Science.gov

Sample records for acetyltransferase couples sup35

  1. The NatA Acetyltransferase Couples Sup35 Prion Complexes to the [PSI+] Phenotype

    PubMed Central

    Pezza, John A.; Langseth, Sara X.; Raupp Yamamoto, Rochele; Doris, Stephen M.; Ulin, Samuel P.; Salomon, Arthur R.

    2009-01-01

    Protein-only (prion) epigenetic elements confer unique phenotypes by adopting alternate conformations that specify new traits. Given the conformational flexibility of prion proteins, protein-only inheritance requires efficient self-replication of the underlying conformation. To explore the cellular regulation of conformational self-replication and its phenotypic effects, we analyzed genetic interactions between [PSI+], a prion form of the S. cerevisiae Sup35 protein (Sup35[PSI+]), and the three Nα-acetyltransferases, NatA, NatB, and NatC, which collectively modify ∼50% of yeast proteins. Although prion propagation proceeds normally in the absence of NatB or NatC, the [PSI+] phenotype is reversed in strains lacking NatA. Despite this change in phenotype, [PSI+] NatA mutants continue to propagate heritable Sup35[PSI+]. This uncoupling of protein state and phenotype does not arise through a decrease in the number or activity of prion templates (propagons) or through an increase in soluble Sup35. Rather, NatA null strains are specifically impaired in establishing the translation termination defect that normally accompanies Sup35 incorporation into prion complexes. The NatA effect cannot be explained by the modification of known components of the [PSI+] prion cycle including Sup35; thus, novel acetylated cellular factors must act to establish and maintain the tight link between Sup35[PSI+] complexes and their phenotypic effects. PMID:19073888

  2. Fock-space multireference coupled-cluster calculations of the hyperfine structure of isoelectronic {sup 33}S{sup -} and {sup 35,37}Cl

    SciTech Connect

    Das, Madhulita; Chaudhuri, Rajat K.; Chattopadhyay, Sudip; Mahapatra, Uttam Sinha

    2011-10-15

    Due to its flexibility and possible systematic improvement, the Fock-space (FS) multireference coupled-cluster (MRCC) method remains a very important tool for the computation of energy differences of spectroscopic interest. In the present work, the FS MRCC method for the electron detachment process has been applied to determine the magnetic hyperfine constant A{sub J} and nuclear quadrupole moments Q (related to electric hyperfine constant B{sub J}) for the lowest multiplets of {sup 33}S{sup -}, {sup 35}Cl, and {sup 37}Cl with Dirac-Fock orbitals. In addition, we also report {sup 2}P{sub 3/2}([Ne]3s{sup 2}3p{sup 5}) {yields} {sup 2}P{sub 1/2}([Ne]3s{sup 2}3p{sup 5}) magnetic dipole transition matrix element and electron affinity of {sup 35}Cl (i.e., ionization energy of Cl{sup -}). Calculated properties are in very good agreement with the available new standard or reference values.

  3. The beta decay asymmetry parameter of /sup 35/Ar

    SciTech Connect

    Garnett, J.D.

    1987-11-01

    The beta decay asymmetry parameter for /sup 35/Ar = /sup 35/Cl + e/sup +/ + nu/sub e/ has been remeasured in order to resolve a long standing puzzle. Previous asymmetry measurements, when combined with the comparative half-life, yield a value for the vector coupling constant, G/sub v/, that is in serious disagreement with the accepted value. We produced polarized /sup 35/Ar by a (p,n) reaction on /sup 35/Cl using the polarized proton beam provided by Lawrence Berkeley Laboratory's 88-Inch Cyclotron. The polarization of the /sup 35/Ar was determined by measuring the asymmetry of the positrons produced in /sup 35/Ar decay to the first excited state in /sup 35/Cl (branching ratio = 1.3%) in coincidence with a 1219.4 keV gamma ray. Our result, A/sub 0/ = 0.49 +- 0.10, combined with the comparative half-life yields a value for G/sub v/ in agreement with the accepted value.

  4. Coupled action of γ-glutamyl transpeptidase-glutathione and keratinase effectively degrades feather keratin and surrogate prion protein, Sup 35NM.

    PubMed

    Sharma, Richa; Gupta, Rani

    2012-09-01

    Recombinant Escherichia coli HB101 harboring keratinase rKP2 from Pseudomonas aeruginosa KS-1 degraded 2% chicken feather in LB-Amp medium in 24h. SEM analysis and detailed studies revealed that bacterial colonization of feather was a pre-requisite for degradation of feather by keratinase. The mechanism of sulfitolysis revealed involvement of free cystinyl group as a source of redox during colonization as DTNB inhibited feather degradation by rKP2. Involvement of GGT-GSH system in contribution of free cystinyl group for redox was established by using GGT knockout recombinant E. coli strain that failed to degrade feather inspite of successful colonization and keratinase production. Short term experiments further confirmed enhanced protein release from feather keratin in presence of GGT-GSH redox. In the presence of similar redox, rKP2 also degraded surrogate prion protein, Sup 35NM in 15 min at 37°C, pH 7.0. PMID:22776236

  5. /sup 35/S-glycosaminoglycan and /sup 35/S-glycopeptide metabolism by diabetic glomeruli and aorta

    SciTech Connect

    Brown, D.M.; Klein, D.J.; Michael, A.F.; Oegema, T.R.

    1982-05-01

    /sup 35/S-glycosaminoglycan metabolism by glomeruli isolated from streptozotocin-diabetic and control rats was studied in vivo and in vitro. Total /sup 35/S-glycosaminoglycan synthesis and retention in the matrix by diabetic glomeruli was reduced while degradation was increased. /sup 35/S-glycosaminoglycan content of isolated GBM was similarly decreased. Whereas /sup 35/S-glycosaminoglycan content of glomeruli and GBM was decreased after in vitro incubation with /sup 35/SO/sub 4/, a larger proportion of total /sup 35/S-glycosaminoglycans was found in the incubation medium from diabetic glomeruli. Both control and diabetic glomeruli synthesize /sup 35/S-labeled glycopeptides, the quantity from diabetic glomeruli being reduced. Aorta from /sup 35/SO/sub 4/-injected diabetic rats also synthesized reduced quantities of /sup 35/S-glycosaminoglycans. There were no preferential metabolic alterations of species of /sup 35/S-glycosaminoglycans by diabetic glomeruli or aortas. These studies suggest that synthesis of /sup 35/S-glycosaminoglycans and /sup 35/S-glycopeptides by diabetic glomeruli are altered by disturbances of both synthetic as well as degradative pathways. An alteration of /sup 35/S-glycosaminoglycans interaction with matrix components in diabetes is postulated.

  6. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles

    PubMed Central

    Liu, Shu; Hossinger, André; Hofmann, Julia P.; Denner, Philip

    2016-01-01

    ABSTRACT Prions are infectious protein particles that replicate by templating their aggregated state onto soluble protein of the same type. Originally identified as the causative agent of transmissible spongiform encephalopathies, prions in yeast (Saccharomyces cerevisiae) are epigenetic elements of inheritance that induce phenotypic changes of their host cells. The prototype yeast prion is the translation termination factor Sup35. Prions composed of Sup35 or its modular prion domain NM are heritable and are transmitted vertically to progeny or horizontally during mating. Interestingly, in mammalian cells, protein aggregates derived from yeast Sup35 NM behave as true infectious entities that employ dissemination strategies similar to those of mammalian prions. While transmission is most efficient when cells are in direct contact, we demonstrate here that cytosolic Sup35 NM prions are also released into the extracellular space in association with nanometer-sized membrane vesicles. Importantly, extracellular vesicles are biologically active and are taken up by recipient cells, where they induce self-sustained Sup35 NM protein aggregation. Thus, in mammalian cells, extracellular vesicles can serve as dissemination vehicles for protein-based epigenetic information transfer. PMID:27406566

  7. Preparation of sup 35 S-labeled polyphosphorothioate oligodeoxyribonucleotides by use of hydrogen phosphonate chemistry

    SciTech Connect

    Stein, A.; Iversen, P.L.; Subasinghe, C.; Cohen, J.S.; Stec, W.J.; Zon, G. )

    1990-07-01

    The title compounds were chemically synthesized as their 5'-dimethoxytrityl derivatives by base-catalyzed reaction of {sup 35}S-enriched elemental sulfur with support-bound hydrogen phosphonate oligomer. This was derived from adamantane carbonyl chloride-activated coupling of nucleotide hydrogen phosphonate monomers, and similarly activated capping with isopropyl phosphite. A convenient, disposable, reversed-phase cartridge was utilized to purify and isolate the 5'-dimethoxytrityl derivative for subsequent in situ detritylation and elution of the final product. The specific activity obtained for the title compounds was ca. 10(7) cpm/mumols-eq P(O)S-. The procedure should be readily adaptable to appropriate syntheses of other P-S containing analogs of DNA and RNA.

  8. In vivo evidence for the fibrillar structures of Sup35 prions in yeast cells

    PubMed Central

    Kawai-Noma, Shigeko; Pack, Chan-Gi; Kojidani, Tomoko; Asakawa, Haruhiko; Hiraoka, Yasushi; Kinjo, Masataka; Haraguchi, Tokuko; Hirata, Aiko

    2010-01-01

    Yeast prion [PSI+] is caused by aggregated structures of the Sup35 protein. Although Sup35 forms typical amyloid fibrils in vitro, there is no direct evidence for the fibrillar structures of Sup35 in vivo. We analyzed [PSI+] cells in which Sup35 fused with green fluorescent protein (GFP) formed aggregates visible by fluorescence microscopy using thin-section electron microscopy (EM). Rapid-freeze EM combined with an immunogold-labeling technique as well as correlative light EM, which allows high-resolution imaging by EM of the same structure observed by light (fluorescence) microscopy, shows that the aggregates contain bundled fibrillar structures of Sup35-GFP. Additional biochemical and fluorescent correlation spectroscopy results suggest that the Sup35 oligomers diffused in the [PSI+] lysates adopt fibril-like shapes. Our findings demonstrate that [PSI+] cells contain Sup35 fibrillar structures closely related to those formed in vitro and provide insight into the molecular mechanism by which Sup35 aggregates are assembled and remodeled in [PSI+] cells. PMID:20643880

  9. Structure of newly synthesized (/sup 35/S)-proteoglycans and (/sup 35/S)-proteoglycan turnover products of cartilage explant cultures from dogs with experimental osteoarthritis

    SciTech Connect

    Carney, S.L.; Billingham, M.E.; Muir, H.; Sandy, J.D.

    1985-01-01

    The structure of newly synthesized proteoglycans from explant cultures of cartilage from joints subjected to transection of the anterior cruciate ligament (osteoarthritic) and from normal (non- or sham-operated) joints was examined. The structure of the products of proteoglycan turnover was also examined using explants of normal and osteoarthritic cartilage maintained in culture for a 48 h chase period. The findings were as follows: Newly synthesized (/sup 35/S)-proteoglycans extracted from cartilage explants from osteoarthritic joints whether examined 3 weeks, 3 months, or 6 months after surgery were larger than those from corresponding normal cartilage. This can be explained by the synthesis in osteoarthritic cartilage of abnormally long chondroitin sulfate chains on newly synthesised proteoglycans. The extracts also contained a newly formed small proteoglycan species that was unable to interact with hyaluronic acid. The proportion of this species was higher in osteoarthritic cartilage compared with normal, examined 3 weeks after surgery, but was generally absent from cartilage obtained 3 and 6 months after surgery. Compared with controls, a smaller proportion of the (/sup 35/S)-proteoglycans released into the maintenance medium of explant cultures of osteoarthritic cartilage during a 48 h chase period was able to interact with hyaluronic acid. However, although furnished with longer (/sup 35/S)-glycosaminoglycan chains, these proteoglycans were smaller than those from control explants.

  10. Foliar leaching, translocation, and biogenic emission of sup 35 S in radiolabeled loblolly pines

    SciTech Connect

    Garten, C.T. Jr. )

    1990-02-01

    Foliar leaching, basipetal (downward) translocation, and biogenic emission of sulfur (S), as traced by {sup 35}S, were examined in a field study of loblolly pines. Four trees were radiolabeled by injection with amounts of {sup 35}S in the 6-8 MBq range, and concentrations in needle fall, stemflow, throughfall, and aboveground biomass were measured over a period of 15-20 wk after injection. The contribution of dry deposition to sulfate-sulfur (SO{sub 4}{sup 2{minus}}-S) concentrations in net throughfall (throughfall SO{sub 4}{sup 2{minus}}-S concentration minus that in incident precipitation) beneath all four trees was > 90%. Calculations indicated that about half of the summertime SO{sub 2} dry deposition flux to the loblolly pines was fixed in the canopy and not subsequently leached by rainfall. Based on mass balance calculations, {sup 35}S losses through biogenic emissions from girdled trees were inferred to be 25-28% of the amount injected. Estimates based on chamber methods and mass balance calculations indicated a range in daily biogenic S emission of 0.1-10 {mu}g/g dry needles. Translocation of {sup 35}S to roots in nongirdled trees was estimated to be between 14 and 25% of the injection. It is hypothesized that biogenic emission and basipetal translocation of S (and not foliar leaching) are important mechanisms by which forest trees physiologically adapt to excess S in the environment.

  11. Amino Acid Proximities in Two Sup35 Prion Strains Revealed by Chemical Cross-linking.

    PubMed

    Wong, Shenq-Huey; King, Chih-Yen

    2015-10-01

    Strains of the yeast prion [PSI] are different folding patterns of the same Sup35 protein, which stacks up periodically to form a prion fiber. Chemical cross-linking is employed here to probe different fiber structures assembled with a mutant Sup35 fragment. The photo-reactive cross-linker, p-benzoyl-l-phenylalanine (pBpa), was biosynthetically incorporated into bacterially prepared recombinant Sup(1-61)-GFP, containing the first 61 residues of Sup35, followed by the green fluorescent protein. Four methionine substitutions and two alanine substitutions were introduced at fixed positions in Sup(1-61) to allow cyanogen bromide cleavage to facilitate subsequent mass spectrometry analysis. Amyloid fibers of pBpa and Met/Ala-substituted Sup(1-61)-GFP were nucleated from purified yeast prion particles of two different strains, namely VK and VL, and shown to faithfully transmit specific strain characteristics to yeast expressing the wild type Sup35 protein. Intra- and intermolecular cross-linking were distinguished by tandem mass spectrometry analysis on fibers seeded from solutions containing equal amounts of (14)N- and (15)N-labeled protein. Fibers propagating the VL strain type exhibited intra- and intermolecular cross-linking between amino acid residues 3 and 28, as well as intra- and intermolecular linking between 32 and 55. Inter- and intramolecular cross-linking between residues 32 and 55 were detected in fibers propagating the VK strain type. Adjacencies of amino acid residues in space revealed by cross-linking were used to constrain possible chain folds of different [PSI] strains. PMID:26265470

  12. W8, a new Sup35 prion strain, transmits distinctive information with a conserved assembly scheme.

    PubMed

    Huang, Yu-Wen; Chang, Yuan-Chih; Diaz-Avalos, Ruben; King, Chih-Yen

    2015-01-01

    Prion strains are different self-propagating conformers of the same infectious protein. Three strains of the [PSI] prion, infectious forms of the yeast Sup35 protein, have been previously characterized in our laboratory. Here we report the discovery of a new [PSI] strain, named W8. We demonstrate its robust cellular propagation as well as the protein-only transmission. To reveal strain-specific sequence requirement, mutations that interfered with the propagation of W8 were identified by consecutive substitution of residues 5-55 of Sup35 by proline and insertion of glycine at alternate sites in this segment. Interestingly, propagating W8 with single mutations at residues 5-7 and around residue 43 caused the strain to transmute. In contrast to the assertion that [PSI] existed as a dynamic cloud of sub-structures, no random drift in transmission characteristics was detected in mitotically propagated W8 populations. Electron diffraction and mass-per-length measurements indicate that, similar to the 3 previously characterized strains, W8 fibers are composed of about 1 prion molecule per 4.7-Å cross-β repeat period. Thus differently folded single Sup35 molecules, not dimeric and trimeric assemblies, form the basic repeating units to build the 4 [PSI] strains. PMID:26038983

  13. W8, a new Sup35 prion strain, transmits distinctive information with a conserved assembly scheme

    PubMed Central

    Huang, Yu-Wen; Chang, Yuan-Chih; Diaz-Avalos, Ruben; King, Chih-Yen

    2015-01-01

    ABSTRACT Prion strains are different self-propagating conformers of the same infectious protein. Three strains of the [PSI] prion, infectious forms of the yeast Sup35 protein, have been previously characterized in our laboratory. Here we report the discovery of a new [PSI] strain, named W8. We demonstrate its robust cellular propagation as well as the protein-only transmission. To reveal strain-specific sequence requirement, mutations that interfered with the propagation of W8 were identified by consecutive substitution of residues 5–55 of Sup35 by proline and insertion of glycine at alternate sites in this segment. Interestingly, propagating W8 with single mutations at residues 5–7 and around residue 43 caused the strain to transmute. In contrast to the assertion that [PSI] existed as a dynamic cloud of sub-structures, no random drift in transmission characteristics was detected in mitotically propagated W8 populations. Electron diffraction and mass-per-length measurements indicate that, similar to the 3 previously characterized strains, W8 fibers are composed of about 1 prion molecule per 4.7-Å cross-β repeat period. Thus differently folded single Sup35 molecules, not dimeric and trimeric assemblies, form the basic repeating units to build the 4 [PSI] strains. PMID:26038983

  14. Measurement of the deposition and fate of {sup 35}SO{sub 2} in a pine plantation

    SciTech Connect

    Gay, D.W.; Murphy, C.E. Jr.

    1988-12-31

    An experiment was carried out to determine the uptake rate and fate of SO{sub 2} absorbed by the forest canopy. The radioactive tracer, {sup 35}S was used. Branches of loblolly pine were exposed to {sup 35}SO{sub 2} in the field with a portable chamber. The exposed branches were excised and a sample of needles was immediately washed with distilled water. The needles and water collected in the field was analyzed for {sup 35}S content. The results indicated that a portion of the {sup 35}S could be washed from the needles and another portion was not removed with a water rinse. The portion that could not be removed by rinsing was absorbed at a rate, and followed patterns of absorption, that suggested that absorption was controlled by stomatal diffusion, and thus was internal. The {sup 35}S that could be removed by rinsing appeared to be surface absorption.

  15. NMR shielding and spin–rotation constants of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules

    SciTech Connect

    Demissie, Taye B.

    2015-12-31

    This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants.

  16. Sup35 methionine oxidation is a trigger for de novo [PSI+] prion formation

    PubMed Central

    Grant, Chris M

    2015-01-01

    ABSTRACT. The molecular basis by which fungal and mammalian prions arise spontaneously is poorly understood. A number of different environmental stress conditions are known to increase the frequency of yeast [PSI+] prion formation in agreement with the idea that conditions which cause protein misfolding may promote the conversion of normally soluble proteins to their amyloid forms. A recent study from our laboratory has shown that the de novo formation of the [PSI+] prion is significantly increased in yeast mutants lacking key antioxidants suggesting that endogenous reactive oxygen species are sufficient to promote prion formation. Our findings strongly implicate oxidative damage of Sup35 as an important trigger for the formation of the heritable [PSI+] prion in yeast. This review discusses the mechanisms by which the direct oxidation of Sup35 might lead to structural transitions favoring conversion to the transmissible amyloid-like form. This is analogous to various environmental factors which have been proposed to trigger misfolding of the mammalian prion protein (PrPC) into the aggregated scrapie form (PrPSc). PMID:26267336

  17. {sup 35}Cl+{sup 12}C asymmetrical fission excitation functions

    SciTech Connect

    Beck, C.; Mahboub, D.; Nouicer, R.; Matsuse, T.; Djerroud, B.; Freeman, R.M.; Haas, F.; Hachem, A.; Morsad, A.; Youlal, M.; Dayras, R.; Wieleczko, J.P.; Berthoumieux, E.; Legrain, R.; Pollacco, E.

    1996-07-01

    The fully energy-damped yields from the {sup 35}Cl+{sup 12}C reaction have been systematically investigated using particle-particle coincidence techniques at a {sup 35}Cl bombarding energy of {approximately}8 MeV/nucleon. The fragment-fragment correlation data show that the majority of events arises from a binary-decay process with rather large numbers of secondary light-charged particles emitted from the two excited exit fragments. No evidence is observed for ternary break-up events. The binary-process results of the present measurement, along with those of earlier, inclusive experimental data obtained at several lower bombarding energies are compared with predictions of two different kinds of statistical model calculations. These calculations are performed using the transition-state formalism and the extended Hauser-Feshbach method and are based on the available phase space at the saddle point and scission point of the compound nucleus, respectively. The methods give comparable predictions and are both in good agreement with the experimental results thus confirming the fusion-fission origin of the fully damped yields. The similarity of the predictions for the two models supports the claim that the scission point configuration is very close to that of the saddle point for the light {sup 47}V compound system. The results also give further support for the specific mass-asymmetry-dependent fission barriers needed in the transition-state calculation. {copyright} {ital 1996 The American Physical Society.}

  18. Biosynthesis of lutropin in ovine pituitary slices: incorporation of (/sup 35/S)sulfate in carbohydrate units

    SciTech Connect

    Anumula, K.R.; Bahl, O.P.

    1983-02-01

    Sulfate incorporation into carbohydrate of lutropin (LH) has been studied in sheep pituitary slices using H/sub 2/(/sup 35/)SO/sub 4/. Labeled ovine LH was purified to homogeneity by Sephadex G-100 and carboxymethyl-Sephadex chromatography from both the incubation medium and tissue extract. Autoradiography of the gel showed only two protein bands which comigrated with the alpha and beta subunits of ovine LH in both the purified ovine LH and the immunoprecipitate obtained with LH-specific rabbit antiserum. Furthermore, (/sup 35/S)sulfate was also incorporated into several other proteins in addition to LH. The location of /sup 35/SO/sub 2-(4)/ in the oligosaccharides of ovine LH was evidenced by its presence in the glycopeptides obtained by exhaustive Pronase digestion. The location and the point of attachment of sulfate in the carbohydrate unit were established by the isolation of 4-O-(/sup 35/S)sulfo-N-acetylhexosaminyl-glycerols and 4-O-(/sup 35/S) sulfo-N-acetylglucosaminitol from the Smith degradation products and by the release of /sup 35/SO/sub 2-(4)/ by chondro-4-sulfatase. Thus, the present line of experimentation indicates the presence of sulfate on both the terminal N-acetylglucosamine and N-acetylgalactosamine in the oligosaccharide chains of the labeled ovine LH.

  19. Importance of low-oligomeric-weight species for prion propagation in the yeast prion system Sup35/Hsp104

    PubMed Central

    Narayanan, Saravanakumar; Bösl, Benjamin; Walter, Stefan; Reif, Bernd

    2003-01-01

    The [PSI+] determinant of Saccharomyces cerevisiae, consisting of the cytosolic translation termination factor Sup35, is a prion-type genetic element that induces an inheritable conformational change and converts the Sup35 protein into amyloid fibers. The molecular chaperone Hsp104 is required to maintain self-replication of [PSI+]. We observe in vitro that addition of catalytic amounts of Hsp104 to the prion-determining region of the NM domain of Sup35, Sup355–26, results in the dissociation of oligomeric Sup35 into monomeric species. Several intermediates of Sup355–26 could be detected during this process. Strong interactions are found between Hsp104 and hexameric/tetrameric Sup355–26, whereas the intermediate and monomeric “release” forms show a decreased affinity with respect to Hsp104, as monitored by saturation transfer difference and diffusion-ordered NMR spectroscopic experiments. Interactions are mediated mostly by the side chains of Gln, Asn, and Tyr residues in Sup355–26. No interaction can be detected between Hsp104 and higher oligomeric states (≥8) of Sup355–26. Taking into account the fact that Hsp104 is required for maintenance of [PSI+], we suggest that low-oligomeric-weight species of Sup35 are important for prion propagation in yeast. PMID:12876196

  20. Stoichiometry and Affinity of Thioflavin T Binding to Sup35p Amyloid Fibrils

    PubMed Central

    Sulatskaya, Anna I.; Kuznetsova, Irina M.; Belousov, Mikhail V.; Bondarev, Stanislav A.; Zhouravleva, Galina A.; Turoverov, Konstantin K.

    2016-01-01

    In this work two modes of binding of the fluorescent probe thioflavin T to yeast prion protein Sup35p amyloid fibrils were revealed by absorption spectrometry of solutions prepared by equilibrium microdialysis. These binding modes exhibited significant differences in binding affinity and stoichiometry. Moreover, the absorption spectrum and the molar extinction coefficient of the dye bound in each mode were determined. The fluorescence quantum yield of the dye bound in each mode was determined via a spectrofluorimetric study of the same solutions in which the recorded fluorescence intensity was corrected for the primary inner filter effect. As previously predicted, the existence of one of the detected binding modes may be due to the incorporation of the dye into the grooves along the fiber axis perpendicular to the β-sheets of the fibrils. It was assumed that the second type of binding with higher affinity may be due to the existence of ThT binding sites that are localized to areas where amyloid fibrils are clustered. PMID:27228180

  1. Determination of {sup 35}S in radioisotope wastes by a wet oxidation

    SciTech Connect

    Lee, Heung N.; Sang-Hoon Kang; Hong Joo Ahn; Kwang Yong Jee; Wook Hyun Sohn

    2007-07-01

    The oxidation studies of a sulfur to a sulfate ion by various oxy-halide oxidants in organic (thiourea, methionine) and inorganic (sulfate, thiophosphate) compounds were carried out in an acidic solution. The optimized result of the oxidation reaction was obtained when a bromate compound (BrO{sub 3}{sup -}) as an oxidant and a 3 M HNO{sub 3} solvent. The chemical yield for the oxidation of the organic and inorganic sulfur compounds to a sulfate ion was monitored as 80% for thiophosphate, 87% for methionine, and 100% for thiourea and sulfate within 5% RSD. The oxidation of thiourea required at least 1.6 equivalents of the bromate in an acidic solution. In the case of the oxidation of methionine and thiophosphate, the oxidation yield was above 80% if the bromate was used at 20 times that of the substrates. The chemical yield in the paper sample (WypAll) exceeded 100% because of its background sulfur contents (910 ppm). The sulfate ion was quantitatively measured by using GPC and/or LSC counting of 3 S followed by precipitates of BaSO{sub 4}. The interfering nuclides ({sup 14}C, {sup 32}P) were removed in an acidic condition. The minimum detectable activity (MDA) of {sup 35}S was found to be 0.1 Bq/g. (authors)

  2. Endosperm protein synthesis and L-(/sup 35/S)methionine incorporation in maize kernels cultured in vitro

    SciTech Connect

    Cully, D.E.; Gengenbach, B.G.; Smith, J.A.; Rubenstein, I.; Connely, J.A.; Park, W.D.

    1984-02-01

    This study was conducted to examine protein synthesis and L-(/sup 35/S)methionine incorporation into the endosperm of Zea mays L. kernels developing in vitro. Two-day-old kernels of the inbred line W64A were placed in culture on a defined medium containing 10 microCuries L-(/sup 35/S)methionine per milliliter (13 milliCuries per millimole) and harvested at 10, 15, 20, 25, 30, 35, and 40 days after pollination. Cultured kernels attained a final endosperm mass of 120 milligrams compared to 175 milligrams for field-grown controls. Field and cultured kernels had similar concentrations (microgram per milligram endosperm for total protein, albumin plus globulin, zein, and glutelin fractions at most kernel ages. Sodium, dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing patterns for endosperm proteins were similar for field and cultured kernels throughout development. By 15 days, over 70% of the L-(/sup 35/S)methionine taken up was present in endosperm proteins. Label incorporation visualized by fluorography generally followed the protein intensity of the stained gels. The high methionine content, low molecular weight zeins (i.e. 15 and 9 kilodaltons) were highly labeled. All of the radioactivity in hydrolyzed zein samples was recovered in the methionine peak indicating minimal conversion to L-(/sup 35/S)cysteine. The procedure described here is suitable for long term culture and labeling experiments in which continued kernel development is required.

  3. Effect of electrostatics on aggregation of prion protein Sup35 peptide

    NASA Astrophysics Data System (ADS)

    Portillo, Alexander M.; Krasnoslobodtsev, Alexey V.; Lyubchenko, Yuri L.

    2012-04-01

    Self-assembly of misfolded proteins into ordered fibrillar structures is a fundamental property of a wide range of proteins and peptides. This property is also linked with the development of various neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Environmental conditions modulate the misfolding and aggregation processes. We used a peptide, CGNNQQNY, from yeast prion protein Sup35, as a model system to address effects of environmental conditions on aggregate formation. The GNNQQNY peptide self-assembles in fibrils with structural features that are similar to amyloidogenic proteins. Atomic force microscopy (AFM) and thioflavin T (ThT) fluorescence assay were employed to follow the aggregation process at various pHs and ionic strengths. We also used single molecule AFM force spectroscopy to probe interactions between the peptides under various conditions. The ThT fluorescence data showed that the peptide aggregates fast at pH values approaching the peptide isoelectric point (pI = 5.3) and the kinetics is 10 times slower at acidic pH (pH 2.0), suggesting that electrostatic interactions contribute to the peptide self-assembly into aggregates. This hypothesis was tested by experiments performed at low (11 mM) and high (150 mM) ionic strengths. Indeed, the aggregation lag time measured at pH 2 at low ionic strength (11 mM) is 195 h, whereas the lag time decreases ˜5 times when the ionic strength is increased to 150 mM. At conditions close to the pI value, pH 5.6, the aggregation lag time is 12 ± 6 h under low ionic strength, and there is minimal change to the lag time at 150 mM NaCl. The ionic strength also influences the morphology of aggregates visualized with AFM. In pH 2.0 and at high ionic strength, the aggregates are twofold taller than those formed at low ionic strength. In parallel, AFM force spectroscopy studies revealed minimal contribution of electrostatics to dissociation of transient peptide dimers.

  4. CNS depressants accelerate the dissociation of /sup 35/S-TBPS binding and GABA enhances their displacing potencies

    SciTech Connect

    Maksay, G.; Ticku, M.K.

    1988-01-01

    The specific binding of /sup 35/S-t-butylbicyclophosphorothionate (TBPS) was studied in synaptosomal membranes of rat cerebral cortex. The displacing potencies of eleven CNS depressants and three convulsants were determined in the presence of 1 /sup +/M GABA and 10 nM R 5135. GABA enhanced the displacing potencies of depressants of most diverse chemical structures: diaryltriazine (LY 81067), pyrazolopyridine (etazolate), cinnamide, glutarimide, 2,3-benzodiazepine (tofizopam) and alcohol derivatives, barbiturates, (+)etomidate, methaqualone and meprobamate. In contrast, the IC/sub 50/ values of convulsants (picrotoxinin, pentetrazol and the barbiturate enantiomer S(+)MPPB) were not significantly affected. The depressants accelerated either basal or GABA-augmented dissociation of /sup 35/-TBPS mainly by increasing the contribution of its rapid first phase.

  5. Method for the typing of Clostridium difficile based on polyacrylamide gel electrophoresis of (/sup 35/S)methionine-labeled proteins

    SciTech Connect

    Tabaqchali, S.; O'Farrell, S.; Holland, D.; Silman, R.

    1986-01-01

    A typing method for Clostridium difficile based on the incorporation of (/sup 35/S)methionine into cellular proteins, their separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their visualization by autoradiography is described. On analysis of the radiolabeled-protein profiles, nine distinct groups were observed (A to E and W to Z). The method, which is simple, reproducible, and readily expandable, has been applied in epidemiological studies to demonstrate cross-infection and hospital acquisition of C. difficile.

  6. High performance liquid chromatography (HPLC) study of (/sup 35/S)- and (/sup 3/H)-labeled mucus glycoproteins secreted by the isolated mucociliated gill epithelium of Mytilus edulis

    SciTech Connect

    Sabouni, A.; Ma, J.K.; Malanga, C.J.

    1986-03-05

    HPLC combined with (/sup 35/S)-sulfate/(/sup 3/H)-glucosamine radiolabeling were employed to study the synthesis and secretion of mucous glycoproteins. The radiolabeled secreted glycoproteins were separated from the medium by precipitation with a mixture of trichloroacetic-phosphotungstic acids (TCA/PTA). The redissolved glycoproteins were chromatographed on an anion exchange protein column at varying pH of the mobile phase and fractions were collected for liquid scintillation counting. Varying the pH of the mobile phase from pH 3 to 7 resulted in a decrease of glycoprotein bound (/sup 35/S) from 69.5 to 0.5% of the total recovered (/sup 35/S)-sulfate with the remainder recovered as free (/sup 35/S)-sulfate. The (/sup 3/H)-labeled glycoprotein recovered under the uV peaks at this pH range was 99.5%. When high performance size exclusion chromatography was performed the change in mobile phase pH did not affect the 100% recovery of either (/sup 35/S)- or (/sup 3/H)-labels under the uV peaks. No free (/sup 35/S)-sulfate was obtained when (/sup 35/S)-labeled glycoproteins were separated form the medium using dialysis. These data suggest that the standard method of TCA/PTA precipitation of (/sup 35/S)-labeled glycoproteins may cleave the (/sup 35/S)-sulfate ester linkages to the oligosaccharide chains. The (/sup 35/S)-sulfate may then rebind to the macromolecule by a relatively strong noncovalent bond. This may prove critical in anion exchange protein HPLC studies.

  7. Source of error in the chromatographic study of /sup 35/S-sulfate labeled mucous glycoproteins secreted by the gill epithelium of Mytilus edulis

    SciTech Connect

    Sabouni, A.H.; Ma, J.K.; Malanga, C.J.

    1986-01-01

    HPLC combined with (/sup 35/S)-sulfate/(/sup 3/H)-glucosamine radiolabeling were employed to study the synthesis and secretion of mucous glycoproteins. The secreted radiolabeled glycoproteins were separated from the medium by precipitation with a mixture of trichloroacetic-phosphotungstic acids (TCA/PTA). The redissolved glycoproteins were chromatographed on an anion exchange protein column at varying pH of the mobile phase and fractions were collected for liquid scintillation counting. Varying the pH of the mobile phase from pH 3 to 7 resulted in a decrease of glycoprotein bound (/sup 35/S) from 69.5 to 0.5% of the total recovered (/sup 35/S)-sulfate with the remainder recovered as free (/sup 35/S)-sulfate. The (/sup 3/H)-labeled glycoprotein recovered under the uV peaks at this pH range was 99.5%. When high performance size exclusion chromatography was performed the change in mobile phase pH did not affect the 100% recovery of either (/sup 35/S)-or (/sup 3/H)-labels under the uV peaks. No free (/sup 35/S)-sulfate was obtained when (/sup 35/S)-labeled glycoproteins were separated from the medium using dialysis. These data suggest that the standard method of TCA/PTA precipitation of (/sup 35/S)-labeled glycoproteins may cleave the (/sup 35/S)-sulfate ester linkages to the oligosaccharide chains. The (/sup 35/S)-sulfate may then rebind to the macromolecule by a relatively strong noncovalent bond. This may prove critical in anion exchange protein HPLC studies.

  8. Differential identification of Candida species and other yeasts by analysis of (/sup 35/S)methionine-labeled polypeptide profiles

    SciTech Connect

    Shen, H.D.; Choo, K.B.; Tsai, W.C.; Jen, T.M.; Yeh, J.Y.; Han, S.H.

