, of 12-month-old apoE4 mice. This effect is accompanied by decreased VAChT levels. These findings show that

  7. Studies on the effects of acetylcholine and antiepileptic drugs on /sup 32/P incorporation into phospholipids of rat brain synaptosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aly, M.I.; Abdel-Latif, A.A.

    1982-02-01

    Studies were conducted on the effects of antiepileptic drugs on the acetylcholine-stimulated /sup 32/P labeling of phospholipids in rat brain synaptosomes. Of the four antiepileptic drugs investigated in the present study, namely phenytoin, carbamazepine, phenobarbital, and valproate, only phenytoin blocked the acetylcholine-stimulated /sup 32/P labeling of phosphatidylinositol and phosphatidic acid, and the acetylcholine-stimulated breakdown of polyphosphoinositides. Phenytoin alone, like atropine alone, had no effect on the /sup 32/P labeling of phospholipids nor on the specific radioactivity of (/sup 32/P)ATP. Omission of Na/sup +/ drastically reduced both the /sup 32/P labeling of synaptosomal phospholipids and the specific radioactivity of (/sup 32/P)ATPmore » and furthermore it significantly decreased the phosphoinositide effect. It was concluded that certain antiepileptic drugs, such as phenytoin, could exert their pharmacological actions through their antimuscarinic effects. In addition the finding that phenytoin, which acts to regulate NA/sup +/ and Ca/sup 2 +/ permeability of neuronal membranes, also inhibited the phosphoinositide effects in synaptosomes, support the conclusions that Ca2+ and Na+ are probably involved in the molecular mechanism underlying this phenomenon in excitable tissues.« less

  8. Nicotinic acetylcholine receptor ligands; a patent review (2006-2011)

    PubMed Central

    Gündisch, Daniela; Eibl, Christoph

    2012-01-01

    Introduction Nicotinic acetylcholine receptors (nAChRs), pentameric ligand-gated cation channels, are potential targets for the development of therapeutics for a variety of disease states. Areas covered This article is reviewing recent advances in the development of small molecule ligands for diverse nAChR subtypes and is a continuation of an earlier review in this journal. Expert opinion The development of nAChR ligands with preference for α4β2 or α7 subtypes for the treatment of CNS disorders are in the most advanced developmental stage. In addition, there is a fast growing interest to generate so-called PAMs, positive allosteric modulators, to influence the channels’ functionalities. PMID:22098319

  9. Widespread Decrease of Nicotinic Acetylcholine Receptors in Parkinson's Disease

    PubMed Central

    Ichise, Masanori; Zoghbi, Sami S; Liow, Jeih-San; Ghose, Subroto; Vines, Douglass C; Sangare, Janet; Lu, Jian-Qiang; Cropley, Vanessa L; Iida, Hidehiro; Kim, Kyeong Min; Cohen, Robert M; Bara-Jimenez, William; Ravina, Bernard; Innis, Robert B

    2005-01-01

    Nicotinic acetylcholine receptors (nAChRs) have close interactions with the dopaminergic system and play critical roles in cognitive function. nAChRs were imaged in 10 non-demented Parkinson's disease (PD) patients and 15 age-matched healthy subjects using a single photon emission computed tomography ligand [123I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine. Using an arterial input function, we measured the total distribution volume (V; specific plus non-displaceable) as well as the delivery (K1). PD showed a widespread significant decrease (∼10%) of V in both cortical and subcortical regions without a significant change in K1. These results indicate the importance of extending the study to demented patients. PMID:16374823

  10. Test Your Sodium Smarts

    MedlinePlus

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  11. High-sodium comet

    NASA Astrophysics Data System (ADS)

    Friebele, Elaine

    In mid-April, astronomers in the Canary Islands discovered that Comet Hale-Bopp has a tail composed of sodium atoms, in addition to the commonly known ion and dust tails. Although sodium atoms have been seen at the centers of other comets, this is the first observation of a comet tail consisting of sodium.The discovery by Gabriele Cremonese of the Padova Astronomical Observatory in Italy and Don Pollaco of the Isaac Newton Group of telescopes at the Canary Islands, came from images of Hale-Bopp taken with a special wide-field camera fitted with a filter that isolates emission from sodium atoms. The sodium atoms are distributed over an enormous region in and around Hale-Bopp. It is not clear exactly how the sodium tail, which is 600,000 km wide and 50 million km long, was formed.

