Science.gov

Sample records for acetylene reduction assays

  1. Factors Affecting the Reduction of Acetylene by Rhizobium-Soybean Cell Associations in Vitro1

    PubMed Central

    Phillips, Donald A.

    1974-01-01

    The acetylene reduction assay was used to measure presumed N2-reducing activity in Rhizobium-soybean cell associations in vitro. No acetylene reduction was observed in liquid suspensions of these organisms, but cells plated onto an agar medium from a liquid suspension of Rhizobium and soybean cells exhibited acetylene-dependent production of ethylene after 7 to 14 days. Aggregates of soybean cells 0.5 to 2.0 mm in diameter were required for this activity. Decreasing oxygen from 0.20 atm to 0.10, 0.04, or 0.00 atm completely inhibited acetylene reduction. The presence of 2,4-dichlorophenoxyacetic acid or kinetin increased endogenous ethylene production and inhibited acetylene-dependent ethylene production. Acetylene reduction was observed with three out of four strains of R. japonicum tested, and three rhizobial strains, which produce root nodules on cowpeas but not soybeans, formed an association capable of acetylene-dependent ethylene production. PMID:16658654

  2. Aquatic acetylene-reduction techniques: solutions to several problems.

    PubMed

    Flett, R J; Hamilton, R D; Campbell, N E

    1976-01-01

    Previous methods of performing aquatic acetylene-reduction assays are described and several problems associated with them are discussed. A refinement of these older techniques is introduced and problems that it overcomes are also discussed. A depth profile of nitrogen fixation (C2H4 production), obtained by the refined technique, is shown for a fertilized Canadian Shield lake in the Experimental Lakes Area of northwestern Ontario. PMID:814983

  3. Diurnal Variation in Algal Acetylene Reduction (Nitrogen Fixation) in Situ1

    PubMed Central

    Vanderhoef, Larry N.; Leibson, Paul J.; Musil, Robert J.; Huang, Chi-Ying; Fiehweg, Robert E.; Williams, Jeffery W.; Wackwitz, Donald L.; Mason, Kevin T.

    1975-01-01

    Diurnal variation in algal nitrogen fixation was studied in Lake Mendota, Wisconsin, during the summers of 1971 to 1973. Approximately two-thirds of the daily acetylene reduction in the surface decimeter occurred before noon. The decline in acetylene reduction (nmoles/liter·hr) near midday was partially because the algae relocated themselves at greater depths. However, acetylene reducing activity (nmoles per A663 unit chlorophyll a per hour) also decreased as midday approached. Occasionally algae would resurface near the end of the day. On average, acetylene reduction (nmoles per liter per hour) was maximum at about 0900 Central standard time in the top decimeter, and acetylene reduction between 0830 and 0930 Central standard time represented 13% of the total daily acetylene reduction. Furthermore, acetylene reduction in the top decimeter, on average, represented 3.6% of the total acetylene reduction in the column. Calculation of the contribution by nitrogen fixation to a lake's fixed nitrogen budget is discussed. PMID:16659065

  4. Nitrogen Fixation (Acetylene Reduction) by Epiphytes of Freshwater Macrophytes

    PubMed Central

    Finke, Linda R.; Seeley, H. W.

    1978-01-01

    The involvement of epiphytic microorganisms in nitrogen fixation was investigated in a shallow freshwater pond near Ithaca, N.Y. The acetylene reduction technique was used to follow diel and seasonal cycles of nitrogen fixation by epiphytes of Myriophyllum spicatum. Acetylene-reducing activity was maximal between noon and 6 p.m., but substantial levels of activity relative to daytime rates continued through the night. Experiments with the seasonal course of activity showed a gradual decline during the autumn months and no activity in January or February. Activity commenced in May, with an abrupt increase to levels between 0.45 and 0.95 nmol of ethylene formed per mg (dry weight) of plant per h. Through most of the summer months, mean rates of acetylene reduction remained between 0.15 and 0.60 nmol/mg (dry weight) per h. It was calculated from diel and seasonal cycles that, in the pond areas studied, epiphytes were capable of adding from 7.5 to 12.5 μg of N per mg of plant per year to the pond. This amount is significant relative to the total amount of nitrogen incorporated into the plant. Blue-green algae (cyanobacteria), particularly Gloeotrichia, appeared to bear prime responsibility for nitrogen fixation, but photosynthetic bacteria of the genus Rhodopseudomonas were isolated from M. spicatum and shown to support high rates of acetylene reduction. PMID:16345301

  5. Simultaneous Measurement of Acetylene Reduction and Respiratory Gas Exchange of Attached Root Nodules 1

    PubMed Central

    Winship, Lawrence J.; Tjepkema, John D.

    1982-01-01

    A method was developed for the simultaneous measurement of acetylene reduction, carbon dioxide evolution and oxygen uptake by individual root nodules of intact nitrogen-fixing plants (Alnus rubra Bong.). The nodules were enclosed in a temperature-controlled leak-tight cuvette. Assay gas mixtures were passed through the cuvette at a constant, known flow rate and gas exchange was measured by the difference between inlet and outlet gas compositions. Gas concentrations were assayed by a combination of an automated gas chromatograph and a programmable electronic integrator. Carbon dioxide and ethylene evolution were determined with a coefficient of variation which was less than 2%, whereas the coefficient of variation for oxygen uptake measurements was less than 5%. Nodules subjected to repeated removal from and reinsertion into the cuvette and to long exposures of 10% v/v acetylene showed no irreversible decline in respiration or acetylene reduction. This system offers long-term stability and freedom from disturbance artifacts plus the ability to monitor continuously, rapidly and specifically the changes in root nodule activity caused by environmental perturbation. PMID:16662496

  6. The vanadium nitrogenase of Azotobacter chroococcum. Reduction of acetylene and ethylene to ethane.

    PubMed Central

    Dilworth, M J; Eady, R R; Eldridge, M E

    1988-01-01

    1. The vanadium (V-) nitrogenase of Azobacter chroococcum transfers up to 7.4% of the electrons used in acetylene (C2H2) reduction for the formation of ethane (C2H6). The apparent Km for C2H2 (6 kPa) is the same for either ethylene (C2H4) or ethane (C2H6) formation and much higher than the reported Km values for C2H2 reduction to C2H4 by molybdenum (Mo-) nitrogenases. Reduction of C2H2 in 2H2O yields predominantly [cis-2H2]ethylene. 2. The ratio of electron flux yielding C2H6 to that yielding C2H4 (the C2H6/C2H4 ratio) is increased by raising the ratio of Fe protein to VFe protein and by increasing the assay temperature up to at least 40 degrees C. pH values above 7.5 decrease the C2H6/C2H4 ratio. 3. C2H4 and C2H6 formation from C2H2 by V-nitrogenase are not inhibited by H2. CO inhibits both processes much less strongly than it inhibits C2H4 formation from C2H2 with Mo-nitrogenase. 4. Although V-nitrogenase also catalyses the slow CO-sensitive reduction of C2H4 to C2H6, free C2H4 is not an intermediate in C2H6 formation from C2H2. 5. Propyne (CH3C identical to CH) is not reduced by the V-nitrogenase. 6. Some implications of these results for the mechanism of C2H6 formation by the V-nitrogenase are discussed. PMID:3162672

  7. Factors Affecting the Acetylene-Induced Decline during Nitrogenase Assays in Root Nodules of Myrica gale L. 1

    PubMed Central

    Tjepkema, John D.; Schwintzer, Christa R.

    1992-01-01

    Our goal was to determine why the rate of acetylene reduction by nodules of actinorhizal plants declines after an initial peak value. The decline was eliminated by pretreatment with argon, indicating that the decline is initiated by cessation of ammonia synthesis. When O2 concentration was decreased during the decline, the rate of acetylene reduction increased. This shows that during the decline there is either O2 toxicity or competition between respiration and nitrogenase for reductant. The decline was not eliminated when uptake hydrogenase was inactivated by pretreatment with acetylene, showing that cessation of H2 oxidation is not the primary cause of the decline. The effects of a variety of other treatments on the decline were also studied. Overall, we conclude that the cessation of ammonia formation is the primary cause of the acetylene-induced decline. We hypothesize that the supply of reductant for nitrogenase depends on amino acids that are depleted following cessation of ammonia formation. We also conclude that the initial peak rate of acetylene reduction provides the best measure of nitrogenase activity. PMID:16668814

  8. Application of the photoacoustic method to the measurement of acetylene reduction by nitrogenase enzyme

    NASA Astrophysics Data System (ADS)

    Schramm, D. U.; Sthel, M. S.; Carneiro, L. O.; Franco, A. A.; Campos, A. C.; Vargas, H.

    2005-06-01

    Nitrogenase is an enzyme responsible for the reduction of the atmospheric N2 into NH4^+, which represents the key entry point of the molecular nitrogen into the biogeochemical cycle of nitrogen. This enzyme is present in the rhizobial bacteroids, which are symbionts in a Leguminosae plant (Acacia Holosericea), and also reduces acetylene into ethylene at the same rate as the nitrogen reduction. Therefore, a CO2 Laser Photoacoustic system was used for detecting and monitoring the ethylene emission by the nitrogenase activity, in the rhizobial symbionts in Acacia Holosericea, when they are confined in test tubes with acetylene at two different volumes (0.1 and 0.5 ml). Ethylene concentrations are also determined in the ppm range.

  9. Effects of sulfide and low redox potential on the inhibition of nitrous oxide reduction by acetylene in Pseudomonas nautica.

    PubMed

    Jensen, K M; Cox, R P

    1992-09-01

    Membrane introduction mass spectrometry was used to investigate the inhibitory effect of acetylene on the nitrous oxide reductase activity of intact cells of Pseudomonas nautica. We studied the effects of the concentrations of nitrate and sulfide, and the redox potential, which have all been implicated in causing a decrease in the inhibitory effects of acetylene during measurements of denitrification in natural environments. There was no evidence that the concentration of nitrate influenced the effect of acetylene. Lowering the redox potential with the reductant Ti(III)-nitrilotriacetate caused a slight alleviation of acetylene inhibition. Much greater effects at the same redox potential were obtained with concentrations of sulfide in the range 1-10 microM. PMID:1526461

  10. High Rate of N2 Fixation by East Siberian Cryophilic Soil Bacteria as Determined by Measuring Acetylene Reduction in Nitrogen-Poor Medium Solidified with Gellan Gum▿ †

    PubMed Central

    Hara, Shintaro; Hashidoko, Yasuyuki; Desyatkin, Roman V.; Hatano, Ryusuke; Tahara, Satoshi

    2009-01-01

    For evaluating N2 fixation of diazotrophic bacteria, nitrogen-poor liquid media supplemented with at least 0.5% sugar and 0.2% agar are widely used for acetylene reduction assays. In such a soft gel medium, however, many N2-fixing soil bacteria generally show only trace acetylene reduction activity. Here, we report that use of a N2 fixation medium solidified with gellan gum instead of agar promoted growth of some gellan-preferring soil bacteria. In a soft gel medium solidified with 0.3% gellan gum under appropriate culture conditions, bacterial microbiota from boreal forest bed soils and some free-living N2-fixing soil bacteria isolated from the microbiota exhibited 10- to 200-fold-higher acetylene reduction than those cultured in 0.2% agar medium. To determine the N2 fixation-activating mechanism of gellan gum medium, qualitative differences in the colony-forming bacterial components from tested soil microbiota were investigated in plate cultures solidified with either agar or gellan gum for use with modified Winogradsky's medium. On 1.5% agar plates, apparently cryophilic bacterial microbiota showed strictly distinguishable microbiota according to the depth of soil in samples from an eastern Siberian Taiga forest bed. Some pure cultures of proteobacteria, such as Pseudomonas fluorescens and Burkholderia xenovorans, showed remarkable acetylene reduction. On plates solidified with 1.0% gellan gum, some soil bacteria, including Luteibacter sp., Janthinobacterium sp., Paenibacillus sp., and Arthrobacter sp., uniquely grew that had not grown in the presence of the same inoculants on agar plates. In contrast, Pseudomonas spp. and Burkholderia spp. were apparent only as minor colonies on the gellan gum plates. Moreover, only gellan gum plates allowed some bacteria, particularly those isolated from the shallow organic soil layer, to actively swarm. In consequence, gellan gum is a useful gel matrix to bring out growth potential capabilities of many soil diazotrophs and their consortia in communities of soil bacteria. PMID:19286791

  11. Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase

    PubMed Central

    Yang, Zhi-Yong; Moure, Vivian R.; Dean, Dennis R.; Seefeldt, Lance C.

    2012-01-01

    A doubly substituted form of the nitrogenase MoFe protein (α-70Val→Ala, α-195His→Gln) has the capacity to catalyze the reduction of carbon dioxide (CO2) to yield methane (CH4). Under optimized conditions, 1 nmol of the substituted MoFe protein catalyzes the formation of 21 nmol of CH4 within 20 min. The catalytic rate depends on the partial pressure of CO2 (or concentration of HCO3−) and the electron flux through nitrogenase. The doubly substituted MoFe protein also has the capacity to catalyze the unprecedented formation of propylene (H2C = CH-CH3) through the reductive coupling of CO2 and acetylene (HC≡CH). In light of these observations, we suggest that an emerging understanding of the mechanistic features of nitrogenase could be relevant to the design of synthetic catalysts for CO2 sequestration and formation of olefins. PMID:23150564

  12. Root and Nodule Respiration in Relation to Acetylene Reduction in Intact Nodulated Peas 1

    PubMed Central

    Mahon, John D.

    1977-01-01

    Inoculated pea plants (Pisum sativum L.) were grown with N-free nutrients in a controlled environment room and rates of respiratory CO2 evolution and C2H2 reduction by the intact nodulated roots were determined. Experiments followed changes related to diurnal cycles, light and dark treatments, partial defoliation, aging of plants and NH4NO3 addition. In all experiments, changes in C2H2 reduction were associated with parallel changes in the respiration rate, although in all but the defoliation experiment there was a basal level of respiration which was independent of the rate of C2H2 reduction. In conditions which affected growth or plant size as well as C2H2 reduction, respiration changed by an average of 0.42 mg CO2 (μmol C2H2 reduced)−1. However, some treatments decreased C2H2 reduction without greatly changing the growth and in these conditions respiration was decreased by an average of 0.27 mg CO2 (μmol C2H2 reduced)−1. While this value may also include some respiration associated with other processes, it is proposed that it more closely estimates respiration directly associated with energy utilization for acetylene reduction; whereas the higher value includes respiration related to maintenance and growth processes as well. PMID:16660191

  13. A continuous, spectrophotometric activity assay for nitrogenase using the reductant titanium(III) citrate.

    PubMed

    Seefeldt, L C; Ensign, S A

    1994-09-01

    A continuous, spectrophotometric assay for determining electron transfer rates through nitrogenase during substrate reduction reactions was developed. The assay takes advantage of the facts that Ti(III) citrate can serve as a reductant for nitrogenase-catalyzed reduction reactions and that oxidation of Ti(III) citrate to Ti(IV) citrate results in a dramatic change in its absorption spectrum. Ti(III) citrate supported nitrogenase-catalyzed substrate (e.g., H+ or acetylene) reduction reactions at about the same rate as that supported by the reductant dithionite (S2O4(2-)). In addition, Ti(III) citrate had an absorption maximum centered at 325 nm, while oxidized Ti(IV) citrate had a much lower absorption in this wavelength region. An absorption coefficient for Ti(III) citrate of 0.73 mM-1.cm-1 at 340 nm was determined by titration with redox dyes with known absorption coefficients. Using this experimentally determined absorption coefficient, we developed an assay that provides a convenient way to determine electron transfer rates through nitrogenase in real time by spectrophotometrically following the oxidation of Ti(III) citrate to Ti(IV) citrate. Average electron transfer rates of 3749 +/- 218 nmol of electrons transferred.min-1.mg iron protein-1 for H+ reduction were determined using this assay which are directly comparable to the rates calculated from fixed time point, gas chromatographic assays of H2 formation. The utility of the Ti(III) citrate assay for nitrogenase is discussed and demonstrated using the nitrogenase inhibitors MgADP, CN-, and NO. PMID:7810881

  14. Nitrogen fixation (acetylene reduction) by annual winter legumes on a coal surface mine

    SciTech Connect

    Gabrielson, F.C.

    1982-01-01

    The winter annuals, crimson clover, rose clover, subterranean clover and hairy vetch, were evaluated for their ability to fix nitrogen on coal surface mine substrates by measuring their ability to reduce acetylene to ethylene. The effects of fertilizer, Abruzzi ryegrass, Kentucky 31 fescue grass and a phytotoxic plant Chenopodium album on nitrogen fixation was also assessed. Crimson clover was recommended as the best legume to use on topsoil and shale in the South. Hairy vetch gave good results on shale and subterranean clover did well on topsoil. The use of these species for revegetation is discussed. Overall, no correlation between substrate pH and ethylene levels was found and effects of substrate depended upon the legume species. Super phosphate fertilizer supported less nitrogen fixation than 13-13-13. Abruzzi ryegrass in some unknown way inhibited plant density and nitrogen fixation by legumes but not by free living substrate micro-organisms. Shale from under dead Chenopodium plants in both field and greenhouse experiments did not inhibit nitrogen fixation. 11 references, 7 tables.

  15. Nitrogen fixation (Acetylene Reduction) by annual winter legumes on a coal surface mine

    SciTech Connect

    Gabrielson, F.C.

    1982-01-01

    The winter annuals, crimson clover, rose clover, subterranean clover and hairy vetch, were evaluated for nitrogen fixing capacity on coal surface mine substrates by measuring their ability to reduce acetylene to ethylene. The effects of fertilizer, Abruzzi rye, Kentucky 31 fescue grass and a phytotoxic plant Chenopodium album on nitrogen fixation were also assessed. Crimson clover was recommended as the best legume to use on topsoil and shale in the south. Hairy vetch gave good results on shale and subterranean clover did well on topsoil. The use of these species for revegetation is discussed. Overall, no correlation between substrate pH and ethylene levels was found and effects of substrate depended upon the legume species. Super phosphate fertilizer supported less nitrogen fixation than 13-13-13. Abruzzi rye in some unknown way inhibited plant density and nitrogen fixation by legumes but not by free living substrate micro-organisms. Shale from under dead Chenopodium plants in both field and greehouse experiments did not inhibit nitrogen fixation. 7 tables.

  16. Independency of Fe ions in hemoglobin on immunomagnetic reduction assay

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Lan, C. B.; Chen, C. H.; Horng, H. E.; Hong, Chin-Yih; Yang, H. C.; Lai, Y. K.; Lin, Y. H.; Teng, K. S.

    2009-10-01

    Immunomagnetic reduction (IMR), which involves measuring the reduction in the ac magnetic susceptibility of magnetic reagents, is due to the association between bio-functionalized magnetic nanoparticles and target bio-molecules. This has been demonstrated for assaying proteins in solutions free of Fe ions, such as serum. In this work, the validity of IMR assay for samples rich in Fe ions like hemoglobin (Hb) is investigated. According to the results, there is no magnetic signal contributed by Fe-ion-rich Hb. Furthermore, the results show a high sensitivity in assaying hemoglobin A1c (HbA1c) by using IMR.

  17. Nitrogenase activity (acetylene reduction) of an iron-oxidizing leptospirillum strain cultured as a pioneer microbe from a recent volcanic deposit on miyake-jima, Japan.

    PubMed

    Sato, Yoshinori; Hosokawa, Ken; Fujimura, Reiko; Nishizawa, Tomoyasu; Kamijo, Takashi; Ohta, Hiroyuki

    2009-01-01

    The genus Leptospirillum is known to dominate acid mine drainage and bioleaching systems. In this paper, we describe the isolation of iron-oxidizing bacteria closely related to Leptospirillum ferrooxidans from an acidic volcanic ash deposit on the island of Miyake (Miyake-jima), Japan. We further show the nitrogenase activity (acetylene reduction) for one (strain C2-1) of the isolates. The deposit harbored 1.2×10(8) total direct count (g dry weight)(-1) and 7.1×10(5) (most-probable-number, MPN) (g dry weight)(-1) of iron-oxidizer. A ferrous iron-limited, aerobic chemostat culture using Leptospirillum HH medium (pH 1.8) was performed to select and isolate the Leptospirillum group. Nine isolates were regarded as pure cultures based on uniform colony morphology on Fe(2+)-containing silica gel plates and absence of growth on 100-fold diluted nutrient broth plates. Six strains examined further shared 99.9-100% identity in 16S rRNA gene sequence with each other. Homology-based searches showed that all of the strains belonged to the Leptospirillum ferrooxidans clade. Strain C2-1 grown in ammonium sulfate-free Leptospirillum HH medium (pH 1.8) showed an initial rate of acetylene reduction of 58 μmol h(-1) (g cell carbon)(-1). PMID:21566388

  18. Data-reduction methods for immunoradiometric assays of thyrotropin compared

    SciTech Connect

    Haven, M.C.; Orsulak, P.J.; Arnold, L.L.; Crowley, G.

    1987-07-01

    In an attempt to optimize curve fitting for immunoradiometric assays, we investigated eight data-reduction methods with two commercially available assays of thyrotropin. In four of these methods linear data-reduction models are used: logit-log programs of Iso-Data, Micromedic, and Hewlitt-Packard, and probit-log of Hewlitt-Packard. The other four were nonlinear data-reduction models: Iso-Data's French curve (modified spline), four-parameter logistic function, and point-to-point methods, as well as a nonlinear least squares method. In using the eight data-reduction methods on data from analyses of 78 patients' samples, we found clinically relevant differences between models. In fact, differences found by changing data-reduction models were greater than the difference between the two commercial kits.

  19. Nitrogen Fixation (Acetylene Reduction) Associated with Decaying Leaves of Pond Cypress (Taxodium distichum var. nutans) in a Natural and a Sewage-Enriched Cypress Dome

    PubMed Central

    Dierberg, Forrest E.; Brezonik, Patrick L.

    1981-01-01

    Surface litter from a natural and a sewage-enriched cypress dome in north-central Florida showed a pronounced seasonal pattern of nitrogenase (acetylene reduction) activity associated with seasonal leaf fall from deciduous trees in the domes. Samples of peat from cores indicated negligible nitrogenase activity below the surface layer. Integrating the monthly rates of nitrogen fixation (based on the theoretical molar ratio of 3:2 for C2H4/NH3) yielded 0.39 and 0.12 g of N/m2 per year fixed in the litter of the natural and sewage-enriched domes, respectively. The nitrogen fixed in the first 3 months after leaf fall in the natural dome represented about 14% of the nitrogen increment in the decomposing cypress leaves, but fixation contributed a negligible amount of nitrogen (<1%) to decomposing litter in the sewage-enriched dome. PMID:16345796

  20. Acetylene Reduction by Symbiosomes and Free Bacteroids from Broad Bean (Vicia faba L.) Nodules (Role of Oxalate).

    PubMed Central

    Trinchant, J. C.; Guerin, V.; Rigaud, J.

    1994-01-01

    We report the presence of oxalate in the organic acid fraction of broad bean (Vicia faba L.) nodule cytosol. Using both high-performance liquid chromatography and enzymic assays, high levels of oxalate were detected (70.4 [plus or minus] 2.4 mM). To study the potential role of oxalate as an energy-yielding substrate for nitrogenase activity, free bacteroids were isolated from nodules and found to oxidize oxalate in support of C2H2 reduction under O2 tensions that were lower than those required to oxidize succinate, another dicarboxylate commonly detected in legume nodules. Symbiosomes of broad bean, isolated for the first time from amide-producing nodules, were provided with [14C]oxalate and found to have uptake kinetics with a lower affinity [Km(oxalate) = 330 [mu]M] than that for free bacteroids [Km(oxalate) = 130 [mu]M]. In anaerobic preparations of symbiosomes supplied with purified oxyleghemoglobin, O2 consumption was stimulated by oxalate from 20.2 [plus or minus] 0.8 nmol O2 min-1mg-1 protein to 24.5 [plus or minus] 1.1 nmol O2 min-1 mg-1 protein but always remained lower than the rate of O2 consumption in free bacteroids (32.2 [plus or minus] 1.4 nmol O2 min-1 mg-1 protein). Under these conditions, C2H2 reduction activity was 9.7 [plus or minus] 0.8 and 15.1 [plus or minus] 0.9 nmol C2H4 min-1 mg-1 protein for symbiosomes and bacteroids, respectively. These data support the suggestion that oxalate may play a role as a carbon substrate in support of N2 fixation in broad bean nodules. PMID:12232223

  1. Reductive release of ferritin iron: a kinetic assay.

    PubMed

    Boyer, R F; Grabill, T W; Petrovich, R M

    1988-10-01

    Ferritin iron release, a process of considerable interest in biology and medicine, occurs most readily in the presence of reducing agents. Here is described a kinetic assay for measuring the rate of ferritin iron removal promoted by various reductants. The new procedure uses ferrozine as a chromophoric, high-affinity chelator for the product, Fe(II). The initial rate of iron release is quantified by continuous spectrophotometric measurement of the Fe(ferrozine)2/3+ complex which absorbs maximally at 562 nm. The initial rate of iron mobilization is dependent on reductant concentration, but not on the concentration of the chelating agent, ferrozine. Saturation kinetics are observed for all reductants, including dihydroxyfumarate, cysteine, caffeic acid, ascorbate, and glutathione. Superoxide dismutase greatly inhibits ferritin iron release by ascorbate, but has little or no effect on the reducing action of dihydroxyfumarate, cysteine, caffeic acid, or glutathione. Ferritin iron removal by dihydroxyfumarate was inhibited by various metal ions. This new assay may be used for rapid screening of test compounds for treatment of iron overload and for investigation of the mechanistic aspects of ferritin iron reduction. PMID:3218730

  2. Examining the impact of acetylene on N-fixation and the active sediment microbial community

    PubMed Central

    Fulweiler, Robinson W.; Heiss, Elise M.; Rogener, Mary Kate; Newell, Silvia E.; LeCleir, Gary R.; Kortebein, Sarah M.; Wilhelm, Steven W.

    2015-01-01

    Here we examined the impact of a commonly employed method used to measure nitrogen fixation, the acetylene reduction assay (ARA), on a marine sediment community. Historically, the ARA technique has been broadly employed for its ease of use, in spite of numerous known artifacts. To gauge the severity of these effects in a natural environment, we employed high-throughput 16S rRNA gene sequencing to detect differences in acetylene-treated sediments vs. non-treated control sediments after a 7 h incubation. Within this short time period, significant differences were seen across all activity of microbes identified in the sediment, implying that the changes induced by acetylene occur quickly. The results have important implications for our understanding of marine nitrogen budgets. Moreover, because the ARA technique has been widely used in terrestrial and freshwater habitats, these results may be applicable to other ecosystems. PMID:26029177

  3. Examining the impact of acetylene on N-fixation and the active sediment microbial community.

    PubMed

    Fulweiler, Robinson W; Heiss, Elise M; Rogener, Mary Kate; Newell, Silvia E; LeCleir, Gary R; Kortebein, Sarah M; Wilhelm, Steven W

    2015-01-01

    Here we examined the impact of a commonly employed method used to measure nitrogen fixation, the acetylene reduction assay (ARA), on a marine sediment community. Historically, the ARA technique has been broadly employed for its ease of use, in spite of numerous known artifacts. To gauge the severity of these effects in a natural environment, we employed high-throughput 16S rRNA gene sequencing to detect differences in acetylene-treated sediments vs. non-treated control sediments after a 7 h incubation. Within this short time period, significant differences were seen across all activity of microbes identified in the sediment, implying that the changes induced by acetylene occur quickly. The results have important implications for our understanding of marine nitrogen budgets. Moreover, because the ARA technique has been widely used in terrestrial and freshwater habitats, these results may be applicable to other ecosystems. PMID:26029177

  4. Properties of acetylene

    SciTech Connect

    Pavlovcak, J.T.

    1994-12-31

    Acetylene continues to be the most widely used fuel in the oxyfuel cutting and welding industry. It displays properties that enhance its benefits to the industry, but at the same time, present potential hazards that have to be addressed. The presentation explores the main properties or characteristics of acetylene -- odor, toxicity, flammability, composition, and manufacture. it expands on those properties that are unique to acetylene and which account for its main value to the user or which constitute the chief concern for safe use of acetylene. The presentation explains characteristics such as anosmia, flammable or explosive range, ignition energy, autoignition temperature, and flame temperature, comparing these values for acetylene to other common gaseous fuels. it explains the unique property of acetylene to decompose explosively in the absence of air or oxygen. The toxicological aspects of acetylene is discussed, including anesthetic effect and simple asphyxiant, showing the increasing severity of symptoms to increasing levels of oxygen deficiency. The main value of this basic review of the properties of acetylene is to remind people of the benefits of acetylene due to its unique properties, and to realert them to the potential hazards that also have to be addressed to control the properties of acetylene.

  5. Plasma Thermal Conversion of Methane to Acetylene

    SciTech Connect

    Fincke, James Russell; Anderson, Raymond Paul; Hyde, Timothy Allen; Detering, Brent Alan; Wright, Randy Ben; Bewley, Randy Lee; Haggard, Delon C; Swank, William David

    2002-03-01

    This paper describes a re-examination of a known process for the direct plasma thermal conversion of methane to acetylene. Conversion efficiencies (% methane converted) approached 100% and acetylene yields in the 90–95% range with 2–4% solid carbon production were demonstrated. Specificity for acetylene was higher than in prior work. Improvements in conversion efficiency, yield, and specificity were due primarily to improved injector design and reactant mixing, and minimization of temperature gradients and cold boundary layers. At the 60-kilowatt scale cooling by wall heat transfer appears to be sufficient to quench the product stream and prevent further reaction of acetylene resulting in the formation of heavier hydrocarbon products or solid carbon. Significantly increasing the quenching rate by aerodynamic expansion of the products through a converging–diverging nozzle led to a reduction in the yield of ethylene but had little effect on the yield of other hydrocarbon products. While greater product selectivity for acetylene has been demonstrated, the specific energy consumption per unit mass of acetylene produced was not improved upon. A kinetic model that includes the reaction mechanisms resulting in the formation of acetylene and heavier hydrocarbons, through benzene, is described.

  6. Acetylenic carbon allotrope

    DOEpatents

    Lagow, Richard J.

    1998-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  7. Acetylenic carbon allotrope

    DOEpatents

    Lagow, Richard J.

    1999-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  8. Acetylenic carbon allotrope

    DOEpatents

    Lagow, R.J.

    1998-02-10

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

  9. Proton exchange membrane fuel cell cathode contamination - Acetylene

    NASA Astrophysics Data System (ADS)

    Zhai, Y.; St-Pierre, Jean

    2015-04-01

    Acetylene adsorption on PEMFC electrodes and contamination in single cells are investigated with 300 ppm acetylene at a cathode held at 80 °C. The results of adsorption experiments suggest that acetylene adsorbs readily on electrodes and is reduced to ethylene and ethane under an open circuit potential of H2/N2, as the adsorbates can be electro-oxidized at high potentials. The cell voltage response shows that 300 ppm acetylene results in a cell performance loss of approximately 88%. The voltage degradation curve is divided into two stages by an inflection point, which suggests that potential-dependent processes are involved in acetylene poisoning. These potential-dependent processes may include acetylene oxidation and reduction as well as accumulation of intermediates on the electrode surface. Electrochemical impedance spectroscopy analysis suggests that acetylene affects the oxygen reduction reaction and may also affect mass transport processes. Acetylene also may be reduced in the steady poisoning state of the operating cell. After neat air operation, the cyclic voltammetry results imply that the cathode catalyst surface is almost completely restored, with no contaminant residues remaining in the MEA. Linear scanning voltammetry measurements show no change in hydrogen crossover caused by contamination, and polarization curves confirm complete recovery of cell performance.

  10. Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures

    USGS Publications Warehouse

    Culbertson, Charles W.; Zehnder, Alexander J. B.; Oremland, Ronald S.

    1981-01-01

    Acetylene disappeared from the gas phase of anaerobically incubated estuarine sediment slurries, and loss was accompanied by increased levels of carbon dioxide. Acetylene loss was inhibited by chloramphenicol, air, and autoclaving. Addition of 14C2H2 to slurries resulted in the formation of 14CO2 and the transient appearance of 14C-soluble intermediates, of which acetate was a major component. Acetylene oxidation stimulated sulfate reduction; however, sulfate reduction was not required for the loss of C2H2 to occur. Enrichment cultures were obtained which grew anaerobically at the expense of C2H2.

  11. Anaerobic Oxidation of Acetylene by Estuarine Sediments and Enrichment Cultures

    PubMed Central

    Culbertson, Charles W.; Zehnder, Alexander J. B.; Oremland, Ronald S.

    1981-01-01

    Acetylene disappeared from the gas phase of anaerobically incubated estuarine sediment slurries, and loss was accompanied by increased levels of carbon dioxide. Acetylene loss was inhibited by chloramphenicol, air, and autoclaving. Addition of 14C2H2 to slurries resulted in the formation of 14CO2 and the transient appearance of 14C-soluble intermediates, of which acetate was a major component. Acetylene oxidation stimulated sulfate reduction; however, sulfate reduction was not required for the loss of C2H2 to occur. Enrichment cultures were obtained which grew anaerobically at the expense of C2H2. PMID:16345714

  12. Acylamidation of acetylenes

    SciTech Connect

    Gridnev, I.D.; Balenkova, E.S.

    1989-01-10

    The reactions of phenylacetylene, 1-heptyne, and diphenylacetylene with the complexes of acetylfluoroborate with acetonitrile and with chloroacetonitrile take place regiospecifically and stereospecifically as syn-addition of the acetyl group and nitrile at the triple bond of the acetylene and lead to previously unknown Z-N-acyl-/beta/-amino, /alpha/,/beta/-unsaturated ketones.

  13. Acetylene terminated matrix resins

    NASA Technical Reports Server (NTRS)

    Goldfarb, I. J.; Lee, Y. C.; Arnold, F. E.; Helminiak, T. E.

    1985-01-01

    The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications.

  14. Evaluation of colorimetric assays for analyzing reductively methylated proteins: Biases and mechanistic insights.

    PubMed

    Brady, Pamlea N; Macnaughtan, Megan A

    2015-12-15

    Colorimetric protein assays, such as the Coomassie blue G-250 dye-binding (Bradford) and bicinchoninic acid (BCA) assays, are commonly used to quantify protein concentration. The accuracy of these assays depends on the amino acid composition. Because of the extensive use of reductive methylation in the study of proteins and the importance of biological methylation, it is necessary to evaluate the impact of lysyl methylation on the Bradford and BCA assays. Unmodified and reductively methylated proteins were analyzed using the absorbance at 280 nm to standardize the concentrations. Using model compounds, we demonstrate that the dimethylation of lysyl ε-amines does not affect the proteins' molar extinction coefficients at 280 nm. For the Bradford assay, the responses (absorbance per unit concentration) of the unmodified and reductively methylated proteins were similar, with a slight decrease in the response upon methylation. For the BCA assay, the responses of the reductively methylated proteins were consistently higher, overestimating the concentrations of the methylated proteins. The enhanced color formation in the BCA assay may be due to the lower acid dissociation constants of the lysyl ε-dimethylamines compared with the unmodified ε-amine, favoring Cu(II) binding in biuret-like complexes. The implications for the analysis of biologically methylated samples are discussed. PMID:26342307

  15. Spectrophotometric total reducing sugars assay based on cupric reduction.

    PubMed

    Başkan, Kevser Sözgen; Tütem, Esma; Akyüz, Esin; Özen, Seda; Apak, Reşat

    2016-01-15

    As the concentration of reducing sugars (RS) is controlled by European legislation for certain specific food and beverages, a simple and sensitive spectrophotometric method for the determination of RS in various food products is proposed. The method is based on the reduction of Cu(II) to Cu(I) with reducing sugars in alkaline medium in the presence of 2,9-dimethyl-1,10-phenanthroline (neocuproine: Nc), followed by the formation of a colored Cu(I)-Nc charge-transfer complex. All simple sugars tested had the linear regression equations with almost equal slope values. The proposed method was successfully applied to fresh apple juice, commercial fruit juices, milk, honey and onion juice. Interference effect of phenolic compounds in plant samples was eliminated by a solid phase extraction (SPE) clean-up process. The method was proven to have higher sensitivity and precision than the widely used dinitrosalicylic acid (DNS) colorimetric method. PMID:26592591

  16. Acetylene-Terminated Polyimide Siloxanes

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L.; Maudgal, Shubba

    1987-01-01

    Siloxane-containing addition polyimides yield toughened high-temperature adhesives and matrix resins. Addition polyimide made by reaction of aromatic tetracarboxylic acid dianhydride with aromatic diamine in presence of ethynyl-substituted aromatic monoamine. Acetylene-terminated siloxane imide cured by heating to yield acetylene-terminated polyimide siloxane.

  17. Research in acetylene containing monomers

    NASA Technical Reports Server (NTRS)

    Ogliaruso, M. A.

    1976-01-01

    The preparation of precursor bisbenzils with pendant acetylene linkages for use in the synthesis of new aromatic poly (phenyl quinoxalines) was investigated. Attempts to condense para, para prime-dibromo benzil and potassium acetylide in liquid ammonia and in toluene, to prepare 4-phenyl acetyl phenyl ether, 4-(paraacetylphenyl) acetyl phenyl ether, 4-phenyl acetyl-4 primeacetyl phenyl acetyl phenyl ether, the reaction of 4-phenyl acetyl phenyl ether with Villsmeier reagent to prepare 4-(beta-chloro cinnamaldehyde) phenyl ether, the reaction of 4-(para-acetyl phenyl) acetyl phenyl ether with Villsmeier reagent, and the oxidation of bibenzil to prepare benzil are described. The reactions of phenyl acetylene with oxidizing agent, of phenyl acetylene with bromine, of 1,1,2,2-tetrabromo ethyl benzene with zinc and with oxidizing agent are described.

  18. 15. 9 micron acetylene laser

    SciTech Connect

    Manuccia, T.J.; Stregack, J.A.; Wexler, B.L.

    1980-12-02

    A laser system in which acetylene is mixed with a gaseous mixture of helium and carbon monoxide is described. The laser is vibrationally excited significantly populating the lower vibrational levels of the CO. The carbon monoxide will transfer its energy to the acetylene, populating the upper (01000) level to create laser radiation near 15.9 microns which may be operated in continuous-wave or pulsed modes. The laser cavity includes mirrors which are highly reflective at 16 microns but transparent to radiation at 8 microns or other well-known means which will operate in the same fashion.

  19. The adaptive control system of acetylene generator

    NASA Astrophysics Data System (ADS)

    Kovaliuk, D. O.; Kovaliuk, Oleg; Burlibay, Aron; Gromaszek, Konrad

    2015-12-01

    The method of acetylene production in acetylene generator was analyzed. It was found that impossible to provide the desired process characteristics by the PID-controller. The adaptive control system of acetylene generator was developed. The proposed system combines the classic controller and fuzzy subsystem for controller parameters tuning.

  20. 46 CFR 147.70 - Acetylene.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Acetylene. 147.70 Section 147.70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.70 Acetylene. (a) Seventeen cubic meters (600 standard cubic feet) or less of acetylene may...

  1. Acetylene-terminated polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Hanky, A. O.; St. Clair, T. L.

    1983-01-01

    The nadic-encapped LARC-43 addition polyimide exhibits excellent flow, is easy to process, and can be utilized for short terms at temperatures up to 593 C. It retains good lap shear strength as an adhesive for titanium after aging in air up to 125 hours at 316 C; but lap shear strength degrades with longer exposures at that temperature. Thermid 600, an addition polyimide that is acetylene encapped, exhibits thermomechanical properties even after long term exposure in at air at 316 C. An inherent drawback of this system is that it has a narrow processing window. An acetylene encapped, addition polyimide which is a hybrid of these two systems was developed. It has good retention of strength after long term aging and is easily processed. The synthesis and characterization of various molecular weight oligomers of this system are discussed as well as the bonding, aging, and testing of lap shear adhesive samples. Previously announced in STAR as N83-18910

  2. Acetylene-terminated polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Hanky, A. O.

    1983-01-01

    The nadic-encapped LARC-13 addition polyimide exhibits excellent flow, is easy to process, and can be utilized for short terms at temperatures up to 593 C. It retains good lap shear strength as an adhesive for titanium after aging in air up to 125 hours at 316 C; but lap shear strength degrades with longer exposures at that temperature. Thermid 600, an addition polyimide that is acetylene encapped, exhibits thermomechanical properties even after long term exposure in at air at 316 C. An inherent drawback of this system is that it has a narrow processing window. An acetylene encapped, addition polyimide which is a hybrid of these two systems was developed. It has good retention of strength after long term aging and is easily processed. The synthesis and characterization of various molecular weight oligomers of this system are discussed as well as the bonding, aging, and testing of lap shear adhesive samples.

  3. Accidental death resulting from acetylene cylinder impact.

    PubMed

    Rani, Mukta; Gupta, Avneesh; Dikshit, P C; Aggrawal, Anil; Setia, Puneet; Dhankar, Vijay

    2005-06-01

    Acetylene is an inflammable gas commonly used for welding in small-scale industries. We present a case of a 34-year-old male welder who died following injuries sustained from explosion of an acetylene gas-welding cylinder. In this case report, we discuss the circumstances leading to the explosion of the welding cylinder, the autopsy findings, and a brief review of the literature on deaths resulting from blasts of acetylene cylinders. PMID:15894853

  4. Thermal Conversion of Methane to Acetylene

    SciTech Connect

    Fincke, James Russell; Anderson, Raymond Paul; Hyde, Timothy Allen; Wright, Randy Ben; Bewley, Randy Lee; Haggard, Delon C; Swank, William David

    2000-01-01

    This report describes the experimental demonstration of a process for the direct thermal conversion of methane to acetylene. The process utilizes a thermal plasma heat source to dissociation products react to form a mixture of acetylene and hydrogen. The use of a supersonic expansion of the hot gas is investigated as a method of rapidly cooling (quenching) the product stream to prevent further reaction or thermal decomposition of the acetylene which can lower the overall efficiency of the process.

  5. Evaluation of Sorbents for Acetylene Separation in Atmosphere Revitalization Loop Closure

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Miller, Lee A.; Barton, Katherine

    2012-01-01

    State-of-the-art carbon dioxide reduction technology uses a Sabatier reactor to recover water from metabolic carbon dioxide. In order to maximize oxygen loop closure, a byproduct of the system, methane, must be reduced to recover hydrogen. NASA is currently exploring a microwave plasma methane pyrolysis system for this purpose. The resulting product stream of this technology includes unreacted methane, product hydrogen, and acetylene. The hydrogen and the small amount of unreacted methane resulting from the pyrolysis process can be returned to the Sabatier reactor thereby substantially improving the overall efficiency of the system. However, the acetylene is a waste product that must be removed from the pyrolysis product. Two materials have been identified as potential sorbents for acetylene removal: zeolite 4A, a commonly available commercial sorbent, and HKUST-1, a newly developed microporous metal. This paper provides an explanation of the rationale behind acetylene removal and the results of separation testing with both materials

  6. Evaluation of Sorbents for Acetylene Separation in Atmosphere Revitalization Loop Closure

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Miller, Lee A.; Barton, Katherine

    2011-01-01

    State-of-the-art carbon dioxide reduction technology uses a Sabatier reactor to recover water from metabolic carbon dioxide. In order to maximize oxygen loop closure, a byproduct of the system, methane, must be reduced to recover hydrogen. NASA is currently exploring a microwave plasma methane pyrolysis system for this purpose. The resulting product stream of this technology includes unreacted methane, product hydrogen, and acetylene. The hydrogen and the small amount of unreacted methane resulting from the pyrolysis process can be returned to the Sabatier reactor thereby substantially improving the overall efficiency of the system. However, the acetylene is a waste product that must be removed from the pyrolysis product. Two materials have been identified as potential sorbents for acetylene removal: zeolite 4A, a commonly available commercial sorbent, and HKUST-1, a newly developed microporous metal. This paper provides an explanation of the rationale behind acetylene removal and the results of separation testing with both materials.

  7. RAPID TETRAZOLIUM DYE REDUCTION ASSAY TO ASSESS THE BACTERICIDAL ACTIVITY OF OYSTER (CRASSOSTREA VIRGINICA) HEMOCYTES AGAINST VIBRIO PARAHAEMOLYTICUS

    EPA Science Inventory

    An assay was developed to assess the ability of oyster, Crassostrea virginica, hemocytes to kill the human pathogenic bacterium, Vibrio parahaemolyticus (ATCC 17802). Bacterial killing was estimated colorimetrically by the enzymatic reduction of a tetrazolium dye, 3-(4,5-dimethyl...

  8. 29 CFR 1910.102 - Acetylene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-2006 (“Standard for Acetylene Charging Plants”) (National Fire Protection Association, 2006 ed., 2006... (“Standard for Acetylene Charging Plants”) (National Fire Protection Association, 2001 ed., 2001). (3) The... Plants”) (National Fire Protection Association, 2006 ed., 2006). (2) When employers can demonstrate...

  9. 46 CFR 147.70 - Acetylene.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Acetylene. 147.70 Section 147.70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.70 Acetylene. (a) Seventeen cubic meters (600...

  10. 46 CFR 147.70 - Acetylene.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Acetylene. 147.70 Section 147.70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.70 Acetylene. (a) Seventeen cubic meters (600...

  11. 46 CFR 147.70 - Acetylene.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Acetylene. 147.70 Section 147.70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.70 Acetylene. (a) Seventeen cubic meters (600...

  12. 46 CFR 147.70 - Acetylene.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Acetylene. 147.70 Section 147.70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.70 Acetylene. (a) Seventeen cubic meters (600...

  13. A Novel Detection Platform for Shrimp White Spot Syndrome Virus Using an ICP11-Dependent Immunomagnetic Reduction (IMR) Assay

    PubMed Central

    Liu, Bing-Hsien; Lin, Yu-Chen; Ho, Chia-Shin; Yang, Che-Chuan; Chang, Yun-Tsui; Chang, Jui-Feng; Li, Chun-Yuan; Cheng, Cheng-Shun; Huang, Jiun-Yan; Lee, Yen-Fu; Hsu, Ming-Hung; Lin, Feng-Chun; Wang, Hao-Ching; Lo, Chu-Fang; Yang, Shieh-Yueh; Wang, Han-Ching

    2015-01-01

    Shrimp white spot disease (WSD), which is caused by white spot syndrome virus (WSSV), is one of the world’s most serious shrimp diseases. Our objective in this study was to use an immunomagnetic reduction (IMR) assay to develop a highly sensitive, automatic WSSV detection platform targeted against ICP11 (the most highly expressed WSSV protein). After characterizing the magnetic reagents (Fe3O4 magnetic nanoparticles coated with anti ICP11), the detection limit for ICP11 protein using IMR was approximately 2 x 10−3 ng/ml, and the linear dynamic range of the assay was 0.1~1 x 106 ng/ml. In assays of ICP11 protein in pleopod protein lysates from healthy and WSSV-infected shrimp, IMR signals were successfully detected from shrimp with low WSSV genome copy numbers. We concluded that this IMR assay targeting ICP11 has potential for detecting the WSSV. PMID:26380977

  14. Application of the rat liver lysosome assay to determining the reduction of toxic gliadin content during breadmaking.

    PubMed

    Cornell, Hugh J; Stelmasiak, Teodor; Small, Darryl M; Buddrick, Oliver

    2016-02-01

    Enriched caricain was able to detoxify a major proportion of the gliadin in wholemeal wheat dough by allowing it to react for 5h at 37 °C during the fermentation stage. A reduction of 82% in toxicity, as determined by the rat-liver lysosome assay, was achieved using 0.03% enzyme on weight of dough. Without enzyme, only 26% reduction occurred. The difference in reduction of toxicity achieved is statistically significant (p < 0.01). The results are very similar to those obtained in our previous work using an immuno assay and the same enzyme preparation. They confirm the value of caricain as a means of reducing the toxicity of gliadin and open the way for enzyme therapy as an adjunct to the gluten free diet. This approach should lead to better control over the elimination of dietary gluten intake in conditions such as coeliac disease and dermatitis herpetiformis. PMID:26304430

  15. Vibrational relaxation of acetylene and acetylene--rare-gas mixtures

    SciTech Connect

    Haeger, J.; Krieger, W.; Rueegg, T.; Walther, H.

    1980-04-15

    Vibrational relaxation of acetylene (C/sub 2/H/sub 2/) and acetylene--rare-gas mixtures has been investigated using laser-induced fluorescence. Time-dependent fluorescence signals from the vibrational modes ..nu../sub 2/ and ..nu../sub 5/ have been recorded, following excitation of ..nu../sub 3/ and (..nu../sub 2/+..nu../sub 4/+..nu../sub 5/) at 3300 cm/sup -1/ with pulses of a tunable optical parametric oscillator. The activation rate of ..nu../sub 2/ and ..nu../sub 5/ were estimated to be >880 ms/sup -1/ Torr/sup -1/ and >330 ms/sup -1/ Torr/sup -1/, respectively. The following V-T/R relaxation rates have been obtained from the decay of the ..nu../sub 5/ fluorescence signal: (12.7 +- 1.1) ms/sup -1/ Torr/sup -1/ for C/sub 2/H/sub 2/ as collision partner, (0.46 +- 0.05) ms/sup -1/ Torr/sup -1/ for Ne, (0.66 +- 0.06) ms/sup -1/ Torr/sup -1/ for Ar, (0.67 +- 0.04) ms/sup -1/ Torr/sup -1/ for Kr, and (0.57 +- 0.04) ms/sup -1/ Torr/sup -1/ for Xe. Surprisingly small V--V deactivation rates of the CC stretching vibration ..nu../sub 2/ have been measured. These are (21.3 +- 1.0) ms/sup -1/ Torr/sup -1/ for C/sub 2/H/sub 2/ collisions, (0.63 +- 0.06) ms/sup -1/ Torr/sup -1/ for Ne, (0.78 +- 0.08) ms/sup -1/ Torr/sup -1/ for Ar, (0.93 +- 0.09) ms/sup -1/ Torr/sup -1/ for Kr, and (0.77 +- 0.09) ms/sup -1/ Torr/sup -1/ for Xe. Acetylene relaxation mechanisms compatible with these rates are considered.

  16. Infrared Spectra of Complexes Containing ACETYLENE-d2

    NASA Astrophysics Data System (ADS)

    Lauzin, Clément; Oliaee, J. Norooz; Moazzen-Ahmadi, N.; McKellar, A. R. W.

    2011-06-01

    Infrared spectra of the C_2D_2 dimer in the monomer νb{3} region (˜2439 wn) are observed by direct absorption using a rapid-scan tuneable diode laser spectrometer to probe a pulsed supersonic slit-jet expansion. We analyze the perpendicular K = 1-0 and 0-1 subbands of the vibrational mode involving the C_2D_2 monomer located at the top of the T-shaped dimer, but miss the parallel band involving the stem monomer vibration due to limited laser coverage. The results are consistent with previous work on acetylene dimers, but perturbations are much less evident than in the analogous infrared spectrum of C_2H_2. As expected, the tunneling splitting in the excited state (8 MHz) is much smaller than in the ground state (424 MHz). In the same region, we observe the H-bonded isomer of the C_2D_2-C_2H_2 dimer. This has not previously been observed, even though microwave spectra of almost every other conceivable deuterated isotopologue are known.B In addition to these acetylene dimers, our spectra also contain bands arising from impurities in the gas mixture which we assign to the C_2D_2-nitrogen and C_2D_2-water complexes [1] G.T. Fraser, R.D. Suenram, F.J. Lovas, A.S. Pine, J.T. Hougen, W.J. Lafferty, and J.S. Muenter, J. Chem. Phys. 89, 6028 (1988). [2] K. Matsumura, F.J. Lovas, and R.D. Suenram, J. Mol. Spectrosc. 150, 576 (1991)

  17. Ultrafast dynamics of photoionized acetylene.

    PubMed

    Madjet, Mohamed El-Amine; Vendrell, Oriol; Santra, Robin

    2011-12-23

    Acetylene cations [HCCH](+) produced in the A(2)Σ(g)(+) state by extreme ultraviolet (XUV) photoionization are investigated theoretically, based on a mixed quantum-classical approach. We show that the decay of the A(2)Σ(g)(+) state occurs via both ultrafast isomerization and nonradiative electronic relaxation. We find a time scale for hydrogen migration and electronic decay of about 60 fs, in good agreement with recent XUV-pump/XUV-probe time-resolved experiments on the same system [Phys. Rev. Lett. 105, 263002 (2010)]. Moreover, we predict an efficient vibrational energy redistribution mechanism that quickly transfers excess energy from the isomerization coordinates to slower modes in a few hundred femtoseconds, leading to a partial regeneration of acetylenelike conformations. PMID:22243154

  18. Reduction of bias in neutron multiplicity assay using a weighted point model

    SciTech Connect

    Geist, W. H.; Krick, M. S.; Mayo, D. R.

    2004-01-01

    Accurate assay of most common plutonium samples was the development goal for the nondestructive assay technique of neutron multiplicity counting. Over the past 20 years the technique has been proven for relatively pure oxides and small metal items. Unfortunately, the technique results in large biases when assaying large metal items. Limiting assumptions, such as unifoh multiplication, in the point model used to derive the multiplicity equations causes these biases for large dense items. A weighted point model has been developed to overcome some of the limitations in the standard point model. Weighting factors are detemiined from Monte Carlo calculations using the MCNPX code. Monte Carlo calculations give the dependence of the weighting factors on sample mass and geometry, and simulated assays using Monte Carlo give the theoretical accuracy of the weighted-point-model assay. Measured multiplicity data evaluated with both the standard and weighted point models are compared to reference values to give the experimental accuracy of the assay. Initial results show significant promise for the weighted point model in reducing or eliminating biases in the neutron multiplicity assay of metal items. The negative biases observed in the assay of plutonium metal samples are caused by variations in the neutron multiplication for neutrons originating in various locations in the sample. The bias depends on the mass and shape of the sample and depends on the amount and energy distribution of the ({alpha},n) neutrons in the sample. When the standard point model is used, this variable-multiplication bias overestimates the multiplication and alpha values of the sample, and underestimates the plutonium mass. The weighted point model potentially can provide assay accuracy of {approx}2% (1 {sigma}) for cylindrical plutonium metal samples < 4 kg with {alpha} < 1 without knowing the exact shape of the samples, provided that the ({alpha},n) source is uniformly distributed throughout the sample and has an average neutron energy close to the O({alpha},n) average neutron energy. Better assay results can be obtained if there is some knowledge of the plutonium geometry, because weighting factor curves can be calculated for any specified geometry.

  19. Method of producing acetylene from coal

    SciTech Connect

    Kim, C.S.

    1982-11-09

    This invention relates to the conversion by way of decomposing a solid carbonaceous matter to acetylene. Specifically, the invention teaches selecting the operating conditions which will produce high yield at low cost. Specific values of heat and enthalpy for the carbonaceous matter and the gas are proposed in combination with specific particle sizes and reaction time. All of the foregoing contribute to producing acetylene at a commercially competitive cost.

  20. A quantitative assay for reductive metabolism of a pesticide in fish using electrochemistry coupled with liquid chromatography tandem mass spectrometry.

    PubMed

    Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Ke; Li, Weiming

    2015-04-01

    This is the first study to use electrochemistry to generate a nitro reduction metabolite as a standard for a liquid chromatography-mass spectrometry-based quantitative assay. This approach is further used to quantify 3-trifluoromethyl-4-nitrophenol (TFM) reductive metabolism. TFM is a widely used pesticide for the population control of sea lamprey (Petromyzon marinus), an invasive species of the Laurentian Great Lakes. Three animal models, sea lamprey, lake sturgeon (Acipenser fulvescens), and rainbow trout (Oncorhynchus mykiss), were selected to evaluate TFM reductive metabolism because they have been known to show differential susceptibilities to TFM toxicity. Amino-TFM (aTFM; 3-trifluoromethyl-4-aminophenol) was the only reductive metabolite identified through liquid chromatography-high-resolution mass spectrometry screening of liver extracts incubated with TFM and was targeted for electrochemical synthesis. After synthesis and purification, aTFM was used to develop a quantitative assay of the reductive metabolism of TFM through liquid chromatography and tandem mass spectrometry. The concentrations of aTFM were measured from TFM-treated cellular fractions, including cytosolic, nuclear, membrane, and mitochondrial protein extracts. Sea lamprey extracts produced the highest concentrations (500 ng/mL) of aTFM. In addition, sea lamprey and sturgeon cytosolic extracts showed concentrations of aTFM substantially higher than those of rainbow trout. However, other fractions of lake sturgeon extracts tend to show aTFM concentrations similar to those of rainbow trout but not with sea lamprey. These data suggest that the level of reductive metabolism of TFM may be associated with the sensitivities of the animals to this particular pesticide. PMID:25730707

  1. Acetylene fermentation: An Earth-based analog of biological carbon cycling on Titan

    NASA Astrophysics Data System (ADS)

    Miller, L. G.; Baesman, S. M.; Hoeft, S. E.; Kirshtein, J.; Wolf, K.; Voytek, M. A.; Oremland, R. S.

    2009-12-01

    Acetylene (C2H2) is present in part per million quantities in the atmosphere of Titan; conceivably as an intermediate product of methane photolysis. Currently, Earths atmosphere contains only trace amounts of C2H2 (~40 pptv), however higher concentrations likely prevailed during the Hadean and early Archean eons (4.5 - 3.5 Ga). We isolated C2H2-fermenting microbes from various aquatic and sedimentary environments. Acetylene fermentation proceeds via acetylene hydratase (AH) through acetaldehyde, which dismutates to ethanol and acetate, and if oxidants are present (e.g., sulfate) eventually to CO2. Thus, the remnants of a C2H2 cycle exists today on Earth but may also occur on Titan and/or Enceladus, both being planetary bodies hypothesized to have liquid water underlying their frozen surfaces. We developed a molecular method for AH by designing PCR primers to target the functional gene in Pelobacter acetylenicus. We used this method to scan new environments for the presence of AH and we employed DNA sequencing of the 16S rRNA gene in order to positively identify pelobacters in environmental samples. Acetylene fermentation was documented in five diverse salt-, fresh-, and ground-water sites. Pelobacter was identified as the genus responsible for acetylene fermentation in some, but not all, of these sites. Successful probing for AH preceded the discovery of acetylene consumption in a contaminated groundwater site, demonstrating the utility of functional gene probing. A pure culture of a C2H2-fermenting pelobacter was obtained from an intertidal mudflat. We also obtained an enrichment culture (co-cultured with a sulfate reducer) from freshwater lake sediments, but neither was pelobacter nor AH detected in this sample, suggesting that an alternative pathway may be involved here. Slurry experiments using these lake sediments either with or without added C2H2 or sulfate showed that sulfate reduction and acetylene fermentation were independent processes. In general, the ubiquity of acetylene fermentation as well as the presence of AH (an enzyme specific to acetylene) begs the questions; 1) why has this ability persisted on Earth for so long in the absence of significant atmospheric acetylene? 2) does C2H2-fermentation represent a possible means of sustaining growth in the anoxic, aqueous subsurface regions of Titan (and Enceladus)?

  2. Hydroponic Growth and the Nondestructive Assay for Dinitrogen Fixation 1

    PubMed Central

    Imsande, John; Ralston, Edward J.

    1981-01-01

    Hydroponic growth medium must be well buffered if it is to support sustained plant growth. Although 1.0 millimolar phosphate is commonly used as a buffer for hydroponic growth media, at that concentration it is generally toxic to a soybean plant that derives its nitrogen solely from dinitrogen fixation. On the other hand, we show that 1.0 to 2.0 millimolar 2-(N-morpholino)ethanesulfonic acid, pKa 6.1, has excellent buffering capacity, and it neither interferes with nor contributes nutritionally to soybean plant growth. Furthermore, it neither impedes nodulation nor the assay of dinitrogen fixation. Hence, soybean plants grown hydroponically on a medium supplemented with 1.0 to 2.0 millimolar 2-(N-morpholino)ethanesulfonic acid and 0.1 millimolar phosphate achieve an excellent rate of growth and, in the absence of added fixed nitrogen, attain a very high rate of dinitrogen fixation. Combining the concept of hydroponic growth and the sensitive acetylene reduction technique, we have devised a simple, rapid, reproducible assay procedure whereby the rate of dinitrogen fixation by individual plants can be measured throughout the lifetime of those plants. The rate of dinitrogen fixation as measured by the nondestructive acetylene reduction procedure is shown to be approximately equal to the rate of total plant nitrogen accumulation as measured by Kjeldahl analysis. Because of the simplicity of the procedure, one investigator can readily assay 50 plants individually per day. PMID:16662112

  3. Effect of chronic oil pollution on salt-marsh nitrogen fixation (acetylene redution). [Spartina alterniflora

    SciTech Connect

    Thomson, A.D.; Webb, K.L.

    1984-03-01

    Annual acetylene reduction rates associated with intertidal communities in a chronically oil polluted Virgina salt marsh were compared to rates measured in an undisturbed marsh. Chronic oil treatment resulted in visible damage to the higher plants of the Spartina alterniflora zones; however, vegetation-associated acetylene reduction was not different from the untreated control. Sediment rates generally were affected little by oil application, except during the summer when rates in the median tidal elevation zones were considerably higher than those of the control. Acetylene reduction occurred in all transects, each of which extended from upper mudflat to the Spartina patens zone. Intertidal sediment acetylene reduction was patchy, both spatially and seasonally. Estimated rates were greatest near the surface; free-living bacterial N/sub 2/ fixation activity averaged 2.23 mg N per m/sup 2/ per d (range = undetectable to 365 mg N per m/sup 2/ per d) in the untreated and 3.17 mg N per m/sup 2/ per d (range = undetectable to 564 mg N per m/sup 2/ per d) in the oil-treated marsh during the year. Vegetation-associated N/sub 2/ fixation activity yielded highest overall mean rates (156 mg N per M/sub 2/ per d). The seasonal pattern of sediment and vegetation-associated fixation may be controlled by temperature and availability of oxidizable substrates. 39 references, 2 figures, 5 tables.

  4. Detection of measles, mumps and rubella viruses by immuno-colorimetric assay and its application in focus reduction neutralization tests.

    PubMed

    Vaidya, Sunil R; Kumbhar, Neelakshi S; Bhide, Vandana S

    2014-12-01

    Measles, mumps and rubella are vaccine-preventable diseases; however limited epidemiological data are available from low-income or developing countries. Thus, it is important to investigate the transmission of these viruses in different geographical regions. In this context, a cell culture-based rapid and reliable immuno-colorimetric assay (ICA) was established and its utility studied. Twenty-three measles, six mumps and six rubella virus isolates and three vaccine strains were studied. Detection by ICA was compared with plaque and RT-PCR assays. In addition, ICA was used to detect viruses in throat swabs (n = 24) collected from patients with suspected measles or mumps. Similarly, ICA was used in a focus reduction neutralization test (FRNT) and the results compared with those obtained by a commercial IgG enzyme immuno assay. Measles and mumps virus were detected 2 days post-infection in Vero or Vero-human signaling lymphocytic activation molecule cells, whereas rubella virus was detected 3 days post-infection in Vero cells. The blue stained viral foci were visible by the naked eye or through a magnifying glass. In conclusion, ICA was successfully used on 35 virus isolates, three vaccine strains and clinical specimens collected from suspected cases of measles and mumps. Furthermore, an application of ICA in a neutralization test (i.e., FRNT) was documented; this may be useful for sero-epidemiological, cross-neutralization and pre/post-vaccine studies. PMID:25244651

  5. Comparison of targeted peptide quantification assays for reductive dehalogenases by selective reaction monitoring (SRM) and precursor reaction monitoring (PRM).

    PubMed

    Schiffmann, Christian; Hansen, Rasmus; Baumann, Sven; Kublik, Anja; Nielsen, Per Halkjær; Adrian, Lorenz; von Bergen, Martin; Jehmlich, Nico; Seifert, Jana

    2014-01-01

    Targeted absolute protein quantification yields valuable information about physiological adaptation of organisms and is thereby of high interest. Especially for this purpose, two proteomic mass spectrometry-based techniques namely selective reaction monitoring (SRM) and precursor reaction monitoring (PRM) are commonly applied. The objective of this study was to establish an optimal quantification assay for proteins with the focus on those involved in housekeeping functions and putative reductive dehalogenase proteins from the strictly anaerobic bacterium Dehalococcoides mccartyi strain CBDB1. This microbe is small and slow-growing; hence, it provides little biomass for comprehensive proteomic analysis. We therefore compared SRM and PRM techniques. Eleven peptides were successfully quantified by both methods. In addition, six peptides were solely quantified by SRM and four by PRM, respectively. Peptides were spiked into a background of Escherichia coli lysate and the majority of peptides were quantifiable down to 500 amol absolute on column by both methods. Peptide quantification in CBDB1 lysate resulted in the detection of 15 peptides using SRM and 14 peptides with the PRM assay. Resulting quantification of five dehalogenases revealed copy numbers of <10 to 115 protein molecules per cell indicating clear differences in abundance of RdhA proteins during growth on hexachlorobenzene. Our results indicated that both methods show comparable sensitivity and that the combination of the mass spectrometry assays resulted in higher peptide coverage and thus more reliable protein quantification. PMID:24220761

  6. TTC-based screening assay for ω-transaminases: a rapid method to detect reduction of 2-hydroxy ketones.

    PubMed

    Sehl, Torsten; Simon, Robert C; Hailes, Helen C; Ward, John M; Schell, Ursula; Pohl, Martina; Rother, Dörte

    2012-06-15

    A rapid TTC-based screening assay for ω-transaminases was developed to determine the conversion of substrates with a 2-hydroxy ketone motif. Oxidation of the compounds in the presence of 2,3,5-triphenyltetrazolium chloride (TTC) results in a reduction of the colourless TTC to a red-coloured 1,3,5-triphenylformazan. The enzymatic reductive amination of a wide range of various aliphatic, aliphatic-aromatic and aromatic-aromatic 2-hydroxy ketones can be determined by the decrease of the red colouration due to substrate consumption. The conversion can be quantified spectrophotometrically at 510 nm based on reactions, e.g. with crude cell extracts in 96-well plates. Since the assay is independent of the choice of diverse amine donors a panel of ω-transaminases was screened to detect conversion of 2-hydroxy ketones with three different amine donors: l-alanine, (S)-α-methylbenzylamine and benzylamine. The results could be validated using HPLC and GC analyses, showing a deviation of only 5-10%. Using this approach enzymes were identified demonstrating high conversions of acetoin and phenylacetylcarbinol to the corresponding amines. Among these enzymes three novel wild-type ω-transaminases have been identified. PMID:22226934

  7. Acetylene Fermentation: Relevance to Primordial Biogeochemistry and the Search for Life in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.

    2013-12-01

    Acetylene is a highly reactive component of planet(oid)s with anoxic, methane-rich atmospheres, such as Jupiter, Saturn, Titan, and perhaps the primordial Earth. Included in this group is Enceladus, although it is not clear if the acetylene detected within its jets by Cassini was formed by photolysis of methane, from thermo-catalysis of organic matter in the orb's interior, or a fragmentation artifact of the mass spectrum of a larger hydrocarbon. Acetylene inhibits many microbial processes (e.g., methanogenesis, methane oxidation, hydrogen metabolism, denitrification) yet a number of anaerobes can use it as a carbon and energy source to support growth. The best studied is Pelobacter acetylenicus, which carries out a two-step reaction involving the enzymes acetylene hydratase and acetaldehyde dismutase. The former, a low potential W-containing enzyme, forms acetaldehyde while the latter produces ethanol and acetate. Metabolism of acetylene by mixed microbial communities (sediments and/or enrichment cultures) produces these intermediates, and when coupled with sulfate-reduction or methanogenesis respectively forms CO2 or an equal mixtures of CO2 plus CH4. It is not inconceivable that such an anaerobic, microbial food chain could exist in the waters beneath the ice cap of Enceladus, Titan, or even in the mesothermal atmospheric regions of the gas giants. Detection of the identified intermediate products of acetylene fermentation, namely acetaldehyde, ethanol, acetate and formate in the atmospheres of these planet(oid)s would constitute evidence for a microbial life signature. This evidence would be strongly reinforced if a stable carbon isotope fractionation was identified as well, whereby the products of acetylene fermentation were enriched in 12C relative to 13C (i.e., had a lighter δ13C signal) when compared to that of the starting acetylene. The most practical target to test this hypothesis would be Enceladus (if the detected acetylene is shown to be a real presence in the jet vapors) owing to the relative ease of sample collection and analysis either in future flybys or lander/collector missions.

  8. Vapor pressures of acetylene at low temperatures

    NASA Technical Reports Server (NTRS)

    Masterson, C. M.; Allen, John E., Jr.; Kraus, G. F.; Khanna, R. K.