    1988-12-01

    This paper describes a scheme for differential identification of Candida species and other yeasts based on autoradiographic analysis of protein profiles of (/sup 35/S)methionine-labeled cellular proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using ATCC strains as references, protein profile analysis showed that different Candida and other yeast species produced distinctively different patterns. Good agreement in results obtained with this approach and with other conventional systems was observed. Being accurate and reproducible, this approach provides a basis for the development of an alternative method for the identification of yeasts isolated from clinical specimens.

  9. Protein N-terminal acetyltransferases in cancer.

    PubMed

    Kalvik, T V; Arnesen, T

    2013-01-17

    The human N-terminal acetyltransferases (NATs) catalyze the transfer of acetyl moieties to the N-termini of 80-90% of all human proteins. Six NAT types are present in humans, NatA-NatF, each is composed of specific subunits and each acetylates a set of substrates defined by the N-terminal amino-acid sequence. NATs have been suggested to act as oncoproteins as well as tumor suppressors in human cancers, and NAT expression may be both elevated and decreased in cancer versus non-cancer tissues. Manipulation of NATs in cancer cells induced cell-cycle arrest, apoptosis or autophagy, implying that these enzymes target a variety of pathways. Of particular interest is hNaa10p (human ARD1), the catalytic subunit of the NatA complex, which was coupled to a number of signaling molecules including hypoxia inducible factor-1α, β-catenin/cyclin D1, TSC2/mammalian target of rapamycin, myosin light chain kinase , DNA methyltransferase1/E-cadherin and p21-activated kinase-interacting exchange factors (PIX)/Cdc42/Rac1. The variety of mechanistic links where hNaa10p acts as a NAT, a lysine acetyltransferase or displaying a non-catalytic role, provide insights to how hNaa10p may act as both a tumor suppressor and oncoprotein. PMID:22391571

  10. Thermostable keratinase from Bacillus pumilus KS12: production, chitin crosslinking and degradation of Sup35NM aggregates.

    PubMed

    Rajput, Rinky; Gupta, Rani

    2013-04-01

    Production of thermostable keratinase from Bacillus pumilus KS12 was enhanced up to seven fold by statistical methods. The enzyme was partially purified by ultrafiltration followed by thermal precipitation with purity of 3.2-fold and recovery of 89%. Keratinase was immobilized using covalent method by crosslinking 2 mg protein (688 U/mg) onto 1g chitin activated with 2.5% (v/v) glutaraldehyde for 60 min. Its comparative biochemical studies with that of free keratinase revealed the shift in optimum pH with increased stability towards pH from 9.0 to 10.0 and temperature. Also, it showed statistically significant improved hydrolysis of a number of soluble and insoluble substrates in comparison to free keratinase. Owing to improved catalytic efficiency of immobilized keratinase, its potential for degradation of Sup35NM was evaluated, where 100 μg of enzyme could degrade 60 μg Sup35NM after 60 min at pH 7.0 and 37°C. PMID:23425582

  11. Saturable binding of /sup 35/S-t-butylbicyclophosphorothionate to the sites linked to the GABA receptor and the interaction with gabaergic agents

    SciTech Connect

    Wong, D.T.; Threlkeld, P.G.; Bymaster, F.P.; Squires, R.F.

    1984-02-27

    /sup 35/S-t-Butylbicyclophosphorothionate (/sup 35/S-TBPS) binds in a concentration-saturable manner to specific sites on membranes from rat cerebral cortex. Using a filtration assay at 25/sup 0/C, in 250 mM NaCl, specific binding of /sup 35/S-TBPS constitutes about 84 to 94 percent of total binding, depending on radioligand concentrations. /sup 35/S-TBPS binding is optimal in the presence of NaCl or NaBr and substantially less in the presence of NaI or NaF. It is sensitive to the treatment with 0.05 percent Triton X-100 but not to repeated freezing and thawing, procedures which increase /sup 3/H-GABA binding. Pharmacological studies show that /sup 35/S-TBPS binding is strongly inhibited by GABA-A receptor agonists (e.g., GABA and muscimol) and by the noncompetitive antagonist, picrotoxin, but not the competitive antagonist, bicuculline. Compounds which enhance binding of radioactive GABA and benzodiazepines, such as the pyrazolopyridines, cartazolate and tracazolate, and a diaryltriazine, LY81067, are also potent inhibitors of /sup 35/S-TBPS binding, with LY81067 being the most effective. The effects of GABA, picrotoxin and LY81067 on the saturable binding of /sup 35/S-TBPS in cortical membranes are compared. The present findings are consistent with the interpretation that /sup 35/S-TBPS bind at or near the picrotoxin-sensitive anion recognition sites of the GABA/benzodiazepine/picrotoxin receptor complex.

  12. Saturable binding of /sup 35/S-t-butylbicyclophosphorothionate to the sites linked to the GABA receptor and the interaction with gabaergic agents

    SciTech Connect

    Wong, D.T.; Threlkeld, P.G.; Bymaster, F.P.; Squires, R.F.

    1984-02-27

    /sup 35/-S-t-Butylbicyclophosphorothionate (/sup 35/S-TBPS) binds in a concentration-saturable manner to specific sites on membranes from rat cerebral cortex. Using a filtration assay at 25/sup 0/C, in 250 mM NaCl, specific binding of /sup 35/S-TBPS constitutes about 84 to 94 percent of total binding, depending on radioligand concentrations. /sup 35/S-TBPS binding is optimal in the presence of NaCl or NaBr and substantially less in the presence of NaI or NaF. It is sensitive to the treatment with 0.05 percent Triton X-100 but not to repeated freezing and thawing, procedures which increase /sup 3/H-GABA binding. Pharmacological studies show that /sup 35/S-TBPS binding is strongly inhibited by GABA-A receptor agonists (e.g., GABA and muscimol) and by the noncompetitive antagonist, picrotoxin, but not the competitive antagonist, bicuculline. Compounds which enhance binding of radioactive GABA and benzodiazepines, such as the pyrazolopyridines, cartazolate and trazolate, and a diaryl-triazine, LY81067, are also potent inhibitors of /sup 35/S-TBPS binding, with LY81067 being the most effective. The effects of GABA, picrotoxin

  13. In Sup35p filaments (the [PSI+] prion), the globular C-terminal domains are widely offset from the amyloid fibril backbone

    SciTech Connect

    Baxa, U.; Wall, J.; Keller, P. W.; Cheng, N.; Steven, A. C.

    2011-01-01

    In yeast cells infected with the [PSI+] prion, Sup35p forms aggregates and its activity in translation termination is downregulated. Transfection experiments have shown that Sup35p filaments assembled in vitro are infectious, suggesting that they reproduce or closely resemble the prion. We have used several EM techniques to study the molecular architecture of filaments, seeking clues as to the mechanism of downregulation. Sup35p has an N-terminal 'prion' domain; a highly charged middle (M-)domain; and a C-terminal domain with the translation termination activity. By negative staining, cryo-EM and scanning transmission EM (STEM), filaments of full-length Sup35p show a thin backbone fibril surrounded by a diffuse 65-nm-wide cloud of globular C-domains. In diameter ({approx}8 nm) and appearance, the backbones resemble amyloid fibrils of N-domains alone. STEM mass-per-unit-length data yield -1 subunit per 0.47 nm for N-fibrils, NM-filaments and Sup35p filaments, further supporting the fibril backbone model. The 30 nm radial span of decorating C-domains indicates that the M-domains assume highly extended conformations, offering an explanation for the residual Sup35p activity in infected cells, whereby the C-domains remain free enough to interact with ribosomes.

  14. Spermidine induces autophagy by inhibiting the acetyltransferase EP300

    PubMed Central

    Pietrocola, F; Lachkar, S; Enot, D P; Niso-Santano, M; Bravo-San Pedro, J M; Sica, V; Izzo, V; Maiuri, M C; Madeo, F; Mariño, G; Kroemer, G

    2015-01-01

    Several natural compounds found in health-related food items can inhibit acetyltransferases as they induce autophagy. Here we show that this applies to anacardic acid, curcumin, garcinol and spermidine, all of which reduce the acetylation level of cultured human cells as they induce signs of increased autophagic flux (such as the formation of green fluorescent protein-microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta and the depletion of sequestosome-1, p62/SQSTM1) coupled to the inhibition of the mammalian target of rapamycin complex 1 (mTORC1). We performed a screen to identify the acetyltransferases whose depletion would activate autophagy and simultaneously inhibit mTORC1. The knockdown of only two acetyltransferases (among 43 candidates) had such effects: EP300 (E1A-binding protein p300), which is a lysine acetyltranferase, and NAA20 (N(α)-acetyltransferase 20, also known as NAT5), which catalyzes the N-terminal acetylation of methionine residues. Subsequent studies validated the capacity of a pharmacological EP300 inhibitor, C646, to induce autophagy in both normal and enucleated cells (cytoplasts), underscoring the capacity of EP300 to repress autophagy by cytoplasmic (non-nuclear) effects. Notably, anacardic acid, curcumin, garcinol and spermidine all inhibited the acetyltransferase activity of recombinant EP300 protein in vitro. Altogether, these results support the idea that EP300 acts as an endogenous repressor of autophagy and that potent autophagy inducers including spermidine de facto act as EP300 inhibitors. PMID:25526088

  15. Effects of cysteamine administration on the in vivo incorporation of (/sup 35/S)cysteine into somatostatin-14, somatostatin-28, arginine vasopressin, and oxytocin in rat hypothalamus

    SciTech Connect

    Cameron, J.L.; Fernstrom, J.D.

    1986-09-01

    The effect of cysteamine injection on the in vivo incorporation of (/sup 35/S)cysteine into somatostatin-14 (SRIF-14), SRIF-28, arginine vasopressin (AVP), and oxytocin (OXT) in rat hypothalamus was studied. (/sup 35/S)Cysteine was injected into the third ventricle 1 h, 4 h, or 1 week after cysteamine (300 mg/kg, sc) injection; animals were killed 4 h later. The drug was found to substantially reduce immunoreactive SRIF levels, but not OXT or AVP, 4 h after its injection. Cysteamine also caused large reductions in label incorporation into SRIF-14, SRIF-28, and OXT 1 and 4 h after drug injection. However, (/sup 35/S)cysteine incorporation into AVP was increased substantially at these time points, while that into acid-precipitable protein was normal. One week after cysteamine injection, label incorporation into all hypothalamic peptides was normal. Cysteine specific activity was also measured after (/sup 35/S)cysteine injection and was found to be similar in treatment and control groups. The results suggest that cysteamine inhibits the syntheses of SRIF-14, SRIF-28, and OXT and stimulates that of AVP.

  16. Expression of. beta. -conglycinin gene driven by CaMV /sup 35/S promoter in transgenic plants

    SciTech Connect

    Nakamura, I.; Dube, P.H.; Beachy, R.N.

    1987-04-01

    ..beta..-conglycinin is a abundant protein stored in protein bodies of soybean seeds. This protein consists of three major subunits, ..cap alpha..' (76 kDa), ..cap alpha.. (72 kDa) and ..beta.. (53 kDa), and accumulates in developing soybean embryos during the mid- to late-maturation stages of seed development. Coding sequence of an ..cap alpha..'-subunit gene was expressed in transgenic petunia plants under control of the promoter from the CaMV (cauliflower mosaic virus) /sup 35/S transcript. Two different types of ..cap alpha..'-protein accumulated in tissues of the transgenic plant; seed-type ..cap alpha..'-protein accumulated only in seeds during mid- to late-maturation stages, while non-seed-type ..cap alpha..'-protein was found in non-seed tissues and in early stages of seed maturation. Seed-type ..cap alpha..'-protein was the same size as soybean ..cap alpha..'-subunit, while non-seed-type ..cap alpha..'-protein was larger by about 4 kDa. Seeds contained approximately 30-fold greater levels of ..cap alpha..'-protein than did non-seed tissues. This is presumably due to differences in protein stability because the amount of ..cap alpha..'-mRNA was equivalent in each of the tissues examined. The ..cap alpha..'-protein in leaves was localized in microsomal membrane fractions. Proteins solubilized from the membranes were sedimented by sucrose gradient centrifugation and analyzed by immuno blot technique. The results suggest that the protein assembles into multimeric forms in leaf membranes, as it does in seed protein bodies.

  17. Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae.

    PubMed Central

    Bailleul, P A; Newnam, G P; Steenbergen, J N; Chernoff, Y O

    1999-01-01

    Striking similarities between cytoskeletal assembly and the "nucleated polymerization" model of prion propagation suggest that similar or overlapping sets of proteins may assist in both processes. We show that the C-terminal domain of the yeast cytoskeletal assembly protein Sla1 (Sla1C) specifically interacts with the N-terminal prion-forming domain (Sup35N) of the yeast release factor Sup35 (eRF3) in the two-hybrid system. Sla1C and several other Sup35N-interacting proteins also exhibit two-hybrid interactions with the poly-Gln-expanded N-proximal fragment of human huntingtin, which promotes Huntington disease-associated aggregation. The Sup35N-Sla1C interaction is inhibited by Sup35N alterations that make Sup35 unable to propagate the [PSI(+)] state and by the absence of the chaperone protein Hsp104, which is essential for [PSI] propagation. In a Sla1(-) background, [PSI] curing by dimethylsulfoxide or excess Hsp104 is increased, while translational readthrough and de novo [PSI] formation induced by excess Sup35 or Sup35N are decreased. These data show that, in agreement with the proposed function of Sla1 during cytoskeletal formation, Sla1 assists in [PSI] formation and propagation, but is not required for these processes. Sla1(-) strains are sensitive to some translational inhibitors, and some sup35 mutants, obtained in a Sla1(-) background, are sensitive to Sla1, suggesting that the interaction between Sla1 and Sup35 proteins may play a role in the normal function of the translational apparatus. We hypothesize that Sup35N is involved in regulatory interactions with intracellular structural networks, and [PSI] prion may be formed as a by-product of this process. PMID:10471702

  18. Distributions of /sup 35/S-sulfate and /sup 3/H-glucosamine in the angular region of the hamster: light and electron microscopic autoradiography

    SciTech Connect

    Ohnishi, Y.; Taniguchi, Y.

    1983-06-01

    The distribution of /sup 35/S-sulfate and /sup 3/H-glucosamine in the angular region of the hamster was studied by light and electron microscopic autoradiography following intraperitoneal injection of these compounds to hamsters. Exposed silver grains of /sup 35/S-sulfate were concentrated in the trabecular meshwork, sclera, and cornea, and grains of /sup 3/H-glucosamine were localized in the trabecular region. The radioactivity of both isotopes was observed in the Golgi apparatuses of the endothelial cells of the angular aqueous plexus and the trabecular meshwork. The grains were noted over the entire cytoplasm, except for the nucleus, and then were incorporated into the amorphous substance and collagen fibers in the region adjacent to the angular aqueous sinus. These results suggest that endothelial cells in the angular region synthesize and secrete the sulfated glycosaminoglycans and hyaluronic acid.

  19. Formation of a necklike structure in {sup 35}Cl+{sup 12}C and {sup 197}Au reactions at 43 MeV/nucleon

    SciTech Connect

    Larochelle, Y.; Gingras, L.; Beaulieu, L.; Qian, X.; Saddiki, Z.; Djerroud, B.; Dore, D.; Laforest, R.; Roy, R.; Samri, M.; St-Pierre, C.; Ball, G.C.; Bowman, D.R.; Galindo-Uribarri, A.; Hagberg, E.; Horn, D.; Lopez, J.A.; Robinson, T.

    1997-04-01

    The experimental signature of the formation of a necklike structure, with a velocity between that of the projectilelike emitter and that of the targetlike emitter, is investigated with the same beam and experimental setup for targets lighter and heavier than the projectile. The reactions are {sup 35}Cl on {sup 12}C and on {sup 197}Au at 43 MeV/nucleon. Particle velocity distributions are compared with two-source statistical simulations and the presence of a necklike structure is inferred from the data. In the second part of the paper, dynamical model simulations with the formation of a necklike structure are presented for the {sup 35}Cl+{sup 12}C system at 43 MeV/nucleon. {copyright} {ital 1997} {ital The American Physical Society}

  20. Decoloration and solubilization of plant tissue prior to determination of /sup 3/H, /sup 14/C, and /sup 35/S by liquid scintillation

    SciTech Connect

    Smith, I.K.; Lang, A.L.

    1987-08-01

    A method is described for the decoloration and partial solubilization of plant tissue with 2% sodium hypochlorite. Following treatment of the digest with ammonia, the samples are suitable for the determination of /sup 3/H, /sup 14/C, and /sup 35/S by liquid scintillation counting. The color quenching is negligible and counting efficiencies are high: 30-40% for /sup 3/H and 90-95% for /sup 14/C.

  1. In vivo biosynthesis of L-(/sup 35/S)Cys-arginine vasopressin, -oxytocin, and -somatostatin: rapid estimation using reversed phase high pressure liquid chromatography. [Rats

    SciTech Connect

    Franco-Bourland, R.E.; Fernstrom, J.D.

    1981-01-01

    L(/sup 35/S)Cys-arginine vasopressin, -oxytocin, and -somatostatin were purified from hypothalami and neurohypophyses 4 h after rats received L(/sup 35/S)Cys via the third ventricle. After acetic acid extraction, Sephadex G-25 filtration, and chemoadsorption to C18-silica (Sep-Pak cartridges), the labeled peptides were rapidly separated by gradient elution, reversed phase, high pressure liquid chromatography (HPLC). The identity and isotopic purity of the labeled peptides were determined by several reversed phase HPLC procedures in conjunction with chemical modification. The labeled peptide fractions were at least 50% radiochemically pure. Using this HPLC isolation procedure, incorporation of L-(/sup 35/S)Cys into each peptide was determined in hydrated and dehydrated rats. Label incorporation into arginine vasopressin and oxytocin in the hypothalamus and the neurohypophysis of dehydrated rats was 2-3 times greater than that in hydrated rats. Incorporation of label into hypothalamic and neurohypophyseal somatostatin was unaffected by the hydration state of the animal. This procedure thus provides a very rapid, but sensitive, set of techniques for studying the control of small peptide biosynthesis in the brain.

  2. Neisseria meningitidis serogroup A capsular polysaccharide acetyltransferase, methods and compositions

    SciTech Connect

    Stephens, David S.; Gudlavalleti, Seshu K.; Tzeng, Yih-Ling; Datta, Anup K.; Carlson, Russell W.

    2011-02-08

    Provided are methods for recombinant production of an O-acetyltransferase and methods for acetylating capsular polysaccharides, especially those of a Serogroup A Neisseria meningitidis using the recombinant O-acetyltransferase, and immunogenic compositions comprising the acetylated capsular polysaccharide.

  3. Insights into the Specificity of Lysine Acetyltransferases*

    PubMed Central

    Tucker, Alex C.; Taylor, Keenan C.; Rank, Katherine C.; Rayment, Ivan; Escalante-Semerena, Jorge C.

    2014-01-01

    Reversible lysine acetylation by protein acetyltransferases is a conserved regulatory mechanism that controls diverse cellular pathways. Gcn5-related N-acetyltransferases (GNATs), named after their founding member, are found in all domains of life. GNATs are known for their role as histone acetyltransferases, but non-histone bacterial protein acetytransferases have been identified. Only structures of GNAT complexes with short histone peptide substrates are available in databases. Given the biological importance of this modification and the abundance of lysine in polypeptides, how specificity is attained for larger protein substrates is central to understanding acetyl-lysine-regulated networks. Here we report the structure of a GNAT in complex with a globular protein substrate solved to 1.9 Å. GNAT binds the protein substrate with extensive surface interactions distinct from those reported for GNAT-peptide complexes. Our data reveal determinants needed for the recognition of a protein substrate and provide insight into the specificity of GNATs. PMID:25381442

  4. Defining the Orphan Functions of Lysine Acetyltransferases

    PubMed Central

    2016-01-01

    Long known for their role in histone acetylation, recent studies have demonstrated that lysine acetyltransferases also carry out distinct “orphan” functions. These activities impact a wide range of biological phenomena including metabolism, RNA modification, nuclear morphology, and mitochondrial function. Here, we review the discovery and characterization of orphan lysine acetyltransferase functions. In addition to highlighting the evidence and biological role for these functions in human disease, we discuss the part emerging chemical tools may play in investigating this versatile enzyme superfamily. PMID:25591746

  5. Decay studies of nuclei near the proton drip line: /sup 35/Ca, /sup 31/Ar, /sup 69/Br, /sup 65/As

    SciTech Connect

    Reiff, J.E.

    1989-06-01

    Studies of new beta-delayed two-proton emitters and a search for ground state proton radioactivity in medium mass nuclei were performed using various experimental techniques in conjunction with several detection systems. A helium-jet transport system and three-element silicon telescopes were used to discover the existence and detect the decay of the first T/sub Z/ = /minus/5/2 nuclide, /sup 35/Ca. Two-proton emission from the T = 5/2 isobaric analog state in /sup 35/K at an excitation energy of 9.053 /plus minus/ 0.045 MeV, fed by the superallowed beta decay of /sup 35/Ca, resulted in transitions to both the ground state and first excited state of /sup 33/Cl. The corresponding two-proton sum energies were 4.089 /plus minus/ 0.030 MeV and 3.287 /plus minus/ 0.030 MeV. Measurements of the individual proton energies indicated the prevalence of a sequential decay mechanism. Using the isobaric multiplet mass equation, the mass excess of /sup 35/Ca was calculated to be 4.453 /plus minus/ 0.060 MeV. In order to study whose half-lives were too short for the helium-jet system, an in-beam recoil catcher wheel was constructed. The wheel speed can be varied to study nuclides whose half-lives range from 100 /mu/s to /approximately/250 ms. The first new decay observed with the wheel system and traditional /Delta/E-E telescopes was the beta-delayed two-proton emission from /sup 31/Ar. The two-proton sum energy of /approximately/7.5 MeV corresponds to a transition from the isobaric analog state in /sup 31/Cl to the ground state of /sup 29/P. The search for proton radioactivity required the development of low energy, particle identification detector telescopes. These telescopes, comprised of a gas /Delta/E and silicon E, were used in conjunction with the in-beam recoil catcher wheel to search for ground state proton emission from /sup 69/Br and /sup 65/As. 90 refs., 24 figs., 8 tabs.

  6. Effects of recombinant eel growth hormone on the uptake of ( sup 35 S)sulfate by ceratobranchial cartilages of the Japanese eel, Anguilla japonica

    SciTech Connect

    Duan, C.M.; Inui, Y. )

    1990-08-01

    Effects of growth hormone (GH) on the synthesis of mucopolysaccharide by ceratobranchial cartilages of the Japanese eel, Anguilla japonica, were examined by monitoring the in vitro uptake of ({sup 35}S)sulfate. The ({sup 35}S)sulfate uptake decreased rapidly to one-third of the initial level during the first 3 days after hypophysectomy, and decreased gradually thereafter. When hypophysectomized eels were injected intramuscularly with recombinant eel GH (2 micrograms/g), the plasma GH concentrations increased maximally after 6 hr, and declined rapidly thereafter. On the other hand, the sulfate uptake increased significantly after 12 hr, and high levels were maintained until 48 hr. The stimulating effect of GH was dose dependent (0.02-2 micrograms/g). However, the addition of eel GH (0.05-5 micrograms/ml) to the culture medium did not affect the sulfate uptake by hypophysectomized eel cartilages, suggesting that the stimulative action of GH on the sulfate uptake by the cartilages is indirect.

  7. Regulation of a Protein Acetyltransferase in Myxococcus xanthus by the Coenzyme NADP+

    PubMed Central

    Liu, Xin-Xin

    2015-01-01

    ABSTRACT NADP+ is a vital cofactor involved in a wide variety of activities, such as redox potential and cell death. Here, we show that NADP+ negatively regulates an acetyltransferase from Myxococcus xanthus, Mxan_3215 (MxKat), at physiologic concentrations. MxKat possesses an NAD(P)-binding domain fused to the Gcn5-type N-acetyltransferase (GNAT) domain. We used isothermal titration calorimetry (ITC) and a coupled enzyme assay to show that NADP+ bound to MxKat and that the binding had strong effects on enzyme activity. The Gly11 residue of MxKat was confirmed to play an important role in NADP+ binding using site-directed mutagenesis and circular dichroism spectrometry. In addition, using mass spectrometry, site-directed mutagenesis, and a coupling enzymatic assay, we demonstrated that MxKat acetylates acetyl coenzyme A (acetyl-CoA) synthetase (Mxan_2570) at Lys622 in response to changes in NADP+ concentration. Collectively, our results uncovered a mechanism of protein acetyltransferase regulation by the coenzyme NADP+ at physiological concentrations, suggesting a novel signaling pathway for the regulation of cellular protein acetylation. IMPORTANCE Microorganisms have developed various protein posttranslational modifications (PTMs), which enable cells to respond quickly to changes in the intracellular and extracellular milieus. This work provides the first biochemical characterization of a protein acetyltransferase (MxKat) that contains a fusion between a GNAT domain and NADP+-binding domain with Rossmann folds, and it demonstrates a novel signaling pathway for regulating cellular protein acetylation in M. xanthus. We found that NADP+ specifically binds to the Rossmann fold of MxKat and negatively regulates its acetyltransferase activity. This finding provides novel insight for connecting cellular metabolic status (NADP+ metabolism) with levels of protein acetylation, and it extends our understanding of the regulatory mechanisms underlying PTMs. PMID:26598367

  8. Absolute NMR shielding scales and nuclear spin–rotation constants in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br and {sup 127}I)

    SciTech Connect

    Demissie, Taye B. Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth; Jaszuński, Michał

    2015-10-28

    We present nuclear spin–rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin–rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin–rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin–rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin–rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  9. Detection of {sup 14}N and {sup 35}Cl in cocaine base and hydrochloride using NQR, NMR, and SQUID techniques

    SciTech Connect

    Yesinowski, J.P.; Buess, M.L.; Garroway, A.N.; Ziegeweid, M.; Pines, A. |

    1995-07-01

    Results from {sup 14}N pure NQR of cocaine in the free base form (cocaine base) yield a nuclear quadrupole coupling constant (NQCC) e{sup 2}Qq/h of 5.0229 ({+-}0.0001) MHz and an asymmetry parameter {eta} of 0.0395 ({+-}0.0001) at 295 K, with corresponding values of 5.0460 ({+-}0.0013) MHz and 0.0353 ({+-}0.0008) at 77 K. Both pure NQR (at 295-77 K) and a superconducting quantum interference device (SQUID) detector (at 4.2 K) were used to measure the very low (<1 MHz) {sup 14}N transition frequencies in cocaine hydrochloride; at 295 K the NQCC is 1.1780 ({+-}0.0014) MHz and the asymmetry parameter is 0.2632 ({+-}0.0034). Stepping the carrier frequency enables one to obtain a powder pattern without the severe intensity distortions that otherwise arise from finite pulse power. A powder pattern simulation using an NQCC value of 5.027 MHz and an asymmetry parameter {eta} of 0.2 agrees reasonably well with the experimental stepped-frequency spectrum. The use of pure NQR for providing nondestructive, quantitative, and highly specific detection of crystalline compounds is discussed, as are experimental strategies. 31 refs., 8 figs., 1 tab.

  10. Complete and incomplete fusion in the reaction {sup 35}Cl+{sup 12}C at the energy range 70{endash}154 MeV

    SciTech Connect

    Pirrone, S.; Aiello, S.; Arena, N.; Cavallaro, S.; Femino, S.; Lanzalone, G.; Politi, G.; Porto, F.; Romano, S.; Sambataro, S.

    1997-05-01

    Velocity spectra of evaporation residues produced in the {sup 35}Cl+{sup 12}C reaction have been measured at bombarding energies of 125, 140, and 154 MeV using time-of-flight techniques. These distributions were used to identify evaporation residues and to separate complete fusion and incomplete fusion components. The results show the presence of small contributions of incomplete fusion components which appear to be due to a cluster transfer reaction mechanism. Angular distributions and total and complete fusion evaporation residue cross sections were extracted at 70, 90, 110, 125, 140, and 154 MeV. The complete fusion cross sections and the deduced critical angular momenta are compared with other experimental data and the predictions of existing models. {copyright} {ital 1997} {ital The American Physical Society}

  11. Ex vivo binding of t-( sup 35 S) butylbicyclophosphorothionate: A biochemical tool to study the pharmacology of ethanol at the gamma-aminobutyric acid-coupled chloride channel

    SciTech Connect

    Sanna, E.; Concas, A.; Serra, M.; Santoro, G.; Biggio, G. )

    1991-03-01

    The effects of acute administration of ethanol on t-(35S)Butylbiclophosphorothionate (35S-TBPS) binding measured ex vivo in unwashed membrane preparations of rat cerebral cortex were investigated. Ethanol, given i.g., decreased in a dose-related (0.5-4 g/kg) and time-dependent manner the binding of 35S-TBPS. This effect was similar to that induced by the administration of diazepam (0.5-4 mg/kg i.p.). Scatchard plot analysis of this radioligand binding revealed that ethanol, differently from diazepam, decreased the apparent affinity of 35S-TBPS recognition sites whereas it failed to change the density of these binding sites. The effect of ethanol on 35S-TBPS binding could not be reversed by the previous administration to rats of the benzodiazepine receptor antagonist, Ro 15-1788 (ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H- imidazo (1,5a) (1,4) benzodiazepine-3-carboxylate). Vice versa, the benzodiazepine receptor partial inverse agonist, Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H- imidazo (1,5a) (4,4) benzodiazepine-3-carboxylate) (8 mg/kg i.p.), prevented completely ethanol-induced decrease of 35S-TBPS binding. The ability of Ro 15-4513 to prevent the action of ethanol was shared by the anxiogenic and proconvulsant beta-carboline derivatives, FG 7142 (N-methyl-beta-carboline-3-carboxamide) (12.5 mg/kg i.p.) and ethyl-beta-carboline-3-carboxylate (0.6 mg/kg i.v.), which, per se, enhanced this parameter. Moreover, ethanol (0.5-4 g/kg) was able to reverse the increase of 35S-TBPS binding elicited by the s.c. injection of isoniazid (350 mg/kg) and to clearly attenuate the severity of tonic-clonic seizures produced by this inhibitor of the GABAergic transmission.

  12. Regulation and function of histone acetyltransferase MOF.

    PubMed

    Yang, Yang; Han, Xiaofei; Guan, Jingyun; Li, Xiangzhi

    2014-03-01

    The mammalian MOF (male absent on the first), a member of the MYST (MOZ, YBF2, SAS2, and Tip60) family of histone acetyltransferases (HATs), is the major enzyme that catalyzes the acetylation of histone H4 on lysine 16. Acetylation of K16 is a prevalent mark associated with chromatin decondensation. MOF has recently been shown to play an essential role in maintaining normal cell functions. In this study, we discuss the important roles of MOF in DNA damage repair, apoptosis, and tumorigenesis. We also analyze the role of MOF as a key regulator of the core transcriptional network of embryonic stem cells. PMID:24452550

  13. Mechanism of hydrodesulfurization of dibenzothiophene on Co-Mo/Al[sub 2]O[sub 3] and Co/Al[sub 2]O[sub 3] catalyst by the use of radioisotope [sup 35]S tracer

    SciTech Connect

    Kabe, T.; Qian, W.; Ogawa, S.; Ishihara, A. )

    1993-09-01

    In order to estimate the behavior of sulfur on hydrodesulfurization catalyst, the [sup 35]S-labelled dibenzothiophene ([sup 35]S-DBT) was hydrodesulfurized on sulfided Co-Mo/Al[sub 2]O[sub 3] and Co/Al[sub 2]O[sub 3] in a fixed-bed pressurized flow reactor. During the reaction, the radioactivities of unreacted [sup 35]S-DBT and formed [sup 35]S-H[sub 2]S were monitored. The rate of the release of sulfur on the catalyst was estimated from the rates of an increase and a decrease of the radioactivity in formed [sup 35]S-H[sub 2]S. The activation energies of the release of sulfur were 3.7 and 9.9 kcal/mol for sulfided Co-Mo/Al[sub 2]O[sub 3] and Co/Al[sub 2]O[sub 3], respectively. The amount of labile sulfur (S[sub 0]), which could be calculated from the maximum amount of [sup 35]S accomodated on the catalyst, increased with increasing temperature. When it was assumed that sulfur in sulfided Co-Mo/Al[sub 2]O[sub 3] existed in the form of Co[sub 9]S[sub 8]-MoS[sub 2]/Al[sub 2]O[sub 3], the ratio of labile sulfur to total sulfur did not exceed 50%, even under conditions where the rate of DBT HDS is relatively high. On the contrary, the ratio of labile sulfur to total sulfur for Co/Al[sub 2]O[sub 3] exceeded 80%. 34 refs., 7 figs., 2 tabs.

  14. The role of side-chain interactions in the early steps of aggregation: Molecular dynamics simulations of an amyloid-forming peptide from the yeast prion Sup35

    NASA Astrophysics Data System (ADS)

    Gsponer, Jörg; Haberthür, Urs; Caflisch, Amedeo

    2003-04-01

    Understanding the early steps of aggregation at atomic detail might be crucial for the rational design of therapeutics preventing diseases associated with amyloid deposits. In this paper, aggregation of the heptapeptide GNNQQNY, from the N-terminal prion-determining domain of the yeast protein Sup35, was studied by 20 molecular dynamics runs for a total simulation time of 20 μs. The simulations generate in-register parallel packing of GNNQQNY -strands that is consistent with x-ray diffraction and Fourier transform infrared data. The statistically preferred aggregation pathway does not correspond to a purely downhill profile of the energy surface because of the presence of enthalpic barriers that originate from out-of-register interactions. The parallel -sheet arrangement is favored over the antiparallel because of side-chain contacts; in particular, stacking interactions of the tyrosine rings and hydrogen bonds between amide groups. No ordered aggregation was found in control simulations with the mutant sequence SQNGNQQRG in accord with experimental data and the strong sequence dependence of aggregation.

  15. Synthesis of proteins from ( sup 35 S)methionine by guinea pig megakaryocytes in vivo and time course of appearance of newly synthesized proteins in platelets

    SciTech Connect

    Schick, B.P. )

    1990-09-01

    The relationship of protein synthesis to megakaryocyte maturation has been studied in guinea pigs in vivo. Guinea pigs were injected with a single dose of ({sup 35}S)methionine. Megakaryocytes and platelets were isolated daily for 4 days, and proteins from both cells were isolated by DEAE-Sephacel chromatography and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorography. All proteins in megakaryocytes corresponding to stained bands on the SDS-PAGE gels were radiolabeled at 3 hours after injection. The greatest loss of radioactivity from the megakaryocytes occurred between 1 and 3 days after injection. Only trace labeling of platelet proteins was seen at 3 hours, representing almost entirely three bands at molecular weights 47,000, 52,000, and 66,000. At 24 hours only about 13% of the maximal labeling was present, but not all proteins were labeled. The maximal labeling was at 3 days. The pattern of labeling of platelets at 3 days was identical to that of megakaryocytes at 3 hours. The protein pattern of nonmegakaryocytic marrow cells was different from that of the platelets and megakaryocytes. Data presented here suggest that most protein synthesis in megakaryocytes is completed at least 24 hours before release of the platelets to the circulation, and suggest some specificity in the proteins that are synthesized at the terminal stages of maturation.