  12. Unorthodox Acetylcholine Binding Sites Formed by α5 and β3 Accessory Subunits in α4β2* Nicotinic Acetylcholine Receptors.

    PubMed

    Jain, Akansha; Kuryatov, Alexander; Wang, Jingyi; Kamenecka, Theodore M; Lindstrom, Jon

    2016-11-04

    All nicotinic acetylcholine receptors (nAChRs) evolved from homomeric nAChRs in which all five subunits are involved in forming acetylcholine (ACh) binding sites at their interfaces. Heteromeric α4β2* nAChRs typically have two ACh binding sites at α4/β2 interfaces and a fifth accessory subunit surrounding the central cation channel. β2 accessory subunits do not form ACh binding sites, but α4 accessory subunits do at the α4/α4 interface in (α4β2) 2 α4 nAChRs. α5 and β3 are closely related subunits that had been thought to act only as accessory subunits and not take part in forming ACh binding sites. The effect of agonists at various subunit interfaces was determined by blocking homologous sites at these interfaces using the thioreactive agent 2-((trimethylammonium)ethyl) methanethiosulfonate (MTSET). We found that α5/α4 and β3/α4 interfaces formed ACh binding sites in (α4β2) 2 α5 and (α4β2) 2 β3 nAChRs. The α4/α5 interface in (β2α4) 2 α5 nAChRs also formed an ACh binding site. Blocking of these sites with MTSET reduced the maximal ACh evoked responses of these nAChRs by 30-50%. However, site-selective agonists NS9283 (for the α4/α4 site) and sazetidine-A (for the α4/β2 site) did not act on the ACh sites formed by the α5/α4 or β3/α4 interfaces. This suggests that unorthodox sites formed by α5 and β3 subunits have unique ligand selectivity. Agonists or antagonists for these unorthodox sites might be selective and effective drugs for modulating nAChR function to treat nicotine addiction and other disorders. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. [Sodium and hypertension].

    PubMed

    de Wardener, H E

    1996-09-01

    Over several million years the human race was programmed to eat a diet which contained about 15 mmol of sodium (1 g of sodium chloride) per day. It is only five to ten thousand years ago that we became addicted to salt. Today we eat about 150 mmol of sodium (9-12 g of salt) per day. It is now apparent that this sudden rise in sodium intake (in evolutionary terms) is the most likely cause for the rise in blood pressure with age that occurs in the majority of the world's population. Those which consume less than 60 mmol/day do not develop hypertension. The reason for the rise in sodium intake is not known but it is probable that an important stimulus was the discovery that meat could be preserved by immersion into a concentrated salt solution. This seemingly miraculous power endowed salt with such magical and medicinal qualities that it became a symbol of goodness and health. It was not until 1904 Ambard and Beaujard suggested that on the contrary dietary salt could be harmful and raise the blood pressure. At first the idea did not prosper and it continues to be opposed by a diminishing band. The accumulated evidence that sodium intake is related to the blood pressure in normal man and animals and in inherited forms of hypertension has been obtained from experimental manipulations and studies of human populations. The following observation links sodium and hypertension. An increase in sodium intakes raises the blood pressure of the normal rat, dog, rabbit, baboon, chimpanzee and man. Population studies have demonstrated a significant correlation between sodium intake and the customary rise in blood pressure with age. The development of hypertensive strains of rats has revealed that the primary genetic lesion which gives rise to hypertension resides in the kidney where it impairs the urinary excretion of sodium. There is similar but less convincing evidence in essential hypertension. The kidney in both essential hypertension and hypertensive strains of rats share a

  14. Anterior Thalamic Lesions Alter Both Hippocampal-Dependent Behavior and Hippocampal Acetylcholine Release in the Rat

    ERIC Educational Resources Information Center

    Savage, Lisa M.; Hall, Joseph M.; Vetreno, Ryan P.