    1990-01-01

    The atmospheres of many of the outer planets and their satellites contain a large number of hydrocarbon species. In particular, acetylene (C2H2) has been identified at Jupiter, Saturn and its satellite Titan, Uranus and Neptune. In the lower atmospheres of these planets, where colder temperatures prevail, the condensation and/or freezing of acetylene is probable. In order to obtain accurate models of the acetylene in these atmospheres, it is necessary to have a complete understanding of its vapor pressures at low temperatures. Vapor pressures at low temperatures for acetylene are being determined. The vapor pressures are measured with two different techniques in order to cover a wide range of temperatures and pressures. In the first, the acetylene is placed in a sample tube which is immersed in a low temperature solvent/liquid nitrogen slush bath whose temperature is measured with a thermocouple. The vapor pressure is then measured directly with a capacitance manometer. For lower pressures, a second technique which was called the thin-film infrared method (TFIR) was developed. It involves measuring the disappearance rate of a thin film of acetylene at a particular temperature. The spectra are then analyzed using previously determined extinction coefficient values, to determine the disappearance rate R (where R = delta n/delta t, the number of molecules that disappear per unit time). This can be related to the vapor pressure directly. This technique facilitates measurement of the lower temperatures and pressures. Both techniques have been calibrated using CO2, and have shown good agreement with the existing literature data.

  9. Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures

    NASA Astrophysics Data System (ADS)

    Hu, Tong-Liang; Wang, Hailong; Li, Bin; Krishna, Rajamani; Wu, Hui; Zhou, Wei; Zhao, Yunfeng; Han, Yu; Wang, Xue; Zhu, Weidong; Yao, Zizhu; Xiang, Shengchang; Chen, Banglin

    2015-06-01

    The removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene is a technologically very important, but highly challenging task. Current removal approaches include the partial hydrogenation over a noble metal catalyst and the solvent extraction of cracked olefins, both of which are cost and energy consumptive. Here we report a microporous metal-organic framework in which the suitable pore/cage spaces preferentially take up much more acetylene than ethylene while the functional amine groups on the pore/cage surfaces further enforce their interactions with acetylene molecules, leading to its superior performance for this separation. The single X-ray diffraction studies, temperature dependent gas sorption isotherms, simulated and experimental column breakthrough curves and molecular simulation studies collaboratively support the claim, underlying the potential of this material for the industrial usage of the removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene at room temperature through the cost- and energy-efficient adsorption separation process.

  10. Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures

    PubMed Central

    Hu, Tong-Liang; Wang, Hailong; Li, Bin; Krishna, Rajamani; Wu, Hui; Zhou, Wei; Zhao, Yunfeng; Han, Yu; Wang, Xue; Zhu, Weidong; Yao, Zizhu; Xiang, Shengchang; Chen, Banglin

    2015-01-01

    The removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene is a technologically very important, but highly challenging task. Current removal approaches include the partial hydrogenation over a noble metal catalyst and the solvent extraction of cracked olefins, both of which are cost and energy consumptive. Here we report a microporous metal–organic framework in which the suitable pore/cage spaces preferentially take up much more acetylene than ethylene while the functional amine groups on the pore/cage surfaces further enforce their interactions with acetylene molecules, leading to its superior performance for this separation. The single X-ray diffraction studies, temperature dependent gas sorption isotherms, simulated and experimental column breakthrough curves and molecular simulation studies collaboratively support the claim, underlying the potential of this material for the industrial usage of the removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene at room temperature through the cost- and energy-efficient adsorption separation process. PMID:26041691

  11. Dynamics of acetylene plasma polymerization

    NASA Astrophysics Data System (ADS)

    Shin, Eunsung

    The purpose of this study was to investigate the characteristics of plasmas generated during plasma polymerization of acetylene and to investigate the correlation between the plasma and film properties. Specifically, orthogonal acceleration time-of-flight mass spectrometry as well as residual gas analysis and optical emission spectroscopy were employed to detect the ions, neutrals, and excited species present in the plasmas with different conditions such as power and pressure. Since oxygen plasmas are used for cleaning substrates and plasma reactors that are contaminated by carbon, the investigation included oxygen plasmas. The species present in the plasmas generated in a capacitively coupled reactor with 40 kHz of radio frequency were identified, and the detected ion species from Ar/C2H2 plasmas were C+, CH+, CH2+, CH3 +, H3O+, C2+, C2H+, C2H2+, C2H3+, C3H+, C3H2+, C3H3 +, Ar+, C3H5+, C4+, C4H+, C4H2+, C4H3 +, and C4H4+. The results indicate that plasma polymerization process efficiently dissociates the C2H 2 feed gas, and that there was an evidence of some gas phase polymerization. Obtained ion mass spectra and ion kinetic energy distributions showed a decrease in energetic (˜400 eV) ion signal with increasing pressure and a change in the ion kinetic energy distributions. The results are attributed to charge transfer reactions within the plasma sheath, and it is expected that high energy neutral particles generated from such reactions may have considerable influence in determining the properties of films grown by the plasma polymerization process. The films deposited during such process were characterized by analysis techniques such as reflection-absorption infrared spectroscopy, Raman spectroscopy, ultraviolet/visible absorption spectroscopy, variable-angle spectroscopic ellipsometry, and atomic force microscopy. The results indicate that the films grown in such processes have the properties of hydrogenated amorphous carbon films, and that the films grown under low power and low pressure conditions show efficient deposition rate.

  12. The relationship between faecal egg count reduction and the lethal dose 50% in the egg hatch assay and larval development assay.

    PubMed

    Maingi, N; Bjørn, H; Dangolla, A

    1998-06-15

    The relationship between resistance detected in the faecal egg count reduction test (FECRT) and the lethal dose 50% (LD50) in the egg hatch assay (EHA) for benzimidazoles (BZs) and a larval development assay (LDA) for BZs, levamisole (LEV) and ivermectin (IVM) was examined on 13 sheep farms and 12 goat farms in Denmark. Out of 10 farms where resistance to BZs was detected according to the FECRT, nine (90%) had LD50 values above 0.5 microM thiabendazole (TBZ) (0.1 microg TBZ/ml) in the EHA, indicating resistance to BZs. However, four out of the 12 isolates susceptible to BZs in the FECRT had LD50 values higher than 0.5 microM TBZ in the EHA. For all isolates examined, LD50 values for TBZ in the LDA were lower than in the EHA. Four out of 11 and five out of 12 farms with worm populations resistant to BZs according to the FECRT and EHA respectively, had LD50 values lower than 0.5 microM TBZ in the LDA. Using the same cut-off point for resistant isolates in the LDA as in the EHA (0.5 microM TBZ), these isolates would be considered susceptible to BZs. All 10 isolates susceptible to BZs according to the FECRT and EHA and two isolates with suspect BZ resistance had LD50 values lower than 0.5 microM TBZ in the LDA. The above results indicated fairly good agreement in the detection of BZ resistance between the FECRT, EHA and the LDA. Groups of farms where resistance to LEV was detected according to the FECRT had higher mean LD50 values compared to those with LEV-susceptible or suspected resistant isolates. However, only four out of 12 farms having isolates resistant to LEV had LD50 values higher than 1.2 microM LEV (0.28 microg LEV/ml) recorded previously for a LEV-susceptible strain of Ostertagia circumcincta. This indicated discrepancies in declaring resistance to LEV between the FECRT and the LDA. Isolates from four farms where resistance to IVM was detected in the FECRT had LD50 values higher than the susceptible isolates. These were 2.5 to 7.5 times higher than those recorded previously for IVM-susceptible strains. PMID:9746283

  13. Oxygen transport through polyethylene terephthalate (PET) coated with plasma-polymerized acetylene at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Wemlinger, Erik; Pedrow, Patrick; Garcia-Pérez, Manuel; Sablani, Shyam

    2011-10-01

    Moser et al. have shown that oxygen transport through polyethyleneterephthalate (PET) is reduced by a factor of up to 120 when, at reduced pressure, hydrogenated amorphous carbon film with thickness less than 100 nm is applied to the PET substrate. Our work includes using atmospheric pressure cold plasma to grow a plasma-polymerized acetylene film on PET substrate and measuring reductions in oxygen transport. The reactor utilizes corona discharges and is operated at 60 Hz with a maximum voltage of 10 kV RMS. Corona streamers emanate from an array of needles with an average radius of curvature of 50 μm. The reactor utilizes a cylindrical reaction chamber with a vertical orientation such that argon carrier gas and acetylene precursor gas are introduced at the top then pass through the cold plasma activation zone and then through a grounded stainless steel mesh. Acetylene radicals are incident on the PET substrate and form plasma-polymerized acetylene film. Moser et al. have shown that oxygen transport through polyethyleneterephthalate (PET) is reduced by a factor of up to 120 when, at reduced pressure, hydrogenated amorphous carbon film with thickness less than 100 nm is applied to the PET substrate. Our work includes using atmospheric pressure cold plasma to grow a plasma-polymerized acetylene film on PET substrate and measuring reductions in oxygen transport. The reactor utilizes corona discharges and is operated at 60 Hz with a maximum voltage of 10 kV RMS. Corona streamers emanate from an array of needles with an average radius of curvature of 50 μm. The reactor utilizes a cylindrical reaction chamber with a vertical orientation such that argon carrier gas and acetylene precursor gas are introduced at the top then pass through the cold plasma activation zone and then through a grounded stainless steel mesh. Acetylene radicals are incident on the PET substrate and form plasma-polymerized acetylene film. E.M. Moser, R. Urech, E. Hack, H. Künzli, E. Müller, Thin Solid Films, 317, 1998, pp. 388-392.

  14. Influence of and additives on acetylene detonation

    NASA Astrophysics Data System (ADS)

    Drakon, A.; Emelianov, A.; Eremin, A.

    2014-03-01

    The influence of and admixtures (known as detonation suppressors for combustible mixtures) on the development of acetylene detonation was experimentally investigated in a shock tube. The time-resolved images of detonation wave development and propagation were registered using a high-speed streak camera. Shock wave velocity and pressure profiles were measured by five calibrated piezoelectric gauges and the formation of condensed particles was detected by laser light extinction. The induction time of detonation development was determined as the moment of a pressure rise at the end plate of the shock tube. It was shown that additive had no influence on the induction time. For , a significant promoting effect was observed. A simplified kinetic model was suggested and characteristic rates of diacetylene formation were estimated as the limiting stage of acetylene polymerisation. An analysis of the obtained data indicated that the promoting species is atomic chlorine formed by pyrolysis, which interacts with acetylene and produces radical, initiating a chain mechanism of acetylene decomposition. The results of kinetic modelling agree well with the experimental data.

  15. Living on acetylene. A primordial energy source.

    PubMed

    Ten Brink, Felix

    2014-01-01

    The tungsten iron-sulfur enzyme acetylene hydratase catalyzes the conversion of acetylene to acetaldehyde by addition of one water molecule to the C-C triple bond. For a member of the dimethylsulfoxide (DMSO) reductase family this is a rather unique reaction, since it does not involve a net electron transfer. The acetylene hydratase from the strictly anaerobic bacterium Pelobacter acetylenicus is so far the only known and characterized acetylene hydratase. With a crystal structure solved at 1.26 Å resolution and several amino acids around the active site exchanged by site-directed mutagenesis, many key features have been explored to understand the function of this novel tungsten enzyme. However, the exact reaction mechanism remains unsolved. Trapped in the reduced W(IV) state, the active site consists of an octahedrally coordinated tungsten ion with a tightly bound water molecule. An aspartate residue in close proximity, forming a short hydrogen bond to the water molecule, was shown to be essential for enzyme activity. The arrangement is completed by a small hydrophobic pocket at the end of an access funnel that is distinct from all other enzymes of the DMSO reductase family. PMID:25416389

  16. Hydration of Acetylene: A 125th Anniversary

    ERIC Educational Resources Information Center

    Ponomarev, Dmitry A.; Shevchenko, Sergey M.

    2007-01-01

    The year 2006 is the 125th anniversary of a chemical reaction, the discovery of which by Mikhail Kucherov had a profound effect on the development of industrial chemistry in the 19-20th centuries. This was the hydration of alkynes catalyzed by mercury ions that made possible industrial production of acetaldehyde from acetylene. Historical

  17. Hydration of Acetylene: A 125th Anniversary

    ERIC Educational Resources Information Center

    Ponomarev, Dmitry A.; Shevchenko, Sergey M.

    2007-01-01

    The year 2006 is the 125th anniversary of a chemical reaction, the discovery of which by Mikhail Kucherov had a profound effect on the development of industrial chemistry in the 19-20th centuries. This was the hydration of alkynes catalyzed by mercury ions that made possible industrial production of acetaldehyde from acetylene. Historical…

  18. A mid-infrared absorption diagnostic for acetylene detection

    NASA Astrophysics Data System (ADS)

    KC, Utsav; Nasir, Ehson F.; Farooq, Aamir

    2015-08-01

    Acetylene is an important combustion intermediate and plays a critical role in soot formation. Accurate measurements of trace concentrations of acetylene can be very useful in validating hydrocarbon oxidation and soot formation mechanisms. Strongest vibrational band of acetylene near 13.7 μm is probed here to develop a highly sensitive absorption diagnostic. Experiments are carried out behind reflected shock waves to measure absorption cross sections of acetylene near 730 cm-1 over a wide range of temperatures (1000-2200 K) and pressures (1-5 bar). The diagnostic is demonstrated by measuring acetylene formation during the shock-heated pyrolysis and oxidation of propene.

  19. Gold nanoparticle-catalyzed uranine reduction for signal amplification in fluorescent assays for melamine and aflatoxin B1.

    PubMed

    Wang, Xu; Pauli, Jutta; Niessner, Reinhard; Resch-Genger, Ute; Knopp, Dietmar

    2015-11-01

    A multifunctional fluorescence platform has been constructed based on gold nanoparticle (AuNP)-catalyzed uranine reduction. The catalytic reduction of uranine was conducted in aqueous solution using AuNPs as nanocatalyst and sodium borohydride as reducing reagent, which was monitored by fluorescence and UV-vis spectroscopy. The reaction rate was highly dependent on the concentration, size and dispersion state of AuNPs. When AuNPs aggregated, their catalytic ability decreased, and thereby a label-free fluorescent assay was developed for the detection of melamine, which can be used for melamine determination in milk. In addition, a fluorescent immunoassay for aflatoxin B1 (AFB1) was established using the catalytic reaction for signal amplification based on target-induced concentration change of AuNPs, where AFB1-BSA-coated magnetic beads and anti-AFB1 antibody-conjugated AuNPs were employed as capture and signal probe, respectively. The detection can be accomplished in 1 h and acceptable recoveries in spiked maize samples were achieved. The developed fluorescence system is simple, sensitive and specific, which could be used for the detection of a wide range of analytes. PMID:26359515

  20. Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten iron-sulfur protein.

    PubMed Central

    Rosner, B M; Schink, B

    1995-01-01

    Acetylene hydratase of the mesophilic fermenting bacterium Pelobacter acetylenicus catalyzes the hydration of acetylene to acetaldehyde. Growth of P. acetylenicus with acetylene and specific acetylene hydratase activity depended on tungstate or, to a lower degree, molybdate supply in the medium. The specific enzyme activity in cell extract was highest after growth in the presence of tungstate. Enzyme activity was stable even after prolonged storage of the cell extract or of the purified protein under air. However, enzyme activity could be measured only in the presence of a strong reducing agent such as titanium(III) citrate or dithionite. The enzyme was purified 240-fold by ammonium sulfate precipitation, anion-exchange chromatography, size exclusion chromatography, and a second anion-exchange chromatography step, with a yield of 36%. The protein was a monomer with an apparent molecular mass of 73 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was at pH 4.2. Per mol of enzyme, 4.8 mol of iron, 3.9 mol of acid-labile sulfur, and 0.4 mol of tungsten, but no molybdenum, were detected. The Km for acetylene as assayed in a coupled photometric test with yeast alcohol dehydrogenase and NADH was 14 microM, and the Vmax was 69 mumol.min-1.mg of protein-1. The optimum temperature for activity was 50 degrees C, and the apparent pH optimum was 6.0 to 6.5. The N-terminal amino acid sequence gave no indication of resemblance to any enzyme protein described so far. PMID:7592321

  1. Susceptibilities of zidovudine-susceptible and -resistant human immunodeficiency virus isolates to antiviral agents determined by using a quantitative plaque reduction assay.

    PubMed Central

    Larder, B A; Chesebro, B; Richman, D D

    1990-01-01

    Conventional assays based on infection of T-cell lymphoblastoid lines with tissue culture-adapted strains of human immunodeficiency virus (HIV) are well established and have been used successfully to discover potent inhibitors of HIV replication. In this report we show that such assays are not easily applied to testing the susceptibilities of clinical HIV isolates to inhibitors because of differences in replication rates and cytotoxicity, thus demonstrating that conventional HIV assays should be used with caution when the zidovudine susceptibility of clinical isolates is assessed. An assay based on plaque reduction in CD4+ HeLa cell monolayers was validated by determining susceptibilities of HIV to a large number of inhibitors in this system. In general, 50% inhibitory doses for HIV type 1 and 2 strains derived from plaque reduction data were in good agreement with susceptibility data obtained by using conventional assays with T-cell lines. The susceptibilities of previously identified zidovudine-resistant HIV isolates to a large group of inhibitors, including nonucleosides, such as interferons and soluble CD4, were tested by using a plaque reduction assay in CD4+ HeLa cells. Surprisingly, an extremely narrow range of cross resistance was observed; cross resistance was limited to nucleoside analogs containing a 3'-azido group. These data point the way to the use of combinations of inhibitors to delay the appearance of drug resistance. PMID:2334156

  2. Acetylenes and fatty acids from Codonopsis pilosula

    PubMed Central

    Jiang, Yueping; Liu, Yufeng; Guo, Qinglan; Jiang, Zhibo; Xu, Chengbo; Zhu, Chenggen; Yang, Yongchun; Lin, Sheng; Shi, Jiangong

    2015-01-01

    Four new acetylenes (1–4) and one new unsaturated ω-hydroxy fatty acid (5), together with 5 known analogues, were isolated from an aqueous extract of Codonopsis pilosula roots. Their structures were determined by spectroscopic and chemical methods. The new acetylenes are categorized as an unusual cyclotetradecatrienynone (1), tetradecenynetriol (2), and rare octenynoic acids (3 and 4), respectively, and 3 and 4 are possibly derived from oxidative metabolic degradation of 1 and/or 2. The absolute configuration of 1 was assigned by comparison of the experimental circular dichroism (CD) spectrum with the calculated electronic circular dichroism (ECD) spectra of stereoisomers based on the quantum-mechanical time-dependent density functional theory, while the configuration of 2 was assigned by using modified Mosher׳s method based on the MPA determination rule of ΔδRS values for diols. PMID:26579449

  3. Two new acetylenic compounds from Asparagus officinalis.

    PubMed

    Li, Xue-Mei; Cai, Jin-Long; Wang, Wen-Xiang; Ai, Hong-Lian; Mao, Zi-Chao

    2016-04-01

    Two new acetylenic compounds, asparoffins A (1) and B (2), together with two known compounds, nyasol (3) and 3″-methoxynyasol (4), were isolated from stems of Asparagus officinalis. The structures of two new compounds were elucidated on the basis of detailed spectroscopic analyses (UV, IR, MS, 1D, and 2D NMR). All compounds were evaluated for their cytotoxicities against three human cancer cell lines. PMID:26558641

  4. Opposite influence of haloalkanes on combustion and pyrolysis of acetylene

    NASA Astrophysics Data System (ADS)

    Drakon, A. V.; Emelianov, A. V.; Eremin, A. V.; Mikheyeva, E. Yu

    2015-11-01

    An influence of haloalkanes CF3H and CCl4 (known as inflammation and explosion suppressors) on combustion and pyrolysis of acetylene behind shock waves was experimentally studied. While ignition delay times in stoihiometric acetylene-oxygen mixtures were expectedly increased by halogenoalkanes admixtures, the induction times of carbon particle formation at acetylene pyrolysis were dramatically reduced in presence of CCl4. A simplified kinetic model was suggested and characteristic rates of diacetylene C4H2 formation were estimated as a limiting stage of acetylene polymerization. An analysis of obtained data has indicated that promoting species is atomic chlorine forming in CCl4 pyrolysis, which interacts with acetylene and produces C2H radical, initiating a chain mechanism of acetylene decomposition. The results of kinetic modeling agree well with experimental data.

  5. Determination of nitrate in the blood of the hydrothermal vent tubeworm Riftia pachyptila using a bacterial nitrate reduction assay

    NASA Astrophysics Data System (ADS)

    Pospesel, Mark A.; Hentschel, Ute; Felbeck, Horst

    1998-12-01

    The vestimentiferan tubeworm Riftia pachyptila derives most or all of its nutrition from intracellular chemosynthetic bacterial symbionts. Because purified preparations of symbionts respire nitrate, possibly nitrite, and oxygen, host transport of nitrate is a topic of interest. In the present study, we have developed a nitrate detection assay that utilizes a nitrite reductase-deficient Escherichia coli strain for the reduction of nitrate to nitrite, which is then determined spectrophotometrically. Nitrate and nitrite concentrations were measured in the blood and coelomic fluids of R. pachyptila collected from hydrothermal vent sites at 9°N and 13°N. The blood was shown to have nitrate concentrations up to one hundred times that of ambient sea water (40 μM). Blood nitrate levels reached concentrations of >1 mM, while nitrite was measured in the range of 400-700 μM. The concentrations of nitrate and nitrite in the coelomic fluids were 150-240 μM and <20 μM, respectively. The nitrate determination technique we present here is simple, applicable for laboratory and shipboard use on sea water or biological fluids, and works reliably within the 0.5 to 2000 μM range.

  6. Effect of phytate reduction of sorghum, through genetic modification, on iron and zinc availability as assessed by an in vitro dialysability bioaccessibility assay, Caco-2 cell uptake assay, and suckling rat pup absorption model.

    PubMed

    Kruger, Johanita; Taylor, John R N; Du, Xiaogu; De Moura, Fabiana F; Lönnerdal, Bo; Oelofse, André

    2013-11-15

    Improved iron and zinc availability from sorghum, a commonly consumed staple, will benefit many malnourished communities in rural Africa burdened with high prevalence of iron and zinc deficiency. This research compared the effect of genetic phytate reduction in sorghum on iron and zinc bioaccessibility and uptake measured by in vitro dialysability and Caco-2 cell uptake assays to that of iron and zinc absorption measured by a suckling rat pup model. The phytate reduction (80-86%) in these sorghums significantly increased zinc availability. The Caco-2 cell method, but not the dialysability assay, proved useful in estimating zinc absorption. The measured increase in iron availability differed between the methods, possibly due to the effect of varying mineral (Ca, Fe, Zn, P) contents of the sorghums. This effect was most prominent in the iron uptake results. More research is needed to determine the effect of naturally occurring variations in mineral contents of sorghum on the iron uptake by Caco-2 cells. PMID:23790881

  7. RECRYSTALLIZATION OF PMDA AND SYNTHESIS OF AN ACETYLENIC DIAMINE

    SciTech Connect

    Sanner, R; Cook, R C

    2004-09-21

    This memo provides documentation for the method of recrystallization of pyromeletic dianhydride (PMDA), the dianhydride used in the vapor deposition of Kapton-like polyimide for ICF shell ablators and for the synthesis of bis(3-aminophenyl) acetylene, a unique acetylenic diamine developed for vapor deposition testing.

  8. Acetylenic/cyanoacetylenic complexes: simulation of the Titan's atmosphere chemistry

    NASA Astrophysics Data System (ADS)

    Guennoun, Z.; Coupeaud, A.; Couturier-Tamburelli, I.; Piétri, N.; Coussan, S.; Aycard, J.-P.

    2004-05-01

    The structures and energies of the 1:1 acetylene/cyanoacetylene, acetylene/dicyanoacetylene and cyanoacetylene/dicyanoacetylene complexes in solid argon matrices have been investigated using FT-IR spectroscopy and ab initio calculations, at the B3LYP/6-31G** level of theory. For the three complexes, predicted frequency shifts for the L shaped structures, characterized by a hydrogen bond between the nitrogen of the cyano group and the acetylenic proton, were found to be in good agreement with those experimental. Only in the case of acetylene/cyanoacetylene complex, we obtained a second minimum with a T shaped structure characterized by an interaction between the proton of cyanoacetylene and the Π system of acetylene. It appears clearly that HC 3N acts as an electrophile or as a nucleophile in these complexes.

  9. Acetylene-Based Materials in Organic Photovoltaics

    PubMed Central

    Silvestri, Fabio; Marrocchi, Assunta

    2010-01-01

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (poly)arylacetylenes that have been used in the field. A general introduction to (poly)arylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (co)polymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C60, and their use as the active materials in photovoltaic devices. PMID:20480031

  10. Studies of intersystem crossing dynamics in acetylene

    NASA Astrophysics Data System (ADS)

    Thom, Ryan L.; Wong, Bryan M.; Field, Robert W.; Stanton, John F.

    2007-05-01

    We report a new ab initio study of the acetylene T3 potential energy surface, which clarifies the nature of its energy minimum, and present computed equilibrium geometries and diabatic frequencies. This information enables the computation of harmonic vibrational overlap integrals of T3 vibrational levels with the S1 3ν3 state. The results of this calculation support the interpretation of two local perturbations of S1 3ν3, revealed in ultraviolet laser-induced fluorescence/surface electron ejection by laser excited metastables spectroscopy and Zeeman anticrossing measurements, respectively, as arising from two rotational submanifolds of a single T3 vibrational state. We present plausible assignments for this state as a guide for future experimental work.

  11. The experimental equilibrium structure of acetylene.

    PubMed

    Tamassia, Filippo; Cané, Elisabetta; Fusina, Luciano; Di Lonardo, Gianfranco

    2016-01-21

    The empirical equilibrium structure of acetylene has been derived by exploiting the very precise experimental rotational constants available in the literature for the 10 isotopologues relative to all the possible combinations of H, D, (12)C and (13)C atoms. The geometry obtained when data for all species are fitted together is: re(CH) = 106.167(14) pm and re(CC) = 120.2866(72) pm. This determination shows some systematic residuals due to the singly D-substituted isotopologues. If we exclude such species from the fit, we obtain our most precise evaluation: re(CH) = 106.1689(23) pm and re(CC) = 120.2817(12) pm. The possibility of a breakdown of the Born-Oppenheimer approximation has also been tested. PMID:26687993

  12. Constant photoelectron energy spectroscopy of acetylene

    SciTech Connect

    Holland, D. M. P.; West, J. B.; Parr, Albert C.; Ederer, D. L.; Stockbauer, R.; Buff, R. D.; Dehmer, Joseph L.

    1983-01-01

    Constant photoelectron energy (CPE) spectra of acetylene are reported for electron kinetic energies of 0, 0.1, 0.5, and 1.0 eV in the spectral range 11≤hν≤22 eV. This form of photoelectron spectroscopy involves measuring the intensity of photoelectrons with a particular kinetic energy as a function of the wavelength of the incident radiation. Such measurements may be carried out using small wavelength increments and can distinguish between direct and indirect, e.g., autoionization and photoionization processes. Autoionization features in the range 12.5≤hν≤16 eV are observed, which populate high vibrational levels of the ground state far beyond the Franck--Condon region.

  13. High pressure chemistry of substituted acetylenes

    SciTech Connect

    Chellappa, Raja; Dattelbaum, Dana; Sheffield, Stephen; Robbins, David

    2011-01-25

    High pressure in situ synchrotron x-ray diffraction experiments were performed on substituted polyacetylenes: tert-butyl acetylene [TBA: (CH{sub 3}){sub 3}-C{triple_bond}CH] and ethynyl trimethylsilane [ETMS: (CH{sub 3}){sub 3}-Si{triple_bond}CH] to investigate pressure-induced chemical reactions. The starting samples were the low temperature crystalline phases which persisted metastably at room temperature and polymerized beyond 11 GPa and 26 GPa for TBA and ETMS respectively. These reaction onset pressures are considerably higher than what we observed in the shockwave studies (6.1 GPa for TBA and 6.6 GPa for ETMS). Interestingly, in the case of ETMS, it was observed with fluid ETMS as starting sample, reacts to form a semi-crystalline polymer (crystalline domains corresponding to the low-T phase) at pressures less than {approx}2 GPa. Further characterization using vibrational spectroscopy is in progress.

  14. Interpenetrating polymer networks from acetylene terminated materials

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Hergenrother, P. M.

    1989-01-01

    As part of a program to develop high temperature/high performance structural resins for aerospace applications, the chemistry and properties of a novel class of interpenetrating polymer networks (IPNs) were investigated. These IPNs consist of a simple diacetylenic compound (aspartimide) blended with an acetylene terminated arylene ether oligomer. Various compositional blends were prepared and thermally cured to evaluate the effect of crosslink density on resin properties. The cured IPNs exhibited glass transition temperatures ranging from 197 to 254 C depending upon the composition and cure temperature. The solvent resistance, fracture toughness and coefficient of thermal expansion of the cured blends were related to the crosslink density. Isothermal aging of neat resin moldings, adhesive and composite specimens showed a postcure effect which resulted in improved elevated temperature properties. The chemistry, physical and mechanical properties of these materials will be discussed.

  15. Reactions of Acetylene in Superbasic Media

    NASA Astrophysics Data System (ADS)

    Trofimov, Boris A.

    1981-02-01

    The results of studies of fundamentally new reactions of acetylene and its substituted derivatives in media of very high basicity are surveyed. They lead to hitherto unknown or relatively inaccessible monomers, reagents, and intermediates: 2-vinyloxybuta-1,3-diene, pyrroles, and N-vinylpyrroles, divinyl sulphide, divinyl telluride, 4-methylene-1,3-oxathiolan, di(buta-1,3-dienyl)sulphide, dihydrothiophen, 1-vinyl-2-thiabicyclo[3,2,0]hept-3-ene, etc. The most important properties of superbasic media consisting of an alkali metal hydroxide and a dipolar aprotic solvent as well as the probable mechanisms of their activating effect on anions and the triple bond are examined. An attempt is made to analyse these reactions in terms of coordination catalysis by alkali metal cations. The bibliography includes 199 references.

  16. A molecular level study of the aqueous microsolvation of acetylene

    NASA Astrophysics Data System (ADS)

    Tzeli, Demeter; Mavridis, Aristides; Xantheas, Sotiris S.

    2001-06-01

    We present an analysis of the structural, energetic and spectral features associated with the different hydrogen bonded networks found in the first few acetylene-water clusters AW n ( n=1-4) from first principles calculations. Contrary to the predictions of an empirical interaction potential, acetylene is incorporated into a hydrogen bonded ring when it clusters with two or three water molecules. This structural pattern changes for n=4 with the formation of a water tetramer interacting with acetylene. This structural transition from n=3 to 4 is spectroscopically manifested by a qualitative change in the appearance of the infrared spectra of the corresponding global minima.

  17. A biogeochemical and genetic survey of acetylene fermentation by environmental samples and bacterial isolates

    USGS Publications Warehouse

    Miller, Laurence G.; Baesman, Shaun M.; Kirshtein, Julie; Voytek, Mary A.; Oremland, Ronald S.

    2013-01-01

    Anoxic samples (sediment and groundwater) from 13 chemically diverse field sites were assayed for their ability to consume acetylene (C2H2). Over incubation periods ranging from ˜ 10 to 80 days, selected samples from 7 of the 13 tested sites displayed significant C2H2 removal. No significant formation of ethylene was noted in these incubations; therefore, C2H2 consumption could be attributed to acetylene hydratase (AH) rather than nitrogenase activity. This putative AH (PAH) activity was observed in only 21% of the total of assayed samples, while amplification of AH genes from extracted DNA using degenerate primers derived from Pelobacter acetylenicus occurred in even fewer (9.8%) samples. Acetylene-fermenting bacteria were isolated as a pure culture from the sediments of a tidal mudflat in San Francisco Bay (SFB93) and as an enrichment culture from freshwater Searsville Lake (SV7). Comparison of 16S rDNA clone libraries revealed that SFB93 was closely related to P. carbolinicus, while SV7 consisted of several unrelated bacteria. AH gene was amplified from SFB93 but not SV7. The inability of the primers to generate amplicons in the SV7 enrichment, as well as from several of the environmental samples that displayed PAH activity, implied that either the primers were too highly constrained in their specificity or that there was a different type of AH gene in these environmental samples than occurs in P. acetylenicus. The significance of this work with regard to the search for life in the outer Solar System, where C2HL2 is abundant, is discussed.

  18. Tropospheric and lower stratospheric vertical profiles of ethane and acetylene

    NASA Technical Reports Server (NTRS)

    Cronn, D.; Robinson, E.

    1979-01-01

    The first known vertical distributions of ethane and acetylene which extend into the lower stratosphere are reported. The average upper tropospheric concentrations, between 20,000 ft and 35,000 ft, near 37 deg N-123 deg W were 1.2 micrograms/cu m (1.0 ppb) for ethane and 0.24 micrograms /cu m (0.23 ppb) for acetylene while the values near 9 N-80 W were 0.95 micrograms/cu m (0.77 ppb) and 0.09 micrograms/cu m (0.09 ppb), respectively. Detectable quantities of both ethane and acetylene are present in the lower stratosphere. There is a sharp decrease in the levels of these two compounds as one crosses the tropopause and ascends into the lower stratosphere. The observed levels of ethane and acetylene may allow some impact on the background chemistry of the troposphere and stratosphere.

  19. Inhibiting the combustion of air-acetylene mixtures

    NASA Astrophysics Data System (ADS)

    Kopylov, S. N.; Gubina, T. V.

    2016-01-01

    The effect propane, methane, and a mixture of 18 vol % C3H6-40 vol % C3H8-42 vol % C4H10 have on the combustion of air-acetylene mixtures is investigated experimentally. The upper concentration limit of flame propagation, maximum explosion pressure, and maximum rate of rise of explosion pressure are determined. It is found that propane and a mixture of 18 vol % C3H6-40 vol % C3H8-42 vol % C4H10 are strong inhibitors of combustion of acetylene in its concentration ranges of 2-8 vol %. The inhibition effect becomes weaker as the acetylene content in the mixture increases. It disappears completely at C2H2 concentrations exceeding 15 vol %. The above experimental findings are explained using the proposed scheme of acetylene oxidation.

  20. Pyrethrum stabilization by inactivation of natural acetylenic impurities

    SciTech Connect

    Evans, A.J.

    1989-01-17

    This patent describes a mixture of naturally occurring pyrethroid substances and derivatives of naturally occurring polyacetylenic substances wherein the derivatives of polyacetylenic substances are formed by substantially inactivating the acetylenic functional groups to promote the stability of the pyrethroid substances.

  1. The photolysis of acetylene halides reaction with oxygen

    SciTech Connect

    Hwang, Mei-Lee; Kuo, Yu-Ping

    1996-12-31

    The photolysis of chloro- and bromo-acetylene reactions at low temperature with Hg lamp are carried out. There is no new absorption band observed after in-situ photolysis of acetylene halides in Ar matrix. With the presence of oxygen, several new bands appeared. The new peaks at 2138 and 2342 cm{sup -1} were assigned as CO and CO{sub 2}, respectively. Further work is essential for the assignment of the other new bands.

  2. Electronic Spectroscopy and Dynamics of the Acetylene - Complex

    NASA Astrophysics Data System (ADS)

    Ju, Shan-Shan

    The structures, intermolecular forces and excited state dynamics of acetylene(A) cdot Ar complex are investigated by combination of laser induced fluorescence spectroscopy pairwise potential model calculations. Acetylene is linear in the X state while trans-bent in the (A) state. Although only one structure has been known to exist for the acetylene(X) cdot Ar complex, two isomeric structures are determined for the acetylene(A) cdot Ar complex from the rotational band shape analysis of the fluorescence excitation spectra. One of the isomers has the argon sitting in the molecular plane of C _2H_2 (A), 3.77 A away from the center-of-mass of acetylene, the other has the argon 3.71 A above the plane on the C_2 axis. Formulas useful for calculating axis switching angles in non-planar molecules have been derived and applied to the two isomeric structures. It was found that despite the acetylene geometry change from the (X) to the (A) state, the axis switching effect is negligible for the complex spectral calculation. A pair potential model with parameters directly extracted from the ones calculated for ethene (X) cdot Ar is able to produce the two structures. Based on the structures and the calculated potential surface, three of the vdW frequencies are assigned to be: upsilon_{rm stretch } = 28 cm^{-1} for the out-of-plane isomer, upsilon_ {rm bend1} = 11 cm^ {-1} (the in-plane bend) and upsilon_{rm bend2} = 8.5 cm^{-1} (the out -of-plane bend) for the in-plane isomer. The existence of the two isomers allowed the study of the orientation dependence in intersystem crossing (ISC) of acetylene(S _1) induced by interaction with argon. Similar ISC lifetimes (~100 ns) were observed for the two isomers, suggesting that the pi and pi^* orbitals are equally susceptible to spin-changing interactions with Ar.

  3. A two-fold reduction in measurement time for neutron assay: Initial tests of a prototype dual-gated shift register

    SciTech Connect

    Stewart, J.E.; Bourret, S.C.; Krick, M.S.; Hansen, W.J.; Harker, W.C.

    1996-09-01

    Neutron coincidence counting (NCC) is used routinely around the world for nondestructive mass assay of uranium and plutonium in many forms, including waste. Compared with other methods, NCC is generally the most flexible, economic, and rapid. Many applications of NCC would benefit from a reduction in counting time required for a fixed random error. We have developed and tested the first prototype of a dual- gated, shift-register-based electronics unit that offers the potential of decreased measurement time for all passive and active NCC applications.

  4. Ion-induced dissociation dynamics of acetylene

    SciTech Connect

    De, Sankar; Rajput, Jyoti; Roy, A.; Safvan, C. P.; Ghosh, P. N.

    2008-02-15

    We report on the results of dissociation dynamics of multiple charged acetylene molecules formed in collision with 1.2 MeV Ar{sup 8+} projectiles. Using the coincidence map, we can separate out the different dissociation pathways between carbon and hydrogen ionic fragments as well as complete two-body breakup events. From the measured slopes of the coincidence islands for carbon atomic fragments and theoretical values determined from the charge and momentum distribution of the correlated particles, we observe a diatom like behavior of the C-C charged complex during dissociation of multiply charged C{sub 2}H{sub 2}. We conclude that this behavior in breakup dynamics is a signature of sequentiality in dissociation of this multiply charged molecular species. The shape and orientation of the islands give further information about the momentum balance in the fragmentation process of two- or many-body dissociation pathways. Kinetic energy release of different breakup channels are reported here and compared with values calculated from the pure Coulomb explosion model.

  5. Microplate Assay of α-Glucosidase and Its Inhibitors Based on the Direct Reduction of Molybdosilicate by Glucose.

    PubMed

    Katano, Hajime; Takakuwa, Masahiro; Itoh, Takafumi; Hibi, Takao

    2015-01-01

    A colorimetric method for monosaccharide determination (Anal. Sci., 2013, 29, 1021) was optimized for the high-throughput screening of α-glucosidase, which hydrolyzes an α-1,4-glycosidic bond of starch and related oligo- and polysaccharides, followed by the release of D-glucose from the non-reducing ends. In a microplate, 40 μL of a sample solution was mixed with 160 μL of a 50 mM Na2SiO3, 600 mM Na2MoO4, 1.5 M CH3COOH, and 20% (v/v) dimethyl sulfoxide solution, which was yellowish due to the formation of a yellow molybdosilicate. The mixture was kept at 80°C for 60 min. In the mixture, glucose reduced the Mo(VI) species directly to form a blue heteropolymolybdate(V/VI). Thus, 0.1 mM level glucose can be determined by the color change from yellow to blue. Since maltose cannot render the mixture blue as strongly as glucose, the present method has been successfully applied to a microtiter plate assay of α-glucosidase with the disaccharide. Also, the method has been applied to an assay of α-glucosidase inhibitors, acarbose and quercetin. PMID:26656820

  6. Colorimetric microbial viability assay based on reduction of water-soluble tetrazolium salts for antimicrobial susceptibility testing and screening of antimicrobial substances.

    PubMed

    Tsukatani, Tadayuki; Higuchi, Tomoko; Suenaga, Hikaru; Akao, Tetsuyuki; Ishiyama, Munetaka; Ezoe, Takatoshi; Matsumoto, Kiyoshi

    2009-10-01

    The applicability of a colorimetric microbial viability assay based on reduction of a tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt [WST-8]} via 2-methyl-1,4-naphthoquinone (2-methyl-1,4-NQ) as an electron mediator for determining the susceptibility of various bacteria to antibiotics and screening antimicrobial substances was investigated. The measurement conditions, which include the effects of the concentration of 2-methyl-1,4-NQ, were optimized for proliferation assays of gram-negative bacteria, gram-positive bacteria, and pathogenic yeast. In antimicrobial susceptibility testing, there was excellent agreement between the minimum inhibitory concentrations determined after 8 h using the WST-8 colorimetric method and those obtained after 22 h using conventional methods. The results suggest that the WST-8 colorimetric assay is a useful method for rapid determination of the susceptibility of various bacteria to antibiotics. In addition, the current method was applied to the screening of bacteriocin-producing lactic acid bacteria and its efficiency was demonstrated. PMID:19560434

  7. Ethane and acetylene abundances in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Tokunaga, A.; Knacke, R. F.; Owen, T.

    1976-01-01

    The paper reports spectra of Jupiter in the spectral region from 755 to 850 kaysers, which covers the nu-9 fundamental of ethane and contains lines from the R branch of the nu-5 fundamental of acetylene. The monochromatic absorption coefficient of the central Q branch of the nu-9 fundamental of ethane, which was determined in the laboratory, is applied in a radiative-transfer calculation to evaluate the ethane mixing ratio in the Jovian atmosphere; the present data are also used to place an upper limit on the acetylene mixing ratio. For the radiative-transfer calculation, emission intensity is computed for the region above the 0.02-atm level assuming both an isothermal inversion layer and a previously reported temperature profile. The resulting maximum mixing ratios consistent with the observations are 0.00003 for ethane and 7.5 by 10 to the -8th power for acetylene.

  8. Chemistry and properties of blends of acetylene terminated materials

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.

    1991-01-01

    As part of a NASA program to develop new high temperature/high performance structural materials, the chemistry and properties of acetylene-containing materials and their cured resins are under investigation. The objective of this work is to develop materials that are readily processable (i.e., 200-300 C and about 1.4 MPa or less) and possess usable mechanical properties at temperatures as high as 177 C. An acetylene-terminated aspartimide (ATA) was blended with an equal weight of an acetylene-terminated arylene ether (ATAE) oligomer. The blend was subsequently thermally cured to yield a resin which was evaluated in the form of neat resin moldings, adhesive specimens, and laminates. Adhesive specimens and laminates gave good mechanical properties to temperatures as high as 177 C. In addition, preliminary laminate work is presented on the resin from a blend of a new N-methyl substituted ATA and an ATAE.

  9. Structure and Function of the Unusual Tungsten Enzymes Acetylene Hydratase and Class II Benzoyl-Coenzyme A Reductase.

    PubMed

    Boll, Matthias; Einsle, Oliver; Ermler, Ulrich; Kroneck, Peter M H; Ullmann, G Matthias

    2016-01-01

    In biology, tungsten (W) is exclusively found in microbial enzymes bound to a bis-pyranopterin cofactor (bis-WPT). Previously known W enzymes catalyze redox oxo/hydroxyl transfer reactions by directly coordinating their substrates or products to the metal. They comprise the W-containing formate/formylmethanofuran dehydrogenases belonging to the dimethyl sulfoxide reductase (DMSOR) family and the aldehyde:ferredoxin oxidoreductase (AOR) families, which form a separate enzyme family within the Mo/W enzymes. In the last decade, initial insights into the structure and function of two unprecedented W enzymes were obtained: the acetaldehyde forming acetylene hydratase (ACH) belongs to the DMSOR and the class II benzoyl-coenzyme A (CoA) reductase (BCR) to the AOR family. The latter catalyzes the reductive dearomatization of benzoyl-CoA to a cyclic diene. Both are key enzymes in the degradation of acetylene (ACH) or aromatic compounds (BCR) in strictly anaerobic bacteria. They are unusual in either catalyzing a nonredox reaction (ACH) or a redox reaction without coordinating the substrate or product to the metal (BCR). In organic chemical synthesis, analogous reactions require totally nonphysiological conditions depending on Hg2+ (acetylene hydration) or alkali metals (benzene ring reduction). The structural insights obtained pave the way for biological or biomimetic approaches to basic reactions in organic chemistry. PMID:26959374

  10. Acetylene-based pathways for prebiotic evolution on Titan

    NASA Astrophysics Data System (ADS)

    Abbas, O.; Schulze-Makuch, D.

    2002-11-01

    Due to Titan's reducing atmosphere and lack of an ozone shield, ionizing radiation penetrates the atmosphere creating ions, radicals and electrons that are highly reactive producing versatile chemical species on Titan's surface. We propose that the catalytic hydrogenation of photochemically produced acetylene may be used as simple metabolic pathway by organisms at or near Titan's surface. While the acetylene may undergo this reaction, it can also undertake several other multi-step synthetic schemes that eventually lead to the production of amino acids or other biologically important molecules. Four model synthetic schemes will be described, and their relevance in relation to prebiotic evolution on Earth is discussed.

  11. Siloxane containing addition polyimides. II - Acetylene terminated polyimides

    NASA Technical Reports Server (NTRS)

    Maudgal, S.; St. Clair, T. L.

    1984-01-01

    Acetylene terminated polyimide oligomers having a range of molecular weights have been synthesized by reacting bis (gamma-aminopropyl) tetramethyldisiloxane, aminophenylacetylene and 3, 3', 4, 4' benzophenonetetracarboxylic dianhydride in different molar ratios. The prepolymers were isolated and characterized for melt flow and cure properties. They show promise as adhesives for bonding titanium to titanium and as matrix resins for graphite cloth reinforced composites. The most promising system has been blended in varying proportions with Thermid 600, a commercially available acetylene terminated polyimide oligomer, and the mixtures have been tested for application as composite matrix resins.

  12. Spectroscopy and energetics of the acetylene molecule

    NASA Astrophysics Data System (ADS)

    Orr, Brian J.

    This article reviews laser-spectroscopic studies of the structure, energetics, and dynamics of processes involving small polyatomic molecules, particularly acetylene (ethyne, C2H2). The linear, centrosymmetric structure of C2H2 is deceptively simple, given that aspects of its optical spectra and dynamics have proved to be unusually complicated. The article focuses on the ground electronic state of C2H2, where rovibrational eigenstates are only approximately described in normal-mode terms, because intramolecular processes (such as anharmonic mixing, ℓ-type resonances, and Coriolis coupling) introduce extensive global and local perturbations. These tend to spoil quantum numbers and symmetries that are well-defined in low-order basis states. Such effects within the rovibrational energy states of C2H2 are systematically characterized, together with dynamical descriptions in terms of polyad models and insight into photochemical or photophysical processes that may occur at high vibrational energies, without direct electronic excitation. Time-resolved optical double-resonance spectroscopy, probed by ultraviolet-laser-induced fluorescence and pumped by either infrared absorption or coherent Raman excitation, has proved particularly useful in exploring such effects in gas-phase C2H2; techniques of this type are discussed in detail, together with other laser-spectroscopic methods that provide complementary mechanistic information. A closely related topic concerns the area of optothermal molecular-beam spectroscopy, with particular emphasis on research by the late Roger E. Miller to whose memory this article is dedicated. Key publications by Miller and coworkers, in many of which C2H2 and its isotopomers play a central role, are reviewed. These cover the following themes: structure of molecular complexes and clusters, infrared predissociation spectra, rotational and vibrational energy transfer, differential scattering, photofragmentation of oriented complexes, superfluid-helium nanodroplet spectroscopy, aerosols formed in low-temperature diffusion cells, surface scattering experiments, optically selected mass spectrometry, and characterization of biomolecules. A unifying issue that links the assorted topics of this article is the role that intramolecular perturbations can play to enhance (and sometimes suppress) the efficiency of rovibrational energy transfer in colliding molecules or in molecular complexes and clusters; C2H2 and its isotopomers have been a rich source of insight in this regard, although they continue to pose challenges to our understanding.

  13. Microgravity Superagglomerates Produced By Silane And Acetylene

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman (Technical Monitor); Bundy, Matthew; Mulholland, George W.; Manzello, Samuel; Yang, Jiann; Scott, John Henry; Sivathanu, Yudaya

    2003-01-01

    The size of the agglomerates produced in the upper portion of a flame is important for a variety of applications. Soot particle size and density effect the amount of radiative heat transfer from a fire to its surroundings. Particle size determines the lifetime of smoke in a building or in the atmosphere, and exposure hazard for smoke inhaled and deposited in the lungs. The visibility through a smoke layer and dectectability of the smoke are also greatly affected by agglomerate size. Currently there is limited understanding of soot growth with an overall dimension of 10 m and larger. In the case of polystyrene, smoke agglomerates in excess of 1 mm have been observed raining out from large fires. Unlike hydrocarbon fuels, silane has the advantage that silica particles are the major combustion product resulting in a particle volume fraction a factor of ten greater than that for a carbonaceous smoke. There are two very desirable properties of silica aero-gels that are important for both space and earth based applications. The first important property is its inertness to most oxidizing and reducing atmospheres. Therefore, silica aero-gels make excellent fire ablatives and can be used in very demanding applications. The second important property is that silica aero-gels are expected to have very high porosity (greater than 0.999), making them lightweight and ideal for aerospace applications. The added benefit of the high porosity is that they can be used as extremely efficient filters for many earth based applications as well. Evidence of the formation of superagglomerates in a laminar acetylene/air diffusion flame was found by Sorensen et al. [1]. An interconnecting web of super-agglomerates was observed to span the width of the soot plume in the region just above the flame tip and described as a gel state. It was observed that this gel state immediately breaks up into agglomerates as larges as 100 m due to buoyancy induced turbulence. Large soot agglomerates were observed in microgravity butane jet diffusion flames by Ito et al.[2]. Several other works to date have studied the effect of flame structure on soot volume fraction and agglomeration size in a microgravity environment.[3-4]. In microgravity the absence of buoyant convective flows increases the residence time in the flame and causes a broadening of the high temperature region in the flame. Both of these factors play a significant role in gas phase radiation and soot formation

  14. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103... oxygen-acetylene distribution piping. (a) This section applies to fixed piping installed for the distribution of oxygen and acetylene carried in cylinders as vessels stores. (b) The distribution piping...

  15. Comparing an in vivo egg reduction test and in vitro egg hatching assay for different anthelmintics against Fasciola species, in cattle.

    PubMed

    Arafa, Waleed M; Shokeir, Khalid M; Khateib, Abdelrahman M

    2015-11-30

    This study aimed to compare between the efficiency of in vivo fecal egg reduction test (FERT) and in vitro egg hatching assay (EHA) in evaluating of the anti-Fasciola activity of albendazole, triclabendazole, oxyclozanide and praziquantel. A field trial was carried out on fifty naturally Fasciola infected cattle that were divided equally into 5 groups (A-E). On day zero; groups A-D were drenched with albendazole, triclabendazole, oxyclozanide or praziquantel, respectively, while the remaining one, group E, was kept as untreated control. Fecal egg counts of the different groups were conducted weekly over a period of one month post-treatment. In vitro, commercial albendazole and oxyclozanide were diluted to 0.0002, 0.002, 0.02, 0.2 and 2.0 μg/ml, while commercial triclabendazole and praziquantel were diluted to concentrations of 25, 50, 75 and 100 μg/ml with dimethyl sulfoxide (DMSO). In vivo, at the 2nd week post-treatment, triclabendazole and oxyclozanide showed 100% fecal egg reduction (FER), and albendazole had a maximum of 73.7% reduction (P < 0.0001), however, praziquantel did not record any reduction of Fasciola egg counts. In vitro, triclabendazole treated Fasciola gigantica eggs showed early embryonic lysis with zero% hatching at the different concentrations (P < 0.01). In albendazole, the hatching varied according to the drug concentration. At the highest two concentrations; 0.2 and 2.0 μg/ml, the hatching percentages were 7.4 ± 1.6 and 5.6 ± 1.5 (P < 0.01) respectively. On the contrary, there were no significant differences in egg development and hatching percentage of oxyclozanide or praziquantel treated groups. In conclusion, the efficacy of triclabendazole and albendazole as fasciolicdes could be predicted by Egg Hatching Assay (EHA). Meanwhile fasciolicide activity of oxyclozanide could not be assessed with EHA. Based on in vivo and in vitro findings, paraziquantel did not show any fasciolicide effect. PMID:26455573

  16. Identification of proteins capable of metal reduction from the proteome of the Gram-positive bacterium Desulfotomaculum reducens MI-1 using an NADH-based activity assay

    SciTech Connect

    Otwell, Annie E.; Sherwood, Roberts; Zhang, Sheng; Nelson, Ornella D.; Li, Zhi; Lin, Hening; Callister, Stephen J.; Richardson, Ruth E.

    2015-01-01

    Metal reduction capability has been found in numerous species of environmentally abundant Gram-positive bacteria. However, understanding of microbial metal reduction is based almost solely on studies of Gram-negative organisms. In this study, we focus on Desulfotomaculum reducens MI-1, a Gram-positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. D. reducens has been shown to reduce not only Fe(III), but also the environmentally important contaminants U(VI) and Cr(VI). By extracting, separating, and analyzing the functional proteome of D. reducens, using a ferrozine-based assay in order to screen for chelated Fe(III)-NTA reduction with NADH as electron donor, we have identified proteins not previously characterized as iron reductases. Their function was confirmed by heterologous expression in E. coli. These are the protein NADH:flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase FAD/NAD(P)-binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble (presumably membrane) protein fraction, suggesting a type of membrane-association, although PSORTb predicts both proteins are cytoplasmic. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. This study is the first functional proteomic analysis of D. reducens, and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram-positive bacterium.

  17. Rapid susceptibility testing for slowly growing nontuberculous mycobacteria using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium WST-1.

    PubMed

    Tsukatani, T; Suenaga, H; Shiga, M; Ikegami, T; Ishiyama, M; Ezoe, T; Matsumoto, K

    2015-10-01

    Rapid susceptibility testing for slowly growing nontuberculous mycobacteria (NTM) using a colorimetric microbial viability assay based on the reduction of the water-soluble tetrazolium salt {2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-1)} using 2,3,5,6-tetramethyl-1,4-benzoquinone as an electron mediator was developed. Using the Clinical and Laboratory Standards Institute (CLSI) method, a long-term incubation time (7-14 days) was required to determine the minimum inhibitory concentrations (MICs) of the slowly growing NTM. The MICs for a variety of different antibiotics against the slowly growing NTM were determined by the WST-1 colorimetric method and compared with those obtained using the broth microdilution methods approved by the CLSI. Good agreement was found between the MICs determined after 3-4 days using the WST-1 colorimetric method and those obtained after 10-14 days using the broth microdilution method. The results suggest that the WST-1 colorimetric assay is a useful method for the rapid determination of the MICs for the slowly growing NTM. PMID:26173690

  18. Nongenotoxic effects and a reduction of the DXR-induced genotoxic effects of Helianthus annuus Linné (sunflower) seeds revealed by micronucleus assays in mouse bone marrow

    PubMed Central

    2014-01-01

    Background This research evaluated the genotoxicity of oil and tincture of H. annuus L. seeds using the micronucleus assay in bone marrow of mice. The interaction between these preparations and the genotoxic effects of doxorubicin (DXR) was also analysed (antigenotoxicity test). Methods Experimental groups were evaluated at 24-48 h post treatment with N-Nitroso-N-ethylurea (positive control – NEU), DXR (chemotherapeutic), NaCl (negative control), a sunflower tincture (THALS) and two sources of sunflower oils (POHALS and FOHALS). Antigenotoxic assays were carried out using the sunflower tincture and oils separately and in combination with NUE or DXR. Results For THALS, analysis of the MNPCEs showed no significant differences between treatment doses (250–2,000 mg.Kg-1) and NaCl. A significant reduction in MNPCE was observed when THALS (2,000 mg.Kg-1) was administered in combination with DXR (5 mg.Kg-1). For POHALS or FOHALS, analysis of the MNPCEs also showed no significant differences between treatment doses (250–2,000 mg.Kg-1) and NaCl. However, the combination DXR + POHALS (2,000 mg.Kg-1) or DXR + FOHALS (2,000 mg.Kg-1) not contributed to the MNPCEs reduction. Conclusions This research suggests absence of genotoxicity of THALS, dose-, time- and sex-independent, and its combination with DXR can reduce the genotoxic effects of DXR. POHALS and FOHALS also showed absence of genotoxicity, but their association with DXR showed no antigenotoxic effects. PMID:24694203

  19. Comparison of immunoglobulin A (IgA), IgG, and IgM enzyme-linked immunosorbent assays, plaque reduction neutralization assay, and complement fixation in detecting seroresponses to rotavirus vaccine candidates.

    PubMed Central

    Midthun, K; Pang, L Z; Flores, J; Kapikian, A Z

    1989-01-01

    In a phase 1 study to evaluate human-rhesus rotavirus reassortant vaccines, 116 infants 1 to 5 months of age received one of the following five preparations: the serotype 1 reassortant, the serotype 2 reassortant, rhesus rotavirus (serotype 3), a bivalent preparation (serotypes 1 and 3), or a placebo. Seroresponses to the different vaccines were measured by plaque reduction neutralization assay (PRNA); rotavirus-specific immunoglobulin A (IgA), IgG, and IgM enzyme-linked immunosorbent assays (ELISAs); and complement fixation (CF). The seroresponse rate, calculated by using a fourfold or greater antibody rise by any assay, was similar in the four vaccine groups (83 to 96%). When the data from all the vaccinees were pooled, IgA ELISA, IgG ELISA, and PRNA were comparable in detecting seroresponses (67, 62, and 70%, respectively) and more efficient than IgM ELISA (53%) and CF (44%). When the vaccinees were analyzed by age, the overall seroresponse rates were the same for infants 1 to 2 and 3 to 5 months old (90%). The IgA ELISA and PRNA were the most efficient for detecting antibody rises in both age groups. IgG ELISA was among the least efficient methods for detecting antibody rises in the younger age group but among the most efficient in the older age group (44 versus 78%). CF was among the least efficient methods in both age groups but was significantly better in the older age group than in the younger age group (54 versus 21%). Our findings show that ELISA, in particular rotavirus-specific IgA ELISA, is a sensitive indicator of vaccine takes in 1- to 5 month-old infants, the target population for vaccination. ELISA should also be very useful in demonstrating natural rotavirus infections in field studies in which a stool specimen from a diarrheal episode is not always available. The ELISA has the advantages of being easier and quicker and requiring less serum than PRNA, but it does not give serotype-specific information about the immune response. PMID:2556433

  20. 77 FR 13969 - Revising Standards Referenced in the Acetylene Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... final rule published on December 5, 2011 (76 FR 75782), is effective on March 5, 2012. For the purposes... Association (GGA) acetylene standard (see 76 FR 75782). In the DFR, OSHA deleted reference to CGA G-1-2003 and....C. 553, Secretary of Labor's Order 1-2012 (77 FR 3912), and 29 CFR part 1911. Signed at...

  1. Near-threshold vibrational excitation of acetylene by positron impact

    SciTech Connect

    Oliveira, Eliane M. de; Lima, Marco A. P.; Sanchez, Sergio d'A.; Varella, Marcio T. do N.

    2010-01-15

    We report vibrational excitation cross sections for C-C and C-H symmetric stretch modes of acetylene by positron impact. The contribution of these infrared inactive modes to the annihilation parameter is also addressed. The Feshbach projection operator approach was employed to vibrationally resolve e{sup +}-acetylene scattering phase shifts obtained with the Schwinger multichannel method. The present results point out a virtual state pole at the equilibrium geometry of acetylene that becomes a bound state as either bond is stretched, in qualitative agreement with previous calculations for small hydrocarbons. The vibrational couplings are stronger for the C-C mode, giving rise to a bound state pole within the Franck-Condon region of the vibrational ground state. These bound and virtual states give rise to sharp threshold structures (vibrational resonances) in both the vibrational excitation cross sections and the annihilation parameter (Z{sub eff}). We found fair agreement between the present calculations and previously reported e{sup +}-acetylene vibrational excitation cross sections.

  2. 76 FR 75782 - Revising Standards Referenced in the Acetylene Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... transmitting facsimile copies of attachments that supplement these documents (e.g., studies, journal articles..., and messenger service: Submit comments and any additional material (e.g., studies, journal articles... organizations (``SDO standards'') (69 FR 68283). A SDO standard referenced in OSHA's Acetylene Standard (29...

  3. Interstitial pneumonitis after acetylene welding: a case report.

    PubMed

    Brvar, Miran

    2014-01-01

    Acetylene is a colorless gas commonly used for welding. It acts mainly as a simple asphyxiant. In this paper, however, we present a patient who developed a severe interstitial pneumonitis after acetylene exposure during aluminum welding. A 44-year old man was welding with acetylene, argon and aluminum electrode sticks in a non-ventilated aluminum tank for 2 h. Four hours after welding dyspnea appeared and 22 h later he was admitted at the Emergency Department due to severe respiratory insufficiency with pO2 = 6.7 kPa. Chest X-ray showed diffuse interstitial infiltration. Pulmonary function and gas diffusion tests revealed a severe restriction (55% of predictive volume) and impaired diffusion capacity (47% of predicted capacity). Toxic interstitial pneumonitis was diagnosed and high-dose systemic corticosteroid methylprednisolone and inhalatory corticosteroid fluticasone therapy was started. Computed Tomography (CT) of the lungs showed a diffuse patchy ground-glass opacity with no signs of small airway disease associated with interstitial pneumonitis. Corticosteroid therapy was continued for the next 8 weeks gradually reducing the doses. The patient's follow-up did not show any deterioration of respiratory function. In conclusion, acetylene welding might result in severe toxic interstitial pneumonitis that improves after an early systemic and inhalatory corticosteroid therapy. PMID:24658888

  4. Fatal carbon monoxide intoxication after acetylene gas welding of pipes.

    PubMed

    Antonsson, Ann-Beth; Christensson, Bengt; Berge, Johan; Sjögren, Bengt

    2013-06-01

    Acetylene gas welding of district heating pipes can result in exposure to high concentrations of carbon monoxide. A fatal case due to intoxication is described. Measurements of carbon monoxide revealed high levels when gas welding a pipe with closed ends. This fatality and these measurements highlight a new hazard, which must be promptly prevented. PMID:23307861

  5. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel....

  6. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel....

  7. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel....

  8. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel....

  9. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel....

  10. Thermally induced self-locking of an optical cavity by overtone absorption in acetylene gas

    SciTech Connect

    Dube, P.; Ma, L.; Ye, J.; Jungner, P.; Hall, J.L.

    1996-09-01

    Strong self-locking phenomena are observed when laser power is converted into heat by a weakly absorbing medium within a high-finesse cavity. Deposited heat leads to increased temperature and, for the case of weakly absorbing intracavity gases studied here, to an associated reduction of density and refractive index. This thermal change in refractive index provides self-acting cavity tuning near resonant conditions. In the experiments reported here a Fabry{endash}Perot cavity of finesse 274 was filled with acetylene gas and illuminated with a titanium:sapphire laser tuned to the {ital P}(11) line of the {nu}{sub 1}+3{nu}{sub 3} overtone band near 790 nm. The dependencies of maximum frequency-locking range on gas pressure, laser power, and laser frequency sweep rate and direction were measured and could be well unified by analysis based on the thermal model. In the domain of strong self-tuning an interesting self-sustained oscillation was observed, with its several sharp frequencies directly and quantitatively linked to the acoustic boundary conditions in our cylindrical cell geometry. The differences between the behavior of acetylene near 790 nm and molecular oxygen with electronic transition near 763 nm are instructive; whereas the absorbed powers were similar, they differed strongly in their rates for internal to translational energy conversion by collisional relaxation. {copyright} {ital 1996 Optical Society of America.}

  11. Infrared and ab initio study of acetylene acetone complex in solid argon and nitrogen matrices

    NASA Astrophysics Data System (ADS)

    Sundararajan, K.; Ramanathan, N.

    2007-05-01

    The infrared absorption spectrum of the hydrogen-bonded acetylene-acetone complex has been investigated in solid argon and nitrogen matrices. Formation of the 1:1 acetylene-acetone complex was evidenced by the shifts in the vibrational frequencies of the modes involving the acetylene and acetone submolecules. The structure of the adduct, energies and the vibrational frequencies were computed at the B3LYP and MP2 level using 6-31++G ∗∗ basis sets. The computed vibrational frequencies of 1:1 acetylene-acetone complex agree well with the experimental frequencies. The computed vibrational frequencies indicated a primary C-H⋯O hydrogen-bonded interaction between the hydrogen of acetylene and carbonyl oxygen in acetone. Structures, interaction energies, and vibrational frequencies have also been computed for 2:1 acetylene-acetone and acetylene-acetone-water complexes. AIM analysis was also performed to understand the nature of the interactions in these complexes.

  12. Importance of gas solubility coefficients as a function of temperature and salinity for use in nitrogen fixation assays

    NASA Astrophysics Data System (ADS)

    Breitbarth, E.; Mills, M. M.; Laroche, J.

    2003-04-01

    The Acetylene Reduction Assay (ARA) is widely established in nitrogen fixation research. Due to its low cost and ease of use it has been the method of choice in numerous marine studies for the past 30 years. Generally this method involves analyzing a gaseous phase that is in equilibrium with the liquid phase of interest. As a substrate, acetylene blocks the reduction of dinitrogen by the nitrogen fixing enzyme nitrogenase, and is instead reduced to ethylene. Ethylene is detected easily and with high sensitivity using gas chromatography. As with any analysis of gases in liquids, it is crucial to use the correct gas solubility (bunsen) coefficients when determining the concentration of a gas in solution. Reviewing all literature available to us describing the use of ARA for marine nitrogen fixation studies concerning the cyanobacterium Trichodesmium we found no information on the bunsen coefficients used, whereas anecdotal information exists that a value of 0.1 is widely applied. This information is insufficient for correct utilization of the ARA since the solubility a gas in water is temperature and salinity dependent. Here we present recalculated bunsen coefficients for ethylene in seawater (ranging from 0.07 to 0.14) based on empirical data for a range of temperatures and salinities that are of concern for marine science. We further demonstrate the possible error in ARA dependent nitrogen fixation rates caused by application of incorrect bunsen coefficients.

  13. Study of acetylene poisoning of Pt cathode on proton exchange membrane fuel cell spatial performance using a segmented cell system

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana V.; St-Pierre, Jean

    2015-08-01

    Acetylene is a welding fuel and precursor for organic synthesis, which requires considering it to be a possible air pollutant. In this work, the spatial performance of a proton exchange membrane fuel cell exposed to 300 ppm C2H2 and different operating currents was studied with a segmented cell system. The injection of C2H2 resulted in a cell performance decrease and redistribution of segments' currents depending on the operating conditions. Performance loss was 20-50 mV at 0.1-0.2 A cm-2 and was accompanied by a rapid redistribution of localized currents. Acetylene exposure at 0.4-1.0 A cm-2 led to a sharp voltage decrease to 0.07-0.13 V and significant changes in current distribution during a transition period, when the cell reached a voltage of 0.55-0.6 V. A recovery of the cell voltage was observed after stopping the C2H2 injection. Spatial electrochemical impedance spectroscopy (EIS) data showed different segments' behavior at low and high currents. It was assumed that acetylene oxidation occurs at high cell voltage, while it reduces at low cell potential. A detailed analysis of the current density distribution, its correlation with EIS data and possible C2H2 oxidation/reduction mechanisms are presented and discussed.

  14. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(O) particles

    SciTech Connect

    Arnold, W.A.; Roberts, A.L.

    2000-05-01

    Pathways and kinetics through which chlorinated ethylenes and their daughter products react with Fe(O) particles were investigated through batch experiments. Substantial intra- and interspecies inhibitory effects were observed, requiring the use of a modified Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic model in which species compete for a limited number of reactive sites at the particle-water interface. Results indicate that reductive {beta}-elimination accounts for 87% of tetrachloroethylene (PCE), 97% of trichloroethylene (TCE), 94% of cis-dichloroethylene (cis-DCE), and 99% of trans-dichloroethylene (Trans-DCE) reaction. Reaction of 1,1-DCE gives rise to ethylene, consistent with a reductive {alpha}-elimination pathway. For the highly reactive chloro- and dichloro-acetylene intermediates produced from the reductive elimination of TCE and PCE, 100% and 76% of the reaction, respectively, occur via hydrogenolysis to lessen chlorinated acetylenes. The branching ratios for reactions of PCE or TCE (and their daughter products) with iron particles are therefore such that production of vinyl chloride is largely circumvented. Reactivity of the chlorinated ethylenes decreases markedly with increasing halogenation, counter to the trend that might be anticipated if the rate-limiting step were to involve dissociative electron transfer. The authors propose that the reaction of vinyl halides proceeds via a di-{sigma}-bonded surface-bound intermediate. The reactivity trends and pathways observed in this work explain why lesser-chlorinated ethylenes have only been reported as minor products in prior laboratory and field studies of PCE and TCE reaction with Fe(O).