  16. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies.

    PubMed

    Krasnoslobodtsev, Alexey V; Deckert-Gaudig, Tanja; Zhang, Yuliang; Deckert, Volker; Lyubchenko, Yuri L

    2016-06-01

    Aggregation of prion proteins is the cause of various prion related diseases. The infectious form of prions, amyloid aggregates, exist as multiple strains. The strains are thought to represent structurally different prion protein molecules packed into amyloid aggregates, but the knowledge on the structure of different types of aggregates is limited. Here we report on the use of AFM (Atomic Force Microscopy) and TERS (Tip-Enhanced Raman Scattering) to study morphological heterogeneity and access underlying conformational features of individual amyloid aggregates. Using AFM we identified the morphology of amyloid fibrils formed by the peptide (CGNNQQNY) from the yeast prion protein Sup35 that is critically involved in the aggregation of the full protein. TERS results demonstrate that morphologically different amyloid fibrils are composed of a distinct set of conformations. Fibrils formed at pH 5.6 are composed of a mixture of peptide conformations (β-sheets, random coil and α-helix) while fibrils formed in pH~2 solution primarily have β-sheets. Additionally, peak positions in the amide III region of the TERS spectra suggested that peptides have parallel arrangement of β-sheets for pH~2 fibrils and antiparallel arrangement for fibrils formed at pH 5.6. We also developed a methodology for detailed analysis of the peptide secondary structure by correlating intensity changes of Raman bands in different regions of TERS spectra. Such correlation established that structural composition of peptides is highly localized with large contribution of unordered secondary structures on a fibrillar surface. PMID:27060278

  17. Global Profiling of Acetyltransferase Feedback Regulation.

    PubMed

    Montgomery, David C; Garlick, Julie M; Kulkarni, Rhushikesh A; Kennedy, Steven; Allali-Hassani, Abdellah; Kuo, Yin-Ming; Andrews, Andrew J; Wu, Hong; Vedadi, Masoud; Meier, Jordan L

    2016-05-25

    Lysine acetyltransferases (KATs) are key mediators of cell signaling. Methods capable of providing new insights into their regulation thus constitute an important goal. Here we report an optimized platform for profiling KAT-ligand interactions in complex proteomes using inhibitor-functionalized capture resins. This approach greatly expands the scope of KATs, KAT complexes, and CoA-dependent enzymes accessible to chemoproteomic methods. This enhanced profiling platform is then applied in the most comprehensive analysis to date of KAT inhibition by the feedback metabolite CoA. Our studies reveal that members of the KAT superfamily possess a spectrum of sensitivity to CoA and highlight NAT10 as a novel KAT that may be susceptible to metabolic feedback inhibition. This platform provides a powerful tool to define the potency and selectivity of reversible stimuli, such as small molecules and metabolites, that regulate KAT-dependent signaling. PMID:27149119

  18. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells

    SciTech Connect

    Gorman, C.M.; Moffat, L.F.; Howard, B.H.

    1982-09-01

    The authors constructed a series of recombinant genomes which directed expression of the enzyme chloramphenicol acetyltransferase (CAT) in mammalian cells. The prototype recombinant in this series, pSV2-cat, consisted of the beta-lactamase gene and origin of replication from pBR322 coupled to a simian virus 40 (SV40) early transcription region into which CAT coding sequences were inserted. Readily measured levels of CAT accumulated within 48 h after the introduction of pSV2-cat DNA into African green monkey kidney CV-1 cells. Because endogenous CAT activity is not present in CV-1 or other mammalian cells, and because rapid, sensitive assays for CAT activity are available, these recombinants provided a uniquely convenient system for monitoring the expression of foreign DNAs in tissue culture cells. To demonstrate the usefulness of this system, we constructed derivatives of pSV2-cat from which part or all of the SV 40 promoter region was removed. Deletion of one copy of the 72-base-pair repeat sequence in the SV40 promoter caused no significant decrease in CAT synthesis in monkey kidney CV-1 cells; however, an additional deletion of 50 base pairs from the second copy of the repeats reduced CAT synthesis to 11% of its level in the wild type. They also constructed a recombinant, pSVO-cat, in which the entire SV40 promoter region was removed and a unique HindIII site was substituted for the insertion of other promoter sequences.

  19. Exploring the role of hydration and confinement in the aggregation of amyloidogenic peptides Aβ(16-22) and Sup35(7-13) in AOT reverse micelles.

    PubMed

    Martinez, Anna Victoria; Małolepsza, Edyta; Rivera, Eva; Lu, Qing; Straub, John E

    2014-12-14

    Knowledge of how intermolecular interactions of amyloid-forming proteins cause protein aggregation and how those interactions are affected by sequence and solution conditions is essential to our understanding of the onset of many degenerative diseases. Of particular interest is the aggregation of the amyloid-β (Aβ) peptide, linked to Alzheimer's disease, and the aggregation of the Sup35 yeast prion peptide, which resembles the mammalian prion protein linked to spongiform encephalopathies. To facilitate the study of these important peptides, experimentalists have identified small peptide congeners of the full-length proteins that exhibit amyloidogenic behavior, including the KLVFFAE sub-sequence, Aβ16-22, and the GNNQQNY subsequence, Sup357-13. In this study, molecular dynamics simulations were used to examine these peptide fragments encapsulated in reverse micelles (RMs) in order to identify the fundamental principles that govern how sequence and solution environment influence peptide aggregation. Aβ16-22 and Sup357-13 are observed to organize into anti-parallel and parallel β-sheet arrangements. Confinement in the sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles is shown to stabilize extended peptide conformations and enhance peptide aggregation. Substantial fluctuations in the reverse micelle shape are observed, in agreement with earlier studies. Shape fluctuations are found to facilitate peptide solvation through interactions between the peptide and AOT surfactant, including direct interaction between non-polar peptide residues and the aliphatic surfactant tails. Computed amide I IR spectra are compared with experimental spectra and found to reflect changes in the peptide structures induced by confinement in the RM environment. Furthermore, examination of the rotational anisotropy decay of water in the RM demonstrates that the water dynamics are sensitive to the presence of peptide as well as the peptide sequence. Overall, our results

  20. Inhibition of Histone Acetyltransferase by Glycosaminoglycans

    PubMed Central

    Buczek-Thomas, Jo Ann; Hsia, Edward; Rich, Celeste B.; Foster, Judith A.; Nugent, Matthew A.

    2008-01-01

    Histone acetyltransferases (HATs) are a class of enzymes that participate in modulating chromatin structure and gene expression. Altered HAT activity has been implicated in a number of diseases, yet little is known about the regulation of HATs. In this study, we report that glycosaminoglycans are potent inhibitors of p300 and pCAF HAT activities in vitro, with heparin and heparan sulfate proteoglycans being the most potent inhibitors. The mechanism of inhibition by heparin was investigated. The ability of heparin to inhibit HAT activity was in part dependent upon its size and structure, as small heparin-derived oligosaccharides (> 8 sugars) and N-desulfated or O-desulfated heparin showed reduced inhibitory activity. Heparin was shown to bind to pCAF; and enzyme assays indicated that heparin shows the characteristics of a competitive-like inhibitor causing an ~50-fold increase in the apparent Km of pCAF for histone H4. Heparan sulfate proteoglycans isolated from corneal and pulmonary fibroblasts inhibited HAT activity with similar effectiveness as heparin. As evidence that endogenous glycosaminoglycans might be involved in modulating histone acetylation, the direct addition of heparin to pulmonary fibroblasts resulted in an ~50% reduction of histone H3 acetylation after 6 hours of treatment. In addition, Chinese hamster ovary cells deficient in glycosaminoglycan synthesis showed increased levels of acetylated histone H3 compared to wild-type parent cells. Glycosaminoglycans represent a new class of HAT inhibitors that might participate in modulating cell function by regulating histone acetylation. PMID:18459114

  1. Autoacetylation of the Histone Acetyltransferase Rtt109*

    PubMed Central

    Albaugh, Brittany N.; Arnold, Kevin M.; Lee, Susan; Denu, John M.

    2011-01-01

    Rtt109 is a yeast histone acetyltransferase (HAT) that associates with histone chaperones Asf1 and Vps75 to acetylate H3K56, H3K9, and H3K27 and is important in DNA replication and maintaining genomic integrity. Recently, mass spectrometry and structural studies of Rtt109 have shown that active site residue Lys-290 is acetylated. However, the functional role of this modification and how the acetyl group is added to Lys-290 was unclear. Here, we examined the mechanism of Lys-290 acetylation and found that Rtt109 catalyzes intramolecular autoacetylation of Lys-290 ∼200-times slower than H3 acetylation. Deacetylated Rtt109 was prepared by reacting with a sirtuin protein deacetylase, producing an enzyme with negligible HAT activity. Autoacetylation of Rtt109 restored full HAT activity, indicating that autoacetylation is necessary for HAT activity and is a fully reversible process. To dissect the mechanism of activation, biochemical, and kinetic analyses were performed with Lys-290 variants of the Rtt109-Vps75 complex. We found that autoacetylation of Lys-290 increases the binding affinity for acetyl-CoA and enhances the rate of acetyl-transfer onto histone substrates. This study represents the first detailed investigation of a HAT enzyme regulated by single-site intramolecular autoacetylation. PMID:21606491

  2. COUPLING

    DOEpatents

    Hawke, B.C.

    1963-02-26

    This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)

  3. Rapid quantitative assay for chloramphenicol acetyltransferase

    SciTech Connect

    Neumann, J.R.; Morency, C.A.; Russian, K.O.

    1987-05-01

    Measuring the expression of exogenous genetic material in mammalian cells is commonly done by fusing the DNA of interest to a gene encoding an easily-detected enzyme. Chloramphenicol acetyltransferase(CAT) is a convenient marker because it is not normally found in eukaryotes. CAT activity has usually been detected using a thin-layer chromatographic separation followed by autoradiography. An organic solvent extraction-based method for CAT detection has also been described, as well as a procedure utilizing HPLC analysis. Building on the extraction technique, they developed a rapid sensitive kinetic method for measuring CAT activity in cell homogenates. The method exploits the differential organic solubility of the substrate ((/sup 3/H) or (/sup 14/C)acetyl CoA) and the product (labeled acetylchloramphenicol). The assay is a simple one-vial, two-phase procedure and requires no tedious manipulations after the initial setup. Briefly, a 0.25 ml reaction with 100mM Tris-HCL, 1mM chloramphenicol, 0.1mM (/sup 14/C)acetyl CoA and variable amounts of cell homogenate is pipetted into a miniscintillation vial, overlaid with 5 ml of a water-immiscible fluor, and incubated at 37/sup 0/C. At suitable intervals the vial is counted and the CAT level is quantitatively determined as the rate of increase in counts/min of the labeled product as it diffuses into the fluor phase, compared to a standard curve. When used to measure CAT in transfected Balb 3T3 cells the method correlated well with the other techniques.

  4. Structure of a putative acetyltransferase (PA1377) from Pseudomonas aeruginosa

    SciTech Connect

    Davies, Anna M.; Tata, Renée; Chauviac, François-Xavier; Sutton, Brian J.; Brown, Paul R.

    2008-05-01

    The crystal structure of an acetyltransferase encoded by the gene PA1377 from Pseudomonas aeruginosa has been determined at 2.25 Å resolution. Comparison with a related acetyltransferase revealed a structural difference in the active site that was taken to reflect a difference in substrate binding and/or specificity between the two enzymes. Gene PA1377 from Pseudomonas aeruginosa encodes a 177-amino-acid conserved hypothetical protein of unknown function. The structure of this protein (termed pitax) has been solved in space group I222 to 2.25 Å resolution. Pitax belongs to the GCN5-related N-acetyltransferase family and contains all four sequence motifs conserved among family members. The β-strand structure in one of these motifs (motif A) is disrupted, which is believed to affect binding of the substrate that accepts the acetyl group from acetyl-CoA.

  5. Structure and Biochemical Characterization of Protein Acetyltransferase from Sulfolobus solfataricus

    SciTech Connect

    Brent, Michael M.; Iwata, Ayaka; Carten, Juliana; Zhao, Kehao; Marmorstein, Ronen

    2009-09-02

    The Sulfolobus solfataricus protein acetyltransferase (PAT) acetylates ALBA, an abundant nonspecific DNA-binding protein, on Lys{sup 16} to reduce its DNA affinity, and the Sir2 deacetylase reverses the modification to cause transcriptional repression. This represents a 'primitive' model for chromatin regulation analogous to histone modification in eukaryotes. We report the 1.84-{angstrom} crystal structure of PAT in complex with coenzyme A. The structure reveals homology to both prokaryotic GNAT acetyltransferases and eukaryotic histone acetyltransferases (HATs), with an additional 'bent helix' proximal to the substrate binding site that might play an autoregulatory function. Investigation of active site mutants suggests that PAT does not use a single general base or acid residue for substrate deprotonation and product reprotonation, respectively, and that a diffusional step, such as substrate binding, may be rate-limiting. The catalytic efficiency of PAT toward ALBA is low relative to other acetyltransferases, suggesting that there may be better, unidentified substrates for PAT. The structural similarity of PAT to eukaryotic HATs combined with its conserved role in chromatin regulation suggests that PAT is evolutionarily related to the eukaryotic HATs.

  6. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  7. Coenzyme A Binding to the Aminoglycoside Acetyltransferase (3)-IIIb Increases Conformational Sampling of Antibiotic Binding Site

    SciTech Connect

    Hu, Xiaohu; Norris, Adrianne; Baudry, Jerome Y; Serpersu, Engin H

    2011-01-01

    NMR spectroscopy experiments and molecular dynamics simulations were performed to describe the dynamic properties of the aminoglycoside acetyltransferase (3)-IIIb (AAC) in its apo and coenzyme A (CoASH) bound forms. The {sup 15}N-{sup 1}H HSQC spectra indicate a partial structural change and coupling of the CoASH binding site with another region in the protein upon the CoASH titration into the apo enzyme. Molecular dynamics simulations indicate a significant structural and dynamic variation of the long loop in the antibiotic binding domain in the form of a relatively slow (250 ns), concerted opening motion in the CoASH enzyme complex and that binding of the CoASH increases the structural flexibility of the loop, leading to an interchange between several similar equally populated conformations.

  8. Radioenzymatic assays for aminoglycosides with kanamycin 6'- acetyltransferase

    SciTech Connect

    Weber, A.; Smith, A.L.; Opheim, K.E.

    1985-03-01

    To facilitate the rapid and accurate quantitation of parenterally administered aminoglycosides, the optimum conditions (pH, duration of incubation, and cofactor concentrations) were defined to permit radioenzymatic assays with kanamycin acetyltransferase. The accuracy in quantitating tobramycin, netilmicin, kanamycin, and amikacin at concentrations in the therapeutic range was greater than 90%, with a mean recovery of 102.8%. The mean of the interassay coefficient of variation was 7.8%. Typical standard curves at six different concentrations resulted in a correlation coefficient (r value) of greater than 0.99 for each aminoglycoside. The radioenzymatic assay correlates well with the bioassay (tobramycin and netilmicin) and radioimmunoassay (amikacin and kanamycin); the correlation coefficient is greater than 0.90 for all. The authors conclude that the radioenzymatic assay utilizing kanamycin 6'-acetyltransferase is feasible for all commercially available parenterally administered aminoglycosides.

  9. Paramecium bursaria Chlorella Virus 1 Encodes a Polyamine Acetyltransferase*

    PubMed Central

    Charlop-Powers, Zachary; Jakoncic, Jean; Gurnon, James R.; Van Etten, James L.; Zhou, Ming-Ming

    2012-01-01

    Paramecium bursaria chlorella virus 1 (PBCV-1), a large DNA virus that infects green algae, encodes a histone H3 lysine 27-specific methyltransferase that functions in global transcriptional silencing of the host. PBCV-1 has another gene a654l that encodes a protein with sequence similarity to the GCN5 family histone acetyltransferases. In this study, we report a 1.5 Å crystal structure of PBCV-1 A654L in a complex with coenzyme A. The structure reveals a unique feature of A654L that precludes its acetylation of histone peptide substrates. We demonstrate that A654L, hence named viral polyamine acetyltransferase (vPAT), acetylates polyamines such as putrescine, spermidine, cadaverine, and homospermidine present in both PBCV-1 and its host through a reaction dependent upon a conserved glutamate 27. Our study suggests that as the first virally encoded polyamine acetyltransferase, vPAT plays a possible key role in the regulation of polyamine catabolism in the host during viral replication. PMID:22277659

  10. Rapid, sensitive, and inexpensive assay for chloramphenicol acetyltransferase

    SciTech Connect

    Nordeen, S.K.; Green, P.P. III; Fowlkes, D.M.

    1987-04-01

    We present a rapid, sensitive enzymatic assay for chloramphenicol acetyltransferase (CAT) that does not require chromatography, HPLC, or autoradiography. The assay is based on the use of an inexpensive substrate, tritiated acetate, instead of (/sup 14/C)chloramphenicol. The method is adapted from one originally used by de Crombrugghe et al. and by Shaw, but with simplifications appropriate for routine use. In our hands, the method is as sensitive as the customary thin-layer chromatography assay and is far more efficient for the performance of many assays, both in terms of labor and expense.

  11. Enzyme kinetics and inhibition of histone acetyltransferase KAT8

    PubMed Central

    Wapenaar, Hannah; van der Wouden, Petra E.; Groves, Matthew R.; Rotili, Dante; Mai, Antonello; Dekker, Frank J.

    2016-01-01

    Lysine acetyltransferase 8 (KAT8) is a histone acetyltransferase (HAT) responsible for acetylating lysine 16 on histone H4 (H4K16) and plays a role in cell cycle progression as well as acetylation of the tumor suppressor protein p53. Further studies on its biological function and drug discovery initiatives will benefit from the development of small molecule inhibitors for this enzyme. As a first step towards this aim we investigated the enzyme kinetics of this bi-substrate enzyme. The kinetic experiments indicate a ping-pong mechanism in which the enzyme binds Ac-CoA first, followed by binding of the histone substrate. This mechanism is supported by affinity measurements of both substrates using isothermal titration calorimetry (ITC). Using this information, the KAT8 inhibition of a focused compound collection around the non-selective HAT inhibitor anacardic acid has been investigated. Kinetic studies with anacardic acid were performed, based on which a model for the catalytic activity of KAT8 and the inhibitory action of AA was proposed. This enabled the calculation of the inhibition constant Ki of anacardic acid derivatives using an adaptation of the Cheng-Prusoff equation. The results described in this study give insight into the catalytic mechanism of KAT8 and present the first well-characterized small-molecule inhibitors for this HAT. PMID:26505788

  12. Molecular mechanism underlying promiscuous polyamine recognition by spermidine acetyltransferase.

    PubMed

    Sugiyama, Shigeru; Ishikawa, Sae; Tomitori, Hideyuki; Niiyama, Mayumi; Hirose, Mika; Miyazaki, Yuma; Higashi, Kyohei; Murata, Michio; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Kashiwagi, Keiko; Igarashi, Kazuei; Matsumura, Hiroyoshi

    2016-07-01

    Spermidine acetyltransferase (SAT) from Escherichia coli, which catalyses the transfer of acetyl groups from acetyl-CoA to spermidine, is a key enzyme in controlling polyamine levels in prokaryotic cells. In this study, we determined the crystal structure of SAT in complex with spermidine (SPD) and CoA at 2.5Å resolution. SAT is a dodecamer organized as a hexamer of dimers. The secondary structural element and folding topology of the SAT dimer resemble those of spermidine/spermine N(1)-acetyltransferase (SSAT), suggesting an evolutionary link between SAT and SSAT. However, the polyamine specificity of SAT is distinct from that of SSAT and is promiscuous. The SPD molecule is also located at the inter-dimer interface. The distance between SPD and CoA molecules is 13Å. A deep, highly acidic, water-filled cavity encompasses the SPD and CoA binding sites. Structure-based mutagenesis and in-vitro assays identified SPD-bound residues, and the acidic residues lining the walls of the cavity are mostly essential for enzymatic activities. Based on mutagenesis and structural data, we propose an acetylation mechanism underlying promiscuous polyamine recognition for SAT. PMID:27163532

  13. Enzyme kinetics and inhibition of histone acetyltransferase KAT8.

    PubMed

    Wapenaar, Hannah; van der Wouden, Petra E; Groves, Matthew R; Rotili, Dante; Mai, Antonello; Dekker, Frank J

    2015-11-13

    Lysine acetyltransferase 8 (KAT8) is a histone acetyltransferase (HAT) responsible for acetylating lysine 16 on histone H4 (H4K16) and plays a role in cell cycle progression as well as acetylation of the tumor suppressor protein p53. Further studies on its biological function and drug discovery initiatives will benefit from the development of small molecule inhibitors for this enzyme. As a first step towards this aim we investigated the enzyme kinetics of this bi-substrate enzyme. The kinetic experiments indicate a ping-pong mechanism in which the enzyme binds Ac-CoA first, followed by binding of the histone substrate. This mechanism is supported by affinity measurements of both substrates using isothermal titration calorimetry (ITC). Using this information, the KAT8 inhibition of a focused compound collection around the non-selective HAT inhibitor anacardic acid has been investigated. Kinetic studies with anacardic acid were performed, based on which a model for the catalytic activity of KAT8 and the inhibitory action of anacardic acid (AA) was proposed. This enabled the calculation of the inhibition constant Ki of anacardic acid derivatives using an adaptation of the Cheng-Prusoff equation. The results described in this study give insight into the catalytic mechanism of KAT8 and present the first well-characterized small-molecule inhibitors for this HAT. PMID:26505788

  14. A Bacterial Acetyltransferase Destroys Plant Microtubule Networks and Blocks Secretion

    PubMed Central

    Lee, Amy Huei-Yi; Hurley, Brenden; Felsensteiner, Corinna; Yea, Carmen; Ckurshumova, Wenzislava; Bartetzko, Verena; Wang, Pauline W.; Quach, Van; Lewis, Jennifer D.; Liu, Yulu C.; Börnke, Frederik; Angers, Stephane; Wilde, Andrew

    2012-01-01

    The eukaryotic cytoskeleton is essential for structural support and intracellular transport, and is therefore a common target of animal pathogens. However, no phytopathogenic effector has yet been demonstrated to specifically target the plant cytoskeleton. Here we show that the Pseudomonas syringae type III secreted effector HopZ1a interacts with tubulin and polymerized microtubules. We demonstrate that HopZ1a is an acetyltransferase activated by the eukaryotic co-factor phytic acid. Activated HopZ1a acetylates itself and tubulin. The conserved autoacetylation site of the YopJ / HopZ superfamily, K289, plays a critical role in both the avirulence and virulence function of HopZ1a. Furthermore, HopZ1a requires its acetyltransferase activity to cause a dramatic decrease in Arabidopsis thaliana microtubule networks, disrupt the plant secretory pathway and suppress cell wall-mediated defense. Together, this study supports the hypothesis that HopZ1a promotes virulence through cytoskeletal and secretory disruption. PMID:22319451

  15. Biochemical evidence for relaxed substrate specificity of Nα-acetyltransferase (Rv3420c/rimI) of Mycobacterium tuberculosis.

    PubMed

    Pathak, Deepika; Bhat, Aadil Hussain; Sapehia, Vandana; Rai, Jagdish; Rao, Alka

    2016-01-01

    Nα-acetylation is a naturally occurring irreversible modification of N-termini of proteins catalyzed by Nα-acetyltransferases (NATs). Although present in all three domains of life, it is little understood in bacteria. The functional grouping of NATs into six types NatA - NatF, in eukaryotes is based on subunit requirements and stringent substrate specificities. Bacterial orthologs are phylogenetically divergent from eukaryotic NATs, and only a couple of them are characterized biochemically. Accordingly, not much is known about their substrate specificities. Rv3420c of Mycobacterium tuberculosis is a NAT ortholog coding for RimI(Mtb). Using in vitro peptide-based enzyme assays and mass-spectrometry methods, we provide evidence that RimI(Mtb) is a protein Nα-acetyltransferase of relaxed substrate specificity mimicking substrate specificities of eukaryotic NatA, NatC and most competently that of NatE. Also, hitherto unknown acetylation of residues namely, Asp, Glu, Tyr and Leu by a bacterial NAT (RimI(Mtb)) is elucidated, in vitro. Based on in vivo acetylation status, in vitro assay results and genetic context, a plausible cellular substrate for RimI(Mtb) is proposed. PMID:27353550

  16. Biochemical evidence for relaxed substrate specificity of Nα-acetyltransferase (Rv3420c/rimI) of Mycobacterium tuberculosis

    PubMed Central

    Pathak, Deepika; Bhat, Aadil Hussain; Sapehia, Vandana; Rai, Jagdish; Rao, Alka

    2016-01-01

    Nα-acetylation is a naturally occurring irreversible modification of N-termini of proteins catalyzed by Nα-acetyltransferases (NATs). Although present in all three domains of life, it is little understood in bacteria. The functional grouping of NATs into six types NatA - NatF, in eukaryotes is based on subunit requirements and stringent substrate specificities. Bacterial orthologs are phylogenetically divergent from eukaryotic NATs, and only a couple of them are characterized biochemically. Accordingly, not much is known about their substrate specificities. Rv3420c of Mycobacterium tuberculosis is a NAT ortholog coding for RimIMtb. Using in vitro peptide-based enzyme assays and mass-spectrometry methods, we provide evidence that RimIMtb is a protein Nα-acetyltransferase of relaxed substrate specificity mimicking substrate specificities of eukaryotic NatA, NatC and most competently that of NatE. Also, hitherto unknown acetylation of residues namely, Asp, Glu, Tyr and Leu by a bacterial NAT (RimIMtb) is elucidated, in vitro. Based on in vivo acetylation status, in vitro assay results and genetic context, a plausible cellular substrate for RimIMtb is proposed. PMID:27353550

  17. Atomic resolution structure of human α-tubulin acetyltransferase bound to acetyl-CoA

    PubMed Central

    Taschner, Michael; Vetter, Melanie; Lorentzen, Esben

    2012-01-01

    Acetylation of lysine residues is an important posttranslational modification found in all domains of life. α-tubulin is specifically acetylated on lysine 40, a modification that serves to stabilize microtubules of axons and cilia. Whereas histone acetyltransferases have been extensively studied, there is no structural and mechanistic information available on α-tubulin acetyltransferases. Here, we present the structure of the human α-tubulin acetyltransferase catalytic domain bound to its cosubstrate acetyl-CoA at 1.05 Å resolution. Compared with other lysine acetyltransferases of known structure, α-tubulin acetyltransferase displays a relatively well-conserved cosubstrate binding pocket but is unique in its active site and putative α-tubulin binding site. Using acetylation assays with structure-guided mutants, we map residues important for acetyl-CoA binding, substrate binding, and catalysis. This analysis reveals a basic patch implicated in substrate binding and a conserved glutamine residue required for catalysis, demonstrating that the family of α-tubulin acetyltransferases uses a reaction mechanism different from other lysine acetyltransferases characterized to date. PMID:23071318

  18. Biochemical pathways that regulate acetyltransferase and deacetylase activity in mammalian cells

    PubMed Central

    Mellert, Hestia S.; McMahon, Steven B.

    2009-01-01

    Protein phosphorylation is dynamically regulated in eukaryotic cells via modulation of the enzymatic activity of kinases and phosphatases. Like phosphorylation, acetylation has emerged as a critical regulatory protein modification that is dynamically altered in response to diverse cellular cues. Moreover, acetyltransferases and deacetylases are tightly linked to cellular signaling pathways. Recent studies provide clues about the mechanisms utilized to regulate acetyltransferases and deacetylases. The therapeutic value of deacetylase inhibitors suggests that understanding acetylation pathways will directly impact our ability to rationally target these enzymes in patients. Recently discovered mechanisms which directly regulate the catalytic activity of acetyltransferases and deacetylases provide exciting new insights about these enzymes. PMID:19819149

  19. [The biological role of prokaryotic and eukaryotic N-acetyltransferase].

    PubMed

    Zabost, Anna; Zwolska, Zofia; Augustynowicz-Kopeć, Ewa

    2013-01-01

    The N-acetyltransferases (NAT; E.C.2.3.1.5) are involved in the metabolism of drugs and environmental toxins. They catalyse the acetyl transfer from acetyl coenzyme A to an aromatic amine, heterocyclic amine, or hydrazine compound. NAT homologues are present in numerous species from bacteria to human. Sequence variations in the human NAT1 and NAT2 result in the production of NAT proteins with variable enzyme activity or stability, leading to slow or rapid acetylation. Therefore, genetic polymorphisms in NAT1 and NAT2 influence drug metabolism and drug-related toxicity. Epidemiological studies suggest that the NAT1 and NAT2 acetylation polymorphisms modify the risk of developing cancers of the urinary bladder, colorectal, breast, head and neck, and lung. PMID:23420430

  20. Crystal structure of homoserine O-acetyltransferase from Leptospira interrogans

    SciTech Connect

    Wang Mingzhu; Liu Lin; Wang Yanli; Wei Zhiyi; Zhang Ping; Li Yikun; Jiang Xiaohua; Xu Hang Gong Weimin

    2007-11-30

    Homoserine O-acetyltransferase (HTA, EC 2.3.1.31) initiates methionine biosynthesis pathway by catalyzing the transfer of acetyl group from acetyl-CoA to homoserine. This study reports the crystal structure of HTA from Leptospira interrogans determined at 2.2 A resolution using selenomethionyl single-wavelength anomalous diffraction method. HTA is modular and consists of two structurally distinct domains-a core {alpha}/{beta} domain containing the catalytic site and a helical bundle called the lid domain. Overall, the structure fold belongs to {alpha}/{beta} hydrolase superfamily with the characteristic 'catalytic triad' residues in the active site. Detailed structure analysis showed that the catalytic histidine and serine are both present in two conformations, which may be involved in the catalytic mechanism for acetyl transfer.

  1. The Role of Histone Acetyltransferases in Normal and Malignant Hematopoiesis

    PubMed Central

    Sun, Xiao-Jian; Man, Na; Tan, Yurong; Nimer, Stephen D.; Wang, Lan

    2015-01-01

    Histone, and non-histone, protein acetylation plays an important role in a variety of cellular events, including the normal and abnormal development of blood cells, by changing the epigenetic status of chromatin and regulating non-histone protein function. Histone acetyltransferases (HATs), which are the enzymes responsible for histone and non-histone protein acetylation, contain p300/CBP, MYST, and GNAT family members. HATs are not only protein modifiers and epigenetic factors but also critical regulators of cell development and carcinogenesis. Here, we will review the function of HATs such as p300/CBP, Tip60, MOZ/MORF, and GCN5/PCAF in normal hematopoiesis and the pathogenesis of hematological malignancies. The inhibitors that have been developed to target HATs will also be reviewed here. Understanding the roles of HATs in normal/malignant hematopoiesis will provide the potential therapeutic targets for the hematological malignancies. PMID:26075180

  2. The Role of Histone Acetyltransferases in Normal and Malignant Hematopoiesis.

    PubMed

    Sun, Xiao-Jian; Man, Na; Tan, Yurong; Nimer, Stephen D; Wang, Lan

    2015-01-01

    Histone, and non-histone, protein acetylation plays an important role in a variety of cellular events, including the normal and abnormal development of blood cells, by changing the epigenetic status of chromatin and regulating non-histone protein function. Histone acetyltransferases (HATs), which are the enzymes responsible for histone and non-histone protein acetylation, contain p300/CBP, MYST, and GNAT family members. HATs are not only protein modifiers and epigenetic factors but also critical regulators of cell development and carcinogenesis. Here, we will review the function of HATs such as p300/CBP, Tip60, MOZ/MORF, and GCN5/PCAF in normal hematopoiesis and the pathogenesis of hematological malignancies. The inhibitors that have been developed to target HATs will also be reviewed here. Understanding the roles of HATs in normal/malignant hematopoiesis will provide the potential therapeutic targets for the hematological malignancies. PMID:26075180

  3. The MOZ histone acetyltransferase in epigenetic signaling and disease.

    PubMed

    Carlson, Samuel; Glass, Karen C

    2014-11-01

    The monocytic leukemic zinc finger (MOZ) histone acetyltransferase (HAT) plays a role in acute myeloid leukemia (AML). It functions as a quaternary complex with the bromodomain PHD finger protein 1 (BRPF1), the human Esa1-associated factor 6 homolog (hEAF6), and the inhibitor of growth 5 (ING5). Each of these subunits contain chromatin reader domains that recognize specific post-translational modifications (PTMs) on histone tails, and this recognition directs the MOZ HAT complex to specific chromatin substrates. The structure and function of these epigenetic reader modules has now been elucidated, and a model describing how the cooperative action of these domains regulates HAT activity in response to the epigenetic landscape is proposed. The emerging role of epigenetic reader domains in disease, and their therapeutic potential for many types of cancer is also highlighted. PMID:24633655

  4. KATching-Up on Small Molecule Modulators of Lysine Acetyltransferases.

    PubMed

    Simon, Roman P; Robaa, Dina; Alhalabi, Zayan; Sippl, Wolfgang; Jung, Manfred

    2016-02-25

    The reversible acetylation of lysines is one of the best characterized epigenetic modifications. Its involvement in many key physiological and pathological processes has been documented in numerous studies. Lysine deacetylases (KDACs) and acetyltransferases (KATs) maintain the acetylation equilibrium at histones but also many other proteins. Besides acetylation, also other acyl groups are reversibly installed at the side chain of lysines in proteins. Because of their involvement in disease, KDACs and KATs were proposed to be promising drug targets, and for KDACs, indeed, five inhibitors are now approved for human use. While there is a similar level of evidence for the potential of KATs as drug targets, no inhibitor is in clinical trials. Here, we review the evidence for the diverse roles of KATs in disease pathology, provide an overview of structural features and the available modulators, including those targeting the bromodomains of KATs, and present an outlook. PMID:26701186

  5. Structure of Mesorhizobium loti arylamine N-acetyltransferase 1

    SciTech Connect

    Holton, Simon J.; Dairou, Julien; Sandy, James; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Noble, Martin E. M.; Sim, Edith

    2005-01-01

    The crystal structure of a M. loti arylamine N-acetyltransferase 1 has been determined at 2.0 Å resolution. The arylamine N-acetyltransferase (NAT) enzymes have been found in a broad range of both eukaryotic and prokaryotic organisms. The NAT enzymes catalyse the transfer of an acetyl group from acetyl Co-enzyme A onto the terminal nitrogen of a range of arylamine, hydrazine and arylhydrazine compounds. Recently, several NAT structures have been reported from different prokaryotic sources including Salmonella typhimurium, Mycobacterium smegmatis and Pseudomonas aeruginosa. Bioinformatics analysis of the Mesorhizobium loti genome revealed two NAT paralogues, the first example of multiple NAT isoenzymes in a eubacterial organism. The M. loti NAT 1 enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme was crystallized in 0.5 M Ca(OAc){sub 2}, 16% PEG 3350, 0.1 M Tris–HCl pH 8.5 using the sitting-drop vapour-diffusion method. A data set diffracting to 2.0 Å was collected from a single crystal at 100 K. The crystal belongs to the orthorhombic spacegroup P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.2, b = 97.3, c = 114.3 Å. The structure was refined to a final free-R factor of 24.8%. The structure reveals that despite low sequence homology, M. loti NAT1 shares the common fold as reported in previous NAT structures and exhibits the same catalytic triad of residues (Cys-His-Asp) in the active site.