    2011-01-01

    The anterior thalamic nuclei (ATN) are important for learning and memory as damage to this region produces a persistent amnestic syndrome. Dense connections between the ATN and the hippocampus exist, and importantly, damage to the ATN can impair hippocampal functioning. Acetylcholine (ACh) is a key neurotransmitter in the hippocampus, and in vivo…

  15. Activity of nitric oxide-generating compounds against encephalomyocarditis virus.

    PubMed Central

    Guillemard, E; Geniteau-Legendre, M; Kergot, R; Lemaire, G; Petit, J F; Labarre, C; Quero, A M

    1996-01-01

    Nitric oxide (NO) generated by two NO donors (sodium nitroprusside or S-nitroso-L-glutathione) was shown to exert a dose-dependent inhibition of encephalomyocarditis virus growth in L-929 cells. This activity was not due to the cytotoxic or direct virucidal effects of NO donors. L-929 cells were shown to produce NO endogenously, but this low level of production did not counter encephalomyocarditis virus replication. PMID:8849231

  16. Dexmedetomidine's inhibitory effects on acetylcholine release from cholinergic nerves in guinea pig trachea: a mechanism that accounts for its clinical benefit during airway irritation.

    PubMed

    Mikami, Maya; Zhang, Yi; Kim, Benjamin; Worgall, Tilla S; Groeben, Harald; Emala, Charles W

    2017-03-29

    Airway instrumentation can evoke upper airway reflexes including bronchoconstriction and cough which can cause serious complications including airway trauma, laryngospasm or bronchospasm which may in turn lead to difficulty with ventilation and hypoxemia. These airway events are mediated in part by irritant-induced neuronal modulation of airway tone and cough responses. We investigated whether the commonly used anesthetic agents dexmedetomidine, lidocaine or remifentanil attenuated neuronal and airway smooth muscle responses in the upper airways of guinea pigs. The ability of dexmedetomidine, lidocaine or remifentanil to attenuate direct cholinergic nerve stimulation, C-fiber stimulation or direct smooth muscle contraction were studied using isolated tracheal rings from male guinea pigs under four paradigms; (1) the magnitude of contractile force elicited by cholinergic electrical field stimulation (EFS); (2) the amount of acetylcholine released during cholinergic EFS; (3) the direct airway smooth muscle relaxation of a sustained acetylcholine-induced contraction and (4) the magnitude of C-fiber mediated contraction. Dexmedetomidine (1-100 μM) and lidocaine (1 mM) attenuated cholinergic 30Hz EFS-induced tracheal ring contraction while remifentanil (10 μM) had no effect. Dexmedetomidine at 10 μM (p = 0.0047) and 100 μM (p = 0.01) reduced cholinergic EFS-induced acetylcholine release while lidocaine (10 μM-1 mM) and remifentanil (0.1-10 μM) did not. Tracheal ring muscle force induced by the exogenous addition of the contractile agonist acetylcholine or by a prototypical C-fiber analogue of capsaicin were also attenuated by 100 μM dexmedetomidine (p = 0.0061 and p = 0.01, respectively). The actual tracheal tissue concentrations of dexmedetomidine achieved (0.54-26 nM) following buffer application of 1-100 μM of dexmedetomidine were within the range of clinically achieved plasma concentrations (12 nM). The α2 adrenoceptor agonist

  17. Study on glutathionesulfonic acid sodium salt as biodistribution promoter for thiopental sodium.

    PubMed

    Ohkawa, Yuhsuke; Fujimoto, Tomonori; Higashiyama, Kyohko; Maeda, Hiroshi; Asoh, Tomoyuki; Kurumi, Masateru; Sasaki, Kenji; Nakayama, Taiji