  15. Assessment of cosmetic ingredients in the in vitro reconstructed human epidermis test method EpiSkin™ using HPLC/UPLC-spectrophotometry in the MTT-reduction assay.

    PubMed

    Alépée, N; Hibatallah, J; Klaric, M; Mewes, K R; Pfannenbecker, U; McNamee, P

    2016-06-01

    Cosmetics Europe recently established HPLC/UPLC-spectrophotometry as a suitable alternative endpoint detection system for measurement of formazan in the MTT-reduction assay of reconstructed human tissue test methods irrespective of the test system involved. This addressed a known limitation for such test methods that use optical density for measurement of formazan and may be incompatible for evaluation of strong MTT reducer and/or coloured chemicals. To build on the original project, Cosmetics Europe has undertaken a second study that focuses on evaluation of chemicals with functionalities relevant to cosmetic products. Such chemicals were primarily identified from the Scientific Committee on Consumer Safety (SCCS) 2010 memorandum (addendum) on the in vitro test EpiSkin™ for skin irritation testing. Fifty test items were evaluated in which both standard photometry and HPLC/UPLC-spectrophotometry were used for endpoint detection. The results obtained in this study: 1) provide further support for Within Laboratory Reproducibility of HPLC-UPLC-spectrophotometry for measurement of formazan; 2) demonstrate, through use a case study with Basazol C Blue pr. 8056, that HPLC/UPLC-spectrophotometry enables determination of an in vitro classification even when this is not possible using standard photometry and 3) addresses the question raised by SCCS in their 2010 memorandum (addendum) to consider an endpoint detection system not involving optical density quantification in in vitro reconstructed human epidermis skin irritation test methods. PMID:26891813

  16. Communication: Observation of local-bender eigenstates in acetylene.

    PubMed

    Steeves, Adam H; Park, G Barratt; Bechtel, Hans A; Baraban, Joshua H; Field, Robert W

    2015-08-21

    We report the observation of eigenstates that embody large-amplitude, local-bending vibrational motion in acetylene by stimulated emission pumping spectroscopy via vibrational levels of the S1 state involving excitation in the non-totally symmetric bending modes. The N(b) = 14 level, lying at 8971.69 cm(-1) (J = 0), is assigned on the basis of degeneracy due to dynamical symmetry breaking in the local-mode limit. The level pattern for the N(b) = 16 level, lying at 10 218.9 cm(-1), is consistent with expectations for increased separation of ℓ = 0 and 2 vibrational angular momentum components. Increasingly poor agreement between our observations and the predicted positions of these levels highlights the failure of currently available normal mode effective Hamiltonian models to extrapolate to regions of the potential energy surface involving large-amplitude displacement along the acetylene ⇌ vinylidene isomerization coordinate. PMID:26298106

  17. Communication: Observation of local-bender eigenstates in acetylene

    NASA Astrophysics Data System (ADS)

    Steeves, Adam H.; Park, G. Barratt; Bechtel, Hans A.; Baraban, Joshua H.; Field, Robert W.

    2015-08-01

    We report the observation of eigenstates that embody large-amplitude, local-bending vibrational motion in acetylene by stimulated emission pumping spectroscopy via vibrational levels of the S1 state involving excitation in the non-totally symmetric bending modes. The Nb = 14 level, lying at 8971.69 cm-1 (J = 0), is assigned on the basis of degeneracy due to dynamical symmetry breaking in the local-mode limit. The level pattern for the Nb = 16 level, lying at 10 218.9 cm-1, is consistent with expectations for increased separation of ℓ = 0 and 2 vibrational angular momentum components. Increasingly poor agreement between our observations and the predicted positions of these levels highlights the failure of currently available normal mode effective Hamiltonian models to extrapolate to regions of the potential energy surface involving large-amplitude displacement along the acetylene ⇌ vinylidene isomerization coordinate.

  18. Total ionization cross-sections for fluoro acetylene molecule

    NASA Astrophysics Data System (ADS)

    Pandya, C. V.

    2014-04-01

    Total ionization cross-sections for Fluoro acetylene molecule is calculated by applying Binary Encounter Bethe (BEB) model by electron impact. The cross-sections are calculated in the energy range from ionization threshold to 2 keV. No experimental or theoretical work is reported in the literature to the best of my knowledge for comparison. Present work is a maiden attempt to find electron impact ionization cross section.

  19. [Tunable fiber laser based photoacoustic spectroscopy for acetylene detection].

    PubMed

    Peng, Yong; Yu, Qing-Xu

    2009-08-01

    An acetylene detection system has been constructed with a tunable erbium-doped fiber laser (TEDFL) based photoacoustic spectrometer. Combining wavelength modulation and second harmonic signal detection technique, the system is able to effectively eliminate the background noise generated by absorption of the cell windows and the wall of the acoustic resonator. The system was applied to low concentration acetylene flowing measurement, through optimizing the systemic optics, acoustics and electron detection technique condition. The experimental results show that the second harmonic amplitude is directly proportional to gas concentration. Their linear pertinence coefficient is 0.999 53. The system sensitivity limit for acetylene detection is 0.3 ppm under atmosphere pressure with 100 ms time constant and 3. 5 mW average optical power. The TEDFL was used as light source in stead of the DFB diode laser which is relatively costly. The system appears promising as a basis for developing cheap, practical, portable spectroscopy instruments for trace gas detection. The detection sensitivity could be greatly improved by using multi-path cell or increasing the laser power with EDFA. PMID:19839300

  20. Tuning the Electronic Properties of Acetylenic Fluorenes by Phosphaalkene Incorporation.

    PubMed

    Svyaschenko, Yurii V; Orthaber, Andreas; Ott, Sascha

    2016-03-14

    Versatile synthetic protocols for 2,7- and 3,6-diacetylenic fluorene-9-ylidene phosphanes (F9Ps) were developed. Protodesilylation of trimethylsilyl-protected acetylenic F9Ps affords terminal acetylenes that can be employed in Sonogashira and Glaser-type C-C coupling reactions to give thienyl-decorated and butadiyne-bridged fluorene-9-ylidene phosphanes, respectively. As evidenced by UV/Vis spectroscopy and cyclic voltammetry and corroborated by ab initio calculations, the presence of the P center in the F9Ps induces a significantly reduced HOMO-LUMO splitting that originates from stabilization of the LUMO levels. Variation of the acetylene substitution pattern is an additional tool to influence the optical and electronic properties. Whereas 3,6-disubstituted F9Ps have strong absorptions around 400 nm, mainly due to π-π* transitions, 2,7-diacetylenic F9Ps exhibit longest-wavelength absorptions that have significant charge-transfer character with an onset around 520 nm. PMID:26833389

  1. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination

    PubMed Central

    Dai, Bin; Wang, Qinqin; Yu, Feng; Zhu, Mingyuan

    2015-01-01

    A detailed study of the valence state and distribution of the AuCl3/AC catalyst during the acetylene hydrochlorination deactivation process is described and discussed. Temperature-programmed reduction and X-ray photoelectron spectral analysis indicate that the active Au3+ reduction to metallic Au0 is one reason for the deactivation of AuCl3/AC catalyst. Transmission electron microscopy characterization demonstrated that the particle size of Au nano-particles increases with increasing reaction time. The results indicated that metallic Au0 exhibits considerable catalytic activity and that Au nano-particle aggregation may be another reason for the AuCl3/AC catalytic activity in acetylene hydrochlorination. PMID:25994222

  2. Mechanism-based inactivation of cytochrome P-450 dependent benzo(a)pyrene hydroxylase activity by acetylenic and olefinic polycyclic arylhydrocarbons

    SciTech Connect

    Gan, L.S.

    1986-01-01

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxygenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene (EP), 3-ethynylperylene (EPL), cis- and trans-1-(2-bromo-vinyl)pyrene (c-BVP and t-BVP), and 1-allylpyrene (AP) serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene (BP) hydroxylase, while 1-vinyl-pyrene (VP) and phenyl 1-pyrenyl acetylene (PPA) do not cause a detectable suicide inhibition of the BP hydroxylase. The mechanism-based loss of BP hydroxylase activity caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes. In the presence of NADPH, /sup 3/H-labeled EP covalently attached to P-450 isozymes with a measured stoichiometry of one mole of EP per mole of the P-450 heme. The results of the effects of these aryl derivatives in the mammalian cell-mediated mutagenesis assay and toxicity assay show that none of the compounds examined nor any of the their metabolites produced in the incubation system are cytotoxic to V79 cells.

  3. Thermodynamic study on the formation of acetylene during coal pyrolysis in the arc plasma jet

    SciTech Connect

    Bao, W.; Li, F.; Cai, G.; Lu, Y.; Chang, L.

    2009-07-01

    Based on the principle of minimizing the Gibbs free energy, the composition of C-H-O-N-S equilibrium system about acetylene formation during the pyrolysis in arc plasma jet for four kinds of different rank-ordered coals such as Datong, Xianfeng, Yangcheng, and Luan was analyzed and calculated. The results indicated that hydrogen, as the reactive atmosphere, was beneficial to the acetylene formation. The coal ranks and the hydrogen, oxygen, nitrogen, and sulfur in coal all could obviously affect the acetylene yield. The mole fraction of acetylene is the maximum when the ratio value of atom H/C was 2. The content of oxygen was related to the acetylene yield, but it does not compete with CO formation. These agreed with the experimental results, and they could help to select the coal type for the production of acetylene through plasma pyrolysis process.

  4. Initial stages of soot formation in thermal pyrolysis of acetylene. I. Mechanism for homogeneous pyrolysis of acetylene

    SciTech Connect

    Merkulov, A.A.; Ovsyannikov, A.A.; Polak, L.S.; Popov, V.T.; Pustilnikov, V.Yu. )

    1989-03-01

    A probable mechanism for the homogeneous pyrolysis of acetylene, using carbene reactions, is considered. Analysis of the energetics for the probable mechanism of the initiation reactions shows the rearrangement C{sub 2}H{sub 2} {yields}:CCH{sub 2} to be the most probable. Using the energetic barriers for simple carbene reactions and formation enthalpies for more complicated carbenes, the authors evaluated the activation energies for the reactions mechanism. The vibrational excitation of the products of carbene reactions is taken into account. Calculations of the acetylene conversion kinetics and yields of the main gas-phase pyrolysis products, based on the carbene molecular mechanism, show significantly better agreement with available experimental data as compared to those based on traditional radical mechanisms. The calculated time for the appearance of aromatic products is close to the measured induction times for the appearance of soot particles.

  5. Kinetics and Structure of Superagglomerates Produced by Silane and Acetylene

    NASA Technical Reports Server (NTRS)

    Mulholland, G. W.; Hamins, A.; Sivathanu, Y.

    1999-01-01

    The evolution of smoke in a laminar diffusion flame involves several steps. The first step is particle inception/nucleation in the high-temperature fuel-rich region of the flame followed by surface growth and coagulation/coalescence of the small particles. As the primary spheres grow in size and lose hydrogen, the colliding particles no longer coalesce but retain their identity as a cluster of primary spheres, termed an agglomerate. Finally, in the upper portion of the flame, the particles enter an oxidizing environment which may lead to partial or complete burnout of the agglomerates. Currently there is no quantitative model for describing the growth of smoke agglomerates up to superagglomerates with an overall dimension of 10 microns and greater. Such particles are produced during the burning of acetylene and fuels containing benzene rings such as toluene and polystyrene. In the case of polystyrene, smoke agglomerates in excess of 1 mm have been observed "raining" out from large fires. Evidence of the formation of superagglomerates in a laminar acetylene/air diffusion flame has been recently reported. Acetylene was chosen as the fuel since the particulate loading in acetylene/air diffusion flames is very high. Photographs were obtained by Sorensen using a microsecond xenon lamp of the "stream" of soot just above the flame. For low flow rates of acetylene, only submicrometer soot clusters are produced and they give rise to the homogeneous appearance of the soot stream. When the flow rate is increased to 1.7 cu cm/s, soot clusters up to 10 microns are formed and they are responsible for the graininess and at a flow rate of 3.4 cu cm/s, a web of interconnected clusters as large as the width of the flame is seen. This interconnecting web of superagglomerates is described as a gel state by Sorensen et al (1998). This is the first observation of a gel for a gas phase system. It was observed that this gel state immediately breaks up into agglomerates due to buoyancy induced turbulence and gravitational sedimentation.

  6. Acetylene as a substrate in the development of primordial bacterial communities

    NASA Astrophysics Data System (ADS)

    Culbertson, Charles W.; Strohmaier, Francis E.; Oremland, Ronald S.

    1988-12-01

    The fermentation of atmospheric acetylene by anaerobic bacteria is proposed as the basis of a primordial heterotrophic food chain. The accumulation of fermentation products (acetaldehyde, ethanol, acetate and hydrogen) would create niches for sulfate-respiring bacteria as well as methanogens. Formation of acetylene-free environments in soils and sediments would also alter the function of nitrogenase from detoxification to nitrogen-fixation. The possibility of an acetylene-based anaerobic food chain in Jovian-type atmospheres is discussed.

  7. Density of saturated acetylene solutions as a function of temperature under 0. 1 MPa pressure

    SciTech Connect

    Kozhichkina, T.N.; Choklenkova, G.P.; Rybkin, A.P.; Shleinikov, V.M.

    1985-04-10

    The authors studied experimentally the volumes of saturated solutions of acetylene in acetone at low temperatures, and alalyzed the results theoretically. A dynamic method was used for obtaining saturated solutions of acetylene in acetone. The result of determinations of densities of saturated solutions of acetylene in acetone at temperatures from 0 degree to -70 degree at pressure P = 0.1 MPa were used for derivation of an empirical expression for the dependence of the density of saturated dolutions of acetylene in acetone on temperature at P = 0.1 MPa.

  8. Acetylene-derived polymers and their applications in hair and skin care.

    PubMed

    Petter, P J

    1989-02-01

    Synopsis Since the introduction over 30 years ago of polyvinylpyrrolidone (PVP) as the first synthetic hairspray resin, acetylene-derived polymers have found wide and increasing applications in the cosmetics and toiletries industry. This review covers the two main classes of acetylenic polymers. In the first class, in which the chemistry may be traced back to reaction of acetylene with formaldehyde, are included PVP homopolymers and copolymers of VP with vinyl acetate, dimethylaminoethyl methacrylate, vinylcaprolactam and styrene. In the second class, stemming from reaction of acetylene with methanol, are the poly (vinyl methyl ether/maleic acid) monoester resins. PMID:19456933

  9. Acetylene hydratase: a non-redox enzyme with tungsten and iron-sulfur centers at the active site.

    PubMed

    Kroneck, Peter M H

    2016-03-01

    In living systems, tungsten is exclusively found in microbial enzymes coordinated by the pyranopterin cofactor, with additional metal coordination provided by oxygen and/or sulfur, and/or selenium atoms in diverse arrangements. Prominent examples are formate dehydrogenase, formylmethanofuran dehydrogenase, and aldehyde oxidoreductase all of which catalyze redox reactions. The bacterial enzyme acetylene hydratase (AH) stands out of its class as it catalyzes the conversion of acetylene to acetaldehyde, clearly a non-redox reaction and a reaction distinct from the reduction of acetylene to ethylene by nitrogenase. AH harbors two pyranopterins bound to W, and a [4Fe-4S] cluster. W is coordinated by four dithiolene sulfur atoms, one cysteine sulfur, and one oxygen ligand. AH activity requires a strong reductant suggesting W(IV) as the active oxidation state. Two different types of reaction pathways have been proposed. The 1.26 Å structure reveals a water molecule coordinated to W which could gain a partially positive net charge by the adjacent protonated Asp-13, enabling a direct attack of C2H2. To access the W-Asp site, a substrate channel was evolved distant from where it is found in other members of the DMSOR family. Computational studies of this second shell mechanism led to unrealistically high energy barriers, and alternative pathways were proposed where C2H2 binds directly to W. The architecture of the catalytic cavity, the specificity for C2H2 and the results from site-directed mutagenesis do not support this first shell mechanism. More investigations including structural information on the binding of C2H2 are needed to present a conclusive answer. PMID:26790879

  10. Autoxidation and acetylene-accelerated oxidation of NO in a 2-phase system; implications for the expression of denitrification in ex situ experiments

    NASA Astrophysics Data System (ADS)

    Nadeem, Shahid; Dörsch, Peter; Bakken, Lars

    2013-04-01

    Denitrification allows microorganisms to sustain respiration under anoxic conditions. The typical niche for denitrification is an environment with fluctuating oxygen concentrations such as soils and borders between anoxic and oxic zones of biofilms and sediments. In such environments, the organisms need adequate regulation of denitrification in response to changing oxygen availability to tackle both oxic and anoxic spells. The regulation of denitrification in soils has environmental implications, since it affects the proportions of N2, N2O and NO emitted to the atmosphere. The expression of denitrification enzymes is regulated by a complex regulatory network involving one or several positive feedback loops via the intermediate nitrogen oxides. Nitric oxide (NO) is known to induce denitrification in model organisms, but the quantitative effect of NO and its concentration dependency has not been assessed for denitrification in soils. NO is chemically unstable in the presence of oxygen due to autoxidation, and the oxidation of NO is accelerated by acetylene (C2H2) which is commonly used as an inhibitor of N2O reductase in denitrification studies. As a first step to a better understanding of NO's role in soil denitrification, we investigated NO oxidation kinetics for a closed "two phase" system (i.e. liquid phase + headspace) typically used for denitrification experiments with soil slurries, with and without acetylene present. Models were developed to adequately predict autoxidation and acetylene-accelerated oxidation. The minimum oxygen concentration in the headspace ([O2]min, mL L-1) for acetylene-accelerated NO oxidation was found to increase linearly with the NO concentration ([NO], mL L-1); [O2]min= 0.192 + [NO]*0.1 (r2=0.978). The models for NO oxidation were then used to assess NO-oxidation rates in denitrification experiments with batches of bacterial cells extracted from soil. The batches were exposed to low initial oxygen concentrations in gas tight serum flasks (with and without C2H2), and monitored for O2, NO, N2O and N2 production while depleting the oxygen and switching to anoxic respiration. Acetylene effectively scavenged NO from the cultures until oxygen concentration reached below ~0.19 mL L-1, and the estimated rate of acetylene-accelerated NO oxidation was more than sufficient to explain an observed reduction of the N2O production induced by acetylene. When [O2] reached below 0.19 mL L-1, the NO concentrations increased and stabilized at the same level as in the treatments without acetylene, but the rate of denitrification was much lower than without acetylene. The results indicate that the early accumulation of 10-20 nM NO during oxygen depletion has a significant effect on the expression of denitrification in soil communities. This warrants a greater interest in NO as a regulator of denitrification in soils and shows that the acetylene inhibition method may be problematic even for intentionally anoxic incubations, unless precautions are taken to secure initial O2-concentrations below 0.19 mL O2 L-1.

  11. Enumeration and Relative Importance of Acetylene-Reducing (Nitrogen-Fixing) Bacteria in a Delaware Salt Marsh

    PubMed Central

    Dicker, Howard J.; Smith, David W.

    1980-01-01

    Three groups of N2-fixing bacteria were enumerated from the top 1 cm of the surface in four vegetational areas in a Delaware salt marsh. The results over the 9-month sampling period showed that there were no discernible seasonal patterns for any of the groups enumerated (Azotobacter sp., Clostridium sp., and Desulfovibrio sp.). Azotobacter sp. was present in numbers of 107 per g of dry mud, whereas the two anaerobic fixers were present in much lower numbers (103 to 104 per g of dry mud). There were no differences in the numbers of each group among the different vegetational areas, indicating that there was a heterogeneous population of N2 fixers present. Additional studies indicate that the activity of sulfate reducers (Desulfovibrio sp.) may account for as much as 50% of the total observed acetylene reduction activity. Oxygen was found to exert little effect on the observed acetylene reduction activity, indicating that stable aerobic and anaerobic microenvironments exist in the surface layer of marsh sediments. PMID:16345564

  12. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103 Section 56.50-103 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-103 Fixed oxygen-acetylene distribution piping. (a)...

  13. Acetylene Fermentation: Relevance to Primordial Biogeochemistry and the Search for Life in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.

    2014-02-01

    Acetylene supports the growth of some terrestrial anaerobes. The reaction is highly exothermic. The abundance of acetylene in the methane-rich planet(oid)s of the outer solar system could represent a means of nourishment for resident alien microbes.

  14. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded with methyl acetylene-propadiene mixture must be completely separate from piping and refrigeration systems for other tanks. If the piping system for the tanks to be loaded with methyl acetylene-propadiene mixture...

  15. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded with methyl acetylene-propadiene mixture must be completely separate from piping and refrigeration systems for other tanks. If the piping system for the tanks to be loaded with methyl acetylene-propadiene mixture...

  16. A mechanistic study of the deactivation by hydrocarbon fouling of front end acetylene hydrogenation catalysts and the effect of carbon monoxide incorporation

    SciTech Connect

    Hancock, F.E.; Booth, J.S.

    1994-12-31

    Front and tail end selective acetylene hydrogenation catalysts show activity loss with time-on-line caused by the accumulation of hydrocarbon species on the surface of the catalyst. Although in front end processes this de-activation rate is considerably lower than for a tail end configuration, the rate is nonetheless significant. The plant downtime while regeneration is undertaken or the need for reserve reactors can add important cost penalties to the plant operation. The mechanism of the de-activation is complex involving reductive acetylene oligomerization and carbon monoxide incorporation via several palladium catalyzed carbonylation reactions. This paper describes research directed toward elucidating both the chemistry of the hydrocarbon synthesis on plant and laboratory catalysts and the development of techniques to determine key intermediates in these reactions.

  17. Electron-paramagnetic-resonance studies on nitrogenase of Klebsiella pneumoniae. Evidence for acetylene- and ethylene-nitrogenase transient complexes.

    PubMed Central

    Lowe, D J; Eady, R R; Thorneley, N F

    1978-01-01

    Klebsiella pneumoniae nitrogenase exhibited four new electron-paramagnetic-resonance signals during turnover at 10 degrees C, pH7.4, which were assigned to intermediates present in low concentrations in the steady state. 57Fe-substituted Mo--Fe protein showed that they arose from Fe--S clusters in the Mo--Fe protein of nitrogenase. The new signals are designated: Ic, g values at 4.67, 3.37 and approx. 2.0; VI, g values at 2.125, 2.000 and 2.000; VII, g values at 5.7 and 5.4; VIII, g values at 2.092, 1.974 and 1.933. The sharp axial signal VI arises from a Fe4S4 cluster at the --1 oxidation level. This signal was only detected in the presence of ethylene and provides the first evidence of an enzyme--product complex for nitrogenase. [13C]Acetylene and [13C]ethylene provided no evidence for direct binding of this substrate and product to the Fe--S clusters giving rise to these signals. The dependence of signal intensities on acetylene concentration indicated two types of binding site, with apparent dissociation constants K less than 16 micron and K approximately 13mM. A single binding site for ethylene (K=1.5mM) was detected. A scheme is proposed for the mechanism of reduction of acetylene to ethylene and inhibition of this reaction by CO. PMID:210766

  18. Mechanism of action of butyryl-CoA dehydrogenase: reactions with acetylenic, olefinic, and fluorinated substrate analogues.

    PubMed

    Fendrich, G; Abeles, R H

    1982-12-21

    The acetylenic thio ester (3-pentynoyl)pantetheine irreversibly inactivates butyryl-CoA dehydrogenase from Megasphaera elsdenii. The inactivator becomes covalently attached to the protein (0.61 +/- 0.1 mol of 14C-labeled inactivator/mol of enzyme flavin). No modification of the flavin cofactor is seen. The covalent enzyme-inactivator adduct is labile toward base and neutral hydroxylamine. These treatments release 85 +/- 5% of the incorporated 14C label from the protein. Base-catalyzed hydrolysis of the adduct releases 3-oxopentanoic acid (0.6 mol/mol of incorporated inactivator). Treatment with hydroxylamine leads to formation of a hydroxamic acid on the protein (0.64 +/- 0.09 mol/mol of incorporated inactivator). The covalent adduct can be reduced with sodium borohydride with release of 1,3-pentanediol. Hydrolysis of the protein with 6 N HCl after sodium borohydride reduction yields 2-amino-5-hydroxyvaleric acid and proline. We conclude that the inactivator has reacted with the gamma-carboxyl group of a glutamate residue at the enzyme active site. The inactivation proceeds through enzyme-catalyzed rearrangement of the acetylene to an allene, followed by nucleophilic addition of the carboxyl group to the allene. (3-Chloro-3-butenoyl)pantetheine irreversibly inactivates the enzyme in a fashion similar to the acetylenic thio ester and also modifies a glutamate residue. Butyryl-CoA dehydrogenase catalyzes the isomerization of (3-butenoyl)pantetheine to (2-butenoyl)pantetheine. The enzyme catalyzes the elimination of HF from 3-fluoropropionyl-CoA and (3,3-difluorobutyryl)pantetheine. We suggest, that these results together support an oxidation mechanism for butyryl-CoA dehydrogenase which is initiated by alpha-proton abstraction. PMID:7159554

  19. Identification of glutathione conjugates of acetylene-containing positive allosteric modulators of metabotropic glutamate receptor subtype 5.

    PubMed

    Zhuo, Xiaoliang; Huang, Xiaohua Stella; Degnan, Andrew P; Snyder, Lawrence B; Yang, Fukang; Huang, Hong; Shu, Yue-Zhong; Johnson, Benjamin M

    2015-04-01

    A recent medicinal chemistry campaign to identify positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGluR5) led to the discovery of potent compounds featuring an oxazolidinone structural core flanked by biaryl acetylene and haloaryl moieties. However, biotransformation studies of some of these mGluR5 PAMs demonstrated the formation of glutathione (GSH) conjugates. The conjugates in question were formed independently of NADPH as the main products in liver microsomes and liver cytosol (rat and human) and exhibited masses that were 307 u greater than their respective substrates, indicating the involvement of a reductive step in the formation of these metabolites. To further characterize the relevant metabolic sequences, GSH conjugates of (4R,5R)-5-(3-fluorophenyl)-4-(5-(pyrazin-2-ylethynyl)pyridin-3-yl)oxazolidin-2-one and (4R,5R)-5-(4-fluorophenyl)-4-(6-((3-fluoropyridin-2-yl)ethynyl)pyridin-2-yl)oxazolidin-2-one were biosynthesized and isolated. Subsequent analysis by NMR showed that GSH had reacted with the acetylene carbon atoms of these mGluR5 PAMs, suggesting a conjugate addition mechanism and implicating cytosolic and microsomal GSH S-transferases (GSTs) in catalysis. Interestingly, five closely related mGluR5 PAMs were not similarly prone to the formation of GSH conjugates in vitro. These compounds also featured acetylenes, but were flanked by either phenyl or cyclohexyl rings, which indicated that the formation of GSH conjugates was influenced by proximal functional groups that modulated the electron density of the triple bond and/or differences in enzyme-substrate specificity. These results informed an ongoing drug-discovery effort to identify mGluR5 PAMs with drug-like properties and a low risk of reactivity with endogenous thiols. PMID:25633841

  20. Plasma-polymerized acetylene nanofilms modified by nitrogen ion implantation

    NASA Astrophysics Data System (ADS)

    Santos, D. C. R.; Mota, R. P.; Honda, R. Y.; Cruz, N. C.; Rangel, E. C.

    2013-06-01

    Thin films were prepared by plasma enhanced chemical vapour deposition (PECVD) from a mixture of acetylene and argon, and post deposition-treated by plasma immersion ion implantation (PIII). The effect of PIII on the nanofilms properties was evaluated as a function of treatment time. The average thickness and roughness were diminished upon PIII. On the other hand, hardness (0.7-3.9 GPa) and elastic modulus (29-54 GPa) increased upon 60 min of ion bombardment. Such results are ascribed mainly to the densification of the film structure caused by the increment in the crosslinking degree with increasing the energy deposited in the films. Wettability of the samples, investigated by contact angle measurements, was reduced (from 64 to 21°) right after PIII. This result, attributed to the introduction of polar groups in the film structure, was not preserved as the sample was aged in atmosphere. After aging, contact angles were larger than 70° but still smaller than 90°. Although the wettability has decreased with aging, the hydrophilic character of the samples was preserved. For certain treatment times, nitrogen PIII turned the plasma-polymerized acetylene films smoother, denser, mechanically and tribologicaly more resistant than the as-deposited material.

  1. Numerical study of ethylene and acetylene laminar flame speeds

    SciTech Connect

    Marinov, N.M.; Pitz, W.J.; Westbrook, C.K.

    1995-03-01

    Detailed chemical kinetic computations for ethylene-air and acetylene-air mixtures have been performed to simulate laminar flame speeds. Sensitivity analysis was applied to determine those reactions which strongly influence flame propagation. In ethylene-air mixtures, the C{sub 2}H{sub 3} + O{sub 2} = CH{sub 2}CHO + O reaction was one of the most sensitive reactions in the C{sub 2}H{sub 4}/C{sub 2}H{sub 3} submechanism and therefore this reaction was very important to ethylene flame propagation. This reaction was not considered in previously reported mechanisms used to model ethylene-air flame propagation. In acetylene-air mixtures, the C{sub 2}H{sub 2}+O {yields} Products, HCCO+H=CH{sub 2}(s)+CO, HCCO+O{sub 2}=CO{sub 2}+CO+H, H+C{sub 2}H{sub 2}(+M) = C{sub 2}H{sub 3}(+M) and CH{sub 2}(s)+C{sub 2}H{sub 2} = H{sub 2}CCCH+H were the most sensitive reactions in the C{sub 2}H{sub 2}/HCCO / CH{sub 2}(s) reaction set.

  2. The art of acetylenic scaffolding: rings, rods, and switches.

    PubMed

    Nielsen, Mogens Brøndsted; Diederich, François

    2002-01-01

    Acetylenic scaffolding with derivatives of tetraethynylethene (TEE, 3,4-diethynylhex-3-ene-1,5-diyne) and (E)-1,2-diethynylethene (DEE, (E)-hex-3-ene-1,5-diyne) provides carbon-rich compounds with interesting physicochemical properties. Thus, these modules are building blocks for monodisperse, linearly pi-conjugated oligomers [polytri(acetylene)s, PTAs] extending in length beyond 10nm, and for large, macrocyclic, all-carbon cores (dehydroannulenes and expanded radialenes) exhibiting strong chromophoric properties. The advanced materials' properties were strongly influenced by the presence of electron-donating substituents at the lateral positions, decreasing the decreasing the (HOMO-LUMO) gap in both PTAs and expanded radialenes. Arylated TEEs were found to undergo photochemically induced cis-trans isomerization, paving the way for applications as light-driven molecular switches in optoelectronic devices. Derivatives of 1,3-diethynylallene are new modules that offer the prospect of scaffolding in an orthogonal manner; that is, they represent precursors for helical oligomers. PMID:12112870

  3. Lewis acid catalyzed trans-hydrostannation of acetylenes

    SciTech Connect

    Asao, Naoki; Liu, Jian-Xiu; Sudoh, Tomoko; Yamamoto, Yoshinori

    1995-12-31

    A Lewis acid such as ZrCl{sub 4} or HfCl{sub 4} catalyzed the hydrostannation of acetylenes 1 to produce the trans-hydrostannation products 2 regio- and stereoselectively. The use of non-polar solvents such as toluene or hexane was essential for obtaining high stereoselectivity and chemical yield. Since ZrCl{sub 4} or HfCl{sub 4} is not soluble in such solvents, this hydrostannation process was carried out in heterogeneous system. The reactions of internal acetylenes proceeded smoothly, although the use of stoichiometric amounts of ZrCl{sub 4} gave better results. The ZrCl{sub 4} catalyzed hydrostannation of 1-octyne with Bu{sub 3}SnH was monitored by {sup 1}H and {sup 119}Sn NMR spectroscopy, and it was found that an equilibrium process was involved in ZrCl{sub 4}-Bu{sub 3}SnH system and that a complex formed from Bu{sub 3}SnH and ZrCl{sub 4} would be a reactive species.

  4. TOPICAL REVIEW: Plasma-chemical reactions: low pressure acetylene plasmas

    NASA Astrophysics Data System (ADS)

    Benedikt, J.

    2010-02-01

    Reactive plasmas are a well-known tool for material synthesis and surface modification. They offer a unique combination of non-equilibrium electron and ion driven plasma chemistry, energetic ions accelerated in the plasma sheath at the plasma-surface interface, high fluxes of reactive species towards surfaces and a friendly environment for thermolabile objects. Additionally, small negatively charged clusters can be generated, because they are confined in the positive plasma potential. Plasmas in hydrocarbon gases, and especially in acetylene, are a good example for the discussion of different plasma-chemical processes. These plasmas are involved in a plethora of possible applications ranging from fuel conversion to formation of single wall carbon nanotubes. This paper provides a concise overview of plasma-chemical reactions (PCRs) in low pressure reactive plasmas and discusses possible experimental and theoretical methods for the investigation of their plasma chemistry. An up-to-date summary of the knowledge about low pressure acetylene plasmas is given and two particular examples are discussed in detail: (a) Ar/C2H2 expanding thermal plasmas with electron temperatures below 0.3 eV and with a plasma chemistry initiated by charge transfer reactions and (b) radio frequency C2H2 plasmas, in which the energetic electrons mainly control PCRs.

  5. Kinetics of front-end acetylene hydrogenation in ethylene production

    SciTech Connect

    Schbib, N.S.; Garcia, M.A.; Gigola, C.E.; Errazu, A.F.

    1996-05-01

    The kinetics of acetylene hydrogenation in the presence of a large excess of ethylene was studied in a laboratory flow reactor. Experiments were carried out using a Pd/{alpha}-Al{sub 2}O{sub 3} commercial catalyst and a simulated cracker gas mixture (H{sub 2}/C{sub 2}H{sub 2} = 50; 60% C{sub 2}H{sub 4}; 30% H{sub 2}, and traces of CO), at varying temperature (293--393 K) and pressure (2--35 atm). Competing mechanisms for acetylene and ethylene hydrogenation were formulated and the corresponding kinetic equations derived by rate-determining step methods. A criterion based upon statistical analysis was used to discriminate between rival kinetic models. The selected equations are consistent with the adsorption of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} in the same active sites followed by reaction with adsorbed hydrogen atoms to form C{sub 2}H{sub 4} and C{sub 2}H{sub 6} in a one-step process. Good agreement between computed and experimental results was obtained using a nonisothermal reactor model that takes into account the existence of external temperature and concentration gradients. The derived kinetic equations together with a pseudohomogeneous model of an integral adiabatic flow reactor were employed to simulate the conversion and the temperature profiles for a commercial hydrogenation unit.

  6. Void dynamics in low-pressure acetylene RF plasmas

    NASA Astrophysics Data System (ADS)

    van de Wetering, Ferdinandus Martinus Jozef Henricus; Nijdam, Sander; Beckers, Job; Kroesen, Gerardus Maria Wilhelmus

    2013-09-01

    In low-pressure acetylene plasmas, dust particles spontaneously form under certain conditions. This process occurs in a matter of seconds to minutes after igniting the plasma and results in a cloud of particulates up to micrometer sizes levitated in the plasma. We studied a capacitively coupled radio-frequency plasma under normal gravity conditions and constant flow of feed gas (argon and acetylene). After the dust cloud has been formed, an ellipsoid-shaped dust-free zone - called a void - develops and grows as a function of time. Concurrently, the dust particles grow in size. Peculiar dynamics of the void have been observed, where during its expansions it suddenly stops growing and even shrinks, to shortly thereafter resume its expansion. We infer this is induced by coagulation of a new batch of dust particles inside the void. The whole dust growth and void expansion/contraction is periodical and highly reproducible. Several techniques are used to gain information about the plasma dynamics. Microwave cavity resonance spectroscopy is used to determine the global electron density. Scattering of a vertical laser sheet is used to visualize the dust particle density. The electrical characteristics of the plasma are determined using a commercially available plasma impedance monitor. This work is supported by NanoNextNL, a micro and nanotechnology programme of the Dutch Government and 130 partners.

  7. Reduction of misleading ("false") positive results in mammalian cell genotoxicity assays. III: sensitivity of human cell types to known genotoxic agents.

    PubMed

    Fowler, Paul; Smith, Robert; Smith, Katie; Young, Jamie; Jeffrey, Laura; Carmichael, Paul; Kirkland, David; Pfuhler, Stefan

    2014-06-01

    We have demonstrated previously that the seemingly high rate of "false" or "misleading" positive results from in vitro micronucleus assays (MNvit) was greater when rodent derived cell lines and certain toxicity measures, such as relative cell count or replication index, were used. These studies suggested that the use of a human cell type with functional p53 and a toxicity measure that included a function of cell proliferation could dramatically reduce the detection of misleading positive results. A reduced "false positive rate" should not be at the expense of a loss of sensitivity of the assay. Therefore, we have investigated the sensitivity of the MNvit assay to known genotoxic agents using three cell types shown previously to be less prone to misleading positives, namely human lymphocytes (HuLy), TK6 and HepG2 cells. The 17 chemicals are well characterised and are from a list of chemicals known to produce positive results in in vitro mammalian cell assays. These data demonstrated a high sensitivity of the assay in which TK6 and HuLy cells were employed, such that 15 out of the 17 chemicals were correctly identified. By contrast, the use of HepG2 cells resulted in far fewer than expected positive responses. In conclusion, using TK6 and HuLy cells in preference to long established rodent cell lines in order to improve specificity does not compromise the sensitivity of the MNvit to detect known genotoxic agents. PMID:24632063

  8. The reconstructed skin micronucleus assay in EpiDerm: reduction of false-positive results - a mechanistic study with epigallocatechin gallate.

    PubMed

    Yuki, Katsuyuki; Ikeda, Naohiro; Nishiyama, Naohiro; Kasamatsu, Toshio

    2013-10-01

    The high rate of false-positive or misleading results in in vitro mammalian genotoxicity testing is a hurdle in the development of valuable chemicals, especially those used in cosmetics, for which in vivo testing is banned in the European Union. The reconstructed skin micronucleus (RSMN) assay in EpiDerm (MatTek Corporation, USA) has shown promise as a follow-up for positive in vitro mammalian genotoxicity tests. However, few studies have explored its better predictive performance compared with existing in vitro assays. In the present study, we followed the protocol of the RSMN assay and used eight chemicals to compare micronucleus (MN) induction with EpiDerm with that in normal human epidermal keratinocytes (NHEKs), both derived from human skin. The assessments of EpiDerm conformed to those of in vivo MN assay, whereas those of NHEKs did not. The effect of cell differentiation status on MN induction was further addressed using a model compound, epigallocatechin gallate (EGCG), which is a major component of green tea extract that shows positive results in in vitro mammalian genotoxicity assays via oxidative stress and negative results in in vivo MN studies. RSMN assay in an underdeveloped epidermal model, EpiDerm-201 (MatTek Corporation), showed a negative result identical to that in EpiDerm, indicating that the barrier function of keratinocytes has limited impact. Analysis of the gene expression profile of both EpiDerm and NHEKs after EGCG treatment for 12h revealed that the expression of genes related to genotoxic response was significantly induced only in NHEKs. Conversely, antioxidative enzyme activities (catalase and glutathione peroxidase) in EpiDerm were higher than those in NHEKs. These results indicate that EpiDerm has antioxidant properties similar to those of a living body and is capable of eliminating oxidative stress that may be caused by EGCG under in vitro experimental conditions. PMID:23988588

  9. Designing supported palladium-on-gold bimetallic nano-catalysts for controlled hydrogenation of acetylene in large excess of ethylene

    NASA Astrophysics Data System (ADS)

    Malla, Pavani

    Ethylene is used as a starting point for many chemical intermediates in the petrochemical industry. It is predominantly produced through steam cracking of higher hydrocarbons (ethane, propane, butane, naphtha, and gas oil). During the cracking process, a small amount of acetylene is produced as a side product. However, acetylene must be removed since it acts as a poison for ethylene polymerization catalysts at even ppm concentrations (>5 ppm). Thus, the selective hydrogenation of acetylene to ethylene is an important process for the purification of ethylene. Conventional, low weight loading Pd catalysts are used for this selective reaction in high concentration ethylene streams. Gold was initially considered to be catalytically inactive for a long time. This changed when gold was seen in the context of the nanometric scale, which has indeed shown it to have excellent catalytic activity as a homogeneous or a heterogeneous catalyst. Gold is proved to have high selectivity to ethylene but poor at conversion. Bimetallic Au and Pd catalysts have exhibited superior activity as compared to Pd particles in semi-hydrogenation. Hydrogenation of acetylene was tested using this bimetallic combination. The Pd-on-Au bimetallic catalyst structure provides a new synthesis approach in improving the catalytic properties of monometallic Pd materials. TiO 2 as a support material and 0.05%Pd loading on 1%Au on titania support and used different treatment methods like washing plasma and reduction between the two metal loadings and was observed under 2:1 ratio. In my study there were two set of catalysts which were prepared by a modified incipient wetness impregnation technique. Out of all the reaction condition the catalyst which was reduced after impregnating gold and then impregnating palladium which was further treated in non-thermal hydrogen plasma and then pretreated in hydrogen till 250°C for 1 hour produced the best activity of 76% yield at 225°C. Stability tests were conducted on the catalysts which were followed by TGA analysis to analyze the coke formation on the catalyst in a period of time at a particular temperature. The catalysts were characterized by the hydrogen chemisorption and atomic absorption spectroscopy.

  10. Antitrypanosomal Acetylene Fatty Acid Derivatives from the Seeds of Porcelia macrocarpa (Annonaceae).

    PubMed

    de Á Santos, Luciana; Cavalheiro, Alberto J; Tempone, Andre G; Correa, Daniela S; Alexandre, Tatiana R; Quintiliano, Natalia F; Rodrigues-Oliveira, André F; Oliveira-Silva, Diogo; Martins, Roberto Carlos C; Lago, João Henrique G

    2015-01-01

    Chagas' disease is caused by a parasitic protozoan and affects the poorest population in the world, causing high mortality and morbidity. As a result of the toxicity and long duration of current treatments, the discovery of novel and more efficacious drugs is crucial. In this work, the hexane extract from seeds of Porcelia macrocarpa R.E. Fries (Annonaceae) displayed in vitro antitrypanosomal activity against trypomastigote forms of T. cruzi by the colorimetric MTT assay (IC50 of 65.44 μg/mL). Using chromatographic fractionation over SiO2, this extract afforded a fraction composed by one active compound (IC50 of 10.70 µg/mL), which was chemically characterized as 12,14-octadecadiynoic acid (macrocarpic acid). Additionally, two new inactive acetylene compounds (α,α'-dimacro-carpoyl-β-oleylglycerol and α-macrocarpoyl-α'-oleylglycerol) were also isolated from the hexane extract. The complete characterization of the isolated compounds was performed by analysis of NMR and MS data as well as preparation of derivatives. PMID:25961159

  11. A first principles study of the acetylene-water interaction

    SciTech Connect

    Tzeli, Demeter; Mavridis, Aristides; Xantheas, Sotiris S.

    2000-04-08

    We present an extensive study of the stationary points on the acetylene-water (AW) ground-state potential energy surface (PES) aimed in establishing accurate energetics for the two different bonding scenarios that are considered. Those include arrangements in which water acts either as a proton acceptor from one of the acetylene hydrogen atoms or a proton donor to the triple bond. We used a hierarchy of theoretical methods to account for electron correlation [MP2 (second-order Moller-Plesset), MP4 (fourth-order Moller-Plesset), and CCSD(T) (coupled-cluster single double triple)] coupled with a series of increasing size augmented correlation consistent basis sets (aug-cc-pVnZ, n=2,3,4). We furthermore examined the effect of corrections due to basis set superposition error (BSSE). We found that those have a large effect in altering the qualitative features of the PES of the complex. They are responsible for producing a structure of higher (C{sub 2v}) symmetry for the global minimum. Zero-point energy (ZPE) corrections were found to increase the stability of the C{sub 2v} arrangement. For the global (water acceptor) minimum of C{sub 2v} symmetry our best estimates are {delta}E{sub e}=-2.87 kcal/mol ({delta}E{sub 0}=-2.04 kcal/mol) and a van der Waals distance of R{sub e}=2.190 Aa. The water donor arrangement lies 0.3 kcal/mol (0.5 kcal/mol including ZPE corrections) above the global minimum. The barrier for its isomerization to the global minimum is E{sub e}=0.18 kcal/mol; however, inclusion of BSSE- and ZPE-corrections destabilize the water donor arrangement suggesting that it can readily convert to the global minimum. We therefore conclude that there exists only one minimum on the PES in accordance with previous experimental observations. To this end, vibrational averaging and to a lesser extend proper description of intermolecular interactions (BSSE) were found to have a large effect in altering the qualitative features of the ground-state PES of the acetylene-water complex. (c) 2000 American Institute of Physics.

  12. Hydrogen bonded complexes of acetylene and boric acid: A matrix isolation infrared and ab initio study

    NASA Astrophysics Data System (ADS)

    Sundararajan, K.; Ramanathan, N.; Kar, Bishnu Prasad; Viswanathan, K. S.

    2011-04-01

    The infrared spectra of the hydrogen bonded complexes of acetylene-boric acid have been investigated in solid nitrogen matrix. We have observed the 1:1 acetylene-boric acid complex in the nitrogen matrix. Formation of the complex was evidenced from the shifts in the vibrational frequencies corresponding to the modes involving the acetylene and boric acid submolecules in the complex. The structure of the complexes and the energies were computed at HF, B3LYP and MP2 levels of theory using 6-31++G ** basis sets. Only one minimum was obtained, which corresponded to a complex with both O sbnd H⋯π and C sbnd H⋯O interactions. In this complex boric acid acts as a proton donor to the acetylene π-cloud and proton acceptor to the acidic hydrogen in acetylene. The computed vibrational frequencies of acetylene-boric acid complexes at B3LYP/6-31++G ** level corroborated well with the experimental frequencies. Calculations were also performed for the higher 2:1 and 3:1 acetylene-boric acid complexes.

  13. Extended permutation-inversion groups for simultaneous treatment of the rovibronic states of trans-acetylene, cis-acetylene, and vinylidene

    NASA Astrophysics Data System (ADS)

    Hougen, Jon T.; Merer, Anthony J.

    2011-05-01

    The electronic ground state potential surface of acetylene (H sbnd C tbnd C sbnd H) has a minimum at the linear conformation, but the excited electronic states may have potential minima at a variety of nonlinear equilibrium shapes. This work is concerned with the group theoretical ideas necessary to treat simultaneously the symmetry properties of rovibronic states associated with three different planar acetylene equilibrium configurations, namely trans bent acetylene, cis bent acetylene, and vinylidene (H 2C dbnd C). We make use of three different kinds of groups: (i) point groups, (ii) permutation-inversion (PI) groups, and (iii) extended PI groups. The PI group is G 4 or G8, depending on whether C sbnd H bond breaking is impossible (no bent acetylene ↔ vinylidene interconversion) or possible. The extended PI groups are G4(2) and G8(2), respectively, when the only large amplitude motions are the CCH bends at each end of the molecule, and G4(8) and G8(8), respectively, when internal rotation is added as a third large amplitude motion. Applied to acetylene, the results indicate that there will be no splittings of the rovibronic levels unless CH bond breaking occurs. Even without bond breaking, however, states of the cis and trans isomers just below their interconversion barrier will show "staggerings" in their K-structures, i.e., a given vibrational level will have three tunneling components at slightly different energies: one component will have levels with K = 4 n only (where n is an integer), a second component will have levels with K = 4 n + 2 only, and the third will have only odd- K levels. New experimental results for the S 1-cis electronic state of acetylene [21] are reviewed, and are found to be consistent with the group theory in so far as comparison is possible.

  14. Extended Permutation-Inversion Groups for Simultaneous Treatment of the Rovibronic States of Trans-Acetylene Cis-Acetylene and Vinylidene

    NASA Astrophysics Data System (ADS)

    Hougen, Jon T.; Merer, Anthony J.

    2011-06-01

    The electronic ground state potential surface of acetylene (HCCH) has a minimum at the linear conformation, but the excited electronic states may have potential minima at a variety of nonlinear equilibrium shapes. This work is concerned with the group theoretical ideas necessary to treat simultaneously the symmetry properties of rovibronic states associated with three different planar acetylene equilibrium configurations, namely trans bent acetylene, cis bent acetylene, and vinylidene (H2C=C). We make use of three different kinds of groups: (i) point groups, (ii) permutation-inversion (PI) groups, and (iii) extended PI groups. The PI group is G4 or G8, depending on whether C-H bond breaking is impossible (no bent acetylene leftrightarrow vinylidene interconversion), or possible. The extended PI groups are G4(2) and G8(2), respectively, when the only large amplitude motions are the CCH bends at each end of the molecule, and G4(8) and G8(8), respectively, when internal rotation is added as a third large amplitude motion. Applied to acetylene, the results indicate that there will be no splittings of the rovibronic levels unless CH bond breaking occurs. Even without bond breaking, however, states of the cis and trans isomers just below their interconversion barrier will show "staggerings" in their K-structures, i.e., a given vibrational level will have three tunneling components at slightly different energies: one component will have levels with K=4n only (where n is an integer), a second component will have levels with K=4n+2 only, and the third will have only odd-K levels. New experimental results for the S1-cis electronic state of acetylene are reviewed, and are found to be consistent with the group theory in so far as comparison is possible.

  15. Acetylene as Fast Food: Implications for Development of Life on Anoxic Primordial Earth and in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Oremland, Ronald S.; Voytek, Mary A.

    2008-02-01

    Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem.

  16. Acetylene as fast food: Implications for development of life on anoxic primordial earth and in the outer solar system

    USGS Publications Warehouse

    Oremland, R.S.; Voytek, M.A.

    2008-01-01

    Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem. ?? Mary Ann Liebert, Inc.

  17. Acetylene as fast food: implications for development of life on anoxic primordial Earth and in the outer solar system.

    PubMed

    Oremland, Ronald S; Voytek, Mary A

    2008-02-01

    Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered approximately 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem. PMID:18199006

  18. Organogermanium Chemistry: Germacyclobutanes and digermane Additions to Acetylenes

    SciTech Connect

    Andrew Michael Chubb

    2003-12-12

    This dissertation comprises two main research projects. The first project, presented in Chapter 1, involves the synthesis and thermochemistry of germacyclobutanes (germetanes). Four new germetanes (spirodigermetane, diallylgermetane, dichlorogermetane, and germacyclobutane) have been synthesized using a modified di-Grignard synthesis. Diallylgermetane is shown to be a useful starting material for obtaining other germetanes, particularly the parent germetane, germacyclobutane. The gas-phase thermochemistries of spirodigermetane, diallylgermetane and germacyclobutane have been explored via pulsed stirred-flow reactor (SFR) studies, showing remarkable differences in decomposition, depending on the substitution at the germanium atom. The second project investigates the thermochemical, photochemical, and catalytic additions of several digermanes to acetylenes. The first examples of thermo- and photochemical additions of Ge-Ge bonds to C{triple_bond}C are demonstrated. Mechanistic investigations are described and comparisons are made to analogous disilane addition reactions, previously studied in their group.

  19. Ultrafast Extreme Ultraviolet Induced Isomerization of Acetylene Cations

    SciTech Connect

    Jiang, Y. H.; Kurka, M.; Kuehnel, K. U.; Schroeter, C. D.; Moshammer, R.; Rudenko, A.; Foucar, L.; Herrwerth, O.; Lezius, M.; Kling, M. F.; Tilborg, J. van; Belkacem, A.; Ueda, K.; Duesterer, S.; Treusch, R.; Ullrich, J.

    2010-12-31

    Ultrafast isomerization of acetylene cations ([HC=CH]{sup +}) in the low-lying excited A{sup 2}{Sigma}{sub g}{sup +} state, populated by the absorption of extreme ultraviolet (XUV) photons (38 eV), has been observed at the Free Electron Laser in Hamburg, (FLASH). Recording coincident fragments C{sup +}+CH{sub 2}{sup +} as a function of time between XUV-pump and -probe pulses, generated by a split-mirror device, we find an isomerization time of 52{+-}15 fs in a kinetic energy release (KER) window of 5.8

  20. Adhesive and composite evaluation of acetylene-terminated phenylquinoxaline resins

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1981-01-01

    A series of acetylene-terminated phenylquinoxaline (ATPQ) oligomers of various molecular weights were prepared and subsequently chain extended by the thermally induced reaction of the ethynyl groups. The processability and thermal properties of these oligomers and their cured resins were compared with that of a relatively high molecular weight linear polyphenylquinoxaline (PPQ) with the same chemical backbone. The ATPQ oligomers exhibited significantly better processability than the linear PPQ but the PPQ displayed substantially better thermooxidative stability. Adhesive (Ti/Ti) and composite (graphite filament reinforcement) work was performed to evaluate the potential of these materials for structural applications. The PPQ exhibited better retention of adhesive and laminate properties than the ATPQ resins at 260 C after aging for 500 hr at 260 C in circulating air.

  1. Ultrafast Extreme Ultraviolet Induced Isomerization of Acetylene Cations

    SciTech Connect

    Jiang, Y.; Rudenko, Artem; Herrwerth, O.; Foucar, L.; Kurka, M.; Kuhnel, K.; Lezius, M.; Kling, Matthias; van Tilborg, Jeroen; Belkacem, Ali; Ueda, K.; Dusterer, S.; Treusch, R.; Schroter, Claus-Dieter; Moshammer, Robbert; Ullrich, Joachim

    2011-06-17

    Ultrafast isomerization of acetylene cations ([HC = CH]{sup +}) in the low-lying excited A{sup 2}{Sigma}{sub g}{sup +} state, populated by the absorption of extreme ultraviolet (XUV) photons (38 eV), has been observed at the Free Electron Laser in Hamburg, (FLASH). Recording coincident fragments C{sup +} + CH{sub 2}{sup +} as a function of time between XUV-pump and -probe pulses, generated by a split-mirror device, we find an isomerization time of 52 {+-} 15 fs in a kinetic energy release (KER) window of 5.8 < KER < 8 eV, providing clear evidence for the existence of a fast, nonradiative decay channel.

  2. Inclusion of 13C and D in protonated acetylene

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Roueff, Evelyne; Lee, Timothy J.

    2016-04-01

    The rovibrational spectrum of cyclic, protonated acetylene has been established. The improvement in modern telescopes coupled with the different branching ratios in reaction models welcomes study of 13C-substitution for C2H3+. Quartic force fields (QFFs) have been previously utilized to predict the antisymmetric HCCH stretch in standard c-C2H3+ to within 0.1 cm-1 of experiment and are employed here to generate rovibrational insights for the 13C isotopologues. The zero-point energies are also given for the cyclic and 'Y'-shaped isomers for both 13C and D substitutions. Vibrational intensities and the dipole moments are provided in order to characterize more fully this simple cation.

  3. Acetylene as a substrate in the development of primordial bacterial communities

    USGS Publications Warehouse

    Culbertson, C.W.; Strohmaier, F.E.; Oremland, R.S.

    1988-01-01

    The fermentation of atmospheric acetylene by anaerobic bacteria is proposed as the basis of a primordial heterotrophic food chain. The accumulation of fermentation products (acetaldehyde, ethanol, acetate and hydrogen) would create niches for sulfate-respiring bacteria as well as methanogens. Formation of acetylene-free environments in soils and sediments would also alter the function of nitrogenase from detoxification to nitrogen-fixation. The possibility of an acetylene-based anaerobic food chain in Jovian-type atmospheres is discussed. ?? 1988 Kluwer Academic Publishers.

  4. The abundances of ethane to acetylene in the atmospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Noll, K. S.; Knacke, R. F.; Tokunaga, A. T.; Lacy, J. H.; Beck, S.; Serabyn, E.

    1986-01-01

    The present determination of the stratospheric abundances of ethane and acetylene on Jupiter and Saturn on the basis of IR spectra near 780/cm uses atmospheric models whose thermal and density profiles have constant mixing ratios. The ratio of ethane to acetylene is noted to be insensitive to model atmosphere assumptions; it is 55 + or - 31 for Jupiter and 23 + or - 12 where model mixing ratios are uniform. Atmospheric model density profiles adapted from theoretical photochemical models are noted to also yield a higher ethane/acetylene ratios for Jupiter.

  5. The abundances of ethane and acetylene in the atmospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Noll, K. S.; Knacke, R. F.; Tokunaga, A. T.; Lacy, J. H.; Beck, S.

    1986-01-01

    The present determination of the stratospheric abundances of ethane and acetylene on Jupiter and Saturn on the basis of IR spectra near 780/cm uses atmospheric models whose thermal and density profiles have constant mixing ratios. The ratio of ethane to acetylene is noted to be insensitive to model atmosphere assumptions; it is 55 + or - 31 for Jupiter and 23 + or - 12 where model mixing ratios are uniform. Atmospheric model density profiles adapted from theoretical photochemical models are noted to also yield a higher ethane/acetylene ratios for Jupiter.

  6. Inhibition of alkylbenzene biodegradation under denitrifying conditions by using the acetylene block technique

    SciTech Connect

    Hutchins, S.R. )

    1992-10-01

    Addition of acetylene to microcosms simultaneously amended with nitrate and alkylbenzenes resulted in inhibition of the rate of alkylbenzene biodegradation under denitrifying conditions. Toluene, xylenes, and 1,2,4-trimethylbenzene were recalcitrant, whereas ethylbenzene was degraded at a slower rate than usual. Benzene was not degraded in either case. Addition of acetylene to microcosms preexposed to nitrate and alkylbenzenes produced similar inhibition. These data indicate that the activities of microorganisms that degrade alkylbenzenes under denitrifying conditions may be suppressed if the standard acetylene block technique is used to verify denitrifying activity.

  7. A systematic investigation of acetylene activation and hydracyanation of the activated acetylene on Aun (n = 3-10) clusters via density functional theory.

    PubMed

    Gautam, Seema; Sarkar, Abir De

    2016-05-18

    A systematic investigation of the selective catalytic conversion of poisonous HCN gas through hydracyanation of C2H2 activated on Au clusters, presented here for the first time, is of paramount importance from both scientific and technological perspectives. Hydracyanation of activated acetylene on an Au-cluster based catalyst leads to vinyl isocyanide (H2C[double bond, length as m-dash]CHNC) formation, a versatile chemical intermediate. Using density functional theory, bond activation of acetylene and selective catalytic hydracyanation of activated acetylene on small gold clusters Aun (n = 3-10) have been studied through a detailed analysis of the geometric and electronic structures. Different possible complexes of Aun-CHCH have been studied and two possible modes of adsorption of acetylene over the gold clusters, namely, the π- and di-σ modes, have been observed. The hydracyanation of the acetylene molecule is found to occur via the cleavage of one of acetylene triple bonds at the cost of formation of two Au-C bonds followed by the binding of HCN to the activated C[double bond, length as m-dash]C bond via nitrogen's lone pair. Preferential binding sites for HCN and C2H2 are analyzed through Fukui function calculations, frontier molecular orbital analysis and natural population charge distribution analysis. Based on adsorption energies, odd-sized Aun clusters are found to be significantly more favorable for C2H2 adsorption with the C-C bond stretching up to 1.31 Å with respect to the C-C triple bond length of 1.21 Å in the gas phase. The stretching frequency of adsorbed complexes, C2H2/Aun, (3460 cm(-1)), decreases notably relative to the frequency of the free acetylene molecule (7948 cm(-1)), which is a signature of the bond activation of the acetylene molecule over the Au clusters. The high adsorption energy of HCN on the Au9-C2H2 complex implies the considerable binding strength and activation of C2H2 and HCN on the Au9 clusters. Due to the importance of polymerization/cyclotrimerization of C2H2 in synthetic fiber industries, the capability of Au9 clusters to adsorb up to four acetylene molecules, (C2H2)n (n = 1-4), on adjacent sites without affecting the planarity/structure of Au9 is demonstrated here for the first time. Our findings provide valuable guidance for choosing a suitable substrate/support for realizing these Aun-catalyzed reactions in practical applications. PMID:27146078

  8. Influence of nanoparticle formation on discharge properties in argon-acetylene capacitively coupled radio frequency plasmas

    NASA Astrophysics Data System (ADS)

    Wegner, Th.; Hinz, A. M.; Faupel, F.; Strunskus, T.; Kersten, H.; Meichsner, J.

    2016-02-01

    This contribution presents experimental results regarding the influence of nanoparticle formation in capacitively coupled radio frequency (13.56 MHz) argon-acetylene plasmas. The discharge is studied using non-invasive 160 GHz Gaussian beam microwave interferometry and optical emission spectroscopy. Particularly, the temporal behavior of the electron density from microwave interferometry is analyzed and compared with the changing plasma emission and self-bias voltage caused by nanoparticle formation. The periodic particle formation with a cycle duration between 30 s and 140 s starts with an electron density drop over more than one order of magnitude below the detection limit (8 × 1014 m-3). The electron density reduction is the result of electron attachment processes due to negative ions and nanoparticle formation. The onset time constant of nanoparticle formation is five times faster compared to the expulsion of the particles from the plasma due to multi-disperse size distribution. Moreover, the intensity of the argon transition lines increases and implies a rising effective electron temperature. The cycle duration of the particle formation is affected by the total gas flow rate and exhibits an inverse proportionality to the square of the total gas flow rate. The variation in the total gas flow rate influences the force balance, which determines the confinement time of the nanoparticles. As a further result, the cycle duration is dependent on the axial position of the powered electrode, which also corresponds to different distances relative to the fixed optical axis of the microwave interferometer.

  9. KISS: Kinetics and Structure of Superagglomerates Produced by Silane and Acetylene

    NASA Technical Reports Server (NTRS)

    Mulholland, G. W.; Yang, J. C.; Scott, J. H.; Sivithanu, Y.

    2001-01-01

    The objective of this study is to understand the process of gas phase agglomeration leading to superagglomerates and a gel-like structure for microgravity (0-g) silane and acetylene flames. Ultimately one would apply this understanding to predicting flame conditions that could lead to the gas phase production of an aero-gel. The approach is to burn acetylene and silane and to analyze the evolution of the soot and silica agglomerates. Acetylene is chosen because it has one of the highest soot volume fractions and there is evidence of super agglomerates being formed in laminar acetylene flames. Silane has the advantage that silica particles are the major combustion product resulting in a particle volume fraction a factor of ten greater than that for a carbonaceous smoke.

  10. INHIBITION OF ALKYLBENZENE BIODEGRADATION UNDER DENITRIFYING CONDITIONS BY USING THE ACETYLENE BLOCK TECHNIQUE

    EPA Science Inventory

    Addition of acetylene to microcosms simultaneously amended with nitrate and alkylbenzenes resulted in inhibition of the rate of alkylbenzene biodegradation under denitrifying conditions. Toluene, xylenes, and 1,2,4-trimethylbenzene were recalcitrant, whereas ethylbenzene was degr...

  11. Characterization of the Minimum Energy Paths and Energetics for the Reaction of Vinylidene with Acetylene

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Taylor, Peter R.

    1995-01-01

    The reaction of vinylidene (CH2C) with acetylene may be an initiating reaction in soot formation. We report minimum energy paths and accurate energetics for a pathway leading to vinyl-acetylene and for a number of isomers of C4H4. The calculations use complete active space self-consistent field (CASSCF) derivative methods to characterize the stationary points and internally contacted configuration interaction (ICCI) and/or coupled cluster singles and doubles with a perturbational estimate of triple excitations (CCSD(T)) to determine the energetics. We find an entrance channel barrier of about 5 kcal/mol for the addition of vinylidene to acetylene, but no barriers above reactants for the reaction pathway leading to vinyl-acetylene.

  12. Silyl-acetylene polymers for use as precursors to silicon carbide fibers

    SciTech Connect

    Meyer, M.K.

    1991-12-20

    The steps involved in production of silicon carbide fiber using silyl acetylene polymer precursors can be separated into four processing steps: polymer synthesis, fiber spinning, fiber crosslinking, and pyrolysis. Practical experimental considerations in each step are discussed.

  13. A review of acetylene, ethylene and ethane molecular spectroscopy for planetary applications

    NASA Technical Reports Server (NTRS)

    Maguire, W. C.

    1982-01-01

    Spectroscopic work in acetylene, ethylene and ethane, are of particular interest since the Voyager IRIS observations of Jupiter. Acetylene and ethane but not ethylene were observed in the Jovian spectrum. Two fundamental bands of the observed gases are used to determine the spatial distribution of these hydrocarbons on Jupiter and to illuminate the photochemistry of these species. The 100 to 1000 cm region is discussed and selected examples of current laboratory work are given.

  14. Formation of polycyclic aromatic hydrocarbons from acetylene over nanosized olivine-type silicates

    NASA Astrophysics Data System (ADS)

    Tian, M.; Liu, B. S.; Hammonds, M.; Wang, N.; Sarre, P. J.; Cheung, A. S.-C.

    2012-03-01

    The formation mechanism of polycyclic aromatic hydrocarbon (PAH) molecules in interstellar and circumstellar environments is not well understood although the presence of these molecules is widely accepted. In this paper, addition and aromatization reactions of acetylene over astrophysically relevant nesosilicate particles are reported. Gas-phase PAHs produced from exposure of acetylene gas to crystalline silicates using pulsed supersonic jet expansion (SJE) conditions were detected by time-of-flight mass spectrometry (TOF-MS). The PAHs produced were further confirmed in a separate experiment using a continuous flow fixed-bed reactor in which acetylene was introduced at atmospheric pressure. The gas-phase effluent and solutions of the carbonaceous compounds deposited on the nesosilicate particles were analyzed using gas chromatography-mass spectrometry (GC-MS). A mechanism for PAH formation is proposed in which the Mg2+ ions in the nesosilicate particles act as Lewis acid sites for the acetylene reactions. Our studies indicate that the formation of PAHs in mixed-chemistry astrophysical environments could arise from acetylene interacting with olivine nano-particles. These nesosilicate particles are capable of providing catalytic centres for adsorption and activation of acetylene molecules that are present in the circumstellar environments of mass-losing carbon stars. The structure and physical properties of the particles were characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and high-resolution transmission electron microscopy (HRTEM) techniques.