  6. Mass and charge distributions in chlorine-induced nuclear reactions. [[sup 35]Cl at E/A = 15 MeV, [sup 37]Cl at E/A = 7. 3 MeV

    SciTech Connect

    Marchetti, A.A.

    1991-01-01

    Projectile-like fragments were detected and characterized in terms of A, Z, and energy for the reactions [sup 37]Cl on [sup 40]Ca and [sup 209]Bi at E/A = 7.3 MeV, and [sup 35]Cl, on [sup 209]Bi at E/A = 15 MeV, at angles close to the grazing angle. Mass and charge distributions were generated in the N-Z plane as a function of energy loss, and have been parameterized in terms of their centroids, variances, and coefficients of correlation. Due to experimental problems, the mass resolution corresponding to the [sup 31]Cl on [sup 209]Bi reaction was very poor. This prompted the study and application of a deconvolution technique for peak enhancement. The drifts of the charge and mass centroids for the system [sup 37]Cl on [sup 40]Ca are consistent with a process of mass and charge equilibration mediated by nucleon exchange between the two partners, followed by evaporation. The asymmetric systems show a strong drift towards larger asymmetry, with the production of neutron-rich nuclei. It was concluded that this is indicative of a net transfer of protons from the light to the heavy partner, and a net flow of neutrons in the opposite direction. The variances for all systems increase with energy loss, as it would be expected from a nucleon exchange mechanism; however, the variances for the reaction [sup 37]Cl on [sup 40]Ca are higher than those expected from that mechanism. The coefficients of correlation indicate that the transfer of nucleons between projectile and target is correlated. The results were compared to the predictions of two current models based on a stochastic nucleon exchange mechanism. In general, the comparisons between experimental and predicted variances support this mechanism; however, the need for more realistic driving forces in the model calculations is indicated by the disagreement between predicted and experimental centroids.

  7. Study of hydrosulfurization of dibenzothiophene on Ni-Mo/Al{sub 2}O{sub 3}, Mo/Al{sub 2}O{sub 3}, and Ni/Al{sub 2}O{sub 3} catalysts by the use of radioisotope {sup 35}S tracer

    SciTech Connect

    Kabe, Toshiaki; Qian, Weihua; Ishihara, Atsushi

    1994-09-01

    The radioisotope tracer method has been used to quantify the behavior of sulfur on sulfided Ni-Mo/Al{sub 2}O{sub 3}, Mo/Al{sub 2}O{sub 3}, and Ni/Al{sub 2}O{sub 3}. The apparent activation energies of HDS reaction for DBT for the three catalysts were 20{+-}1 kcal/mol. The formation rate constants of {sup 35}S-H{sub 2}S were determined and the amount of labile sulfur on the sulfided catalysts were estimated by tracing the changes in radioactivities of the unreacted {sup 35}S-DBT and the formed {sup 35}S-H{sub 2}S during the HDS reaction of {sup 35}S-labeled dibenzothiophene ({sup 35}S-DBT). It was deduced that ca. 75% of sulfur in the sulfided Mo/Al{sub 2}O{sub 3} was related to HDS reaction at infinite rate of HDS. Compared with the amounts of labile sulfur in the sulfided Ni-Mo/Al{sub 2}O{sub 3}, Mo/Al{sub 2}O{sub 3}, and Ni/Al{sub 2}O{sub 3}, it was determined that the amounts of labile sulfur were 1.6, 9.8, and 18.4 mg sulfur/g catalyst at 280{degrees}C for the three catalysts, respectively. It was suggested that the sulfur in the form of NiS on the sulfided Ni-Mo/Al{sub 2}O{sub 3} was not labile and that the sulfur attached to both Mo and Ni atom were more labile and related to HDS. The promotion of Ni for Mo-based catalysts was attributed to the sulfur bonded to both Mo and Ni in the MoS{sub 2} phase being more labile. 35 refs., 12 figs., 2 tabs.

  8. In vitro inhibition of choline acetyltransferase by a series of 2-benzylidene-3-quinuclidinones

    SciTech Connect

    Capacio, B.R.

    1988-01-01

    Ten substituted 2-benzylidene-3-quinuclidinones were synthesized and evaluated for their relative potency as in vitro inhibitors of choline acetyltransferase (ChAT). Acetylcholine (ACh) synthesis was followed radiometrically by the incorporation of labeled acetate originating from {sup 14}C-acetyl-CoA. Woolf-Augustinsson-Hofstee data analysis was used to calculate Vmax, Km, and Ki values. The inhibition was found to be noncompetitive or uncompetitive with respect to choline. Quantitative structure activity relationship correlations demonstrated a primary dependence on {kappa}-{sigma}, as well as steric properties of the substituted benzene ring. Additional radiometric and spectrophotometric were performed with 2-(3{prime}-methyl)-benzylidene-3-quinuclidinone, one of the more potent analogs, to further elucidate the inhibitory mechanism. ChAT-mediated cleavage of ACh was measured spectrophotometrically by following the appearance of NADH at 340 nanometers in an enzyme coupled assay. Lineweaver-Burk analysis indicated mixed or uncompetitive inhibition with respect to both substrates of the forward reaction, suggesting interference with a rate limiting step.

  9. Comparative genomic and phylogenetic investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes characterized in several bacteria and eukaryotic organisms. We report a comprehensive phylogenetic analysis employing an exhaustive dataset of NAT-homologous sequences recovered through inspection of 2445 genomes. We describe ...

  10. Enhancer of Acetyltransferase Chameau (EAChm) Is a Novel Transcriptional Co-Activator

    PubMed Central

    Imamura, Yuko; Higashi, Miki; Yoneda, Mitsuhiro; Ito, Takashi

    2015-01-01

    Acetylation of nucleosomal histones by diverse histone acetyltransferases (HAT) plays pivotal roles in many cellular events. Discoveries of novel HATs and HAT related factors have provided new insights to understand the roles and mechanisms of histone acetylation. In this study, we identified prominent Histone H3 acetylation activity in vitro and purified its activity, showing that it is composed of the MYST acetyltransferase Chameau and Enhancer of the Acetyltransferase Chameau (EAChm) family. EAChm is a negatively charged acidic protein retaining aspartate and glutamate. Furthermore, we identified that Chameau and EAChm stimulate transcription in vitro together with purified general transcription factors. In addition, RNA-seq analysis of Chameu KD and EAChm KD S2 cells suggest that Chameau and EAChm regulate transcription of common genes in vivo. Our results suggest that EAChm regulates gene transcription in Drosophila embryos by enhancing Acetyltransferase Chameau activity. PMID:26555228

  11. The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis

    PubMed Central

    Su, Jiaming; Wang, Fei; Cai, Yong; Jin, Jingji

    2016-01-01

    Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs). As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL) in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16); however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8), suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways. PMID:26784169

  12. N-acetyltransferase 2 activity and folate levels

    PubMed Central

    Cao, Wen; Strnatka, Diana; McQueen, Charlene A.; Hunter, Robert J.; Erickson, Robert P.

    2010-01-01

    Aims To determine whether increased N-acetyltransferase (NAT) activity might have a toxic effect during development and an influence on folate levels since previous work has shown that only low levels of exogenous NAT can be achieved in constitutionally transgenic mice (Cao, et al, 2005) Main Methods A human NAT1 tet-inducible construct was used that would not be expressed until the inducer was delivered. Human NAT1 cDNA was cloned into pTRE2 and injected into mouse oocytes. Two transgenic lines were crossed to mouse line TgN(rtTahCMV)4Uh containing the CMV promoted “teton.”Measurements of red blood cell folate levels in inbred strains of mice were performed. Key findings Only low levels of human NAT1 could be achieved in kidney (highly responsive in other studies) whether the inducer, doxycycline, was given by gavage or in drinking water.An inverse correlation of folate levels with Nat2 enzyme activity was found. Significance Since increasing NAT1 activity decrease folate in at least one tissue, the detrimental effect of expression of human NAT1 in combination with endogenous mouse Nat2 may be a consequence of increased catabolism of folate. PMID:19932120

  13. Reconstruction of N-acetyltransferase 2 haplotypes using PHASE.

    PubMed

    Golka, Klaus; Blaszkewicz, Meinolf; Samimi, Mirabutaleb; Bolt, Hermann M; Selinski, Silvia

    2008-04-01

    The genotyping of N-acetyltransferase 2 (NAT2) by PCR/RFLP methods yields in a considerable percentage ambiguous results. To resolve this methodical problem a statistical approach was applied. PHASE v2.1.1, a statistical program for haplotype reconstruction was used to estimate haplotype pairs from NAT2 genotyping data, obtained by the analysis of seven single nucleotide polymorphisms relevant for Caucasians. In 1,011 out of 2,921 (35%) subjects the haplotype pairs were clearcut by the PCR/RFLP data only. For the majority of the data the applied method resulted in a multiplicity (2-4) of possible haplotype pairs. Haplotype reconstruction using PHASE v2.1.1 cleared this ambiguity in all cases but one, where an alternative haplotype pair was considered with a probability of 0.029. The estimation of the NAT2 haplotype is important because the assignment of the NAT2 alleles *12A, *12B, *12C or *13 to the rapid or slow NAT2 genotype has been discussed controversially. A clear assignment is indispensable in surveys of human bladder cancer caused by aromatic amine exposures. In conclusion, PHASE v2.1.1 software allowed an unambiguous haplotype reconstruction in 2,920 of 2,921 cases (>99.9%). PMID:17879084

  14. Histone acetyltransferase inhibitors block neuroblastoma cell growth in vivo

    PubMed Central

    Gajer, J M; Furdas, S D; Gründer, A; Gothwal, M; Heinicke, U; Keller, K; Colland, F; Fulda, S; Pahl, H L; Fichtner, I; Sippl, W; Jung, M

    2015-01-01

    We have previously described novel histone acetyltransferase (HAT) inhibitors that block neuroblastoma cell growth in vitro. Here we show that two selected pyridoisothiazolone HAT inhibitors, PU139 and PU141, induce cellular histone hypoacetylation and inhibit growth of several neoplastic cell lines originating from different tissues. Broader in vitro selectivity profiling shows that PU139 blocks the HATs Gcn5, p300/CBP-associated factor (PCAF), CREB (cAMP response element-binding) protein (CBP) and p300, whereas PU141 is selective toward CBP and p300. The pan-inhibitor PU139 triggers caspase-independent cell death in cell culture. Both inhibitors block growth of SK-N-SH neuroblastoma xenografts in mice and the PU139 was shown to synergize with doxorubicin in vivo. The latter also reduces histone lysine acetylation in vivo at concentrations that block neoplastic xenograft growth. This is one of the very few reports on hypoacetylating agents with in vivo anticancer activity. PMID:25664930

  15. Obesity and lipid stress inhibit carnitine acetyltransferase activity.

    PubMed

    Seiler, Sarah E; Martin, Ola J; Noland, Robert C; Slentz, Dorothy H; DeBalsi, Karen L; Ilkayeva, Olga R; An, Jie; Newgard, Christopher B; Koves, Timothy R; Muoio, Deborah M

    2014-04-01

    Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes. PMID:24395925

  16. Substrate Binding and Catalytic Mechanism of Human Choline Acetyltransferase

    SciTech Connect

    Kim,A.; Rylett, J.; Shilton, B.

    2006-01-01

    Choline acetyltransferase (ChAT) catalyzes the synthesis of the neurotransmitter acetylcholine from choline and acetyl-CoA, and its presence is a defining feature of cholinergic neurons. We report the structure of human ChAT to a resolution of 2.2 {angstrom} along with structures for binary complexes of ChAT with choline, CoA, and a nonhydrolyzable acetyl-CoA analogue, S-(2-oxopropyl)-CoA. The ChAT-choline complex shows which features of choline are important for binding and explains how modifications of the choline trimethylammonium group can be tolerated by the enzyme. A detailed model of the ternary Michaelis complex fully supports the direct transfer of the acetyl group from acetyl-CoA to choline through a mechanism similar to that seen in the serine hydrolases for the formation of an acyl-enzyme intermediate. Domain movements accompany CoA binding, and a surface loop, which is disordered in the unliganded enzyme, becomes localized and binds directly to the phosphates of CoA, stabilizing the complex. Interactions between this surface loop and CoA may function to lower the K{sub M} for CoA and could be important for phosphorylation-dependent regulation of ChAT activity.

  17. Inhibition of aminoglycoside acetyltransferase resistance enzymes by metal salts.

    PubMed

    Li, Yijia; Green, Keith D; Johnson, Brooke R; Garneau-Tsodikova, Sylvie

    2015-07-01

    Aminoglycosides (AGs) are clinically relevant antibiotics used to treat infections caused by both Gram-negative and Gram-positive bacteria, as well as Mycobacteria. As with all current antibacterial agents, resistance to AGs is an increasing problem. The most common mechanism of resistance to AGs is the presence of AG-modifying enzymes (AMEs) in bacterial cells, with AG acetyltransferases (AACs) being the most prevalent. Recently, it was discovered that Zn(2+) metal ions displayed an inhibitory effect on the resistance enzyme AAC(6')-Ib in Acinetobacter baumannii and Escherichia coli. In this study, we explore a wide array of metal salts (Mg(2+), Cr(3+), Cr(6+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Au(3+) with different counter ions) and their inhibitory effect on a large repertoire of AACs [AAC(2')-Ic, AAC(3)-Ia, AAC(3)-Ib, AAC(3)-IV, AAC(6')-Ib', AAC(6')-Ie, AAC(6')-IId, and Eis]. In addition, we determine the MIC values for amikacin and tobramycin in combination with a zinc pyrithione complex in clinical isolates of various bacterial strains (two strains of A. baumannii, three of Enterobacter cloacae, and four of Klebsiella pneumoniae) and one representative of each species purchased from the American Type Culture Collection. PMID:25941215

  18. Inhibition of Aminoglycoside Acetyltransferase Resistance Enzymes by Metal Salts

    PubMed Central

    Li, Yijia; Green, Keith D.; Johnson, Brooke R.

    2015-01-01

    Aminoglycosides (AGs) are clinically relevant antibiotics used to treat infections caused by both Gram-negative and Gram-positive bacteria, as well as Mycobacteria. As with all current antibacterial agents, resistance to AGs is an increasing problem. The most common mechanism of resistance to AGs is the presence of AG-modifying enzymes (AMEs) in bacterial cells, with AG acetyltransferases (AACs) being the most prevalent. Recently, it was discovered that Zn2+ metal ions displayed an inhibitory effect on the resistance enzyme AAC(6′)-Ib in Acinetobacter baumannii and Escherichia coli. In this study, we explore a wide array of metal salts (Mg2+, Cr3+, Cr6+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Au3+ with different counter ions) and their inhibitory effect on a large repertoire of AACs [AAC(2′)-Ic, AAC(3)-Ia, AAC(3)-Ib, AAC(3)-IV, AAC(6′)-Ib′, AAC(6′)-Ie, AAC(6′)-IId, and Eis]. In addition, we determine the MIC values for amikacin and tobramycin in combination with a zinc pyrithione complex in clinical isolates of various bacterial strains (two strains of A. baumannii, three of Enterobacter cloacae, and four of Klebsiella pneumoniae) and one representative of each species purchased from the American Type Culture Collection. PMID:25941215

  19. The histone acetyltransferase hMOF suppresses hepatocellular carcinoma growth.

    PubMed

    Zhang, Jin; Liu, Hui; Pan, Hao; Yang, Yuan; Huang, Gang; Yang, Yun; Zhou, Wei-Ping; Pan, Ze-Ya

    2014-09-26

    Males absent on the first (MOF) is a histone acetyltransferase belongs to the MYST (MOZ, Ybf2/Sas3, Sas2 and TIP60) family. In mammals, MOF plays critical roles in transcription activation by acetylating histone H4K16, a prevalent mark associated with chromatin decondensation. MOF can also acetylate transcription factor p53 on K120, which is important for activation of pro-apoptotic genes; and TIP5, the largest subunit of NoRC, on K633. However, the role of hMOF in hepatocellular carcinoma remains unknown. Here we find that the expression of hMOF is significantly down-regulated in human hepatocellular carcinoma and cell lines. Furthermore, our survival analysis indicates that low hMOF expression predicts poor overall and disease-free survival. We demonstrate that hMOF knockdown promotes hepatocellular carcinoma growth in vitro and in vivo, while hMOF overexpression reduces hepatocellular carcinoma growth in vitro and in vivo. Mechanically, we show that hMOF regulates the expression of SIRT6 and its downstream genes. In summary, our findings demonstrate that hMOF participates in human hepatocellular carcinoma by targeting SIRT6, and hMOF activators may serve as potential drug candidates for hepatocellular carcinoma therapy. PMID:25181338

  20. The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis.

    PubMed

    Su, Jiaming; Wang, Fei; Cai, Yong; Jin, Jingji

    2016-01-01

    Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs). As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL) in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16); however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8), suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways. PMID:26784169

  1. Small molecule modulators of histone acetyltransferase p300.

    PubMed

    Balasubramanyam, Karanam; Swaminathan, V; Ranganathan, Anupama; Kundu, Tapas K

    2003-05-23

    Histone acetyltransferases (HATs) are a group of enzymes that play a significant role in the regulation of gene expression. These enzymes covalently modify the N-terminal lysine residues of histones by the addition of acetyl groups from acetyl-CoA. Dysfunction of these enzymes is often associated with the manifestation of several diseases, predominantly cancer. Here we report that anacardic acid from cashew nut shell liquid is a potent inhibitor of p300 and p300/CBP-associated factor histone acetyltranferase activities. Although it does not affect DNA transcription, HAT-dependent transcription from a chromatin template was strongly inhibited by anacardic acid. Furthermore, we describe the design and synthesis of an amide derivative N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide (CTPB) using anacardic acid as a synthon, which remarkably activates p300 HAT activity but not that of p300/CBP-associated factor. Although CTPB does not affect DNA transcription, it enhances the p300 HAT-dependent transcriptional activation from in vitro assembled chromatin template. However, it has no effect on histone deacetylase activity. These compounds would be useful as biological switching molecules for probing into the role of p300 in transcriptional studies and may also be useful as new chemical entities for the development of anticancer drugs. PMID:12624111

  2. Energy level properties of 4p{sup 6}4d{sup 3}, 4p{sup 6}4d{sup 2}4f, and 4p{sup 5}4d{sup 4} configurations of the W{sup 35+} ion

    SciTech Connect

    Bogdanovich, P. Kisielius, R.

    2014-11-15

    The ab initio quasirelativistic Hartree–Fock method developed specifically for the calculation of spectroscopic parameters of heavy atoms and highly charged ions was used to derive spectral data for the multicharged tungsten ion W{sup 35+}. The configuration interaction method was applied to include the electron-correlation effects. The relativistic effects were taken into account in the Breit–Pauli approximation for quasirelativistic Hartree–Fock radial orbitals. The energy level spectra, radiative lifetimes τ, and Lande g-factors have been calculated for the 4p{sup 6}4d{sup 3}, 4p{sup 6}4d{sup 2}4f, and 4p{sup 5}4d{sup 4} configurations of the W{sup 35+} ion.

  3. An Acetyltransferase Conferring Tolerance to Toxic Aromatic Amine Chemicals

    PubMed Central

    Martins, Marta; Rodrigues-Lima, Fernando; Dairou, Julien; Lamouri, Aazdine; Malagnac, Fabienne; Silar, Philippe; Dupret, Jean-Marie

    2009-01-01

    Aromatic amines (AA) are a major class of environmental pollutants that have been shown to have genotoxic and cytotoxic potentials toward most living organisms. Fungi are able to tolerate a diverse range of chemical compounds including certain AA and have long been used as models to understand general biological processes. Deciphering the mechanisms underlying this tolerance may improve our understanding of the adaptation of organisms to stressful environments and pave the way for novel pharmaceutical and/or biotechnological applications. We have identified and characterized two arylamine N-acetyltransferase (NAT) enzymes (PaNAT1 and PaNAT2) from the model fungus Podospora anserina that acetylate a wide range of AA. Targeted gene disruption experiments revealed that PaNAT2 was required for the growth and survival of the fungus in the presence of toxic AA. Functional studies using the knock-out strains and chemically acetylated AA indicated that tolerance of P. anserina to toxic AA was due to the N-acetylation of these chemicals by PaNAT2. Moreover, we provide proof-of-concept remediation experiments where P. anserina, through its PaNAT2 enzyme, is able to detoxify the highly toxic pesticide residue 3,4-dichloroaniline in experimentally contaminated soil samples. Overall, our data show that a single xenobiotic-metabolizing enzyme can mediate tolerance to a major class of pollutants in a eukaryotic species. These findings expand the understanding of the role of xenobiotic-metabolizing enzyme and in particular of NATs in the adaptation of organisms to their chemical environment and provide a basis for new systems for the bioremediation of contaminated soils. PMID:19416981

  4. Structural Studies on a Glucosamine/Glucosaminide N-Acetyltransferase.

    PubMed

    Dopkins, Brandon J; Tipton, Peter A; Thoden, James B; Holden, Hazel M

    2016-08-16

    Glucosamine/glucosaminide N-acetyltransferase or GlmA catalyzes the transfer of an acetyl group from acetyl CoA to the primary amino group of glucosamine. The enzyme from Clostridium acetobutylicum is thought to be involved in cell wall rescue. In addition to glucosamine, GlmA has been shown to function on di- and trisaccharides of glucosamine as well. Here we present a structural and kinetic analysis of the enzyme. For this investigation, eight structures were determined to resolutions of 2.0 Å or better. The overall three-dimensional fold of GlmA places it into the tandem GNAT superfamily. Each subunit of the dimer folds into two distinct domains which exhibit high three-dimensional structural similarity. Whereas both domains bind acetyl CoA, it is the C-terminal domain that is catalytically competent. On the basis of the various structures determined in this investigation, two amino acid residues were targeted for further study: Asp 287 and Tyr 297. Although their positions in the active site suggested that they may play key roles in catalysis by functioning as active site bases and acids, respectively, this was not borne out by characterization of the D287N and Y297F variants. The kinetic properties revealed that both residues were important for substrate binding but had no critical roles as acid/base catalysts. Kinetic analyses also indicated that GlmA follows an ordered mechanism with acetyl CoA binding first followed by glucosamine. The product N-acetylglucosamine is then released prior to CoA. The investigation described herein provides significantly new information on enzymes belonging to the tandem GNAT superfamily. PMID:27348258

  5. N-Alpha-Acetyltransferases and Regulation of CFTR Expression

    PubMed Central

    Patrick, Anna E.; Hudson, Henry; Thomas, Philip J.

    2016-01-01

    The majority of cystic fibrosis (CF)-causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) lead to the misfolding, mistrafficking, and degradation of the mutant protein. Inhibition of degradation does not effectively increase the amount of trafficking competent CFTR, but typically leads to increased ER retention of misfolded forms. Thus, the initial off pathway steps occur early in the processing of the protein. To identify proteins that interact with these early forms of CFTR, in vitro crosslink experiments identified cotranslational partners of the nascent chain of the severe misfolded mutant, G85E CFTR. The mutant preferentially interacts with a subunit of an N-alpha-acetyltransferase A. Based on recent reports that acetylation of the N-termini of some N-end rule substrates control their ubiquitination and subsequent degradation, a potential role for this modification in regulation of CFTR expression was assessed. Knockdown experiments identified two complexes, which affect G85E CFTR proteins levels, NatA and NatB. Effects of the knockdowns on mRNA levels, translation rates, and degradation rates established that the two complexes regulate G85E CFTR through two separate mechanisms. NatA acts indirectly by regulating transcription levels and NatB acts through a previously identified, but incompletely understood posttranslational mechanism. This regulation did not effect trafficking of G85E CFTR, which remains retained in the ER, nor did it alter the degradation rate of CFTR. A mutation predicted to inhibit N-terminal acetylation of CFTR, Q2P, was without effect, suggesting neither system acts directly on CFTR. These results contradict the prediction that N-terminal acetylation of CFTR determines its fitness as a proteasome substrate, but rather NatB plays a role in the conformational maturation of CFTR in the ER through actions on an unidentified protein. PMID:27182737

  6. Polymorphisms of human N-acetyltransferases and cancer risk.

    PubMed

    Agúndez, José A G

    2008-07-01

    Human arylamine N-acetyltransferases (CoASAc; NAT, EC 2.3.1.5) NAT1 and NAT2 play a key role in the metabolism of drugs and environmental chemicals and in the metabolic activation and detoxification of procarcinogens. Phenotyping analyses have revealed an association between NAT enzyme activities and the risk of developing several forms of cancer. As genotyping procedures have become available for NAT1 and NAT2 gene variations, hundreds of association studies on NAT polymorphisms and cancer risk have been conducted. Here we review the findings obtained from these studies. Evidence for a putative association of NAT1 polymorphism and myeloma, lung and bladder cancer, as well as association of NAT2 polymorphisms with non-Hodgkin lymphoma, liver, colorectal and bladder cancer have been reported. In contrast, no consistent evidence for a relevant association of NAT polymorphisms with brain, head & neck, breast, gastric, pancreatic or prostate cancer have been described. Although preliminary data are available, further well-powered studies are required to fully elucidate the role of NAT1 in most human cancers, and that of NAT2 in astrocytoma, meningioma, esophageal, renal, cervical and testicular cancers, as well as in leukaemia and myeloma. This review discusses controversial findings on cancer risk and putative causes of heterogeneity in the proposed associations, and it identifies topics that require further investigation, particularly mechanisms underlying association of NAT polymorphisms and risk for subsets of cancer patients with specific exposures, putative epistatic contribution of polymorphism for other xenobiotic-metabolising enzymes such as glutathione S-transferases of Cytochrome P450 enzymes, and genetic plus environmental interaction. PMID:18680472

  7. N-Alpha-Acetyltransferases and Regulation of CFTR Expression.

    PubMed

    Vetter, Ali J; Karamyshev, Andrey L; Patrick, Anna E; Hudson, Henry; Thomas, Philip J

    2016-01-01

    The majority of cystic fibrosis (CF)-causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) lead to the misfolding, mistrafficking, and degradation of the mutant protein. Inhibition of degradation does not effectively increase the amount of trafficking competent CFTR, but typically leads to increased ER retention of misfolded forms. Thus, the initial off pathway steps occur early in the processing of the protein. To identify proteins that interact with these early forms of CFTR, in vitro crosslink experiments identified cotranslational partners of the nascent chain of the severe misfolded mutant, G85E CFTR. The mutant preferentially interacts with a subunit of an N-alpha-acetyltransferase A. Based on recent reports that acetylation of the N-termini of some N-end rule substrates control their ubiquitination and subsequent degradation, a potential role for this modification in regulation of CFTR expression was assessed. Knockdown experiments identified two complexes, which affect G85E CFTR proteins levels, NatA and NatB. Effects of the knockdowns on mRNA levels, translation rates, and degradation rates established that the two complexes regulate G85E CFTR through two separate mechanisms. NatA acts indirectly by regulating transcription levels and NatB acts through a previously identified, but incompletely understood posttranslational mechanism. This regulation did not effect trafficking of G85E CFTR, which remains retained in the ER, nor did it alter the degradation rate of CFTR. A mutation predicted to inhibit N-terminal acetylation of CFTR, Q2P, was without effect, suggesting neither system acts directly on CFTR. These results contradict the prediction that N-terminal acetylation of CFTR determines its fitness as a proteasome substrate, but rather NatB plays a role in the conformational maturation of CFTR in the ER through actions on an unidentified protein. PMID:27182737

  8. Characterization of a Trypanosoma cruzi acetyltransferase: cellular location, activity and structure.

    PubMed

    Ochaya, Stephen; Respuela, Patricia; Simonsson, Maria; Saraswathi, Abhiman; Branche, Carole; Lee, Jennifer; Búa, Jacqueline; Nilsson, Daniel; Aslund, Lena; Bontempi, Esteban J; Andersson, Björn

    2007-04-01

    Trypanosomatids are widespread parasites that cause three major tropical diseases. In trypanosomatids, as in most other organisms, acetylation is a common protein modification that is important in multiple, diverse processes. This paper describes a new member of the Trypanosoma cruzi acetyltransferase family. The gene is single copy and orthologs are also present in the other two sequenced trypanosomatids, Trypanosoma brucei and Leishmania major. This protein (TcAT-1) has the essential motifs present in members of the GCN5-related acetyltransferase (GNAT) family, as well as an additional motif also found in some enzymes from plant and animal species. The protein is evolutionarily more closely related to this group of enzymes than to histone acetyltransferases. The native protein has a cytosolic cellular location and is present in all three life-cycle stages of the parasite. The recombinant protein was shown to have autoacetylation enzymatic activity. PMID:17270289

  9. Entrainment of the circadian rhythm in the rat pineal N-acetyltransferase activity by prolonged periods of light.

    PubMed

    Illnerová, H; Vanĕcek, J

    1987-08-01

    Entertainment of the circadian rhythm in the pineal N-acetyltranferase activity by prolonged periods of light was studied in rats synchronized with a light:dark regime of 12:12 h by observing phase-shifts in rhythm after delays in switching off the light in the evening or after bringing forward of the morning onset of light. When rats were subjected to delays in switching off the light of up to 10 h and then were released into darkness, phase-delays of the evening N-acetyltransferase rise during the same night corresponded roughly to delays in the light switch off. However, phase-delays of the morning decline were much smaller. After a delay in the evening switch off of 11 h, no N-acetyltransferase rhythm was found in the subsequent darkness. The evening N-acetyltransferase rise was phase-delayed by 6.2 h at most 1 day after delays. Phase-delays of the morning N-acetyltransferase decline were shorter than phase-delays of the N-acetyltransferase rise by only 0.7 h to 0.9 h at most. Hence, 1 day after delays in the evening switch off, the period of the high night N-acetyltransferase activity may be shortened only slightly. The N-acetyltransferase rhythm was abolished only after a 12 h delay in switching off the light. Rats were subjected to a bringing forward of the morning light onset and then were released into darkness 4 h before the usual switch off of light. In the following night, the morning N-acetyltransferase decline, but not the evening rise, was phase advanced considerably. Moreover, when the onset of light was brought forward to before midnight, the N-acetyltransferase rise was even phase-delayed. Hence, 1 day after bringing forward the morning onset of light, the period of the high night N-acetyltransferase activity may be drastically reduced. When rats were subjected to a 4 h light pulse around midnight and then released into darkness, the N-acetyltransferase rhythm in the next night was abolished. The data are discussed in terms of a two

  10. Comparative investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and higher eukaryotes. The role of NATs in fungal biology has only recently been investigated. The NAT1 gene of Gibberella moniliformis was the first NAT cloned and characterized from fun...

  11. Structure of soybean serine acetyltransferase and formation of the cysteine regulatory complex as a molecular chaperone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serine acetyltransferase (SAT) catalyzes the limiting reaction in plant and microbial biosynthesis of cysteine. In addition to its enzymatic function, SAT forms a macromolecular complex with O-acetylserine sulfhydrylase (OASS). Formation of the cysteine regulatory complex (CRC) is a critical biochem...

  12. Unintended Consequences: High phosphinothricin acetyltransferase activity causes reduced fitness in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selectable markers used in plant transformation, such as phosphinothricin acetyltransferase (PAT) derived from the bar gene, have been chosen for selection efficacy as well as for the absence of pleiotropic effects. Recent research has suggested that expression of bar in Arabidopsis affects the tran...

  13. AAC(3)-XI, a new aminoglycoside 3-N-acetyltransferase from Corynebacterium striatum.

    PubMed

    Galimand, Marc; Fishovitz, Jennifer; Lambert, Thierry; Barbe, Valérie; Zajicek, Jaroslav; Mobashery, Shahriar; Courvalin, Patrice

    2015-09-01

    Corynebacterium striatum BM4687 was resistant to gentamicin and tobramycin but susceptible to kanamycin A and amikacin, a phenotype distinct among Gram-positive bacteria. Analysis of the entire genome of this strain did not detect any genes for known aminoglycoside resistance enzymes. Yet, annotation of the coding sequences identified 12 putative acetyltransferases or GCN5-related N-acetyltransferases. A total of 11 of these coding sequences were also present in the genomes of other Corynebacterium spp. The 12th coding sequence had 55 to 60% amino acid identity with acetyltransferases in Actinomycetales. The gene was cloned in Escherichia coli, where it conferred resistance to aminoglycosides by acetylation. The protein was purified to homogeneity, and its steady-state kinetic parameters were determined for dibekacin and kanamycin B. The product of the turnover of dibekacin was purified, and its structure was elucidated by high-field nuclear magnetic resonance (NMR), indicating transfer of the acetyl group to the amine at the C-3 position. Due to the unique profile of the reaction, it was designated aminoglycoside 3-N-acetyltransferase type XI. PMID:26149994

  14. Phylogenetic and biological investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and eukaryotic organisms. The role of NATs in fungal biology has only recently been investigated. The NAT1 (FDB2) gene of Fusarium verticillioides was the first NAT cloned and character...

  15. AAC(3)-XI, a New Aminoglycoside 3-N-Acetyltransferase from Corynebacterium striatum

    PubMed Central

    Galimand, Marc; Fishovitz, Jennifer; Lambert, Thierry; Barbe, Valérie; Zajicek, Jaroslav

    2015-01-01

    Corynebacterium striatum BM4687 was resistant to gentamicin and tobramycin but susceptible to kanamycin A and amikacin, a phenotype distinct among Gram-positive bacteria. Analysis of the entire genome of this strain did not detect any genes for known aminoglycoside resistance enzymes. Yet, annotation of the coding sequences identified 12 putative acetyltransferases or GCN5-related N-acetyltransferases. A total of 11 of these coding sequences were also present in the genomes of other Corynebacterium spp. The 12th coding sequence had 55 to 60% amino acid identity with acetyltransferases in Actinomycetales. The gene was cloned in Escherichia coli, where it conferred resistance to aminoglycosides by acetylation. The protein was purified to homogeneity, and its steady-state kinetic parameters were determined for dibekacin and kanamycin B. The product of the turnover of dibekacin was purified, and its structure was elucidated by high-field nuclear magnetic resonance (NMR), indicating transfer of the acetyl group to the amine at the C-3 position. Due to the unique profile of the reaction, it was designated aminoglycoside 3-N-acetyltransferase type XI. PMID:26149994

  16. Genetic Variation at the N-acetyltransferase (NAT) Genes in Global Populations

    EPA Science Inventory

    Functional variability at the N-acetyltransferase (NAT) genes is associated with adverse drug reactions and cancer susceptibility in humans. Previous studies of small sets of ethnic groups have indicated that the NAT genes have high levels of amino acid variation that differ in f...

  17. Severe congenital myasthenia gravis of the presynaptic type with choline acetyltransferase mutation in a Chinese infant with respiratory failure.