    2002-06-01

    The effects of glutathione (GSH) and glutathionesulfonic acid sodium salt [N-(N-gamma-L-glutamyl-L-beta-sulfoalanyl)glycine sodium salt, GSO3Na], which is a minor metabolite of GSH, on the pharmacokinetics of thiopental sodium were investigated in rats. The concomitant use of GSO3Na with thiopental sodium significantly increased the tissue-to-plasma concentration ratio (Kp) of thiopental sodium 60 min after its administration in the heart, lung, brain, liver, kidney, and spleen, while GSH did not affect them. On the other hand, the Kp value of thiopental sodium 5 min after its administration with concomitant GSO3Na decreased significantly only in the spleen. Neither GSO3Na nor GSH changes the pharmacokinetic parameters of thiopental sodium. Significant change of the binding ratio of thiopental sodium to bovine serum albumin (BSA) was not observed by the addition of less than 5-fold GSO3Na. About 50% of thiopental sodium was bound to the brain, lung or liver, however, no significant change of this binding ratio was observed by the concomitant use of GSO3Na. The partition coefficient of thiopental sodium apparently increased by the concomitant use of GSO3Na but not by GSH. This phenomenon seemed to be concerned with a mechanism to increase the Kp values of thiopental sodium in the tissues. The increment in the drug distribution to tissues with concomitant GSO3Na observed in this study is useful information for the application of drug combinations as a biodistribution promoter.

  18. In vivo neurochemical evidence that delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, inhibit acetylcholine efflux in the nucleus accumbens of freely moving rats.

    PubMed

    Kiguchi, Yuri; Aono, Yuri; Watanabe, Yuriko; Yamamoto-Nemoto, Seiko; Shimizu, Kunihiko; Shimizu, Takehiko; Kosuge, Yasuhiro; Waddington, John L; Ishige, Kumiko; Ito, Yoshihisa; Saigusa, Tadashi

    2016-10-15

    Cholinergic neurons in the nucleus accumbens express delta- and mu-opioid receptors that are thought to inhibit neural activity. Delta- and mu-opioid receptors are divided into delta1- and delta2-opioid receptors and mu1- and mu2-opioid receptors, respectively. We analysed the roles of delta- and mu-opioid receptor subtypes in regulating accumbal acetylcholine efflux of freely moving rats using in vivo microdialysis. Other than naloxonazine, given intraperitoneally, delta- and mu-opioid receptor ligands were administered intracerebrally through the dialysis probe. Doses of these compounds indicate total amount (mol) over an infusion time of 30-60min. To monitor basal acetylcholine, a low concentration of physostigmine (50nM) was added to the perfusate. The delta1-opioid receptor agonist DPDPE (3 and 300pmol) and delta2-opioid receptor agonist deltorphin II (3 and 30pmol) decreased accumbal acetylcholine in a dose-related manner. DPDPE (300pmol)- and deltorphin II (3pmol)-induced reductions in acetylcholine were each inhibited by the delta1-opioid receptor antagonist BNTX (0.3pmol) and delta2-opioid receptor antagonist naltriben (15pmol), respectively. The mu-opioid receptor agonists endomorphin-1 and endomorphin-2 (6 and 30nmol) decreased acetylcholine in a dose-related manner. Endomorphin-1- and endomorphin-2 (30nmol)-induced reductions in acetylcholine were prevented by the mu-opioid receptor antagonist CTOP (3nmol). The mu1-opioid receptor antagonist naloxonazine (15mg/kg ip), which inhibits endomorphin-1 (15nmol)-induced accumbal dopamine efflux, did not alter endomorphin-1- or endomorphin-2 (30nmol)-induced reductions in acetylcholine efflux. This study provides in vivo evidence for delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, that inhibit accumbal cholinergic neural activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Final report on the safety assessment of sodium sulfite, potassium sulfite, ammonium sulfite, sodium bisulfite, ammonium bisulfite, sodium metabisulfite and potassium metabisulfite.