  15. A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions

    PubMed Central

    Pang, Jiandong; Jiang, Feilong; Wu, Mingyan; Liu, Caiping; Su, Kongzhao; Lu, Weigang; Yuan, Daqiang; Hong, Maochun

    2015-01-01

    Acetylene, an important petrochemical raw material, is very difficult to store safely under compression because of its highly explosive nature. Here we present a porous metal-organic framework named FJI-H8, with both suitable pore space and rich open metal sites, for efficient storage of acetylene under ambient conditions. Compared with existing reports, FJI-H8 shows a record-high gravimetric acetylene uptake of 224 cm3 (STP) g−1 and the second-highest volumetric uptake of 196 cm3 (STP) cm−3 at 295 K and 1 atm. Increasing the storage temperature to 308 K has only a small effect on its acetylene storage capacity (∼200 cm3 (STP) g−1). Furthermore, FJI-H8 exhibits an excellent repeatability with only 3.8% loss of its acetylene storage capacity after five cycles of adsorption–desorption tests. Grand canonical Monte Carlo simulation reveals that not only open metal sites but also the suitable pore space and geometry play key roles in its remarkable acetylene uptake. PMID:26123775

  16. Formation of polycyclic aromatic hydrocarbons from acetylene over nanosized olivine-type silicates.

    PubMed

    Tian, M; Liu, B S; Hammonds, M; Wang, N; Sarre, P J; Cheung, A S-C

    2012-05-14

    The formation mechanism of polycyclic aromatic hydrocarbon (PAH) molecules in interstellar and circumstellar environments is not well understood although the presence of these molecules is widely accepted. In this paper, addition and aromatization reactions of acetylene over astrophysically relevant nesosilicate particles are reported. Gas-phase PAHs produced from exposure of acetylene gas to crystalline silicates using pulsed supersonic jet expansion (SJE) conditions were detected by time-of-flight mass spectrometry (TOF-MS). The PAHs produced were further confirmed in a separate experiment using a continuous flow fixed-bed reactor in which acetylene was introduced at atmospheric pressure. The gas-phase effluent and solutions of the carbonaceous compounds deposited on the nesosilicate particles were analyzed using gas chromatography-mass spectrometry (GC-MS). A mechanism for PAH formation is proposed in which the Mg(2+) ions in the nesosilicate particles act as Lewis acid sites for the acetylene reactions. Our studies indicate that the formation of PAHs in mixed-chemistry astrophysical environments could arise from acetylene interacting with olivine nano-particles. These nesosilicate particles are capable of providing catalytic centres for adsorption and activation of acetylene molecules that are present in the circumstellar environments of mass-losing carbon stars. The structure and physical properties of the particles were characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and high-resolution transmission electron microscopy (HRTEM) techniques. PMID:22460553

  17. Adsorptive Separation of Acetylene from Light Hydrocarbons by Mesoporous Iron Trimesate MIL-100(Fe).

    PubMed

    Yoon, Ji Woong; Lee, Ji Sun; Lee, Sukyung; Cho, Kyoung Ho; Hwang, Young Kyu; Daturi, Marco; Jun, Chul-Ho; Krishna, Rajamani; Chang, Jong-San

    2015-12-01

    A reducible metal-organic framework (MOF), iron(III) trimesate, denoted as MIL-100(Fe), was investigated for the separation and purification of methane/ethane/ethylene/acetylene and an acetylene/CO2 mixtures by using sorption isotherms, breakthrough experiments, ideal adsorbed solution theory (IAST) calculations, and IR spectroscopic analysis. The MIL-100(Fe) showed high adsorption selectivity not only for acetylene and ethylene over methane and ethane, but also for acetylene over CO2 . The separation and purification of acetylene over ethylene was also possible for MIL-100(Fe) activated at 423 K. According to the data obtained from operando IR spectroscopy, the unsaturated Fe(III) sites and surface OH groups are mainly responsible for the successful separation of the acetylene/ethylene mixture, whereas the unsaturated Fe(II) sites have a detrimental effect on both separation and purification. The potential of MIL-100(Fe) for the separation of a mixture of C2 H2 /CO2 was also examined by using the IAST calculations and transient breakthrough simulations. Comparing the IAST selectivity calculations of C2 H2 /CO2 for four MOFs selected from the literature, the selectivity with MIL-100(Fe) was higher than those of CuBTC, ZJU-60a, and PCP-33, but lower than that of HOF-3. PMID:26515022

  18. Mechanism-based inactivation of benzo(a)pyrene hydroxylase by aryl acetylenes and aryl olefins

    SciTech Connect

    Gan, L.S.; Lu, J.Y.L.; Alworth, W.L.

    1986-05-01

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxgenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, 3-ethynylperylene, 2-ethynylfluorene, methyl 1-pyrenyl acetylene, cis- and trans-1-(2-bromovinyl)pyrene, and 1-allylpyrene serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene hydroxylase, while 1-vinylpyrene and phenyl 1-pyrenyl acetylene do not cause a detectable suicide inhibition of benzo(a)pyrene hydroxylase. The mechanism-based loss of benzo(a)pyrene hydroxylase caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes (suicide destruction). The suicide inhibition by these aryl acetylenes therefore does not involve covalent binding to the heme moiety of the monooxygenase. Nevertheless, in the presence of NADPH, /sup 3/H-labeled 1-ethynylpyrene becomes covalently attached to the cytochrome P-450 protein; the measured stoichiometry of binding is one 1-ethynylpyrene per P-450 heme unit. The authors conclude that the inhibition of benzo(a)pyrene hydroxylase produced by 1-ethynylpyrene may be related to the mechanism of suicide inhibition of P-450 activity by chloramphenicol rather than the mechanism of suicide destruction of P-450 previously described for acetylene and propyne.

  19. Trimethyl phosphate-acetylene interaction: a matrix-isolation infrared and ab initio study

    NASA Astrophysics Data System (ADS)

    Sundararajan, K.; Vidya, V.; Sankaran, K.; Viswanathan, K. S.

    2000-09-01

    Trimethyl phosphate (TMP) and acetylene were codeposited in nitrogen and argon matrices and adducts of these species were identified using infrared spectroscopy. Formation of the adducts was evidenced by shifts in the vibrational frequencies of the modes involving the TMP and acetylene submolecules. The structures of these adducts, energies and the vibrational frequencies were computed at the HF/6-31G** level. Both the experimental and computational studies indicated that two types of TMP-acetylene complexes were formed; one in which the hydrogen in acetylene was bonded to the phosphoryl oxygen and another in which the bonding was at the alkoxy oxygen of the phosphate. In addition to the primary hydrogen bonded interaction at the phosphoryl oxygen, this complex, also appeared to be stablilized by a secondary and weaker interaction involving a methyl hydrogen in TMP and the π cloud in acetylene — a case of a H…π interaction. The computed vibrational frequencies in the adducts agreed well with the observed frequencies for the modes involving the TMP submolecule, while the agreement was relatively poor for the modes involving the acetylene submolecule. The stabilization energies of these adducts, corrected for both zero-point energies and basis set superposition errors, were ≈3 kcal/mol for the phosphoryl complex and ≈1 kcal/mol for the alkoxy complex.

  20. A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions

    NASA Astrophysics Data System (ADS)

    Pang, Jiandong; Jiang, Feilong; Wu, Mingyan; Liu, Caiping; Su, Kongzhao; Lu, Weigang; Yuan, Daqiang; Hong, Maochun

    2015-06-01

    Acetylene, an important petrochemical raw material, is very difficult to store safely under compression because of its highly explosive nature. Here we present a porous metal-organic framework named FJI-H8, with both suitable pore space and rich open metal sites, for efficient storage of acetylene under ambient conditions. Compared with existing reports, FJI-H8 shows a record-high gravimetric acetylene uptake of 224 cm3 (STP) g-1 and the second-highest volumetric uptake of 196 cm3 (STP) cm-3 at 295 K and 1 atm. Increasing the storage temperature to 308 K has only a small effect on its acetylene storage capacity (~200 cm3 (STP) g-1). Furthermore, FJI-H8 exhibits an excellent repeatability with only 3.8% loss of its acetylene storage capacity after five cycles of adsorption-desorption tests. Grand canonical Monte Carlo simulation reveals that not only open metal sites but also the suitable pore space and geometry play key roles in its remarkable acetylene uptake.

  1. Synthesis of gem-disubstituted ethylene and acetylene derivatives of the cyclopropane series based on 1,1-diacylcyclopropanes

    SciTech Connect

    Zefirov, N.S.; Kozhushkov, S.I.; Kuznetsova, T.S.; Gleiter, R.; Eckert-Maksic, M.

    1986-06-10

    Methods for the conversion of 1,1-diacylcyclopropanes into gem-disubstituted dienes and acetylenes of the cyclopropene series were investigated: (a) reduction followed by dehydration of the diols; (b) conversion of the diketones into bistosylhydrazones and treatment of the latter with methyllithium; (c) dehydrohalogenation of gem-di(1-halogenoalkyl)cyclopropanes by the action of bases. Dehydration leads to intramolecular nucleophilic opening of the three-membered ring. 1,1-Divinylcyclopropanes and stereoisomeric 1,1-di(1-propenyl)cyclopropanes were obtained by two different methods, and the corresponding diynes and enynes were synthesized from them by bromination followed by dehydrobromination. 1,1-Di(1-propynyl)cyclopropane can be obtained by alkylation of 1,1-diethynyl-cyclopropane and also directly from 1,1-divinylcyclopropane without isolation of the intermediate 1,1-diethynylcyclopropane.

  2. Kinetic tetrazolium microtiter assay

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L. (Inventor); Stowe, Raymond P. (Inventor); Koeing, David W. (Inventor)

    1992-01-01

    A method for conducting an in vitro cell assay using a tetrazolium indicator is disclosed. The indicator includes a nonionic detergent which solubilizes a tetrazolium reduction product in vitro and has low toxicity for the cells. The incubation of test cells in the presence of zolium bromide and octoxynol (TRITON X-100) permits kinetics of the cell metabolism to be determined.

  3. A PCR-based specific assay reveals a population of bacteria within the Chloroflexi associated with the reductive dehalogenation of polychlorinated biphenyls.

    PubMed

    Watts, Joy E M; Fagervold, Sonja K; May, Harold D; Sowers, Kevin R

    2005-06-01

    Polychlorinated biphenyls (PCBs) accumulate and persist in sediments posing a risk to human health and the environment. Highly chlorinated PCBs are reductively dechlorinated in anaerobic sediments and two bacteria, designated o-17 and DF-1, from a novel phylogenetic group that reductively dechlorinate PCBs have recently been identified. However, there is a paucity of knowledge about the distribution, diversity and ecology of PCB-dechlorinating bacteria due to difficulty in obtaining pure cultures and the lack of detection by universal PCR 16S rRNA gene primer sets in sediments. A specific PCR primer was developed and optimized for detection of o-17/DF-1 and other closely related bacteria in the environment. Using this primer set it was determined that bacteria of this group were enriched in sediment microcosms from Baltimore Harbour concurrent with active dechlorination of 2,2',3,4,4',5'-hexachlorobiphenyl. Additional 16S rRNA gene sequences that had high levels of similarity to described PCB dechlorinators were detected in sediments from the Elizabeth River tributary of Chesapeake Bay, which had confirmed PCB-dechlorinating activities. Phylogenetic comparison of these detected 16S rRNA gene sequences revealed a relatively diverse group of organisms within the dehalogenating Chloroflexi that are distinct from the Dehalococcoides spp. Results from this study indicate that reductive PCB dechlorination activity may be catalysed by a previously undescribed group of micro-organisms that appear to be prevalent in PCB-impacted sites. PMID:15942010

  4. Discovery, Development, and Commercialization of Gold Catalysts for Acetylene Hydrochlorination.

    PubMed

    Johnston, Peter; Carthey, Nicholas; Hutchings, Graham J

    2015-11-25

    Vinyl chloride monomer (VCM) is a major chemical intermediate for the manufacture of polyvinyl chloride (PVC), which is the third most important polymer in use today. Hydrochlorination of acetylene is a major route for the production of vinyl chloride, since production of the monomer is based in regions of the world where coal is abundant. Until now, mercuric chloride supported on carbon is used as the catalyst in the commercial process, and this exhibits severe problems associated with catalyst lifetime and mercury loss. It has been known for over 30 years that gold is a superior catalyst, but it is only now that it is being commercialized. In this Perspective we discuss the use and disadvantages of the mercury catalyst and the advent of the gold catalysts for this important reaction. The nature of the active site and the possible reaction mechanism are discussed. Recent advances in the design and preparation of active gold catalysts containing ultralow levels of gold are described. In the final part, a view to the future of this chemistry will be discussed as well as the possible avenues for the commercial potential of gold catalysis. PMID:26529366

  5. An improved processible acetylene-terminated polyimide for composites

    NASA Technical Reports Server (NTRS)

    Landis, A. L.; Naselow, A. B.

    1985-01-01

    The newest member of a family of thermosetting acetylene-substituted polyimide oligomers is HR600P. This oligomer is the isoimide version of the oligomer known as HR600P and Thermid 600. Although both types of material yield the same heat resistant end products after cure, HR600P has much superior processing characteristics. This attributed to its lower melting temperature (160 + or - 10 C, 320 + or - 20 F) in contrast to 202 C (396 F) for Thermid MC-600, its longer gel time at its processing temperature (16 to 30 minutes bvs 3 minutes), and its excellent solubility in low boiling solvents such as tetrahydrofuran, glymes, or 4:1 methyl ethyl ketone/toluene mixtures. These advantages provide more acceptable coating and impregnation procedures, allow for more complete removal at lower temperatures, provide a longer pot life or working time, and allow composite structure fabrication in conventional autoclaves used for epoxy composite curing. The excellent processing characteristics of HR600P allow its use in large area laminated structures, structural composites, and molding compositions.

  6. Fatality due to methyl acetylene-propadiene (MAPP) inhalation.

    PubMed

    Avella, Joseph; Lehrer, Michael

    2004-11-01

    A 33-year-old man died after intentionally inhaling a gaseous mix of methyl acetylene (propyne) and propadiene (allene) commonly known as MAPP, which is used for soldering and welding. He was found with a plastic bag securely placed over his head and a cylinder of MAPP alongside his head. The cylinder had been vented into the bag using a flexible hose. A comprehensive toxicological analysis revealed only a trace of diphenhydramine in the liver and 0.02 mg/L of morphine in the urine. Analysis of blood by headspace gas chromatography (HS-GC) detected two unknown peaks. These were determined to be the components of MAPP gas. MAPP was quantitated in femoral blood (59.6 mg/L) and brain (43.6 mg/kg) using a HS-GC method. The cause of death was attributed to acute MAPP intoxication, and the manner was determined to be suicide. A discussion on the analytical and interpretive considerations commonly encountered when analyzing volatile compounds is also presented. PMID:15568715

  7. Microwave Spectrum, Structure, and Internal Dynamics of the Pyridine - Acetylene Weakly Bound Complex

    NASA Astrophysics Data System (ADS)

    Mackenzie, Becca; Dewberry, Chris; Jarrett, Emma; Legon, Anthony; Leopold, Ken

    2014-06-01

    A-type rotational spectra of the weakly bound complex formed from pyridine and acetylene are reported. Contrary to expectation based on the symmetric structure of HCCH\\cdot \\cdot \\cdotNH3, the acetylene moiety in HCCH\\cdot\\cdot \\cdotNC5H5 does not lie along the symmetry axis of the pyridine. Rotational and 14N hyperfine constants instead indicate that, while the complex is indeed planar with an acetylenic hydrogen directed toward the nitrogen, the HCCH axis forms an angle of {˜}23° with the C2 axis of the pyridine. Spectra of HCCH\\cdot \\cdot \\cdotNC5H5, HCCD\\cdot \\cdot \\cdotNC5H5, DCCH\\cdot \\cdot \\cdotNC5H5, and DCCD\\cdot \\cdot \\cdotNC5H5 are all doubled, revealing the existence of a pair of low energy states. In light of the bent structure, this suggests a tunneling motion through a barrier at the C2v configuration. Because the splitting persists in the singly deuterated species, we conclude that the motion does not involve interchange of the acetylenic hydrogens. Single 13C substitution in either the ortho or meta positions of the pyridine eliminates the doubling and gives rise to separate sets of spectra for which the rotational constants are well predicted by a bent geometry. In this case, the two sets correspond to distinct species in which the 13C is either on the same or the opposite side as the acetylene. This further suggests that the doubling observed with unsubstituted pyridine arises from wagging of the acetylene, as such a tunneling motion is expected to be quenched when the pyridine is rendered asymmetric. The bent structure of the system may arise due to a secondary hydrogen bonding interaction between the ortho hydrogens of the pyridine and the π system of the acetylene.

  8. Acetylene-phenol complexes: A matrix isolation infrared and ab initio study

    NASA Astrophysics Data System (ADS)

    Sundararajan, K.; Ramanathan, N.

    2009-02-01

    The infrared spectra of the hydrogen-bonded complexes of acetylene-phenol have been investigated in solid argon and nitrogen matrices. Two types of acetylene-phenol complexes, O sbnd H⋯π and C sbnd H⋯O, are seen in the infrared spectra. Formation of these complexes was evidenced from the shifts in the vibrational frequencies of the modes involving the acetylene and phenol submolecules. The structure of the complexes and the energies were computed at HF and B3LYP levels of theory using 6-31++G ∗∗ basis sets. The geometries optimized at HF level were used to calculate the single point MP2/6-31++G ∗∗ energies for the complexes. The global minimum corresponded to the O sbnd H⋯π complex, where phenol acts as a proton donor to the acetylene π-cloud. The second minimum corresponded to the C sbnd H⋯O complex where acetylene acts as a proton donor to the oxygen of phenol and the third minimum corresponded to the C sbnd H⋯π complex where acetylene attacks the π-cloud of phenol. The computed vibrational frequencies of acetylene-phenol complexes at B3LYP/6-31++G ∗∗ level corroborated well with the experimental frequencies. No experimental evidence for the formation of C sbnd H⋯π complex in Ar/N 2 matrix was observed. AIM analysis was also performed to understand the nature of the interactions in these complexes.

  9. Enzyme assays.

    PubMed

    Reymond, Jean-Louis; Fluxà, Viviana S; Maillard, Noélie

    2009-01-01

    Enzyme assays are analytical tools to visualize enzyme activities. In recent years a large variety of enzyme assays have been developed to assist the discovery and optimization of industrial enzymes, in particular for "white biotechnology" where selective enzymes are used with great success for economically viable, mild and environmentally benign production processes. The present article highlights the aspects of fluorogenic and chromogenic substrates, sensors, and enzyme fingerprinting, which are our particular areas of interest. PMID:19081993

  10. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: Cluster ion polymerization

    SciTech Connect

    Kocisek, J.; Lengyel, J.; Farnik, M.

    2013-03-28

    Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of Almost-Equal-To 8%, while mixed species are produced at low concentrations ( Almost-Equal-To 0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression (C{sub 2}H{sub 2}){sub n}{sup +}. At the electron energies Greater-Than-Or-Slanted-Equal-To 21.5 eV above the CH+CH{sup +} dissociative ionization limit of acetylene the fragment ions nominally labelled as (C{sub 2}H{sub 2}){sub n}CH{sup +}, n Greater-Than-Or-Slanted-Equal-To 2, are observed. For n Less-Than-Or-Slanted-Equal-To 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C{sub 2}H{sub 2}){sub n}-k Multiplication-Sign H]{sup +} and [(C{sub 2}H{sub 2}){sub n}CH -k Multiplication-Sign H]{sup +}. The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The C{sub 3}H{sub 3}{sup +} ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of Almost-Equal-To 13.7 eV indicates that a less rigid covalently bound structure of C{sub 6}H{sub 6}{sup +} ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Ar{sub n}(C{sub 2}H{sub 2}){sup +} fragments above Almost-Equal-To 15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of Ar{sub n{>=}2}(C{sub 2}H{sub 2}){sub m{>=}2}{sup +} at Almost-Equal-To 13.7 eV is discussed in terms of an exciton transfer mechanism.

  11. Flexible band gap tuning of hexagonal boron nitride sheets interconnected by acetylenic bonds.

    PubMed

    Zhang, Hongyu; Luo, Youhua; Feng, Xiaojuan; Zhao, Lixia; Zhang, Meng

    2015-08-21

    The energetic and electronic properties of acetylenic-bond-interconnected hexagonal boron nitride sheets (BNyne), in which the number of rows of BN hexagonal rings (denoted as BN width) between neighboring arrays of acetylenic linkages increases consecutively, have been explored using first-principles calculations. Depending on the spatial position of B/N atoms with respect to the acetylenic linkages, there are two different types of configurations. The band structure features and band gap evolutions of BNyne structures as a function of the BN width can be categorized into two families, corresponding to two distinct types of configurations. In particular, for both types of BNyne structures, the band gap variations exhibit odd-even oscillating behavior depending on the BN width, which is related to the different symmetries of acetylenic chains in the unit cell. These results suggest that the embedded linear acetylenic chains can provide more flexibility for manipulation of the atomic and electronic properties of hexagonal boron nitride. These sp-sp(2) hybrid structures might promise importantly potential applications for developing nanoscale electronic and optoelectronic devices. PMID:26194068

  12. [Photodissociation of Acetylene and Acetone using Step-Scan Time-Resolved FTIR Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    McLaren, Ian A.; Wrobel, Jacek D.

    1997-01-01

    The photodissociation of acetylene and acetone was investigated as a function of added quenching gas pressures using step-scan time-resolved FTIR emission spectroscopy. Its main components consist of Bruker IFS88, step-scan Fourier Transform Infrared (FTIR) spectrometer coupled to a flow cell equipped with Welsh collection optics. Vibrationally excited C2H radicals were produced from the photodissociation of acetylene in the unfocused experiments. The infrared (IR) emission from these excited C2H radicals was investigated as a function of added argon pressure. Argon quenching rate constants for all C2H emission bands are of the order of 10(exp -13)cc/molecule.sec. Quenching of these radicals by acetylene is efficient, with a rate constant in the range of 10(exp -11) cc/molecule.sec. The relative intensity of the different C2H emission bands did not change with the increasing argon or acetylene pressure. However, the overall IR emission intensity decreased, for example, by more than 50% when the argon partial pressure was raised from 0.2 to 2 Torr at fixed precursor pressure of 160mTorr. These observations provide evidence for the formation of a metastable C2H2 species, which are collisionally quenched by argon or acetylene. Problems encountered in the course of the experimental work are also described.

  13. Spectroscopy of vibrationally hot molecules: Hydrogen cyanide and acetylene

    SciTech Connect

    Jonas, D.M.

    1992-01-01

    An efficient formula for calculating nuclear spin statistical weights is presented. New experimental methods to distinguish electric and magnetic multipole transitions are proposed and used to prove that the formaldehyde A - X 0-0 transition is a magnetic dipole transition. HIgh resolution vacuum ultraviolet studies of the A [yields] X fluorescence excitation spectrum of hydrogen cyanide (HCN) have: (i) determined that only the (0,1,0) vibrational level of the HCN A-state has a sufficiently long fluorescence lifetime to be suitable for Stimulated Emission Pumping (SEP) studies; and (ii) measured the electric dipole moment of the A-state. Several transitions in the hydrogen cyanide A [yields] X SEP spectrum are shown to be due to the axis-switching mechanism. From a Franck-Condon plot of the intensities and a comparison between sums of predicted rotational constants and sums of observed rotational constants, all of the remaining transitions in the SEP spectrum can be securly assigned. Two weak resonances; a 2:3 CH:CN stretch Fermi resonance and a 6:2 bend:CN stretch resonance appear in the SEP spectrum. Excitation of the CH stretching vibration is predicted and shown to be entirely absent, apart from resonances, in the HCN SEP spectrum. A [yields] X SEP spectra of acetylene (HCCH) near E[sub VIB] = 7,000 cm[sup [minus]1] display a wealth of strong and fully assignable anharmonic resonances and forbidden rotational transitions. It is proved that Darling-Dennison resonance between the cis and trans bending vibrations is the crucial first step in a series of anharmonic resonances which can transfer nearly all the vibrational energy out of the initial CC stretch/trans-bend excitation at high vibrational energy. Secondary steps in the vibrational energy flow are vibrational-l-resonance and the 2345' Fermi resonance. For short times, the vibrational energy redistribution obeys very restrictive rules.

  14. In vivo tumour and metastasis reduction and in vitro effects on invasion assays of the ruthenium RM175 and osmium AFAP51 organometallics in the mammary cancer model.

    PubMed

    Bergamo, A; Masi, A; Peacock, A F A; Habtemariam, A; Sadler, P J; Sava, G

    2010-01-01

    We have compared the organometallic arene complexes [(eta(6)-biphenyl)M(ethylenediamine)Cl](+) RM175 (M=Ru(II)) and its isostructural osmium(II) analogue AFAP51 (M=Os(II)) for their ability to induce cell detachment resistance from fibronectin, collagen IV and poly-l-lysine, and cell re-adhesion after treatment, their effects on cell migration and cell viability, on matrix metalloproteinases production, and on primary tumour growth of MCa mammary carcinoma, the effect of human serum albumin on their cytotoxicity. There are differences between ruthenium and osmium. The Os complex is up to 6x more potent than RM175 towards highly-invasive breast MDA-MB-231, human breast MCF-7 and human epithelial HBL-100 cancer cells, but whereas RM175 was active against MCa mammary carcinoma in vivo and caused metastasis reduction, AFAP51 was not. Intriguingly the presence of human serum albumin in the growth medium enhanced the cytotoxicity of both compounds. RM175 increased the resistance of MDA-MB-231 cells to detachment from substrates and both compounds inhibited the production of MMP-2. These data confirm the key role of ruthenium itself in anti-metastatic activity. It will be interesting to explore the activity of osmium arene complexes in other tumour models and the possibility of changing the non-arene ligands to tune the anticancer activity of osmium in vivo. PMID:19906432

  15. Use of HPLC/UPLC-spectrophotometry for detection of formazan in in vitro Reconstructed human Tissue (RhT)-based test methods employing the MTT-reduction assay to expand their applicability to strongly coloured test chemicals.

    PubMed

    Alépée, N; Barroso, J; De Smedt, A; De Wever, B; Hibatallah, J; Klaric, M; Mewes, K R; Millet, M; Pfannenbecker, U; Tailhardat, M; Templier, M; McNamee, P

    2015-06-01

    A number of in vitro test methods using Reconstructed human Tissues (RhT) are regulatory accepted for evaluation of skin corrosion/irritation. In such methods, test chemical corrosion/irritation potential is determined by measuring tissue viability using the photometric MTT-reduction assay. A known limitation of this assay is possible interference of strongly coloured test chemicals with measurement of formazan by absorbance (OD). To address this, Cosmetics Europe evaluated use of HPLC/UPLC-spectrophotometry as an alternative formazan measurement system. Using the approach recommended by the FDA guidance for validation of bio-analytical methods, three independent laboratories established and qualified their HPLC/UPLC-spectrophotometry systems to reproducibly measure formazan from tissue extracts. Up to 26 chemicals were then tested in RhT test systems for eye/skin irritation and skin corrosion. Results support that: (1) HPLC/UPLC-spectrophotometry formazan measurement is highly reproducible; (2) formazan measurement by HPLC/UPLC-spectrophotometry and OD gave almost identical tissue viabilities for test chemicals not exhibiting colour interference nor direct MTT reduction; (3) independent of the test system used, HPLC/UPLC-spectrophotometry can measure formazan for strongly coloured test chemicals when this is not possible by absorbance only. It is therefore recommended that HPLC/UPLC-spectrophotometry to measure formazan be included in the procedures of in vitro RhT-based test methods, irrespective of the test system used and the toxicity endpoint evaluated to extend the applicability of these test methods to strongly coloured chemicals. PMID:25701760

  16. Luciferase assay.

    PubMed

    Smale, Stephen T

    2010-05-01

    When a transient or stable transfection assay is developed for a promoter, a primary objective is to quantify promoter strength. Because transfection efficiency in such assays can be low, promoters are commonly fused to heterologous reporter genes that encode enzymes that can be quantified using highly sensitive assays. The reporter protein's activity or fluorescence within a transfected cell population is approximately proportional to the steady-state mRNA level. A commonly used reporter gene is the luciferase gene from the firefly Photinus pyralis. This gene encodes a 61-kDa enzyme that oxidizes D-luciferin in the presence of ATP, oxygen, and Mg(++), yielding a fluorescent product that can be quantified by measuring the released light. Including coenzyme A in the reaction enhances the sensitivity of the assay and provides a sustained light reaction. In this protocol, cells transfected with a luciferase reporter plasmid are lysed using a detergent-containing buffer. Cell debris is removed by microcentrifugation and luciferase activity is measured using a luminometer. Some luminometers directly inject the reagents into the cell lysate. Such automation allows the signal to be measured at a precise time following injection, which can increase the consistency of the results. For manual luminometers, the substrate solution is mixed by hand with the cell lysate, and the fluorescence is read at a defined time following mixing. The luciferase assay is extremely rapid, simple, relatively inexpensive, sensitive, and possesses a broad linear range. PMID:20439408

  17. Nonluminous diffusion flame of diluted acetylene in oxygen-enriched air

    SciTech Connect

    Sugiyama, G.

    1994-12-31

    A soot-reducing mechanism of fuel dilution and oxygen enrichment in laminar diffusion flames is suggested. Analysis using the Burke-Schumann theory for the shape of over ventilated diffusion flames has shown that there is a critical ratio of stoichiometric coefficients of the fuel and the oxidizer under which the gas flows from the fuel side to the oxidizer side throughout the flame. When this condition is satisfied, the soot growth region vanishes. A similar result is also found in a numerical simulation for diffusion flames that do not satisfy the Burke-Schumann assumption of uniform flow field. KIVA code is used for that purpose. The theoretically predicted direction of gas-flow across the flame sheet is verified in an experiment in a coaxial-flow diffusion flame. Soot cloud and velocity fields are visualized through a laser sheet method in the experiment. The fuel is a mixture of acetylene and nitrogen. The oxidizer is a mixture of oxygen and nitrogen. The compositions of the reactants are controlled so that the adiabatic flame temperature is kept constant to avoid the effect of temperature change. Experimental results show substantial reduction of scattered light intensity by fuel dilution and oxygen enrichment. When a sufficient amount of nitrogen is added to the fuel, nonluminous blue flames are obtained. At higher oxygen concentrations, blue flames are obtained at higher flame temperature region. When oxygen concentration in the oxidizer is 70 vol.%, blue flames are obtained up to 2,250 K. The critical condition of the reactants for nonluminous flames agrees with the theoretical prediction when the oxidizer is ordinary air. In oxygen-enriched conditions, the fuel must be diluted more, than theoretically predicted.

  18. Deactivation mechanisms for Pd/Al{sub 2}O{sub 3} acetylene hydrogenation catalysts

    SciTech Connect

    Hall, J.B.; Huggins, B.J.; Meyers, B.L.; Kaminsky, M.P.

    1994-12-31

    The selective hydrogenation of acetylenic impurities to ethylene is a crucial purification step in the production of olefins by steam cracking. This hydrogenation is done catalytically using a Pd/Al{sub 2}O{sub 3} catalyst in a fixed bed reactor. The designed lifetime of the catalyst in a front end acetylene converter is about 4 years. Accelerated catalyst deactivation and thermal runaways caused by loss in catalyst selectivity are common problems which plague acetylene converters. Such problems result in unscheduled shutdowns and increased costs to replace deactivated catalyst. This presentation outlines several deactivation mechanisms of the catalyst and discusses how they affect catalyst lifetime and performance. Catalyst characterization using electron microscopy and CO chemisorption provides information on how poisons deteriorate the catalyst and Pd particle size changes produced by use and regeneration. Thermal gravimetric analysis was also used to determine the extent of coke burn-off using less severe regeneration procedures.

  19. Electronic properties and strain sensitivity of CVD-grown graphene with acetylene

    NASA Astrophysics Data System (ADS)

    Yang, Meng; Sasaki, Shinichirou; Ohnishi, Masato; Suzuki, Ken; Miura, Hideo

    2016-04-01

    Although many studies have shown that large-area monolayer graphene can be formed by chemical vapor deposition (CVD) using methane gas, the growth of monolayer graphene using highly reactive acetylene gas remains a big challenge. In this study, we synthesized a uniform monolayer graphene film by low-pressure CVD (LPCVD) with acetylene gas. On the base of Raman spectroscopy measurements, it was found that up to 95% of the as-grown graphene is monolayer. The electronic properties and strain sensitivity of the LPCVD-grown graphene with acetylene were also evaluated by testing the fabricated field-effect transistors (FETs) and strain sensors. The derived carrier mobility and gauge factor are 862-1150 cm2/(V·s) and 3.4, respectively, revealing the potential for high-speed FETs and strain sensor applications. We also investigated the relationship between the electronic properties and the graphene domain size.

  20. Rotation of a single acetylene molecule on Cu(001) by tunneling electrons in STM.

    PubMed

    Shchadilova, Yulia E; Tikhodeev, Sergei G; Paulsson, Magnus; Ueba, Hiromu

    2013-11-01

    We study the elementary processes behind one of the pioneering works on scanning tunneling microscope controlled reactions of single molecules [Stipe et al., Phys. Rev. Lett. 81, 1263 (1998)]. Using the Keldysh-Green function approach for the vibrational generation rate in combination with density functional theory calculations to obtain realistic parameters we reproduce the experimental rotation rate of an acetylene molecule on a Cu(100) surface as a function of bias voltage and tunneling current. This combined approach allows us to identify the reaction coordinate mode of the acetylene rotation and its anharmonic coupling with the C-H stretch mode. We show that three different elementary processes, the excitation of C-H stretch, the overtone ladder climbing of the hindered rotational mode, and the combination band excitation together explain the rotation of the acetylene molecule on Cu(100). PMID:24237541

  1. Inhibition of alkylbenzene biodegradation under denitrifying conditions by using acetylene block technique

    SciTech Connect

    Hutchins, S.R.

    1992-01-01

    Aquifers contaminated with gasoline and other fuels often exhibit levels of benzene, toluene, ethylbenzene, and xylenes (BTEX) in excess of regulatory limits mandated by the U.S. Environmental Protection Agency. Addition of acetylene to microcosms simultaneously amended with nitrate and alkylbenzenes resulted in inhibition of the rate of alkylbenzene biodegradation under denitrifying conditions. Toluene, xylenes, and 1,2,4-trimethylbenzene were recalcitrant, whereas ethylbenzene was degraded at a slower rate than usual. Benzene was not degraded in either case. Addition of acetylene to microcosms preexposed to nitrate and alkylbenzenes produced similar inhibition. These data indicate that the activities of microorganisms that degrade alkylbenzenes under denitrifying conditions may be suppressed if the standard acetylene block technique is used to verify denitrifying activity.

  2. Estimation of nitrogenase activity in the presence of ethylene biosynthesis by use of deuterated acetylene as a substrate

    SciTech Connect

    Lin-Vien, D.; Fateley, W.G.; Davis, L.C. )

    1989-02-01

    Nitrogenase reduces deuterated acetylene primarily to cis dideuterated ethylene. This can be distinguished from undeuterated ethylene by the use of Fourier transform infrared spectroscopy. Characteristic bands in the region from 800 to 3,500 cm-1 can be used to identify and quantitate levels of these products. This technique is applicable to field studies of nitrogen fixation where ethylene biosynthesis by plants or bacteria is occurring. We have verified the reaction stoichiometry by using Klebsiella pneumoniae and Bradyrhizobium japonicum in soybeans. The most useful bands for quantitation of substrate purity and product distribution are as follows: acetylene-d0, 3,374 cm-1; acetylene-d1, 2,584 cm-1; acetylene-d2, 2,439 cm-1; cis-ethylene-d2, 843 cm-1; trans-ethylene-d2, 988 cm-1; ethylene-d1, 943 cm-1; ethylene-d0, 949 cm-1. (The various deuterated ethylenes and acetylenes are designated by a lowercase d and subscript to indicate the number, but not the position, of deuterium atoms in the molecule.) Mass spectrometry coupled to a gas chromatograph system has been used to assist in quantitation of the substrate and product distributions. Significant amounts of trans-ethylene-d2 were produced by both wild-type and nifV mutant K. pneumoniae. Less of this product was observed with the soybean system.

  3. Acetylene- and Phenylacetylene-Terminated Poly(Arylene Ether Benzimidazole)s (PAEBI's)

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.; Smith, Joseph G., Jr.

    1994-01-01

    Polymers prepared by first synthesizing polymers terminated with hydroxy groups, then reacting them with either 4-ethynylbenzoyl chloride or 4-fluoro-4'-phenylethynylbenzophenone. Endcapped polymers thermally cured to yield materials with attractive combination of properties. Cured acetylene-and phenylacetylene-terminated PAEBI's exhibit higher glass-transition temperatures and better retention of mechanical properties at high temperatures. Cured acetylene- and phenylacetylene-terminated polymers exhibit excellent adhesion to copper foil and polyimide film. Potentially useful as adhesives, coatings, composite matrices, fibers, films, membranes, and moldings.

  4. Assay system

    SciTech Connect

    Patzke, J.B.; Rosenberg, B.J.

    1984-02-07

    The accuracy of assays for monitoring concentrations of basic drugs in biological fluids containing a/sub 1/-acid glycoproteins, such as blood (serum or plasma), is improved by the addition of certain organic phosphate compounds to minimize the ''protein effect.'' Kits containing the elements of the invention are also disclosed.

  5. Heats of Formation of Triplet Ethylene, Ethylidene, and Acetylene

    SciTech Connect

    Nguyen, M.T.; Matus, M.H.; Lester Jr, W.A.; Dixon, David A.

    2007-06-28

    Heats of formation of the lowest triplet state of ethylene and the ground triplet state of ethylidene have been predicted by high level electronic structure calculations. Total atomization energies obtained from coupled-cluster CCSD(T) energies extrapolated to the complete basis set limit using correlation consistent basis sets (CBS), plus additional corrections predict the following heats of formation in kcal/mol: Delta H0f(C2H4,3A1) = 80.1 at 0 K and 78.5 at 298 K, and Delta H0f(CH3CH,3A") = 86.8 at 0 K and 85.1 at 298 K, with an error of less than +-1.0 kcal/mol. The vertical and adiabatic singlet-triplet separation energies of ethylene were calculated as Delta ES-T,vert = 104.1 and Delta ES-T,adia = 65.8 kcal/mol. These results are in excellent agreement with recent quantum Monte Carlo (DMC) values of 103.5 +- 0.3 and 66.4 +- 0.3 kcal/mol. Both sets of computational values differ from the experimental estimate of 58 +- 3 kcal/mol for the adiabatic splitting. The computed singlet-triplet gap at 0 K for acetylene is Delta ES-T,adia(C2H2) = 90.5 kcal/mol, which is in notable disagreement with the experimental value of 82.6 kcal/mol. The heat of formation of the triplet is Delta H0f(C2H2,3B2) = 145.3 kcal/mol. There is a systematic underestimation of the singlet-triplet gaps in recent photodecomposition experiments by ~;;7 to 8 kcal/mol. For vinylidene, we predict Delta H0f(H2CC,1A1) = 98.8 kcal/mol at 298 K (exptl. 100.3 +- 4.0), Delta H0f(H2CC,3B2) = 146.2 at 298 K, and an energy gap Delta ES-T-adia(H2CC) = 47.7 kcal/mol.

  6. Near-infrared spectra of liquid/solid acetylene under Titan relevant conditions and implications for Cassini/VIMS detections

    NASA Astrophysics Data System (ADS)

    Singh, S.; Cornet, T.; Chevrier, V. F.; Combe, J.-Ph.; McCord, T. B.; Roe, L. A.; Le Mouélic, S.; Le Menn, E.; Wasiak, F. C.

    2016-05-01

    Acetylene is thought to be abundant on Titan according to most photochemical models. While detected in the atmosphere, its likely presence at the surface still lacks physical evidence. It is thought that solid acetylene could be a major component of Titan's lakes shorelines and dry lakebed, detected as the 5 μm-bright deposits with the Cassini/VIMS instrument. Acetylene could also be present under its liquid form as dissolved solids in Titan's methane-ethane lakes, as emphasized by thermodynamics studies. This paper is devoted to the near-infrared spectroscopy study of acetylene under solid and liquid phases between 1 and 2.2 μm, synthesized in a Titan simulation chamber that is able to reproduce extreme temperature conditions. From experiments, we observed a ∼10% albedo increase between liquid acetylene at 193-188 K and solid acetylene at 93 K. Using the NIR spectroscopy technique we successfully calculated the reflectivity ratio of solid/liquid acetylene as 1.13. The second difference we observed between liquid and solid acetylene is a shift in the major absorption band detected at 1.54 μm, the shift of ∼0.01 μm occurring toward higher wavelength. In order to assess the detectability of acetylene on Titan using the Cassini/VIMS instrument, we adapted our spectra to the VIMS spectral resolution. The spectral band at 1.55 μm and a negative slope at 2.0 μm falls in the Cassini/VIMS atmospheric windows over several VIMS infrared spectels, thus Cassini/VIMS should be able to detect acetylene.

  7. Methane emissions measured at two California landfills by OTM-10 and an acetylene tracer method

    EPA Science Inventory

    Methane emissions were measured at two municipal solid waste landfills in California using static flux chambers, an optical remote sensing approach known as vertical radial plume mapping (VRPM) using a tunable diode laser (TDL) and a novel acetylene tracer method. The tracer meth...

  8. OZONE PRODUCTION FROM IRRADIATION OF ACETYLENE/CHLORINE MIXTURES IN AIR

    EPA Science Inventory

    The reaction of chlorine radicals with acetylene in air in the absence of oxides of nitrogen result In the formation of ozone. o ozone is observed when chlorine radicals react with methylacetylene or ethylacetylene under similar conditions. ormyl chloride is observed in all syste...

  9. 49 CFR 173.303 - Charging of cylinders with compressed gas in solution (acetylene).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... acetylene gas. (d) Verification of container pressure. (1) Each day, the pressure in a container... Federal Register citations affecting § 173.303, see the List of CFR Sections Affected, which appears in... 49 Transportation 2 2013-10-01 2013-10-01 false Charging of cylinders with compressed gas...

  10. 49 CFR 173.303 - Charging of cylinders with compressed gas in solution (acetylene).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... acetylene gas. (d) Verification of container pressure. (1) Each day, the pressure in a container... Federal Register citations affecting § 173.303, see the List of CFR Sections Affected, which appears in... 49 Transportation 2 2012-10-01 2012-10-01 false Charging of cylinders with compressed gas...

  11. 49 CFR 173.303 - Charging of cylinders with compressed gas in solution (acetylene).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... acetylene gas. (d) Verification of container pressure. (1) Each day, the pressure in a container... Federal Register citations affecting § 173.303, see the List of CFR Sections Affected which appears in the... 49 Transportation 2 2011-10-01 2011-10-01 false Charging of cylinders with compressed gas...

  12. 49 CFR 173.303 - Charging of cylinders with compressed gas in solution (acetylene).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... acetylene gas. (d) Verification of container pressure. (1) Each day, the pressure in a container... Federal Register citations affecting § 173.303, see the List of CFR Sections Affected, which appears in... 49 Transportation 2 2014-10-01 2014-10-01 false Charging of cylinders with compressed gas...

  13. A Safe and Easy Classroom Demonstration of the Generation of Acetylene Gas.

    ERIC Educational Resources Information Center

    Cox, Marilyn Blagg; Krause, Paul

    1994-01-01

    In this demonstration of the generation and combustion of acetylene, calcium carbide and water are allowed to react in a latex examination glove. Two student volunteers perform the demonstration with instructor guidance. This safe, popular demonstration, originally intended to illustrate the alkyne family of compounds, can be used with a variety…

  14. 49 CFR 178.60 - Specification 8AL steel cylinders with porous fillings for acetylene.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 8AL steel cylinders with porous fillings for acetylene. 178.60 Section 178.60 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR...

  15. 49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 8 steel cylinders with porous fillings for acetylene. 178.59 Section 178.59 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR...

  16. Study of production of alkylpyridines by heterogeneous-catalytic condensation of acetylene and ammonia

    SciTech Connect

    Vasil'ev, L.P.; Pechatnikov, E.L.; Popov, E.A.; Shatunova, E.N.; Shestakov, G.K.

    1987-08-10

    The purpose of this work was to study the principal kinetic relationships of formation of 2- and 4-methylpyridines from acetylene and ammonia under atmospheric pressure on a supported zinc-cadmium catalyst, intended for use in formulation of a mathematical model of the action of a displacement reactor with a fixed catalyst bed.

  17. Association Mechanisms of Unsaturated C2 Hydrocarbons with Their Cations: Acetylene and Ethylene

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.

    2013-01-01

    The ion-molecule association mechanism of acetylene and ethylene with their cations is investigated by ab initio quantum chemical methods to understand the structures, association energies, and the vibrational and electronic spectra of the products. Stable puckered cyclic isomers are found as the result of first forming less stable linear and bridge isomers. The puckered cyclic complexes are calculated to be strongly bound, by 87, 35 and 56 kcal/mol for acetylene-acetylene cation, ethylene-ethylene cation and acetylene-ethylene cation, respectively. These stable complexes may be intermediates that participate in further association reactions. There are no association barriers, and no significant inter-conversion barriers, so the initial linear and bridge encounter complexes are unlikely to be observable. However, the energy gap between the bridged and cyclic puckered isomers greatly differs from complex to complex: it is 44 kcal/mol in C4H4 +, but only 6 kcal/mol in C4H8 +. The accurate CCSD(T) calculations summarized above are also compared against less computationally expensive MP2 and density functional theory (DFT) calculations for structures, relative energies, and vibrational spectra. Calculated vibrational spectra are compared against available experiments for cyclobutadiene cation. Electronic spectra are also calculated using time-dependent DFT.

  18. Measurement of acetylene in breath by ultraviolet absorption spectroscopy: Potential for noninvasive cardiac output monitoring

    NASA Astrophysics Data System (ADS)

    Baum, Marc M.; Kumar, Sasi; Lappas, Anastasios M.; Wagner, Peter D.

    2003-06-01

    A new, miniaturized, noninvasive instrument for rapid acetylene analysis in breath gas is described. Acetylene is a blood-soluble gas and for many years its uptake rate during rebreathing and/or nonrebreathing tests has been used to calculate the volume of lung tissue as well as the flow rate of blood through the lungs. The instrument relies on dispersive UV absorption spectroscopy as its measurement principle and is employed in an extractive (side-stream) configuration. The analyzer afforded fast (276±43 ms, 0%-90%, at 2 L min-1 flow rates), interference-free detection of acetylene, with signal-to-noise ratios in excess of 50. Comparison tests with a mass spectrometer using calibration gas samples gave an excellent correlation {[C2H2]MS=0.999. [C2H2]UV, R2=1.000}, which validated the linearity and accuracy of the UV system. A similar level of correlation between these devices also was observed during human subject C2H2 uptake tests, with both instruments sampling a common extracted gas stream {[C2H2]UV=0.940. [C2H2]MS, R2=0.998}. These results indicate that a miniature, low-cost, rugged, ultraviolet spectrometer system measuring acetylene holds promise for human breath analysis in a clinical setting.

  19. Laboratory astrochemistry: catalytic conversion of acetylene to polycyclic aromatic hydrocarbons over SiC grains.

    PubMed

    Zhao, T Q; Li, Q; Liu, B S; Gover, R K E; Sarre, P J; Cheung, A S-C

    2016-02-01

    Catalytic conversion reactions of acetylene on a solid SiC grain surface lead to the formation of polycyclic aromatic hydrocarbons (PAHs) and are expected to mimic chemical processes in certain astrophysical environments. Gas-phase PAHs and intermediates were detected in situ using time-of-flight mass spectrometry, and their formation was confirmed using GC-MS in a separate experiment by flowing acetylene gas through a fixed-bed reactor. Activation of acetylene correlated closely with the dangling bonds on the SiC surface which interact with and break the C-C π bond. The addition of acetylene to the resulting radical site forms a surface ring structure which desorbs from the surface. The results of HRTEM and TG indicate that soot and graphene formation on the SiC surface depends strongly on reaction temperature. We propose that PAHs as seen through the 'UIR' emission bands can be formed through decomposition of a graphene-like material, formed on the surface of SiC grains in carbon-rich circumstellar envelopes. PMID:26752613

  20. Directional deprotonation ionization of acetylene in asymmetric two-color laser fields

    NASA Astrophysics Data System (ADS)

    Song, Qiying; Gong, Xiaochun; Ji, Qinying; Lin, Kang; Pan, Haifeng; Ding, Jingxin; Zeng, Heping; Wu, Jian

    2015-05-01

    We experimentally investigate the deprotonation dissociative double ionization of an acetylene molecule by an asymmetric two-color laser pulse. We find that the ejection direction of the proton, and hence the directional C-H bond breaking of a polyatomic hydrocarbon molecule, can be controlled by finely tuning the phase of a two-color laser pulse.

  1. Acetylene measurement in flames by chirp-based quantum cascade laser spectrometry.

    PubMed

    Quine, Zachary R; McNesby, Kevin L

    2009-06-01

    We have designed and characterized a mid-IR spectrometer built around a pulsed distributed-feedback quantum cascade laser using the characteristic frequency down-chirp to scan through the spectral region 6.5 cm(-1) spectral region. The behavior of this chirp is extensively measured. The accuracy and detection limits of the system as an absorption spectrometer are demonstrated first by measuring spectra of acetylene through a single pass 16 cm absorption cell in real time at low concentrations and atmospheric pressure. The smallest detectable peak is measured to be approximately 1.5 x 10(-4) absorbance units, yielding a minimum detectable concentration length product of 2.4 parts per million meter at standard temperature and pressure. This system is then used to detect acetylene within an ethylene-air opposed flow flame. Measurements of acetylene content as a function of height above the fuel source are presented, as well as measurements of acetylene produced in fuel breakdown as a function of preinjection fuel temperature. PMID:19488121

  2. Mechanism of tungsten-dependent acetylene hydratase from quantum chemical calculations.

    PubMed

    Liao, Rong-Zhen; Yu, Jian-Guo; Himo, Fahmi

    2010-12-28

    Acetylene hydratase is a tungsten-dependent enzyme that catalyzes the nonredox hydration of acetylene to acetaldehyde. Density functional theory calculations are used to elucidate the reaction mechanism of this enzyme with a large model of the active site devised on the basis of the native X-ray crystal structure. Based on the calculations, we propose a new mechanism in which the acetylene substrate first displaces the W-coordinated water molecule, and then undergoes a nucleophilic attack by the water molecule assisted by an ionized Asp13 residue at the active site. This is followed by proton transfer from Asp13 to the newly formed vinyl anion intermediate. In the subsequent isomerization, Asp13 shuttles a proton from the hydroxyl group of the vinyl alcohol to the ?-carbon. Asp13 is thus a key player in the mechanism, but also W is directly involved in the reaction by binding and activating acetylene and providing electrostatic stabilization to the transition states and intermediates. Several other mechanisms are also considered but the energetic barriers are found to be very high, ruling out these possibilities. PMID:21149684

  3. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or have a refrigeration system with the following features: (1) A vapor compressor that does not raise the... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded...

  4. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or have a refrigeration system with the following features: (1) A vapor compressor that does not raise the... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded...

  5. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or have a refrigeration system with the following features: (1) A vapor compressor that does not raise the... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded...

  6. 49 CFR 173.303 - Charging of cylinders with compressed gas in solution (acetylene).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Federal Register citations affecting § 173.303, see the List of CFR Sections Affected which appears in the... with acetylene must be successfully tested in accordance with CGA C-12. (b) Filling limits. For DOT... having possession of complete information as to the nature of the porous filling, the kind and...

  7. The effect of strain rate on polycyclic aromatic hydrocarbon (PAH) formation in acetylene diffusion flames

    SciTech Connect

    Yamamoto, Manabu; Duan, Shici; Senkan, Selim

    2007-11-15

    Acetylene is a ubiquitous combustion intermediate that is also believed to be the major precursor for aromatic, polycyclic aromatic hydrocarbon (PAH), and soot formation in both hydrocarbon and halogenated hydrocarbon flames. However, in spite of its important role as a flame intermediate, the detailed chemical structures of acetylene diffusion flames have not been studied in the past. Here the detailed chemical structures of counterflow diffusion flames of acetylene at strain rates of 37.7 and 50.3 s{sup -1} are presented. Both flames possessed the same carbon density of 0.37 g/L corresponding to an acetylene mole fraction of 0.375 in argon on the fuel side, and an oxygen mole fraction of 0.22 in argon on the oxidizer side. Concentration profiles of a large number of major, minor, and trace species, including a wide spectrum of aromatics and PAH, have been determined by direct sampling from flames using a heated quartz microprobe coupled to an online gas chromatograph/mass selective detector (GC/MSD). Temperature profiles were made using a thermocouple and the rapid insertion technique. Although the major species concentrations were nearly the same in the two flames, the mole fraction profiles of trace combustion by-products were significantly lower in the higher-strain-rate flame, by nearly two orders of magnitude for PAH. These comparative results provide new information on the trace chemistries of acetylene flames and should be useful for the development and validation of detailed chemical kinetic mechanisms describing the formation of toxic by-products in the combustion of hydrocarbons and halogenated hydrocarbons. (author)

  8. [1 0 0] versus [1 1 1] diamond growth from methyl radicals and/or acetylene

    NASA Astrophysics Data System (ADS)

    D'Evelyn, Mark P.; Graham, James D.; Martin, L. Robbin

    2001-11-01

    The goal of this study was to investigate the roles of methyl radicals and acetylene, either individually or together, during diamond growth by chemical vapor deposition. We have nucleated and grown micron-sized diamond particles at 800°C in a flow-tube apparatus that permits growth from only methyl radicals or acetylene in atomic hydrogen, in contrast to the complex mixture of species found in a normal reactor. Growth from methyl radicals only produced cubo-octahedral crystals with an α value ( 3×the ratio of growth rates in the [1 0 0] and [1 1 1] directions) near 1.8, indicating that the absence of acetylene is not a significant impediment in nucleating new (1 1 1) planes, in contradiction to recent modeling work. Diamond growth from pure acetylene produced octahedra ( α=3), indicating that (1 0 0) growth is much more facile than (1 1 1) growth in the absence of methyl radicals, and the (1 1 1) facets had a high concentration of contact twins. Diamond growth from acetylene plus methane produced cubo-octahedra crystals but the highly defective [1 1 1] growth persisted. We propose that at steady state the (1 1 1) growth surface has a high coverage of adsorbed hydrocarbons, rather than resembling the simple hydrogen-terminated (1 1 1)-1×1 : H structure; that steric repulsion and rearrangements play a critical role in the growth mechanism; and that desorption and etching of adsorbed hydrocarbons by atomic hydrogen is less facile than has been commonly supposed. The ratio of C 2 and C 1 gas-phase precursors should be minimized for high quality [1 1 1] epitaxy.

  9. Angiogenesis Assays.

    PubMed

    Nambiar, Dhanya K; Kujur, Praveen K; Singh, Rana P

    2016-01-01

    Neoangiogenesis constitutes one of the first steps of tumor progression beyond a critical size of tumor growth, which supplies a dormant mass of cancerous cells with the required nutrient supply and gaseous exchange through blood vessels essentially needed for their sustained and aggressive growth. In order to understand any biological process, it becomes imperative that we use models, which could mimic the actual biological system as closely as possible. Hence, finding the most appropriate model is always a vital part of any experimental design. Angiogenesis research has also been much affected due to lack of simple, reliable, and relevant models which could be easily quantitated. The angiogenesis models have been used extensively for studying the action of various molecules for agonist or antagonistic behaviour and associated mechanisms. Here, we have described two protocols or models which have been popularly utilized for studying angiogenic parameters. Rat aortic ring assay tends to bridge the gap between in vitro and in vivo models. The chorioallantoic membrane (CAM) assay is one of the most utilized in vivo model system for angiogenesis-related studies. The CAM is highly vascularized tissue of the avian embryo and serves as a good model to study the effects of various test compounds on neoangiogenesis. PMID:26608294

  10. In situ spectroscopic characterization of Ni1-xZnx/ZnO catalysts and their selectivity for acetylene semihydrogenation in excess ethylene

    SciTech Connect

    Spanjers, Charles S.; Sim, Richard S.; Sturgis, Nicholas P.; Kabius, Bernd; Rioux, Robert M.

    2015-10-30

    The structures of ZnO-supported Ni catalysts were explored with in situ X-ray absorption spectroscopy, temperature-programmed reduction, X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy, and electron energy loss spectroscopy. Calcination of nickel nitrate on a nanoparticulate ZnO support at 450 °C results in the formation of Zn-doped NiO (ca. N₀̣̣₈₅ Zn₀̣̣₁₅O) nanoparticles with the rock salt crystal structure. Subsequent in situ reduction monitored by X-ray absorption near-edge structure (XANES) at the Ni K edge reveals a direct transformation of the Zn-doped NiO nanoparticles to a face-centered cubic alloy, Ni1-xZnx, at ~400 °C with x increasing with increasing temperature. Both in situ XANES and ex situ HRTEM provide evidence for intermetallic β₁-NiZn formation at ~550 °C. In comparison to a Ni/SiO₂ catalyst, Ni/ZnO necessitates a higher temperature for the reduction of NiII to Ni⁰, which highlights the strong interaction between Ni and the ZnO support. The catalytic activity for acetylene removal from an ethylene feed stream is decreased by a factor of 20 on Ni/ZnO in comparison to Ni/SiO₂. The decrease in catalytic activity of Ni/ZnO is accompanied by a reduced absolute selectivity to ethylene. H–D exchange measurements demonstrate a reduced ability of Ni/ZnO to dissociate hydrogen in comparison to Ni/SiO₂.These results of the catalytic experiments suggest that the catalytic properties are controlled, in part, by the zinc oxide support and stress the importance of reporting absolute ethylene selectivity for the catalytic semihydrogenation of acetylene in excess ethylene.

  11. Infrared spectra of acetylene dimers and acetylene-nitrogen: (DCCD) 2, H-bonded DCCD-HCCH, and DCCD-NN in the 4.1 μm region

    NASA Astrophysics Data System (ADS)

    Lauzin, Clément; Moazzen-Ahmadi, N.; McKellar, A. R. W.

    2011-09-01

    Infrared spectra of the weakly-bound T-shaped acetylene dimers DCCD-DCCD and DCCD-HCCH are studied in the region of the DCCD ν3 fundamental (˜2440 cm -1) using a pulsed supersonic slit-jet expansion and a tunable diode laser probe. The K a = 0 ← 1 and 1 ← 0 subbands, corresponding to the vibration of the DCCD monomer at the "top" of the T, are analyzed. Compared to the analogous spectrum of HCCH-HCCH, the present results are much less perturbed. The tunneling splitting for (DCCD) 2 in the excited state is determined to be 141 MHz, a big reduction from the previously determined ground state value of 424 MHz. The dimer A rotational constants show a large apparent increase upon vibrational excitation, and we discuss whether this increase is real. The linear DCCD-NN complex is also observed as an impurity in the spectrum, and it too is found to be unperturbed, in contrast with HCCH-NN.

  12. ESI-MS, DFT, and synthetic studies on the H(2)-mediated coupling of acetylene: insertion of C=X bonds into rhodacyclopentadienes and Brnsted acid cocatalyzed hydrogenolysis of organorhodium intermediates.

    PubMed

    Williams, Vanessa M; Kong, Jong Rock; Ko, Byoung Joon; Mantri, Yogita; Brodbelt, Jennifer S; Baik, Mu-Hyun; Krische, Michael J

    2009-11-11

    The catalytic mechanism of the hydrogen-mediated coupling of acetylene to carbonyl compounds and imines has been examined using three techniques: (a) ESI-MS and ESI-CAD-MS analyses, (b) computational modeling, and (c) experiments wherein putative reactive intermediates are diverted to alternate reaction products. ESI-MS analysis of reaction mixtures from the hydrogen-mediated reductive coupling of acetylene to alpha-ketoesters or N-benzenesulfonyl aldimines corroborate a catalytic mechanism involving C horizontal lineX (X = O, NSO(2)Ph) insertion into a cationic rhodacyclopentadiene obtained by way of acetylene oxidative dimerization with subsequent Brnsted acid cocatalyzed hydrogenolysis of the resulting oxa- or azarhodacycloheptadiene. Hydrogenation of 1,6-diynes in the presence of alpha-ketoesters provides analogous coupling products. ESI mass spectrometric analysis again corroborates a catalytic mechanism involving carbonyl insertion into a cationic rhodacyclopentadiene. For all ESI-MS experiments, the structural assignments of ions are supported by multistage collisional activated dissociation (CAD) analyses. Further support for the proposed catalytic mechanism derives from experiments aimed at the interception of putative reactive intermediates and their diversion to alternate reaction products. For example, rhodium-catalyzed coupling of acetylene to an aldehyde in the absence of hydrogen or Brnsted acid cocatalyst provides the corresponding (Z)-butadienyl ketone, which arises from beta-hydride elimination of the proposed oxarhodacycloheptadiene intermediate, as corroborated by isotopic labeling. Additionally, the putative rhodacyclopentadiene intermediate obtained from the oxidative coupling of acetylene is diverted to the product of reductive [2 + 2 + 2] cycloaddition when N-p-toluenesulfonyl-dehydroalanine ethyl ester is used as the coupling partner. The mechanism of this transformation also is corroborated by isotopic labeling. Computer model studies based on density functional theory (DFT) support the proposed mechanism and identify Brnsted acid cocatalyst assisted hydrogenolysis to be the most difficult step. The collective studies provide new insight into the reactivity of cationic rhodacyclopentadienes, which should facilitate the design of related rhodium-catalyzed C-C couplings. PMID:19845357

  13. Nonstationary coherent optical effects caused by pulse propagation through acetylene-filled hollow-core photonic-crystal fibers

    NASA Astrophysics Data System (ADS)

    Ocegueda, M.; Hernandez, E.; Stepanov, S.; Agruzov, P.; Shamray, A.

    2014-06-01

    Experimental observations of nonstationary coherent optical phenomena, i.e., optical nutation, free induction, and photon echo, in the acetylene (12C2H2) filled hollow-core photonic-crystal fiber (PCF) are reported. The presented results were obtained for the acetylene vibration-rotational transition P9 at wavelength 1530.37 nm at room temperature under a gas pressure of <0.5 Torr. An all-fiber pumped-through cell based on the commercial 2.6-m-long PCF with a 10-?m hollow-core diameter was used. The characteristic relaxation time T2 during which the optical coherent effects were typically observed in our experiments was estimated to be ?8 ns. This time is governed by the limited time of the acetylene molecules' presence inside the effective PCF modal area and by intermolecule collisions. An accelerated attenuation of the optical nutation oscillations is explained by a random orientation of acetylene molecules.

  14. A potential plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses...

  15. Development of a rapid on-line acetylene sensor for industrial hydrogenation reactor optimization using off-axis integrated cavity output spectroscopy.

    PubMed

    Le, Linh D; Tate, J D; Seasholtz, Mary Beth; Gupta, Manish; Owano, Thomas; Baer, Doug; Knittel, Trevor; Cowie, Alan; Zhu, Jie

    2008-01-01

    A spectroscopic analyzer has been developed for rapid, accurate quantification of acetylene and methyl acetylene in hydrocarbon cracked gas processing plants. The system utilizes off-axis integrated output cavity spectroscopy to measure the near-infrared, cavity-enhanced absorption spectrum of ethylene, methyl acetylene, and acetylene and employs a chemometric data analysis strategy to quantify the respective constituents. Initial tests verified that the instrument is capable of measuring, <0.050 ppmv of acetylene, has a precision of +/-0.025 ppmv, and can accurately determine acetylene concentrations with comparable accuracy to a gas chromatograph (+/-0.1 ppmv) in an actual process stream composition matrix under plant operating conditions. Subsequently, the prototype analyzer was installed in a hydrocarbon facility for field-trials, where its rapid response (< or =30 seconds or better) allowed it to measure transient acetylene and methyl acetylene fluctuations that were too fast for conventional methodologies. Moreover, the analyzer showed an extended dynamic range that enabled measurement of very high acetylene levels (0-1000 ppmv) during abnormal plant operations. Finally, two commercial acetylene analyzer systems with stream-switching capabilities were implemented in an industrial facility and initial results are presented. PMID:18230209

  16. The photolysis of NH3 in the presence of substituted acetylenes - A possible source of oligomers and HCN on Jupiter

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Jacobson, Richard R.; Guillemin, Jean C.

    1992-01-01

    An NMR spectral study is presently conducted of NH3 photolysis in the presence of substituted acetylenes with NMR spectra and gas chromatography. Quantum yields and percentage conversions to products are reported. It is shown that acetylenic hydrocarbons generated during methane photolysis in Jupiter's stratosphere can react with radicals formed by NH3 photolysis to yield nonvolatile, yellow-brown polymers, alkylnitriles, and in due course, HCN, as observed on Jupiter.

  17. Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene

    NASA Astrophysics Data System (ADS)

    Yang, Meng; Sasaki, Shinichirou; Suzuki, Ken; Miura, Hideo

    2016-03-01

    Although many studies have reported the chemical vapor deposition (CVD) growth of large-area monolayer graphene from methane, synthesis of graphene using acetylene as the source gas has not been fully explored. In this study, the low-pressure CVD (LPCVD) growth of graphene from acetylene was systematically investigated. We succeeded in regulating the domain size, defects density, layer number and the sheet resistance of graphene by changing the acetylene flow rates. Scanning electron microscopy and Raman spectroscopy were employed to confirm the layer number, uniformity and quality of the graphene films. It is found that a low flow rate of acetylene (0.28 sccm) is required to form high-quality monolayer graphene in our system. On the other hand, the high acetylene flow rate (7 sccm) will induce the growth of the bilayer graphene domains with high defects density. On the basis of selected area electron diffraction (SAED) pattern, the as-grown monolayer graphene domains were analyzed to be polycrystal. We also discussed the relation between the sheet resistacne and defects density in graphene. Our results provide great insights into the understanding of the CVD growth of monolayer and bilayer graphene from acetylene.

  18. Growth of few-wall carbon nanotubes with narrow diameter distribution over Fe-Mo-MgO catalyst by methane/acetylene catalytic decomposition.

    PubMed

    Labunov, Vladimir A; Basaev, Alexander S; Shulitski, Boris G; Shaman, Yuriy P; Komissarov, Ivan; Prudnikava, Alena L; Tay, Beng Kang; Shakerzadeh, Maziar

    2012-01-01

    Few-wall carbon nanotubes were synthesized by methane/acetylene decomposition over bimetallic Fe-Mo catalyst with MgO (1:8:40) support at the temperature of 900°C. No calcinations and reduction pretreatments were applied to the catalytic powder. The transmission electron microscopy investigation showed that the synthesized carbon nanotubes [CNTs] have high purity and narrow diameter distribution. Raman spectrum showed that the ratio of G to D band line intensities of IG/ID is approximately 10, and the peaks in the low frequency range were attributed to the radial breathing mode corresponding to the nanotubes of small diameters. Thermogravimetric analysis data indicated no amorphous carbon phases. Experiments conducted at higher gas pressures showed the increase of CNT yield up to 83%. Mössbauer spectroscopy, magnetization measurements, X-ray diffraction, high-resolution transmission electron microscopy, and electron diffraction were employed to evaluate the nature of catalyst particles. PMID:22300375

  19. Burn due to misuse of an acetylene gas burner: a case report.

    PubMed

    Shimada, K; Aoki, Y; Ide, Y; Ishikura, N; Kawakami, S

    1999-11-01

    A rare case of deep penetrating burn injury caused by misuse of a high-pressure acetylene burner is reported. A 35 year old man was admitted with second and third degree burns involving the right arm cubital area and a subcutaneous burn on his right arm caused by a high-pressure acetylene gas flame. Early surgical debridement and secondary skin grafting using a preserved subcutaneous vascular network skin graft (PSVNSG) proved effective in this patient. Skin contracture was prevented and function was recovered. The basis of PSVNSG is that the vascular system existing in the graft is used as a permanent vascular system without degeneration. This case shows that, in this kind of burn injury, subcutaneous tissue damage should be suspected and that it is important to perform surgical debridement early after admission. PMID:10563697

  20. A wave-packet simulation of the low-lying singlet electronic transitions of acetylene.

    PubMed

    Schubert, Bernd; Köppel, Horst; Lischka, Hans

    2005-05-01

    The vibronic structure of the S0 --> S1 and the S0 --> S2 electronic transitions of acetylene is studied theoretically based on an ab initio quantum-dynamical approach. The underlying potential-energy surfaces and transition dipole moment functions are obtained from high-level multireference calculations, including the Davidson correction. Ensuing quantum-dynamical simulations rely on the wave-packet propagation method, using grid techniques, and including three nuclear degrees of freedom (C-C stretching and both HCC bending modes for J = 0). The importance of strong anharmonicity is assessed, especially for the S2 excited state with its unusual potential-energy surface. Good overall agreement with the experimental UV absorption spectrum of acetylene is achieved in the range of 6-8 eV. PMID:15918709

  1. Unexpected chemistry from the reaction of naphthyl and acetylene at combustion-like temperatures.

    PubMed

    Parker, Dorian S N; Kaiser, Ralf I; Bandyopadhyay, Biswajit; Kostko, Oleg; Troy, Tyler P; Ahmed, Musahid

    2015-04-27

    The hydrogen abstraction/acetylene addition (HACA) mechanism has long been viewed as a key route to aromatic ring growth of polycyclic aromatic hydrocarbons (PAHs) in combustion systems. However, doubt has been drawn on the ubiquity of the mechanism by recent electronic structure calculations which predict that the HACA mechanism starting from the naphthyl radical preferentially forms acenaphthylene, thereby blocking cyclization to a third six-membered ring. Here, by probing the products formed in the reaction of 1- and 2-naphthyl radicals in excess acetylene under combustion-like conditions with the help of photoionization mass spectrometry, we provide experimental evidence that this reaction produces 1- and 2-ethynylnaphthalenes (C12 H8 ), acenaphthylene (C12 H8 ) and diethynylnaphthalenes (C14 H8 ). Importantly, neither phenanthrene nor anthracene (C14 H10 ) was found, which indicates that the HACA mechanism does not lead to cyclization of the third aromatic ring as expected but rather undergoes ethynyl substitution reactions instead. PMID:25752687

  2. Isotope effect in normal-to-local transition of acetylene bending modes

    DOE PAGESBeta

    Ma, Jianyi; Xu, Dingguo; Guo, Hua; Tyng, Vivian; Kellman, Michael E.

    2012-01-01

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helpsmore » to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.« less

  3. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames

    SciTech Connect

    Wang, H.; Frenklach, M.