    PubMed

    Yeung, Wai L; Lam, Ching W; Fung, Lai W E; Hon, Kam L E; Ng, Pak C

    2009-01-01

    We report a severe case of congenital myasthenia gravis in a Chinese newborn who presented with complete ptosis, severe hypotonia, dysphagia and respiratory insufficiency with recurrent apnea that required mechanical ventilatory support since birth. Routine neurophysiologic studies, including the 3-Hz repetitive stimulation test and electromyogram were normal. Neostigmine and edrophonium tests were also negative. However, decremental response to 3-Hz stimulation became apparent after depleting the muscles with trains of 10-Hz stimuli for 10 min. The infant was subsequently confirmed to have heterozygous mutations in the choline acetyltransferase genes, p.T553N and p.S704P. Both missense mutations are novel mutations. The child remained on positive pressure ventilation at 3 years of age despite treatment with high-dose anticholinesterase. This case highlights the difficulty of making an early diagnosis based on clinical presentation and routine electrophysiologic tests, especially when neonatologists are not familiar with this condition. Further, as there are different genetic defects causing different types of congenital myasthenia gravis, anticholinesterase therapy may be beneficial to some but detrimental to others. Therefore, the exact molecular diagnosis is an important guide to therapy. A high index of suspicion coupled with extended electrodiagnostic tests in clinically suspected patients will ensure the selection of appropriate genetic molecular study for confirming the diagnosis. PMID:18797171

  18. Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspi goesingense.

    PubMed

    Freeman, John L; Persans, Michael W; Nieman, Ken; Salt, David E

    2005-12-01

    The overexpression of serine acetyltransferase from the Ni-hyperaccumulating plant Thlaspi goesingense causes enhanced nickel and cobalt resistance in Escherichia coli. Furthermore, overexpression of T. goesingense serine acetyltransferase results in enhanced sensitivity to cadmium and has no significant effect on resistance to zinc. Enhanced nickel resistance is directly related to the constitutive overactivation of sulfur assimilation and glutathione biosynthesis, driven by the overproduction of O-acetyl-L-serine, the product of serine acetyltransferase and a positive regulator of the cysteine regulon. Nickel in the serine acetyltransferase-overexpressing strains is not detoxified by coordination or precipitation with sulfur, suggesting that glutathione is involved in reducing the oxidative damage imposed by nickel. PMID:16332856

  19. Nickel and Cobalt Resistance Engineered in Escherichia coli by Overexpression of Serine Acetyltransferase from the Nickel Hyperaccumulator Plant Thlaspi goesingense

    PubMed Central

    Freeman, John L.; Persans, Michael W.; Nieman, Ken; Salt, David E.

    2005-01-01

    The overexpression of serine acetyltransferase from the Ni-hyperaccumulating plant Thlaspi goesingense causes enhanced nickel and cobalt resistance in Escherichia coli. Furthermore, overexpression of T. goesingense serine acetyltransferase results in enhanced sensitivity to cadmium and has no significant effect on resistance to zinc. Enhanced nickel resistance is directly related to the constitutive overactivation of sulfur assimilation and glutathione biosynthesis, driven by the overproduction of O-acetyl-l-serine, the product of serine acetyltransferase and a positive regulator of the cysteine regulon. Nickel in the serine acetyltransferase-overexpressing strains is not detoxified by coordination or precipitation with sulfur, suggesting that glutathione is involved in reducing the oxidative damage imposed by nickel. PMID:16332856

  20. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveals Substrate Specificity of Protein Acetyltransferases

    SciTech Connect

    Crosby, Heidi A; Pelletier, Dale A; Hurst, Gregory {Greg} B; Escalante-Semerena, Jorge C

    2012-01-01

    Background: Protein acetylation is widespread in prokaryotes. Results: Six new acyl-CoA synthetases whose activities are controlled by acetylation were identified, and their substrate preference established. A new protein acetyltransferase was also identified and its substrate specificity determined. Conclusion: Protein acetyltransferases acetylate a conserved lysine residue in protein substrates. Significance: The R. palustris Pat enzyme specifically acetylates AMP-forming acyl-CoA synthetases and regulates fatty acid metabolism.

  1. Identification of the satA gene encoding a streptogramin A acetyltransferase in Enterococcus faecium BM4145.

    PubMed Central

    Rende-Fournier, R; Leclercq, R; Galimand, M; Duval, J; Courvalin, P

    1993-01-01

    Enterococcus faecium BM4145, a clinical isolate from urine, was resistant to streptogramin group A antibiotics by inactivation. The strain harbored a plasmid containing a gene, satA, responsible for this resistance; this gene was cloned and sequenced. It encoded SatA, a protein deduced to be 23,634 Da in mass and homologous with a new family of chloramphenicol acetyltransferases described in Agrobacterium tumefaciens, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The similarity of SatA to other acetyltransferases, LacA (thiogalactoside acetyltransferase) and CysE (serine acetyltransferase) from E. coli, and to two putative acetyltransferases, NodL from Rhizobium leguminosarum and Urf1 from E. coli, was also observed in a region considered to be the enzyme's active site. Acetylation experiments indicated that acetyl coenzyme A was necessary for SatA activity and that a single acetylated derivative of pristinamycin IIA was produced. Other members of the streptogramin A group such as virginiamycin M and RP54476 were also substrates for the enzyme. We conclude that resistance to the streptogramin A group of antibiotics in E. faecium BM4145 is due to acetylation by an enzyme related to the novel chloramphenicol acetyltransferase family. Images PMID:8257133

  2. Kinesin-II Is Required for Axonal Transport of Choline Acetyltransferase in Drosophila

    PubMed Central

    Ray, Krishanu; Perez, Sharon E.; Yang, Zhaohuai; Xu, Jenny; Ritchings, Bruce W.; Steller, Hermann; Goldstein, Lawrence S.B.

    1999-01-01

    KLP64D and KLP68D are members of the kinesin-II family of proteins in Drosophila. Immunostaining for KLP68D and ribonucleic acid in situ hybridization for KLP64D demonstrated their preferential expression in cholinergic neurons. KLP68D was also found to accumulate in cholinergic neurons in axonal obstructions caused by the loss of kinesin light chain. Mutations in the KLP64D gene cause uncoordinated sluggish movement and death, and reduce transport of choline acetyltransferase from cell bodies to the synapse. The inviability of KLP64D mutations can be rescued by expression of mammalian KIF3A. Together, these data suggest that kinesin-II is required for the axonal transport of a soluble enzyme, choline acetyltransferase, in a specific subset of neurons in Drosophila. Furthermore, the data lead to the conclusion that the cargo transport requirements of different classes of neurons may lead to upregulation of specific pathways of axonal transport. PMID:10545496

  3. Crystallization of ornithine acetyltransferase from yeast by counter-diffusion and preliminary X-ray study

    SciTech Connect

    Maes, Dominique Crabeel, Marjolaine; Van de Weerdt, Cécile; Martial, Joseph; Peeters, Eveline; Charlier, Daniël; Decanniere, Klaas; Vanhee, Celine; Wyns, Lode; Zegers, Ingrid

    2006-12-01

    A study on the crystallization of ornithine acetyltransferase from yeast, catalysing the fifth step in microbial arginine synthesis, is presented. The use of the counter-diffusion technique removes the disorder present in one dimension in crystals grown by either batch or hanging-drop techniques. A study is presented on the crystallization of ornithine acetyltransferase from yeast, which catalyzes the fifth step in microbial arginine synthesis. The use of the counter-diffusion technique removes the disorder present in one dimension in crystals grown by either the batch or hanging-drop techniques. This makes the difference between useless crystals and crystals that allow successful determination of the structure of the protein. The crystals belong to space group P4, with unit-cell parameters a = b = 66.98, c = 427.09 Å, and a data set was collected to 2.76 Å.

  4. Application of a High-throughput Fluorescent Acetyltransferase Assay to Identify Inhibitors of Homocitrate Synthase

    PubMed Central

    Bulfer, Stacie L.; McQuade, Thomas J.; Larsen, Martha J.; Trievel, Raymond C.

    2011-01-01

    Homocitrate synthase (HCS) catalyzes the first step of L-lysine biosynthesis in fungi by condensing acetyl-Coenzyme A and 2-oxoglutarate to form 3R-homocitrate and Coenzyme A. Due to its conservation in pathogenic fungi, HCS has been proposed as a candidate for antifungal drug design. Here we report the development and validation of a robust, fluorescent assay for HCS that is amenable to high-throughput screening for inhibitors in vitro. Using this assay, Schizosaccharomyces pombe HCS was screened against a diverse library of ~41,000 small molecules. Following confirmation, counter screens, and dose-response analysis, we prioritized over 100 compounds for further in vitro and in vivo analysis. This assay can be readily adapted to screen for small molecule modulators of other acyl-CoA-dependent acyltransferases or enzymes that generate a product with a free sulfhydryl group, including histone acetyltransferases, aminoglycoside N-acetyltransferases, thioesterases and enzymes involved in lipid metabolism. PMID:21073853

  5. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    SciTech Connect

    Bame, K.J.

    1986-01-01

    Acetyl-CoA:..cap alpha..-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal ..cap alpha..-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The binding of acetyl-CoA to the enzyme is measured by exchange label from (/sup 3/H)CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with (/sup 3/H)acetyl-CoA. The acetyl group can be transferred to glucosamine, forming (/sup 3/H)N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism.

  6. The histone acetyltransferase MOF overexpression blunts cardiac hypertrophy by targeting ROS in mice.

    PubMed

    Qiao, Weiwei; Zhang, Weili; Gai, Yusheng; Zhao, Lan; Fan, Juexin

    2014-06-13

    Imbalance between histone acetylation/deacetylation critically participates in the expression of hypertrophic fetal genes and development of cardiac hypertrophy. While histone deacetylases play dual roles in hypertrophy, current evidence reveals that histone acetyltransferase such as p300 and PCAF act as pro-hypertrophic factors. However, it remains elusive whether some histone acetyltransferases can prevent the development of hypertrophy. Males absent on the first (MOF) is a histone acetyltransferase belonging to the MYST (MOZ, Ybf2/Sas3, Sas2 and TIP60) family. Here in this study, we reported that MOF expression was down-regulated in failing human hearts and hypertrophic murine hearts at protein and mRNA levels. To evaluate the roles of MOF in cardiac hypertrophy, we generated cardiac-specific MOF transgenic mice. MOF transgenic mice did not show any differences from their wide-type littermates at baseline. However, cardiac-specific MOF overexpression protected mice from transverse aortic constriction (TAC)-induced cardiac hypertrophy, with reduced radios of heart weight (HW)/body weight (BW), lung weight/BW and HW/tibia length, decreased left ventricular wall thickness and increased fractional shortening. We also observed lower expression of hypertrophic fetal genes in TAC-challenged MOF transgenic mice compared with that of wide-type mice. Mechanically, MOF overexpression increased the expression of Catalase and MnSOD, which blocked TAC-induced ROS and ROS downstream c-Raf-MEK-ERK pathway that promotes hypertrophy. Taken together, our findings identify a novel anti-hypertrophic role of MOF, and MOF is the first reported anti-hypertrophic histone acetyltransferase. PMID:24802406

  7. RNA Cytidine Acetyltransferase of Small-Subunit Ribosomal RNA: Identification of Acetylation Sites and the Responsible Acetyltransferase in Fission Yeast, Schizosaccharomyces pombe

    PubMed Central

    Taoka, Masato; Ishikawa, Daisuke; Nobe, Yuko; Ishikawa, Hideaki; Yamauchi, Yoshio; Terukina, Goro; Nakayama, Hiroshi; Hirota, Kouji; Takahashi, Nobuhiro; Isobe, Toshiaki

    2014-01-01

    The eukaryotic small-subunit (SSU) ribosomal RNA (rRNA) has two evolutionarily conserved acetylcytidines. However, the acetylation sites and the acetyltransferase responsible for the acetylation have not been identified. We performed a comprehensive MS-based analysis covering the entire sequence of the fission yeast, Schizosaccharomyces pombe, SSU rRNA and identified two acetylcytidines at positions 1297 and 1815 in the 3′ half of the rRNA. To identify the enzyme responsible for the cytidine acetylation, we searched for an S. pombe gene homologous to TmcA, a bacterial tRNA N-acetyltransferase, and found one potential candidate, Nat10. A temperature-sensitive strain of Nat10 with a mutation in the Walker A type ATP-binding motif abolished the cytidine acetylation in SSU rRNA, and the wild-type Nat10 supplemented to this strain recovered the acetylation, providing evidence that Nat10 is necessary for acetylation of SSU rRNA. The Nat10 mutant strain showed a slow-growth phenotype and was defective in forming the SSU rRNA from the precursor RNA, suggesting that cytidine acetylation is necessary for ribosome assembly. PMID:25402480

  8. Conformational flexibility and subunit arrangement of the modular yeast Spt-Ada-Gcn5 acetyltransferase complex.

    PubMed

    Setiaputra, Dheva; Ross, James D; Lu, Shan; Cheng, Derrick T; Dong, Meng-Qiu; Yip, Calvin K

    2015-04-17

    The Spt-Ada-Gcn5 acetyltransferase (SAGA) complex is a highly conserved, 19-subunit histone acetyltransferase complex that activates transcription through acetylation and deubiquitination of nucleosomal histones in Saccharomyces cerevisiae. Because SAGA has been shown to display conformational variability, we applied gradient fixation to stabilize purified SAGA and systematically analyzed this flexibility using single-particle EM. Our two- and three-dimensional studies show that SAGA adopts three major conformations, and mutations of specific subunits affect the distribution among these. We also located the four functional modules of SAGA using electron microscopy-based labeling and transcriptional activator binding analyses and show that the acetyltransferase module is localized in the most mobile region of the complex. We further comprehensively mapped the subunit interconnectivity of SAGA using cross-linking mass spectrometry, revealing that the Spt and Taf subunits form the structural core of the complex. These results provide the necessary restraints for us to generate a model of the spatial arrangement of all SAGA subunits. According to this model, the chromatin-binding domains of SAGA are all clustered in one face of the complex that is highly flexible. Our results relate information of overall SAGA structure with detailed subunit level interactions, improving our understanding of its architecture and flexibility. PMID:25713136

  9. Conformational Flexibility and Subunit Arrangement of the Modular Yeast Spt-Ada-Gcn5 Acetyltransferase Complex*

    PubMed Central

    Setiaputra, Dheva; Ross, James D.; Lu, Shan; Cheng, Derrick T.; Dong, Meng-Qiu; Yip, Calvin K.

    2015-01-01

    The Spt-Ada-Gcn5 acetyltransferase (SAGA) complex is a highly conserved, 19-subunit histone acetyltransferase complex that activates transcription through acetylation and deubiquitination of nucleosomal histones in Saccharomyces cerevisiae. Because SAGA has been shown to display conformational variability, we applied gradient fixation to stabilize purified SAGA and systematically analyzed this flexibility using single-particle EM. Our two- and three-dimensional studies show that SAGA adopts three major conformations, and mutations of specific subunits affect the distribution among these. We also located the four functional modules of SAGA using electron microscopy-based labeling and transcriptional activator binding analyses and show that the acetyltransferase module is localized in the most mobile region of the complex. We further comprehensively mapped the subunit interconnectivity of SAGA using cross-linking mass spectrometry, revealing that the Spt and Taf subunits form the structural core of the complex. These results provide the necessary restraints for us to generate a model of the spatial arrangement of all SAGA subunits. According to this model, the chromatin-binding domains of SAGA are all clustered in one face of the complex that is highly flexible. Our results relate information of overall SAGA structure with detailed subunit level interactions, improving our understanding of its architecture and flexibility. PMID:25713136

  10. MOZ and MORF acetyltransferases: Molecular interaction, animal development and human disease.

    PubMed

    Yang, Xiang-Jiao

    2015-08-01

    Lysine residues are subject to many forms of covalent modification and one such modification is acetylation of the ε-amino group. Initially identified on histone proteins in the 1960s, lysine acetylation is now considered as an important form of post-translational modification that rivals phosphorylation. However, only about a dozen of human lysine acetyltransferases have been identified. Among them are MOZ (monocytic leukemia zinc finger protein; a.k.a. MYST3 and KAT6A) and its paralog MORF (a.k.a. MYST4 and KAT6B). Although there is a distantly related protein in Drosophila and sea urchin, these two enzymes are vertebrate-specific. They form tetrameric complexes with BRPF1 (bromodomain- and PHD finger-containing protein 1) and two small non-catalytic subunits. These two acetyltransferases and BRPF1 play key roles in various developmental processes; for example, they are important for development of hematopoietic and neural stem cells. The human KAT6A and KAT6B genes are recurrently mutated in leukemia, non-hematologic malignancies, and multiple developmental disorders displaying intellectual disability and various other abnormalities. In addition, the BRPF1 gene is mutated in childhood leukemia and adult medulloblastoma. Therefore, these two acetyltransferases and their partner BRPF1 are important in animal development and human disease. PMID:25920810

  11. Assay for peptidoglycan O-acetyltransferase: a potential new antibacterial target.

    PubMed

    Moynihan, Patrick J; Clarke, Anthony J

    2013-08-15

    The O-acetylation of peptidoglycan occurs at the C-6 hydroxyl group of muramoyl residues in many human pathogens, both gram positive and gram negative, such as Staphylococcus aureus and species of Campylobacter, Helicobacter, Neisseria, and Bacillus, including Bacillus anthracis. The process is a maturation event being catalyzed either by integral membrane O-acetylpeptidoglycan transferase (Oat) of gram-positive bacteria or by a two-component peptidoglycan O-acetyltransferase system (PatA/PatB) in gram-negative cells. Here, we describe the development of the first in vitro assay for any peptidoglycan O-acetyltransferase using PatB from Neisseria gonorrhoeae as the model enzyme. This assay is based on the use of chromogenic p-nitrophenyl acetate as the donor substrate and chitooligosaccharides as model acceptor substrates in place of peptidoglycan. The identity of the O-acetylated chitooligosaccharides was confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rates of transacetylations were determined spectrophotometrically by monitoring p-nitrophenol release after accounting for both spontaneous and enzyme-catalyzed hydrolysis of the acetate donor. Conditions were established for use of the assay in microtiter plate format, and its applicability was demonstrated by determining the first Michaelis-Menten kinetic parameters for PatB. The assay is readily amenable for application in the high-throughput screening for potential inhibitors of peptidoglycan O-acetyltransferases that may prove to be leads for novel classes of antibiotics. PMID:23660013

  12. Comprehensive analysis of interacting proteins and genome-wide location studies of the Sas3-dependent NuA3 histone acetyltransferase complex

    PubMed Central

    Vicente-Muñoz, Sara; Romero, Paco; Magraner-Pardo, Lorena; Martinez-Jimenez, Celia P.; Tordera, Vicente; Pamblanco, Mercè

    2014-01-01

    Histone acetylation affects several aspects of gene regulation, from chromatin remodelling to gene expression, by modulating the interplay between chromatin and key transcriptional regulators. The exact molecular mechanism underlying acetylation patterns and crosstalk with other epigenetic modifications requires further investigation. In budding yeast, these epigenetic markers are produced partly by histone acetyltransferase enzymes, which act as multi-protein complexes. The Sas3-dependent NuA3 complex has received less attention than other histone acetyltransferases (HAT), such as Gcn5-dependent complexes. Here, we report our analysis of Sas3p-interacting proteins using tandem affinity purification (TAP), coupled with mass spectrometry. This analysis revealed Pdp3p, a recently described component of NuA3, to be one of the most abundant Sas3p-interacting proteins. The PDP3 gene, was TAP-tagged and protein complex purification confirmed that Pdp3p co-purified with the NuA3 protein complex, histones, and several transcription-related and chromatin remodelling proteins. Our results also revealed that the protein complexes associated with Sas3p presented HAT activity even in the absence of Gcn5p and vice versa. We also provide evidence that Sas3p cannot substitute Gcn5p in acetylation of lysine 9 in histone H3 in vivo. Genome-wide occupancy of Sas3p using ChIP-on-chip tiled microarrays showed that Sas3p was located preferentially within the 5′-half of the coding regions of target genes, indicating its probable involvement in the transcriptional elongation process. Hence, this work further characterises the function and regulation of the NuA3 complex by identifying novel post-translational modifications in Pdp3p, additional Pdp3p-co-purifying chromatin regulatory proteins involved in chromatin-modifying complex dynamics and gene regulation, and a subset of genes whose transcriptional elongation is controlled by this complex. PMID:25473596

  13. New N-Acetyltransferase Fold in the Structure and Mechanism of the Phosphonate Biosynthetic Enzyme FrbF

    SciTech Connect

    Bae, Brian; Cobb, Ryan E.; DeSieno, Matthew A.; Zhao, Huimin; Nair, Satish K.

    2015-10-15

    The enzyme FrbF from Streptomyces rubellomurinus has attracted significant attention due to its role in the biosynthesis of the antimalarial phosphonate FR-900098. The enzyme catalyzes acetyl transfer onto the hydroxamate of the FR-900098 precursors cytidine 5'-monophosphate-3-aminopropylphosphonate and cytidine 5'-monophosphate-N-hydroxy-3-aminopropylphosphonate. Despite the established function as a bona fide N-acetyltransferase, FrbF shows no sequence similarity to any member of the GCN5-like N-acetyltransferase (GNAT) superfamily. Here, we present the 2.0 {angstrom} resolution crystal structure of FrbF in complex with acetyl-CoA, which demonstrates a unique architecture that is distinct from those of canonical GNAT-like acetyltransferases. We also utilized the co-crystal structure to guide structure-function studies that identified the roles of putative active site residues in the acetyltransferase mechanism. The combined biochemical and structural analyses of FrbF provide insights into this previously uncharacterized family of N-acetyltransferases and also provide a molecular framework toward the production of novel N-acyl derivatives of FR-900098.

  14. New N-acetyltransferase fold in the structure and mechanism of the phosphonate biosynthetic enzyme FrbF.

    PubMed

    Bae, Brian; Cobb, Ryan E; DeSieno, Matthew A; Zhao, Huimin; Nair, Satish K

    2011-10-14

    The enzyme FrbF from Streptomyces rubellomurinus has attracted significant attention due to its role in the biosynthesis of the antimalarial phosphonate FR-900098. The enzyme catalyzes acetyl transfer onto the hydroxamate of the FR-900098 precursors cytidine 5'-monophosphate-3-aminopropylphosphonate and cytidine 5'-monophosphate-N-hydroxy-3-aminopropylphosphonate. Despite the established function as a bona fide N-acetyltransferase, FrbF shows no sequence similarity to any member of the GCN5-like N-acetyltransferase (GNAT) superfamily. Here, we present the 2.0 Å resolution crystal structure of FrbF in complex with acetyl-CoA, which demonstrates a unique architecture that is distinct from those of canonical GNAT-like acetyltransferases. We also utilized the co-crystal structure to guide structure-function studies that identified the roles of putative active site residues in the acetyltransferase mechanism. The combined biochemical and structural analyses of FrbF provide insights into this previously uncharacterized family of N-acetyltransferases and also provide a molecular framework toward the production of novel N-acyl derivatives of FR-900098. PMID:21865168

  15. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases

    PubMed Central

    Dahlin, Jayme L; Chen, Xiaoyue; Walters, Michael A.; Zhang, Zhiguo

    2015-01-01

    During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies. PMID:25365782

  16. Mutations in HISTONE ACETYLTRANSFERASE1 affect sugar response and gene expression in Arabidopsis

    PubMed Central

    Heisel, Timothy J.; Li, Chun Yao; Grey, Katia M.; Gibson, Susan I.

    2013-01-01

    Nutrient response networks are likely to have been among the first response networks to evolve, as the ability to sense and respond to the levels of available nutrients is critical for all organisms. Although several forward genetic screens have been successful in identifying components of plant sugar-response networks, many components remain to be identified. Toward this end, a reverse genetic screen was conducted in Arabidopsis thaliana to identify additional components of sugar-response networks. This screen was based on the rationale that some of the genes involved in sugar-response networks are likely to be themselves sugar regulated at the steady-state mRNA level and to encode proteins with activities commonly associated with response networks. This rationale was validated by the identification of hac1 mutants that are defective in sugar response. HAC1 encodes a histone acetyltransferase. Histone acetyltransferases increase transcription of specific genes by acetylating histones associated with those genes. Mutations in HAC1 also cause reduced fertility, a moderate degree of resistance to paclobutrazol and altered transcript levels of specific genes. Previous research has shown that hac1 mutants exhibit delayed flowering. The sugar-response and fertility defects of hac1 mutants may be partially explained by decreased expression of AtPV42a and AtPV42b, which are putative components of plant SnRK1 complexes. SnRK1 complexes have been shown to function as central regulators of plant nutrient and energy status. Involvement of a histone acetyltransferase in sugar response provides a possible mechanism whereby nutritional status could exert long-term effects on plant development and metabolism. PMID:23882272

  17. The molecular structure of ornithine acetyltransferase from Mycobacterium tuberculosis bound to ornithine, a competitive inhibitor.

    PubMed

    Sankaranarayanan, Ramasamy; Cherney, Maia M; Garen, Craig; Garen, Grace; Niu, Chunying; Yuan, Marshall; James, Michael N G

    2010-04-01

    Mycobacterium tuberculosis ornithine acetyltransferase (Mtb OAT; E.C. 2.3.1.35) is a key enzyme of the acetyl recycling pathway during arginine biosynthesis. It reversibly catalyzes the transfer of the acetyl group from N-acetylornithine (NAORN) to L-glutamate. Mtb OAT is a member of the N-terminal nucleophile fold family of enzymes. The crystal structures of Mtb OAT in native form and in its complex with ornithine (ORN) have been determined at 1.7 and 2.4 A resolutions, respectively. ORN is a competitive inhibitor of this enzyme against L-glutamate as substrate. Although the acyl-enzyme complex of Streptomyces clavuligerus ornithine acetyltransferase has been determined, ours is the first crystal structure to be reported of an ornithine acetyltransferase in complex with an inhibitor. ORN binding does not alter the structure of Mtb OAT globally. However, its presence stabilizes the three C-terminal residues that are disordered and not observed in the native structure. Also, stabilization of the C-terminal residues by ORN reduces the size of the active-site pocket volume in the structure of the ORN complex. The interactions of ORN and the protein residues of Mtb OAT unambiguously delineate the active-site residues of this enzyme in Mtb. Moreover, modeling studies carried out with NAORN based on the structure of the ORN-Mtb OAT complex reveal important interactions of the carbonyl oxygen of the acetyl group of NAORN with the main-chain nitrogen atom of Gly128 and with the side-chain oxygen of Thr127. These interactions likely help in the stabilization of oxyanion formation during enzymatic reaction and also will polarize the carbonyl carbon-oxygen bond, thereby enabling the side-chain atom O(gamma 1) of Thr200 to launch a nucleophilic attack on the carbonyl-carbon atom of the acetyl group of NAORN. PMID:20184895

  18. Activation Domain-Specific and General Transcription Stimulation by Native Histone Acetyltransferase Complexes

    PubMed Central

    Ikeda, Keiko; Steger, David J.; Eberharter, Anton; Workman, Jerry L.

    1999-01-01

    Recent progress in identifying the catalytic subunits of histone acetyltransferase (HAT) complexes has implicated histone acetylation in the regulation of transcription. Here, we have analyzed the function of two native yeast HAT complexes, SAGA (Spt-Ada-Gcn5 Acetyltransferase) and NuA4 (nucleosome acetyltransferase of H4), in activating transcription from preassembled nucleosomal array templates in vitro. Each complex was tested for the ability to enhance transcription driven by GAL4 derivatives containing either acidic, glutamine-rich, or proline-rich activation domains. On nucleosomal array templates, the SAGA complex selectively stimulates transcription driven by the VP16 acidic activation domain in an acetyl coenzyme A-dependent manner. In contrast, the NuA4 complex facilitates transcription mediated by any of the activation domains tested if allowed to preacetylate the nucleosomal template, indicating a general stimulatory effect of histone H4 acetylation. However, when the extent of acetylation by NuA4 is limited, the complex also preferentially stimulates VP16-driven transcription. SAGA and NuA4 interact directly with the VP16 activation domain but not with a glutamine-rich or proline-rich activation domain. These data suggest that recruitment of the SAGA and NuA4 HAT complexes by the VP16 activation domain contributes to HAT-dependent activation. In addition, extensive H4/H2B acetylation by NuA4 leads to a general activation of transcription, which is independent of activator-NuA4 interactions. PMID:9858608

  19. New substrate analogues of human serotonin N-acetyltransferase produce in situ specific and potent inhibitors.

    PubMed

    Ferry, Gilles; Ubeaud, Caroline; Mozo, Julien; Péan, Christophe; Hennig, Philippe; Rodriguez, Marianne; Scoul, Catherine; Bonnaud, Anne; Nosjean, Olivier; Galizzi, Jean-Pierre; Delagrange, Philippe; Renard, Pierre; Volland, Jean-Paul; Yous, Said; Lesieur, Daniel; Boutin, Jean A

    2004-01-01

    Melatonin is synthesized by an enzymatic pathway, in which arylalkylamine (serotonin) N-acetyltransferase catalyzes the rate-limiting step. A previous study reported the discovery of bromoacetyltryptamine (BAT), a new type of inhibitor of this enzyme. This compound is the precursor of a potent bifunctional inhibitor (analogue of the transition state), capable of interfering with both the substrate and the cosubstrate binding sites. This inhibitor is biosynthesized by the enzyme itself in the presence of free coenzyme A. In the present report, we describe the potency of new N-halogenoacetyl derivatives leading to a strong in situ inhibition of serotonin N-acetyltransferase. The new concept behind the mechanism of action of these precursors was studied by following the biosynthesis of the inhibitor from tritiated-BAT in a living cell. The fate of tritiated-phenylethylamine (PEA), a natural substrate of the enzyme, in the presence or absence of [(3)H]BAT was also followed, leading to their incorporation into the reaction product or the inhibitor (N-acetyl[(3)H]PEA and coenzyme A-S[(3)H]acetyltryptamine, respectively). The biosynthesis of this bifunctional inhibitor derived from BAT was also followed by nuclear magnetic resonance during its catalytic production by the pure enzyme. In a similar manner we studied the production of another inhibitor generated from N-[2-(7-hydroxynaphth-1-yl)ethyl]bromoacetamide. New derivatives were also screened for their capacity to inhibit a purified enzyme, in addition to enzyme overexpressed in a cellular model. Some of these compounds proved to be extremely potent, with IC(50)s of approximately 30 nM. As these compounds, by definition, closely resemble the natural substrates of arylalkylamine N-acetyltransferase, we also show that they are potent ligands at the melatonin receptors. Nevertheless, these inhibitors form a series of pharmacological tools that could be used to understand more closely the inhibition of pineal melatonin

  20. Crystallization of ornithine acetyltransferase from yeast by counter-diffusion and preliminary X-ray study

    PubMed Central

    Maes, Dominique; Crabeel, Marjolaine; Van de Weerdt, Cécile; Martial, Joseph; Peeters, Eveline; Charlier, Daniël; Decanniere, Klaas; Vanhee, Celine; Wyns, Lode; Zegers, Ingrid

    2006-01-01

    A study is presented on the crystallization of ornithine acetyltransferase from yeast, which catalyzes the fifth step in microbial arginine synthesis. The use of the counter-diffusion technique removes the disorder present in one dimension in crystals grown by either the batch or hanging-drop techniques. This makes the difference between useless crystals and crystals that allow successful determination of the structure of the protein. The crystals belong to space group P4, with unit-cell parameters a = b = 66.98, c = 427.09 Å, and a data set was collected to 2.76 Å. PMID:17142921

  1. Choline Acetyltransferase Activity in Striatum of Neonatal Rats Increased by Nerve Growth Factor

    NASA Astrophysics Data System (ADS)

    Mobley, William C.; Rutkowski, J. Lynn; Tennekoon, Gihan I.; Buchanan, Karen; Johnston, Michael V.

    1985-07-01

    Some neurodegenerative disorders may be caused by abnormal synthesis or utilization of trophic molecules required to support neuronal survival. A test of this hypothesis requires that trophic agents specific for the affected neurons be identified. Cholinergic neurons in the corpus striatum of neonatal rats were found to respond to intracerebroventricular administration of nerve growth factor with prominent, dose-dependent, selective increases in choline acetyltransferase activity. Cholinergic neurons in the basal forebrain also respond to nerve growth factor in this way. These actions of nerve growth factor may indicate its involvement in the normal function of forebrain cholinergic neurons as well as in neurodegenerative disorders involving such cells.

  2. Synthesis of 4'-aminopantetheine and derivatives to probe aminoglycoside N-6'-acetyltransferase.

    PubMed

    Yan, Xuxu; Akinnusi, T Olukayode; Larsen, Aaron T; Auclair, Karine

    2011-03-01

    A convenient synthesis of 4'-aminopantetheine from commercial D-pantethine is reported. The amino group was introduced by reductive amination in order to avoid substitution at a sterically congested position. Derivatives of 4'-aminopantetheine were also prepared to evaluate the effect of O-to-N substitution on inhibitors of the resistance-causing enzyme aminoglycoside N-6'-acetyltransferase. The biological results combined with docking studies indicate that in spite of its reported unusual flexibility and ability to adopt different folds, this enzyme is highly specific for AcCoA. PMID:21225062

  3. Synthesis of 4′-aminopantetheine and derivatives to probe aminoglycoside N-6′-acetyltransferase

    PubMed Central

    Yan, Xuxu; Akinnusi, T. Olukayode; Larsen, Aaron T.; Auclair, Karine

    2011-01-01

    Summary A convenient synthesis of 4′-aminopantetheine from commercial D-pantethine is reported. The amino group was introduced by reductive amination in order to avoid substitution at a sterically congested position. Derivatives of 4′-aminopantetheine were also prepared to evaluate the effect of O-to-N substitution on inhibitors of the resistance-causing enzyme aminoglycoside N-6′-acetyltransferase. The biological results combined with docking studies indicate that in spite of its reported unusual flexibility and ability to adopt different folds, this enzyme is highly specific for AcCoA. PMID:21225062

  4. One-step purification of phosphinothricin acetyltransferase using reactive dye-affinity chromatography.

    PubMed

    Wang, Cunxi; Lee, Thomas C; Crowley, Kathleen S; Bell, Erin

    2015-01-01

    Reactive dye purification is an affinity purification technique offering unique selectivity and high purification potential. Historically, purification of phosphinothricin acetyltransferase (PAT) has involved several steps of precipitation and column chromatography. Here, we describe a novel purification method that is simple, time-saving, inexpensive, and reproducible. The novel method employs a single chromatography step using a reactive dye resin, Reactive brown 10-agarose. Reactive brown 10 preferentially binds the PAT protein, which can then be specifically released by one of its substrates, acetyl-CoA. Using Reactive brown 10-agarose, PAT protein can be purified to homogeneity from E. coli or plant tissue with high recovery efficiency. PMID:25749943

  5. Cinnamoyl compounds as simple molecules that inhibit p300 histone acetyltransferase.

    PubMed

    Costi, Roberta; Di Santo, Roberto; Artico, Marino; Miele, Gaetano; Valentini, Paola; Novellino, Ettore; Cereseto, Anna

    2007-04-19

    Cinnamoly compounds 1a-c and 2a-d were designed, synthesized, and in vitro tested as p300 inhibitors. At different degrees, all tested compounds were proven to inactivate p300, particularly, derivative 2c was the most active inhibitor, also showing high specificity for p300 as compared to other histone acetyltransferases. Most notably, 2c showed anti-acetylase activity in mammalian cells. These compounds represent a new class of synthetic inhibitors of p300, characterized by simple chemical structures. PMID:17348637

  6. Biochemical Analysis and Structure Determination of Bacterial Acetyltransferases Responsible for the Biosynthesis of UDP-N,N′-Diacetylbacillosamine*

    PubMed Central

    Morrison, Michael J.; Imperiali, Barbara

    2013-01-01

    UDP-N,N′-diacetylbacillosamine (UDP-diNAcBac) is a unique carbohydrate produced by a number of bacterial species and has been implicated in pathogenesis. The terminal step in the formation of this important bacterial sugar is catalyzed by an acetyl-CoA (AcCoA)-dependent acetyltransferase in both N- and O-linked protein glycosylation pathways. This bacterial acetyltransferase is a member of the left-handed β-helix family and forms a homotrimer as the functional unit. Whereas previous endeavors have focused on the Campylobacter jejuni acetyltransferase (PglD) from the N-linked glycosylation pathway, structural characterization of the homologous enzymes in the O-linked glycosylation pathways is lacking. Herein, we present the apo-crystal structures of the acetyltransferase domain (ATD) from the bifunctional enzyme PglB (Neisseria gonorrhoeae) and the full-length acetyltransferase WeeI (Acinetobacter baumannii). Additionally, a PglB-ATD structure was solved in complex with AcCoA. Surprisingly, this structure reveals a contrasting binding mechanism for this substrate when compared with the AcCoA-bound PglD structure. A comparison between these findings and the previously solved PglD crystal structures illustrates a dichotomy among N- and O-linked glycosylation pathway enzymes. Based upon these structures, key residues in the UDP-4-amino and AcCoA binding pockets were mutated to determine their effect on binding and catalysis in PglD, PglB-ATD, and WeeI. Last, a phylogenetic analysis of the aforementioned acetyltransferases was employed to illuminate the diversity among N- and O-linked glycosylation pathway enzymes. PMID:24064219

  7. Biochemical analysis and structure determination of bacterial acetyltransferases responsible for the biosynthesis of UDP-N,N'-diacetylbacillosamine.