    PubMed

    Nair, Bindu; Elmore, Amy R

    2003-01-01

    Sodium Sulfite, Ammonium Sulfite, Sodium Bisulfite, Potassium Bisulfite, Ammonium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite are inorganic salts that function as reducing agents in cosmetic formulations. All except Sodium Metabisulfite also function as hair-waving/straightening agents. In addition, Sodium Sulfite, Potassium Sulfite, Sodium Bisulfite, and Sodium Metabisulfite function as antioxidants. Although Ammonium Sulfite is not in current use, the others are widely used in hair care products. Sulfites that enter mammals via ingestion, inhalation, or injection are metabolized by sulfite oxidase to sulfate. In oral-dose animal toxicity studies, hyperplastic changes in the gastric mucosa were the most common findings at high doses. Ammonium Sulfite aerosol had an acute LC(50) of >400 mg/m(3) in guinea pigs. A single exposure to low concentrations of a Sodium Sulfite fine aerosol produced dose-related changes in the lung capacity parameters of guinea pigs. A 3-day exposure of rats to a Sodium Sulfite fine aerosol produced mild pulmonary edema and irritation of the tracheal epithelium. Severe epithelial changes were observed in dogs exposed for 290 days to 1 mg/m(3) of a Sodium Metabisulfite fine aerosol. These fine aerosols contained fine respirable particle sizes that are not found in cosmetic aerosols or pump sprays. None of the cosmetic product types, however, in which these ingredients are used are aerosolized. Sodium Bisulfite (tested at 38%) and Sodium Metabisulfite (undiluted) were not irritants to rabbits following occlusive exposures. Sodium Metabisulfite (tested at 50%) was irritating to guinea pigs following repeated exposure. In rats, Sodium Sulfite heptahydrate at large doses (up to 3.3 g/kg) produced fetal toxicity but not teratogenicity. Sodium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite were not teratogenic for mice, rats, hamsters, or rabbits at doses up to 160 mg/kg. Generally, Sodium Sulfite, Sodium

  20. Deficits in acetylcholine homeostasis, receptors and behaviors in choline transporter heterozygous mice.

    PubMed

    Bazalakova, M H; Wright, J; Schneble, E J; McDonald, M P; Heilman, C J; Levey, A I; Blakely, R D

    2007-07-01

    Cholinergic neurons elaborate a hemicholinium-3 (HC-3) sensitive choline transporter (CHT) that mediates presynaptic, high-affinity choline uptake (HACU) in support of acetylcholine (ACh) synthesis and release. Homozygous deletion of CHT (-/-) is lethal shortly after birth (Ferguson et al. 2004), consistent with CHT as an essential component of cholinergic signaling, but precluding functional analyses of CHT contributions in adult animals. In contrast, CHT+/- mice are viable, fertile and display normal levels of synaptosomal HACU, yet demonstrate reduced CHT protein and increased sensitivity to HC-3, suggestive of underlying cholinergic hypofunction. We find that CHT+/- mice are equivalent to CHT+/+ siblings on measures of motor co-ordination (rotarod), general activity (open field), anxiety (elevated plus maze, light/dark paradigms) and spatial learning and memory (Morris water maze). However, CHT+/- mice display impaired performance as a result of physical challenge in the treadmill paradigm, as well as reduced sensitivity to challenge with the muscarinic receptor antagonist scopolamine in the open field paradigm. These behavioral alterations are accompanied by significantly reduced brain ACh levels, elevated choline levels and brain region-specific decreased expression of M1 and M2 muscarinic acetylcholine receptors. Our studies suggest that CHT hemizygosity results in adequate baseline ACh stores, sufficient to sustain many phenotypes, but normal sensitivities to physical and/or pharmacological challenge require full cholinergic signaling capacity.