    1997-07-01

    A computational study was performed for the formation and growth of polycyclic aromatic hydrocarbons (PAHs) in laminar premixed acetylene and ethylene flames. A new detailed reaction mechanism describing fuel pyrolysis and oxidation, benzene formation, and PAH mass growth and oxidation is presented and critically tested. It is shown that the reaction model predicts reasonably well the concentration profiles of major and intermediate species and aromatic molecules in a number of acetylene and ethylene flames reported in the literature. It is demonstrated that reactions of n-C{sub 4}H{sub x} + C{sub 2}H{sub 2} leading to the formation of one-ring aromatics are as important as the propargyl recombination, and hence must be included in kinetic modeling of PAH formation in hydrocarbon flames. It is further demonstrated that the mass growth of PAHs can be accounted for by the previously proposed H-abstraction-C{sub 2}H{sub 2}-addiction mechanism.

  4. Modeling of acetylene pyrolysis under steel vacuum carburizing conditions in a tubular flow reactor.

    PubMed

    Khan, Rafi Ullah; Bajohr, Siegfried; Graf, Frank; Reimert, Rainer

    2007-01-01

    In the present work, the pyrolysis of acetylene was studied under steel vacuum carburizing conditions in a tubular flow reactor. The pyrolysis temperature ranged from 650 degrees C to 1050 degrees C. The partial pressure of acetylene in the feed mixture was 10 and 20 mbar, respectively, while the rest of the mixture consisted of nitrogen. The total pressure of the mixture was 1.6 bar. A kinetic mechanism which consists of seven species and nine reactions has been used in the commercial computational fluid dynamics (CFD) software Fluent. The species transport and reaction model of Fluent was used in the simulations. A comparison of simulated and experimental results is presented in this paper. PMID:17851387

  5. Isotope effect in normal-to-local transition of acetylene bending modes

    SciTech Connect

    Ma, Jianyi; Xu, Dingguo; Guo, Hua; Tyng, Vivian; Kellman, Michael E.

    2012-01-01

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helps to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.

  6. Thermally and oxidatively stable carborane-siloxane-acetylenic-based thermosetting polymers

    SciTech Connect

    Henderson, L.J. Jr.; Keller, T.M.

    1993-12-31

    Inorganic-organic hybrid polymers that can be pyrolyzed to generate new ceramics are of current interest as a route to high temperature materials. Ceramics have desirable thermal stabilities, but are difficult to process. Inorganic-organic hybrid polymers as ceramic precursors combine organic`s ease of processability with inorganic`s desirable thermal and oxidative stability. Carborane-siloxane-acetylenic-based polymers are an application of this approach. The synthesis, characterization and thermooxidative properties of poly(butadiyne-1,7,bis(tetramethyldisiloxyl)-m-carborane) (polymer 2) is described. Polymer 2 is a viscous dark brown polymer that is soluble in most organic solvents making it was to process. Thermal crosslinking of acetylenic groups generates a thermoset which in turn can be pyrolyzed to ceramic material. Thermal and thermo-oxidative characterization is by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Cure studies of larger samples are also presented.

  7. Characterization of the Minimum Energy Paths and Energetics for the reaction of Vinylidene with Acetylene

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Taylor, Peter R.

    1995-01-01

    The reaction of vinylidene (CH2C) with acetylene may be an initiating reaction in soot formation. We report minimum energy paths and accurate energetics for a pathway leading to vinylacetylene and for a number of isomers Of C4H4. The calculations use complete active space self-consistent field (CASSCF) derivative methods to characterize the stationary points and internally contacted configuration interaction (ICCI) and/or coupled cluster singles and doubles with a perturbational estimate of triple excitations (CCSD(T)) to determine the energetics. We find an entrance channel barrier of about 5 kcal/mol for the addition of vinylidene to acetylene, but no barriers above reactants for the reaction pathway leading to vinylacetylene.

  8. A matrix isolation and ab initio study of the hydrogen bonded complexes of acetylene with pyridine

    NASA Astrophysics Data System (ADS)

    Sundararajan, K.; Sankaran, K.; Viswanathan, K. S.

    2005-01-01

    Hydrogen bonded complexes of acetylene and pyridine were studied using matrix isolation spectroscopy and ab initio computations. The adduct was formed by depositing acetylene and pyridine in an argon matrix and a 1:1 C 2H 2-NC 5H 5 complex was identified using infrared spectroscopy. Formation of the adduct was evidenced from the shifts in the vibrational frequencies of C 2H 2 in the complex compared with that of free C 2H 2. The molecular structure, vibrational frequencies and stabilization energies of the complex were computed at the HF/6-31++G** and B3LYP/6-31++G** levels. We located one minimum on the potential surface, corresponding to a strongly bound C 2H 2-NC 5H 5 n-σ complex. Both experimental and computational data indicated that C 2H 2 acts as a proton donor and C 5H 5N as a proton acceptor.

  9. Cold-atmospheric pressure plasma polymerization of acetylene on wood flour for improved wood plastics composites

    NASA Astrophysics Data System (ADS)

    Lekobou, William; Pedrow, Patrick; Englund, Karl; Laborie, Marie-Pierre

    2009-10-01

    Plastic composites have become a large class of construction material for exterior applications. One of the main disadvantages of wood plastic composites resides in the weak adhesion between the polar and hydrophilic surface of wood and the non-polar and hydrophobic polyolefin matrix, hindering the dispersion of the flour in the polymer matrix. To improve interfacial compatibility wood flour can be pretreated with environmentally friendly methods such as cold-atmospheric pressure plasma. The objective of this work is therefore to evaluate the potential of plasma polymerization of acetylene on wood flour to improve the compatibility with polyolefins. This presentation will describe the reactor design used to modify wood flour using acetylene plasma polymerization. The optimum conditions for plasma polymerization on wood particles will also be presented. Finally preliminary results on the wood flour surface properties and use in wood plastic composites will be discussed.

  10. Deposition of Functional Coatings from an Acetylene-Containing Plasma at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Plevako, F. V.; Gorbatov, S. V.; Davidovich, P. A.; Prikhod‧ko, E. M.; Shushkov, S. V.; Krul‧, L. P.; Butovskaya, G. V.; Shakhno, O. V.; Gusakova, S. V.; Korolik, O. V.; Mazanik, A. V.

    2016-03-01

    Properties of thin coatings formed on polymer and glass substrates by plasma-enhanced chemical vapor deposition from a mixture of nitrogen with acetylene at atmospheric pressure were investigated. It was established that chemically stable transparent films with a mass ratio of fixed carbon and nitrogen C:N ~ 2:1 are formed on the surface of these substrates. When the deposition time was increased, arrays of dendrite-like structures were formed on the substrates.

  11. High resolution spectroscopic detection of acetylene--vinylidene isomerization by spectral cross correlation

    SciTech Connect

    Chen, Y.; Jonas, D.M.; Kinsey, J.L.; Field, R.W. )

    1989-10-01

    Information about the unimolecular acetylene (HC 3/4 CH){leftrightarrow}vinylidene (H{sub 2}C=C:) isomerization on the {ital S}{sub 0} energy surface has been extracted from vibrationally unassigned high resolution stimulated emission pumping (SEP) spectra of acetylene. The combination of a new pattern recognition scheme, spectral cross correlation (SCC) with complete nuclear permutation-inversion (CNPI) group theory is shown to be a powerful new technique for characterizing bond rearrangement in highly vibrationally excited normally rigid polyatomic molecules. SCC detects isomerization resonances'' which destroy an approximate vibrational symmetry (e.g., the number of {ital cis}-bending quanta). The energies (relative to the zero point level of the stablest isomer) and widths of such resonances provide information about the energies'' of isomer rovibrational levels and the isomer-level-specific isomerization rate. Vinylidene isomerization resonances may be distinguished from ordinary acetylene Fermi or Coriolis perturbations by a unique rotational symmetry dependence due to the correlation between acetylene ({ital D}{sub {infinity}{ital h}}(M)) and vinylidene ({ital C}{sub 2{ital v}}(M)) levels in the CNPI group G{sub 8}. An SCC map of the HCCH {ital S}{sub 0} 15 000--15 900 cm{sup {minus}1} energy region above the zero point level was obtained by comparing SEP spectra recorded via {ital S}{sub 1}({ital {tilde A}} {sup 1}{ital A}{sub {ital u}})3{sup 3} and 2{sup 1}6{sup 2} {ital K}{sub {ital a}}=1 intermediate levels. The predicted rotational symmetry dependence of the SCC was found between 15 410--15 640 cm{sup {minus}1}, but the vinylidene resonance line shape was obscured by Franck--Condon interference effects from well known perturbations between the 3{sup 3} and 2{sup 1}6{sup 2} SEP intermediate levels.

  12. A new C-10 acetylene and A new triterpenoid from Conyza canadensis.

    PubMed

    Xie, Wei Dong; Gao, Xue; Jia, Zhong Jian

    2007-05-01

    From the whole plants of Conyza canadensis (Compositae), a new C-10 acetylene, namely 8R, 9R-dihydroxymatricarine methyl ester (1), and a new triterpenoid, namely 3beta, 16beta, 20beta-trihydroxytaraxast-3-O-palmitoxyl ester (4), were isolated along with eleven known compounds (2, 3, 5-13). The structures of all 13 compounds were elucidated on the basis of their spectral data. The antibacterial activities of compounds 1-3 were evaluated. PMID:17615671

  13. Dynamical symmetry breaking in the 4 νCH rovibrational manifold of acetylene

    NASA Astrophysics Data System (ADS)

    Payne, M. A.; Milce, A. P.; Frost, M. J.; Orr, B. J.

    1997-01-01

    Time-resolved, fluorescence-detected infrared-ultraviolet double resonance spectroscopy of acetylene in the 12700 cm -1 '4 νCH' rovibrational manifold reveals unusual symmetry-breaking energy transfer, induced (at least in part) by collisions. This takes the form of odd-numbered changes of the rotational quantum number J, despite the fact that intramolecular transfer between the ortho and para nuclear-spin modifications of such a molecule is usually forbidden.

  14. Effect of acetylene and ammonia as reburn fuel additions to methane in nitric oxide reburning

    SciTech Connect

    Kumpaty, S.K.; Nokku, V.P.; Subramanian, K.

    1996-12-31

    Presented in this paper are the computational results of NO reburning with (a) a combination of methane and acetylene and (b) a combination of methane and ammonia. An updated reaction mechanism that was more comprehensive in terms of predicting the ammonia and isocyanic acid oxidation chemistry was employed to run the CKINTERP program. Using the binary file created by executing the above program and the input stoichiometric ratio conditions, the CHEMKIN package predicted the exit concentrations of various species involved in NO reburning.

  15. Theoretical study of the C-H bond dissociation energy of acetylene

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1990-01-01

    The authors present a theoretical study of the convergence of the C-H bond dissociation energy (D sub o) of acetylene with respect to both the one- and n-particle spaces. Their best estimate for D sub o of 130.1 plus or minus 1.0 kcal/mole is slightly below previous theoretical estimates, but substantially above the value determined using Stark anticrossing spectroscopy that is asserted to be an upper bound.

  16. Pulsed erbium fiber laser with an acetylene-filled photonic crystal fiber for saturable absorption.

    PubMed

    Marty, Patrick Thomas; Morel, Jacques; Feurer, Thomas

    2011-09-15

    We investigate the dynamics of an erbium-doped fiber ring laser that is equipped with an intracavity hollow core photonic crystal fiber gas cell. The cell is filled with acetylene as a saturable absorber. We observe cw operation at low pressures, Q switching at intermediate pressure levels, and mode locking at high pressures applied. Moreover, we show that the transition from the cw to the pulsed mode may be exploited for sensitive gas detection. PMID:21931393

  17. Functionalized acetylenic compounds via 1-bromo- 1,2-dienes and organocopper reagents

    SciTech Connect

    Caporusso, A.M.; Iodice, A.; Lardicci, L.; Salvadori, P.

    1995-12-31

    The acetylenic unity provides a convenient handle which may be converted into a variety of functionalities. In this frame, the authors developed a general and efficient method for the synthesis of chiral 1-alkynes, with a tertiary or a quaternary asymmetric carbon atom in the {alpha} position to the triple bond, by stereoselective cross-coupling of bromocuprates [(RCuBr)MaBr LiBr R=Alkyl, aryl] with optically active 1-bromo-1,2-dienes. This method provides terminal acetylenes which can easily converted into biologically active compounds, such as the antiphlogistic (+)-Ibuprofen. The authors report here that this procedure can be extended to the preparation of a large variety of functionalized acetylenic systems. In fact, bromocuprates, obtained from protected functionalized Grignard reagents and LiCuBr{sub 2}, react with bromoallenes affording the 1-alkynes with high yields, regio- and stereoselectivity. Compounds are also conveniently obtained from cyanocuprates, prepared by reaction of functionalized zinc reagents with the cuprous cyanide/lithium chloride complex; the organozinc derivatives are directly obtained from organic halides and highly activated zinc powder, prepared by metal vapour technique.

  18. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    SciTech Connect

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-28

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  19. Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene.

    PubMed

    Comandini, A; Malewicki, T; Brezinsky, K

    2012-03-15

    An experimental investigation of phenyl radical pyrolysis and the phenyl radical + acetylene reaction has been performed to clarify the role of different reaction mechanisms involved in the formation and growth of polycyclic aromatic hydrocarbons (PAHs) serving as precursors for soot formation. Experiments were conducted using GC/GC-MS diagnostics coupled to the high-pressure single-pulse shock tube present at the University of Illinois at Chicago. For the first time, comprehensive speciation of the major stable products, including small hydrocarbons and large PAH intermediates, was obtained over a wide range of pressures (25-60 atm) and temperatures (900-1800 K) which encompass the typical conditions in modern combustion devices. The experimental results were used to validate a comprehensive chemical kinetic model which provides relevant information on the chemistry associated with the formation of PAH compounds. In particular, the modeling results indicate that the o-benzyne chemistry is a key factor in the formation of multi-ring intermediates in phenyl radical pyrolysis. On the other hand, the PAHs from the phenyl + acetylene reaction are formed mainly through recombination between single-ring aromatics and through the hydrogen abstraction/acetylene addition mechanism. Polymerization is the common dominant process at high temperature conditions. PMID:22339468

  20. Dehydrogenation of acetylene and ethylene studied on clean and oxygen covered palladium surfaces

    NASA Astrophysics Data System (ADS)

    Dannetun, H.; Lundström, I.; Petersson, L.-G.

    1986-08-01

    The interaction of acetylene and ethylene with a clean and oxygen covered Pd surface has been studied at a temperature of 473 K. The measurements were performed on a hydrogen sensitive Pd-MOS structure making it possible to obtain direct information on the dissociation of both hydrogen and oxygen containing species on a palladium surface. Desorption studies were also performed as well as ultraviolet photoelectron spectroscopy and work function measurements. The studies show that both acetylene and ethylene adsorb dissociatively at this temperature leaving mainly carbon on the surface. When an oxygen covered Pd surface is exposed to C 2H 2 or C 2H 4 carbon dioxide and water will be formed and desorb until the surface is oxygen free. In the case of acetylene the presence of preadsorbed oxygen does not block or prevent the C 2H 2 dissociation on the surface. For C 2H 4, a large preadsorbed oxygen coverage (⪆ 0.45) will have an impeding effect on the dissociation. The CO 2 desorption is oxygen coverage dependent contrary to the H 2O desorption. This is due to the fact that hydrogen has a large lateral mobility on the surface while carbon has not. Both the CO 2 and H 2O reactions are, however, due to the same type of mechanisms.

  1. Acetylene from the co-pyrolysis of biomass and waste tires or coal in the H{sub 2}/Ar plasma

    SciTech Connect

    Bao, W.; Cao, Q.; Lv, Y.; Chang, L.

    2008-07-01

    Acetylene from carbon-containing materials via plasma pyrolysis is not only simple but also environmentally friendly. In this article, the acetylene produced from co-pyrolyzing biomass with waste tire or coal under the conditions of H{sub 2}/Ar DC arc plasma jet was investigated. The experimental results showed that the co-pyrolysis of mixture with biomass and waste tire or coal can improve largely the acetylene relative volume fraction (RVF) in gaseous products and the corresponding yield of acetylene. The change trends for the acetylene yield of plasma pyrolysis from mixture with raw sample properties were the same as relevant RVF. But the yield change trend with feeding rate is different from its RVF. The effects of the feeding rate of raw materials and the electric current of plasmatron on acetylene formation are also discussed.

  2. The anomalous behavior of the Zeeman anticrossing spectra of à 1Au acetylene: Theoretical considerations

    NASA Astrophysics Data System (ADS)

    Vacek, George; Sherrill, C. David; Yamaguchi, Yukio; Schaefer, Henry F., III

    1996-02-01

    P. Dupré, R. Jost, M. Lombardi, P. G. Green, E. Abramson, and R. W. Field have observed anomalous behavior of the anticrossing density in the Zeeman anticrossing (ZAC) spectra of gas phase à 1Au acetylene in the 42 200 to 45 300 cm-1 energy range. To best explain this result, they hypothesize a large singlet-triplet coupling due to the existence of a linear isomerization barrier connecting a triplet-excited cis- and trans-acetylene in the vicinity of the studied energy range (˜45 500 cm-1). Theoretically such a linear stationary point, however, must have two different degenerate bending vibrational frequencies which are either imaginary or exactly zero. Neither case has yet been experimentally detected. Here, we have studied the two lowest-lying linear triplet-excited-state stationary points of acetylene, 3Σ+u and 3Δu, to see if they fit Dupré et al.'s hypothesis. We have completed geometry optimization and harmonic vibrational frequency analysis using complete-active-space self-consistent field (CASSCF) wave functions as well as determined energy points at those geometries using the second-order configuration interaction (SOCI) method. Harmonic vibrational analyses of both stationary points reveal two different doubly degenerate vibrational modes with imaginary vibrational frequencies (or negative force constants) indicating that they are indeed saddle points with a Hessian index of four. At the DZP SOCI//CASSCF level of theory with zero-point vibrational energy (ZPVE) correction, the 3Σ+u stationary point lies 35 840 cm-1 above the ground state of acetylene. This is much too low in energy to contribute to the ZAC spectral anomaly. At the same level of theory with ZPVE correction, the 3Δu stationary point lies 44 940 cm-1 above the ground state consistent with Dupré et al.'s hypothesis. Several solutions to the anomalous ZAC spectra are discussed. We propose that the anomaly may also be due to coupling with a nearly linear structure on the T3 surface of acetylene.

  3. Kinetics of tetrachloroethylene-reductive dechlorination catalyzed by vitamin B{sub 12}

    SciTech Connect

    Burris, D.R.; Deng, B.; Buck, L.E.; Hatfield, K.

    1998-09-01

    Reductive dechlorination kinetics of tetrachloroethylene (PCE) to ethylene catalyzed by vitamin B{sub 12} using Ti[III] citrate as the bulk reductant was examined in a vapor-water batch system. A kinetic model incorporating substrate-B{sub 12} electron-transfer complex formation and subsequent product release was developed. The model also accounted for the primary reductive dechlorination pathways (hydrogenolysis and reductive {beta} elimination) and vapor/water-phase partitioning. Reaction rate constants were sequentially determined by fitting the model to experimental kinetic data while moving upward through consecutive reaction pathways. The release of product from the complex was found to be second order with respect to substrate concentration for both PCE and acetylene; all other substrates appeared to release by first order. Reductive {beta} elimination was found to be a significant reaction pathway for trichloroethylene (TCE), and chloroacetylene was observed as a reactive intermediate. Acetylene production appears to be primarily due to the reduction of chloroacetylene derived from TCE. The reduction of cis-dichloroethylene (cis-DCE), the primary DCE isomer formed, was extremely slow, leading to a significant buildup of cis-DCE. The kinetics of acetylene and vinyl chloride reduction appeared to be limited by the formation of relatively stable substrate-B{sub 12} complexes. The relatively simple model examined appears to adequately represent the main features of the experimental data.

  4. Nanocomposite vacuum-Arc TiC/a-C:H coatings prepared using an additional ionization of acetylene

    NASA Astrophysics Data System (ADS)

    Trakhtenberg, I. Sh.; Gavrilov, N. V.; Emlin, D. R.; Plotnikov, S. A.; Vladimirov, A. B.; Volkova, E. G.; Rubshtein, A. P.

    2014-07-01

    The composition, structure, and properties of TiC/a-C:H coatings obtained by simultaneous vacuum-arc deposition of titanium and carbon in a low-pressure argon-acetylene medium additionally activated by a low-energy (a few hundreds of electron-volts) electron beam. The creation of conditions under which the decomposition of acetylene is provided by the ionization and dissociation of molecules due to electron impacts and by the recharging of molecules through titanium and argon ions with subsequent dissociation should favor the most complete decomposition of acetylene in a wide range of pressures. With increasing acetylene pressure, the structure of the nanocomposite coating changes: the size of TiC crystallites decreases, and the fraction of interfaces (or the fraction of regions with a disordered (amorphous) structure) increases. The application of a bias voltage leads to an increase in the sizes of TiC nanocrystallites. The coatings with a maximum microhardness (˜40 GPa) have been obtained without the action of an electron beam under an acetylene pressure of ˜0.05-0.08 Pa and the atomic ratio Ti: C ˜ 0.9: 1.1 in the coating.

  5. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix C

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  6. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix J

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation--O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  7. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  8. Bromotheoynic acid, a brominated acetylenic acid from the marine sponge Theonella swinhoei.

    PubMed

    Aoki, Nobuwa; Yamamoto, Kazuyuki; Ogawa, Takayuki; Ohta, Emi; Ikeuchi, Toshitaka; Kamemura, Kazuo; Ikegami, Susumu; Ohta, Shinji

    2013-01-01

    A new brominated C(17) acetylenic acid (1) designated as bromotheoynic acid has been isolated from the marine sponge Theonella swinhoei, collected off the coast of Tanegashima, Kagoshima Prefecture, Japan. The structure was determined on the basis of the analysis of its extensive 2D NMR spectroscopic data as well as HRMS. Bromotheoynic acid (1) inhibited maturation of starfish oocytes and cell division of fertilised starfish eggs. Bromotheoynic acid (1) also inhibited proliferation of human leukaemia U937 and HL60 cells, human lung cancer A549 and H1299 cells, and human embryonic kidney 293 (HEK293) cells. PMID:22324431

  9. Heat of Combustion of the Product Formed by the Reaction of Acetylene, Ethylene, and Diborane

    NASA Technical Reports Server (NTRS)

    Tannenbaum, Stanley

    1957-01-01

    The net heat of combustion of the product formed by the reaction of diborane with a mixture of acetylene and ethylene was found to be 20,440 +/- 150 Btu per pound for the reaction of liquid fuel to gaseous carbon dioxide, gaseous water, and solid boric oxide. The measurements were made in a Parr oxygen-bomb calorimeter, and the combustion was believed to be 98 percent complete. The estimated net-heat of combustion for complete combustion would therefore be 20,850 +/- 150 Btu per pound.

  10. Adhesion of diamond coatings synthesized by oxygen-acetylene flame CVD on tungsten carbide

    SciTech Connect

    Marinkovic, S.; Stankovic, S.; Dekanski, A.

    1995-12-31

    The results of a study concerned with chemical vapor deposition of diamond on tungsten carbide cutting tools using an oxygen-acetylene flame in a normal ambient environment are presented. Effects of preparation conditions on the adhesion of the coating have been investigated, including different surface treatment, different position of the flame with respect to the coated surface, effect of an intermediate poorly crystalline diamond layer, etc. In particular, effect of polishing and ultrasonic lapping with diamond powder was compared with that of a corresponding treatment with SiC powder.

  11. Wavelength-modulation detection of acetylene with a near-infrared external-cavity diode laser

    NASA Astrophysics Data System (ADS)

    Oh, Daniel B.; Hovde, David Christian

    1995-10-01

    An external-cavity diode laser operating at 1500 nm was used to record the combination band of acetylene (C2H2). By combination of wavelength-modulation spectroscopy with a noise-canceler detection circuit, a minimum detectable absorbance of 4.8 \\times 10 -4 with a 300-ms time constant was achieved, although this result was limited by etalon fringes. When combined with this detection technique, continuous, widely tunable output from an external-cavity laser is ideally suited for high-resolution absorption spectroscopy with excellent sensitivity.

  12. Second hyperpolarizability of delta shaped disubstituted acetylene complexes of beryllium, magnesium, and calcium.

    PubMed

    Hatua, Kaushik; Nandi, Prasanta K

    2015-10-01

    Present theoretical study involves the delta shape complexes of beryllium, magnesium, and calcium where the metal atom interacts perpendicularly with disubstituted acetylene. Most of the complexes are found to be fairly stable. The dependence of second-hyperpolarizability on the basis set with increasing polarization and diffuse functions has been examined which showed the importance of 'f-type' type polarization function for heavy metal (Mg, Ca) and 'd-type' polarization function for beryllium. Larger second hyperpolarizability has been predicted for complexes having significant ground state polarization and low lying excited states favoring strong electronic coupling. Transition energy plays the most significant role in modulating the second hyperpolarizability. PMID:26361770

  13. Mechanisms of. pi. -bond oxidation by cytochrome p-450: acetylenes as probes

    SciTech Connect

    Komives, E.A.

    1987-01-01

    Phenylacetylene and biphenylacetylene are oxidized by microsomal and purified P-450 to the corresponding arylacetic acids. During this transformation, the acetylenic hydrogen undergoes a 1,2 shift which causes a kinetic isotope effect of 1.8 on the overall enzymatic rate. The same products and kinetic isotope effects are observed when the arylacetylenes are oxidized by m-chloroperbenzoic acid. Suicide inactivation of P-450 by the arylacetylenes, which occurs simultaneously with metabolite formation, is insensitive to isotopic substitution so the partition ratio changes from 26 for phenylacetylene of 14 for (1-/sup 2/H) phenylacetylene.

  14. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene.

    PubMed

    Li, Xingyun; Pan, Xiulian; Yu, Liang; Ren, Pengju; Wu, Xing; Sun, Litao; Jiao, Feng; Bao, Xinhe

    2014-01-01

    Acetylene hydrochlorination is an important coal-based technology for the industrial production of vinyl chloride, however it is plagued by the toxicity of the mercury chloride catalyst. Therefore extensive efforts have been made to explore alternative catalysts with various metals. Here we report that a nanocomposite of nitrogen-doped carbon derived from silicon carbide activates acetylene directly for hydrochlorination in the absence of additional metal species. The catalyst delivers stable performance during a 150 hour test with acetylene conversion reaching 80% and vinyl chloride selectivity over 98% at 200 °C. Experimental studies and theoretical simulations reveal that the carbon atoms bonded with pyrrolic nitrogen atoms are the active sites. This proof-of-concept study demonstrates that such a nanocomposite is a potential substitute for mercury while further work is still necessary to bring this to the industrial stage. Furthermore, the finding also provides guidance for design of carbon-based catalysts for activation of other alkynes. PMID:24751500

  15. Isolation of cyanobacterial heterocysts with high and sustained dinitrogen-fixation capacity supported by endogenous reductants.

    PubMed

    Jensen, B B; Cox, R P; Burris, R H

    1986-08-01

    A method is described for the preparation of cyanobacterial heterocysts with high nitrogen-fixation (acetylene-reduction) activity supported by endogenous reductants. The starting material was Anabaena variabilis ATCC 29413 grown in the light in the presence of fructose. Heterocysts produced from such cyanobacteria were more active than those from photoautotrophically-grown A. variabilis, presumably because higher reserves of carbohydrate were stored within the heterocysts. It proved important to avoid subjecting the cyanobacteria to low temperatures under aerobic conditions, as inhibition of respiration appeared to lead to inactivation of nitrogenase. Low temperatures were not harmful in the absence of O2. A number of potential osmoregulators at various concentrations were tested for use in heterocyst isolation. The optimal concentration (0.2 M sucrose) proved to be a compromise between adequate osmotic protection for isolated heterocysts and avoidance of inhibition of nitrogenase by high osmotic strength. Isolated heterocysts without added reductants such as H2 had about half the nitrogen-fixation activity expected on the basis of intact filaments. H2 did not increase the rate of acetylene reduction, suggesting that the supply of reductant from heterocyst metabolism did not limit nitrogen fixation under these conditions. Such heterocysts had linear rates of acetylene reduction for at least 2 h, and retained their full potential for at least 12 h when stored at 0 degree C under N2. PMID:3094473

  16. The analysis of the hot bands of acetylene in the 2.5 - 3{mu}m region

    SciTech Connect

    Sarma, Y.A.; D`Cunha, R.; Guelachvili, G.

    1995-12-31

    Renewed interest in acetylene as a calibration standard in the mid-IR region and as a model for IVR (intra vibrational relaxation) studies, has prompted a systematic reinvestigation of its FTIR spectra in the 2.5 - 3{mu}m region. The effect of 1 type resonances has been included in the analysis and molecular parameters that fit the data within the limits of the experimental accuracy have been obtained for several overtone and combination levels of acetylene. The details of the analysis will be presented.

  17. An improved choline monooxygenase assay

    SciTech Connect

    Lafontaine, P.J.; Hanson, A.D. )

    1991-05-01

    Glycine betaine accumulates in leaves of plants from several angiosperm families in response to drought or salinization. Its synthesis, from the oxidation of choline, is mediated by a two step pathway. In spinach the first enzyme of this pathway is a ferredoxin-dependent choline monooxygenase (CMO). In order to purify this enzyme a sensitive and reliable assay is necessary. Two types of modifications were explored to improve the existing assay. (1) Ferredoxin reduction - one way of providing reduced Fd to CMO is by the addition of isolated spinach thylakoids in the assay mixture. In order to optimize the reduction of Fd two different systems were compared: (a) where only PS is active, by adding DCMU to inhibit electron transport from PS II and DAD as electron donor for PS I; (b) where both PS II and PS I are active. (2) Betaine aldehyde estimation - to simplify this, it is possible to couple the CMO reaction with betaine aldehyde dehydrogenase (BADH) from E. coli. BADH converts betaine aldehyde to betaine as it is formed in the assay, eliminating the need for a chemical oxidation step.

  18. Unconventional ionic hydrogen bonds: CH +⋯π (C tbnd C) binding energies and structures of benzene + rad (acetylene) 1-4 clusters

    NASA Astrophysics Data System (ADS)

    Soliman, Abdel-Rahman; Hamid, Ahmed M.; Abrash, Samuel A.; El-Shall, M. Samy

    2012-01-01

    Rapid condensation of acetylene onto the benzene cation with the addition of up to eight acetylene molecules is observed in the gas phase at 120-140 K forming the C6D6rad +(C2H2)n clusters. The binding energies and entropy changes of the stepwise condensation of the first four acetylene molecules onto the benzene cation have been measured and correlated with the calculated lowest energy isomers. The measured binding energies (3-4 kcal/mol) reflect weak charge-induced dipole and (benzene) Csbnd Hδ+⋯π Ctbnd C (acetylene) hydrogen bonding interactions. Associative charge transfer is suggested to activate the cyclization of three acetylene molecules to form a benzene molecule (C6H6).

  19. Transient Responses of Nitrogenase to Acetylene and Oxygen in Actinorhizal Nodules and Cultured Frankia1

    PubMed Central

    Silvester, Warwick B.; Winship, Lawrence J.

    1990-01-01

    Nitrogenase activity in root nodules of four species of actinorhizal plants showed varying declines in response to exposure to acetylene (10% v/v). Gymnostoma papuanum (S. Moore) L. Johnson. and Casuarina equisetifolia L. nodules showed a small decline (5-15%) with little or no recovery over 15 minutes. Myrica gale L. nodules showed a sharp decline followed by a rapid return to peak activity. Alnus incana ssp. rugosa (Du Roi) Clausen. nodules usually showed varying degrees of decline followed by a slower return to peak or near-peak activity. We call these effects acetylene-induced transients. Rapid increases in oxygen tension also caused dramatic transient decreases in nitrogenase activity in all species. The magnitude of the transient decrease was related to the size of the O2 partial pressure (pO2) rise, to the proximity of the starting and ending oxygen tensions to the pO2 optimum, and to the time for which the plant was exposed to the lower pO2. Oxygen-induced transients, induced both by step jumps in pO2 and by O2 pulses, were also observed in cultures of Frankia. The effects seen in nodules are purely a response by the bacterium and not a nodule effect per se. Oxygen-induced nitrogenase transients in actinorhizal nodules from the plant genera tested here do not appear to be a result of changes in nodule diffusion resistance. PMID:16667301

  20. Acetylenic Linkers in Lead Compounds: A Study of the Stability of the Propargyl-Linked Antifolates

    PubMed Central

    Zhou, Wangda; Viswanathan, Kishore; Hill, Dennis; Anderson, Amy C.

    2012-01-01

    Propargyl-linked antifolates that target dihydrofolate reductase are potent inhibitors of several species of pathogenic bacteria and fungi. This novel class of antifolates possesses a relatively uncommon acetylenic linker designed to span a narrow passage in the enzyme active site and join two larger functional domains. Because the use of alkyne functionality in drug molecules is limited, it was important to evaluate some key physicochemical properties of these molecules and specifically to assess the overall stability of the acetylene. Herein, we report studies on four compounds from our lead series that vary specifically in the environment of the alkyne. We show that the compounds are soluble, chemically stable in water, as well as simulated gastric and intestinal fluids with half-lives of approximately 30 min after incubation with mouse liver microsomes. Their primary in vitro route of metabolism involves oxidative transformations of pendant functionality with little direct alteration of the alkyne. Identification of several major metabolites indicated the formation of N-oxides; the rate of formation of these oxides was highly influenced by branching substitutions around the propargyl linker. On the basis of the lessons of these metabolic studies, a more advanced inhibitor was designed, synthesized, and shown to have increased (t1/2 = 65 min) metabolic stability while maintaining potent enzyme inhibition. PMID:22815313

  1. Accurate partition function for acetylene, 12C2H2, and related thermodynamical quantities.

    PubMed

    Amyay, B; Fayt, A; Herman, M

    2011-12-21

    The internal partition function (Q(int)) of ethyne (acetylene), (12)C(2)H(2), is calculated by explicit summation of the contribution of all individual vibration-rotation energy levels up to 15,000 cm(-1). The corresponding energies are predicted from a global model and constants reproducing within 3σ all 18,415 published vibration-rotation lines in the literature involving vibrational states up to 8900 cm(-1), as produced by Amyay et al. [J. Mol. Spectrosc. 267, 80 (2011)]. Values of Q(int), with distinct calculations for para and ortho species are provided from 1 to 2000 K, in step of 1 K. The total internal partition function at 298.15 K is 104.224387(47) or 416.89755(19), with the nuclear degeneracy spin factors taken as 1/4:3/4 (astronomer convention) or 1:3 (atmospheric convention), respectively, for para:ortho species. The Helmholtz function, Gibbs enthalpy function, entropy, and specific heat at constant pressure are also calculated over the same temperature range. Accuracies as well as the missing contribution of the vinylidene isomer of acetylene in the calculations are discussed. PMID:22191873

  2. Global fitting of line intensities of acetylene molecule in the infrared using the effective operator approach

    NASA Astrophysics Data System (ADS)

    Perevalov, V. I.; Lyulin, O. M.; Jacquemart, D.; Claveau, C.; Teffo, J.-L.; Dana, V.; Mandin, J.-Y.; Valentin, A.

    2003-04-01

    The method of effective operators has been applied to the global fitting of line intensities of the acetylene molecule in the middle infrared. Simultaneous fittings of recently observed line intensities in the cold and hot bands lying in the 13.6, 7.8, and 5 μm regions have been performed. The eigenfunctions of the effective Hamiltonian developed for the global treatment of the vibration-rotation line positions of acetylene [O.M. Lyulin, V.I. Perevalov, S.A. Tashkun, J.-L. Teffo, in: Leonid N. Sinitsa (Ed.), 13th Symposium and School on High Resolution Molecular Spectroscopy, Proceedings of SPIE, vol. 4063, 2000, pp. 126-133] have been used in the calculations. The sets of effective dipole moment parameters obtained reproduce the observed line intensities within the experimental accuracy. The importance of l-type resonance, responsible for some large differences between intensities of the same lines in subbands having opposite parities, is exhibited and discussed.

  3. CH⋯B interactions in acetylene containing solutions: experimental and theoretical DFT studies

    NASA Astrophysics Data System (ADS)

    Melikova, S. M.; Rutkowski, K. S.; Rodziewicz, P.; Koll, A.

    2003-01-01

    Weak to medium H-bonded interactions of the CH⋯B type (B=CS 2 and N(CD) 5) have been studied in C 2H 2/B mixtures. The spectral characteristics (frequency, width, and absolute integral intensity) of the CH asymmetric stretching band of acetylene were determined. Analogously to C 2H 2/CO 2 system studied earlier, in the case of CS 2 solutions, the combination bands ascribed to simultaneous excitations of vibrations of interacted CS 2 and C 2H 2 molecular partners have been found. The observed spectroscopic features have been compared with the results of theoretical DFT/B3LYP calculations utilizing the 6-311++G(3df, 3pd) basis set. They predict 1:1 and 1:2 complex formations with the linear H-bonded structure in the case of N(CD) 5 and nonlinear weakly bounded structures in the case of CS 2. The results obtained suggest predomination of 1:1 complexes of acetylene with pyridine in Xe and CS 2 solutions at conditions studied.

  4. Syntheses, structures, and redox properties of dimeric triruthenium clusters bridged by bis(diphenylphosphino)acetylene and -ethylene.

    PubMed

    Chen, Jing-Lin; Zhang, Li-Yi; Chen, Zhong-Ning; Gao, Li-Bin; Abe, Masaaki; Sasaki, Yoichi

    2004-02-23

    Reactions of oxo-centered triruthenium acetate complexes [Ru3O(OAc)6(py)2(CH3OH)](PF6) (py = pyridine, OAc = CH3COO-) (1) with nearly equimolar amounts of dppa [bis(diphenylphosphino)acetylene] or dppen [trans-1,2-bis(diphenylphosphino)ethylene] gave [Ru3O(OAc)6(py)2(L)](PF6) (L = dppa, 2; dppen, 3). With 2.4 equiv of 1, the reactions provided diphosphine-linked triruthenium dimers, [[Ru3O(OAc)6(py)2]2(L)](PF6)2 (L = dppa, 4; L = dppen, 5), respectively. Similarly, the reactions of [Ru3O(OAc)6(L')2(MeOH)]+ [L' = dmap (4-(dimethylamino)pyridine), 1a; L' = abco (1-azabicyclo[2.2.2]octane), 1b] with dppen gave dppen-linked dimers, [[Ru3O(OAc)6(dmap)2]2(dppen)](SbF6)2 (6) and [[Ru3O(OAc)6(abco)2]2(dppen)](BF4)2 (7), respectively. The chemical reduction of 2, 4, and 5 by hydrazine afforded one- or two-electron-reduced, neutral products, Ru3O(OAc)6(py)2(dppa) (2a), [Ru3O(OAc)6(py)2]2(dppa) (4a), and [Ru3O(OAc)6(py)2]2(dppen) (5a), respectively. The complexes were characterized by elemental analyses, ES-MS, UV-vis, IR, and 31P NMR spectroscopies, and cyclic and differential-pulse voltammetries. The molecular structures of compounds 2, 4, 5, 5a, 6, and 7 were determined by single-crystal X-ray diffraction. In 0.1 M (Bu4N)PF6-acetone, the monomers and dimers of triruthenium clusters show reversible and multistep redox responses. The two triruthenium cluster centers in dimers undergo stepwise reductions and oxidations due to the identical redox processes of the individual Ru3O cluster cores, suggesting the presence of electronic communications between them through the conjugated diphosphine spacer. The redox wave splitting mediated by dppa containing an ethynyl group (C triple bond C) is found to be more extensive than that by dppen containing an ethenyl (C=C) one. It appears that the redox wave splitting is enhanced by the introduction of electron-donating substituents on the auxiliary pyridine rings. PMID:14966986

  5. Lewis base catalyzed [4+2] annulation of electron-deficient chromone-derived heterodienes and acetylenes.

    PubMed

    Dückert, Heiko; Khedkar, Vivek; Waldmann, Herbert; Kumar, Kamal

    2011-04-26

    Lewis base catalyzed [4+2] annulation reactions between electron-deficient chromone oxa- and azadienes and acetylene carboxylates provide tricyclic benzopyrones inspired by natural products. An asymmetric synthesis of the tricyclic benzopyrones was developed by using modified cinchona alkaloids as enantiodifferentiating Lewis base catalysts. PMID:21432922

  6. High-temperature measurements of methane and acetylene using quantum cascade laser absorption near 8 μm

    NASA Astrophysics Data System (ADS)

    Sajid, M. B.; Javed, T.; Farooq, A.

    2015-04-01

    The mid-infrared wavelength region near 8 μm contains absorption bands of several molecules such as water vapor, hydrogen peroxide, nitrous oxide, methane and acetylene. A new laser absorption sensor based on the ν4 band of methane and the ν4+ν5 band of acetylene is reported for interference-free, time-resolved measurements under combustion-relevant conditions. A detailed line-selection procedure was used to identify optimum transitions. Methane and acetylene were measured at the line centers of Q12 (1303.5 cm-1) and P23 (1275.5 cm-1) transitions, respectively. High-temperature absorption cross sections of methane and acetylene were measured at peaks (on-line) and valleys (off-line) of the selected absorption transitions. The differential absorption strategy was employed to eliminate interference absorption from large hydrocarbons. Experiments were performed behind reflected shock waves over a temperature range of 1200-2200 K, between pressures of 1-4 atm. The diagnostics were then applied to measure the respective species time-history profiles during the shock-heated pyrolysis of n-pentane.

  7. Theoretical study of the bonding of the first- and second-row transition-metal positive ions to acetylene

    NASA Technical Reports Server (NTRS)

    Sodupe, M.; Bauschlicher, Charles W., Jr.

    1991-01-01

    The bonding of transition-metal ions to acetylene is studied by using a theoretical treatment that includes electron correlation. The ions on the left side of the first and second transition rows insert into the pi bond to form a three-membered ring. On the right side of the row the bonding is electrostatic. The trends in bonding are discussed.

  8. Indirect method for the determination of aluminium by atomic-absorption spectrometry using an air-acetylene flame.

    PubMed

    Ottaway, J M; Coker, D T; Singleton, B

    1972-06-01

    The enhancement of the atomic-absorption signals of iron, cobalt, nickel and chromium in a fuel-rich air-acetylene flame by small amounts of aluminium makes possible the indirect determination of aluminium in the concentration range 0.01-10 ppm. The optimization of working conditions and the occurrence of interferences are reported. PMID:18961114

  9. Characterization of the Minimum Energy Paths for the Ring Closure Reactions of C4H3 with Acetylene

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1995-01-01

    The ring closure reaction of C4H3 with acetylene to give phenyl radical is one proposed mechanism for the formation of the first aromatic ring in hydrocarbon combustion. There are two low-lying isomers of C4H3; 1-dehydro-buta-l-ene-3-yne (n-C4H3) and 2-dehydro-buta-l-ene-3-yne (iso-C4H3). It has been proposed that only n-C4H3 reacts with acetylene to give phenyl radical, and since iso-C4H3 is more stable than n-C4H3, formation of phenyl radical by this mechanism is unlikely. We report restricted Hartree-Fock (RHF) plus singles and doubles configuration interaction calculations with a Davidson's correction (RHF+1+2+Q) using the Dunning correlation consistent polarized valence double zeta basis set (cc-pVDZ) for stationary point structures along the reaction pathway for the reactions of n-C4H3 and iso-C4H3 with acetylene. n-C4H3 plus acetylene (9.4) has a small entrance channel barrier (17.7) (all energetics in parentheses are in kcal/mol with respect to iso-C4H3 plus acetylene) and the subsequent closure steps leading to phenyl radical (-91.9) are downhill with respect to the entrance channel barrier. Iso-C4H3 Plus acetylene also has an entrance channel barrier (14.9) and there is a downhill pathway to 1-dehydro-fulvene (-55.0). 1-dehydro-fulvene can rearrange to 6-dehydro-fulvene (-60.3) by a 1,3-hydrogen shift over a barrier (4.0), which is still below the entrance channel barrier, from which rearrangement to phenyl radical can occur by a downhill pathway. Thus, both n-C4H3 and iso-C4H3 can react with acetylene to give phenyl radical with small barriers.

  10. Assays of Serum Testosterone.

    PubMed

    Herati, Amin S; Cengiz, Cenk; Lamb, Dolores J

    2016-05-01

    The diagnosis of male hypogonadism depends on an assessment of the clinical signs and symptoms of hypogonadism and serum testosterone level. Current clinical laboratory testosterone assay platforms include immunoassays and mass spectrometry. Despite significant advances to improve the accuracy and precision of the currently available assays, limited comparability exists between assays at the lower and upper extremes of the testosterone range. Because of this lack of comparability, there is no current gold standard assay for the assessment of total testosterone levels. PMID:27132574

  11. Infrared Spectra and Optical Constants of Astronomical Ices: I. Amorphous and Crystalline Acetylene

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Ferrante, R. F.; Moore, M. H.

    2013-01-01

    Here we report recent measurements on acetylene (C2H2) ices at temperatures applicable to the outer Solar System and the interstellar medium. New near- and mid-infrared data, including optical constants (n, k), absorption coefficients (alpha), and absolute band strengths (A), are presented for both amorphous and crystalline phases of C2H2 that exist below 70 K. Comparisons are made to earlier work. Electronic versions of the data are made available, as is a computer routine to use our reported n and k values to simulate the observed IR spectra. Suggestions are given for the use of the data and a comparison to a spectrum of Makemake is made.

  12. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation

    NASA Astrophysics Data System (ADS)

    Primo, Ana; Neatu, Florentina; Florea, Mihaela; Parvulescu, Vasile; Garcia, Hermenegildo

    2014-10-01

    Catalysis makes possible a chemical reaction by increasing the transformation rate. Hydrogenation of carbon-carbon multiple bonds is one of the most important examples of catalytic reactions. Currently, this type of reaction is carried out in petrochemistry at very large scale, using noble metals such as platinum and palladium or first row transition metals such as nickel. Catalysis is dominated by metals and in many cases by precious ones. Here we report that graphene (a single layer of one-atom-thick carbon atoms) can replace metals for hydrogenation of carbon-carbon multiple bonds. Besides alkene hydrogenation, we have shown that graphenes also exhibit high selectivity for the hydrogenation of acetylene in the presence of a large excess of ethylene.

  13. Synthesis, structure and cytotoxic activity of acetylenic derivatives of betulonic and betulinic acids

    NASA Astrophysics Data System (ADS)

    Bębenek, Ewa; Chrobak, Elwira; Wietrzyk, Joanna; Kadela, Monika; Chrobak, Artur; Kusz, Joachim; Książek, Maria; Jastrzębska, Maria; Boryczka, Stanisław

    2016-02-01

    A series of acetylenic derivatives of betulonic and betulinic acids has been synthesized and characterized by 1H and 13C NMR, IR and MS spectroscopy. The structure of propargyl betulonate 4 and propargyl betulinate-DMF solvate 8A was solved by X-ray diffraction. Thermal properties were examined using a DSC technique. The resulting alkynyl derivatives, as well as betulin 1 and betulinic acid 3, were evaluated in vitro for their cytotoxic activity against human T47D breast cancer, CCRF/CEM leukemia, SW707 colorectal, murine P388 leukemia and BALB3T3 normal fibroblasts cell lines. Several of the obtained compounds have a favorable cytotoxic profile than betulin 1. Propargyl betulinate 8 was the most active derivative, being up to 3-fold more potent than betulin 1 against the human leukemia (CCRF/CEM) cell line, with an IC50 value of 3.9 μg/mL.

  14. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation.

    PubMed

    Primo, Ana; Neatu, Florentina; Florea, Mihaela; Parvulescu, Vasile; Garcia, Hermenegildo

    2014-01-01

    Catalysis makes possible a chemical reaction by increasing the transformation rate. Hydrogenation of carbon-carbon multiple bonds is one of the most important examples of catalytic reactions. Currently, this type of reaction is carried out in petrochemistry at very large scale, using noble metals such as platinum and palladium or first row transition metals such as nickel. Catalysis is dominated by metals and in many cases by precious ones. Here we report that graphene (a single layer of one-atom-thick carbon atoms) can replace metals for hydrogenation of carbon-carbon multiple bonds. Besides alkene hydrogenation, we have shown that graphenes also exhibit high selectivity for the hydrogenation of acetylene in the presence of a large excess of ethylene. PMID:25342228

  15. Shape and optical properties of aerosols formed by photolysis of acetylene, ethylene, and hydrogen cyanide

    SciTech Connect

    Bar-Nun, A.; Kleinfeld, I.; Ganor, E.

    1988-07-20

    The shapes and sizes of photochemically produced aerosol particles of polyacetylene, polyethylene, and polyhydrogen cyanide were studied experimentally. All of the single particles were found to be perfectly spherical and semiliquid. However, they aggregate readily, with a sticking coefficient near unity, to form nonspherical particles, which could give rise to the observed polarization from Titan's and Jupiter's upper haze layers. The absorbance of polyacetylene was remeasured and corrected, and it is now much closer to that of polyethylene. The measured real and imaginary indices of refraction of the two materials make them both suitable material for Titan's and Jupiter's upper haze layers. However, the larger abundance and higher rate of polymerization of acetylene would make it the dominant aerosol-forming material in both atmospheres. copyright American Geophysical Union 1988

  16. Analysis for Mar Vel Black and acetylene soot low reflectivity surfaces for star tracker sunshade applications

    NASA Technical Reports Server (NTRS)

    Yung, E.

    1974-01-01

    Mar Vel Black is a revolutionary new extremely low reflectivity anodized coating developed by Martin Marietta of Denver. It is of great interest in optics in general, and in star trackers specifically because it can reduce extraneous light reflections. A sample of Mar Vel Black was evaluated. Mar Vel Black looks much like a super black surface with many small peaks and very steep sides so that any light incident upon the surface will tend to reflect many times before exiting that surface. Even a high reflectivity surface would thus appear to have a very low reflectivity under such conditions. Conversely, acetylene soot does not have the magnified surface appearance of a super black surface. Its performance is, however, predictable from the surface structure, considering the known configuration of virtually pure carbon.

  17. Interference in acetylene intersystem crossing acts as the molecular analog of Young's double-slit experiment.

    PubMed

    de Groot, Mattijs; Field, Robert W; Buma, Wybren J

    2009-02-24

    We report on an experimental approach that reveals crucial details of the composition of singlet-triplet mixed eigenstates in acetylene. Intersystem crossing in this prototypical polyatomic molecule embodies the mixing of the lowest excited singlet state (S(1)) with 3 triplet states (T(1), T(2), and T(3)). Using high-energy (157-nm) photons from an F(2) laser to record excited-state photoelectron spectra, we have decomposed the mixed eigenstates into their S(1), T(3), T(2), and T(1) constituent parts. One example of the interpretive power that ensues from the selective sensitivity of the experiment to the individual electronic state characters is the discovery and examination of destructive interference between two doorway-mediated intersystem crossing pathways. This observation of an interference effect in nonradiative decay opens up possibilities for rational coherent control over molecular excited state dynamics. PMID:19179288

  18. Hydrothermal Synthesis and Acetylene Sensing Properties of Variety Low Dimensional Zinc Oxide Nanostructures

    PubMed Central

    Chen, Weigen; Peng, Shudi; Zeng, Wen

    2014-01-01

    Various morphologies of low dimensional ZnO nanostructures, including spheres, rods, sheets, and wires, were successfully synthesized using a simple and facile hydrothermal method assisted with different surfactants. Zinc acetate dihydrate was chosen as the precursors of ZnO nanostructures. We found that polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), glycine, and ethylene glycol (EG) play critical roles in the morphologies and microstructures of the synthesized nanostructures, and a series of possible growth processes were discussed in detail. Gas sensors were fabricated using screen-printing technology, and their sensing properties towards acetylene gas (C2H2), one of the most important arc discharge characteristic gases dissolved in oil-filled power equipments, were systematically measured. The ZnO nanowires based sensor exhibits excellent C2H2 sensing behaviors than those of ZnO nanosheets, nanorods, and nanospheres, indicating a feasible way to develop high-performance C2H2 gas sensor for practical application. PMID:24672324

  19. Analysis of Effluent Gases During the CCVD Growth of Multi Wall Carbon Nanotubes from Acetylene

    NASA Technical Reports Server (NTRS)

    Schmitt, T. C.; Biris, A. S.; Miller, D. W.; Biris, A. R.; Lupu, D.; Trigwell, S.; Rahman, Z. U.

    2005-01-01

    Catalytic chemical vapor deposition was used to grow multi-walled carbon nanotubes on a Fe:Co:CaCO3 catalyst from acetylene. The influent and effluent gases were analyzed by gas chromatography and mass spectrometry at different time intervals during the nanotubes growth process in order to better understand and optimize the overall reaction. A large number of byproducts were identified and it was found that the number and the level for some of the carbon byproducts significantly increased over time. The CaCO3 catalytic support thermally decomposed into CaO and CO2 resulting in a mixture of two catalysts for growing the nanotubes, which were found to have outer diameters belonging to two main groups 8 to 35 nm and 40 to 60 nm, respectively.

  20. Hydrothermal synthesis and acetylene sensing properties of variety low dimensional zinc oxide nanostructures.

    PubMed

    Zhou, Qu; Chen, Weigen; Peng, Shudi; Zeng, Wen

    2014-01-01

    Various morphologies of low dimensional ZnO nanostructures, including spheres, rods, sheets, and wires, were successfully synthesized using a simple and facile hydrothermal method assisted with different surfactants. Zinc acetate dihydrate was chosen as the precursors of ZnO nanostructures. We found that polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), glycine, and ethylene glycol (EG) play critical roles in the morphologies and microstructures of the synthesized nanostructures, and a series of possible growth processes were discussed in detail. Gas sensors were fabricated using screen-printing technology, and their sensing properties towards acetylene gas (C2H2), one of the most important arc discharge characteristic gases dissolved in oil-filled power equipments, were systematically measured. The ZnO nanowires based sensor exhibits excellent C2H2 sensing behaviors than those of ZnO nanosheets, nanorods, and nanospheres, indicating a feasible way to develop high-performance C2H2 gas sensor for practical application. PMID:24672324

  1. Interference in acetylene intersystem crossing acts as the molecular analog of Young's double-slit experiment

    PubMed Central

    de Groot, Mattijs; Field, Robert W.; Buma, Wybren J.

    2009-01-01

    We report on an experimental approach that reveals crucial details of the composition of singlet-triplet mixed eigenstates in acetylene. Intersystem crossing in this prototypical polyatomic molecule embodies the mixing of the lowest excited singlet state (S1) with 3 triplet states (T1, T2, and T3). Using high-energy (157-nm) photons from an F2 laser to record excited-state photoelectron spectra, we have decomposed the mixed eigenstates into their S1, T3, T2, and T1 constituent parts. One example of the interpretive power that ensues from the selective sensitivity of the experiment to the individual electronic state characters is the discovery and examination of destructive interference between two doorway-mediated intersystem crossing pathways. This observation of an interference effect in nonradiative decay opens up possibilities for rational coherent control over molecular excited state dynamics. PMID:19179288

  2. Visualizing Recurrently Migrating Hydrogen in Acetylene Dication by Intense Ultrashort Laser Pulses

    SciTech Connect

    Hishikawa, Akiyoshi; Matsuda, Akitaka; Fushitani, Mizuho; Takahashi, Eiji J.

    2007-12-21

    We demonstrate the visualization of ultrafast hydrogen migration in deuterated acetylene dication (C{sub 2}D{sub 2}{sup 2+}) by employing the pump-probe Coulomb explosion imaging with sub-10-fs intense laser pulses (9 fs, 0.13 PW/cm{sup 2}, 800 nm). It is shown, from the temporal evolution of the momenta of the fragment ions produced by the three-body explosion, C{sub 2}D{sub 2}{sup 3+}{yields}D{sup +}+C{sup +}+CD{sup +}, that the migration proceeds in a recurrent manner: The deuterium atom first shifts from one carbon site to the other in a short time scale ({approx}90 fs) and then migrates back to the original carbon site by 280 fs, in competition with the molecular dissociation.

  3. A DFT computational study of the bis-silylation reaction of acetylene catalyzed by palladium complexes.

    PubMed

    Bottoni, Andrea; Higueruelo, Alicia Perez; Miscione, Gian Pietro

    2002-05-15

    In this paper we have investigated at the DFT(B3LYP) level the catalytic cycle for the bis-silylation reaction of alkynes promoted by palladium complexes. A model-system formed by an acetylene molecule, a disilane molecule, and the Pd(PH(3))(2) complex has been used. The most relevant features of this catalytic cycle can be summarized as follows: (i) The first step of the cycle is an oxidative addition involving H(3)Si-SiH(3) and Pd(PH(3))(2). It occurs easily and leads to the cis (SiH(3))(2)Pd(PH(3))(2) complex that is 5.39 kcal mol(-1) lower in energy than reactants. (ii) The transfer of the two silyl groups to the C-C triple bond does not occur in a concerted way, but involves many steps. (iii) The cis (SiH(3))(2)Pd(PH(3))(2) complex, obtained from the oxidative addition, is involved in the formation of the first C-Si bond (activation barrier of 18.34 kcal mol(-1)). The two intermediates that form in this step cannot lead directly to the formation of the final bis(silyl)ethene product. However, they can isomerize rather easily (the two possible isomerizations have a barrier of 16.79 and 7.17 kcal mol(-1)) to new more stable species. In both these new intermediates the second silyl group is adjacent to the acetylene moiety and the formation of the second C-Si bond can occur rapidly leading to the (Z)-bis(silyl)ethene, as experimentally observed. (iv) The whole catalytic process is exothermic by 41.54 kcal mol(-1), in quite good agreement with the experimental estimate of this quantity (about 40 kcal mol(-1)). PMID:11996593

  4. Indene formation from alkylated aromatics: kinetics and products of the fulvenallene + acetylene reaction.

    PubMed

    da Silva, Gabriel; Bozzelli, Joseph W

    2009-08-01

    A novel reaction is described for formation of the polyaromatic hydrocarbon (PAH) indene in aromatic flames, via the reaction of fulvenallene with acetylene (C2H2). Fulvenallene has been recently identified as the major decomposition product of the benzyl radical, the dominant intermediate in the oxidation of alkylated aromatic hydrocarbons, yet it is not presently included in kinetic models for aromatic oxidation or PAH/soot formation. Ab initio calculations with the G3B3 theoretical method show that acetylene adds to fulvenallene with a barrier of around 27 kcal mol(-1). This forms an activated C9H8 adduct that can rearrange to indene and dissociate to 1-indenyl + H with energy barriers below that of the entrance channel. Master equation simulations across a range of temperature and pressure conditions demonstrate that for temperatures relevant to combustion indene is the dominant product at high pressures while 1-indenyl + H dominate at lower pressures. At low to moderate temperatures, the production of collision stabilized cyclopentadiene-fulvene intermediates is also significant. The results presented in this study provide a new pathway to cyclopenta-fused PAHs in aromatic combustion and are expected to improve modeling of PAH and soot formation. The formation of cyclopenta-fused C5-C6 structures is required to describe the flame synthesis of carbon nanoparticles like fullerenes and buckybowls (corannulene). Improved rate expressions are also reported for the 1-indenyl + H --> indene association reaction, and for the reverse dissociation, from variational transition state theory calculations. The new rate constants are significantly different than current estimates, primarily due to a re-evaluation of the indene C-H bond dissociation energy. PMID:19603772

  5. Rotational and vibrational energy transfer in vibrationally excited acetylene at energies near 6560 cm(-1).

    PubMed

    Han, Jiande; Freel, Keith; Heaven, Michael C

    2011-12-28

    Collisional energy transfer kinetics of vibrationally excited acetylene has been examined for states with internal energies near 6560 cm(-1). Total population removal rate constants were determined for selected rotational levels of the (1,0,1,0(0),0(0)) and (0,1,1,2(0),0(0)) states. Values in the range of (10-18) × 10(-10) cm(3) s(-1) were obtained. Measurements of state-to-state rotational energy transfer rate constants were also carried out for these states. The rotational energy transfer kinetics was found to be consistent with simple energy gap models for the transfer probabilities. Vibrational transfer out of the (0,1,1,2(0),0(0)) state accounted for no more than 16% of the total removal process. Transfer from (1,0,1,0(0),0(0)) to the u-symmetry (0,2,0,3(1),1(-1)), (0,1,1,2(0),0(0)), and (1,1,0,1(1),1(-1)) states was observed. Applying the principle of detailed balance to these data indicated that vibrational transfer to (1,0,1,0(0),0(0)) accounted for ~0.1% of the population loss from (0,2,0,3(1),1(-1)) or (0,1,1,2(0),0(0)), and 3% of the loss from (1,1,0,1(1),1(-1)). Relative rotational transfer probabilities were obtained for transfer to the g-symmetry (1,1,0,2(0),0(0))∕(0,0,2,0(0),0(0)) dyad. These results are related to recent studies of optically pumped acetylene lasers. PMID:22225153

  6. Soot Volume Fraction Maps for Normal and Reduced Gravity Laminar Acetylene Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Ku, Jerry C.

    1997-01-01

    The study of soot particulate distribution inside gas jet diffusion flames is important to the understanding of fundamental soot particle and thermal radiative transport processes, as well as providing findings relevant to spacecraft fire safety, soot emissions, and radiant heat loads for combustors used in air-breathing propulsion systems. Compared to those under normal gravity (1-g) conditions, the elimination of buoyancy-induced flows is expected to significantly change the flow field in microgravity (O g) flames, resulting in taller and wider flames with longer particle residence times. Work by Bahadori and Edelman demonstrate many previously unreported qualitative and semi-quantitative results, including flame shape and radiation, for sooting laminar zas jet diffusion flames. Work by Ku et al. report soot aggregate size and morphology analyses and data and model predictions of soot volume fraction maps for various gas jet diffusion flames. In this study, we present the first 1-g and 0-g comparisons of soot volume fraction maps for laminar acetylene and nitrogen-diluted acetylene jet diffusion flames. Volume fraction is one of the most useful properties in the study of sooting diffusion flames. The amount of radiation heat transfer depends directly on the volume fraction and this parameter can be measured from line-of-sight extinction measurements. Although most Soot aggregates are submicron in size, the primary particles (20 to 50 nm in diameter) are in the Rayleigh limit, so the extinction absorption) cross section of aggregates can be accurately approximated by the Rayleigh solution as a function of incident wavelength, particles' complex refractive index, and particles' volume fraction.

  7. Experimental Study and Modelling of the temperature variations of the Mid-UV Acetylene Absorption Coefficient

    NASA Astrophysics Data System (ADS)

    Jolly, A.; Benilan, Y.; Raulin, F.

    1999-09-01

    We have measured C2H2 absorption coefficients in the 185-235 nm range at 295 and 173 K. These coefficients were poorly known above 200 nm and were not taken into account when trying to model the photodissociation of C2H2. We have shown that more than 25 to dissociation above 200 nm. This result can be explained by the fact that, even though the acetylene absorption decreases by four order of magnitude between 150 and 220 nm, the solar flux increases rapidly in the same wavelength range. The temperature dependence of the absorption coefficients is very important in this wavelength range. We observe that the background continuum, on which the band system is superimposed, decreases rapidly with the temperature. Large variations in the band structures due to temperature effects are also observed. In order to have a better understanding of these effects and to extrapolate variation to lower temperatures, we have undertaken a spectroscopic modelling of the acetylene absorptions bands. The attribution of all the bands can be made down to 200 nm where congestion of the bands makes the identification impossible. We were able to calculate and reproduce fairly well the experimental spectra at both temperatures. The main differences between both spectra comes from hot bands involving the first excited level of the n4'' bending mode which are very strong at 298 K and completely disappear at 173 K. The shape and structure variations are also well reproduced by the calculations, especially the relative intensity changes between the P/Q and the R branch maxima. The good agreement between experimental and calculated absorption spectra opens the way to the calculations of synthetic spectra at any temperature and any resolution. This will be of great help in future analysis of observations of giant planets and Titan.

  8. Classical characters of highly excited bend dynamics of acetylene in two coupled SU(2) coset spaces

    NASA Astrophysics Data System (ADS)

    Yu, Jin; Wu, Guozhen

    2000-07-01

    The classical characters of the highly excited bend dynamics of acetylene are analyzed in terms of two coupled SU(2)/U(1) coset spaces corresponding to the right and left circular motion of the two C-H bends. The vibrational modes show a wide variety of behaviors that are not observed in the simple SU(2)/U(1) coset case which deals with, e.g., two coupled stretches, in which case the vibrational modes can be characterized as (low-lying) local and (high-lying) normal modes with a so-called local-normal transition in between. For the two coupled SU(2)/U(1) cosets of acetylene, the general trend is that most modes are perturbed local or normal modes, with distinct characters that are not found in the SU(2) dynamics. Details of their classical characters and the dynamical action flow between the two C-H bends were deduced. When the total action number Nb is small (less than 14), normal mode motions dominate, i.e., trans bend modes at the bottom of each polyad and cis bend at the top. At higher Nb, the vibrational modes are more or less of local character though they, individually, do possess very unique characters. Specifically, as Nb ranges from 12 to 22, the characters of the low-lying levels change from the trans character with action asymmetrically distributed in the two C-H bonds to one hydrogen bending, while those of the high-lying levels change from well concerted cis to local counter rotation. These results are consistent with recent quantal and semiclassical results. [M. P. Jacobson, R. J. Silbey, and R. W. Field, J. Chem. Phys. 110, 845 (1999); M. P. Jacobson, C. Jung, H. S. Taylor, and R. W. Field, ibid. 111, 600 (1999)].

  9. A Rapid Fluorescence-based Assay for Soluble Methane Monooxgyenase

    SciTech Connect

    Miller, Amber Reese; Keener, William Kelvin; Roberto, Francisco Figueroa; Watwood, Maribeth E.

    2002-01-01

    A fluorescence-based assay was developed to estimate soluble methane monooxygenase (sMMO) activity in solution. Whole cells of Methylosinus trichosporium OB3b expressing sMMO were used to oxidize various compounds to screen for fluorescent products. Of the 12 compounds tested, only coumarin yielded a fluorescent product. The UV absorbance spectrum of the product matches that of 7-hydroxycoumarin, and this identification was confirmed by 13C-NMR spectroscopy. The dependence of the fluorescent reaction on sMMO activity was investigated by pre-incubation with acetylene, a known inhibitor of sMMO activity. Apparent kinetic parameters for whole cells were determined to be Km(app)=262 µM and Vmax(app)=821 nmol 7-hydroxycoumarin min–1 mg protein–1. The rate of coumarin oxidation by sMMO correlates well with those of trichloroethylene degradation and naphthalene oxidation. Advantages of the fluorescence-based coumarin oxidation assay over the naphthalene oxidation assay include a more stable product, direct detection of the product without additional reagents, and greater speed and convenience.

  10. Effects of lowering the proposed top-concentration limit in an in vitro chromosomal aberration test on assay sensitivity and on the reduction of the number of false positives.

    PubMed

    Morita, Takeshi; Miyajima, Atsuko; Hatano, Akiko; Honma, Masamitsu

    2014-07-15

    For the in vitro chromosomal aberration (CA) test, the proposed top-concentration limit will be reduced to '10mM or 2mg/mL' (whichever is lower) in the draft revised OECD (r-OECD) test guideline (TG) 473, down from '10mM or 5mg/mL' in the current OECD TG, which was adopted in 1997 (1997-OECD). It was previously reduced to 1mM or 0.5mg/mL in the International Conference of Harmonization (ICH) S2 (R1) guideline for pharmaceuticals. Reduction of the top-concentration limit is expected to reduce the number of false or misleading positives. However, this reduction may affect the sensitivity or specificity to predict rodent carcinogenicity. Thus, the effect of a reduction in the top-concentration limit on sensitivity and specificity was investigated by use of a dataset on 435 chemicals obtained from the 'Carcinogenicity and Genotoxicity eXperience' (CGX) database (267 CA-positives and 168 CA-negatives; 317 carcinogens and 118 non-carcinogens) where three TGs (i.e., 1997-OECD, r-OECD and ICH) were applied. The application of the r-OECD TG did not affect the sensitivity (63.1%) or specificity (59.3%) against carcinogenicity, compared with the 1997-OECD TG (sensitivity 63.1%, specificity 59.3%). However, the application of the ICH TG had certain effects, i.e., a decrease in sensitivity (45.4%) and an increase in specificity (72.9%). A change in the number of CA-positives by the application of each TG was also investigated by use of 124 CA-positives from the Japanese Existing Chemical (JEC) database. The application of r-OECD TG showed a small reduction in CA-positives, but the ICH TG reduced this number by approximately half. More than half of the CA-positives had a molecular weight <200. These results suggest that the r-OECD TG will not affect the sensitivity or specificity for the detection of rodent carcinogens, indicating the usefulness of the guideline. However, nearly no improvement with respect to a reduction in the number of false positives should be expected. PMID:25344110

  11. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  12. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  13. Can Analysis of Acetylene and Its Biodegradation Products in Enceladus Plumes be Used to Detect the Presence of Sub-Surface Life?