    PubMed

    Morrison, Michael J; Imperiali, Barbara

    2013-11-01

    UDP-N,N'-diacetylbacillosamine (UDP-diNAcBac) is a unique carbohydrate produced by a number of bacterial species and has been implicated in pathogenesis. The terminal step in the formation of this important bacterial sugar is catalyzed by an acetyl-CoA (AcCoA)-dependent acetyltransferase in both N- and O-linked protein glycosylation pathways. This bacterial acetyltransferase is a member of the left-handed β-helix family and forms a homotrimer as the functional unit. Whereas previous endeavors have focused on the Campylobacter jejuni acetyltransferase (PglD) from the N-linked glycosylation pathway, structural characterization of the homologous enzymes in the O-linked glycosylation pathways is lacking. Herein, we present the apo-crystal structures of the acetyltransferase domain (ATD) from the bifunctional enzyme PglB (Neisseria gonorrhoeae) and the full-length acetyltransferase WeeI (Acinetobacter baumannii). Additionally, a PglB-ATD structure was solved in complex with AcCoA. Surprisingly, this structure reveals a contrasting binding mechanism for this substrate when compared with the AcCoA-bound PglD structure. A comparison between these findings and the previously solved PglD crystal structures illustrates a dichotomy among N- and O-linked glycosylation pathway enzymes. Based upon these structures, key residues in the UDP-4-amino and AcCoA binding pockets were mutated to determine their effect on binding and catalysis in PglD, PglB-ATD, and WeeI. Last, a phylogenetic analysis of the aforementioned acetyltransferases was employed to illuminate the diversity among N- and O-linked glycosylation pathway enzymes. PMID:24064219

  8. Purification, crystallization and preliminary X-ray characterization of Bacillus cereus arylamine N-acetyltransferase 3 [(BACCR)NAT3].

    PubMed

    Kubiak, Xavier; Pluvinage, Benjamin; Li de la Sierra-Gallay, Inès; Weber, Patrick; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2012-02-01

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes (XMEs) that catalyze the acetylation of arylamines. All functional NATs described to date possess a strictly conserved Cys-His-Asp catalytic triad. Here, the purification, crystallization and preliminary X-ray characterization of Bacillus cereus arylamine N-acetyltransferase 3 [(BACCR)NAT3], a putative NAT isoenzyme that possesses a unique catalytic triad containing a glutamate residue, is reported. The crystal diffracted to 2.42 Å resolution and belonged to the monoclinic space group C121, with unit-cell parameters a = 90.44, b = 44.52, c = 132.98 Å, β = 103.8°. PMID:22297998

  9. The N-terminal acetyltransferase Naa10 is essential for zebrafish development

    PubMed Central

    Ree, Rasmus; Myklebust, Line M.; Thiel, Puja; Foyn, Håvard; Fladmark, Kari E.; Arnesen, Thomas

    2015-01-01

    N-terminal acetylation, catalysed by N-terminal acetyltransferases (NATs), is among the most common protein modifications in eukaryotes and involves the transfer of an acetyl group from acetyl-CoA to the α-amino group of the first amino acid. Functions of N-terminal acetylation include protein degradation and sub-cellular targeting. Recent findings in humans indicate that a dysfunctional Nα-acetyltransferase (Naa) 10, the catalytic subunit of NatA, the major NAT, is associated with lethality during infancy. In the present study, we identified the Danio rerio orthologue zebrafish Naa 10 (zNaa10). In vitro N-terminal acetylation assays revealed that zNaa10 has NAT activity with substrate specificity highly similar to that of human Naa10. Spatiotemporal expression pattern was determined by in situ hybridization, showing ubiquitous expression with especially strong staining in brain and eye. By morpholino-mediated knockdown, we demonstrated that naa10 morphants displayed increased lethality, growth retardation and developmental abnormalities like bent axis, abnormal eyes and bent tails. In conclusion, we identified the zebrafish Naa10 orthologue and revealed that it is essential for normal development and viability of zebrafish. PMID:26251455

  10. Intracellular localization of α-tubulin acetyltransferase ATAT1 in rat ciliated cells.

    PubMed

    Nakakura, Takashi; Suzuki, Takeshi; Nemoto, Takahiro; Tanaka, Hideyuki; Asano-Hoshino, Anshin; Arisawa, Kenjiro; Nishijima, Yoshimi; Kiuchi, Yoshiko; Hagiwara, Haruo

    2016-09-01

    Cilia are microtubule-based hair-like organelles on basal bodies located beneath the cell membrane in various tissues of multicellular animals, and are usually classified into motile cilia and primary cilia. Microtubules are assembled from the heterodimers of α- and β-tubulin. The lysine residue at position 40 (K40) of α-tubulin is an important site for acetylation, and this site is acetylated in the cilium. α-Tubulin N-acetyltransferase 1 (ATAT1) is an acetyltransferase specific to the K40 residue of α-tubulin; however, its intracellular distribution in mammalian tissues remains unclear. In this study, we analyzed ATAT1 localization in rat trachea, oviduct, kidney, retina, testis and the third ventricle of the brain by immunohistochemical techniques using a specific antibody against ATAT1. ATAT1 was distributed to the motile cilia of multiciliated cells of the trachea, third ventricle of the brain and oviduct, and in the primary cilia of the renal medullary collecting duct. ATAT1 also localized to the primary cilia, inner and outer segments of retinal photoreceptor cells, and at the Golgi apparatus of spermatocytes and spermatids of testis. These results indicated that α-tubulin acetylation by ATAT1 at distinct subcellular positions may influence the functional regulation of microtubules and cilia in a variety of ciliated cells. PMID:26700226

  11. K-Lysine acetyltransferase 2a regulates a hippocampal gene expression network linked to memory formation

    PubMed Central

    Stilling, Roman M; Rönicke, Raik; Benito, Eva; Urbanke, Hendrik; Capece, Vincenzo; Burkhardt, Susanne; Bahari-Javan, Sanaz; Barth, Jonas; Sananbenesi, Farahnaz; Schütz, Anna L; Dyczkowski, Jerzy; Martinez-Hernandez, Ana; Kerimoglu, Cemil; Dent, Sharon YR; Bonn, Stefan; Reymann, Klaus G; Fischer, Andre

    2014-01-01

    Neuronal histone acetylation has been linked to memory consolidation, and targeting histone acetylation has emerged as a promising therapeutic strategy for neuropsychiatric diseases. However, the role of histone-modifying enzymes in the adult brain is still far from being understood. Here we use RNA sequencing to screen the levels of all known histone acetyltransferases (HATs) in the hippocampal CA1 region and find that K-acetyltransferase 2a (Kat2a)—a HAT that has not been studied for its role in memory function so far—shows highest expression. Mice that lack Kat2a show impaired hippocampal synaptic plasticity and long-term memory consolidation. We furthermore show that Kat2a regulates a highly interconnected hippocampal gene expression network linked to neuroactive receptor signaling via a mechanism that involves nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In conclusion, our data establish Kat2a as a novel and essential regulator of hippocampal memory consolidation. PMID:25024434

  12. Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT).

    PubMed

    Salah Ud-Din, Abu Iftiaf Md; Tikhomirova, Alexandra; Roujeinikova, Anna

    2016-01-01

    General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) catalyze the transfer of an acyl moiety from acyl coenzyme A (acyl-CoA) to a diverse group of substrates and are widely distributed in all domains of life. This review of the currently available data acquired on GNAT enzymes by a combination of structural, mutagenesis and kinetic methods summarizes the key similarities and differences between several distinctly different families within the GNAT superfamily, with an emphasis on the mechanistic insights obtained from the analysis of the complexes with substrates or inhibitors. It discusses the structural basis for the common acetyltransferase mechanism, outlines the factors important for the substrate recognition, and describes the mechanism of action of inhibitors of these enzymes. It is anticipated that understanding of the structural basis behind the reaction and substrate specificity of the enzymes from this superfamily can be exploited in the development of novel therapeutics to treat human diseases and combat emerging multidrug-resistant microbial infections. PMID:27367672

  13. Cysteine biosynthesis in Lactobacillus casei: identification and characterization of a serine acetyltransferase.

    PubMed

    Bogicevic, Biljana; Berthoud, Hélène; Portmann, Reto; Bavan, Tharmatha; Meile, Leo; Irmler, Stefan

    2016-02-01

    In bacteria, cysteine can be synthesized from serine by two steps involving an L-serine O-acetyltransferase (SAT) and a cysteine synthase (CysK). While CysK is found in the publicly available annotated genome from Lactobacillus casei ATCC 334, a gene encoding SAT (cysE) is missing. In this study, we found that various strains of L. casei grew in a chemically defined medium containing sulfide as the sole sulfur source, indicating the presence of a serine O-acetyltransferase. The gene lying upstream of cysK is predicted to encode a homoserine trans-succinylase (metA). To study the function of this gene, it was cloned from L. casei FAM18110. The purified, recombinant protein did not acylate L-homoserine in vitro. Instead, it catalyzed the formation of O-acetyl serine from L-serine and acetyl-CoA. Furthermore, the plasmid expressing the L. casei gene complemented an Escherichia coli cysE mutant strain but not an E. coli metA mutant. This clearly demonstrated that the gene annotated as metA in fact encodes the SAT function and should be annotated as cysE. PMID:26790714

  14. Improvement of L-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase.

    PubMed

    Hao, N; Mu, J; Hu, N; Xu, S; Yan, M; Li, Y; Guo, K; Xu, L

    2015-02-01

    In this study, Corynebacterium glutamicum ATCC 13032 was engineered to produce L-citrulline through a metabolic engineering strategy. To prevent the flux away from L-citrulline and to increase the expression levels of genes involved in the citrulline biosynthesis pathway, the argininosuccinate synthase gene (argG) and the repressor gene (argR) were inactivated. The engineered C. glutamicum ATCC 13032 ∆argG ∆argR (CIT 2) produced higher amounts of L-citrulline (5.43 g/L) compared to the wildtype strain (0.15 g/L). To determine new strategies for further enhancement of L-citrulline production, the effect of L-citrulline on ornithine acetyltransferase (EC 2.3.1.35; OATase; ArgJ) was first investigated. Citrulline was determined to inhibit Ornithine acetyltransferase; for 50 % inhibition, citrulline concentration was 30 mM. The argJ gene from C. glutamicum ATCC 13032 was cloned, and the recombinant shuttle plasmid pXMJ19-argJ was constructed and expressed in C. glutamicum ATCC 13032 ∆argG ∆argR (CIT 2). Overexpression of the argJ gene exhibited increased OAT activity and resulted in a positive effect on citrulline production (8.51 g/L). These results indicate that OAT plays a vital role during L-citrulline production in C. glutamicum. PMID:25492493

  15. Purification and characterization of glutamate N-acetyltransferase involved in citrulline accumulation in wild watermelon.

    PubMed

    Takahara, Kentaro; Akashi, Kinya; Yokota, Akiho

    2005-10-01

    Citrulline is an efficient hydroxyl radical scavenger that can accumulate at concentrations of up to 30 mm in the leaves of wild watermelon during drought in the presence of strong light; however, the mechanism of this accumulation remains unclear. In this study, we characterized wild watermelon glutamate N-acetyltransferase (CLGAT) that catalyses the transacetylation reaction between acetylornithine and glutamate to form acetylglutamate and ornithine, thereby functioning in the first and fifth steps in citrulline biosynthesis. CLGAT enzyme purified 7000-fold from leaves was composed of two subunits with different N-terminal amino acid sequences. Analysis of the corresponding cDNA revealed that these two subunits have molecular masses of 21.3 and 23.5 kDa and are derived from a single precursor polypeptide, suggesting that the CLGAT precursor is cleaved autocatalytically at the conserved ATML motif, as in other glutamate N-acetyltransferases of microorganisms. A green fluorescence protein assay revealed that the first 26-amino acid sequence at the N-terminus of the precursor functions as a chloroplast transit peptide. The CLGAT exhibited thermostability up to 70 degrees C, suggesting an increase in enzyme activity under high leaf temperature conditions during drought/strong-light stresses. Moreover, CLGAT was not inhibited by citrulline or arginine at physiologically relevant high concentrations. These findings suggest that CLGAT can effectively participate in the biosynthesis of citrulline in wild watermelon leaves during drought/strong-light stress. PMID:16218965

  16. Histone acetyltransferase PCAF is required for Hedgehog-Gli-dependent transcription and cancer cell proliferation.

    PubMed

    Malatesta, Martina; Steinhauer, Cornelia; Mohammad, Faizaan; Pandey, Deo P; Squatrito, Massimo; Helin, Kristian

    2013-10-15

    The Hedgehog (Hh) signaling pathway plays an important role in embryonic patterning and development of many tissues and organs as well as in maintaining and repairing mature tissues in adults. Uncontrolled activation of the Hh-Gli pathway has been implicated in developmental abnormalities as well as in several cancers, including brain tumors like medulloblastoma and glioblastoma. Inhibition of aberrant Hh-Gli signaling has, thus, emerged as an attractive approach for anticancer therapy; however, the mechanisms that mediate Hh-Gli signaling in vertebrates remain poorly understood. Here, we show that the histone acetyltransferase PCAF/KAT2B is an important factor of the Hh pathway. Specifically, we show that PCAF depletion impairs Hh activity and reduces expression of Hh target genes. Consequently, PCAF downregulation in medulloblastoma and glioblastoma cells leads to decreased proliferation and increased apoptosis. In addition, we found that PCAF interacts with GLI1, the downstream effector in the Hh-Gli pathway, and that PCAF or GLI1 loss reduces the levels of H3K9 acetylation on Hh target gene promoters. Finally, we observed that PCAF silencing reduces the tumor-forming potential of neural stem cells in vivo. In summary, our study identified the acetyltransferase PCAF as a positive cofactor of the Hh-Gli signaling pathway, leading us to propose PCAF as a candidate therapeutic target for the treatment of patients with medulloblastoma and glioblastoma. PMID:23943798

  17. Cysteine biosynthesis in Lactobacillus casei: identification and characterization of a serine acetyltransferase

    PubMed Central

    Bogicevic, Biljana; Berthoud, Hélène; Portmann, Reto; Bavan, Tharmatha; Meile, Leo; Irmler, Stefan

    2016-01-01

    In bacteria, cysteine can be synthesized from serine by two steps involving an L-serine O-acetyltransferase (SAT) and a cysteine synthase (CysK). While CysK is found in the publicly available annotated genome from Lactobacillus casei ATCC 334, a gene encoding SAT (cysE) is missing. In this study, we found that various strains of L. casei grew in a chemically defined medium containing sulfide as the sole sulfur source, indicating the presence of a serine O-acetyltransferase. The gene lying upstream of cysK is predicted to encode a homoserine trans-succinylase (metA). To study the function of this gene, it was cloned from L. casei FAM18110. The purified, recombinant protein did not acylate L-homoserine in vitro. Instead, it catalyzed the formation of O-acetyl serine from L-serine and acetyl-CoA. Furthermore, the plasmid expressing the L. casei gene complemented an Escherichia coli cysE mutant strain but not an E. coli metA mutant. This clearly demonstrated that the gene annotated as metA in fact encodes the SAT function and should be annotated as cysE. PMID:26790714

  18. Chemoproteomic Profiling of Lysine Acetyltransferases Highlights an Expanded Landscape of Catalytic Acetylation

    PubMed Central

    2015-01-01

    Lysine acetyltransferases (KATs) play a critical role in the regulation of gene expression, metabolism, and other key cellular functions. One shortcoming of traditional KAT assays is their inability to study KAT activity in complex settings, a limitation that hinders efforts at KAT discovery, characterization, and inhibitor development. To address this challenge, here we describe a suite of cofactor-based affinity probes capable of profiling KAT activity in biological contexts. Conversion of KAT bisubstrate inhibitors to clickable photoaffinity probes enables the selective covalent labeling of three phylogenetically distinct families of KAT enzymes. Cofactor-based affinity probes report on KAT activity in cell lysates, where KATs exist as multiprotein complexes. Chemical affinity purification and unbiased LC–MS/MS profiling highlights an expanded landscape of orphan lysine acetyltransferases present in the human genome and provides insight into the global selectivity and sensitivity of CoA-based proteomic probes that will guide future applications. Chemoproteomic profiling provides a powerful method to study the molecular interactions of KATs in native contexts and will aid investigations into the role of KATs in cell state and disease. PMID:24836640

  19. Studying aminoglycoside modification by the acetyltransferase class of resistance-causing enzymes via microarray

    PubMed Central

    Barrett, Olivia J.; Pushechnikov, Alexei; Wu, Meilan; Disney, Matthew D.

    2008-01-01

    Aminoglycosides are broad-spectrum antibacterials to which some bacteria have acquired resistance. The most common mode of resistance to aminoglycosides is enzymatic modification of the drug by different classes of enzymes including acetyltransferases (AAC’s). Thus, the modification of aminoglycosides by AAC(2’) from Mycobacterium tuberculosis and AAC(3) from Escherichia coli was studied using aminoglycoside microarrays. Results show that both enzymes modify their substrates displayed on an array surface in a manner that mimics their relative levels of modification in solution. Because aminoglycosides that are modified by resistance-causing enzymes have reduced affinities for binding their therapeutic target, the bacterial rRNA aminoacyl-tRNA site (A-site), arrays were probed for binding to a fluorescently labeled oligonucleotide mimic of the A-site after modification. A decrease in binding was observed when aminoglycosides were modified by AAC(3). In contrast, a decrease in binding of the A-site is not observed when aminoglycosides are modified by AAC(2’). Interestingly, these effects mirror the biological functions of these enzymes: the AAC(3) used in this study is known to confer aminoglycoside resistance while the AAC(2’) is chromosomally encoded and unlikely to play a role in resistance. These studies lay a direct foundation for studying resistance to aminoglycosides and can also have more broad applications in identifying and studying non-aminoglycoside carbohydrates or proteins as substrates for acetyltransferase enzymes. PMID:18774127

  20. Crystal structure of bacillus subtilis YdaF protein : a putative ribosomal N-acetyltransferase.

    SciTech Connect

    Brunzelle, J. S.; Wu, R.; Korolev, S. V.; Collart, F. R.; Joachimiak, A.; Anderson, W. F.; Biosciences Division; Northwestern Univ.; Saint Louis Univ. School of Medicine

    2004-12-01

    Comparative sequence analysis suggests that the ydaF gene encodes a protein (YdaF) that functions as an N-acetyltransferase, more specifically, a ribosomal N-acetyltransferase. Sequence analysis using basic local alignment search tool (BLAST) suggests that YdaF belongs to a large family of proteins (199 proteins found in 88 unique species of bacteria, archaea, and eukaryotes). YdaF also belongs to the COG1670, which includes the Escherichia coli RimL protein that is known to acetylate ribosomal protein L12. N-acetylation (NAT) has been found in all kingdoms. NAT enzymes catalyze the transfer of an acetyl group from acetyl-CoA (AcCoA) to a primary amino group. For example, NATs can acetylate the N-terminal {alpha}-amino group, the {epsilon}-amino group of lysine residues, aminoglycoside antibiotics, spermine/speridine, or arylalkylamines such as serotonin. The crystal structure of the alleged ribosomal NAT protein, YdaF, from Bacillus subtilis presented here was determined as a part of the Midwest Center for Structural Genomics. The structure maintains the conserved tertiary structure of other known NATs and a high sequence similarity in the presumed AcCoA binding pocket in spite of a very low overall level of sequence identity to other NATs of known structure.

  1. Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT)

    PubMed Central

    Salah Ud-Din, Abu Iftiaf Md; Tikhomirova, Alexandra; Roujeinikova, Anna

    2016-01-01

    General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) catalyze the transfer of an acyl moiety from acyl coenzyme A (acyl-CoA) to a diverse group of substrates and are widely distributed in all domains of life. This review of the currently available data acquired on GNAT enzymes by a combination of structural, mutagenesis and kinetic methods summarizes the key similarities and differences between several distinctly different families within the GNAT superfamily, with an emphasis on the mechanistic insights obtained from the analysis of the complexes with substrates or inhibitors. It discusses the structural basis for the common acetyltransferase mechanism, outlines the factors important for the substrate recognition, and describes the mechanism of action of inhibitors of these enzymes. It is anticipated that understanding of the structural basis behind the reaction and substrate specificity of the enzymes from this superfamily can be exploited in the development of novel therapeutics to treat human diseases and combat emerging multidrug-resistant microbial infections. PMID:27367672

  2. Diurnal cycles in serotonin acetyltransferase activity and cyclic GMP content of cultured chick pineal glands.

    PubMed

    Wainwright, S D

    1980-06-12

    Levels of serotonin N-acetyltransferase (NAT: acetul CoA:arylamine N-acetyltransferase; EC 2.1.1.5.) activity in the chick pineal gland exhibit a marked diurnal variation in birds kept under a diurnal cycle of ilumination. Activity begins to rise rapidly at the start of the dark phase of the cycle and reaches maximum levels at mid-dark phase about 25-fold greater than the minimum basal level at mid-light phase. Thereafter, the level of activity declines to the basal level about the start of the light phase. This diurnal cycle in chick pineal NAT activity found in vivo has recently been reproduced in vitro with intact glands incubated in organ culture. The mechanism of the 'biological clock' which regulates these variations in level of chick pineal NAT activity is unknown. However, I now report that chick pineal glands cultured under a diurnal cycle of illumination exhibit a diurnal cycle in content of cyclic GMP which roughly parallels the cycles in NAT activity. In contrast, there was no correlation between variations in pineal content of cyclic AMP and in level of NAT activity. PMID:6250035

  3. Specific alkylation of a histidine residue in carnitine acetyltransferase by bromoacetyl-l-carnitine

    PubMed Central

    Chase, J. F. A.; Tubbs, P. K.

    1970-01-01

    Incubation of carnitine acetyltransferase with low concentrations of bromoacetyl-l-carnitine causes a rapid and irreversible loss of enzyme activity; one mol of inhibitor can inactivate one mol of enzyme. Bromoacetyl-d-carnitine, iodoacetate or iodoacetamide are ineffective. l-Carnitine protects the transferase from bromoacetyl-l-carnitine. Investigation shows that the enzyme first reversibly binds bromoacetyl-l-carnitine with an affinity similar to that shown for the normal substrate acetyl-l-carnitine; this binding is followed by an alkylation reaction, forming the carnitine ester of a monocarboxymethyl-protein, which is catalytically inactive. The carnitine is released at an appreciable rate by spontaneous hydrolysis, and the resulting carboxymethyl-enzyme is also inactive. Total acid hydrolysis of enzyme after treatment with 2-[14C]bromoacetyl-l-carnitine yields N-3-carboxy[14C]methylhistidine as the only labelled amino acid. These findings, taken in conjunction with previous work, suggest that the single active centre of carnitine acetyltransferase contains a histidine residue. PMID:5461620

  4. Characterization and transcriptional regulation of the 2'-N-acetyltransferase gene from Providencia stuartii.

    PubMed Central

    Rather, P N; Orosz, E; Shaw, K J; Hare, R; Miller, G

    1993-01-01

    We have cloned the chromosomally encoded 2'-N-acetyltransferase gene [aac(2')-Ia] from Providencia stuartii. DNA sequence analysis of the cloned insert identified a single open reading frame, which is capable of encoding a protein with a predicted molecular mass of 20,073 Da. The deduced AAC(2')-Ia protein showed no significant homology to other proteins, including all of the AAC(3) and AAC(6') proteins. Primer extension analysis was used to identify the aac(2')-Ia promoter, which contained an unusual sequence (CTTTTT) at the -35 region. Expression of the aac(2')-Ia gene occurs at low levels in wild-type P. stuartii strains; therefore, they are aminoglycoside susceptible. We have isolated mutants with high-level AAC(2')-Ia expression at a frequency of 4.8 x 10(-6). Detailed analysis of one mutant demonstrated a 12.2-fold increase in the accumulation of aac(2')-Ia mRNA. In addition, the levels of beta-galactosidase expression from a plasmid-encoded aac(2')-lacZ transcriptional fusion were increased 11.5-fold in this mutant relative to those in an isogenic wild-type strain. These results suggested that a trans-acting factor, designated aar (for aminoglycoside acetyltransferase regulator), controls AAC(2')-Ia expression in P. stuartii. Images PMID:8407825

  5. Crystal Structure Analysis of the Polysialic Acid Specific O-Acetyltransferase NeuO

    PubMed Central

    Schulz, Eike C.; Bergfeld, Anne K.; Ficner, Ralf; Mühlenhoff, Martina

    2011-01-01

    The major virulence factor of the neuroinvasive pathogen Escherichia coli K1 is the K1 capsule composed of α2,8-linked polysialic acid (polySia). K1 strains harboring the CUS-3 prophage modify their capsular polysaccharide by phase-variable O-acetlyation, a step that is associated with increased virulence. Here we present the crystal structure of the prophage-encoded polysialate O-acetyltransferase NeuO. The homotrimeric enzyme belongs to the left-handed β-helix (LβH) family of acyltransferases and is characterized by an unusual funnel-shaped outline. Comparison with other members of the LβH family allowed the identification of active site residues and proposal of a catalytic mechanism and highlighted structural characteristics of polySia specific O-acetyltransferases. As a unique feature of NeuO, the enzymatic activity linearly increases with the length of the N-terminal poly-ψ-domain which is composed of a variable number of tandem copies of an RLKTQDS heptad. Since the poly-ψ-domain was not resolved in the crystal structure it is assumed to be unfolded in the apo-enyzme. PMID:21390252

  6. Exchange of associated factors directs a switch in HBO1 acetyltransferase histone tail specificity.

    PubMed

    Lalonde, Marie-Eve; Avvakumov, Nikita; Glass, Karen C; Joncas, France-Hélène; Saksouk, Nehmé; Holliday, Michael; Paquet, Eric; Yan, Kezhi; Tong, Qiong; Klein, Brianna J; Tan, Song; Yang, Xiang-Jiao; Kutateladze, Tatiana G; Côté, Jacques

    2013-09-15

    Histone acetyltransferases (HATs) assemble into multisubunit complexes in order to target distinct lysine residues on nucleosomal histones. Here, we characterize native HAT complexes assembled by the BRPF family of scaffold proteins. Their plant homeodomain (PHD)-Zn knuckle-PHD domain is essential for binding chromatin and is restricted to unmethylated H3K4, a specificity that is reversed by the associated ING subunit. Native BRPF1 complexes can contain either MOZ/MORF or HBO1 as catalytic acetyltransferase subunit. Interestingly, while the previously reported HBO1 complexes containing JADE scaffold proteins target histone H4, the HBO1-BRPF1 complex acetylates only H3 in chromatin. We mapped a small region to the N terminus of scaffold proteins responsible for histone tail selection on chromatin. Thus, alternate choice of subunits associated with HBO1 can switch its specificity between H4 and H3 tails. These results uncover a crucial new role for associated proteins within HAT complexes, previously thought to be intrinsic to the catalytic subunit. PMID:24065767

  7. Mutations in KAT6B, Encoding a Histone Acetyltransferase, Cause Genitopatellar Syndrome

    PubMed Central

    Campeau, Philippe M.; Kim, Jaeseung C.; Lu, James T.; Schwartzentruber, Jeremy A.; Abdul-Rahman, Omar A.; Schlaubitz, Silke; Murdock, David M.; Jiang, Ming-Ming; Lammer, Edward J.; Enns, Gregory M.; Rhead, William J.; Rowland, Jon; Robertson, Stephen P.; Cormier-Daire, Valérie; Bainbridge, Matthew N.; Yang, Xiang-Jiao; Gingras, Marie-Claude; Gibbs, Richard A.; Rosenblatt, David S.; Majewski, Jacek; Lee, Brendan H.

    2012-01-01

    Genitopatellar syndrome (GPS) is a skeletal dysplasia with cerebral and genital anomalies for which the molecular basis has not yet been determined. By exome sequencing, we found de novo heterozygous truncating mutations in KAT6B (lysine acetyltransferase 6B, formerly known as MYST4 and MORF) in three subjects; then by Sanger sequencing of KAT6B, we found similar mutations in three additional subjects. The mutant transcripts do not undergo nonsense-mediated decay in cells from subjects with GPS. In addition, human pathological analyses and mouse expression studies point to systemic roles of KAT6B in controlling organismal growth and development. Myst4 (the mouse orthologous gene) is expressed in mouse tissues corresponding to those affected by GPS. Phenotypic differences and similarities between GPS, the Say-Barber-Biesecker variant of Ohdo syndrome (caused by different mutations of KAT6B), and Rubinstein-Taybi syndrome (caused by mutations in other histone acetyltransferases) are discussed. Together, the data support an epigenetic dysregulation of the limb, brain, and genital developmental programs. PMID:22265014

  8. Mutations in KAT6B, encoding a histone acetyltransferase, cause Genitopatellar syndrome.

    PubMed

    Campeau, Philippe M; Kim, Jaeseung C; Lu, James T; Schwartzentruber, Jeremy A; Abdul-Rahman, Omar A; Schlaubitz, Silke; Murdock, David M; Jiang, Ming-Ming; Lammer, Edward J; Enns, Gregory M; Rhead, William J; Rowland, Jon; Robertson, Stephen P; Cormier-Daire, Valérie; Bainbridge, Matthew N; Yang, Xiang-Jiao; Gingras, Marie-Claude; Gibbs, Richard A; Rosenblatt, David S; Majewski, Jacek; Lee, Brendan H

    2012-02-10

    Genitopatellar syndrome (GPS) is a skeletal dysplasia with cerebral and genital anomalies for which the molecular basis has not yet been determined. By exome sequencing, we found de novo heterozygous truncating mutations in KAT6B (lysine acetyltransferase 6B, formerly known as MYST4 and MORF) in three subjects; then by Sanger sequencing of KAT6B, we found similar mutations in three additional subjects. The mutant transcripts do not undergo nonsense-mediated decay in cells from subjects with GPS. In addition, human pathological analyses and mouse expression studies point to systemic roles of KAT6B in controlling organismal growth and development. Myst4 (the mouse orthologous gene) is expressed in mouse tissues corresponding to those affected by GPS. Phenotypic differences and similarities between GPS, the Say-Barber-Biesecker variant of Ohdo syndrome (caused by different mutations of KAT6B), and Rubinstein-Taybi syndrome (caused by mutations in other histone acetyltransferases) are discussed. Together, the data support an epigenetic dysregulation of the limb, brain, and genital developmental programs. PMID:22265014

  9. Structural and functional characterization of the α-tubulin acetyltransferase MEC-17

    PubMed Central

    Davenport, Andrew M.; Collins, Leslie N.; Chiu, Hui; Minor, Paul J.; Sternberg, Paul W.; Hoelz, André

    2014-01-01

    Tubulin protomers undergo an extensive array of post-translational modifications to tailor microtubules to specific tasks. One such modification, the acetylation of lysine-40 of α-tubulin, located in the lumen of microtubules, is associated with stable, long-living microtubule structures. MEC-17 was recently identified as the acetyltransferase that mediates this event. We have determined the crystal structure of the catalytic core of human MEC-17 in complex with its cofactor acetyl-CoA at 1.7 Å resolution. The structure reveals that the MEC-17 core adopts a canonical Gcn5-related N-acetyltransferase (GNAT) fold that is decorated with extensive surface loops. An enzymatic analysis of 33 MEC-17 surface mutants identifies hot-spot residues for catalysis and substrate recognition. A large, evolutionarily conserved hydrophobic surface patch is identified that is critical for enzymatic activity, suggesting that specificity is achieved by interactions with the α-tubulin substrate that extend outside of the modified surface loop. An analysis of MEC-17 mutants in C. elegans shows that enzymatic activity is dispensable for touch sensitivity. PMID:24846647

  10. Identification and characterization of novel small molecule inhibitors of the acetyltransferase activity of Escherichia coli N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU).

    PubMed

    Sharma, Rashmi; Rani, Chitra; Mehra, Rukmankesh; Nargotra, Amit; Chib, Reena; Rajput, Vikrant S; Kumar, Sunil; Singh, Samsher; Sharma, Parduman R; Khan, Inshad A

    2016-04-01

    This study aims at identifying novel chemical scaffolds as inhibitors specific to the acetyltransferase domain of a bifunctional enzyme, Escherichia coli GlmU, involved in the cell wall biosynthesis of Gram-negative organisms. A two-pronged approach was used to screen a 50,000 small-molecule library. Using the first approach, the library was in silico screened by docking the library against acetyltransferase domain of E. coli GlmU studies. In the second approach, complete library was screened against Escherichia coli ATCC 25922 to identify the whole cell active compounds. Active compounds from both the screens were screened in a colorimetric absorbance-based assay to identify inhibitors of acetyltransferase domain of E. coli GlmU which resulted in the identification of 1 inhibitor out of 56 hits identified by in silico screening and 4 inhibitors out of 35 whole cell active compounds on Gram-negative bacteria with the most potent inhibitor showing IC50 of 1.40 ± 0.69 μM. Mode of inhibition studies revealed these inhibitors to be competitive with AcCoA and uncompetitive with GlcN-1-P. These selected inhibitors were also tested for their antibacterial and cytotoxic activities. Compounds 5175178 and 5215319 exhibited antibacterial activity that co-related with GlmU inhibition. These compounds, therefore, represent novel chemical scaffolds targeting acetyltransferase activity of E. coli GlmU. PMID:26563552

  11. Investigating the Hydrolysis Reactions of a Chemical Warfare Agent Surrogate. A Systematic Study using 1H, 13C, 17O, 19F, 31P, and <sup>35Cl NMR Spectroscopy

    SciTech Connect

    Alam, Todd M.; Wilson, Brendan W.

    2015-07-24

    During the summer of 2015, I participated in the DHS HS-STEM fellowship at Sandia National Laboratories (SNL, NM) under the supervision of Dr. Todd M. Alam in his Nuclear Magnetic Resonance (NMR) Spectroscopy research group. While with the group, my main project involved pursing various hydrolysis reactions with Diethyl Chlorophosphate (DECP), a surrogate for the agent Sarin (GB). Specifically, I performed different hydrolysis reactions, monitored and tracked the different phosphorous containing species using phosphorous (31P) NMR spectroscopy. With the data collected, I performed kinetics studies mapping the rates of DECP hydrolysis. I also used the NMR of different nuclei such as 1H, 13C, 17O, and <sup>35Cl to help understand the complexity of the reactions that take place. Finally, my last task at SNL was to work with Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) NMR Spectroscopy optimizing conditions for 19F- 31P filtering NMR experiments.

  12. Comparative genomic, phylogenetic, and functional investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and higher eukaryotes. The role of NATs in fungal biology has only recently been investigated (Glenn and Bacon, 2009; Glenn et al., 2010). The NAT1 gene of Gibberella moniliformis was the...

  13. Construction and Use of a Replication-Competent Human Immunodeficiency Virus (HIV-1) that Expresses the Chloramphenicol Acetyltransferase Enzyme

    NASA Astrophysics Data System (ADS)

    Terwilliger, E. F.; Godin, B.; Sodroski, J. G.; Haseltine, W. A.

    1989-05-01

    The construction and properties of an infectious human immunodeficiency virus (HIV) that expresses the bacterial gene chloramphenicol acetyltransferase are described. This virus can be used in vitro to screen for drugs that inhibit HIV infection. The marked virus may also be used to trace the routes of infection from the site of inoculation in animal experiments.

  14. Homologues of xenobiotic metabolizing N-acetyltransferases in plant-associated fungi: Novel functions for an old enzyme family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-pathogenic fungi and their hosts engage in chemical warfare, attacking each other with toxic products of secondary metabolism and defending themselves via an arsenal of xenobiotic metabolizing enzymes. One such enzyme is homologous to arylamine N-acetyltransferase (NAT) and has been identified...

  15. Chloramphenicol acetyltransferase should not provide methanogens with resistance to chloramphenicol. [Methanococcus voltae; Methanococcus vannielii; Methanococcus deltae; Methanobrevibacter smithii

    SciTech Connect

    Beckler, G.S.; Hook, L.A.; Reeve, J.N.

    1984-04-01

    Growth of the four methanogens investigated was inhibitied by chloramphenicol-3-acetate; therefore, introduction of chloramphenicol acetyltransferase-encoding genes should not confer chloramphenicol resistance on these methanogens. Reduction of the aryl nitro group of chloramphenicol produced a compound which did not inhibit the growth of these methanogens. 9 references.

  16. Structural and Functional Evidence for Bacillus subtilis PaiA as a Novel N1-spermidine/spermine acetyltransferase (SSAT)

    SciTech Connect

    Forouhar,F.; Lee, I.; Vujcic, J.; Vujcic, S.; Shen, J.; Vorobiev, S.; Xiao, R.; Acton, T.; Montelione, G.; et al.

    2005-01-01

    Bacillus subtilis PaiA has been implicated in the negative control of sporulation as well as production of degradative enzymes. PaiA shares recognizable sequence homology with N-acetyltransferases, including those that can acetylate spermidine/spermine substrates (SSATs). We have determined the crystal structure of PaiA in complex with CoA at 1.9 Angstrom resolution and found that PaiA is a member of the N-acetyltransferase superfamily of enzymes. Unexpectedly, we observed the binding of an oxidized CoA dimer in the active site of PaiA, and the structural information suggests the substrates of the enzyme could be linear, positively charged compounds. Our biochemical characterization is also consistent with this possibility since purified PaiA possesses N1-acetyltransferase activity towards polyamine substrates including spermidine and spermine. Further, conditional over-expression of PaiA in bacteria results in increased acetylation of endogenous spermidine pools. Thus, our structural and biochemical analyses indicate that PaiA is a novel N-acetyltransferase capable of acetylating both spermidine and spermine. In this way, the pai operon may function in regulating intracellular polyamine concentrations and/or binding capabilities. In addition to preventing toxicity due to polyamine excess, this function may also serve to regulate expression of certain bacterial gene products such as those involved in sporulation.

  17. Dissociable roles for histone acetyltransferases p300 and PCAF in hippocampus and perirhinal cortex-mediated object memory.

    PubMed

    Mitchnick, K A; Creighton, S D; Cloke, J M; Wolter, M; Zaika, O; Christen, B; Van Tiggelen, M; Kalisch, B E; Winters, B D

    2016-07-01

    The importance of histone acetylation for certain types of memory is now well established. However, the specific contributions of the various histone acetyltransferases to distinct memory functions remain to be determined; therefore, we employed selective histone acetyltransferase protein inhibitors and short-interference RNAs to evaluate the roles of CREB-binding protein (CBP), E1A-binding protein (p300) and p300/CBP-associated factor (PCAF) in hippocampus and perirhinal cortex (PRh)-mediated object memory. Rats were tested for short- (STM) and long-term memory (LTM) in the object-in-place task, which relies on the hippocampus and PRh for spatial memory and object identity processing, respectively. Selective inhibition of these histone acetyltransferases by small-interfering RNA and pharmacological inhibitors targeting the HAT domain produced dissociable effects. In the hippocampus, CBP or p300 inhibition impaired long-term but not short-term object memory, while inhibition of PCAF impaired memory at both delays. In PRh, HAT inhibition did not impair STM, and only CBP and PCAF inhibition disrupted LTM; p300 inhibition had no effects. Messenger RNA analyses revealed findings consistent with the pattern of behavioral effects, as all three enzymes were upregulated in the hippocampus (dentate gyrus) following learning, whereas only CBP and PCAF were upregulated in PRh. These results demonstrate, for the first time, the necessity of histone acetyltransferase activity for PRh-mediated object memory and indicate that the specific mnemonic roles of distinctive histone acetyltransferases can be dissociated according to specific brain regions and memory timeframe. PMID:27251651

  18. Isolation of bacteria producing chloramphenicol acetyltransferase from soil and their characterization.

    PubMed

    Datta, K; Mukherjee, S K; Majumdar, M K; Roy, S K

    1982-07-01

    After screening 107 soil samples collected from different spots around Calcutta, 579 chloramphenicol resistant colonies were isolated. Out of these only 58 colonies could inactivate chloramphenicol in detectable amounts. By noting the production of inactivating factor, 5 high yielding strains were further characterized to species level. Three of them were Escherichia coli strains, the two others were Alcaligenes faecalis and Klebsiella pneumoniae strains. All strains inactivated chloramphenicol by acetylation, with the production of chloramphenicol acetyltransferase. Production of this latter enzyme was not inducible. Minimum inhibitory concentrations for these 5 strains were studied against 14 antimicrobial agents. All strains were found to be resistant to most antimicrobial agents, but sensitive to polymyxin B. The strain A. faecalis was also sensitive to carbenicillin but other four strains were resistant to this antibiotic. PMID:6956790

  19. Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB

    SciTech Connect

    Chen, Wenjing; Biswas, Tapan; Porter, Vanessa R.; Tsodikov, Oleg V.; Garneau-Tsodikova, Sylvie

    2011-09-06

    The emergence of multidrug-resistant and extensively drug-resistant (XDR) tuberculosis (TB) is a serious global threat. Aminoglycoside antibiotics are used as a last resort to treat XDR-TB. Resistance to the aminoglycoside kanamycin is a hallmark of XDR-TB. Here, we reveal the function and structure of the mycobacterial protein Eis responsible for resistance to kanamycin in a significant fraction of kanamycin-resistant Mycobacterium tuberculosis clinical isolates. We demonstrate that Eis has an unprecedented ability to acetylate multiple amines of many aminoglycosides. Structural and mutagenesis studies of Eis indicate that its acetylation mechanism is enabled by a complex tripartite fold that includes two general control non-derepressible 5 (GCN5)-related N-acetyltransferase regions. An intricate negatively charged substrate-binding pocket of Eis is a potential target of new antitubercular drugs expected to overcome aminoglycoside resistance.

  20. Purification and characterization of aspartate N-acetyltransferase: A critical enzyme in brain metabolism.

    PubMed

    Wang, Qinzhe; Zhao, Mojun; Parungao, Gwenn G; Viola, Ronald E

    2016-03-01

    Canavan disease (CD) is a neurological disorder caused by an interruption in the metabolism of N-acetylaspartate (NAA). Numerous mutations have been found in the enzyme that hydrolyzes NAA, and the catalytic activity of aspartoacylase is significantly impaired in CD patients. Recent studies have also supported an important role in CD for the enzyme that catalyzes the synthesis of NAA in the brain. However, previous attempts to study this enzyme had not succeeded in obtaining a soluble, stable and active form of this membrane-associated protein. We have now utilized fusion constructs with solubilizing protein partners to obtain an active and soluble form of aspartate N-acetyltransferase. Characterization of the properties of this enzyme has set the stage for the development of selective inhibitors that can lower the elevated levels of NAA that are observed in CD patients and potentially serve as a new treatment therapy. PMID:26550943

  1. Inhibition of lyso-PAF: acetyl-CoA acetyltransferase by salicylates and other compounds.

    PubMed

    White, H L; Faison, L D

    1988-06-01

    Diflunisal and benoxaprofen (20-100 microM) produced dose-dependent inhibitions of lyso-platelet activating factor: acetyl-CoA acetyltransferase in a lysate of rat pleural neutrophils. Salicylate and aspirin were inhibitory at concentrations of 1 mM and above. Nordihydroguaiaretic acid was a relatively potent inhibitor (I50 = 6 microM). Other compounds, including anti-inflammatory steroids, cyclooxygenase and 5-lipoxygenase inhibitors, appeared ineffective at relevant concentrations. Inhibitions by diflunisal and salicylate occurred at concentrations similar to expected plasma levels in humans at therapeutic doses. An inhibition of platelet-activating factor synthesis may contribute to the antiinflammatory, analgesic, or antipyretic actions of these compounds. PMID:2903520

  2. Integration of Bioorthogonal Probes and Q-FRET for the Detection of Histone Acetyltransferase Activity.

    PubMed

    Han, Zhen; Luan, Yepeng; Zheng, Yujun George

    2015-12-01

    Histone acetyltransferases (HATs) are key players in the epigenetic regulation of gene function. The recent discovery of diverse HAT substrates implies a broad spectrum of cellular functions of HATs. Many pathological processes are also intimately associated with the dysregulation of HAT levels and activities. However, detecting the enzymatic activity of HATs has been challenging, and this has significantly impeded drug discovery. To advance the field, we developed a convenient one-pot, mix-and-read strategy that is capable of directly detecting the acylated histone product through a fluorescent readout. The strategy integrates three technological platforms-bioorthogonal HAT substrate labeling, alkyne-azide click chemistry, and quenching FRET-into one system for effective probing of HAT enzyme activity. PMID:26455821

  3. Potent Inhibitors of Acetyltransferase Eis Overcome Kanamycin Resistance in Mycobacterium tuberculosis.

    PubMed

    Willby, Melisa J; Green, Keith D; Gajadeera, Chathurada S; Hou, Caixia; Tsodikov, Oleg V; Posey, James E; Garneau-Tsodikova, Sylvie

    2016-06-17

    A major cause of tuberculosis (TB) resistance to the aminoglycoside kanamycin (KAN) is the Mycobacterium tuberculosis (Mtb) acetyltransferase Eis. Upregulation of this enzyme is responsible for inactivation of KAN through acetylation of its amino groups. A 123 000-compound high-throughput screen (HTS) yielded several small-molecule Eis inhibitors that share an isothiazole S,S-dioxide heterocyclic core. These were investigated for their structure-activity relationships. Crystal structures of Eis in complex with two potent inhibitors show that these molecules are bound in the conformationally adaptable aminoglycoside binding site of the enzyme, thereby obstructing binding of KAN for acetylation. Importantly, we demonstrate that several Eis inhibitors, when used in combination with KAN against resistant Mtb, efficiently overcome KAN resistance. This approach paves the way toward development of novel combination therapies against aminoglycoside-resistant TB. PMID:27010218

  4. Interferon-Induced Spermidine-Spermine Acetyltransferase and Polyamine Depletion Restrict Zika and Chikungunya Viruses.

    PubMed

    Mounce, Bryan C; Poirier, Enzo Z; Passoni, Gabriella; Simon-Loriere, Etienne; Cesaro, Teresa; Prot, Matthieu; Stapleford, Kenneth A; Moratorio, Gonzalo; Sakuntabhai, Anavaj; Levraud, Jean-Pierre; Vignuzzi, Marco

    2016-08-10

    Polyamines are small, positively charged molecules derived from ornithine and synthesized through an intricately regulated enzymatic pathway. Within cells, they are abundant and play several roles in diverse processes. We find that polyamines are required for the life cycle of the RNA viruses chikungunya virus (CHIKV) and Zika virus (ZIKV). Depletion of spermidine and spermine via type I interferon signaling-mediated induction of spermidine/spermine N1-acetyltransferase (SAT1), a key catabolic enzyme in the polyamine pathway, restricts CHIKV and ZIKV replication. Polyamine depletion restricts these viruses in vitro and in vivo, due to impairment of viral translation and RNA replication. The restriction is released by exogenous replenishment of polyamines, further supporting a role for these molecules in virus replication. Thus, SAT1 and, more broadly, polyamine depletion restrict viral replication and suggest promising avenues for antiviral therapies. PMID:27427208

  5. Structural Basis of Substrate-Binding Specificity of Human Arylamine N-acetyltransferases

    SciTech Connect

    Wu,H.; Dombrovsky, L.; Tempel, W.; Martin, F.; Loppnau, P.; Goodfellow, G.; Grant, D.; Plotnikov, A.

    2007-01-01

    The human arylamine N-acetyltransferases NAT1 and NAT2 play an important role in the biotransformation of a plethora of aromatic amine and hydrazine drugs. They are also able to participate in the bioactivation of several known carcinogens. Each of these enzymes is genetically variable in human populations, and polymorphisms in NAT genes have been associated with various cancers. Here we have solved the high resolution crystal structures of human NAT1 and NAT2, including NAT1 in complex with the irreversible inhibitor 2-bromoacetanilide, a NAT1 active site mutant, and NAT2 in complex with CoA, and have refined them to 1.7-, 1.8-, and 1.9- Angstroms resolution, respectively. The crystal structures reveal novel structural features unique to human NATs and provide insights into the structural basis of the substrate specificity and genetic polymorphism of these enzymes.

  6. Primary structure of the human M2 mitochondrial autoantigen of primary biliary cirrhosis: Dihydrolipoamide acetyltransferase

    SciTech Connect

    Coppel, R.L.; McNeilage, L.J.; Surh, C.D.; Van De Water, J.; Spithill, T.W.; Whittingham, S.; Gershwin, M.E. )

    1988-10-01

    Primary biliary cirrhosis is a chronic, destructive autoimmune liver disease of humans. Patient sera are characterized by a high frequency of autoantibodies to a M{sub r} 70,000 mitochondrial antigen a component of the M2 antigen complex. The authors have identified a human cDNA clone encoding the complete amino acid sequence of this autoantigen. The predicted structure has significant similarity with the dihydrolipoamide acetyltransferase of the Escherichia coli pyruvate dehydrogenase multienzyme complex. The human sequence preserves the Glu-Thr-Asp-Lys-Ala motif of the lipoyl-binding site and has two potential binding sites. Expressed fragments of the cDNA react strongly with sera from patients with primary biliary cirrhosis but not with sera from patients with autoimmune chronic active hepatitis or sera from healthy subjects.

  7. Role of histone acetyltransferases and histone deacetylases in adipocyte differentiation and adipogenesis.

    PubMed

    Zhou, Yuanfei; Peng, Jian; Jiang, Siwen

    2014-04-01

    Adipogenesis is a complex process strictly regulated by a well-established cascade that has been thoroughly studied in the last two decades. This process is governed by complex regulatory networks that involve the activation/inhibition of multiple functional genes, and is controlled by histone-modifying enzymes. Among such modification enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs) play important roles in the transcriptional regulation and post-translational modification of protein acetylation. HATs and HDACs have been shown to respond to signals that regulate cell differentiation, participate in the regulation of protein acetylation, mediate transcription and post-translation modifications, and directly acetylate/deacetylate various transcription factors and regulatory proteins. In this paper, we review the role of HATs and HDACs in white and brown adipocyte differentiation and adipogenesis, to expand our knowledge on fat formation and adipose tissue biology. PMID:24810880

  8. Structure of homoserine O-acetyltransferase from Staphylococcus aureus: the first Gram-positive ortholog structure

    PubMed Central

    Thangavelu, Bharani; Pavlovsky, Alexander G.; Viola, Ronald

    2014-01-01

    Homoserine O-acetyltransferase (HTA) catalyzes the formation of l-O-acetyl-homoserine from l-homoserine through the transfer of an acetyl group from acetyl-CoA. This is the first committed step required for the biosynthesis of methionine in many fungi, Gram-positive bacteria and some Gram-negative bacteria. The structure of HTA from Staphylococcus aureus (SaHTA) has been determined to a resolution of 2.45 Å. The structure belongs to the α/β-hydrolase superfamily, consisting of two distinct domains: a core α/β-domain containing the catalytic site and a lid domain assembled into a helical bundle. The active site consists of a classical catalytic triad located at the end of a deep tunnel. Structure analysis revealed some important differences for SaHTA compared with the few known structures of HTA. PMID:25286936

  9. Structure of homoserine O-acetyltransferase from Staphylococcus aureus: the first Gram-positive ortholog structure.

    PubMed

    Thangavelu, Bharani; Pavlovsky, Alexander G; Viola, Ronald

    2014-10-01

    Homoserine O-acetyltransferase (HTA) catalyzes the formation of L-O-acetyl-homoserine from L-homoserine through the transfer of an acetyl group from acetyl-CoA. This is the first committed step required for the biosynthesis of methionine in many fungi, Gram-positive bacteria and some Gram-negative bacteria. The structure of HTA from Staphylococcus aureus (SaHTA) has been determined to a resolution of 2.45 Å. The structure belongs to the α/β-hydrolase superfamily, consisting of two distinct domains: a core α/β-domain containing the catalytic site and a lid domain assembled into a helical bundle. The active site consists of a classical catalytic triad located at the end of a deep tunnel. Structure analysis revealed some important differences for SaHTA compared with the few known structures of HTA. PMID:25286936

  10. Preliminary X-ray crystallographic analysis of ornithine acetyltransferase (Rv1653) from Mycobacterium tuberculosis.

    PubMed

    Sankaranarayanan, R; Garen, C R; Cherney, M M; Yuan, M; Lee, C; James, M N G

    2009-02-01

    The gene product of open reading frame Rv1653 from Mycobacterium tuberculosis is annotated as encoding a probable ornithine acetyltransferase (OATase; EC 2.3.1.35), an enzyme that catalyzes two steps in the arginine-biosynthesis pathway. It transfers an acetyl group from N-acetylornithine to L-glutamate to produce N-acetylglutamate and L-ornithine. Rv1653 was crystallized using the sitting-drop vapour-diffusion method. The native crystals diffracted to a resolution of 1.7 A and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 60.1, b = 99.7, c = 155.3 A. The preliminary X-ray study showed the presence of a dimer in the asymmetric unit of the crystals, which had a Matthews coefficient V(M) of 2.8 A(3) Da(-1). PMID:19194014

  11. A method to detect transfected chloramphenicol acetyltransferase gene expression in intact animals

    SciTech Connect

    Narayanan, R.; Jastreboff, M.M.; Chiu, Chang Fang; Ito, Etsuro; Bertino, J.R. )

    1988-01-01

    A rapid procedure is described for assaying chloramphenicol acetyltransferase enzyme activity in intact animals following transfection of the RSV CAT plasmid into mouse bone marrow cells by electroporation. The reconstituted mice were injected with ({sup 14}C)chloramphenicol and ethyl acetate extracts of 24-h urine samples were analyzed by TLC autoradiography for the excretion of {sup 14}C-labeled metabolites. CAT expression in vivo can be detected by the presence of acetylated {sup 14}C-labeled metabolites in the urine within 1 week after bone marrow transplantation and, under the conditions described, these metabolites can be detected for at least 3 months. CAT expression in intact mice as monitored by the urine assay correlates with the CAT expression in the hematopoietic tissues assayed in vitro. This method offers a quick mode of screening for introduced CAT gene expression in vivo without sacrificing the mice.

  12. First Things First: Vital Protein Marks by N-Terminal Acetyltransferases.

    PubMed

    Aksnes, Henriette; Drazic, Adrian; Marie, Michaël; Arnesen, Thomas

    2016-09-01

    N-terminal (Nt) acetylation is known to be a highly abundant co-translational protein modification, but the recent discovery of Golgi- and chloroplast-resident N-terminal acetyltransferases (NATs) revealed that it can also be added post-translationally. Nt-acetylation may act as a degradation signal in a novel branch of the N-end rule pathway, whose functions include the regulation of human blood pressure. Nt-acetylation also modulates protein interactions, targeting, and folding. In plants, Nt-acetylation plays a role in the control of resistance to drought and in regulation of immune responses. Mutations of specific human NATs that decrease their activity can cause either the lethal Ogden syndrome or severe intellectual disability and cardiovascular defects. In sum, recent advances highlight Nt-acetylation as a key factor in many biological pathways. PMID:27498224

  13. Effects of acute ethanol administration on nocturnal pineal serotonin N-acetyltransferase activity

    SciTech Connect

    Creighton, J.A.; Rudeen, P.K.

    1988-01-01

    The effect of acute ethanol administration on pineal serotonin N-acetyltransferase (NAT) activity, norepinephrine and indoleamine content was examined in male rats. When ethanol was administered in two equal doses (2 g/kg body weight) over a 4 hour period during the light phase, the nocturnal rise in NAT activity was delayed by seven hours. The nocturnal pineal norepinephrine content was not altered by ethanol except for a delay in the reduction of NE with the onset of the following light phase. Although ethanol treatment led to a significant reduction in nocturnal levels of pineal serotonin content, there was no significant effect upon pineal content of 5-hydroxyindoleacetic acid (5-HIAA). The data indicate that ethanol delays the onset of the rise of nocturnal pineal NAT activity.

  14. Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms

    PubMed Central

    Rathore, Om Singh; Faustino, Alexandra; Prudêncio, Pedro; Van Damme, Petra; Cox, Cymon J.; Martinho, Rui Gonçalo

    2016-01-01

    Protein N-terminal acetylation is an ancient and ubiquitous co-translational modification catalyzed by a highly conserved family of N-terminal acetyltransferases (NATs). Prokaryotes have at least 3 NATs, whereas humans have six distinct but highly conserved NATs, suggesting an increase in regulatory complexity of this modification during eukaryotic evolution. Despite this, and against our initial expectations, we determined that NAT diversification did not occur in the eukaryotes, as all six major human NATs were most likely present in the Last Eukaryotic Common Ancestor (LECA). Furthermore, we also observed that some NATs were actually secondarily lost during evolution of major eukaryotic lineages; therefore, the increased complexity of the higher eukaryotic proteome occurred without a concomitant diversification of NAT complexes. PMID:26861501

  15. Biochemical and structural analysis of aminoglycoside acetyltransferase Eis from Anabaena variabilis.

    PubMed

    Pricer, Rachel E; Houghton, Jacob L; Green, Keith D; Mayhoub, Abdelrahman S; Garneau-Tsodikova, Sylvie

    2012-10-30

    The Mycobacterium tuberculosis enhanced intracellular survival (Eis_Mtb) protein is a clinically important aminoglycoside (AG) multi-acetylating enzyme. Eis homologues are found in a variety of mycobacterial and non-mycobacterial species. Variation of the residues lining the AG-binding pocket and positions of the loops bearing these residues in the Eis homologues dictates the substrate specificity and, thus, Eis homologues are Nature-made tools for elucidating principles of AG recognition by Eis. Here, we demonstrate that the Eis from Anabaena variabilis (Eis_Ava), the first non-mycobacterial Eis homologue reported, is a multi-acetylating AG-acetyltransferase. Eis_Ava, Eis from Mycobacterium tuberculosis (Eis_Mtb), and Eis from Mycobacterium smegmatis (Eis_Msm) have different structures of their AG-binding pockets. We perform comparative analysis of these differences and investigate how they dictate the substrate and cosubstrate recognition and acetylation of AGs by Eis. PMID:23090428

  16. CBP histone acetyltransferase activity is a critical component of memory consolidation.

    PubMed

    Korzus, Edward; Rosenfeld, Michael G; Mayford, Mark

    2004-06-24

    The stabilization of learned information into long-term memories requires new gene expression. CREB binding protein (CBP) is a coactivator of transcription that can be independently regulated in neurons. CBP functions both as a platform for recruiting other required components of the transcriptional machinery and as a histone acetyltransferase (HAT) that alters chromatin structure. To dissect the chromatin remodeling versus platform function of CBP or the developmental versus adult role of this gene, we generated transgenic mice that express CBP in which HAT activity is eliminated. Acquisition of new information and short-term memory is spared in these mice, while the stabilization of short-term memory into long-term memory is impaired. The behavioral phenotype is due to an acute requirement for CBP HAT activity in the adult as it is rescued by both suppression of transgene expression or by administration of the histone deacetylase inhibitor Trichostatin A (TSA) in adult animals. PMID:15207240

  17. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation.

    PubMed

    Ruff, Jürgen; Denger, Karin; Cook, Alasdair M

    2003-01-15

    The facultatively anaerobic bacterium Alcaligenes defragrans NKNTAU was found to oxidize taurine (2-aminoethanesulphonate) with nitrate as the terminal electron acceptor. Taurine was transaminated to 2-sulphoacetaldehyde. This was not converted into sulphite and acetate by a "sulphoacetaldehyde sulpho-lyase" (EC 4.4.1.12), but into sulphite and acetyl phosphate, which was identified by three methods. The enzyme, which required the addition of phosphate, thiamin diphosphate and Mg(2+) ions for activity, was renamed sulphoacetaldehyde acetyltransferase (Xsc; EC 2.3.1.-). Inducible Xsc was expressed at high levels, and a three-step 11-fold purification yielded an essentially homogeneous soluble protein, which was a homotetramer in its native form; the molecular mass of the subunit was found to be between about 63 kDa (SDS/PAGE) and 65.3 kDa (matrix-assisted laser-desorption ionization-time-of-flight MS). The N-terminal and two internal amino acid sequences were determined, and PCR primers were generated. The xsc gene was amplified and sequenced; the derived molecular mass of the processed protein was 65.0 kDa. The downstream gene presumably encoded the inducible phosphate acetyltransferase (Pta) found in crude extracts. The desulphonative enzymes ("EC 4.4.1.12") from Achromobacter xylosoxidans NCIMB 10751 and Desulfonispora thiosulfatigenes GKNTAU were shown to be Xscs. We detected at least three subclasses of xsc in Proteobacteria and in Gram-positive bacteria, and they comprised a distinct group within the acetohydroxyacid synthase supergene family. Genome sequencing data revealed xsc genes in Burkholderia fungorum (80% sequence identity) and Sinorhizobium meliloti (61%) with closely linked pta genes. Different patterns of regulation for the transport and dissimilation of taurine were hypothesized for S. meliloti and B. fungorum. PMID:12358600

  18. Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans.

    PubMed

    Chang, Peng; Fan, Xueyi; Chen, Jiangye

    2015-08-01

    Candida albicans is an opportunistic fungal pathogen commonly found in humans. It has the ability to switch reversibly between three growth forms: budding yeast, pseudohypha, and hypha. The transition between yeast and hyphal growth forms is critical for the pathogenesis of C. albicans. During the yeast-to-hypha morphologic transition, gene expression is regulated by transcriptional regulators including histone modifying complexes and chromatin remodeling complexes. We previously reported that Esa1, a catalytic subunit in the histone acetyltransferase complex NuA4, is essential for the hyphal development of C. albicans. In this study, we analyzed the functional roles of Gcn5, a catalytic subunit in the histone acetyltransferase complex SAGA, in C. albicans. Gcn5 is required for the invasive and filamentous growth of C. albicans. Deletion of GCN5 impaired hyphal elongation in sensing serum and attenuated the virulence of C. albicans in a mouse systemic infection model. The C. albicans gcn5/gcn5 mutant cells also exhibited sensitivity to cell wall stress. Functional analysis showed that the HAT domain and Bromodomain in Gcn5 play distinct roles in morphogenesis and cell wall stress response of C. albicans. Our results show that the conserved residue Glu188 is crucial for the Gcn5 HAT activity and for Gcn5 function during filamentous growth. In addition, the subcellular distribution of ectopically expressed GFP-Gcn5 correlates with the different growth states of C. albicans. In stationary phase, Gcn5 accumulated in the nucleus, while during vegetative growth it localized in the cytoplasm in a morpha-independent manner. Our results suggest that the nuclear localization of Gcn5 depends on the existence of its N-terminal NLS and HAT domains. PMID:25656079

  19. Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells

    PubMed Central

    Di Martile, Marta; Desideri, Marianna; De Luca, Teresa; Gabellini, Chiara; Buglioni, Simonetta; Eramo, Adriana; Sette, Giovanni; Milella, Michele; Rotili, Dante; Mai, Antonello; Carradori, Simone; Secci, Daniela; De Maria, Ruggero; Del Bufalo, Donatella; Trisciuoglio, Daniela

    2016-01-01

    Cancer stem cells (CSCs) play an important role in tumor initiation, progression, therapeutic failure and tumor relapse. In this study, we evaluated the efficacy of the thiazole derivative 3-methylcyclopentylidene-[4-(4′-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6), a novel pCAF and Gcn5 histone acetyltransferase inhibitor, as a small molecule that preferentially targets lung cancer stem-like cells (LCSCs) derived from non-small cell lung cancer (NSCLC) patients. Notably, although CPTH6 inhibits the growth of both LCSC and NSCLC cell lines, LCSCs exhibit greater growth inhibition than established NSCLC cells. Growth inhibitory effect of CPTH6 in LCSC lines is primarily due to apoptosis induction. Of note, differentiated progeny of LCSC lines is more resistant to CPTH6 in terms of loss of cell viability and reduction of protein acetylation, when compared to their undifferentiated counterparts. Interestingly, in LCSC lines CPTH6 treatment is also associated with a reduction of stemness markers. By using different HAT inhibitors we provide clear evidence that inhibition of HAT confers a strong preferential inhibitory effect on cell viability of undifferentiated LCSC lines when compared to their differentiated progeny. In vivo, CPTH6 is able to inhibit the growth of LCSC-derived xenografts and to reduce cancer stem cell content in treated tumors, as evidenced by marked reduction of tumor-initiating capacity in limiting dilution assays. Strikingly, the ability of CPTH6 to inhibit tubulin acetylation is also confirmed in vivo. Overall, our studies propose histone acetyltransferase inhibition as an attractive target for cancer therapy of NSCLC. PMID:26870991

  20. A new arylalkylamine N-acetyltransferase in silkworm (Bombyx mori) affects integument pigmentation.

    PubMed

    Long, Yaohang; Li, Jiaorong; Zhao, Tianfu; Li, Guannan; Zhu, Yong

    2015-04-01

    Dopamine is a precursor for melanin synthesis. Arylalkylamine N-acetyltransferase (AANAT) is involved in the melatonin formation in insects because it could catalyze the transformation from dopamine to dopamine-N-acetyldopamine. In this study, we identified a new AANAT gene in the silkworm (Bombyx mori) and assessed its role in the silkworm. The cDNA of this gene encodes 233 amino acids that shares 57 % amino acid identity with the Bm-iAANAT protein. We thus refer to this gene as Bm-iAANAT2. To investigate the role of Bm-iAANAT2, we constructed a transgenic interference system using a 3xp3 promoter to suppress the expression of Bm-iAANAT2 in the silkworm. We observed that melanin deposition occurs in the head and integument in transgenic lines. To verify the melanism pattern, dopamine content and the enzyme activity of AANAT were determined by high-performance liquid chromatography (HPLC). We found that an increase in dopamine levels affects melanism patterns on the heads of transgenic B. mori. A reduction in the enzyme activity of AANAT leads to changes in dopamine levels. We analyzed the expression of the Bm-iAANAT2 genes by qPCR and found that the expression of Bm-iAANAT2 gene is significantly lower in transgenic lines. Our results lead us to conclude that Bm-iAANAT2 is a new arylalkylamine N-acetyltransferase gene in the silkworm and is involved in the metabolism of the dopamine to avoid the generation of melanin. PMID:25712907

  1. Suppression of exogenous gene expression by spermidine/spermine N1-acetyltransferase 1 (SSAT1) cotransfection.

    PubMed

    Lee, Seung Bum; Park, Jong Hwan; Woster, Patrick M; Casero, Robert A; Park, Myung Hee

    2010-05-14

    Spermidine/spermine N(1)-acetyltransferase 1 (SSAT1), which catalyzes the N(1)-acetylation of spermidine and spermine to form acetyl derivatives, is a rate-limiting enzyme in polyamine catabolism. We now report a novel activity of transiently transfected SSAT1 in suppressing the exogenous expression of other proteins, i.e. green fluorescent protein (GFP) or GFP-eIF5A. Spermidine/spermine N(1)-acetyltransferase 2 (SSAT2) or inactive SSAT1 mutant enzymes (R101A or R101K) were without effect. The loss of exogenous gene expression is not due to accelerated protein degradation, because various inhibitors of proteases, lysosome, or autophagy did not mitigate the effects. This SSAT1 effect cannot be attributed to the depletion of overall cellular polyamines or accumulation of N(1)-acetylspermidine (N(1)-AcSpd) because of the following: (i) addition of putrescine, spermidine, spermine, or N(1)-AcSpd did not restore the expression of GFP or GFP-eIF5A; (ii) depletion of cellular polyamines with alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase, did not inhibit exogenous gene expression; and (iii) N(1),N(11)-bis(ethyl)norspermine caused a drastic depletion of cellular polyamines through induction of endogenous SSAT1 but did not block exogenous gene expression. SSAT1 transient transfection did not affect stable expression of GFP, and stably expressed SSAT1 did not affect exogenous expression of GFP, suggesting that only transiently (episomally) expressed SSAT1 blocks exogenous (episomal) expression of other proteins. SSAT1 may regulate exogenous gene expression by blocking steps involved in transcription/translation from an episomal vector by targeting non-polyamine substrate(s) critical for this pathway. PMID:20212040

  2. Structural and functional characterization of TRI3 trichothecene 15-O-acetyltransferase from Fusarium sporotrichioides

    SciTech Connect

    Garvey, Graeme S.; McCormick, Susan P.; Alexander, Nancy J.; Rayment, Ivan

    2009-08-14

    Fusarium head blight is a devastating disease of cereal crops whose worldwide incidence is increasing and at present there is no satisfactory way of combating this pathogen or its associated toxins. There is a wide variety of trichothecene mycotoxins and they all contain a 12,13-epoxytrichothecene skeleton but differ in their substitutions. Indeed, there is considerable variation in the toxin profile across the numerous Fusarium species that has been ascribed to differences in the presence or absence of biosynthetic enzymes and their relative activity. This article addresses the source of differences in acetylation at the C15 position of the trichothecene molecule. Here, we present the in vitro structural and biochemical characterization of TRI3, a 15-O-trichothecene acetyltransferase isolated from F. sporotrichioides and the 'in vivo' characterization of Deltatri3 mutants of deoxynivalenol (DON) producing F. graminearum strains. A kinetic analysis shows that TRI3 is an efficient enzyme with the native substrate, 15-decalonectrin, but is inactive with either DON or nivalenol. The structure of TRI3 complexed with 15-decalonectrin provides an explanation for this specificity and shows that Tri3 and Tri101 (3-O-trichothecene acetyltransferase) are evolutionarily related. The active site residues are conserved across all sequences for TRI3 orthologs, suggesting that differences in acetylation at C15 are not due to differences in Tri3. The tri3 deletion mutant shows that acetylation at C15 is required for DON biosynthesis even though DON lacks a C15 acetyl group. The enzyme(s) responsible for deacetylation at the 15 position of the trichothecene mycotoxins have not been identified.