    NASA Astrophysics Data System (ADS)

    Miller, L. G.; Baesman, S. M.; Oremland, R. S.

    2014-12-01

    The search for biosignatures of life on Earth includes measurement of the stable isotope fractionation of reactants and products attributed to enzymatic processes and comparison with the often smaller chemical (abiotic) fractionation. We propose that this approach might be applied to study the origin and fate of organic compounds contained in water vapor plumes emanating from Enceladus or other icy bodies, perhaps revealing information about the potential for biology occurring within a sub-surface "habitable" zone. Methanol and C2-hydrocarbons including ethylene, ethane and acetylene (C2H2) have been identified in the plumes of Enceladus. Biological degradation of acetylene proceeds by anaerobic fermentation via acetylene hydratase through acetaldehyde, with a second enzyme (acetaldehyde dismutase) forming acetate and ethanol. We found that incubation of cultures of acetylene-fermenting bacteria exhibit a kinetic isotope effect (KIE) associated with the net removal of C2H2. Consumption of acetylene by both growing and washed-cell cultures of bacteria closely related to Pelobacter acetylenicus (e.g, strain SFB93) was accompanied by a carbon isotopic fractionation of about 2 per mil (KIE = 1.8-2.7 ‰), a result we are examining with other cultures of acetylene fermenters. In addition, we are measuring the carbon isotopic composition of acetaldehyde, ethanol and acetate during fermentation to learn whether these products are fractionated sufficiently, relative to their substrate, to warrant measurement of their isotopic composition in Enceladus (or Europa) plumes to indicate enzymatic activity in liquid environments below the crust of these moons.

  14. Three-Dimensional Carbon Allotropes Comprising Phenyl Rings and Acetylenic Chains in sp+sp2 Hybrid Networks

    PubMed Central

    Wang, Jian-Tao; Chen, Changfeng; Li, Han-Dong; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2016-01-01

    We here identify by ab initio calculations a new type of three-dimensional (3D) carbon allotropes that consist of phenyl rings connected by linear acetylenic chains in sp+sp2 bonding networks. These structures are constructed by inserting acetylenic or diacetylenic bonds into an all sp2-hybridized rhombohedral polybenzene lattice, and the resulting 3D phenylacetylene and phenyldiacetylene nets comprise a 12-atom and 18-atom rhombohedral primitive unit cells in the symmetry, which are characterized as the 3D chiral crystalline modification of 2D graphyne and graphdiyne, respectively. Simulated phonon spectra reveal that these structures are dynamically stable. Electronic band calculations indicate that phenylacetylene is metallic, while phenyldiacetylene is a semiconductor with an indirect band gap of 0.58 eV. The present results establish a new type of carbon phases and offer insights into their outstanding structural and electronic properties. PMID:27087405

  15. High-Rate Diamond Deposition by Combustion Flame Method Using Twin Acetylene/Oxygen Gas Welding Torch

    NASA Astrophysics Data System (ADS)

    Ando, Yasutaka; Tobe, Shogo; Tahara, Hirokazu

    2009-12-01

    To develop a high-rate diamond deposition process using combustion flame method, diamond deposition equipment with twin acetylene/oxygen welding torch was manufactured, and diamond deposition by using this equipment was carried out. 304 Stainless steel plates and molybdenum plates were used as substrates. The diamond deposition was conducted under the following conditions: oxygen flow rate: 1.25 SLM, acetylene/oxygen flow ratio: 1.15, and diamond deposition temperature: around 1473 K. Consequently, diamonds could be deposited even on the stainless steel substrate, and diamond deposition rate was promoted by using twin torch equipment. Besides, the diamond/molybdenum hybrid coating using diamonds deposited by twin torch equipment have the same wear-resistant property as that using diamonds by the single torch equipment. From these results, this technique was thought to have high potential for high-rate diamond deposition in combustion flame method.

  16. Ferrimagnetism in 2D networks of porphyrin-X and -XO (X=Sc,...,Zn) with acetylene bridges

    NASA Astrophysics Data System (ADS)

    Wierzbowska, Małgorzata; Sobolewski, Andrzej L.

    2016-03-01

    Magnetism in 2D networks of the acetylene-bridged transition metal porphyrins M(P)-2(C-C)-2 (denoted P-TM), and oxo-TM-porphyrins OM(P)-2(C-C)-2 (denoted P-TMO), is studied with the density functional theory (DFT) and the self-interaction corrected pseudopotential scheme (pSIC). Addition of oxygen lowers magnetism of P-TMO with respect to the corresponding P-TM for most of the first-half 3d-row TMs. In contrast, binding O with the second-half 3d-row TMs or Sc increases the magnetic moments. Ferrimagnetism is found for the porphyrin networks with the TMs from V to Co and also for these cases with oxygen. This is a long-range effect of the delocalized spin-polarization, extended even to the acetylene bridges.

  17. Homochiral [2]Catenane and Bis[2]catenane from Alleno-Acetylenic Helicates - A Highly Selective Narcissistic Self-Sorting Process.

    PubMed

    Gidron, Ori; Jirásek, Michael; Trapp, Nils; Ebert, Marc-Olivier; Zhang, Xiangyang; Diederich, François

    2015-10-01

    Homochiral strands of alternating alleno-acetylenes and phenanthroline ligands (P)-1 and (P2)-2, as well as their corresponding enantiomers, selectively assemble with the addition of silver(I) salt to yield dinuclear and trinuclear double helicates, respectively. Upon increasing the solvent polarity, the dinuclear and trinuclear helicates interlock to form a [2]catenane and bis[2]catenane, bearing 14 chirality elements, respectively. The solid-state structure of the [2]catenane reveals a nearly perfect fit of the interlocked strands, and the ECD spectra show a significant amplification of the chiroptical properties upon catenation, indicating stabilization of the helical secondary structure. Highly selective narcissistic self-sorting was demonstrated for a racemic mixture consisting of both short and long alleno-acetylenic strands, highlighting their potential for the preparation of linear catenanes of higher order. PMID:26380872

  18. Development of a spectrofluorimetry-based device for determining the acetylene content in the oils of power transformers.

    PubMed

    Quintella, Cristina M; Meira, Marilena; Silva, Weidson Leal; Filho, Rogério G D; Araújo, André L C; Júnior, Elias T S; Sales, Lindolfo J O

    2013-12-15

    Power transformers are essential for a functioning electrical system and therefore require special attention by maintenance programs because a fault can harm both the company and society. The temperature inside a power transformer and the dissolved gases, which are primarily composed of acetylene, are the two main parameters monitored when detecting faults. This paper describes the development of a device for analyzing the acetylene content in insulating oil using spectrofluorimetry. Using this device introduces a new methodology for the maintaining and operating power transformers. The prototype is currently operating in a substation. The results presented by this system were satisfactory; when compared to chromatographic data, the errors did not exceed 15%. This prototype may be used to confirm the quality of an insulating oil sample to detect faults in power transformers. PMID:24209339

  19. Three-Dimensional Carbon Allotropes Comprising Phenyl Rings and Acetylenic Chains in sp+sp(2) Hybrid Networks.

    PubMed

    Wang, Jian-Tao; Chen, Changfeng; Li, Han-Dong; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2016-01-01

    We here identify by ab initio calculations a new type of three-dimensional (3D) carbon allotropes that consist of phenyl rings connected by linear acetylenic chains in sp+sp(2) bonding networks. These structures are constructed by inserting acetylenic or diacetylenic bonds into an all sp(2)-hybridized rhombohedral polybenzene lattice, and the resulting 3D phenylacetylene and phenyldiacetylene nets comprise a 12-atom and 18-atom rhombohedral primitive unit cells in the symmetry, which are characterized as the 3D chiral crystalline modification of 2D graphyne and graphdiyne, respectively. Simulated phonon spectra reveal that these structures are dynamically stable. Electronic band calculations indicate that phenylacetylene is metallic, while phenyldiacetylene is a semiconductor with an indirect band gap of 0.58 eV. The present results establish a new type of carbon phases and offer insights into their outstanding structural and electronic properties. PMID:27087405

  20. Three-Dimensional Carbon Allotropes Comprising Phenyl Rings and Acetylenic Chains in sp+sp2 Hybrid Networks

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Tao; Chen, Changfeng; Li, Han-Dong; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2016-04-01

    We here identify by ab initio calculations a new type of three-dimensional (3D) carbon allotropes that consist of phenyl rings connected by linear acetylenic chains in sp+sp2 bonding networks. These structures are constructed by inserting acetylenic or diacetylenic bonds into an all sp2-hybridized rhombohedral polybenzene lattice, and the resulting 3D phenylacetylene and phenyldiacetylene nets comprise a 12-atom and 18-atom rhombohedral primitive unit cells in the symmetry, which are characterized as the 3D chiral crystalline modification of 2D graphyne and graphdiyne, respectively. Simulated phonon spectra reveal that these structures are dynamically stable. Electronic band calculations indicate that phenylacetylene is metallic, while phenyldiacetylene is a semiconductor with an indirect band gap of 0.58 eV. The present results establish a new type of carbon phases and offer insights into their outstanding structural and electronic properties.

  1. Triplet acetylenes as synthetic equivalents of 1,2-bicarbenes: phantom n,pi state controls reactivity in triplet photocycloaddition.

    PubMed

    Zeidan, Tarek A; Kovalenko, Serguei V; Manoharan, Mariappan; Clark, Ronald J; Ghiviriga, Ion; Alabugin, Igor V

    2005-03-30

    Diaryl acetylenes, in which one of the aryl groups is either a pyridine or a pyrazine, undergo efficient triplet state photocycloaddition to 1,4-cyclohexadiene with formation of 1,5-diaryl substituted tetracyclo[3.3.0.0(2,8).0(4,6)]octanes (homoquadricyclanes). In the case of pyrazinyl acetylenes, the primary homoquadricyclane products undergo a secondary photochemical rearangement leading to diaryl substituted tricyclo[3.2.1.0(4,6)]oct-2-enes. Mechanistic and photophysical studies suggest that photocycloaddition proceeds through an electrophilic triplet excited state whereas the subsequent rearrangement to the tricyclooctenes proceeds through a singlet excited state. Chemical and quantum yields for the cycloaddition, in general, correlate with the electron acceptor character of aryl substituents but are attenuated by photophysical factors, such as the competition between the conversion of acetylene singlet excited state into the reactive triplet excited states (intersystem crossing: ISC) and/or to the radical-anion (photoelectron transfer from the diene to the excited acetylene: PET). Dramatically enhanced ISC between pi-pi S(1) state and "phantom" n,pi triplet excited state is likely to be important in directing reactivity to the triplet pathway. The role of PET can be minimized by the judicious choice of reaction conditions (solvent, concentration, etc.). From a practical perspective, such reactions are interesting because "capping" of the triple bond with the polycyclic framework orients the terminal aryl (4-pyridyl, 4-tetrafluoropyridyl, phenyl, etc.) groups in an almost perfect 60 degrees angle and renders such molecules promising supramolecular building blocks, especially in the design of metal coordination polymers. PMID:15783209

  2. Tracking hole localization in K -shell and core-valence-excited acetylene photoionization via body-frame photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Rescigno, T. N.; Trevisan, C. S.; McCurdy, C. W.

    2015-02-01

    Asymmetry in the molecular-frame photoelectron angular distributions from core-hole- or core-valence-excited polyatomic targets with symmetry-equivalent atoms can provide direct evidence for core-hole localization. Using acetylene as an example, we contrast the small asymmetry that can be seen in direct core-level ionization, due to the competition between two competing pathways to the continuum, with ionization from core-valence-excited HCCH, which offers the prospect of observing markedly greater asymmetry.

  3. Quantum Chemical Evaluation of the Astrochemical Significance of Reactions between S Atom and Acetylene or Ethylene

    NASA Technical Reports Server (NTRS)

    Woon, David E.

    2007-01-01

    Addition-elimination reactions of S atom in its P-3 ground state with acetylene (C2H2) and ethylene (C2H4) were characterized with both molecular orbital and density functional theory calculations employing correlation consistent basis sets in order to assess the likelihood either reaction might play a general role in astrochemistry or a specific role in the formation of S2 (X (sup 3 SIGMA (sub g) (sup -)) via a mechanism proposed by Saxena and Misra (Mon. Not. R. Astron. Soc. 1995, 272, 89). The acetylene and ethylene reactions proceed through C2H2S ((sup 3)A")) and C2H4S ((sup 3)A")) intermediates, respectively, to yield HCCS ((sup 2)II)) and C2H3S ((sup 2)A')). Substantial barriers were found in the exit channels for every combination of method and basis set considered in this work, which effectively precludes hydrogen elimination pathways for both S + C2H2 and S + C2H4 in the ultracold interstellar medium where only very modest barriers can be surmounted and processes without barriers tend to predominate. However, if one or both intermediates is formed and stabilized efficiently under cometary or dense interstellar cloud conditions, they could serve as temporary reservoirs for S atom and participate in reactions such as S + C2H2S (right arrow) S2 = C2H2 or S + C2H4S (right arrow) S2 + C2H4. For formation and stabilization to be efficient, the reaction must possess a barrier height small enough to be surmountable at low temperatures yet large enough to prevent redissociation to reactants. Barrier heights computed with B3LYP and large basis sets are very low, but more rigorous QCISD(T) and RCCSD(T) results indicate that the barrier heights are closer to 3-4 kcal/mol. The calculations therefore indicate that S + C2H2 or S + C2H4 could contribute to the formation of S2 in comets and may serve as a means to gauge coma temperature. The energetics of the ethylene reaction are more favorable.

  4. Complexes of acetylene-fluoroform: A matrix isolation and computational study

    NASA Astrophysics Data System (ADS)

    Sundararajan, K.; Ramanathan, N.; Viswanathan, K. S.; Vidya, K.; Jemmis, Eluvathingal D.

    2013-10-01

    Hydrogen-bonded complexes of C2H2 and CHF3 have been investigated using matrix isolation infrared spectroscopy and ab initio computations. The complexes were trapped in both solid argon and nitrogen matrices at 12 K. The structure of the complexes and the energies were computed at the B3LYP and MP2 levels of theory using a 6-311++G(d,p) basis set and at the MP2/aug-cc-pvdz level. Our computations indicated two minima for the 1:1 C2H2-CHF3 complex, with the C-H…π complex being the global minimum, where CHF3 is the proton donor. The second minimum corresponded to a relatively less exothermic C-H…F complex, in which C2H2 is the proton donor. Experimentally, we observed only the C-H…π complex in our matrix, which was evidenced by the shifts in the vibrational frequencies of the modes involving the C2H2 and CHF3 sub-molecules. The increase in the blue shift of the C-H stretching frequency in going from CHCl3-acetylene complex to CHF3-acetylene complex with corresponding increase in the interaction energy helps to place these two complexes on the left hand end of the qualitative diagram (Fig. 1). We also performed computations to study the higher complexes of C2H2 and CHF3. One minimum was found for the 1:2 C2H2-CHF3 complexes and two minima for the 2:1 C2H2-CHF3 complexes, at all levels of theory. Experimentally we observed the features corresponding to the 1:2 and 2:1 C2H2-CHF3 complexes in the N2 matrix. The computed vibrational frequencies of C2H2-CHF3 complexes at B3LYP and MP2/6-311++G(d,p) level corroborated well with the experimental frequencies. Interestingly, no experimental evidence for the formation of higher complexes was observed in the Ar matrix.

  5. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene

    NASA Astrophysics Data System (ADS)

    Li, Xingyun; Pan, Xiulian; Yu, Liang; Ren, Pengju; Wu, Xing; Sun, Litao; Jiao, Feng; Bao, Xinhe

    2014-04-01

    Acetylene hydrochlorination is an important coal-based technology for the industrial production of vinyl chloride, however it is plagued by the toxicity of the mercury chloride catalyst. Therefore extensive efforts have been made to explore alternative catalysts with various metals. Here we report that a nanocomposite of nitrogen-doped carbon derived from silicon carbide activates acetylene directly for hydrochlorination in the absence of additional metal species. The catalyst delivers stable performance during a 150 hour test with acetylene conversion reaching 80% and vinyl chloride selectivity over 98% at 200 °C. Experimental studies and theoretical simulations reveal that the carbon atoms bonded with pyrrolic nitrogen atoms are the active sites. This proof-of-concept study demonstrates that such a nanocomposite is a potential substitute for mercury while further work is still necessary to bring this to the industrial stage. Furthermore, the finding also provides guidance for design of carbon-based catalysts for activation of other alkynes.

  6. Importance of surface carbide formation on the activity and selectivity of Pd surfaces in the selective hydrogenation of acetylene

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Burch, Robbie; Hardacre, Christopher; Hu, P.; Hughes, Philip

    2016-04-01

    A recent experimental investigation (Kim et al. J. Catal. 306 (2013) 146-154) on the selective hydrogenation of acetylene over Pd nanoparticles with different shapes concluded that Pd(100) showed higher activity and selectivity than Pd(111) for acetylene hydrogenation. However, our recent density functional calculations (Yang et al. J. Catal. 305 (2013) 264-276) observed that the clean Pd(111) surface should result in higher activity and ethylene selectivity compared with the clean Pd(100) surface for acetylene hydrogenation. In the current work, using density functional theory calculations, we find that Pd(100) in the carbide form gives rise to higher activity and selectivity than Pd(111) carbide. These results indicate that the catalyst surface is most likely in the carbide form under the experimental reaction conditions. Furthermore, the adsorption energies of hydrogen atoms as a function of the hydrogen coverage at the surface and subsurface sites over Pd(100) are compared with those over Pd(111), and it is found that the adsorption of hydrogen atoms is always less favoured on Pd(100) over the whole coverage range. This suggests that the Pd(100) hydride surface will be less stable than the Pd(111) hydride surface, which is also in accordance with the experimental results reported.

  7. Chemical characterization of plasma-polymerized films from acetylene and nitrogen-containing mixtures and their ethanol vapor sensitivity

    NASA Astrophysics Data System (ADS)

    Chen, Ko-Shao; Wei, Ta-Chin; Li, Ming-Shu; Wu, Hsin-Ming; Tang, Tzu-Piao; Wang, Chieh-Ying; Tu, Yu-Chieh

    2007-06-01

    In this study, plasma-polymerized thin films were prepared from plasma enhanced chemical vapor deposition (PECVD) of acetylene (C 2H 2), acetylene/nitrogen (C 2H 2/N 2), or acetylene/ammonia (C 2H 2/NH 3). When N 2 or NH 3 was mixed with C 2H 2 in the feed, the films were identified to contain all elements of the mixture and the properties of the films were implied by the C-H bonds and nitrogen functionalities. As shown by X-ray photoelectron spectroscopy (XPS) the [N]/[C] atomic ratio varies by changing the mixture composition and reaches a maximum of 0.12 for mixing C 2H 2 with NH 3. It is found that the resistance of the thin film sensors prepared from C 2H 2, C 2H 2/N 2, and C 2H 2/NH 3 is distinctly decreased by over 2 orders of magnitude by the adsorption of ethanol vapor.

  8. Immunochromatographic assay on thread.

    PubMed

    Zhou, Gina; Mao, Xun; Juncker, David

    2012-09-18

    Lateral-flow immunochromatographic assays are low-cost, simple-to-use, rapid tests for point-of-care screening of infectious diseases, drugs of abuse, and pregnancy. However, lateral flow assays are generally not quantitative, give a yes/no answer, and lack multiplexing. Threads have recently been proposed as a support for transporting and mixing liquids in lateral-flow immunochromatographic assays, but their use for quantitative high-sensitivity immunoassays has yet to be demonstrated. Here, we introduce the immunochromatographic assay on thread (ICAT) in a cartridge format that is suitable for multiplexing. The ICAT is a sandwich assay performed on a cotton thread knotted to a nylon fiber bundle, both of which are precoated with recognition antibodies against one target analyte. Upon sample application, the assay results become visible to the eye within a few minutes and are quantified using a flatbed scanner. Assay conditions were optimized, the binding curves for C-reactive protein (CRP) in buffer and diluted serum were established and a limit of detection of 377 pM was obtained. The possibility of multiplexing was demonstrated using three knotted threads coated with antibodies against CRP, osteopontin, and leptin proteins. The performance of the ICAT was compared with that of the paper-based and conventional assays. The results suggest that thread is a suitable support for making low-cost, sensitive, simple-to-use, and multiplexed diagnostic tests. PMID:22889381

  9. Surface characterization of the interfaces from plasma-polymerized acetylene films deposited onto cold-rolled steel for rubber-to-metal bonding

    NASA Astrophysics Data System (ADS)

    Rosales Lombardi, Pablo I.

    The molecular structure of the interface between plasma-polymerized acetylene films and steel was determined using in-situ reflection-absorption infrared spectroscopy (RAIR) and X-ray photoelectron spectroscopy (XPS). Plasma-polymerized acetylene films were deposited onto polished steel substrates in microwave (MW) and radio frequency (RF)-powered reactors. The films deposited in RF-powered reactors were characterized in-situ using XPS and FTIR spectrometers that were interfaced directly to the reactors. RAIR showed that the plasma polymerized films contained large numbers of methyl and methylene groups but only a small number of monosubstituted acetylene groups, indicating that there was substantial rearrangement of the monomer molecules during plasma polymerization. The rearrangement of the monomer molecules during plasma was also determined by optical emission spectroscopy (OES), where CH and C2 species predominated in the optical emission spectra. Bands were observed near 1020 and 885 cm-1 in the RAIR spectra that were attributed to skeletal stretching vibrations in C-C-O-Fe groups, indicating that the plasma-polymerized films interacted with the substrate through formation of alkoxide bonds. Another band was observed near 1565 cm-1 and attributed to carboxylate groups in the interface between films and the oxidized surface of the substrate. Results from XPS also confirmed the formation of alkoxide and carboxylate groups in the interface during plasma polymerization of acetylene. Results from XPS showed that the surface of steel substrates consisted mostly of a mixture of Fe2O3 and FeOOH and that iron was mostly present in the Fe(III) oxidation state. However, during plasma-polymerization of acetylene, there was a tendency for the concentration of Fe(II) to increase, due to the reducing nature of argon/acetylene plasmas. Natural rubber reacted with plasma-polymerized acetylene primers through unsaturated functional groups present in the film. The RAIR and XPS results showed the presence of amino groups at the early steps of the vulcanization process. Activator products such as sulfenamide groups were found at the rubber/plasma-polymerized acetylene interface, the absorption bands near 1560 cm-1 in the RAIR spectra was due to the C=N stretching mode of the sulfenamide fragments of the accelerator. The band found in the RAIR spectra near 1143 cm -1 is characteristic from aliphatic secondary amines. Similarly, the presence of zinc was also found in the early stages of the vulcanization of natural rubber onto acetylene films. Zinc stearate reacted with accelerator and sulfur to form an accelerator complex. The zinc complex eventually reacted with natural rubber, sulfur, and the plasma-polymerized acetylene film to form rubber-bound intermediates.

  10. Mismatched Primer Extension Assays

    PubMed Central

    Achuthan, Vasudevan; DeStefano, Jeffrey J.

    2016-01-01

    Steady state kinetic assays have been a reliable way to estimate fidelity of several polymerases (Menendez-Arias, 2009; Rezende and Prasad, 2004; Svarovskaia et al., 2003). The ability to analyze the extension of primers with specific mismatches at the 3′ end is a major strength of the mismatched primer extension assays. Recently, we used the mismatched primer extension assays to show that the fidelity of HIV RT increases dramatically when concentration of Mg2+ is reduced to a physiologically relevant concentration (~0.25 mM) (Achuthan et al., 2014). Here, we describe in detail how to perform the mismatched primer extension assay to measure the standard extension efficiency using human immunodeficiency virus reverse transcriptase (HIV RT) at 2 mM Mg2+. The relative fidelity of the polymerase can then be estimated using the standard extension efficiency. The assay described here is based on the method published in Mendelman et al. (1990).

  11. Synthesis and characterization of graphenated carbon nanotubes on IONPs using acetylene by chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Atchudan, Raji; Perumal, Suguna; Edison, Thomas Nesakumar Jebakumar Immanuel; Pandurangan, Arumugam; Lee, Yong Rok

    2015-11-01

    The graphenated carbon nanotubes (G-CNTs) were synthesized on monodisperse spherical iron oxide nanoparticles (IONPs) using acetylene as carbon precursor by simple chemical vapor deposition method. The reaction parameters such as temperature and flow of carbon source were optimized in order to achieve G-CNTs with excellent quality and quantity. Transmission electron microscopy (TEM) clearly illustrated that the graphene flakes are forming along the whole length on CNTs. The degree of graphitization was revealed by X-ray diffraction (XRD) analysis and Raman spectroscopic techniques. The intensity of D to G value was less than one which confirms the obtained G-CNTs have high degree of graphitization. The optimum reaction temperature for the IONPs to form metallic clusters which in turn lead to the formation of G-CNTs with high carbon deposition yield is at 900 °C. The TEM shows the CNTs diameter is 50 nm with foiled graphene flakes of diameter around 70 nm. Our results advocate for IONPs as a promising catalytic template for quantitative and qualitative productivity of nanohybrid G-CNTs. The produced G-CNTs with high degree of graphitization might be an ideal candidate for nanoelectronic application like super capacitors and so on.

  12. Stereoselective inhibition of muscarinic receptor subtypes by the enantiomers of hexahydro-difenidol and acetylenic analogues.

    PubMed Central

    Feifel, R.; Wagner-Röder, M.; Strohmann, C.; Tacke, R.; Waelbroeck, M.; Christophe, J.; Mutschler, E.; Lambrecht, G.

    1990-01-01

    1. The affinities of the (R)- and (S)-enantiomers of hexahydro-difenidol (1) and its acetylenic analogues hexbutinol (2), hexbutinol methiodide (3) and p-fluoro-hexbutinol (4) (stereochemical purity greater than 99.8%) for muscarinic receptors in rabbit vas deferens (M1), guinea-pig atria (M2) and guinea-pig ileum (M3) were measured by dose-ratio experiments. 2. The (R)-enantiomers consistently showed higher affinities than the (S)-isomers. The stereoselectivity ratios [(R)/(S)] were greatest with the enantiomers of 1 (vas deferens: 550; ileum: 191; atria: 17) and least with those of the p-Fluoro-analogue 4 (vas deferens: 34; ileum: 8.5; atria: 1.7). 3. The enantiomeric potency ratios for compounds 1-4 were highest in rabbit vas deferens, intermediate in guinea-pig ileum and much less in guinea-pig atria. Thus, these ratios may serve as a predictor of muscarinic receptor subtype identity. 4. (S)-p-Fluoro-hexbutinol [(S)-4] showed a novel receptor selectivity profile with preference for M3 receptors: M3 greater than M2 greater than or equal to M1. 5. These results do not conform to Pfeiffer's rule that activity differences between enantiomers are greater with more potent compounds. PMID:2331578

  13. The Methane-Acetylene Cycle Aerospace Plane: A potential option for inexpensive Earth to orbit transportation

    NASA Astrophysics Data System (ADS)

    Zubrin, Robert M.

    1994-06-01

    Methane, a cheap, soft cryogen with six times the density of hydrogen could be an ideal fuel for use in a hypersonic aerospace plane. However, it does not burn fast enough for efficient scramjet operation and it possesses an inadequate thermal heat sink to cool the aircraft effectively. This paper proposes a concept, termed the Methane-Acetylene Cycle Aerospace Plane (MACASP), that may overcome these difficulties. In the MACASP concept, methane fuel is run out within the wing leading edge in pipes which are allowed to rise in temperature to about 1800 K. Drag heating is used to drive the highly endothermic chemical reaction; 2CH4 = 3H2 + C2H2. The reaction occurs on a millisecond time scale and endows the methane with a heat sink per unit mass comparable to that possessed by liquid hydrogen. The reaction products are fed into a combustion chamber and burned in air, releasing as much energy per unit mass at as rapid a combustion rate as hydrogen. This paper explores the thermodynamics of the MACASP concept and theoretical feasibility is demonstrated. Potential problems and areas of concern are identified. A conceptual point design for a MACASP vehicle is advanced and mission analysis performed comparing the MACASP to a conventional hydrogen aerospace plane. It is shown that the MACASP concept offers significant promise for economical Earth to orbit transportation.

  14. Infrared spectroscopy and Mie scattering of acetylene aerosols formed in a low temperature diffusion cell

    NASA Technical Reports Server (NTRS)

    Dunder, T.; Miller, R. E.

    1990-01-01

    A method is described for forming and spectroscopically characterizing cryogenic aerosols formed in a low temperature gas cell. By adjusting the cell pressure, gas composition and flow rate, the size distribution of aerosol particles can be varied over a wide range. The combination of pressure and flow rate determine the residence time of the aerosols in the cell and hence the time available for the particles to grow. FTIR spectroscopy, over the range from 600/cm to 6000/cm, is used to characterize the aerosols. The particle size distribution can be varied so that, at one extreme, the spectra show only absorption features associated with the infrared active vibrational bands and, at the other, they display both absorption and Mie scattering. In the latter case, Mie scattering theory is used to obtain semiquantitative aerosol size distributions, which can be understood in terms of the interplay between nucleation and condensation. In the case of acetylene aerosols, the infrared spectra suggest that the particles exist in the high temperature cubic phase of the solid.

  15. Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria

    SciTech Connect

    Belay, N.; Daniels, L.

    1987-07-01

    Several methanogenic bacteria were shown to produce ethane, ethylene, and acetylene when exposed to the halogenated hydrocarbons bromoethane, dibromo- or dichloroethane, and 1,2-dibromoethylene, respectively. They also produced ethylene when exposed to the coenzyme M analog and specific methanogenic inhibitor bromoethanesulfonic acid. The production of these gases from halogenated hydrocarbons has a variety of implications concerning microbial ecology, agriculture, and toxic waste treatment. All halogenated aliphatic compounds tested were inhibitory to methanogens. Methanococcus thermolithotrophicus, Methanococcus deltae, and Methanobacterium thermoautotrophicum ..delta..H and Marburg were completely inhibited by 7 ..mu..M 1,2-dibromoethane and, to various degrees, by 51 to 1084 ..mu..M 1,2-dichloroethane, 1,2-dibromoethylene, 1,2-dichloroethylene, and trichloroethylene. In general, the brominated compounds were more inhibitory. The two Methanococcus species were fully inhibited by 1 ..mu..M bromoethanesulfonic acid, whereas both Methanobacterium strains were only partly inhibited by 2124 ..mu..M. Coenzyme M protected cells from bromoethanesulfonic acid but not from any of the other inhibitors.

  16. Wavelength dependence of the photochemistry of hydrogen iodide-acetylene complexes in solid krypton

    SciTech Connect

    Abrash, S.A.; Pimentel, G.C. )

    1989-07-27

    Hydrogen iodide-acetylene complexes in a krypton matrix at 12 K have been photolyzed at fixed wavelengths in the range 222-308 nm. Products are identified with infrared spectroscopy. With deuterium substitutions (HI {times} C{sub 2}D{sub 2} and DI/HI/C{sub 2}H{sub 2}), 3 product channels are identified leading to isotopic exchange, formation of vinyl iodide, and formation of iodoacetylene. At wavelengths longer than 300 nm, only iodoacetylene is formed whereas at shorter wavelengths, isotopic exchange occurs (e.g., HI {times} C{sub 2}D{sub 2} {yields} DI {times} C{sub 2}HD), vinyl iodide is formed, and some iodoacetylene is formed. Because the T-shaped geometry of the HI {times} C{sub 2}H{sub 2} complex is well established, it is possible to interpret these results by recognizing that the photolysis involves 2 molecules in proximity, a supramolecule. As the hydrogen atom leaves the iodine atom, it forms initially C{sub 2}H{sub 3}. Correlating the energy levels along this initial reaction coordinate indicates the initial photolytic reaction surfaces, and Franck-Condon arguments explain the wavelength dependence of the product distribution. This supramolecule analysis provides a prototype analysis for other examples of photolysis of bound and geometrically constrained complexes.

  17. MPI photoelectron spectroscopy of ungerade excited states of acetylene: Intermediate state mixing and ion state selection

    SciTech Connect

    Orlando, T.M.; Anderson, S.L.; Appling, J.R.; White, M.G.

    1987-07-15

    Three photon resonant, four photon (3+1) ionization spectroscopy and photoelectron spectroscopy have been used to study the ungerade excited states of acetylene in the energy range from 74 500 to 90 000 cm/sup -1/. Sharp bands from the nR (..pi../sup 3//sub u/ nssigma/sub g/) and /sup 1/Phi/sub u/ (..pi../sup 3//sub u/ nddelta/sub g/) Rydberg series dominate the MPI spectrum. A large number of Rydberg and valence states which are prominent in VUV absorption spectra are absent or weak in MPI studies. These weak bands are only observable under high power conditions, which suggests that nonradiative decay is rapid enough to depopulate these states before ionization occurs. The photoelectron results provide further insight into the nature of the excited states. Ionization through the sharp bands occurs via ..delta nu.. = 0 Franck--Condon transitions, resulting in ions in a single vibrational state. Ionization through bands which are mixed results in complicated ion vibrational distributions including excitation of both cis and trans bends.

  18. Intramolecular vibrational relaxation and forbidden transitions in the SEP spectrum of acetylene

    SciTech Connect

    Jonas, D.M.; Solina, S.A.B.; Rajaram, B.; Silbey, R.J.; Field, R.W. ); Yamanouchi, K.; Tsuchiya, S. )

    1992-08-15

    {ital {tilde A}} {sup 1}{ital A}{sub {ital u}}{r arrow}{ital {tilde X}} {sup 1{Sigma}}{sub {ital g}}{sup +} SEP spectra of acetylene near {ital E}{sub VIB}=7000 cm{sup {minus}1} show that Darling--Dennison resonance between the {ital cis}- and {ital trans}-bending vibrations is the {ital first} {ital step} in a series of anharmonic resonances which can transfer nearly all the vibrational energy out of the Franck--Condon bright states at higher energy. In addition to allowed {vert bar}{Delta}{ital K}{vert bar}{equivalent to}{vert bar}{ital K}{prime}{minus}l{double prime}{vert bar}=1 rotational transitions, nominally forbidden {vert bar}{Delta}{ital K}{vert bar}=0,2,3 rotational transitions have also been observed due to axis-switching and rotational-l-resonance. Although the range of detectable fluorescence dips is only about 30, the range of detectable SEP intensities in these spectra is probably about 500.

  19. Triply differential photoelectron studies of non-Franck–Condon behavior in the photoionization of acetylene

    SciTech Connect

    Parr, Albert C.; Ederer, D. L.; West, J. B.; Holland, D. M. P.; Dehmer, Joseph L.

    1982-01-01

    Vibrational branching ratios and photoelectron angular distributions for alternative vibrational levels of C2H+2 X² Πu have been measured in the range 13 eV≤hv≤25 eV using synchrotron radiation. Below hv≈16 eV, these data exhibit strong non-Franck--Condon effects, namely, wavelength-dependent vibrational branching ratios and vibrational-state-dependent photoelectron asymmetry parameters. Moreover, enhanced excitation of bending modes of the ion is observed below hv≈16 eV, in addition to the C--C stretch mode, which is the only mode readily observed in photoelectron spectra of C2H2 at shorter wavelengths, e.g., at the He I (21.2 eV) resonance line. The non-Franck--Condon behavior is attributed to resonant photoionization processes, whose identification is discussed in the framework of several recent theoretical and experimental studies on acetylene and related molecules.

  20. Molecular heterogeneous catalysis: a single-site zeolite-supported rhodium complex for acetylene cyclotrimerization.

    PubMed

    Kletnieks, Philip W; Liang, Ann J; Craciun, Raluca; Ehresmann, Justin O; Marcus, David M; Bhirud, Vinesh A; Klaric, Meghan M; Hayman, Miranda J; Guenther, Darryl R; Bagatchenko, Olesya P; Dixon, David A; Gates, Bruce C; Haw, James F

    2007-01-01

    By anchoring metal complexes to supports, researchers have attempted to combine the high activity and selectivity of molecular homogeneous catalysis with the ease of separation and lack of corrosion of heterogeneous catalysis. However, the intrinsic nonuniformity of supports has limited attempts to make supported catalysts truly uniform. We report the synthesis and performance of such a catalyst, made from [Rh(C(2)H(4))(2)(CH(3)COCHCOCH(3))] and a crystalline support, dealuminated Y zeolite, giving {Rh(C(2)H(4))(2)} groups anchored by bonds to two zeolite oxygen ions, with the structure determined by extended X-ray absorption fine structure (EXAFS) spectroscopy and the uniformity of the supported complex demonstrated by (13)C NMR spectroscopy. When the ethylene ligands are replaced by acetylene, catalytic cyclotrimerization to benzene ensues. Characterizing the working catalyst, we observed evidence of intermediates in the catalytic cycle by NMR spectroscopy. Calculations at the level of density functional theory confirmed the structure of the as-synthesized supported metal complex determined by EXAFS spectroscopy. With this structure as an anchor, we used the computational results to elucidate the catalytic cycle (including transition states), finding results in agreement with the NMR spectra. PMID:17685381

  1. Molecular Heterogeneous Catalysis: a Single-Site Zeolite-Supported Rhodium Complex for Acetylene Cyclotrimerization

    SciTech Connect

    Kletnieks, P.W.; Liang, A.J.; Craciun, R.; Ehresmann, J.O.; Marcus, D.M.; Bhirud, V.A.; Klaric, M.M.; Hayman, M.J.; Guenther, D.R.; Bagatchenko, O.P.; Dixon, D.A.; Gates, B.C.; Haw, J.F.

    2009-06-01

    By anchoring metal complexes to supports, researchers have attempted to combine the high activity and selectivity of molecular homogeneous catalysis with the ease of separation and lack of corrosion of heterogeneous catalysis. However, the intrinsic nonuniformity of supports has limited attempts to make supported catalysts truly uniform. We report the synthesis and performance of such a catalyst, made from [Rh(C{sub 2}H{sub 4}){sub 2}(CH{sub 3}COCHCOCH{sub 3})] and a crystalline support, dealuminated Y zeolite, giving {l_brace}Rh(C{sub 2}H{sub 4}){sub 2}{r_brace} groups anchored by bonds to two zeolite oxygen ions, with the structure determined by extended X-ray absorption fine structure (EXAFS) spectroscopy and the uniformity of the supported complex demonstrated by {sup 13}C NMR spectroscopy. When the ethylene ligands are replaced by acetylene, catalytic cyclotrimerization to benzene ensues. Characterizing the working catalyst, we observed evidence of intermediates in the catalytic cycle by NMR spectroscopy. Calculations at the level of density functional theory confirmed the structure of the as-synthesized supported metal complex determined by EXAFS spectroscopy. With this structure as an anchor, we used the computational results to elucidate the catalytic cycle (including transition states), finding results in agreement with the NMR spectra.

  2. Time- and Isomer-Resolved Measurements of Sequential Addition of Acetylene to the Propargyl Radical.

    PubMed

    Savee, John D; Selby, Talitha M; Welz, Oliver; Taatjes, Craig A; Osborn, David L

    2015-10-15

    Soot formation in combustion is a complex process in which polycyclic aromatic hydrocarbons (PAHs) are believed to play a critical role. Recent works concluded that three consecutive additions of acetylene (C2H2) to propargyl (C3H3) create a facile route to the PAH indene (C9H8). However, the isomeric forms of C5H5 and C7H7 intermediates in this reaction sequence are not known. We directly investigate these intermediates using time- and isomer-resolved experiments. Both the resonance stabilized vinylpropargyl (vp-C5H5) and 2,4-cyclopentadienyl (c-C5H5) radical isomers of C5H5 are produced, with substantially different intensities at 800 K vs 1000 K. In agreement with literature master equation calculations, we find that c-C5H5 + C2H2 produces only the tropyl isomer of C7H7 (tp-C7H7) below 1000 K, and that tp-C7H7 + C2H2 terminates the reaction sequence yielding C9H8 (indene) + H. This work demonstrates a pathway for PAH formation that does not proceed through benzene. PMID:26722791

  3. Anion dynamics in the first 10 milliseconds of an argon-acetylene radio-frequency plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Beckers, J.; Kroesen, G. M. W.

    2012-12-01

    The time evolution of the smallest anions (C2H- and H2CC-), just after plasma ignition, is studied by means of microwave cavity resonance spectroscopy (MCRS) in concert with laser-induced photodetachment under varying gas pressure and temperature in an argon-acetylene radio-frequency (13.56 MHz) plasma. These anions act as an initiator for spontaneous dust particle formation in these plasmas. With an intense 355 nm Nd : YAG laser pulse directed through the discharge, electrons are detached only from these anions present in the laser path. This results in a sudden increase in the electron density in the plasma, which can accurately and with sub-microsecond time resolution be measured with MCRS. By adjusting the time after plasma ignition at which the laser is fired through the discharge, the time evolution of the anion density can be studied. We have operated in the linear regime: the photodetachment signal is proportional to the laser intensity. This allowed us to study the trends of the photodetachment signal as a function of the operational parameters of the plasma. The density of the smallest anions steadily increases in the first few milliseconds after plasma ignition, after which it reaches a steady state. While keeping the gas density constant, increasing the gas temperature in the range 30-120 °C limits the number of smallest anions and saturates at a temperature of about 90 °C. A reaction pathway is proposed to explain the observed trends.

  4. Intramolecular competition between n-pair and π-pair hydrogen bonding: Microwave spectrum and internal dynamics of the pyridine-acetylene hydrogen-bonded complex.

    PubMed

    Mackenzie, Rebecca B; Dewberry, Christopher T; Coulston, Emma; Cole, George C; Legon, Anthony C; Tew, David P; Leopold, Kenneth R

    2015-09-14

    a-type rotational spectra of the hydrogen-bonded complex formed from pyridine and acetylene are reported. Rotational and (14)N hyperfine constants indicate that the complex is planar with an acetylenic hydrogen directed toward the nitrogen. However, unlike the complexes of pyridine with HCl and HBr, the acetylene moiety in HCCH-NC5H5 does not lie along the symmetry axis of the nitrogen lone pair, but rather, forms an average angle of 46° with the C2 axis of the pyridine. The a-type spectra of HCCH-NC5H5 and DCCD-NC5H5 are doubled, suggesting the existence of a low lying pair of tunneling states. This doubling persists in the spectra of HCCD-NC5H5, DCCH-NC5H5, indicating that the underlying motion does not involve interchange of the two hydrogens of the acetylene. Single (13)C substitution in either the ortho- or meta-position of the pyridine eliminates the doubling and gives rise to separate sets of spectra that are well predicted by a bent geometry with the (13)C on either the same side ("inner") or the opposite side ("outer") as the acetylene. High level ab initio calculations are presented which indicate a binding energy of 1.2 kcal/mol and a potential energy barrier of 44 cm(-1) in the C2v configuration. Taken together, these results reveal a complex with a bent hydrogen bond and large amplitude rocking of the acetylene moiety. It is likely that the bent equilibrium structure arises from a competition between a weak hydrogen bond to the nitrogen (an n-pair hydrogen bond) and a secondary interaction between the ortho-hydrogens of the pyridine and the π electron density of the acetylene. PMID:26374037

  5. Intramolecular competition between n-pair and π-pair hydrogen bonding: Microwave spectrum and internal dynamics of the pyridine-acetylene hydrogen-bonded complex

    NASA Astrophysics Data System (ADS)

    Mackenzie, Rebecca B.; Dewberry, Christopher T.; Coulston, Emma; Cole, George C.; Legon, Anthony C.; Tew, David P.; Leopold, Kenneth R.

    2015-09-01

    a-type rotational spectra of the hydrogen-bonded complex formed from pyridine and acetylene are reported. Rotational and 14N hyperfine constants indicate that the complex is planar with an acetylenic hydrogen directed toward the nitrogen. However, unlike the complexes of pyridine with HCl and HBr, the acetylene moiety in HCCH—NC5H5 does not lie along the symmetry axis of the nitrogen lone pair, but rather, forms an average angle of 46° with the C2 axis of the pyridine. The a-type spectra of HCCH—NC5H5 and DCCD—NC5H5 are doubled, suggesting the existence of a low lying pair of tunneling states. This doubling persists in the spectra of HCCD—NC5H5, DCCH—NC5H5, indicating that the underlying motion does not involve interchange of the two hydrogens of the acetylene. Single 13C substitution in either the ortho- or meta-position of the pyridine eliminates the doubling and gives rise to separate sets of spectra that are well predicted by a bent geometry with the 13C on either the same side ("inner") or the opposite side ("outer") as the acetylene. High level ab initio calculations are presented which indicate a binding energy of 1.2 kcal/mol and a potential energy barrier of 44 cm-1 in the C2v configuration. Taken together, these results reveal a complex with a bent hydrogen bond and large amplitude rocking of the acetylene moiety. It is likely that the bent equilibrium structure arises from a competition between a weak hydrogen bond to the nitrogen (an n-pair hydrogen bond) and a secondary interaction between the ortho-hydrogens of the pyridine and the π electron density of the acetylene.

  6. CPTAC Assay Portal: a repository of targeted proteomic assays

    SciTech Connect

    Whiteaker, Jeffrey R.; Halusa, Goran; Hoofnagle, Andrew N.; Sharma, Vagisha; MacLean, Brendan; Yan, Ping; Wrobel, John; Kennedy, Jacob; Mani, DR; Zimmerman, Lisa J.; Meyer, Matthew R.; Mesri, Mehdi; Rodriguez, Henry; Abbateillo, Susan E.; Boja, Emily; Carr, Steven A.; Chan, Daniel W.; Chen, Xian; Chen, Jing; Davies, Sherri; Ellis, Matthew; Fenyo, David; Hiltket, Tara; Ketchum, Karen; Kinsinger, Christopher; Kuhn, Eric; Liebler, Daniel; Lin, De; Liu, Tao; Loss, Michael; MacCoss, Michael; Qian, Weijun; Rivers, Robert; Rodland, Karin D.; Ruggles, Kelly; Scott, Mitchell; Smith, Richard D.; Thomas, Stefani N.; Townsend, Reid; Whiteley, Gordon; Wu, Chaochao; Zhang, Hui; Zhang, Zhen; Paulovich, Amanda G.

    2014-06-27

    To address these issues, the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI) has launched an Assay Portal (http://assays.cancer.gov) to serve as a public repository of well-characterized quantitative, MS-based, targeted proteomic assays. The purpose of the CPTAC Assay Portal is to facilitate widespread adoption of targeted MS assays by disseminating SOPs, reagents, and assay characterization data for highly characterized assays. A primary aim of the NCI-supported portal is to bring together clinicians or biologists and analytical chemists to answer hypothesis-driven questions using targeted, MS-based assays. Assay content is easily accessed through queries and filters, enabling investigators to find assays to proteins relevant to their areas of interest. Detailed characterization data are available for each assay, enabling researchers to evaluate assay performance prior to launching the assay in their own laboratory.

  7. Diagnostic assays used to control small ruminant lentiviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The serological diagnostic tests such as the agar gel immunodiffusion (AGID) assay and various types of enzyme linked immunosorbent assays (ELISAs) have contributed to the reduction of small ruminant lentivirus infections worldwide. Since there are no treatments or efficacious vaccines, the serolog...

  8. Doped colorimetric assay liposomes

    DOEpatents

    Charych, Deborah; Stevens, Raymond C.

    2001-01-01

    The present invention provides compositions comprising colorimetric assay liposomes. The present invention also provides methods for producing colorimetric liposomes and calorimetric liposome assay systems. In preferred embodiments, these calorimetric liposome systems provide high levels of sensitivity through the use of dopant molecules. As these dopants allow the controlled destabilization of the liposome structure, upon exposure of the doped liposomes to analyte(s) of interest, the indicator color change is facilitated and more easily recognized.

  9. Inactivation of the particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath) by acetylene.

    PubMed

    Pham, Minh D; Lin, Ya-Ping; Van Vuong, Quan; Nagababu, Penumaka; Chang, Brian T-A; Ng, Kok Yaoh; Chen, Chein-Hung; Han, Chau-Chung; Chen, Chung-Hsuan; Li, Mai Suan; Yu, Steve S-F; Chan, Sunney I

    2015-12-01

    Acetylene (HCCH) has a long history as a mechanism-based enzyme inhibitor and is considered an active-site probe of the particulate methane monooxygenase (pMMO). Here, we report how HCCH inactivates pMMO in Methylococcus capsulatus (Bath) by using high-resolution mass spectrometry and computational simulation. High-resolution MALDI-TOF MS of intact pMMO complexes has allowed us to confirm that the enzyme oxidizes HCCH to the ketene (C2H2O) intermediate, which then forms an acetylation adduct with the transmembrane PmoC subunit. LC-MS/MS analysis of the peptides derived from in-gel proteolytic digestion of the protein subunit identifies K196 of PmoC as the site of acetylation. No evidence is obtained for chemical modification of the PmoA or PmoB subunit. The inactivation of pMMO by a single adduct in the transmembrane PmoC domain is intriguing given the complexity of the structural fold of this large membrane-protein complex as well as the complicated roles played by the various metal cofactors in the enzyme catalysis. Computational studies suggest that the entry of hydrophobic substrates to, and migration of products from, the catalytic site of pMMO are controlled tightly within the transmembrane domain. Support of these conclusions is provided by parallel experiments with two related alkynes: propyne (CH3CCH) and trifluoropropyne (CF3CCH). Finally, we discuss the implication of these findings to the location of the catalytic site in pMMO. PMID:26275807

  10. Chromophores from Photolyzed Ammonia Reacting with Acetylene: Application to Jupiter’s Great Red Spot

    NASA Astrophysics Data System (ADS)

    Carlson, Robert W.; Baines, K. H.; Anderson, M. S.; Filacchione, G.

    2012-10-01

    The production mechanisms of chromophores at Jupiter, and notably at the Great Red Spot (GRS), have been long-standing puzzles. A clue to the formation of the GRS coloring agent may be the great height of this storm, which can upwell ammonia to pressure levels of a few hundred mbar where solar photons capable of dissociating NH3 penetrate. Acetylene formed at higher altitudes can diffuse down and react with the NH3 photodissociation products, forming a deposit that absorbs in the ultraviolet and visible region (Ferris and Ishikawa, J. Amer. Chem. Soc. 110, 4306-4312, 1988). We have investigated the system NH3 + C2H2 + CH4 using a Zn lamp emitting at 214 nm to produce NH2 + H and subsequent reaction products. The deposits produced in these reactions were analyzed by optical and infrared spectroscopy and soft-ionization (He*) time-of-flight mass spectroscopy. The combination of NH3 + CH4 produced no visibly absorbing material, but NH3 + C2H2 and NH3 + C2H2 + CH4 mixtures both produced a yellow-orange film whose transmission spectra are similar to that of the GRS obtained by Cassini VIMS. Infrared spectra show a strong band at 2056 wavenumbers which may arise from nitrile (-CN), isonitrile (-NC), or diazide (-CNN) functional groups. The high-resolution mass spectra are consistent with compounds of the form CnH2n+1Nm, similar to the products formed in NH3 + CH4 spark discharges (Molton and Ponnamperuma, Icarus 21, 166-174, 1974). We thank NASA's Planetary Atmospheres Program for support.

  11. An Experimental and Theoretical Study of Nitrogen-Broadened Acetylene Lines

    NASA Technical Reports Server (NTRS)

    Thibault, Franck; Martinez, Raul Z.; Bermejo, Dionisio; Ivanov, Sergey V.; Buzykin, Oleg G.; Ma, Qiancheng

    2014-01-01

    We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the 2 band of acetylene (C2H2) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon's approach, two kinds of semi-classical calculations based on Robert Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same ab initio potential energy surface for the C2H2N2 system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of C2H2. The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Qand R-lines. The refined semi-classical Robert Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.

  12. Hydrogen-bonded complexes of acetylene and acetonitrile: A matrix isolation infrared and computational study

    NASA Astrophysics Data System (ADS)

    Gopi, R.; Ramanathan, N.; Sundararajan, K.

    2015-03-01

    Hydrogen-bonded complexes of acetylene (C2H2) and acetonitrile (CH3CN) have been investigated using matrix isolation infrared spectroscopy and ab initio computations. The complexes were trapped in both solid argon and N2 matrices. The structure of the complexes and the energies were computed at the B3LYP and MP2 levels of theory using a 6-311++G(d,p) basis set and also at B3LYP/aug-cc-pVDZ level. Our computations indicated one minimum corresponding to the 1:1 C2H2sbnd CH3CN complex, with Csbnd H⋯N interaction, where C2H2 is the proton donor. Experimentally, we observed the 1:1 C2H2sbnd CH3CN complex in Ar and N2 matrices, which was evidenced by the shifts in the vibrational wavenumbers of the modes involving the C2H2 and CH3CN sub-molecules. Computations were also performed to study the higher complexes of C2H2 and CH3CN. One minimum was found for the 1:2 C2H2sbnd CH3CN complex and two minima for the 2:1 C2H2sbnd CH3CN complexes, at all levels of theory. Experimentally we observed features corresponding to the 1:2 C2H2sbnd CH3CN complexes in an Ar and N2 matrices. The computed vibrational wavenumbers of C2H2sbnd CH3CN complexes at B3LYP/6-311++G(d,p) level correlate well with the experimental wavenumbers. Atoms in Molecules (AIM) analysis was performed to understand the nature of interaction in the complexes. Natural Bond Orbital (NBO) analysis was performed to understand the effect of charge-transfer hyperconjugative interactions towards the stability of different C2H2sbnd CH3CN complexes.

  13. Recovery of acetylene absorption line profile basing on tunable diode laser spectroscopy with intensity modulation and photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Li; Thursby, Graham; Stewart, George; Arsad, Norhana; Uttamchandani, Deepak; Culshaw, Brian; Wang, Yiding

    2010-04-01

    A novel and direct absorption line recovery technique based on tunable diode laser spectroscopy with intensity modulation is presented. Photoacoustic spectroscopy is applied for high sensitivity, zero background and efficient acoustic enhancement at a low modulation frequency. A micro-electromechanical systems (MEMS) mirror driven by an electrothermal actuator is used for generating laser intensity modulation (without wavelength modulation) through the external reflection. The MEMS mirror with 10μm thick structure material layer and 100nm thick gold coating is formed as a circular mirror of 2mm diameter attached to an electrothermal actuator and is fabricated on a chip that is wire-bonded and placed on a PCB holder. Low modulation frequency is adopted (since the resonant frequencies of the photoacoustic gas cell and the electrothermal actuator are different) and intrinsic high signal amplitude characteristics in low frequency region achieved from measured frequency responses for the MEMS mirror and the gas cell. Based on the property of photoacoustic spectroscopy and Beer's law that detectable sensitivity is a function of input laser intensity in the case of constant gas concentration and laser path length, a Keopsys erbium doped fibre amplifier (EDFA) with opto-communication C band and high output power up to 1W is chosen to increase the laser power. High modulation depth is achieved through adjusting the MEMS mirror's reflection position and driving voltage. In order to scan through the target gas absorption line, the temperature swept method is adopted for the tunable distributed feed-back (DFB) diode laser working at 1535nm that accesses the near-infrared vibration-rotation spectrum of acetylene. The profile of acetylene P17 absorption line at 1535.39nm is recovered ideally for ~100 parts-per-million (ppm) acetylene balanced by nitrogen. The experimental signal to noise ratio (SNR) of absorption line recovery for 500mW laser power was ~80 and hence the detectable sensitivity is of the order of 1ppm.

  14. Laser double-resonance studies of electronic spectroscopy and state-resolved collisional relaxation in highly vibrationally excited acetylene

    SciTech Connect

    Tobiason, J.D.

    1992-01-01

    Vibrational overtone excitation combined with laser-induced fluorescence detection of acetylene molecules permits rotation-selected spectroscopy of the ([tilde A][sup 1]A[sub u]) electronic state and direct, state-resolved measurements of collisional energy transfer in the highly vibrationally excited ground electronic state. The author assigns energies of 1,045 transitions to previously unobserved ungerade vibrational states 2800-4500 cm[sup [minus]1] above the [tilde A] state origin. An analysis yields frequencies of 2856.4 and 3894.3 cm[sup [minus]1] for [nu][sub v][prime] and [nu][sub 3][prime] + [nu][sub 5][prime]. The author performs the first normal coordinate analysis of [tilde A] state acetylene based only on directly observed fundamentals. The spectroscopy measurements enable double-resonance experiments on the collisional dynamics of highly vibrationally excited acetylene. The quenching rate for single rotational states is twice the Lennard-Jones gas kinetic rate and fairly independent of vibrational energy level. Collision-induced detection of vibrational overtone excitation under single collision conditions allows direct measurements of state-of-state rotational and vibrational energy transfer. A collision-induced spectrum obtained by this new technique immediately identifies transfer channels and the [Delta]J and [Delta]E dependence of the transfer rates. The author observes changes of [vert bar][Delta]J[vert bar] and [Delta]E [approx] 3kT in a single collision. Directly measured rates for one set of vibrational relaxation pathways account for [approximately]3% of the total relaxation rate. The author also observes other vibrational relaxation pathways. The available pathways suggest that vibrational relaxation accounts for the rest of the total relaxation. Changes of [vert bar]J[vert bar] = 18 and [vert bar][Delta]E[vert bar] [approximately] 500 cm[sup [minus]1] in a single collision are observed.

  15. Differential inhibition of thromboxane B2 and leukotriene B4 biosynthesis by two naturally occurring acetylenic fatty acids.

    PubMed

    Croft, K D; Beilin, L J; Ford, G L

    1987-10-17

    The seed oil of the plant Ixiolaena brevicompta is a rich source of crepenynic acid (octadec-cis-9-en-12-ynoic acid), which has been linked with extensive sheep mortalities in Western New South Wales and Queensland, Australia. A number of acetylenic fatty acids have been found to interfere with lipid and fatty acid metabolism and inhibit cyclooxygenase and lipoxygenase enzymes in a variety of tissues. We have investigated the effects of crepenynic acid and ximenynic acid (octadec-trans-11-en-9-ynoic acid) on leukotriene B4 and thromboxane B2 production in rat peritoneal leukocytes and compare them with non-acetylenic compounds linoleic and ricinoleic acids. In concentrations ranging from 10 to 100 microM linoleic acid and ricinoleic acid had only minimal effects on leukotriene B4 and thromboxane B2 production in ionophore-stimulated cells. Ximenynic acid gave dose-dependent inhibition of leukotriene B4, thromboxane B2 and 6-ketoprostaglandin F1 alpha production. Ximenynic acid appears to be a more effective inhibitor of leukotriene B4 than crepenynic acid with an IC50 of 60 microM compared to 85 microM. On the other hand, crepenynic acid is a much more effective inhibitor of the cyclooxygenase products, having an IC50 for thromboxane B2 of less than 10 microM. Both acetylenic fatty acids inhibited phospholipase activity in these cells by 40-50% at a concentration of 100 microM but had no inhibitory effect at 10 microM. These results indicate that crepenynic acid and ximenynic acid differentially inhibit the cyclooxygenase and lipoxygenase products of stimulated leukocytes, and that at high doses of these fatty acids the effect on these products may be partially due to inhibition of phospholipase A2. PMID:2822134

  16. Simplified Cartesian basis model for intrapolyad emission intensities in the bent-to-linear electronic transition of acetylene.

    PubMed

    Park, G Barratt; Steeves, Adam H; Baraban, Joshua H; Field, Robert W

    2015-02-01

    The acetylene emission spectrum from the trans-bent electronically excited state to the linear ground electronic X? state has attracted considerable attention because it grants FranckCondon access to local bending vibrational levels of the X? state with large-amplitude motion along the acetylene ? vinylidene isomerization coordinate. For emission from the ground vibrational level of the state, there is a simplifying set of FranckCondon propensity rules that gives rise to only one zero-order bright state per conserved vibrational polyad of the X? state. Unfortunately, when the upper level involves excitation in the highly admixed ungerade bending modes, ?4? and ?6?, the simplifying FranckCondon propensity rule breaks down--as long as the usual polar basis (with v and l quantum numbers) is used to describe the degenerate bending vibrations of the X? state--and the intrapolyad intensities result from complicated interference patterns between many zero-order bright states. In this article, we show that, when the degenerate bending levels are instead treated in the Cartesian two-dimensional harmonic oscillator basis (with vx and vy quantum numbers), the propensity for only one zero-order bright state (in the Cartesian basis) is restored, and the intrapolyad intensities are simple to model, as long as corrections are made for anharmonic interactions. As a result of trans ? cis isomerization in the state, intrapolyad emission patterns from overtones of ?4? and ?6? evolve as quanta of trans bend (?3?) are added, so the emission intensities are not only relevant to the ground-state acetylene ? vinylidene isomerization, they are also a direct reporter of isomerization in the electronically excited state. PMID:25625552

  17. Determination of cell survival after irradiation via clonogenic assay versus multiple MTT Assay--a comparative study.

    PubMed

    Buch, Karl; Peters, Tanja; Nawroth, Thomas; Sänger, Markus; Schmidberger, Heinz; Langguth, Peter

    2012-01-01

    For studying proliferation and determination of survival of cancer cells after irradiation, the multiple MTT assay, based on the reduction of a yellow water soluble tetrazolium salt to a purple water insoluble formazan dye by living cells was modified from a single-point towards a proliferation assay. This assay can be performed with a large number of samples in short time using multi-well-plates, assays can be performed semi-automatically with a microplate reader. Survival, the calculated parameter in this assay, is determined mathematically. Exponential growth in both control and irradiated groups was proven as the underlying basis of the applicability of the multiple MTT assay. The equivalence to a clonogenic survival assay with its disadvantages such as time consumption was proven in two setups including plating of cells before and after irradiation. Three cell lines (A 549, LN 229 and F 98) were included in the experiment to study its principal and general applicability. PMID:22214341

  18. The assay of tuberculin

    PubMed Central

    Long, D. A.; Miles, A. A.; Perry, W. L. M.

    1954-01-01

    All types of tuberculin, crude and pure alike, have in the past been assayed by “matching” the skin reactions they produce in sensitized animals with those produced by the International Standard for Old Tuberculin; furthermore, a variety of sensitizing antigens have been used. Such “matching” assays are not easy to analyse statistically. An assay is described, based on the linear relationship between the diameter of the skin reaction and the logarithm of the dose of tuberculin. This type of assay is shown to be precise. It eliminates the need for preliminary titrations and provides information about the slope of the dosage-response lines, and it yields fiducial limits of error from the internal evidence of the assay. Using this method, a comparative study is made of the effects of varying both sensitizing antigens and test allergens. It is shown that there is sufficient heterogeneity among these different types of tuberculins to make invalid their comparison in terms of a single standard, namely, the International Standard for Old Tuberculin. PMID:13199661

  19. Heat of Combustion of the Product Formed by the Reaction of Acetylene and Diborane (LFPL-CZ-3)

    NASA Technical Reports Server (NTRS)

    Allen, Harrison, Jr.; Tannenbaum, Stanley

    1957-01-01

    The heat of combustion of the product formed by the reaction acetylene and diborane was found to be 20,100 +/- 100 Btu per pound for the reaction of liquid fuel to gaseous carbon dioxide, gaseous water, and solid boric oxide. The measurements were made in a Parr oxygen-bomb calorimeter, and chemical analyses both of the sample and of the combustion products indicated combustion in the bomb calorimeter to have been 97 percent complete. The estimated net heat of combustion for complete combustion would therefore be 20,700 +/- 100 Btu per pound.

  20. State dynamics of acetylene excited to individual rotational level of the V1(2)K1(0,1,2) subbands.

    PubMed

    Makarov, Vladimir I; Kochubei, Sergei A; Khmelinskii, Igor V

    2007-03-01

    The dynamics of the IR emission induced by excitation of the acetylene molecule at the 3(2) Ka2, A1Au<--4(1) la1, X1Sigmag+ transition was investigated. Vibrationally resolved IR emission spectra were recorded at different delay times after the laser excitation pulse. The observed IR emission was assigned to transitions between vibrational levels of the acetylene molecule in the ground state. Values of the relaxation parameters of different vibrational levels of the ground state were obtained. The Ti-->Tj transition was detected by cavity ring-down spectroscopy in the 455 nm spectral range after excitation of the acetylene molecule at the same transition. Rotationally resolved spectra of the respective transition were obtained and analyzed at different delay times after the laser excitation pulse. The dynamics of the S1-->Tx-->T1-->S0 transitions was investigated, and the relaxation parameter values were estimated for the T1 state. PMID:17362104

  1. The electronic structure and second-order nonlinear optical properties of donor-acceptor acetylenes - A detailed investigation of structure-property relationships

    NASA Technical Reports Server (NTRS)

    Stiegman, A. E.; Graham, Eva; Khundkar, Lutfur R.; Perry, Joseph W.; Cheng, L.-T.; Perry, Kelly J.

    1991-01-01

    A series of donor-acceptor acetylene compounds was synthesized in which systematic changes in both the conjugation length and the donor-acceptor strength were made. The effect of these structural changes on the spectroscopic and electronic properties of the molecules and, ultimately, on the measured second-order molecular hyperpolarizabilities (beta) was investigated. It was found that increases in the donor-acceptor strength resulted in increases in the magnitude of beta. For this class of molecules, the increase is dominated by the energy of the intramolecular charge-transfer transition, while factors such as the ground to excited-state dipole moment change and the transition-moment integral are much less important. Increasing the conjugation length from one to two acetylene linkers did not result in an increase in the value of beta; however, beta increased sharply in going from two acetylenes to three. This increase is attributed to the superposition of several nearly isoenergetic excited states.

  2. Against vaccine assay secrecy

    PubMed Central

    Herder, Matthew; Hatchette, Todd F; Halperin, Scott A; Langley, Joanne M

    2015-01-01

    Increasing the transparency of the evidence base behind health interventions such as pharmaceuticals, biologics, and medical devices, has become a major point of critique, conflict, and policy focus in recent years. Yet the lack of publicly available information regarding the immunogenicity assays upon which many important, widely used vaccines are based has received no attention to date. In this paper we draw attention to this critical public health problem by reporting on our efforts to secure vaccine assay information in respect of 10 vaccines through Canada's access to information law. We argue, under Canadian law, that the public health interest in having access to the methods for these laboratory procedures should override claims by vaccine manufacturers and regulators that this information is proprietary; and, we call upon several actors to take steps to ensure greater transparency with respect to vaccine assays, including regulators, private firms, researchers, research institutions, research funders, and journal editors. PMID:25826194

  3. In Vitro Antioxidant Assays.

    PubMed

    2016-01-01

    Various chemical in vitro assays have been developed to measure antioxidant capacities of plant products. Despite the recent popularity in the antioxidant research, the lack of standardized assays to compare research results from different research groups has been a major challenge. The examination of various antioxidant assays is required for the development of standard methods that are broadly applicable by researchers and industry. However, due to the complex nature of biological systems, there is no single universal method for measuring antioxidant capacity. Antioxidant methods such as DPPH*, ABTS+, nitric oxide, super oxide, metal chelating confirming the free radical scavenging property of the plants with widely used methods are simplified in this chapter. PMID:26939266

  4. RNA encapsidation assay.

    PubMed

    Annamalai, Padmanaban; Rao, A L N

    2008-01-01

    Analysis of viral RNA encapsidation assay provides a rapid means of assaying which of the progeny RNA are competent for packaging into stable mature virions. Generally, a parallel analysis of total RNA and RNA obtained from purified virions is advisable for accurate interpretation of the results. In this, we describe a series of in vivo assays in which viral RNA encapsidation can be verified. These include whole plants inoculated either mechanically or by Agroinfiltration and protoplasts. The encapsidation assay described here is for an extensively studied plant RNA virus, brome mosaic virus, and can be reliably applied to other viral systems as well as with appropriate buffers. In principle, the encapsidation assay requires purification of virions from either symptomatic leaves or transfected plant protoplasts followed by RNA isolation. The procedure involves grinding the infected tissue in an appropriate buffer followed by a low speed centrifugation step to remove the cell debris. The supernatant is then emulsified with an organic solvent such as chloroform to remove chlorophyll and cellular material. After a low seed centrifugation, the supernatant is subjected to high speed centrifugation to concentrate the virus as a pellet. Depending on the purity required, the partially purified virus preparation is further subjected to sucrose density gradient centrifugation. Following purification of virions, encapsidated RNA is isolated using standard phenol-chloroform extraction procedure. An important step in the encapsidation assay is the comparative analysis of total and virion RNA preparations by Northern hybridization. This would allow the investigator to compare the number of progeny RNA components synthesized during replication vs. encapsidation. Northern blots are normally hybridized with radioactively labeled RNA probes (riboprobes) for specific and sensitive detection of desired RNA species. PMID:18370261

  5. Lateral flow strip assay

    DOEpatents

    Miles, Robin R.; Benett, William J.; Coleman, Matthew A.; Pearson, Francesca S.; Nasarabadi, Shanavaz L.

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  6. Automated phantom assay system

    SciTech Connect

    Sisk, D.R.; Nichols, L.L.; Olsen, P.C.

    1991-11-01

    This paper describes an automated phantom assay system developed for assaying phantoms spiked with minute quantities of radionuclides. The system includes a computer-controlled linear-translation table that positions the phantom at exact distances from a spectrometer. A multichannel analyzer (MCA) interfaces with a computer to collect gamma spectral data. Signals transmitted between the controller and MCA synchronize data collection and phantom positioning. Measured data are then stored on disk for subsequent analysis. The automated system allows continuous unattended operation and ensures reproducible results.

  7. Miniaturization of hydrolase assays in thermocyclers.

    PubMed

    Lucena, Severino A; Moraes, Caroline S; Costa, Samara G; de Souza, Wanderley; Azambuja, Patrícia; Garcia, Eloi S; Genta, Fernando A

    2013-03-01

    We adapted the protocols of reducing sugar measurements with dinitrosalicylic acid and bicinchoninic acid for thermocyclers and their use in enzymatic assays for hydrolases such as amylase and β-1,3-glucanase. The use of thermocyclers for these enzymatic assays resulted in a 10 times reduction in the amount of reagent and volume of the sample needed when compared with conventional microplate protocols. We standardized absorbance readings from the polymerase chain reaction plates, which allowed us to make direct readings of the techniques above, and a β-glycosidase assay was also established under the same conditions. Standardization of the enzymatic reaction in thermocyclers resulted in less time-consuming temperature calibrations and without loss of volume through leakage or evaporation from the microplate. Kinetic parameters were successfully obtained, and the use of the thermocycler allowed the measurement of enzymatic activities in biological samples from the field with a limited amount of protein. PMID:23123426

  8. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay.

    PubMed

    Apak, Reşat; Güçlü, Kubilay; Demirata, Birsen; Ozyürek, Mustafa; Celik, Saliha Esin; Bektaşoğlu, Burcu; Berker, K Işil; Ozyurt, Dilek

    2007-01-01

    It would be desirable to establish and standardize methods that can measure the total antioxidant capacity level directly from vegetable extracts containing phenolics. Antioxidant capacity assays may be broadly classified as electron transfer (ET)- and hydrogen atom transfer (HAT)-based assays. The majority of HAT assays are kinetics-based, and involve a competitive reaction scheme in which antioxidant and substrate compete for peroxyl radicals thermally generated through the decomposition of azo compounds. ET-based assays measure the capacity of an antioxidant in the reduction of an oxidant, which changes colour when reduced. ET assays include the ABTS/TEAC, CUPRAC, DPPH, Folin-Ciocalteu and FRAP methods, each using different chromogenic redox reagents with different standard potentials. This review intends to offer a critical evaluation of existing antioxidant assays applied to phenolics, and reports the development by our research group of a simple and low-cost antioxidant capacity assay for dietary polyphenols, vitamins C and E, and human serum antioxidants, utilizing the copper(II)-neocuproine reagent as the chromogenic oxidizing agent, which we haved named the CUPRAC (cupric ion reducing antioxidant capacity) method. This method offers distinct advantages over other ET-based assays, namely the selection of working pH at physiological pH (as opposed to the Folin and FRAP methods, which work at alkaline and acidic pHs, respectively), applicability to both hydrophilic and lipophilic antioxidants (unlike Folin and DPPH), completion of the redox reactions for most common flavonoids (unlike FRAP), selective oxidation of antioxidant compounds without affecting sugars and citric acid commonly contained in foodstuffs and the capability to assay -SH bearing antioxidants (unlike FRAP). Other similar ET-based antioxidant assays that we have developed or modified for phenolics are the Fe(III)- and Ce(IV)-reducing capacity methods. PMID:17909504

  9. Adsorption and reaction of acetylene on clean and oxygen-precovered Pd(100) studied with high-resolution X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Höfert, O.; Lorenz, M. P. A.; Streber, R.; Zhao, W.; Bayer, A.; Steinrück, H.-P.; Papp, C.

    2013-10-01

    We investigated the adsorption and thermal evolution of acetylene on clean Pd(100) and Pd(100) precovered with 0.25 ML oxygen. The measurements were performed in situ by fast XPS at the synchrotron radiation facility BESSY II. On Pd(100) acetylene molecularly adsorbs at 130 K. Upon heating transformation to a CCH species occurs around 390 K along with the formation of a completely dehydrogenated carbon species. On the oxygen-precovered surface partial CCH formation already occurs upon adsorption at 130 K, and the dehydrogenation temperature and the stability range of CCH are shifted to lower temperatures by ˜200 K.

  10. Instrument for assaying radiation

    DOEpatents

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2016-03-22

    An instrument for assaying radiation includes a flat panel detector having a first side opposed to a second side. A collimated aperture covers at least a portion of the first side of the flat panel detector. At least one of a display screen or a radiation shield may cover at least a portion of the second side of the flat panel detector.

  11. Laboratory studies, analysis, and interpretation of the spectra of hydrocarbons present in planetary atmospheres including cyanoacetylene, acetylene, propane, and ethane

    NASA Technical Reports Server (NTRS)

    Blass, William E.; Daunt, Stephen J.; Peters, Antoni V.; Weber, Mark C.

    1990-01-01

    Combining broadband Fourier transform spectrometers (FTS) from the McMath facility at NSO and from NRC in Ottawa and narrow band TDL data from the laboratories with computational physics techniques has produced a broad range of results for the study of planetary atmospheres. Motivation for the effort flows from the Voyager/IRIS observations and the needs of Voyager analysis for laboratory results. In addition, anticipation of the Cassini mission adds incentive to pursue studies of observed and potentially observable constituents of planetary atmospheres. Current studies include cyanoacetylene, acetylene, propane, and ethane. Particular attention is devoted to cyanoacetylen (H3CN) which is observed in the atmosphere of Titan. The results of a high resolution infrared laboratory study of the line positions of the 663, 449, and 22.5/cm fundamental bands are presented. Line position, reproducible to better than 5 MHz for the first two bands, are available for infrared astrophysical searches. Intensity and broadening studies are in progress. Acetylene is a nearly ubiquitous atmospheric constituent of the outer planets and Titan due to the nature of methane photochemistry. Results of ambient temperature absolute intensity measurements are presented for the fundamental and two two-quantum hotband in the 730/cm region. Low temperature hotband intensity and linewidth measurements are planned.

  12. Dissociative electron attachment, electron transmission, and electron energy-loss study of the temporary negative ion of acetylene

    SciTech Connect

    Dressler, R.; Allan, M.

    1987-10-15

    The three title electron-impact techniques are used to study the ground and excited states of acetylene negative ion and their decay processes. The ..pi..* resonance at 2.6 eV predissociates into C/sub 2/H/sup -/ and H. Four narrow resonances are observed in the transmission spectrum in the 7.5--9.5 eV region and assigned to Feshbach and core-excited shape resonances with double occupation of Rydberg orbitals and ground state positive ion core. These four resonances decay into low-lying Rydberg states of neutral acetylene, the first two undergo quasiresonant autodetachment ejecting low energy (<0.7 eV) electrons, and the lowest also dissociates to yield C/sup -//sub 2/. One additional resonance is observed in the C/sup -//sub 2/ yield, which is not observable in other decay channels. The shapes of the dissociative attachment bands differ qualitatively from the band shapes of the parent and grandparent states, indicating either a strong v dependence of the dissociation rate or the admixture of sigma* orbitals in some of the dissociating anion states.

  13. Forming a Two-Ring Polycyclic Aromatic Hydrocarbon without a Benzene Intermediate: the Reaction of Propargyl with Acetylene

    NASA Astrophysics Data System (ADS)

    Osborn, David; Savee, John; Selby, Talitha; Welz, Oliver; Taatjes, Craig

    The reaction of acetylene (HCCH) with a resonance-stabilized free radical is a commonly invoked mechanism for the generation of polycyclic aromatic hydrocarbons (PAH), which are likely precursors of soot particles in combustion. In this work, we examine the sequential addition of acetylene to the propargyl radical (H2CCCH) at temperatures of 800 and 1000 K. Using time-resolved multiplexed photoionization mass spectrometry with tunable ionizing radiation, we identified the isomeric forms of the C5H5 and C7H7 intermediates in this reaction sequence, and confirmed that the final C9H8 product is the two-ring aromatic compound indene. We identified two different resonance-stabilized C5H5 intermediates, with different temperature dependencies. Furthermore, the C7H7 intermediate is the tropyl radical (c-C7H7) , not the benzyl radical (C6H5CH2) , as is usually assumed in combustion environments. These experimental results are in general agreement with the latest electronic structure / master equation results of da Silva et al. This work shows a pathway for PAH formation that bypasses benzene / benzyl intermediates.

  14. The Effect of Surface Finish on Low-Temperature Acetylene-Based Carburization of 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ge, Yindong; Ernst, Frank; Kahn, Harold; Heuer, Arthur H.

    2014-12-01

    We observed a strong influence of surface finish on the efficacy of low-temperature acetylene-based carburization of AISI 316L austenitic stainless steel. Steel coupons were prepared with different surface finishes prior to carburization, from P400 SiC grit paper to 1- µm-diameter-diamond-paste. The samples with the finer surface finish developed a thicker "case" (a carbon-rich hardened surface layer) and a larger surface carbon concentration. Transmission electron microscopy revealed that the differences arose mainly from the nature of the deformation-induced disturbed layer on the steel surface. A thick (>400 nm) disturbed layer consisting of nano-crystalline grains (≈10 nm diameter) inhibits acetylene-based carburization. The experimental observations can be explained by assuming that during machining or coarse polishing, the surface oxide layer is broken up and becomes incorporated into the deformation-induced disturbed layer. The incorporated oxide-rich films retard or completely prevent the ingress of carbon into the stainless steel.

  15. A new class of linear tetrapyrroles: acetylenic 10,10a-didehydro-10a-homobilirubins.

    PubMed

    Tu, Bin; Ghosh, Brahmananda; Lightner, David A

    2003-11-14

    Novel bilirubin analogues with dipyrrinones conjoined to an acetylene rather than a methylene group were synthesized and examined spectroscopically. Despite the increased separation of the dipyrrinones forced by replacing a -CH(2)- by a -C(triple bond)C- unit, molecular dynamics calculations show that, like bilirubin, they may still engage in intramolecular hydrogen bonding to carboxylic acid groups when the propionic acid chains are slightly lengthened, e.g., butanoic acids. Unlike bilirubin, however, which is bent in the middle and has a ridge-tile shape, the acetylene orients the attached dipyrrinones along a linear path, and intramolecular hydrogen bonding preserves a twisted linear molecular shape. The extended planes of the dipyrrinones intersect along the -C(triple bond)C- axis at an angle of 136 degrees for the conformation stabilized by intramolecular hydrogen bonding in the bis-butyric acid rubin (1b). With shorter acid chains (propionic), only one CO(2)H can engage an opposing dipyrrinone in intramolecular hydrogen bonding, and in this energy-minimum conformation of the linear pigment 1a, the intersection of the extended planes of the dipyrrinones has an angle of 171 degrees. Spectroscopic evidence for such linearized and twisted structures was found in the pigments' NMR spectral data and their exciton UV-vis and induced circular dichroism spectra. PMID:14604367

  16. X-H⋯π and X-H⋯N hydrogen bonds - Acetylene and hydrogen cyanide as proton acceptors

    NASA Astrophysics Data System (ADS)

    Domagała, Małgorzata; Grabowski, Sławomir J.

    2009-09-01

    The hydrogen-bonded systems were considered where acetylene or hydrogen cyanide acts as a proton acceptor and different proton donating molecules are taken into account. The B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) calculations were performed for the systems considered; for HCN⋯HF and C 2H 2⋯HF complexes various levels of approximation were applied up to CCSD(T)/6-311++G(3df,3pd)//CCSD/6-311++G(3df,3pd). The Quantum Theory of "Atoms in Molecules" (QTAIM) was also applied. It was found that π-electrons of acetylene might act as the proton accepting centers and the found complex conformations are T-shaped ones. For hydrogen cyanide molecule the nitrogen atom acts as the proton acceptor center but not π-electrons. The characteristics of the bond critical points were also considered for the analyzed interactions and numerous correlations were found between geometrical, energetic and QTAIM parameters. The decomposition of the interaction energy for the systems analyzed was also applied.

  17. Quantum Chemical Simulations Reveal Acetylene-Based Growth Mechanisms in the Chemical Vapor Deposition Synthesis of Carbon Nanotubes

    SciTech Connect

    Eres, Gyula; Wang, Ying; Gao, Xingfa; Qian, Hu-Jun; Ohta, Yasuhito; Wu, Xiaona; Morokuma, Keiji; Irle, Stephan

    2014-01-01

    Nonequilibrium quantum chemical molecular dynamics (QM/MD) simulation of early stages in the nucleation process of carbon nanotubes from acetylene feedstock on an Fe38 cluster was performed based on the density-functional tight-binding (DFTB) potential. Representative chemical reactions were studied by complimentary static DFTB and density functional theory (DFT) calculations. Oligomerization and cross-linking reactions between carbon chains were found as the main reaction pathways similar to that suggested in previous experimental work. The calculations highlight the inhibiting effect of hydrogen for the condensation of carbon ring networks, and a propensity for hydrogen disproportionation, thus enriching the hydrogen content in already hydrogen-rich species and abstracting hydrogen content in already hydrogen-deficient clusters. The ethynyl radical C2H was found as a reactive, yet continually regenerated species, facilitating hydrogen transfer reactions across the hydrocarbon clusters. The nonequilibrium QM/MD simulations show the prevalence of a pentagon-first nucleation mechanism where hydrogen may take the role of one arm of an sp2 carbon Y-junction. The results challenge the importance of the metal carbide formation for SWCNT cap nucleation in the VLS model and suggest possible alternative routes following hydrogen-abstraction acetylene addition (HACA)-like mechanisms commonly discussed in combustion synthesis.

  18. Cavity Ringdown Laser Asorption Spectroscopy(crlas) of Isotopically Labeled Acetylene Between 12,500 - 13,600 wn

    NASA Astrophysics Data System (ADS)

    Lue, Christopher J.; Sullivan, Michael N.; Draganjac, Mark E.; Reeve, Scott W.

    2011-06-01

    About five years ago, Arkansas State University created the Arkansas Center for Laser Applications and Science (ArCLAS) with the intention of making it a state-of-the-art facility for laser-based research and optical spectroscopy in the midSouth. Since that time, University and DoD support has lead to the acquisition of numerous laser based spectrometers including a novel three color picosecond system utilized primarily for STIRAP measurements of bulk gas samples. Over the past few months, we have begun collecting near infrared overtone and combination band spectra for the acetylene molecule with a pulsed cavity ringdown laser absorption spectrometer (CRDLAS) as part of the STIRAP support effort. Certainly acetylene has been extensively studied by a number of different spectroscopic methods. During these CRDLAS investigations a 13C_2H_2 band was discovered which we believe has not been previously reported. Here a complete rovibrational analysis of this band will be presented. See for example, Michel Herman, Jacques lievin, Jean Vander Auwera, and Alain Campargue, in Global and Accurate Vibration Hamiltonians from High Resolution Molecular Spectroscopy, Advances in Chemical Physics Volume 108, John Wiley and Sons, NY, NY (1999) and references therein.

  19. Infrared spectra reveal box-like structures for a pentamer and hexamer of mixed carbon dioxide-acetylene clusters.

    PubMed

    Rezaei, Mojtaba; Norooz Oliaee, J; Moazzen-Ahmadi, N; McKellar, A R W

    2016-01-21

    Except for a few cases like water and carbon dioxide, identification and structural characterization of clusters with more than four monomers is rare. Here, we provide experimental and theoretical evidence for existence of box-like structures for a pentamer and a hexamer of mixed carbon dioxide-acetylene clusters. Two mid-infrared cluster absorption bands are observed in the CO2ν3 band region using a tunable diode laser to probe a pulsed supersonic jet. Each requires the presence of both carbon dioxide and acetylene in the jet, and (from observed rotational spacings) involves clusters containing about 4 to 7 molecules. Structures are predicted for mixed CO2 + C2H2 clusters using a distributed multipole model, and the bands are assigned to a specific pentamer, (CO2)3-(C2H2)2, and hexamer, (CO2)4-(C2H2)2. The hexamer has a box-like structure whose D2d symmetry is supported by observed intensity alternation in the spectrum. The pentamer has a closely related structure which is obtained by removing one CO2 molecule from the hexamer. These are among the largest mixed molecular clusters to be assigned by high-resolution spectroscopy. PMID:26315679

  20. In situ TDLAS measurement of absolute acetylene concentration profiles in a non-premixed laminar counter-flow flame

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Klein, M.; Kathrotia, T.; Riedel, U.; Kissel, T.; Dreizler, A.; Ebert, V.

    2012-06-01

    Acetylene (C2H2), as an important precursor for chemiluminescence species, is a key to understand, simulate and model the chemiluminescence and the related reaction paths. Hence we developed a high resolution spectrometer based on direct Tunable Diode Laser Absorption Spectroscopy (TDLAS) allowing the first quantitative, calibration-free and spatially resolved in situ C2H2 measurement in an atmospheric non-premixed counter-flow flame supported on a Tsuji burner. A fiber-coupled distributed feedback diode laser near 1535 nm was used to measure several absolute C2H2 concentration profiles (peak concentrations up to 9700 ppm) in a laminar non-premixed CH4/air flame ( T up to 1950 K) supported on a modified Tsuji counter-flow burner with N2 purge slots to minimize end flames. We achieve a fractional optical resolution of up to 5×10-5 OD (1 σ) in the flame, resulting in temperature-dependent acetylene detection limits for the P17e line at 6513 cm-1 of up to 2.1 ppmṡm. Absolute C2H2 concentration profiles were obtained by translating the burner through the laser beam using a DC motor with 100 μm step widths. Intercomparisons of the experimental C2H2 profiles with simulations using our new hydrocarbon oxidation mechanisms show excellent agreement in position, shape and in the absolute C2H2 values.

  1. Structure and hydration of the C4H4•+ ion formed by electron impact ionization of acetylene clusters

    NASA Astrophysics Data System (ADS)

    Momoh, Paul O.; Hamid, Ahmed M.; Abrash, Samuel A.; Samy El-Shall, M.

    2011-05-01

    Here we report ion mobility experiments and theoretical studies aimed at elucidating the identity of the acetylene dimer cation and its hydrated structures. The mobility measurement indicates the presence of more than one isomer for the C4H4•+ ion in the cluster beam. The measured average collision cross section of the C4H4•+ isomers in helium (38.9 ± 1 Å2) is consistent with the calculated cross sections of the four most stable covalent structures calculated for the C4H4•+ ion [methylenecyclopropene (39.9 Å2), 1,2,3-butatriene (41.1 Å2), cyclobutadiene (38.6 Å2), and vinyl acetylene (41.1 Å2)]. However, none of the single isomers is able to reproduce the experimental arrival time distribution of the C4H4•+ ion. Combinations of cyclobutadiene and vinyl acetylene isomers show excellent agreement with the experimental mobility profile and the measured collision cross section. The fragment ions obtained by the dissociation of the C4H4•+ ion are consistent with the cyclobutadiene structure in agreement with the vibrational predissociation spectrum of the acetylene dimer cation (C2H2)2•+ [R. A. Relph, J. C. Bopp, J. R. Roscioli, and M. A. Johnson, J. Chem. Phys. 131, 114305 (2009)], 10.1063/1.3212595. The stepwise hydration experiments show that dissociative proton transfer reactions occur within the C4H4•+(H2O)n clusters with n ≥ 3 resulting in the formation of protonated water clusters. The measured binding energy of the C4H4•+H2O cluster, 38.7 ± 4 kJ/mol, is in excellent agreement with the G3(MP2) calculated binding energy of cyclobutadiene•+.H2O cluster (41 kJ/mol). The binding energies of the C4H4•+(H2O)n clusters change little from n = 1 to 5 (39-48 kJ/mol) suggesting the presence of multiple binding sites with comparable energies for the water-C4H4•+ and water-water interactions. A significant entropy loss is measured for the addition of the fifth water molecule suggesting a structure with restrained water molecules, probably a cyclic water pentamer within the C4H4•+(H2O)5 cluster. Consequently, a drop in the binding energy of the sixth water molecule is observed suggesting a structure in which the sixth water molecule interacts weakly with the C4H4•+(H2O)5 cluster presumably consisting of a cyclobutadiene•+ cation hydrogen bonded to a cyclic water pentamer. The combination of ion mobility, dissociation, and hydration experiments in conjunction with the theoretical calculations provides strong evidence that the (C2H2)2•+ ions are predominantly present as the cyclobutadiene cation with some contribution from the vinyl acetylene cation.

  2. Structure and hydration of the C4H4●+ ion formed by electron impact ionization of acetylene clusters.

    PubMed

    Momoh, Paul O; Hamid, Ahmed M; Abrash, Samuel A; El-Shall, M Samy

    2011-05-28

    Here we report ion mobility experiments and theoretical studies aimed at elucidating the identity of the acetylene dimer cation and its hydrated structures. The mobility measurement indicates the presence of more than one isomer for the C(4)H(4)(●+) ion in the cluster beam. The measured average collision cross section of the C(4)H(4)(●+) isomers in helium (38.9 ± 1 Å(2)) is consistent with the calculated cross sections of the four most stable covalent structures calculated for the C(4)H(4)(●+) ion [methylenecyclopropene (39.9 Å(2)), 1,2,3-butatriene (41.1 Å(2)), cyclobutadiene (38.6 Å(2)), and vinyl acetylene (41.1 Å(2))]. However, none of the single isomers is able to reproduce the experimental arrival time distribution of the C(4)H(4)(●+) ion. Combinations of cyclobutadiene and vinyl acetylene isomers show excellent agreement with the experimental mobility profile and the measured collision cross section. The fragment ions obtained by the dissociation of the C(4)H(4)(●+) ion are consistent with the cyclobutadiene structure in agreement with the vibrational predissociation spectrum of the acetylene dimer cation (C(2)H(2))(2)(●+) [R. A. Relph, J. C. Bopp, J. R. Roscioli, and M. A. Johnson, J. Chem. Phys. 131, 114305 (2009)]. The stepwise hydration experiments show that dissociative proton transfer reactions occur within the C(4)H(4)(●+)(H(2)O)(n) clusters with n ≥ 3 resulting in the formation of protonated water clusters. The measured binding energy of the C(4)H(4)(●+)H(2)O cluster, 38.7 ± 4 kJ/mol, is in excellent agreement with the G3(MP2) calculated binding energy of cyclobutadiene(●+)·H(2)O cluster (41 kJ/mol). The binding energies of the C(4)H(4)(●+)(H(2)O)(n) clusters change little from n = 1 to 5 (39-48 kJ/mol) suggesting the presence of multiple binding sites with comparable energies for the water-C(4)H(4)(●+) and water-water interactions. A significant entropy loss is measured for the addition of the fifth water molecule suggesting a structure with restrained water molecules, probably a cyclic water pentamer within the C(4)H(4)(●+)(H(2)O)(5) cluster. Consequently, a drop in the binding energy of the sixth water molecule is observed suggesting a structure in which the sixth water molecule interacts weakly with the C(4)H(4)(●+)(H(2)O)(5) cluster presumably consisting of a cyclobutadiene(●+) cation hydrogen bonded to a cyclic water pentamer. The combination of ion mobility, dissociation, and hydration experiments in conjunction with the theoretical calculations provides strong evidence that the (C(2)H(2))(2)(●+) ions are predominantly present as the cyclobutadiene cation with some contribution from the vinyl acetylene cation. PMID:21639448

  3. Reductive capacity of natural reductants.

    PubMed

    Lee, Woojin; Batchelor, Bill

    2003-02-01

    Reductive capacities of soil minerals and soil for Cr(VI) and chlorinated ethylenes were measured and characterized to provide basic knowledge for in-situ and ex-situ treatment using these natural reductants. The reductive capacities of iron-bearing sulfide (pyrite), hydroxide (green rust; GR(SO4)), and oxide (magnetite) minerals for Cr(VI) and tetrachloroethylene (PCE) were 1-3 orders of magnitude greater than those of iron-bearing phyllosilicates (biotite, vermiculite, and montmorillonite). The reductive capacities of surface soil collected from the plains of central Texas were similar and slightly greater than those of iron-bearing phyllosilicates. The reductive capacity of iron-bearing soil minerals for Cr(VI) was roughly 3-16 times greater than that for PCE, implying that Cr(VI) is more susceptible to being reduced by soil minerals than is PCE. GR(SO4) has the greatest reductive capacity for both Cr(VI) and PCE followed by magnetite, pyrite, biotite, montmorillonite, and vermiculite. This order was the same for both target compounds, which indicates that the relative reductive capacities of soil minerals are consistent. The reductive capacities of pyrite and GR(SO4) for chlorinated ethylenes decreased in the order: trichloroethylene (TCE) > PCE > cis-dichloroethylene (c-DCE) > vinyl chloride (VC). Fe(II) content in soil minerals was directly proportional to the reductive capacity of soil minerals for Cr(VI) and PCE, suggesting that Fe(II) content is an important factor that significantly affects reductive transformations of target contaminants in natural systems. PMID:12630469

  4. The corneal pocket assay.

    PubMed

    Ziche, Marina; Morbidelli, Lucia

    2015-01-01

    The cornea in most species is physiologically avascular, and thus this assay allows the measurement of newly formed vessels. The continuous monitoring of neovascular growth in the same animal allows the evaluation of drugs acting as suppressors or stimulators of angiogenesis. Under anesthesia a micropocket is produced in the cornea thickness and the angiogenesis stimulus (tumor tissue, cell suspension, growth factor) is placed into the pocket in order to induce vascular outgrowth from the limbal capillaries. Neovascular development and progression can be modified by the presence of locally released or applied inhibitory factors or by systemic treatments. In this chapter the experimental details of the avascular cornea assay, the technical challenges, and advantages and disadvantages in different species are discussed. Protocols for local drug treatment and tissue sampling for histology and pharmacokinetic profile are reported. PMID:25468596

  5. Kinetic Tetrazolium Microtiter Assay

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond; Koenig, David

    1993-01-01

    Kinetic tetrazolium microtiter assay (KTMA) involves use of tetrazolium salts and Triton X-100 (or equivalent), nontoxic, in vitro color developer solubilizing colored metabolite formazan without injuring or killing metabolizing cells. Provides for continuous measurement of metabolism and makes possible to determine rate of action of antimicrobial agent in real time as well as determines effective inhibitory concentrations. Used to monitor growth after addition of stimulatory compounds. Provides for kinetic determination of efficacy of biocide, greatly increasing reliability and precision of results. Also used to determine relative effectiveness of antimicrobial agent as function of time. Capability of generating results on day of test extremely important in treatment of water and waste, disinfection of hospital rooms, and in pharmaceutical, agricultural, and food-processing industries. Assay also used in many aspects of cell biology.

  6. Luciferase reporter assay.

    PubMed

    Wettey, Frank R; Jackson, Antony P

    2006-01-01

    This luciferase reporter assay provides a simple and highly sensitive method to determine the responsiveness of the Tet-system. It is quantitative, reproducible and easy to use in DT40 screens with both transient and stable transfections. The reaction catalyzed by firefly luciferase is the oxidation of luciferin in the presence of coenzyme A with concomitant production of a photon that can be measured by a luminometer as relative light units (RLU) or with a less sensitive scintillation counter. PMID:17623934

  7. Robust quantitative scratch assay

    PubMed Central

    Vargas, Andrea; Angeli, Marc; Pastrello, Chiara; McQuaid, Rosanne; Li, Han; Jurisicova, Andrea; Jurisica, Igor

    2016-01-01

    The wound healing assay (or scratch assay) is a technique frequently used to quantify the dependence of cell motility—a central process in tissue repair and evolution of disease—subject to various treatments conditions. However processing the resulting data is a laborious task due its high throughput and variability across images. This Robust Quantitative Scratch Assay algorithm introduced statistical outputs where migration rates are estimated, cellular behaviour is distinguished and outliers are identified among groups of unique experimental conditions. Furthermore, the RQSA decreased measurement errors and increased accuracy in the wound boundary at comparable processing times compared to previously developed method (TScratch). Availability and implementation: The RQSA is freely available at: http://ophid.utoronto.ca/RQSA/RQSA_Scripts.zip. The image sets used for training and validation and results are available at: (http://ophid.utoronto.ca/RQSA/trainingSet.zip, http://ophid.utoronto.ca/RQSA/validationSet.zip, http://ophid.utoronto.ca/RQSA/ValidationSetResults.zip, http://ophid.utoronto.ca/RQSA/ValidationSet_H1975.zip, http://ophid.utoronto.ca/RQSA/ValidationSet_H1975Results.zip, http://ophid.utoronto.ca/RQSA/RobustnessSet.zip, http://ophid.utoronto.ca/RQSA/RobustnessSet.zip). Supplementary Material is provided for detailed description of the development of the RQSA. Contact: juris@ai.utoronto.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26722119

  8. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    NASA Technical Reports Server (NTRS)

    Abney, Morgan; Miller, Lee; Greenwood, Zach; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported.

  9. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Greenwood, Zachary; Miller, Lee A.; Alvarez, Giraldo; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported

  10. Just Click It: Undergraduate Procedures for the Copper(I)-Catalyzed Formation of 1,2,3-Triazoles from Azides and Terminal Acetylenes

    ERIC Educational Resources Information Center

    Sharpless, William D.; Peng Wu; Hansen, Trond Vidar; Lindberg, James G.

    2005-01-01

    The click chemistry uses only the most reliable reactions to build complex molecules from olefins, electrophiles and heteroatom linkers. A variation on Huisgen's azide-alkyne 1,2,3-triazole synthesis, the addition of the copper (I), the premium example of the click reaction, catalyst strongly activates terminal acetylenes towards the 1,3-dipole in…

  11. Just Click It: Undergraduate Procedures for the Copper(I)-Catalyzed Formation of 1,2,3-Triazoles from Azides and Terminal Acetylenes

    ERIC Educational Resources Information Center

    Sharpless, William D.; Peng Wu; Hansen, Trond Vidar; Lindberg, James G.

    2005-01-01

    The click chemistry uses only the most reliable reactions to build complex molecules from olefins, electrophiles and heteroatom linkers. A variation on Huisgen's azide-alkyne 1,2,3-triazole synthesis, the addition of the copper (I), the premium example of the click reaction, catalyst strongly activates terminal acetylenes towards the 1,3-dipole in

  12. The small-scale production of (U-14C)acetylene from Ba14CO3: Application to labeling of ammonia monooxygenase in autotrophic nitrifying bacteria

    SciTech Connect

    Hyman, M.R.; Arp, D.J. )

    1990-11-01

    A small-scale method has been adapted from an established procedure for the generation of (U-14C)acetylene from inexpensive and commonly available precursors. The method involves the fusing of Ba14CO3 with excess barium metal to produce Ba14C2. The BaC2 is reacted with water to generate acetylene which is then selectively dissolved into dimethyl sulfoxide (DMSO). The results presented demonstrate the effect of Ba:BaCO3 ratio on the concentrations of various gases released during the hydrolysis reaction and quantify the selectivity of the DMSO-trapping process for each gas. (U-14C)Acetylene generated by this method has been used to inactivate ammonia monooxygenase in three species of autotrophic nitrifying bacteria: Nitrosomonas europaea, Nitrosococcus oceanus, and Nitrosolobus multiformis. Our results demonstrate that acetylene inactivation of this enzyme in all three species results in the covalent incorporation of radioactive label into a polypeptide of apparent Mr of 25,000-27,000, as determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis and fluorography.

  13. Carbon Dioxide Reduction Post-Processing Sub-System Development

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Miller, Lee A.; Greenwood, Zachary; Barton, Katherine

    2012-01-01

    The state-of-the-art Carbon Dioxide (CO2) Reduction Assembly (CRA) on the International Space Station (ISS) facilitates the recovery of oxygen from metabolic CO2. The CRA utilizes the Sabatier process to produce water with methane as a byproduct. The methane is currently vented overboard as a waste product. Because the CRA relies on hydrogen for oxygen recovery, the loss of methane ultimately results in a loss of oxygen. For missions beyond low earth orbit, it will prove essential to maximize oxygen recovery. For this purpose, NASA is exploring an integrated post-processor system to recover hydrogen from CRA methane. The post-processor, called a Plasma Pyrolysis Assembly (PPA) partially pyrolyzes methane to recover hydrogen with acetylene as a byproduct. In-flight operation of post-processor will require a Methane Purification Assembly (MePA) and an Acetylene Separation Assembly (ASepA). Recent efforts have focused on the design, fabrication, and testing of these components. The results and conclusions of these efforts will be discussed as well as future plans.

  14. Intramolecular competition between n-pair and π-pair hydrogen bonding: Microwave spectrum and internal dynamics of the pyridine–acetylene hydrogen-bonded complex

    SciTech Connect

    Mackenzie, Rebecca B.; Dewberry, Christopher T.; Leopold, Kenneth R. E-mail: david.tew@bristol.ac.uk; Coulston, Emma; Cole, George C.; Legon, Anthony C. E-mail: david.tew@bristol.ac.uk Tew, David P. E-mail: david.tew@bristol.ac.uk

    2015-09-14

    a-type rotational spectra of the hydrogen-bonded complex formed from pyridine and acetylene are reported. Rotational and {sup 14}N hyperfine constants indicate that the complex is planar with an acetylenic hydrogen directed toward the nitrogen. However, unlike the complexes of pyridine with HCl and HBr, the acetylene moiety in HCCH—NC{sub 5}H{sub 5} does not lie along the symmetry axis of the nitrogen lone pair, but rather, forms an average angle of 46° with the C{sub 2} axis of the pyridine. The a-type spectra of HCCH—NC{sub 5}H{sub 5} and DCCD—NC{sub 5}H{sub 5} are doubled, suggesting the existence of a low lying pair of tunneling states. This doubling persists in the spectra of HCCD—NC{sub 5}H{sub 5}, DCCH—NC{sub 5}H{sub 5}, indicating that the underlying motion does not involve interchange of the two hydrogens of the acetylene. Single {sup 13}C substitution in either the ortho- or meta-position of the pyridine eliminates the doubling and gives rise to separate sets of spectra that are well predicted by a bent geometry with the {sup 13}C on either the same side (“inner”) or the opposite side (“outer”) as the acetylene. High level ab initio calculations are presented which indicate a binding energy of 1.2 kcal/mol and a potential energy barrier of 44 cm{sup −1} in the C{sub 2v} configuration. Taken together, these results reveal a complex with a bent hydrogen bond and large amplitude rocking of the acetylene moiety. It is likely that the bent equilibrium structure arises from a competition between a weak hydrogen bond to the nitrogen (an n-pair hydrogen bond) and a secondary interaction between the ortho-hydrogens of the pyridine and the π electron density of the acetylene.

  15. Electronic transport and paramagnetic properties of acetylene-carbon monoxide copolymers

    NASA Astrophysics Data System (ADS)

    Chien, James C. W.; Babu, G. N.

    1985-01-01

    Transport and magnetic properties of acetylene-carbon monoxide copolymers have been studied. The copolymers AC-11, AC-21, and AC-41 have compositions [(C2H2)1(CO)0.15]x, [(C2H2)1(CO)0.1]x, and [(C2H2)1(CO)0.05]x, respectively, and the prefixes p and i designate the pristine and thermally isomerized copolymers. The undoped i-AC-copolymers have unpaired spin concentrations [Sṡ] about 10-4 of that in trans-[CH]x, yet the amorphous copolymers have up to ten times the RT conductivity σRT of the crystalline polyacetylenes. These homo and copolymers have the same thermopower coefficient S and comparable concentration of intrinsic positive carriers as judged from the log σRT vs log y dependence, where y is the mole fraction of dopant. Undoped p-AC copolymers have σRT lying between that of cis- and trans-[CH]x depending upon the trans content in the copolymers. The unpaired spins in the i-AC-copolymers showed motional narrowing and Curie dependence as in trans-[CH]x in spite of the fact that the average sequence lengths of CH segments between C=O units in i-AC-11-copolymer is less than the soliton domain width in trans-[CH]x. Heavily doped i-AC-copolymers have σRT within a factor of 2 of similarly doped trans-[CH]x. The σRT of heavily iodine doped p-AC-copolymer has about one-third to one-half of that of cis-[CHI0.1]x. Doping of both p-AC- and i-AC-copolymers with I2 is homogeneous. Some i-AC-copolymers can be doped homogeneously with AsF5 but doping is heterogeneous for the p-AC-copolymers. These doping behaviors are parallel to those reported earlier for polyacetylene. Abrupt increase of σRT of 106-107-fold occurred with about five-fold change of dopant concentration in the vicinity of y˜10-3. There was also a more sharp change in S with y. The results cannot be reconciled with models invoking moving domain excitations; a possible mechanism for carrier migration may be vibronically coupled electron tunneling in undoped and lightly doped polymers. The low transport is attributed to carriers being strongly pinned by the Coulomb potential of the counterions. When this pinning potential is screened as dopant concentration increases, the carriers undergo a transition from a ``glassy'' state to a ``melt'' state with large increase in carrier mobility. This carrier glass transition or carrier mobility transition is distinct from that transition for the onset of Pauli susceptibility, which is observed at much higher dopant concentrations of few mole percent.

  16. Biosensors: Viruses for ultrasensitive assays

    NASA Astrophysics Data System (ADS)

    Donath, Edwin

    2009-04-01

    A three-dimensional assay based on genetically engineered viral nanoparticles and nickel nanohairs can detect much lower levels of protein markers associated with heart attacks than conventional assays.

  17. Radon assay for SNO+

    NASA Astrophysics Data System (ADS)

    Rumleskie, Janet

    2015-12-01

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  18. Colony survival assay.

    PubMed

    Simpson, Laura J; Sale, Julian E

    2006-01-01

    For studies of DNA repair networks the sensitivity of mutants and combinations of mutants to varying forms of DNA damaging agents has formed a mainstay of genetic analysis in bacteria and yeast. Likewise, this form of epistasis analysis has proved immensely informative in DT40. Because DT40 is non-adherent, it is necessary to restrict the movement of cells by growing them in a viscous medium containing methylcellulose. Here we present methods for carrying out DNA damage survival assays in DT40 with chemical mutagens, ionising radiation and ultraviolet irradiation. PMID:17623926

  19. Wavelength modulation spectroscopy at 1530.32 nm for measurements of acetylene based on Fabry-Perot tunable filter

    NASA Astrophysics Data System (ADS)

    Yun-Long, Li; Bing-Chu, Yang; Xue-Mei, Xu

    2016-02-01

    Sensitive detection of acetylene (C2H2) is performed by absorption spectroscopy and wavelength modulation spectroscopy (WMS) based on Fiber Fabry-Perot tunable filter (FFP-TF) at 1530.32 nm. After being calibrated by Fiber Bragg Grating (FBG), FFP-TF is frequency-multiplexed and modulated at 20 Hz and 2.5 kHz respectively to achieve wavelength modulation. The linearity with 0.9907 fitting coefficient is obtained by measuring different concentrations in a 100 ppmv-400 ppmv range. Furthermore, the stability of the system is analyzed by detecting 50 ppmv and 100 ppmv standard gases for 2 h under room temperature and ambient pressure conditions respectively. The precision of 11 ppmv is achieved by calculating the standard deviation. Therefore, the measuring system of C2H2 detection can be applied in practical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172047 and 61071025).

  20. ABSORPTION CROSS SECTION OF GASEOUS ACETYLENE AT 85 K IN THE WAVELENGTH RANGE 110-155 nm

    SciTech Connect

    Cheng, Bing-Ming; Chen, Hui-Fen; Lu, Hsiao-Chi; Chen, Hong-Kai; Alam, M. S.; Chou, Sheng-Lung; Lin, Meng-Yeh

    2011-09-01

    Absorption spectra and absorption cross sections of gaseous acetylene, C{sub 2}H{sub 2}, at 298 and 85 K were measured in the wavelength range 110-155 nm with a slit-jet system coupled to a synchrotron as a source of vacuum ultraviolet light. Using published spectral parameters of C{sub 2}H{sub 2}, we simulated the absorption profile for the Rydberg transition to state 4R{sub 0} in the range 124.6-125.1 nm, according to which the temperature of the jet-expanded sample at stagnation pressure 200 Torr is 85 {+-} 5 K. Our cross sections of C{sub 2}H{sub 2} are applicable for determining properties sensitive to temperature for diagnostic work on Saturn and Titan.

  1. Stark field induced perturbations in the ν2+3ν3 vibrational overtone band of acetylene

    NASA Astrophysics Data System (ADS)

    Barnes, J. A.; Gough, T. E.; Stoer, M.

    2001-03-01

    The ν2+3ν3 vibrational overtone of acetylene was recorded using an optothermal molecular beam spectrometer. The sample excitation region was surrounded by a build-up cavity and by electrodes which allowed the observation of Stark splittings of the spectral transitions. An analysis of the J dependence of the splittings determined that the (01300)0 is mixed by the Stark field with the IR (infrared) dark state (11200)0, and that the energy of the ν1+ν2+2ν3 transition is 11 611.585±0.018 cm-1. The spectra also showed transitions to highly excited bending levels: These transitions were observable because they borrowed intensity from the more intense ν2+3ν3 stretching overtone as they were tuned into coincidence. The bending states were found to have extremely high polarizabilities which may account for previously reported collision dynamics.

  2. Rapid Diamond Deposition on Ni and Co Coatings by Using Twin Acetylene/Oxygen Gas Welding Torches

    NASA Astrophysics Data System (ADS)

    Ando, Yasutaka; Noda, Yoshimasa; Adachi, Shin-ichiro

    2015-12-01

    Cermet coatings have been widely used because of their high hardness and excellent wear resistance even under high-temperature conditions. However, since cermet coatings include expensive materials such as WC, TiC, TiN and so on, low-cost hard particles as a dispersing agent need to be developed. In this study, in order to develop a low-cost diamond dispersion system for the creation of diamond/thermal sprayed metal hybrid coatings, diamond deposition on thermal sprayed Ni and Co coatings and Mo and Ni metal substrates by the combustion flame method using twin acetylene/oxygen gas welding torches was carried out. Consequently, even in cases of thermal sprayed Ni and Co coatings, diamond particles could be deposited within only 5 min. From these results, this technique is proved to have a high potential for rapid diamond deposition in order to create diamond/thermal sprayed metal hybrid coatings.

  3. The Breathing Orbital Valence Bond Method in Diffusion Monte Carlo: C-H Bond Dissociation ofAcetylene

    SciTech Connect

    Domin, D.; Braida, Benoit; Lester Jr., William A.

    2008-05-30

    This study explores the use of breathing orbital valence bond (BOVB) trial wave functions for diffusion Monte Carlo (DMC). The approach is applied to the computation of the carbon-hydrogen (C-H) bond dissociation energy (BDE) of acetylene. DMC with BOVB trial wave functions yields a C-H BDE of 132.4 {+-} 0.9 kcal/mol, which is in excellent accord with the recommended experimental value of 132.8 {+-} 0.7 kcal/mol. These values are to be compared with DMC results obtained with single determinant trial wave functions, using Hartree-Fock orbitals (137.5 {+-} 0.5 kcal/mol) and local spin density (LDA) Kohn-Sham orbitals (135.6 {+-} 0.5 kcal/mol).

  4. The discovery of the [2{sub s}+2{sub a}] reaction of dislanes and acetylenes and their applications

    SciTech Connect

    Za, Zhongxin; Barton, T.J.; Lin, Jibing; Gordon, M.

    1997-12-31

    A concerted [2{sub s}+2{sub a}] intramolecular addition reaction was discovered between disilanes and acetylenes in unimolecular process. The reaction was performed with the 5,5,6,6-tetramethyl-3,3,8,8-tetraphenyl-4,7-dioxa-5,6-disilyl-cyclooctyne (1) under an argon flow at 600{degrees}C to give product 1,1,4,4-tetramethyl-3,3,6,6-tetraphenyl-2,5-dioxa-1,4-disilyl-dicyclo[3,3,0]octa-7-ene (2). Ab initio calculations were performed at the MP4/6-31G** level. The transition state structure was found and the activation energy was calculated to be 34 kcal/mol. The first example of a 3,3{prime}-disilyl-indeno[2,1-a]indene (4) was synthesized from dibenzo-5,6-disilylcyclooctyne (3) in the same manner.

  5. A Study on the Photoreaction of 2(5H)-Furanones with Substituted Acetylenes: Evidence for a Mechanistic Reformulation.

    PubMed

    Flores, Ramon; Font, Josep; Alibés, Ramon; Figueredo, Marta

    2016-03-01

    The photoreaction of 2(5H)-furanones with alkynes has been investigated. The complexity of this process is evidenced by the variety of isolated products, which have allowed disclosing interesting mechanistic aspects. When the reaction is performed in acetonitrile under direct excitation, in addition to the primary [2+2] cycloadducts, products derived from an 1,3-acyl shift rearrangement are also formed. For unsymmetrical alkynes, the rearrangement of the head-to-tail primary adducts produces new regioisomers and, when the starting furanone is chiral, this rearrangement inverts the relative anti/syn geometry of the primary cycloadducts. In the reactions performed in acetone under photosensitized conditions, rearranged products were never detected, supporting that the 1,3-acyl shift takes place from the singlet excited state S1 of the β,γ-unsaturated lactone. When bis(trimethylsilyl)acetylene is used as the alkyne partner, the major photoproducts are monocyclic bis(trimethylsilyl)lactones. PMID:26749319

  6. Histrionicotoxins: Roentgen-Ray Analysis of the Novel Allenic and Acetylenic Spiroalkaloids Isolated from a Colombian Frog, Dendrobates histrionicus

    PubMed Central

    Daly, John W.; Karle, Isabella; Myers, Charles W.; Tokuyama, Takashi; Waters, James A.; Witkop, Bernhard

    1971-01-01

    The structures and absolute configuration of two unique alkaloids isolated from the Colombian frog, Dendrobates histrionicus, have been elucidated by Roentgen-ray (x-ray) crystallography. Histrionicotoxin is (2pR, 6S, 7pS, 8aS)-7-(cis-1-buten-3-ynyl)-8-hydroxy-2-(cis-2-penten-4- ynyl)-1-azaspiro[5.5] undecane, while in dihydro-isohistrionicotoxin the acetylenic 2-pentenynyl side chain is replaced by an allenic 2-(3,4 pentadienyl) substituent. Dendrobates histrionicus exhibits remarkable interpopulational variations in amounts and composition of skin toxins, in behavior, and in phenotypic characters, aspects of which are illustrated in a color plate. The histrionico-toxins are the third class of alkaloids isolated from the defensive skin secretions of Neotropical (Dendrobatidae) frogs. Images PMID:5288773

  7. Optimized Diagnostic Assays Based on Redox Tagged Bioreceptive Interfaces.

    PubMed

    Bedatty Fernandes, Flavio C; Patil, Amol V; Bueno, Paulo R; Davis, Jason J

    2015-12-15

    Among the numerous label free electronic biomarker assay methodologies now available, impedance based electrochemical capacitance spectroscopy (ECS), based upon mapping the perturbations in interfacial charging of redox elements incorporated into a biologically receptive interface, has recently been shown to be a convenient and highly sensitive mode of transduction and one which, additionally, requires no predoping of analytical solution. We present, herein, a data acquisition and analysis methodology based on frequency resolved immittance function analysis. Ultimately, this enables both a maximization of assay sensitivity and a reduction in assay acquisition time by an order of magnitude. PMID:26583592

  8. Cholesterol Efflux Assay

    PubMed Central

    Low, Hann; Hoang, Anh; Sviridov, Dmitri

    2012-01-01

    Cholesterol content of cells must be maintained within the very tight limits, too much or too little cholesterol in a cell results in disruption of cellular membranes, apoptosis and necrosis 1. Cells can source cholesterol from intracellular synthesis and from plasma lipoproteins, both sources are sufficient to fully satisfy cells' requirements for cholesterol. The processes of cholesterol synthesis and uptake are tightly regulated and deficiencies of cholesterol are rare 2. Excessive cholesterol is more common problem 3. With the exception of hepatocytes and to some degree adrenocortical cells, cells are unable to degrade cholesterol. Cells have two options to reduce their cholesterol content: to convert cholesterol into cholesteryl esters, an option with limited capacity as overloading cells with cholesteryl esters is also toxic, and cholesterol efflux, an option with potentially unlimited capacity. Cholesterol efflux is a specific process that is regulated by a number of intracellular transporters, such as ATP binding cassette transporter proteins A1 (ABCA1) and G1 (ABCG1) and scavenger receptor type B1. The natural acceptor of cholesterol in plasma is high density lipoprotein (HDL) and apolipoprotein A-I. The cholesterol efflux assay is designed to quantitate the rate of cholesterol efflux from cultured cells. It measures the capacity of cells to maintain cholesterol efflux and/or the capacity of plasma acceptors to accept cholesterol released from cells. The assay consists of the following steps. Step 1: labelling cellular cholesterol by adding labelled cholesterol to serum-containing medium and incubating with cells for 24-48 h. This step may be combined with loading of cells with cholesterol. Step 2: incubation of cells in serum-free medium to equilibrate labelled cholesterol among all intracellular cholesterol pools. This stage may be combined with activation of cellular cholesterol transporters. Step 3: incubation of cells with extracellular acceptor and quantitation of movement of labelled cholesterol from cells to the acceptor. If cholesterol precursors were used to label newly synthesized cholesterol, a fourth step, purification of cholesterol, may be required. The assay delivers the following information: (i) how a particular treatment (a mutation, a knock-down, an overexpression or a treatment) affects the capacity of cell to efflux cholesterol and (ii) how the capacity of plasma acceptors to accept cholesterol is affected by a disease or a treatment. This method is often used in context of cardiovascular research, metabolic and neurodegenerative disorders, infectious and reproductive diseases. PMID:22414908

  9. Inhibition of murine N1-acetylated polyamine oxidase by an acetylenic amine and the allenic amine, MDL 72527.

    PubMed

    Wu, Tianyun; Ling, Ke-Qing; Sayre, Lawrence M; McIntire, William S

    2005-01-14

    Murine N(1)-acetylated polyamine oxidase (mPAO) was treated with N,N'-bis-(prop-2-ynyl)-1,4-diaminobutane, a poor substrate and inhibitor for the enzyme, with K(m) and K(i) values in the millimolar range. Apparently, its oxidation produces prop-2-ynal, which reacts with amino acyl nucleophiles. Using a steady-state kinetic assay, four phases were identified, the first being the oxidation of the compound via Michealis-Menten-type kinetics. As prop-2-ynal accumulates, there is a biphasic reduction in the rate. This process leads to an mPAO form that is nearly inactive (fourth phase), but displays classical Michealis-Menten-type kinetics. The enzyme-bound flavin is not modified in this process. In contrast, micromolar concentrations of the MDL 72527 (N,N'-bis-[buta-2,3-dienyl]-1,4-diaminobutane) inhibited mPAO rapidly and completely. It inhibits by first binding tightly and apparently irreversibly, and then slowly converts to a species where the inhibitor is covalently bound to the N5-position of the flavin's isoalloxazine ring. The covalent adduct was identified as a flavocyanine. PMID:15582603

  10. Chemotaxis: Under Agarose Assay.

    PubMed

    Brazill, Derrick

    2016-01-01

    The unicellular eukaryote Dictyostelium discoideum represents a superb model for examining chemotaxis. Under vegetative conditions, the amoebae are chemotactically responsive to pterins, such as folate. Under starved conditions, they lose their sensitivity to pterins, and become chemotactically responsive to cAMP. As an NIH model system, Dictyostelium offers a variety of advantages in studying chemotaxis, including its conservation of mammalian signaling pathways, its ease of growth, and its genetic tractability. In this chapter, we describe the use of the under agarose chemotaxis assay to identify proteins involved in controlling motility and directional sensing in Dictyostelium discoideum. Given the similarities between Dictyostelium and mammalian cells, this allows us to dissect the conserved pathways involved in eukaryotic chemotaxis. PMID:26498795

  11. Nitrate reduction

    DOEpatents

    Dziewinski, Jacek J. (Los Alamos, NM); Marczak, Stanislaw (Los Alamos, NM)

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  12. Test procedure for boxed waste assay system

    SciTech Connect

    Wachter, J.

    1994-12-07

    This document, prepared by Los Alamos National Laboratory`s NMT-4 group, details the test methodology and requirements for Acceptance/Qualification testing of a Boxed Waste Assay System (BWAS) designed and constructed by Pajarito Scientific Corporation. Testing of the BWAS at the Plutonium Facility (TA55) at Los Alamos National Laboratory will be performed to ascertain system adherence to procurement specification requirements. The test program shall include demonstration of conveyor handling capabilities, gamma ray energy analysis, and imaging passive/active neutron accuracy and sensitivity. Integral to these functions is the system`s embedded operating and data reduction software.

  13. Nitrous oxide reduction in nodules: denitrification or N/sub 2/ fixation

    SciTech Connect

    Coyne, M.S.; Focht, D.D.

    1987-05-01

    Detached cowpea nodules that contained a nitrous oxide reductase-positive (Nor/sup +/) rhizobium strain (8A55) and a nitrous oxide reductase-negative (Nor/sup -/) rhizobium strain (32H1) were incubated with 1% /sup 15/N/sub 2/O (95 atom% /sup 15/N) in the following three atmospheres: aerobic with C/sub 2/H/sub 2/ (10%), aerobic without C/sub 2/H/sub 2/, and anaerobic (argon atmosphere) without C/sub 2/H/sub 2/. The greatest production of /sup 15/N/sub 2/ occurred anaerobically with 8A55, yet very little was formed with 32H1. Although acetylene reduction activity was slightly higher with 32H1, about 10 times more /sup 15/N/sub 2/ was produced aerobically by 8A55 than by 32H1 in the absence of acetylene. The major reductive pathway of N/sub 2/O reduction by denitrifying rhizobium strain 8A55 is by nitrous oxide reductase rather than nitrogenase.

  14. Cost of gentamicin assays carried out by microbiology laboratories.

    PubMed Central

    Vacani, P F; Malek, M M; Davey, P G

    1993-01-01

    AIMS--To assess the current range of prices charged for gentamicin assays in United Kingdom laboratories; and to examine the laboratories' likely response to increases or decreases in the demand for the service. METHODS--A postal survey of the 420 members of the Association of Medical Microbiologists was used to establish the range of prices charged for aminoglycoside assays. Additionally, eight private institutions were contacted to determine what the private sector was charging for aminoglycoside assays. Reagent costs in the NHS laboratories were calculated by dividing the total cost of all aminoglycoside assay kits by the number of samples analysed. RESULTS--The NHS and the private institutions both showed a wide price variation. Prices charged to an in-hospital requester for a peak and trough assay ranged from 5.00 pounds to 68.20 pounds (n = 44), and to an external private hospital, under a bulk service contract, from 5.00 pounds to 96.00 pounds (n = 47). Prices charged by private laboratories ranged from 49.00 pounds to 84.00 pounds (n = 8). There was a log linear correlation in the NHS laboratories between the reagent costs per assay and the number of assays performed per year, and most laboratories thought that their price per assay would be sensitive to increases or decreases in demand. Laboratories which had purchased their assay machines had lower reagent costs per assay but higher repair and maintenance costs. Overall, number of assays performed and method of payment for assay machinery only accounted for 44.8% of the observed variation in assay kit costs. CONCLUSIONS--The price range for gentamicin assays in the United Kingdom is wide and is only partially explained by the number of assays performed. Most laboratories believe that they would experience a reduction in unit cost as output increases. The currently offered range of prices is, in part, due to variation in the laboratories' approach to costing the service provided and some laboratories charge prices which do not even cover the cost of assay kits. Overall, we believe that prices charged should be as close as possible to the marginal cost of the tests performed. PMID:8227402

  15. Xe-bearing hydrocarbon ions: Observation of Xe.acetylene+rad and Xe.benzene+rad radical cations and calculations of their ground state structures

    NASA Astrophysics Data System (ADS)

    Cui, Zhong-hua; Attah, Isaac K.; Platt, Sean P.; Aziz, Saadullah G.; Kertesz, Miklos; El-Shall, M. S.

    2016-04-01

    This work reports evidence for novel types of Xe-bearing hydrocarbon radical cations. The Xe.acetylene+rad radical cation adduct is observed at nearly room temperature using the mass-selected drift cell technique. The irreversible addition of the Xe atom and the lack of back dissociation to HCCH+rad + Xe is consistent with the calculated binding energy of 0.85 eV to be contrasted with the metastable nature of the neutral Xe.acetylene adduct. The observed Xe.benzene+rad radical cation appears to be a weakly bound complex stabilized mainly by ion-induced dipole interaction consistent with a calculated binding energy in the range of 0.14-0.17 eV.

  16. Synthesis of indoles, benzofurans, and related heterocycles via an acetylene-activated SNAr/intramolecular cyclization cascade sequence in water or DMSO.

    PubMed

    Hudson, R; Bizier, N P; Esdale, K N; Katz, J L

    2015-02-28

    The synthesis of 2-substituted indoles and benzofurans was achieved by nucleophilic aromatic substitution, followed by subsequent 5-endo-dig cyclization between the nucleophile and an ortho acetylene. The acetylene serves the dual role of the electron withdrawing group to activate the substrate for SNAr, and the C1-C2 carbon scaffold for the newly formed 5-membered heteroaromatic ring. This method allows for the bond forming sequence of Ar-X-N/O-C1 to proceed in a single synthetic step, furnishing indoles and benzofurans in moderate to high yields. Since the method is not transition metal mediated, brominated and chlorinated substrates are tolerated, and benzofuran formation can be conducted using water or water-DMSO mixtures as solvent. PMID:25608594

  17. Synthesis of 3-iodoindoles by the Pd/Cu-catalyzed coupling of N,N-dialkyl-2-iodoanilines and terminal acetylenes, followed by electrophilic cyclization.

    PubMed

    Yue, Dawei; Yao, Tuanli; Larock, Richard C

    2006-01-01

    [reaction: see text] 3-Iodoindoles have been prepared in excellent yields by coupling terminal acetylenes with N,N-dialkyl-o-iodoanilines in the presence of a Pd/Cu catalyst, followed by an electrophilic cyclization of the resulting N,N-dialkyl-o-(1-alkynyl)anilines using I2 in CH2Cl2. Aryl-, vinylic-, alkyl-, and silyl-substituted terminal acetylenes undergo this process to produce excellent yields of 3-iodoindoles. The reactivity of the carbon-nitrogen bond cleavage during cyclization follows the following order: Me > n-Bu, Me > Ph, and cyclohexyl > Me. Subsequent palladium-catalyzed Sonogashira, Suzuki, and Heck reactions of the resulting 3-iodoindoles proceed smoothly in good yields. PMID:16388618

  18. Synthesis of 3-Iodoindoles by the Pd/Cu-Catalyzed Coupling of N,N-Dialkyl-2-iodoanilines and Terminal Acetylenes, Followed by Electrophilic Cyclization

    PubMed Central

    Yue, Dawei; Yao, Tuanli

    2008-01-01

    3-Iodoindoles have been prepared in excellent yields by coupling terminal acetylenes with N,N-dialkyl-o-iodoanilines in the presence of a Pd/Cu catalyst and subsequent electrophilic cyclization of the resulting N,N-dialkyl-o-(1-alkynyl)anilines using I2 in CH2Cl2. Aryl-, vinylic-, alkyl- and silyl-substituted terminal acetylenes undergo this process to produce excellent yields of 3-iodoindoles. The reactivity of the carbon-nitrogen bond cleavage during cyclization follows the order: Me > n-Bu, Me > Ph, and cyclohexyl > Me. Subsequent palladium-catalyzed Sonogashira, Suzuki and Heck reactions of the resulting 3-iodoindoles proceed smoothly in good yields. PMID:16388618

  19. The adsorption of small hydrocarbons on Cu(111): A combined He-atom scattering and x-ray absorption study for ethane, ethylene, and acetylene

    NASA Astrophysics Data System (ADS)

    Fuhrmann, D.; Wacker, D.; Weiss, K.; Hermann, K.; Witko, M.; Wöll, Ch.

    1998-02-01

    Ethane (C2H6), ethylene (C2H4), and acetylene (C2H2) adsorbed on Cu (111) are investigated using high-resolution helium atom scattering and x-ray absorption spectroscopy (NEXAFS). For C2H6/Cu(111) and C2H4/Cu(111) the excitation energies of the frustrated molecular translation normal to the surface (FTz) amount to 6.7 meV, suggesting the presence of a physisorbed species which is consistent with the NEXAFS data for ethylene. In contrast, for C2H2/Cu(111) the NEXAFS data indicate strong intramolecular distortions of the acetylene adsorbate compatible with a tilt of both CH ends away from the molecular axis. While the latter finding is in agreement with recent theoretical studies the theoretically predicted chemisorbed ethylene species could not be observed by the experiment. However, more detailed theoretical studies of the ethylene-Cu(111) interaction potential reveal two minima separated by an activation barrier. The minimum closer to the surface refers to strongly distorted chemisorbed C2H4 whereas the outer minimum is characterized by a free molecule-like physisorbed species. Thus the results from the present measurements are explained by the theoretically confirmed physisorbed species while chemisorbed C2H4 has to be excluded. Complementary results for ethylene and acetylene adsorbed on Pb(111) reveal a FTz-mode energy of 6.5 and 6.7 meV, respectively, thus revealing a much weaker acetylene-substrate binding than seen for Cu(111). Also in case of Pb(111) the FTz-mode showed an Einstein-like behavior with a flat dispersion curve, as for corresponding modes on the Cu(111)-substrate, see above.

  20. Effect of macroamounts of aluminum, magnesium, nickel, and chromium on the degree of yttrium and lanthanum atomization in an acetylene-nitrous oxide flame

    SciTech Connect

    Semenenko, K.A.; Osipova, V.A.; Panov, V.A.; Kuzyakov, Yu.Ya.

    1987-09-20

    Using the method of measuring absolute intensities in emission spectra, they have calculated the degree of atomization of yttrium and lanthanum in an acetylene-nitrous oxide flame, and have provided a quantitative appraisal of the effect of Al, Mg, Ni, and Cr on the number of yttrium and lanthanum atoms, ions, and molecules. Hypotheses are expressed concerning the mechanism of the effect of the principal elements in the flame.

  1. Numerical analysis of the effect of acetylene and benzene addition to low-pressure benzene-rich flat flames on polycyclic aromatic hydrocarbon formation

    SciTech Connect

    Kunioshi, Nilson; Komori, Seisaku; Fukutani, Seishiro

    2006-10-15

    A modification of the CHEMKIN II package has been proposed for modeling addition of an arbitrary species at an arbitrary temperature to an arbitrary distance from the burner along a flat flame. The modified program was applied to the problem of addition of acetylene or benzene to different positions of a 40-Torr, {phi}=2.4 benzene/O{sub 2}/40%-N{sub 2} premixed flame to reach final equivalence ratios of {phi}=2.5 and 2.681. The results obtained showed that acetylene addition to early positions of the flame led to significant increase in pyrene production rates, but pyrene concentrations were lower in the flames with acetylene addition in both the {phi}=2.5 and 2.681 cases. Addition of benzene to the flame did not alter pyrene production rates in either the {phi}=2.5 or 2.681 cases; however, for {phi}=2.5, pyrene concentrations increased with benzene addition, while for {phi}=2.681, pyrene contents decreased in comparison to the correspondent flames with no addition. Acetylene addition led to a significant increase in pyrene production rates, but the pyrene levels dropped due to increase in the flow velocity. Pyrene production rates were not sensitive to benzene addition, but pyrene contents increased with benzene addition when the flow velocity decreased. These results show that PAH concentration changes accompanying species addition to flames should be interpreted carefully, because an increase or decrease in the content of a PAH species does not necessarily reflect an effect on its formation rate or mechanism. (author)

  2. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.

    PubMed

    Brown, Katherine A; Harris, Derek F; Wilker, Molly B; Rasmussen, Andrew; Khadka, Nimesh; Hamby, Hayden; Keable, Stephen; Dukovic, Gordana; Peters, John W; Seefeldt, Lance C; King, Paul W

    2016-04-22

    The splitting of dinitrogen (N2) and reduction to ammonia (NH3) is a kinetically complex and energetically challenging multistep reaction. In the Haber-Bosch process, N2 reduction is accomplished at high temperature and pressure, whereas N2 fixation by the enzyme nitrogenase occurs under ambient conditions using chemical energy from adenosine 5'-triphosphate (ATP) hydrolysis. We show that cadmium sulfide (CdS) nanocrystals can be used to photosensitize the nitrogenase molybdenum-iron (MoFe) protein, where light harvesting replaces ATP hydrolysis to drive the enzymatic reduction of N2 into NH3 The turnover rate was 75 per minute, 63% of the ATP-coupled reaction rate for the nitrogenase complex under optimal conditions. Inhibitors of nitrogenase (i.e., acetylene, carbon monoxide, and dihydrogen) suppressed N2 reduction. The CdS:MoFe protein biohybrids provide a photochemical model for achieving light-driven N2 reduction to NH3. PMID:27102481

  3. Convergence in the QM-only and QM/MM modeling of enzymatic reactions: A case study for acetylene hydratase.

    PubMed

    Liao, Rong-Zhen; Thiel, Walter

    2013-10-15

    We report systematic quantum mechanics-only (QM-only) and QM/molecular mechanics (MM) calculations on an enzyme-catalyzed reaction to assess the convergence behavior of QM-only and QM/MM energies with respect to the size of the chosen QM region. The QM and MM parts are described by density functional theory (typically B3LYP/def2-SVP) and the CHARMM force field, respectively. Extending our previous work on acetylene hydratase with QM regions up to 157 atoms (Liao and Thiel, J. Chem. Theory Comput. 2012, 8, 3793), we performed QM/MM geometry optimizations with a QM region M4 composed of 408 atoms, as well as further QM/MM single-point calculations with even larger QM regions up to 657 atoms. A charge deletion analysis was conducted for the previously used QM/MM model (M3a, with a QM region of 157 atoms) to identify all MM residues with strong electrostatic contributions to the reaction energetics (typically more than 2 kcal/mol), which were then included in M4. QM/MM calculations with this large QM region M4 lead to the same overall mechanism as the previous QM/MM calculations with M3a, but there are some variations in the relative energies of the stationary points, with a mean absolute deviation (MAD) of 2.7 kcal/mol. The energies of the two relevant transition states are close to each other at all levels applied (typically within 2 kcal/mol), with the first (second) one being rate-limiting in the QM/MM calculations with M3a (M4). QM-only gas-phase calculations give a very similar energy profile for QM region M4 (MAD of 1.7 kcal/mol), contrary to the situation for M3a where we had previously found significant discrepancies between the QM-only and QM/MM results (MAD of 7.9 kcal/mol). Extension of the QM region beyond M4 up to M7 (657 atoms) leads to only rather small variations in the relative energies from single-point QM-only and QM/MM calculations (MAD typically about 1-2 kcal/mol). In the case of acetylene hydratase, a model with 408 QM atoms thus seems sufficient to achieve convergence in the computed relative energies to within 1-2 kcal/mol. PMID:23913757

  4. On the effect of varying constraints in the quantum mechanics only modeling of enzymatic reactions: the case of acetylene hydratase.

    PubMed

    Liao, Rong-Zhen; Thiel, Walter

    2013-04-18

    Quantum mechanics only (QM-only) studies of enzymatic reactions employ a coordinate-locking scheme, in which certain key atoms at the periphery of the chosen cluster model are fixed to their crystal structure positions. We report a case study on acetylene hydratase to assess the uncertainties introduced by this scheme. Random displacements of 0.1, 0.15, and 0.2 Å were applied at the ten terminal atoms fixed in the chosen 116-atom cluster model to generate sets of ten distorted structures for each given displacement. The relevant stationary points were reoptimized under these modified constraints to determine the variations of the computed energies and geometries induced by the displacements of the fixed atoms. Displacements of 0.1 Å cause a relatively minor perturbation that can be accommodated during geometry optimization, resulting in rather small changes in key bond distances and relative energies (typically of the order of 0.01 Å and 1 kcal/mol), whereas displacements of 0.2 Å lead to larger fluctuations (typically twice as high) and may sometimes even cause convergence to different local minima during geometry optimization. A literature survey indicates that protein crystal structures with a resolution higher than 2.0 Å are normally associated with a coordinate error of less than 0.1 Å for the backbone atoms. Judging from the present results for acetylene hydratase, such uncertainties seem tolerable in the design of QM-only models with more than 100 atoms, which are flexible enough to adapt during geometry optimization and thus keep the associate uncertainties in the computed energies and bond distances at tolerable levels (around 1 kcal/mol and 0.01 Å, respectively). On the other hand, crystal structures with significantly lower resolution should be used with great caution when setting up QM-only models because the resulting uncertainties in the computational results may become larger than acceptable. The present conclusions are mostly based on systematic DFT(B3LYP) calculations with a medium-size basis set. Test calculations on selected structures confirm that similar results are obtained for larger basis sets, different functionals (ωB97X, BMK, M06), and upon including solvation and zero-point corrections, even though the fluctuations in the computed relative energies become somewhat larger in some cases. PMID:23517056

  5. Cis-trans isomerization in the S1 state of acetylene: Identification of cis-well vibrational levels

    NASA Astrophysics Data System (ADS)

    Merer, Anthony J.; Steeves, Adam H.; Baraban, Joshua H.; Bechtel, Hans A.; Field, Robert W.

    2011-06-01

    A systematic analysis of the S1-trans ({tilde A}1Au) state of acetylene, using IR-UV double resonance along with one-photon fluorescence excitation spectra, has allowed assignment of at least part of every single vibrational state or polyad up to a vibrational energy of 4200 cm-1. Four observed vibrational levels remain unassigned, for which no place can be found in the level structure of the trans-well. The most prominent of these lies at 46 175 cm-1. Its 13C isotope shift, exceptionally long radiative lifetime, unexpected rotational selection rules, and lack of significant Zeeman effect, combined with the fact that no other singlet electronic states are expected at this energy, indicate that it is a vibrational level of the S1-cis isomer ({tilde A}1A2). Guided by ab initio calculations [J. H. Baraban, A. R. Beck, A. H. Steeves, J. F. Stanton, and R. W. Field, J. Chem. Phys. 134, 244311 (2011)], 10.1063/1.3570823 of the cis-well vibrational frequencies, the vibrational assignments of these four levels can be established from their vibrational symmetries together with the 13C isotope shift of the 46 175 cm-1 level (assigned here as cis-3161). The S1-cis zero-point level is deduced to lie near 44 900 cm-1, and the ν6 vibrational frequency of the S1-cis well is found to be roughly 565 cm-1; these values are in remarkably good agreement with the results of recent ab initio calculations. The 46 175 cm-1 vibrational level is found to have a 3.9 cm-1 staggering of its K-rotational structure as a result of quantum mechanical tunneling through the isomerization barrier. Such tunneling does not give rise to ammonia-type inversion doubling, because the cis and trans isomers are not equivalent; instead the odd-K rotational levels of a given vibrational level are systematically shifted relative to the even-K rotational levels, leading to a staggering of the K-structure. These various observations represent the first definite assignment of an isomer of acetylene that was previously thought to be unobservable, as well as the first high resolution spectroscopic results describing cis-trans isomerization.

  6. Addition of in situ reduced amidinato-methylaluminium chloride to acetylenes.

    PubMed

    Chlupatý, T; Turek, J; De Proft, F; Růžičková, Z; Růžička, A

    2015-10-28

    Two ethylene-bridged methylaluminium amidinates and one aluminium amidinate containing three terminal trimethylstannyl-ethynyl groups interconnected by π-coordinated potassium ions were prepared in situ. The re-oxidation of the ethylene-bridged compound by iodine followed by further reduction using the same activation procedure demonstrated the versatility of the approach. The reactivity of an ethylene-bridged methylaluminum amidinate towards HCl was examined to demonstrate the building block concept. DFT calculations were performed to gain insight into the mechanism of the in situ activation of diphenylacetylene. PMID:26399401

  7. CATION-π and CH-π Interactions in the Coordination and Solvation of Cu+ (ACETYLENE)n (n=1-6) Complexes Investigated via Infrared Photodissociation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brathwaite, Antonio David; Walters, Richard S.; Ward, Timothy B.; Duncan, Michael A.

    2015-06-01

    Mass-selected copper-acetylene cation complexes of the form Cu(C2H2)n+ are produced by laser ablation and studied via infrared laser photodissociation spectroscopy in the C-H stretching region (3000-3500 wn). Spectra for larger species are measured via ligand elimination, whereas argon tagging is employed to enhance dissociation yields in smaller complexes. The number of infrared active bands, their frequency positions and their relative intensities provide insight into the structure and bonding of these ions. Density functional theory calculations are carried out in support of this work. The combined data show that cation-π bonds are formed for the n=1-3 species, resulting in red-shifted C-H stretches on the acetylene ligands. Three acetylene ligands complete the coordination of the copper cation. Additional ligands (n=4-6) solvate the n=3 core by forming CH-pi bonds. Distinctive vibrational patterns are exhibited for coordinated vs. solvent ligands. Theory reproduces these results.

  8. Selective reduction.

    PubMed

    Evans, Mark I; Krivchenia, Eric L; Gelber, Shari E; Wapner, Ronald J

    2003-03-01

    Multifetal pregnancy reduction continues to be controversial. Attitudes about MFPR have not, in our experience, followed a simple "pro-choice/pro-life" dichotomy. As far back as the mid to late 1980s, opinions about the subject were varied. Even then, when much less was known about the subject, opinions did not always parallel the usual pro-choice/theological boundaries. We believe that the real debate over the next 5 to 10 years will not be whether or not MFPR should be performed with triplets or more. The fact is that MFPR does improve those outcomes. A serious debate will emerge over whether or not it is appropriate to offer MFPR routinely for twins, even natural ones, for whom the outcome is commonly considered "good enough." Our data suggest that reduction of twins to a singleton improves the outcome of the remaining fetus. No consensus on appropriateness of routine 2-1 reductions is ever likely to emerge. The ethical issues surrounding MFPR will always be controversial. Over the years, much has been written on the subject. Opinions will always vary from outraged condemnation to complete acceptance. No short paragraph could do justice to the subject other than to state that most proponents do not believe this is a frivolous procedure but do believe in the principle of proportionality ie, therapy to achieve the most good for the least harm). Over the past 15 years, MFPR has become a well-established and integral part of infertility therapy and attempts to deal with the sequelae of aggressive infertility management. In the mid 1980s, the risks and benefits of the procedure could only be guessed. We now have clear and precise data on the risks and benefits of the procedure and an understanding that the risks increase substantially with the starting and finishing number of fetuses in multifetal pregnancies. The collaborative loss rate numbers (ie, 4.5% for triplets, 8% for quadruplets. 11% for quintuplets, and 15% for sextuplets or more) seem reasonable to present to patients for the procedure performed by an experienced operator. Our experiences and anecdotal experiences from other groups suggest that less experienced operators have worse outcomes. Pregnancy loss is not the only poor outcome. The other main issue with which to be concerned is very early premature delivery, where there is an increasing rate of poor outcomes correlated with the starting number. The finishing numbers are also critical, with twins having the best outcomes for cases starting with three or more. Triplets and singletons do not do as well. We hope that MFPR will become obsolete as better control of ovulation agents and assisted reproductive technologies make multifetal pregnancies uncommon. PMID:12696789

  9. Bioassay-directed isolation and identification of phytotoxic and fungitoxic acetylenes from Conyza canadensis.

    PubMed

    Queiroz, Sonia C N; Cantrell, Charles L; Duke, Stephen O; Wedge, David E; Nandula, Vijay K; Moraes, Rita M; Cerdeira, Antonio L

    2012-06-13

    Conyza canadensis (L.) Cronquist syn. (horseweed) is a problematic and invasive weed with reported allelopathic properties. To identify the phytotoxic constituents of the aerial parts, a systematic bioactivity-guided fractionation of the dichloromethane extract was performed. Three active enyne derivatives, (2Z,8Z)-matricaria acid methyl ester, (4Z,8Z)-matricaria lactone, and (4Z)-lachnophyllum lactone, were identified. The lactones inhibited growth of the monocot Agrostis stolonifera (bentgrass) and the dicot Lactuca sativa (lettuce) at 1 mg mL(-1), while the (2Z,8Z)-matricaria acid methyl ester was less active. In a dose-response screening of the lactones for growth inhibitory activity against Lemna paucicostata , (4Z)-lachnophyllum lactone was the most active with an IC50 of 104 μM, while the (4Z,8Z)-matricaria lactone was less active (IC50 of 220 μM). In a fungal direct bioautography assay, the two lactones at 10 and 100 μg/spot inhibited growth of the plant pathogenic fungi Colletotrichum acutatum , Colletotrichum fragariae , and Colletotrichum gloeosporioides . In a dose-response screening of the lactones against six different plant pathogenic fungi, (4Z,8Z)-matricaria lactone was more active than the commercial fungicide azoxystrobin on Col. acutatum , Col. fragariae , and Col. gloeosporioides at 30 μM and about as active as the commercial fungicide captan against Col. gloeosporioides , while (4Z)-lachnophyllum lactone was less active. PMID:22612410

  10. Theoretical studies of angle-resolved ion yield spectra of core-to-valence transitions of acetylene.

    PubMed

    Kimberg, Victor; Kosugi, Nobuhiro; Gel'mukhanov, Faris

    2009-03-21

    Recent experimental results on angle-resolved photoion-yield spectroscopy (ARPIS) spectra near the core-to-valence excitation in acetylene show significant anisotropies in the spectral profile measured at 0 degrees and 90 degrees regarding to the polarization direction of x-ray photons. In the present work, a theoretical model is proposed to simulate the fine structure and anisotropy in ARPIS. This employs two-dimensional potential energy surfaces of the ground and core-excited states, as well as transition dipole moments, including symmetric and antisymmetric bending modes to account for Duschinsky effect. The ARPIS is simulated by evaluation of the ion flux, which is found as a projection of the excited state wave packet on a particular direction in the molecular frame. Numerical simulations explain qualitatively the angular dependence of the experimental spectra of the 1s-->1pi(g) ( *) and 1s-->3sigma(u) ( *) transitions. The effects of the lifetime of the core-excited state, the direction of the ion flux, and the transition dipole moment are discussed. PMID:19317534

  11. Time-Resolved Rotational Energy Transfer and Spectral Line Broadening in Acetylene. a High Resolution Raman Study.

    NASA Astrophysics Data System (ADS)

    Domenech, J. L.; Martinez, R. Z.; Bermejo, D.

    2010-06-01

    The quasi-cw stimulated Raman technique is a powerful tool for the determination of collisional broadening and line-mixing parameters, which bear a very direct relationship with the rotational energy transfer rate constants matrix at the state-to-state level. Indeed, the broadening coefficients and the analysis of line-mixing profiles, frequently combined with a rate-law analysis, have provided a wealth of information on collision physics for many gas systems throughout the years. We report on new high resolution measurements of the broadening coefficients on the Q-branch of the ?_2 band of acetylene. Furthermore, last year at this meeting, we reported on a new technique for the determination of state-to-state rotational energy transfer rate constants. based on a time-resolved double-resonance Raman-Raman scheme. It uses the quasi-continuous stimulated Raman-loss technique for the probe stage. Through a systematic recording of the time evolution of rotational populations from a single initially pupulated J level, it allows the direct determination of most elements of the rate-constant matrix without resorting to fitting or scaling laws. The comparison of the results obtained from from the high resolution spectroscopic approach with those from the time-resolved dynamics experiment provides insight into the collision mechanisms and some of the assumptions or simplifications usually made in rate-law analysis.

  12. Optimization of Acetylene Black Conductive Additive andPolyvinylidene Difluoride Composition for High Power RechargeableLithium-Ion Cells

    SciTech Connect

    Liu, G.; Zheng, H.; Battaglia, V.S.; Simens, A.S.; Minor, A.M.; Song, X.

    2007-07-01

    Fundamental electrochemical methods were applied to study the effect of the acetylene black (AB) and the polyvinylidene difluoride (PVDF) polymer binder on the performance of high-power designed rechargeable lithium ion cells. A systematic study of the AB/PVDF long-range electronic conductivity at different weight ratios is performed using four-probe direct current tests and the results reported. There is a wide range of AB/PVDF ratios that satisfy the long-range electronic conductivity requirement of the lithium-ion cathode electrode; however, a significant cell power performance improvement is observed at small AB/PVDF composition ratios that are far from the long-range conductivity optimum of 1 to 1.25. Electrochemical impedance spectroscopy (EIS) tests indicate that the interfacial impedance decreases significantly with increase in binder content. The hybrid power pulse characterization results agree with the EIS tests and also show improvement for cells with a high PVDF content. The AB to PVDF composition plays a significant role in the interfacial resistance. We believe the higher binder contents lead to a more cohesive conductive carbon particle network that results in better overall all local electronic conductivity on the active material surface and hence reduced charge transfer impedance.

  13. Temperature and pressure dependence of the absolute rate constant for the reactions of NH2 radicals with acetylene and ethylene

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Nava, D. F.; Brobst, W. D.; Stief, L. J.

    1984-01-01

    The absolute rate constants for the reaction between the NH2 free radical and acetylene and ethylene is measured experimentally using a flash photolysis technique. The constant is considered to be a function of temperature and pressure. At each temperature level of the experiment, the observed pseudo-first-order rate constants were assumed to be independent of flash intensity. The results of the experiment indicate that the bimolecular rate constant for the NH2 + C2H2 reaction increases with pressure at 373 K and 459 K but not at lower temperatures. Results near the pressure limit conform to an Arrhenius expression of 1.11 (+ or -) 0.36 x 10 to the -13th over the temperature range from 241 to 459 K. For the reaction NH2 + C2H4, a smaller rate of increase in the bimolecular rate constant was observed over the temperature range 250-465 K. The implications of these results for current theoretical models of NH2 + C2H2 (or H4) reactions in the atmospheres of Jupiter and Saturn are discussed.

  14. A gas phase complex of acetylene and bromine: geometry, binding strength and charge transfer from rotational spectroscopy

    NASA Astrophysics Data System (ADS)

    Davey, J. B.; Legon, A. C.

    2001-12-01

    Ground-state rotational spectra of a 1:1 complex of acetylene and bromine were observed with a Fourier-transform microwave spectrometer. Rotational, centrifugal distortion and Br nuclear hyperfine coupling constants were determined for the isotopomers C2H2⋯ 79Br79Br, C2H2⋯ 79Br81Br, C2H2⋯ 81Br79Br and C2H2⋯ 81Br81Br. The complex possesses a T-shaped, C2v geometry at equilibrium with a zero-point distance 3.144 Å between the centre (∗) of the CC bond and the inner bromine atom. The inter- and intra-molecular electron transfers on complex formation are δ(∗→ Bri)e=0.010e and δ(Br i→Br o) e=0.037 e, respectively, where i = inner and o = outer. The inter-molecular stretching force constant is k σ=7.80(6) N m -1.

  15. In vitro platelet adhesion and activation of polyethylene terephthalate modified by acetylene plasma immersion ion implantation and deposition

    NASA Astrophysics Data System (ADS)

    Wang, J.; Chen, J. Y.; Yang, P.; Leng, Y. X.; Wan, G. J.; Sun, H.; Zhao, A. S.; Huang, N.; Chu, P. K.

    2006-01-01

    Acetylene (C2H2) plasma immersion ion implantation-deposition (PIII-D) was conducted on polyethylene terephthalate (PET) to improve its blood compatibility. The platelet adhesion and activation behavior of PET treated by C2H2 PIII-D at different working pressures was investigated. Raman spectroscopy results show that amorphous carbon films were successfully deposited on the PET surfaces. X-ray photoelectron spectroscopy (XPS) analysis indicates that carbon films of various sp2/sp3 composition are formed at different working pressures and the sp3 hybridized C content in the films increases as a function of pressure. Platelet adhesion experiments were conducted to examine the blood compatibility in vitro. Optical microscopy reveals that the amounts of adherent platelets on all modified PET films are less than that on the untreated surface. The adhered platelets on carbon films deposited at 0.5 Pa and 1.0 Pa working pressure are about 32% and 55%, respectively, of that for the untreated PET surface. The platelets are observed to be isolated and round on carbon films deposited at 0.5 Pa, indicating that fewer platelets are activated on the amorphous carbon films. These results thus shows that amorphous carbon films deposited on PET by C2H2 PIII-D suppress platelet adhesion and activation, and the extent of the improvement is related to the structure of the carbon films.

  16. Analysis of the seed oil of Heisteria silvanii (Olacaceae)--a rich source of a novel C18 acetylenic fatty acid.

    PubMed

    Spitzer, V; Tomberg, W; Hartmann, R; Aichholz, R

    1997-11-01

    Besides some usual fatty acids (FA), two conjugated ene-yne acetylenic FA [trans-10-heptadecen-8-ynoic acid (pyrulic acid) (7.4%), and trans-11-octadecen-9-ynoic acid (ximenynic acid) (3.5%)], a novel ene-yne-ene acetylenic FA [cis-7, trans-11-octadecadiene-9-ynoic acid (heisteric acid) (22.6%)], and 9,10-epoxystearic acid (0.6%) could be identified in the seed oil of Heisteria silvanii (Olacaceae). Two further conjugated acetylenic FA [9,11-octadecadiynoic acid (0.1%) and 13-octadecene-9,11-diynoic acid (0.4%)] were identified tentatively by their mass spectra. The FA mixture has been analyzed by gas chromatography/mass spectrometry (GC/MS) of their methyl ester and 4,4-dimethyloxazoline derivatives. The structure of heisteric acid was elucidated after isolation via preparative silver ion thin-layer chromatography and by various spectroscopic methods [ultraviolet; infrared; 1H, 13C nuclear magnetic resonance (NMR); 1H-1H and 1H-13C correlation spectroscopy]. To determine the position of the conjugated ene-yne-ene system, the NMR spectra were also measured after addition of the lanthanide shift reagent Resolve-Al EuFOD. Furthermore, the triyglyceride mixture was analyzed by high-temperature GC and high-temperature GC coupled with negative chemical ionization MS. A glass capillary column coated with a methoxy-terminated 50%-diphenyl-50%-dimethylpolysiloxane was used for the separation of the triacylglycerol (TAG) species. No evidence of decomposition of the TAG species containing conjugated ene-yne-ene FA was observed. Twenty-six species of the separated TAG were identified by means of their abundant quasi molecular ion [M - H]- and their corresponding carboxylate anions [RCOO]- of the fatty acids, respectively. The major molecular species of the TAG were found to be 16:0/18:1/18:1, 16:0/18:1/18:3 (heisteric acid), 17:2 (pyrulic acid)/18:1/18:1, 18:1/18:1/18:3 (heisteric acid). The TAG containing acetylenic FA showed an unexpected increase of the retention time in comparison to the TAG containing usual FA, thus making the prediction of the elution order of lipid samples containing acetylenic FA difficult. PMID:9397405

  17. COMPUTATIONAL MODELING AND EXPERIMENTAL STUDIES ON NOx REDUCTION UNDER PULVERIZED COAL COMBUSTION CONDITIONS

    SciTech Connect

    Subha K. Kumpaty; Kannikeswaran Subramanian; Victor P. Nokku; Tyrus L. Hodges; Adel Hassouneh; Ansumana Darboe; Sravan K. Kumpati

    1998-06-01

    In this work, both computer simulation and experimental studies were conducted to investigate several strategies for NO{sub x} reduction under pulverized coal combustion conditions with an aim to meet the stringent environmental standards for NO{sub x} control. Both computer predictions and reburning experiments yielded favorable results in terms of NO{sub x} control by reburning with a combination of methane and acetylene as well as non-selective catalytic reduction of NO{sub x} with ammonia following reburning with methane. The greatest reduction was achieved at the reburning stoichiometric ratio of 0.9; the reduction was very significant, as clearly shown in Chapters III and V. Both the experimental and computational results favored mixing gases: methane and acetylene (90% and 10% respectively) and methane and ammonia (98% and 2%) in order to get optimum reduction levels which can not be achieved by individual gases at any amounts. Also, the above gaseous compositions as reburning fuels seemed to have a larger window of stoichiometric ratio (SR2 < 0.9) as opposed to just methane (SR2=0.9) so as to reduce and keep NO{sub x} at low ppm levels. From the various computational runs, it has been observed that although there are several pathways that contribute to NO{sub x} reduction, the key pathway is NO {r_arrow} HCN {r_arrow} NH{sub 3} {r_arrow} N{sub 2} + H{sub 2}. With the trends established in this work, it is possible to scale the experimental results to real time industrial applications using computational calculations.

  18. New low-viscosity overlay medium for viral plaque assays

    PubMed Central

    Matrosovich, Mikhail; Matrosovich, Tatyana; Garten, Wolfgang; Klenk, Hans-Dieter

    2006-01-01

    Background Plaque assays in cell culture monolayers under solid or semisolid overlay media are commonly used for quantification of viruses and antiviral substances. To overcome the pitfalls of known overlays, we tested suspensions of microcrystalline cellulose Avicel RC/CL™ as overlay media in the plaque and plaque-inhibition assay of influenza viruses. Results Significantly larger plaques were formed under Avicel-containing media, as compared to agar and methylcellulose (MC) overlay media. The plaque size increased with decreasing Avicel concentration, but even very diluted Avicel overlays (0.3%) ensured formation of localized plaques. Due to their low viscosity, Avicel overlays were easier to use than methylcellulose overlays, especially in the 96-well culture plates. Furthermore, Avicel overlay could be applied without prior removal of the virus inoculum thus facilitating the assay and reducing chances of cross-contamination. Using neuraminidase inhibitor oseltamivir carboxylate, we demonstrated applicability of the Avicel-based plaque reduction assay for testing of antiviral substances. Conclusion Plaque assay under Avicel-containing overlay media is easier, faster and more sensitive than assays under agar- and methylcellulose overlays. The assay can be readily performed in a 96-well plate format and seems particularly suitable for high-throughput virus titrations, serological studies and experiments on viral drug sensitivity. It may also facilitate work with highly pathogenic agents performed under hampered conditions of bio-safety labs. PMID:16945126

  19. A Simple High-Content Cell Cycle Assay Reveals Frequent Discrepancies between Cell Number and ATP and MTS Proliferation Assays

    PubMed Central

    Chan, Grace Ka Yan; Kleinheinz, Tracy L.; Peterson, David; Moffat, John G.

    2013-01-01

    In order to efficiently characterize both antiproliferative potency and mechanism of action of small molecules targeting the cell cycle, we developed a high-throughput image-based assay to determine cell number and cell cycle phase distribution. Using this we profiled the effects of experimental and approved anti-cancer agents with a range mechanisms of action on a set of cell lines, comparing direct cell counting versus two metabolism-based cell viability/proliferation assay formats, ATP-dependent bioluminescence, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) reduction, and a whole-well DNA-binding dye fluorescence assay. We show that, depending on compound mechanisms of action, the metabolism-based proxy assays are frequently prone to 1) significant underestimation of compound potency and efficacy, and 2) non-monotonic dose-response curves due to concentration-dependent phenotypic ‘switching’. In particular, potency and efficacy of DNA synthesis-targeting agents such as gemcitabine and etoposide could be profoundly underestimated by ATP and MTS-reduction assays. In the same image-based assay we showed that drug-induced increases in ATP content were associated with increased cell size and proportionate increases in mitochondrial content and respiratory flux concomitant with cell cycle arrest. Therefore, differences in compound mechanism of action and cell line-specific responses can yield significantly misleading results when using ATP or tetrazolium-reduction assays as a proxy for cell number when screening compounds for antiproliferative activity or profiling panels of cell lines for drug sensitivity. PMID:23691072

  20. Multiplexing cell viability assays.

    PubMed

    Gerets, Helga H J; Dhalluin, Stéphane; Atienzar, Franck A

    2011-01-01

    Today, obtaining mechanistic insights into biological, toxicological, and pathological processes is of upmost importance. Researchers aim to obtain as many as possible data from one cell sample to understand the biological processes under study. Multiplexing, which is the ability to gather more than one set of data from the same sample, fulfills completely this objective. Obviously, multiplexing has several advantages compared to single plex experiments and probably the most important one is that data on various parameters at exactly the same time point on the same cells or group of cells can be obtained and consequently this may contribute to saving time and effort and a reduction of the costs.In this chapter, different endpoints were measured starting from two-seeded multiwell plates, namely, cell viability, caspase-3/7 activity, lactate dehydrogenase (LDH), adenosine triphosphate (ATP), aspartate aminotransferase (AST), and glutamate dehydrogenase (GLDH) measurements. These -different endpoints were analyzed together to determine the cytotoxic properties of pharmaceutical compounds and/or reference compounds. A 96-well plate was designed to allow appropriate measurement of five doses of a compound in triplicate to determine the effect of the compound on the six different endpoints. The first four endpoints (cell viability, caspase-3/7 activity, LDH, and ATP) are discussed in detail in this chapter. AST and GLDH measurements are not discussed in detail as these are fully automatic measurements and thus behind the scope of this chapter.As an illustrating example, the reference compound tamoxifen was used to evaluate its cytotoxic properties using the hepatocellular carcinoma cell line HepG2 cells. PMID:21468971

  1. Aldehyde reduction by cytochrome P450.

    PubMed

    Amunom, Immaculate; Srivastava, Sanjay; Prough, Russell A

    2011-05-01

    This protocol describes the procedure for measuring the relative rates of metabolism of the α,β-unsaturated aldehydes 9-anthracene aldehyde (9-AA) and 4-hydroxy-trans-2-nonenal (4-HNE). More specifically, these assays measure the aldehyde reduction reactions of cytochrome P450s (CYPs). They can be performed using liver microsomal or other tissue fractions, spherosome preparations of recombinant CYPs, or recombinant CYPs from other sources. The method for reduction of 9-AA (a model α,β-unsaturated aldehyde) by CYPs was adapted from an assay for 9-anthracene oxidation published by Marini et al. (2003). For reduction of the endogenous aldehyde 4-HNE, the substrate was incubated with CYP in the presence of oxygen and NADPH, and the metabolites were separated by HPLC, using an adaptation of the method by Srivastava et al. (2010). For both 9-AA and 4-HNE, the first step involves incubation of the substrate with the CYP in an appropriate medium. This is followed by quantification of metabolites through by spectrofluorometry (9-AA) or HPLC coupled with a radiometric assay (4-HNE). Metabolite identification can be achieved by HPLC GC/MS analysis. Inhibitors of cytochrome P450 can be utilized to show the role of the hemoprotein or other enzymes in these reduction reactions. The reduction of CYPs is not inhibited by either anaerobiosis or inclusion of CO in the gaseous phase of the reaction mixture. These characteristics are similar to those reported for some cytochrome P450-catalyzed azo reduction reactions. PMID:21553396

  2. Development of rapid pathogenicity assay for Verticillium dahliae using early flowering lettuce.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional assays of Verticillium wilt on lettuce require approximately three months from the time of seeding. A reduction in time required for analyses of symptom development would be useful in studies of the Verticillium dahliae-lettuce interaction. In this study, a growth chamber assay was ev...

  3. Doug Berndt Evaluated Bacterial Assay

    USGS microbiology technician evaluates a bacterial assay to determine the cause of a wildlife mortality. The USGS National Wildlife Health Center works to identify, track, and prevent wildlife disease....

  4. Methods to Assay Drosophila Behavior

    PubMed Central

    Nichols, Charles D.; Becnel, Jaime; Pandey, Udai B.

    2012-01-01

    Drosophila melanogaster, the fruit fly, has been used to study molecular mechanisms of a wide range of human diseases such as cancer, cardiovascular disease and various neurological diseases1. We have optimized simple and robust behavioral assays for determining larval locomotion, adult climbing ability (RING assay), and courtship behaviors of Drosophila. These behavioral assays are widely applicable for studying the role of genetic and environmental factors on fly behavior. Larval crawling ability can be reliably used for determining early stage changes in the crawling abilities of Drosophila larvae and also for examining effect of drugs or human disease genes (in transgenic flies) on their locomotion. The larval crawling assay becomes more applicable if expression or abolition of a gene causes lethality in pupal or adult stages, as these flies do not survive to adulthood where they otherwise could be assessed. This basic assay can also be used in conjunction with bright light or stress to examine additional behavioral responses in Drosophila larvae. Courtship behavior has been widely used to investigate genetic basis of sexual behavior, and can also be used to examine activity and coordination, as well as learning and memory. Drosophila courtship behavior involves the exchange of various sensory stimuli including visual, auditory, and chemosensory signals between males and females that lead to a complex series of well characterized motor behaviors culminating in successful copulation. Traditional adult climbing assays (negative geotaxis) are tedious, labor intensive, and time consuming, with significant variation between different trials2-4. The rapid iterative negative geotaxis (RING) assay5 has many advantages over more widely employed protocols, providing a reproducible, sensitive, and high throughput approach to quantify adult locomotor and negative geotaxis behaviors. In the RING assay, several genotypes or drug treatments can be tested simultaneously using large number of animals, with the high-throughput approach making it more amenable for screening experiments. PMID:22433384

  5. Rapid nonchromatographic assay for aminopropyltransferases

    SciTech Connect

    Anton, D.L.

    1986-01-01

    Aminopropyltransferases are key enzymes in the biosynthesis of the polyamines spermidine and spermine. A procedure is described for assaying these enzymes be differential charcoal adsorption of /sup 14/C-labeled decarboxylated adenosylmethionine substrate from the labeled polyamine product. This assay is linear with time and enzyme concentration, and is suitable for use with a variety of amine acceptors. This procedure has the advantage, over those previously used, that it is extremely rapid yet very sensitive.

  6. Functional Assays for Ricin Detection

    NASA Astrophysics Data System (ADS)

    Ezan, Eric; Duriez, Elodie; Fenaille, François; Becher, François

    In this review, we provide background information on ricin structure, present available functional assays for other toxins that are potential biothreat agents, and finish by describing the functional assay of ricin itself. Using appropriate sample preparation and optimized detection based on N-glycosidase activity, we demonstrate that specific detection of whole ricin at a level of around 0.1 ng/mL is possible and applicable to environmental samples.

  7. Methods to assay Drosophila behavior.

    PubMed

    Nichols, Charles D; Becnel, Jaime; Pandey, Udai B

    2012-01-01

    Drosophila melanogaster, the fruit fly, has been used to study molecular mechanisms of a wide range of human diseases such as cancer, cardiovascular disease and various neurological diseases(1). We have optimized simple and robust behavioral assays for determining larval locomotion, adult climbing ability (RING assay), and courtship behaviors of Drosophila. These behavioral assays are widely applicable for studying the role of genetic and environmental factors on fly behavior. Larval crawling ability can be reliably used for determining early stage changes in the crawling abilities of Drosophila larvae and also for examining effect of drugs or human disease genes (in transgenic flies) on their locomotion. The larval crawling assay becomes more applicable if expression or abolition of a gene causes lethality in pupal or adult stages, as these flies do not survive to adulthood where they otherwise could be assessed. This basic assay can also be used in conjunction with bright light or stress to examine additional behavioral responses in Drosophila larvae. Courtship behavior has been widely used to investigate genetic basis of sexual behavior, and can also be used to examine activity and coordination, as well as learning and memory. Drosophila courtship behavior involves the exchange of various sensory stimuli including visual, auditory, and chemosensory signals between males and females that lead to a complex series of well characterized motor behaviors culminating in successful copulation. Traditional adult climbing assays (negative geotaxis) are tedious, labor intensive, and time consuming, with significant variation between different trials(2-4). The rapid iterative negative geotaxis (RING) assay(5) has many advantages over more widely employed protocols, providing a reproducible, sensitive, and high throughput approach to quantify adult locomotor and negative geotaxis behaviors. In the RING assay, several genotypes or drug treatments can be tested simultaneously using large number of animals, with the high-throughput approach making it more amenable for screening experiments. PMID:22433384

  8. Thermochemistry of organic and heteroorganic species. Part XII. Mono- and disubstituted acetylenes and ethynyl free radicals. New electronegativity scale*1

    NASA Astrophysics Data System (ADS)

    Golovin, A. V.; Takhistov, V. V.

    2004-09-01

    The first important result of the present work is that the enthalpy of formation Δ H° f (298 K) for ethynyl HCC rad free radical is now firmly established 123±2 kcal mol -1, whereas the most known higher experimental and theoretical values reflect its formation in excited states. For computation of the Δ H° f HCC rad radical, the most reliable results were obtained by applying isodesmic (formal) reactions rad CN+RCCH→RCN+ rad CCH. The isodesmic reaction HCC rad +RCCH→HCCH+RCC rad is recommended for computation of the Δ H° f for substituted RCC rad radicals. With systematic application of the enthalpic shift procedure for more than 20 classes of compounds and functions supplemented by introduction of sub-types and correction terms, this procedure now can be treated as a completed special methodology in molecules' thermochemistry. Using this methodology, the novel or corrected Δ H° f values for about 120 monosubstituted RCCH acetylenes and 50 other compounds were calculated. For calculating the thermochemical properties of molecules and radicals the new electronegativity (EN) scale was elaborated which comprised for a moment about 210 groups. The general requirements for EN scales were formulated. Two scales EN and EN* were proposed for elements with vacant p- or d-orbitals. For the first time, the polarizability effect (PAZ) of a substituent in relation to EN is considered in detail for diverse types of chemical processes and parameters. It is shown that any EN scale can be applied in practice only for a narrow set of structurally similar substituents rather than as an absolute measure. The enthalpies of formation for 75 diacetylenes XCCX and XCCY are presented. Following the works of McKean on correlation of Δ νis(CH) values in gas phase IR spectra with ΔBDEs (bond dissociation energies), the literature data on ν RCCH values were applied to calculate the enthalpies of formation for RCC rad free radicals. For the first time, the variable n cm -1/ kcal -1 for diverse types of C-H bonds directly linked with EN of C-atom was suggested: ˜9 cm -1 for alkane C-atom, ˜11 cm -1 for alkenes RC HCH 2 or RCHC H2, ˜12 cm -1 for alkynes RCCH and ˜14 cm -1 for RCHO molecules. Analyzing the EN/PAZ interrelationship for particular case of RCC-H bond strengths, the Δ H° f values for 12 RCC rad radicals were found from literature ν RCC-H values and then calculated for additional 42 radicals together with ν RCCH frequencies. In all these calculations, the value 123 kcal mol -1 for Δ H° f for HCC rad radical was used. This value was further used to extract from published computed data (after their recalculation), an important thermochemical information on many unstable species (molecules, free radicals, carbenes) valuable for combustion processes. In general, serious inconsistency between our data and literature computed data on thermochemistry of acetylenes and substituted RCC rad radicals was found.

  9. A DFT study on the mechanisms for the cycloaddition reactions between 1-aza-2-azoniaallene cations and acetylenes.

    PubMed

    Wang, Jing-mei; Li, Zhi-ming; Wang, Quan-rui; Tao, Feng-gang

    2013-01-01

    The mechanisms of cycloaddition reactions between 1-aza-2-azoniaallene cations 1 and acetylenes 2 have been investigated using the global electrophilicity and nucleophilicity of the corresponding reactants as global reactivity indexes defined within the conceptual density functional theory. The reactivity and regioselectivity of these reactions were predicted by analysis of the energies, geometries, and electronic nature of the transition state structures. The theoretical results revealed that the reaction features a tandem process: an ionic 1,3-dipolar cycloaddition to produce the cycloadducts 3 H-pyrazolium salts 3 followed by a [1,2]-shift affording the thermodynamically more stable adducts 4 or 5. The mechanism of the cycloaddition reactions can be described as an asynchronous concerted pathway with reverse electron demand. The model reaction has also been investigated at the QCISD/6-31++G(d,p) and CCSD(T)/6-31++G(d,p)//B3LYP/6-31++G(d,p) levels as well as by the DFT. The polarizable continuum model, at the B3LYP/6-31++G(d,p) level of theory, was used to study solvent effects on all the studied reactions. In solvent dichloromethane, all the initial cycloadducts 3 were obtained via direct ionic process as the result of the solvent effect. The consecutive [1,2]-shift reaction, in which intermediates 3 are rearranged to the five-membered heterocycles 4/5, is proved to be a kinetically controlled reaction, and the regioselectivity can be modulated by varying the migrant. The LOL function and RDG function based on localized electron analysis were used to analysis the covalent bond and noncovalent interactions in order to unravel the mechanism of the title reactions. PMID:22810049

  10. Terahertz Spectroscopy of the Bending Vibrations of Acetylene 12C2H2 and 12C2D2

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, B.; Pearson, J.

    2009-12-01

    Several fundamental interstellar molecules, e.g., C2H2, CH4 and C3, are completely symmetric molecules and feature no permanent dipole moment and no pure rotation spectrum. As a result they have only previously been observed in the infrared. However, directly observing them with the rest of the molecular column especially when the source is spatially resolved would be very valuable in understanding chemical evolution. Vibrational difference bands provide a means to detect symmetric molecules with microwave precision using terahertz techniques. Herschel, SOFIA and ALMA have the potential to identify a number of vibrational difference bands of light symmetric species. This paper reports laboratory results on 12C2H2 and 12C2D2. Symmetric acetylene isotopologues have two bending modes, the trans bending and the cis bending. Their difference bands are allowed and occur in the microwave, terahertz, and far-infrared wavelengths, with band origins at 3500 GHz for 12C2H2 and 900 GHz for 12C2D2. Twenty 12C2H2 P branch high-J transitions and two hundred and fifty-one 12C2D2 P Q and R branch transitions have been measured in the 0.2 - 1.6 THz region with precision of 50 to 100 kHz. These lines were modeled together with prior data on the pure bending levels. Significantly improved molecular parameters were obtained for 12C2H2 and 12C2D2 with the combined data set, and new frequency and intensity predictions were made to support astrophysics applications. The research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. S. Y. was supported by an appointment to the NASA Postdoctoral Program, administrated by Oak Ridge Associated Universities through a contract with NASA.

  11. Application of the 15N gas-flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique

    NASA Astrophysics Data System (ADS)

    Sgouridis, Fotis; Stott, Andrew; Ullah, Sami

    2016-03-01

    Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilized agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in-house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS). The N2 prep unit has gas purification steps and a copper-based reduction furnace, and allows the analysis of small gas injection volumes (4 µL) for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Preconcentrator (Isoprime Ltd) coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume). Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm) was better than 0.5 %. The 15N gas-flux method was adapted for application in natural and semi-natural land use types (peatlands, forests, and grasslands) by lowering the 15N tracer application rate to 0.04-0.5 kg 15N ha-1. The minimum detectable flux rates were 4 µg N m-2 h-1 and 0.2 ng N m-2 h-1 for the N2 and N2O fluxes respectively. Total denitrification rates measured by the acetylene inhibition technique in the same land use types correlated (r = 0.58) with the denitrification rates measured under the 15N gas-flux method, but were underestimated by a factor of 4, and this was partially attributed to the incomplete inhibition of N2O reduction to N2, under a relatively high soil moisture content, and/or the catalytic NO decomposition in the presence of acetylene. Even though relatively robust for in situ denitrification measurements, methodological uncertainties still exist in the estimation of N2 and N2O fluxes with the 15N gas-flux method due to issues related to non-homogenous distribution of the added tracer and subsoil gas diffusion using open-bottom chambers, particularly during longer incubation duration. Despite these uncertainties, the 15N gas-flux method constitutes a more reliable field technique for large-scale quantification of N2 and N2O fluxes in natural terrestrial ecosystems, thus significantly improving our ability to constrain ecosystem N budgets.

  12. Laser-induced dispersed vibration-rotation fluorescence of acetylene: Spectra of ortho and para forms and partial trapping of vibrational energy

    NASA Astrophysics Data System (ADS)

    Metsala, Markus; Yang, Shengfu; Vaittinen, Olavi; Halonen, Lauri

    2002-11-01

    The laser-induced dispersed vibration-rotation fluorescence method has been developed further when compared with a previous publication [Saarinen [et al.], J. Chem. Phys. 110, 1424 (1999)]. More than one order of magnitude better signal-to-noise ratio has been achieved in the wave-number region 2900-3500 cm-1 by taking advantage of directionality of the fluorescence signal. The improvement has been applied to overtone spectroscopy of normal acetylene where for high CH stretching excitations separate spectra of ortho and para forms are obtained containing basically just single CH stretching vibrational quantum transitions from the pumped antisymmetric vibrational (nu]1+3[nu]3([Sigmau)+ and nu]2+3[nu]3([Sigmau)+ and close-lying symmetric vibrational local mode (4nu]3([Sigmag)+ and nu]1+[nu]2+2[nu]3 (Σg)+ states. No nuclear spin conversion is observed in these spectra. Two new symmetric vibrational states ν1+2ν2+4ν40 (Σg)+)(29% and (50%)) have been observed and the precision of the spectroscopic parameters of previously published symmetric states has been improved by an order of magnitude. Unexpected fluorescence originating from the antisymmetric CH stretching fundamental state nu3 and some associated states of acetylene have also been observed. These spectra are characterized by both ortho and para forms in normal abundance and by unusual intensity patterns due to strong reabsorption of the fluorescence by ground state acetylene molecules in the sample cell. A simple collisional step-down mechanism is proposed to account for the appearance of the nu3 fluorescence band system. The excess vibrational energy in the sample volume is partly trapped in the form of nu3 mode energy and it decays from the system by radiation.

  13. Application of nondestructive assay techniques in Kazakstan

    SciTech Connect

    Sprinkle, J.K. Jr.; Butler, G.; Collins, M.

    1997-11-01

    As Kazakstan has transitioned from being part of the Soviet Union to a nonweapons state (Treaty of Nonproliferation of Nuclear Weapons [NPT] signatory) under International Atomic Energy Agency (IAEA) inspections, significant changes have been required. Some of these changes have occurred in nuclear material protection, control, and accounting at the four nuclear facility sites in the Republic of Kazakstan. Specifically, the Republic of Kazakstan has changed from relying primarily on a subset of physical protection methods to a graded safeguards approach using a balance of material control, material accounting, and physical protection. Once more intensive material control and accounting procedures and systems are in place, a necessary step is to supply the accounting systems with measured values of high quality. This need can be met with destructive and nondestructive methods. Material control systems can also use qualitative nondestructive assay information as input. This paper will discuss the nondestructive assay techniques and systems the US Department of Energy (DOE) is providing to Kazakstan under both DOE programs and the Cooperative Threat Reduction Act as part of the nuclear material control and accounting upgrades at four facilities in Kazakstan. 4 refs., 6 figs.

  14. Secondary hydrogen isotope effects on the structure and stability of cation-pi complexes (cation = Li(+), Na(+), K(+) and pi = acetylene, ethylene, benzene).

    PubMed

    Moreno, Diego V; Gonzlez, Sergio A; Reyes, Andrs

    2010-09-01

    Secondary hydrogen isotope effects on the geometries, electronic wave functions and binding energies of cation-pi complexes (cation = Li(+), Na(+), K(+) and pi = acetylene, ethylene, benzene) are investigated with NEO/HF and NEO/MP2 methods. These methods determine both electronic and nuclear wave functions simultaneously. Our results show that an increase of the hydrogen nuclear mass leads to the elongation of the cation-pi bond distance and the decrease in its binding energy. An explanation to this behavior is given in terms of the changes in the pi-molecule electronic structure and electrostatic potential induced by isotopic substitutions. PMID:20701398

  15. Biologically Active Acetylenic Amino Alcohol and N-Hydroxylated 1,2,3,4-Tetrahydro-β-carboline Constituents of the New Zealand Ascidian Pseudodistoma opacum.

    PubMed

    Wang, Jiayi; Pearce, A Norrie; Chan, Susanna T S; Taylor, Richard B; Page, Michael J; Valentin, Alexis; Bourguet-Kondracki, Marie-Lise; Dalton, James P; Wiles, Siouxsie; Copp, Brent R

    2016-03-25

    The first occurrence of an acetylenic 1-amino-2-alcohol, distaminolyne A (1), isolated from the New Zealand ascidian Pseudodistoma opacum, is reported. The isolation and structure elucidation of 1 and assignment of absolute configuration using the exciton coupled circular dichroism technique are described. In addition, a new N-9 hydroxy analogue (2) of the known P. opacum metabolite 7-bromohomotrypargine is also reported. Antimicrobial screening identified modest activity of 1 toward Escherichia coli, Staphylococcus aureus, and Mycobacterim tuberculosis, while 2 exhibited a moderate antimalarial activity (IC50 3.82 μM) toward a chloroquine-resistant strain (FcB1) of Plasmodium falciparum. PMID:26670413

  16. Cycloisomerization of acetylenic acids to γ-alkylidene lactones using a palladium(II) catalyst supported on amino-functionalized siliceous mesocellular foam.

    PubMed

    Nagendiran, Anuja; Verho, Oscar; Haller, Clémence; Johnston, Eric V; Bäckvall, Jan-E

    2014-02-01

    Cycloisomerization of various γ-acetylenic acids to their corresponding γ-alkylidene lactones by the use of a heterogeneous Pd(II) catalyst supported on amino-functionalized siliceous mesocellular foam is described. Substrates containing terminal as well as internal alkynes were cyclized in high to excellent yields within 2–24 h under mild reaction conditions. The protocol exhibited high regio- and stereoselectivity, favoring the exo-dig product with high Z selectivity. Moreover, the catalyst displayed excellent stability under the employed reaction conditions, as demonstrated by its good recyclability and low leaching. PMID:24467515

  17. In vitro matrigel angiogenesis assays.

    PubMed

    Ponce, M L

    2001-01-01

    A variety of in vivo and in vitro methods have been used to study angiogenesis, the process of blood vessel formation. Two widely accepted but technically difficult assays include the cornea implant assay and the chick chorioallantoic membrane assay. The cornea assay requires special equipment and a skilled person to implant beads containing the test compound in the eyes of animals; only a small number of samples can be tested due to cost and time. The chorioallantoic membrane assay requires a large number of samples on account of the variability of the system and its difficulty in quantitation. In our laboratory, we have developed a quick and highly reliable method for testing numerous compounds for angiogenic and/or antiangiogenic activity. The method is based on the differentiation of ECs on a basement membrane matrix, Matrigel, derived from the Engelbreth-Holm-Swarm tumor (1). ECs from human umbilical cords as well as from other sources differentiate and form capillary-like structures on Matrigel in the presence of 10% bovine calf serum (BCS) and 0.1 mg/mL of endothelial cell growth supplement (ECGS) (2), which is a mixture of both acidic and basic fibroblast growth factor (Fig. 1, Panel C). The formation of tube-like vessels under these conditions can be used to assess compounds that either inhibit or stimulate angiogenesis. PMID:21340921

  18. Barcoded microchips for biomolecular assays.

    PubMed

    Zhang, Yi; Sun, Jiashu; Zou, Yu; Chen, Wenwen; Zhang, Wei; Xi, Jianzhong Jeff; Jiang, Xingyu

    2015-01-20

    Multiplexed assay of analytes is of great importance for clinical diagnostics and other analytical applications. Barcode-based bioassays with the ability to encode and decode may realize this goal in a straightforward and consistent manner. We present here a microfluidic barcoded chip containing several sets of microchannels with different widths, imitating the commonly used barcode. A single barcoded microchip can carry out tens of individual protein/nucleic acid assays (encode) and immediately yield all assay results by a portable barcode reader or a smartphone (decode). The applicability of a barcoded microchip is demonstrated by human immunodeficiency virus (HIV) immunoassays for simultaneous detection of three targets (anti-gp41 antibody, anti-gp120 antibody, and anti-gp36 antibody) from six human serum samples. We can also determine seven pathogen-specific oligonucleotides by a single chip containing both positive and negative controls. PMID:25513831

  19. Reactions between chlorine atom and acetylene in solid para-hydrogen: Infrared spectrum of the 1-chloroethyl radical

    SciTech Connect

    Golec, Barbara; Lee, Yuan-Pern

    2011-11-07

    We applied infrared matrix isolation spectroscopy to investigate the reactions between Cl atom and acetylene (C{sub 2}H{sub 2}) in a para-hydrogen (p-H{sub 2}) matrix at 3.2 K; Cl was produced via photodissociation at 365 nm of matrix-isolated Cl{sub 2} in situ. The 1-chloroethyl radical ({center_dot}CHClCH{sub 3}) and chloroethene (C{sub 2}H{sub 3}Cl) are identified as the main products of the reaction Cl + C{sub 2}H{sub 2} in solid p-H{sub 2}. IR absorption lines at 738.2, 1027.6, 1283.4, 1377.1, 1426.6, 1442.6, and 2861.2 cm{sup -1} are assigned to the 1-chloroethyl radical. For the reaction of Cl + C{sub 2}D{sub 2}, lines due to the {center_dot}CDClCH{sub 2}D radical and trans-CHDCDCl are observed; the former likely has a syn-conformation. These assignments are based on comparison of observed vibrational wavenumbers and {sup 13}C- and D-isotopic shifts with those predicted with the B3LYP/aug-cc-pVDZ and MP2/aug-cc-pVDZ methods. Our observation indicates that the primary addition product of Cl + C{sub 2}H{sub 2}, 2-chlorovinyl ({center_dot}CHCHCl) reacts readily with a neighboring p-H{sub 2} molecule to form {center_dot}CHClCH{sub 3} and C{sub 2}H{sub 3}Cl. Observation of {center_dot}CDClCH{sub 2}D and trans-CHDCDCl from Cl + C{sub 2}D{sub 2} further supports this conclusion. Although the reactivity of p-H{sub 2} appears to be a disadvantage for making highly reactive free radicals in solid p-H{sub 2}, the formation of 1-chloroethyl radical indicates that this secondary reaction might be advantageous in producing radicals that are difficult to prepare from simple photolysis or bimolecular reactions in situ.

  20. Reactions between chlorine atom and acetylene in solid para-hydrogen: Infrared spectrum of the 1-chloroethyl radical

    SciTech Connect

    Golec, Barbara; Lee, Yuan-Pern

    2011-10-28

    We applied infrared matrix isolation spectroscopy to investigate the reactions between Cl atom and acetylene (C{sub 2}H{sub 2}) in a para-hydrogen (p-H{sub 2}) matrix at 3.2 K; Cl was produced via photodissociation at 365 nm of matrix-isolated Cl{sub 2} in situ. The 1-chloroethyl radical ({center_dot}CHClCH{sub 3}) and chloroethene (C{sub 2}H{sub 3}Cl) are identified as the main products of the reaction Cl + C{sub 2}H{sub 2} in solid p-H{sub 2}. IR absorption lines at 738.2, 1027.6, 1283.4, 1377.1, 1426.6, 1442.6, and 2861.2 cm{sup -1} are assigned to the 1-chloroethyl radical. For the reaction of Cl + C{sub 2}D{sub 2}, lines due to the {center_dot}CDClCH{sub 2}D radical and trans-CHDCDCl are observed; the former likely has a syn-conformation. These assignments are based on comparison of observed vibrational wavenumbers and {sup 13}C- and D-isotopic shifts with those predicted with the B3LYP/aug-cc-pVDZ and MP2/aug-cc-pVDZ methods. Our observation indicates that the primary addition product of Cl + C{sub 2}H{sub 2}, 2-chlorovinyl ({center_dot}CHCHCl) reacts readily with a neighboring p-H{sub 2} molecule to form {center_dot}CHClCH{sub 3} and C{sub 2}H{sub 3}Cl. Observation of {center_dot}CDClCH{sub 2}D and trans-CHDCDCl from Cl + C{sub 2}D{sub 2} further supports this conclusion. Although the reactivity of p-H{sub 2} appears to be a disadvantage for making highly reactive free radicals in solid p-H{sub 2}, the formation of 1-chloroethyl radical indicates that this secondary reaction might be advantageous in producing radicals that are difficult to prepare from simple photolysis or bimolecular reactions in situ.

  1. The νCC+3νCH rovibrational manifold of acetylene. II. Intramolecular perturbations and symmetry-breaking processes

    NASA Astrophysics Data System (ADS)

    Milce, Angela P.; Orr, Brian J.

    2000-06-01

    We identify perturbing rovibrational states that are responsible for local J-dependent interactions in the νCC+3νCH rovibrational manifold of acetylene (C2H2) at ˜11 600 cm-1, observed by infrared-ultraviolet double resonance (IR-UV DR) spectroscopy. These comprise: firstly, the set of vibrational eigenstates (0 1 3 0 0)II0 that are involved in an avoided crossing with the primary (0 1 3 0 0)I0 states, as designated in a previous report [Milce and B. J. Orr, J. Chem. Phys. 106, 3592 (1997)]; secondly, a Πu state locally perturbing (0 1 3 0 0)I0 in the range J=3-5; the adjacent (0 1 3 0 0)I0, J=6 state, which is locally perturbed but with no obvious mixed-in Π-character; and finally, the local perturber of the (0 4 0 3 3)+0 level at J=12. These three vibrational states are now identified and relabeled, according to their most prevalent zero-order normal-mode basis states, as (0 1 3 0 0)0 [previously (0 1 3 0 0)I0]; (0 4 0 3 3)2 [previously (0 1 3 0 0)II0]; (0 2 1 5 2)1 (previously an unidentified perturbing Πu state); and (0 1 1 8 2)2 [previously the unidentified local perturber of (0 4 0 3 3)+0, J=12]. This analysis is achieved with the aid of the well-established anharmonically coupled polyad model, adapted from a set of generalized quantum numbers for C2H2. The model has been expanded to include rotational structure, first, in the form of l-resonance off-diagonal elements and, second, in the form of a variety of resonant Coriolis-type interactions. We also predict likely identities for the perturber states involved in unusual odd-ΔJ symmetry-breaking effects that have been characterized dynamically. It is now postulated that these effects are due to resonant Stark mixing induced by electric fields arising in either molecular collisions or the infrared excitation pulse itself. Coincident ultraviolet probe transitions from doublet levels of opposite e/f parity also contribute to the observed odd-ΔJ energy transfer ascribed to symmetry breaking.

  2. Three dimensional colorimetric assay assemblies

    DOEpatents

    Charych, Deborah; Reichart, Anke

    2000-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  3. Biochemical Assays of Cultured Cells

    NASA Technical Reports Server (NTRS)

    Barlow, G. H.

    1985-01-01

    Subpopulations of human embryonic kidney cells isolated from continuous flow electrophoresis experiments performed at McDonnell Douglas and on STS-8 have been analyzed. These analyses have included plasminogen activator assays involving indirect methodology on fibrin plated and direct methodology using chromogenic substrates. Immunological studies were performed and the conditioned media for erythropoietin activity and human granulocyte colony stimulating (HGCSF) activity was analyzed.

  4. A theoretical study on the reaction pathways and the mechanism of 1,3- dipolar cycloaddition of vinyl acetylene and methyl azide.

    PubMed

    Siadati, Seyyed Amir; Mahboobifar, Ali; Nasiri, Ramin

    2014-01-01

    1,3-dipolar cycloaddition procedure is one of the most widely practiced methods in order to synthesize heterocyclic compounds. Although, it seems very simple, but, there are numerous precursors of heterocyclic molecules who have more than one positions to react with a 1,3-dipole species. As a result, while using a precursor with more than one position for reaction, it is probable to synthesize several products with different structures. This paper studies all possible interactions of vinyl acetylene, which has two positions for reaction, with methyl azide. This reaction could lead to the emergence of any 1,3-dipolar cycloaddition products. Our ultimate goal is to help researchers to find out how precursors containing both carbon-carbon double, and the triple bonds interact with 1,3- dipolar species. The present study used the DFT calculations at B3LYP/6-311++G(3df,pd) level to check all probable interactions between vinyl acetylene and methyl azide, and determined Potential Energy Surface, and optimized all species. PMID:24852164

  5. The effect of bending vibrations on the dipole moment of a linear polyatomic molecule: Analysis of the vibrational changes and transition moments for acetylene and diacetylene

    NASA Astrophysics Data System (ADS)

    Matsumura, Keiji; Tanaka, Takehiko

    1986-04-01

    The vibrational changes of the dipole moment and the transition dipole moments of difference and combination bands associated with the bending vibrations of acetylene and diacetylene were analyzed by means of the theoretical methods presented in Paper I of this series [ J. Mol. Spectrosc. 116, 320-333 (1986)]. In the case of acetylene it has been verified that such vibrational changes and transition moments are well approximated by the terms which may be calculated without the anharmonic force field. The second derivative of the dipole moment component parallel to the CC bond with respect to the CCH angle is determined as ( {∂ 2μ ‖}/{∂α 12}) e = -2.123 ± 0.035 D for HCCH. The corresponding derivative in HCCCCH is shown to be about 40% larger than in HCCH. This fact may be ascribed to the conjugation of the two CC triple bonds. The concept of the equivalent mode helps us graphically understand the correlation between certain transition moments and vibrational changes of the dipole moment.

  6. Hydrogen Abstraction Acetylene Addition and Diels-Alder Mechanisms of PAH Formation:  A Detailed Study Using First Principles Calculations.

    PubMed

    Kislov, V V; Islamova, N I; Kolker, A M; Lin, S H; Mebel, A M

    2005-09-01

    Extensive ab initio Gaussian-3-type calculations of potential energy surfaces (PES), which are expected to be accurate within 1-2 kcal/mol, combined with statistical theory calculations of reaction rate constants have been applied to study various possible pathways in the hydrogen abstraction acetylene addition (HACA) mechanism of naphthalene and acenaphthalene formation as well as Diels-Alder pathways to acenaphthalene, phenanthrene, and pyrene. The barrier heights; reaction energies; and molecular parameters of the reactants, products, intermediates, and transition states have been generated for all types of reactions involved in the HACA and Diels-Alder mechanisms, including H abstraction from various aromatic intermediates, acetylene addition to radical sites, ring closures leading to the formation of additional aromatic rings, elimination of hydrogen atoms, H disproportionation, C2H2 cycloaddition, and H2 loss. The reactions participating in various HACA sequences (e.g., Frenklach's, alternative Frenklach's, and Bittner and Howard's routes) are demonstrated to have relatively low barriers and high rate constants under combustion conditions. A comparison of the significance of different HACA mechanisms in PAH growth can be made in the future using PES and molecular parameters obtained in the present work. The results show that the Diels-Alder mechanism cannot compete with the HACA pathways even at high combustion temperatures, because of high barriers and consequently low reaction rate constants. The calculated energetic parameters and rate constants have been compared with experimental and theoretical data available in the literature. PMID:26641907

  7. 21 CFR 225.158 - Laboratory assays.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Laboratory assays. 225.158 Section 225.158 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... Laboratory assays. Where the results of laboratory assays of drug components, including assays by State...

  8. 21 CFR 225.158 - Laboratory assays.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Laboratory assays. 225.158 Section 225.158 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... Laboratory assays. Where the results of laboratory assays of drug components, including assays by State...

  9. 21 CFR 225.158 - Laboratory assays.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Laboratory assays. 225.158 Section 225.158 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... Laboratory assays. Where the results of laboratory assays of drug components, including assays by State...

  10. 21 CFR 225.158 - Laboratory assays.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Laboratory assays. 225.158 Section 225.158 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... Laboratory assays. Where the results of laboratory assays of drug components, including assays by State...

  11. 21 CFR 225.158 - Laboratory assays.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Laboratory assays. 225.158 Section 225.158 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... Laboratory assays. Where the results of laboratory assays of drug components, including assays by State...

  12. Aldehyde Reduction by Cytochrome P450

    PubMed Central

    Amunom, Immaculate; Srivastava, Sanjay; Prough, Russell A.

    2011-01-01

    This protocol describes the procedure for measuring the relative rates of metabolism of the α,β-unsaturated aldehydes, 9-anthracene aldehyde (9-AA) and 4-hydroxy-trans-2-nonenal (4-HNE); specifically the aldehyde reduction reactions of cytochrome P450s (CYPs). These assays can be performed using either liver microsomal or other tissue fractions, spherosome preparations of recombinant CYPs, or recombinant CYPs from other sources. The method used here to study the reduction of a model α,β-unsaturated aldehyde, 9-AA, by CYPs was adapted from the assay used to investigate 9-anthracene oxidation as reported by Marini et al. (Marini et al., 2003). For experiments measuring reduction of the endogenous aldehyde, 4-HNE, the substrate was incubated with CYP in the presence of oxygen and NADPH and the metabolites were separated by High Pressure Liquid Chromatograpy (HPLC), using an adaptation of the method of Srivastava et al. (Srivastava et al., 2010). For study of 9-AA and 4-HNE reduction, the first step involves incubation of the substrate with the CYP in appropriate media, followed by quantification of metabolites through either spectrofluorimetry or analysis by HPLC coupled with a radiometric assay, respectively. Metabolite identification can be achieved by HPLC GC-mass spectrometric analysis. Inhibitors of cytochrome P450 function can be utilized to show the role of the hemoprotein or other enzymes in these reduction reactions. The reduction reactions for CYP’s were not inhibited by either anaerobiosis or inclusion of CO in the gaseous phase of the reaction mixture. These character of these reactions are similar to those reported for some cytochrome P450-catalyzed azo reduction reactions. PMID:21553396

  13. The highly abundant urinary metabolite urobilin interferes with the bicinchoninic acid assay.

    PubMed

    Sampson, D L; Chng, Y L; Upton, Z; Hurst, C P; Parker, A W; Parker, T J

    2013-11-01

    Estimation of total protein concentration is an essential step in any protein- or peptide-centric analysis pipeline. This study demonstrates that urobilin, a breakdown product of heme and a major constituent of urine, interferes considerably with the bicinchoninic acid (BCA) assay. This interference is probably due to the propensity of urobilin to reduce cupric ions (Cu(2+)) to cuprous ions (Cu(1+)), thus mimicking the reduction of copper by proteins, which the assay was designed to do. In addition, it is demonstrated that the Bradford assay is more resistant to the influence of urobilin and other small molecules. As such, urobilin has a strong confounding effect on the estimate of total protein concentrations obtained by BCA assay and thus this assay should not be used for urinary protein quantification. It is recommended that the Bradford assay be used instead. PMID:23911526

  14. In vitro histone demethylase assays.

    PubMed

    Kokura, Kenji; Fang, Jia

    2009-01-01

    Histone methylation plays important roles in chromatin structure, transcription, and epigenetic state of the cell. Tremendous discoveries recently demonstrated that methylation mark is not static but is dynamically regulated by both histone methyltransferases and the histone demethylases. Two families of histone demethylases have been identified to remove methyl groups from lysine side chain through different reaction mechanisms in presence of distinct cofactors. Amine oxidase LSD1 family requires flavin adenine dinucleotide (FAD) whereas dioxygenase Jmjc domain-containing proteins family relies on Fe(II) and alpha-ketoglutarate. Identification of these enzymes opened a new era in understanding how chromatin dynamic is regulated and further understanding the regulation of these enzymes will provide significant insights into fundamental mechanisms of many biological processes and human diseases. This chapter describes different assay conditions and detection methods for different family of histone demethylases. We also summarize step-by-step protocols for purification and preparation of various histone substrates for histone demethylase assays. PMID:19381934

  15. Comet Assay in Cancer Chemoprevention.

    PubMed

    Santoro, Raffaela; Ferraiuolo, Maria; Morgano, Gian Paolo; Muti, Paola; Strano, Sabrina

    2016-01-01

    The comet assay can be useful in monitoring DNA damage in single cells caused by exposure to genotoxic agents, such as those causing air, water, and soil pollution (e.g., pesticides, dioxins, electromagnetic fields) and chemo- and radiotherapy in cancer patients, or in the assessment of genoprotective effects of chemopreventive molecules. Therefore, it has particular importance in the fields of pharmacology and toxicology, and in both environmental and human biomonitoring. It allows the detection of single strand breaks as well as double-strand breaks and can be used in both normal and cancer cells. Here we describe the alkali method for comet assay, which allows to detect both single- and double-strand DNA breaks. PMID:26608293

  16. Microbiologic assay of space hardware.

    NASA Technical Reports Server (NTRS)

    Favero, M. S.

    1971-01-01

    Review of the procedures used in the microbiological examination of space hardware. The general procedure for enumerating aerobic and anaerobic microorganisms and spores is outlined. Culture media and temperature-time cycles used for incubation are reviewed, along with assay systems designed for the enumeration of aerobic and anaerobic spores. The special problems which are discussed are involved in the precise and accurate enumeration of microorganisms on surfaces and in the neutralization of viable organisms buried inside solid materials that could be released to a planet's surface if the solid should be fractured. Special attention is given to sampling procedures including also the indirect techniques of surface assays of space hardware such as those using detachable or fallout strips. Some data on comparative levels of microbial contamination on lunar and planetary spacecraft are presented.

  17. Assaying caspase activity in vitro.

    PubMed

    McStay, Gavin P; Green, Douglas R

    2014-07-01

    Monitoring the activity of a caspase, either as an isolated protein or in a complex mixture (e.g., a cytosolic extract), can be achieved by measuring substrate cleavage. Chromogenic or fluorogenic substrates are available for many caspases. These substrates usually consist of the four-amino-acid motif that is optimal for each caspase and a moiety that, when cleaved, generates either a chromophore or a fluorophore that can be detected using spectrophotometric or fluorimetric means. In this protocol, we describe how to use these substrates to monitor caspase activity in samples containing active caspases (e.g., apoptotic cells). Caspase inhibitors, which contain a moiety that covalently attaches to the active site of the caspase, can be used in these assays. These assays will ascertain whether caspases are involved in a specific process (e.g., whether caspases are activated after an apoptotic stimulus) and are particularly informative if a purified caspase is used. However, the substrates and inhibitors are not specific for a particular caspase in an environment containing multiple caspases. So, if cytosolic or apoptotic cell extracts are used in these assays, additional experiments must be performed to identify exactly which caspases are involved. PMID:24987140

  18. Optical fiber hybridization assay fluorosensor

    NASA Astrophysics Data System (ADS)

    Pilevar, Saeed; Davis, Christopher C.; Hodzic, Vildana; Portugal, Frank

    1999-04-01

    The present work describes an all-fiber hybridization assay sensor that relies on the evanescent field excitation of fluorescence from surface-bound fluorophores. The evanescent field is made accessible through the use of a long adiabatically tapered single-mode fiber probe. A semiconductor laser operating at 785 nm wavelength is used in a pulsed mode to excite fluorescence in the tapered region of a fiber probe using the near-infrared fluorophore IRD 41. We have carried out real-time hybridization tests for IRD 41-labeled oligonucleotide at various probe concentrations binding to complementary oligonucleotide cross-linked to the tapered fiber surface. Short oligonucleotides (20-mer) bound to the fiber surface have been used to detect near-infrared dye labeled complementary sequences at sub-nanomolar levels. Sandwich assays with total RNA were conducted to examine the capability of the biosensor for detecting bacterial cells using rRNA as the target. The results indicate that this fluorosensor is capable of detecting H. pylori in a sandwich assay at picomolar concentrations.

  19. GPCR-radioligand binding assays.

    PubMed

    Flanagan, Colleen A

    2016-01-01

    Radioligand binding assays provide sensitive and quantitative information about guanine nucleotide protein G protein-coupled receptor (GPCR) expression and affinity for a wide variety of ligands, making them essential for drug structure-activity studies and basic GPCR research. Three basic radioligand binding protocols, saturation, indirect (competition, displacement, or modulation), and kinetic binding assays, are used to assess GPCR expression (Bmax), equilibrium dissociation constants for radioligands (Kd) and nonradioactive ligands (Ki), association and dissociation rates, and to distinguish competitive and allosteric mechanisms of GPCR-ligand interactions. Nonspecific radioligand binding may be mitigated by appropriate choices of reaction conditions. Radioligand depletion (bound radioactivity >10% of total radioligand), which compromises accuracy of Kd and Ki measurements, can be limited by adjusting receptor concentration and appropriate radioligand choice. Accurate Kd and Ki values in saturation and indirect binding assays depend on binding equilibrium. Equilibration time for high-affinity ligands, with slow dissociation rates, may require much extended incubation times or increased incubation temperature. PMID:26928545

  20. ARTICLES: Methanol Tolerant Non-noble Metal Co-C-N Catalyst for Oxygen Reduction Reaction Using Urea as Nitrogen Source

    NASA Astrophysics Data System (ADS)

    Si, Yu-jun; Chen, Chang-guo; Yin, Wei; Cai, Hui

    2010-06-01

    A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 °C in an inert nitrogen atmosphere. X-ray diffraction pattern indicates that a metallic β-Co is generated after the heat-treating process. The results from cyclic voltammograms show that the obtained Co-C-N(800) catalyst has good ORR catalytic activity in 0.5 mol/L H2SO4 solution. The catalyst is also good at methanol tolerance and stability in the acidic solution.