  3. Regulatory region in choline acetyltransferase gene directs developmental and tissue-specific expression in transgenic mice.

    PubMed Central

    Lönnerberg, P; Lendahl, U; Funakoshi, H; Arhlund-Richter, L; Persson, H; Ibáñez, C F

    1995-01-01

    Acetylcholine, one of the main neurotransmitters in the nervous system, is synthesized by the enzyme choline acetyltransferase (ChAT; acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6). The molecular mechanisms controlling the establishment, maintenance, and plasticity of the cholinergic phenotype in vivo are largely unknown. A previous report showed that a 3800-bp, but not a 1450-bp, 5' flanking segment from the rat ChAT gene promoter directed cell type-specific expression of a reporter gene in cholinergic cells in vitro. Now we have characterized a distal regulatory region of the ChAT gene that confers cholinergic specificity on a heterologous downstream promoter in a cholinergic cell line and in transgenic mice. A 2342-bp segment from the 5' flanking region of the ChAT gene behaved as an enhancer in cholinergic cells but as a repressor in noncholinergic cells in an orientation-independent manner. Combined with a heterologous basal promoter, this fragment targeted transgene expression to several cholinergic regions of the central nervous system of transgenic mice, including basal forebrain, cortex, pons, and spinal cord. In eight independent transgenic lines, the pattern of transgene expression paralleled qualitatively and quantitatively that displayed by endogenous ChAT mRNA in various regions of the rat central nervous system. In the lumbar enlargement of the spinal cord, 85-90% of the transgene expression was targeted to the ventral part of the cord, where cholinergic alpha-motor neurons are located. Transgene expression in the spinal cord was developmentally regulated and responded to nerve injury in a similar way as the endogenous ChAT gene, indicating that the 2342-bp regulatory sequence contains elements controlling the plasticity of the cholinergic phenotype in developing and injured neurons. Images Fig. 1 Fig. 2 PMID:7732028

  4. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation.

    PubMed Central

    Ruff, Jürgen; Denger, Karin; Cook, Alasdair M

    2003-01-01

    The facultatively anaerobic bacterium Alcaligenes defragrans NKNTAU was found to oxidize taurine (2-aminoethanesulphonate) with nitrate as the terminal electron acceptor. Taurine was transaminated to 2-sulphoacetaldehyde. This was not converted into sulphite and acetate by a "sulphoacetaldehyde sulpho-lyase" (EC 4.4.1.12), but into sulphite and acetyl phosphate, which was identified by three methods. The enzyme, which required the addition of phosphate, thiamin diphosphate and Mg(2+) ions for activity, was renamed sulphoacetaldehyde acetyltransferase (Xsc; EC 2.3.1.-). Inducible Xsc was expressed at high levels, and a three-step 11-fold purification yielded an essentially homogeneous soluble protein, which was a homotetramer in its native form; the molecular mass of the subunit was found to be between about 63 kDa (SDS/PAGE) and 65.3 kDa (matrix-assisted laser-desorption ionization-time-of-flight MS). The N-terminal and two internal amino acid sequences were determined, and PCR primers were generated. The xsc gene was amplified and sequenced; the derived molecular mass of the processed protein was 65.0 kDa. The downstream gene presumably encoded the inducible phosphate acetyltransferase (Pta) found in crude extracts. The desulphonative enzymes ("EC 4.4.1.12") from Achromobacter xylosoxidans NCIMB 10751 and Desulfonispora thiosulfatigenes GKNTAU were shown to be Xscs. We detected at least three subclasses of xsc in Proteobacteria and in Gram-positive bacteria, and they comprised a distinct group within the acetohydroxyacid synthase supergene family. Genome sequencing data revealed xsc genes in Burkholderia fungorum (80% sequence identity) and Sinorhizobium meliloti (61%) with closely linked pta genes. Different patterns of regulation for the transport and dissimilation of taurine were hypothesized for S. meliloti and B. fungorum. PMID:12358600

  5. Epigenetic change in kidney tumor: downregulation of histone acetyltransferase MYST1 in human renal cell carcinoma

    PubMed Central

    2013-01-01

    Background MYST1 (also known as hMOF), a member of the MYST family of histone acetyltransferases (HATs) as an epigenetic mark of active genes, is mainly responsible for histone H4K16 acetylation in the cells. Recent studies have shown that the abnormal gene expression of hMOF is involved in certain primary cancers. Here we examined the involvement of hMOF expression and histone H4K16 acetylation in primary renal cell carcinoma (RCC). Simultaneously, we investigated the correlation between the expression of hMOF and clear cell RCC (ccRCC) biomarker carbohydrase IX (CA9) in RCC. Materials and methods The frozen RCC tissues and RCC cell lines as materials, the reverse transcription polymerase chain reaction (RT-PCR), western blotting and immunohistochemical staining approaches were used. Results RT-PCR results indicate that hMOF gene expression levels frequently downregulated in 90.5% of patients (19/21) with RCC. The reduction of hMOF protein in both RCC tissues and RCC cell lines is tightly correlated with acetylation of histone H4K16. In addition, overexpression of CA9 was detected in 100% of ccRCC patients (21/21). However, transient transfection of hMOF in ccRCC 786–0 cells did not affect both the gene and protein expression of CA9. Conclusion hMOF as an acetyltransferase of H4K16 might be involved in the pathogenesis of kidney cancer, and this epigenetic changes might be a new CA9-independent RCC diagnostic maker. PMID:23394073

  6. Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells.

    PubMed

    Di Martile, Marta; Desideri, Marianna; De Luca, Teresa; Gabellini, Chiara; Buglioni, Simonetta; Eramo, Adriana; Sette, Giovanni; Milella, Michele; Rotili, Dante; Mai, Antonello; Carradori, Simone; Secci, Daniela; De Maria, Ruggero; Del Bufalo, Donatella; Trisciuoglio, Daniela

    2016-03-01

    Cancer stem cells (CSCs) play an important role in tumor initiation, progression, therapeutic failure and tumor relapse. In this study, we evaluated the efficacy of the thiazole derivative 3-methylcyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6), a novel pCAF and Gcn5 histone acetyltransferase inhibitor, as a small molecule that preferentially targets lung cancer stem-like cells (LCSCs) derived from non-small cell lung cancer (NSCLC) patients. Notably, although CPTH6 inhibits the growth of both LCSC and NSCLC cell lines, LCSCs exhibit greater growth inhibition than established NSCLC cells. Growth inhibitory effect of CPTH6 in LCSC lines is primarily due to apoptosis induction. Of note, differentiated progeny of LCSC lines is more resistant to CPTH6 in terms of loss of cell viability and reduction of protein acetylation, when compared to their undifferentiated counterparts. Interestingly, in LCSC lines CPTH6 treatment is also associated with a reduction of stemness markers. By using different HAT inhibitors we provide clear evidence that inhibition of HAT confers a strong preferential inhibitory effect on cell viability of undifferentiated LCSC lines when compared to their differentiated progeny. In vivo, CPTH6 is able to inhibit the growth of LCSC-derived xenografts and to reduce cancer stem cell content in treated tumors, as evidenced by marked reduction of tumor-initiating capacity in limiting dilution assays. Strikingly, the ability of CPTH6 to inhibit tubulin acetylation is also confirmed in vivo. Overall, our studies propose histone acetyltransferase inhibition as an attractive target for cancer therapy of NSCLC. PMID:26870991

  7. Structural and Functional Role of Acetyltransferase hMOF K274 Autoacetylation.

    PubMed

    McCullough, Cheryl E; Song, Shufei; Shin, Michael H; Johnson, F Brad; Marmorstein, Ronen

    2016-08-26

    Many histone acetyltransferases undergo autoacetylation, either through chemical or enzymatic means, to potentiate enzymatic cognate substrate lysine acetylation, although the mode and molecular role of such autoacetylation is poorly understood. The MYST family of histone acetyltransferases is autoacetylated at an active site lysine residue to facilitate cognate substrate lysine binding and acetylation. Here, we report on a detailed molecular investigation of Lys-274 autoacetylation of the human MYST protein Males Absent on the First (hMOF). A mutational scan of hMOF Lys-274 reveals that all amino acid substitutions of this residue are able to bind cofactor but are significantly destabilized, both in vitro and in cells, and are catalytically inactive for cognate histone H4 peptide lysine acetylation. The x-ray crystal structure of a hMOF K274P mutant suggests that the reduced stability and catalytic activity stems from a disordering of the residue 274-harboring a α2-β7 loop. We also provide structural evidence that a C316S/E350Q mutant, which is defective for cognate substrate lysine acetylation; and biochemical evidence that a K268M mutant, which is defective for Lys-274 chemical acetylation in the context of a K274-peptide, can still undergo quantitative K274 autoacetylation. Together, these studies point to the critical and specific role of hMOF Lys-274 autoacetylation in hMOF stability and cognate substrate acetylation and argues that binding of Ac-CoA to hMOF likely drives Lys-274 autoacetylation for subsequent cognate substrate acetylation. PMID:27382063

  8. The transcriptional coactivator and acetyltransferase p300 in fibroblast biology and fibrosis.

    PubMed

    Ghosh, Asish K; Varga, John

    2007-12-01

    The transcriptional coactivator p300 is a ubiquitous nuclear phosphoprotein and transcriptional cofactor with intrinsic acetyltransferase activity. p300 controls the expression of numerous genes in cell-type and signal-specific manner, and plays a pivotal role in cellular proliferation, apoptosis, and embryogenesis. By catalyzing acetylation of histones and transcription factors, p300 plays a significant role in epigenetic regulation. Recent evidence suggests that abnormal p300 function is associated with deregulated target gene expression, and is implicated in inflammation, cancer, cardiac hypertrophy, and genetic disorders such as the Rubinstein-Taybi syndrome. The activity of p300 is regulated at multiple levels, including developmental stage-specific expression, post-translational modifications, subcellular localization, and cell-type and gene-specific interactions with transcription factors. Although p300 has been investigated extensively in epithelial and hematopoietic cells, its role in fibroblast biology and tissue repair has received little attention to date. Recent studies implicate p300 in the regulation of collagen synthesis by transforming growth factor-beta (TGF-beta). Both the acetyltransferase activity of p300 and its inducible interaction with Smad3 are essential for mediating TGF-beta-induced stimulation of collagen synthesis. As a signal integrator whose availability for intracellular interactions with transcription factors is strictly limiting, p300 mediates the antagonistic regulation of TGF-beta-induced collagen synthesis by IFN-gamma and TNF-alpha via intracellular competition for limiting amount of p300. Significantly, p300 is itself a direct transcriptional target of TGF-beta in normal fibroblasts, and its levels are significantly elevated in fibrotic lesions as well as in experimental models of fibrosis. The emerging appreciation of the importance of p300 in extracellular matrix (ECM) remodeling and fibrosis and novel insights concerning

  9. Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods

    PubMed Central

    Hiragaki, Susumu; Suzuki, Takeshi; Mohamed, Ahmed A. M.; Takeda, Makio

    2015-01-01

    The evolution of N-acetyltransfeases (NATs) seems complex. Vertebrate arylalkylamine N-acetyltransferase (aaNAT) has been extensively studied since it leads to the synthesis of melatonin, a multifunctional neurohormone prevalent in photoreceptor cells, and is known as a chemical token of the night. Melatonin also serves as a scavenger for reactive oxygen species. This is also true with invertebrates. NAT therefore has distinct functional implications in circadian function, as timezymes (aaNAT), and also xenobiotic reactions (arylamine NAT or simply NAT). NATs belong to a broader enzyme group, the GCN5-related N-acetyltransferase superfamily. Due to low sequence homology and a seemingly fast rate of structural differentiation, the nomenclature for NATs can be confusing. The advent of bioinformatics, however, has helped to classify this group of enzymes; vertebrates have two distinct subgroups, the timezyme type and the xenobiotic type, which has a wider substrate range including imidazolamine, pharmacological drugs, environmental toxicants and even histone. Insect aaNAT (iaaNAT) form their own clade in the phylogeny, distinct from vertebrate aaNATs. Arthropods are unique, since the phylum has exoskeleton in which quinones derived from N-acetylated monoamines function in coupling chitin and arthropodins. Monoamine oxidase (MAO) activity is limited in insects, but NAT-mediated degradation prevails. However, unexpectedly iaaNAT occurs not only among arthropods but also among basal deuterostomia, and is therefore more apomorphic. Our analyses illustrate that iaaNATs has unique physiological roles but at the same time it plays a role in a timezyme function, at least in photoperiodism. Photoperiodism has been considered as a function of circadian system but the detailed molecular mechanism is not well understood. We propose a molecular hypothesis for photoperiodism in Antheraea pernyi based on the transcription regulation of NAT interlocked by the circadian system

  10. Escherichia coli N-Acetylglucosamine-1-Phosphate-Uridyltransferase/Glucosamine-1-Phosphate-Acetyltransferase (GlmU) Inhibitory Activity of Terreic Acid Isolated from Aspergillus terreus.

    PubMed

    Sharma, Rashmi; Lambu, Mallikharjuna Rao; Jamwal, Urmila; Rani, Chitra; Chib, Reena; Wazir, Priya; Mukherjee, Debaraj; Chaubey, Asha; Khan, Inshad Ali

    2016-04-01

    Secondary metabolite of Aspergillus terreus, terreic acid, is a reported potent antibacterial that was identified more than 60 years ago, but its cellular target(s) are still unknown. Here we screen its activity against the acetyltransferase domain of a bifunctional enzyme, Escherichia coli N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). An absorbance-based assay was used to screen terreic acid against the acetyltransferase activity of E. coli GlmU. Terreic acid was found to inhibit the acetyltransferase domain of E. coli GlmU with an IC50 of 44.24 ± 1.85 µM. Mode of inhibition studies revealed that terreic acid was competitive with AcCoA and uncompetitive with GlcN-1-P. It also exhibited concentration-dependent killing of E. coli ATCC 25922 up to 4× minimum inhibitory concentration and inhibited the growth of biofilms generated by E. coli. Characterization of resistant mutants established mutation in the acetyltransferase domain of GlmU. Terreic acid was also found to be metabolically stable in the in vitro incubations with rat liver microsome in the presence of a NADPH regenerating system. The studies reported here suggest that terreic acid is a potent antimicrobial agent and support that E. coli GlmU acetyltransferase is a molecular target of terreic acid, resulting in its antibacterial activity. PMID:26762501

  11. Regulation of KAT6 Acetyltransferases and Their Roles in Cell Cycle Progression, Stem Cell Maintenance, and Human Disease.

    PubMed

    Huang, Fu; Abmayr, Susan M; Workman, Jerry L

    2016-07-15

    The lysine acetyltransferase 6 (KAT6) histone acetyltransferase (HAT) complexes are highly conserved from yeast to higher organisms. They acetylate histone H3 and other nonhistone substrates and are involved in cell cycle regulation and stem cell maintenance. In addition, the human KAT6 HATs are recurrently mutated in leukemia and solid tumors. Therefore, it is important to understand the mechanisms underlying the regulation of KAT6 HATs and their roles in cell cycle progression. In this minireview, we summarize the identification and analysis of the KAT6 complexes and discuss the regulatory mechanisms governing their enzymatic activities and substrate specificities. We further focus on the roles of KAT6 HATs in regulating cell proliferation and stem cell maintenance and review recent insights that aid in understanding their involvement in human diseases. PMID:27185879

  12. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases

    PubMed Central

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G. J.; Eleni Ourailidou, Maria; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J.; Dekker, Frank J.

    2016-01-01

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, applications of histone acetyltransferase inhibitors to reduce inflammatory responses are interesting. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4 μM for histone acetyltransferase p300). C646 was described to regulate the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. Interestingly, this pathway has been implicated in asthma and COPD. Therefore we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, here we demonstrate that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7 μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  13. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases.

    PubMed

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G J; Ourailidou, Maria E; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J; Dekker, Frank J

    2016-02-15

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, histone acetyltransferase inhibitors could reduce inflammatory responses. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4μM for histone acetyltransferase p300). C646 was described to affect the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. This pathway has been implicated in asthma and COPD. Therefore, we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, we demonstrate here that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  14. SIAH-mediated ubiquitination and degradation of acetyl-transferases regulate the p53 response and protein acetylation.

    PubMed

    Grishina, Inna; Debus, Katherina; García-Limones, Carmen; Schneider, Constanze; Shresta, Amit; García, Carlos; Calzado, Marco A; Schmitz, M Lienhard

    2012-12-01

    Posttranslational modification of proteins by lysine acetylation regulates many biological processes ranging from signal transduction to chromatin compaction. Here we identify the acetyl-transferases CBP/p300, Tip60 and PCAF as new substrates for the ubiquitin E3 ligases SIAH1 and SIAH2. While CBP/p300 can undergo ubiquitin/proteasome-dependent degradation by SIAH1 and SIAH2, the two other acetyl-transferases are exclusively degraded by SIAH2. Accordingly, SIAH-deficient cells show enhanced protein acetylation, thus revealing SIAH proteins as indirect regulators of the cellular acetylation status. Functional experiments show that Tip60/PCAF-mediated acetylation of the tumor suppressor p53 is antagonized by the p53 target gene SIAH2 which mediates ubiquitin/proteasome-mediated degradation of both acetyl-transferases and consequently diminishes p53 acetylation and transcriptional activity. The p53 kinase HIPK2 mediates hierarchical phosphorylation of SIAH2 at 5 sites, which further boosts its activity as a ubiquitin E3 ligase for several substrates and therefore dampens the late p53 response. PMID:23044042

  15. Structure of Arabidopsis thaliana At1g77540 Protein, a Minimal Acetyltransferase from the COG2388 Family †,‡

    PubMed Central

    Tyler, Robert C.; Bitto, Eduard; Berndsen, Christopher E.; Bingman, Craig A.; Singh, Shanteri; Lee, Min S.; Wesenberg, Gary E.; Denu, John M.; Phillips, George N.; Markley, John L.

    2008-01-01

    We describe X-ray crystal and NMR solution structures of the protein coded for by Arabidopsis thaliana gene At1g77540.1 (At1g77540). The crystal structure was determined to 1.15 Å with an R factor of 14.9% (Rfree = 17.0%) by multiple-wavelength anomalous diffraction using sodium bromide derivatized crystals. The ensemble of NMR conformers was determined with protein samples labeled with 15N and 13C+15N. The X-ray structure and NMR ensemble were closely similar with r.m.s.d 1.4 Å for residues 8–93. At1g77540 was found to adopt a fold similar to that of GCN5-related N-acetyltransferases. Enzymatic activity assays established that At1g77540 possesses weak acetyltransferase activity against histones H3 and H4. Chemical shift perturbations observed in 15N-HSQC spectra upon the addition of CoA indicated that the cofactor binds and identified its binding site. The molecular details of this interaction were further elucidated by solving the X-ray structure of the At1g77540–CoA complex. This work establishes that the domain family COG2388 represents a novel class of acetyltransferase and provides insight into possible mechanistic roles of the conserved Cys76 and His41 residues of this family. PMID:17128971

  16. Two N-Terminal Acetyltransferases Antagonistically Regulate the Stability of a Nod-Like Receptor in Arabidopsis

    PubMed Central

    Li, Lin; Gannon, Patrick; Linster, Eric; Huber, Monika; Kapos, Paul; Bienvenut, Willy; Giglione, Carmela; Zhang, Yuelin; Chen, She

    2015-01-01

    Nod-like receptors (NLRs) serve as immune receptors in plants and animals. The stability of NLRs is tightly regulated, though its mechanism is not well understood. Here, we show the crucial impact of N-terminal acetylation on the turnover of one plant NLR, Suppressor of NPR1, Constitutive 1 (SNC1), in Arabidopsis thaliana. Genetic and biochemical analyses of SNC1 uncovered its multilayered regulation by different N-terminal acetyltransferase (Nat) complexes. SNC1 exhibits a few distinct N-terminal isoforms generated through alternative initiation and N-terminal acetylation. Its first Met is acetylated by N-terminal acetyltransferase complex A (NatA), while the second Met is acetylated by N-terminal acetyltransferase complex B (NatB). Unexpectedly, the NatA-mediated acetylation serves as a degradation signal, while NatB-mediated acetylation stabilizes the NLR protein, thus revealing antagonistic N-terminal acetylation of a single protein substrate. Moreover, NatA also contributes to the turnover of another NLR, RESISTANCE TO P. syringae pv maculicola 1. The intricate regulation of protein stability by Nats is speculated to provide flexibility for the target protein in maintaining its homeostasis. PMID:25966763

  17. Identification and Functional Characterization of Arylamine N-Acetyltransferases in Eubacteria: Evidence for Highly Selective Acetylation of 5-Aminosalicylic Acid

    PubMed Central

    Deloménie, Claudine; Fouix, Sylvaine; Longuemaux, Sandrine; Brahimi, Naïma; Bizet, Chantal; Picard, Bertrand; Denamur, Erick; Dupret, Jean-Marie

    2001-01-01

    Arylamine N-acetyltransferase activity has been described in various bacterial species. Bacterial N-acetyltransferases, including those from bacteria of the gut flora, may be involved in the metabolism of xenobiotics, thereby exerting physiopathological effects. We characterized these enzymes further by steady-state kinetics, time-dependent inhibition, and DNA hybridization in 40 species, mostly from the human intestinal microflora. We report for the first time N-acetyltransferase activity in 11 species of Proteobacteriaceae from seven genera: Citrobacter amalonaticus, Citrobacter farmeri, Citrobacter freundii, Klebsiella ozaenae, Klebsiella oxytoca, Klebsiella rhinoscleromatis, Morganella morganii, Serratia marcescens, Shigella flexneri, Plesiomonas shigelloides, and Vibrio cholerae. We estimated apparent kinetic parameters and found that 5-aminosalicylic acid, a compound efficient in the treatment of inflammatory bowel diseases, was acetylated with a catalytic efficiency 27 to 645 times higher than that for its isomer, 4-aminosalicylic acid. In contrast, para-aminobenzoic acid, a folate precursor in bacteria, was poorly acetylated. Of the wild-type strains studied, Pseudomonas aeruginosa was the best acetylator in terms of both substrate spectrum and catalytic efficiency. DNA hybridization with a Salmonella enterica serovar Typhimurium-derived probe suggested the presence of this enzyme in eight proteobacterial and four gram-positive species. Molecular aspects together with the kinetic data suggest distinct functional features for this class of microbial enzymes. PMID:11344150

  18. Cloning, sequencing, characterisation and implications for vaccine design of the novel dihydrolipoyl acetyltransferase of Neisseria meningitidis.

    PubMed

    Ala' Aldeen, D A; Westphal, A H; De Kok, A; Weston, V; Atta, M S; Baldwin, T J; Bartley, J; Borriello, S P

    1996-12-01

    A lambdaZap-II expression library of Neisseria meningitidis was screened with a rabbit polyclonal antiserum (R-70) raised against c. 70-kDa proteins purified from outer membrane vesicles by elution from preparative SDS-polyacrylamide gels. Selected clones were isolated, further purified, and their recombinant pBluescript SKII plasmids were excised. The cloned DNA insert was sequenced from positive clones and analysed. Four open reading frames (ORFs) were identified, three of which showed a high degree of homology with the pyruvate dehydrogenase (E1p), dihydrolipoyl acetyltransferase (E2p) and dihydrolipoyl dehydrogenase (E3) components of the pyruvate dehydrogenase complex (PDHC) of a number of prokaryotic and eukaryotic species. Sequence analysis indicated that the meningococcal E2p (Men-E2p) contains two N-terminal lipoyl domains, an E1/E3 binding domain and a catalytic domain. The domains are separated by hinge regions rich in alanine, proline and charged residues. Another lipoyl domain with high sequence similarity to the Men-E2p lipoyl domain was found at the N-terminal of the E3 component. A further ORF, coding for a 16.5-kDa protein, was found between the ORFs encoding the E2p and E3 components. The identity and functional characteristics of the expressed and purified heterologous Men-E2p were confirmed as dihydrolipoyl acetyltransferase by immunological and biochemical assays. N-terminal amino-acid analysis confirmed the sequence of the DNA-derived mature protein. Purified Men-E2p reacted with monospecific antisera raised against the whole E2p molecule and against the lipoyl domain of the Azotobacter vinelandii E2p. Conversely, rabbit antiserum raised against Men-E2p reacted with protein extracts of A. vinelandii, Escherichia coli and N. gonorrhoeae and with the lipoyl and catalytic domains of E2p obtained by limited proteolysis. In contrast, the original R-70 antiserum reacted almost exclusively with the lipoyl domain, indicating the strong immunogenicity

  19. Salt-induced changes in the subunit structure of the Bacillus stearothermophilus lipoate acetyltransferase.

    PubMed

    Shigeoka, Yuichi; Fujisawa, Tetsuro; Teshiba, Satoshi; Fukumori, Hisayoshi; Yamamoto, Kohji; Banno, Yutaka; Aso, Yoichi

    2013-01-01

    The Bacillus stearothermophilus lipoate acetyltransferase (E2), composed of sixty identical, subunits is the core component of the pyruvate dehydrogenase complex (PDC). E2 polypeptide is composed of LD, PSBD, and CD domains. Most studies had focused on a truncated E2 that is deficient in LD and PSBD, because CD mainly contributes to maintaining the multimeric structure. We examined salt-induced changes in E2 without truncation and constructed reaction models. We speculate that in the presence of KCl, E2 is dissociated into a monomer and then assembled into an aggregative complex (C(A)) and a quasi-stable complex (C(Q)). C(A) was larger than C(Q), but smaller than intact E2. C(A) and C(Q), were dominant complexes at about neutral pH and at basic pH respectively. PDC, in which PSBD is occupied by other components, and a truncated E2 undergo dissociation only. LD-PSBD region besides CD might then contribute to the partial association of dissociated E2. PMID:23924725

  20. Response of ATP sulfurylase and serine acetyltransferase towards cadmium in hyperaccumulator Sedum alfredii Hance*

    PubMed Central

    Guo, Wei-dong; Liang, Jun; Yang, Xiao-e; Chao, Yue-en; Feng, Ying

    2009-01-01

    We studied the responses of the activities of adenosine-triphosphate (ATP) sulfurylase (ATPS) and serine acetyltransferase (SAT) to cadmium (Cd) levels and treatment time in hyperaccumulating ecotype (HE) Sedum alfredii Hance, as compared with its non-hyperaccumulating ecotype (NHE). The results show that plant growth was inhibited in NHE but promoted in HE when exposed to high Cd level. Cd concentrations in leaves and shoots rapidly increased in HE rather than in NHE, and they became much higher in HE than in NHE along with increasing treatment time and Cd supply levels. ATPS activity was higher in HE than in NHE in all Cd treatments, and increased with increasing Cd supply levels in both HE and NHE when exposed to Cd treatment within 8 h. However, a marked difference of ATPS activity between HE and NHE was found with Cd treatment for 168 h, where ATPS activity increased in HE but decreased in NHE. Similarly, SAT activity was higher in HE than in NHE at all Cd treatments, but was more sensitive in NHE than in HE. Both ATPS and SAT activities in NHE leaves tended to decrease with increasing treatment time after 8 h at all Cd levels. The results reveal the different responses in sulfur assimilation enzymes and Cd accumulation between HE and NHE. With increasing Cd stress, the activities of sulfur assimilation enzymes (ATPS and SAT) were induced in HE, which may contribute to Cd accumulation in the hyperaccumulator Sedum alfredii Hance. PMID:19353742

  1. Response of ATP sulfurylase and serine acetyltransferase towards cadmium in hyperaccumulator Sedum alfredii Hance.

    PubMed

    Guo, Wei-dong; Liang, Jun; Yang, Xiao-e; Chao, Yue-en; Feng, Ying

    2009-04-01

    We studied the responses of the activities of adenosine-triphosphate (ATP) sulfurylase (ATPS) and serine acetyltransferase (SAT) to cadmium (Cd) levels and treatment time in hyperaccumulating ecotype (HE) Sedum alfredii Hance, as compared with its non-hyperaccumulating ecotype (NHE). The results show that plant growth was inhibited in NHE but promoted in HE when exposed to high Cd level. Cd concentrations in leaves and shoots rapidly increased in HE rather than in NHE, and they became much higher in HE than in NHE along with increasing treatment time and Cd supply levels. ATPS activity was higher in HE than in NHE in all Cd treatments, and increased with increasing Cd supply levels in both HE and NHE when exposed to Cd treatment within 8 h. However, a marked difference of ATPS activity between HE and NHE was found with Cd treatment for 168 h, where ATPS activity increased in HE but decreased in NHE. Similarly, SAT activity was higher in HE than in NHE at all Cd treatments, but was more sensitive in NHE than in HE. Both ATPS and SAT activities in NHE leaves tended to decrease with increasing treatment time after 8 h at all Cd levels. The results reveal the different responses in sulfur assimilation enzymes and Cd accumulation between HE and NHE. With increasing Cd stress, the activities of sulfur assimilation enzymes (ATPS and SAT) were induced in HE, which may contribute to Cd accumulation in the hyperaccumulator Sedum alfredii Hance. PMID:19353742

  2. Molecular functions of the histone acetyltransferase chaperone complex Rtt109-Vps75

    SciTech Connect

    Berndsen, Christopher E; Tsubota, Toshiaki; Lindner, Scott E; Lee, Susan; Holton, James M; Kaufman, Paul D; Keck, James L; Denu, John M

    2010-01-12

    Histone acetylation and nucleosome remodeling regulate DNA damage repair, replication and transcription. Rtt109, a recently discovered histone acetyltransferase (HAT) from Saccharomyces cerevisiae, functions with the histone chaperone Asf1 to acetylate lysine K56 on histone H3 (H3K56), a modification associated with newly synthesized histones. In vitro analysis of Rtt109 revealed that Vps75, a Nap1 family histone chaperone, could also stimulate Rtt109-dependent acetylation of H3K56. However, the molecular function of the Rtt109-Vps75 complex remains elusive. Here we have probed the molecular functions of Vps75 and the Rtt109-Vps75 complex through biochemical, structural and genetic means. We find that Vps75 stimulates the kcat of histone acetylation by {approx}100-fold relative to Rtt109 alone and enhances acetylation of K9 in the H3 histone tail. Consistent with the in vitro evidence, cells lacking Vps75 showed a substantial reduction (60%) in H3K9 acetylation during S phase. X-ray structural, biochemical and genetic analyses of Vps75 indicate a unique, structurally dynamic Nap1-like fold that suggests a potential mechanism of Vps75-dependent activation of Rtt109. Together, these data provide evidence for a multifunctional HAT-chaperone complex that acetylates histone H3 and deposits H3-H4 onto DNA, linking histone modification and nucleosome assembly.

  3. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury

    PubMed Central

    Shin, Kyungha; Cha, Yeseul; Kim, Kwang Sei; Choi, Ehn-Kyoung; Choi, Youngjin; Guo, Haiyu; Ban, Young-Hwan; Kim, Jong-Choon; Park, Dongsun; Kim, Yun-Bae

    2016-01-01

    Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs) overexpressing choline acetyltransferase (ChAT) improve cognitive function of Alzheimer's disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh) level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA) in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing) time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level. PMID:27087745

  4. Rational design and validation of a Tip60 histone acetyltransferase inhibitor

    NASA Astrophysics Data System (ADS)

    Gao, Chunxia; Bourke, Emer; Scobie, Martin; Famme, Melina Arcos; Koolmeister, Tobias; Helleday, Thomas; Eriksson, Leif A.; Lowndes, Noel F.; Brown, James A. L.

    2014-06-01

    Histone acetylation is required for many aspects of gene regulation, genome maintenance and metabolism and dysfunctional acetylation is implicated in numerous diseases, including cancer. Acetylation is regulated by histone acetyltransferases (HATs) and histone deacetylases and currently, few general HAT inhibitors have been described. We identified the HAT Tip60 as an excellent candidate for targeted drug development, as Tip60 is a key mediator of the DNA damage response and transcriptional co-activator. Our modeling of Tip60 indicated that the active binding pocket possesses opposite charges at each end, with the positive charges attributed to two specific side chains. We used structure based drug design to develop a novel Tip60 inhibitor, TH1834, to fit this specific pocket. We demonstrate that TH1834 significantly inhibits Tip60 activity in vitro and treating cells with TH1834 results in apoptosis and increased unrepaired DNA damage (following ionizing radiation treatment) in breast cancer but not control cell lines. Furthermore, TH1834 did not affect the activity of related HAT MOF, as indicated by H4K16Ac, demonstrating specificity. The modeling and validation of the small molecule inhibitor TH1834 represents a first step towards developing additional specific, targeted inhibitors of Tip60 that may lead to further improvements in the treatment of breast cancer.

  5. The acetyltransferase Tip60 contributes to mammary tumorigenesis by modulating DNA repair

    PubMed Central

    Bassi, C; Li, Y-T; Khu, K; Mateo, F; Baniasadi, P S; Elia, A; Mason, J; Stambolic, V; Pujana, M A; Mak, T W; Gorrini, C

    2016-01-01

    The acetyltransferase Tip60/Kat5 acetylates both histone and non-histone proteins, and is involved in a variety of biological processes. By acetylating p53, Tip60 controls p53-dependent transcriptional activity and so is implicated as a tumor suppressor. However, many breast cancers with low Tip60 also show p53 mutation, implying that Tip60 has a tumor suppressor function independent of its acetylation of p53. Here, we show in a p53-null mouse model of sporadic invasive breast adenocarcinoma that heterozygosity for Tip60 deletion promotes mammary tumorigenesis. Low Tip60 reduces DNA repair in normal and tumor mammary epithelial cells, both under resting conditions and following genotoxic stress. We demonstrate that Tip60 controls homologous recombination (HR)-directed DNA repair, and that Tip60 levels correlate inversely with a gene expression signature associated with defective HR-directed DNA repair. In human breast cancer data sets, Tip60 mRNA is downregulated, with low Tip60 levels correlating with p53 mutations in basal-like breast cancers. Our findings indicate that Tip60 is a novel breast tumor suppressor gene whose loss results in genomic instability leading to cancer formation. PMID:26915295

  6. Effects of humic acid-metal complexes on hepatic carnitine palmitoyltransferase, carnitine acetyltransferase and catalase activities

    SciTech Connect

    Fungjou Lu; Youngshin Chen . Dept. of Biochemistry); Tienshang Huang . Dept. of Medicine)

    1994-03-01

    A significant increase in activities of hepatic carnitine palmitoyltransferase and carnitine acetyltransferase was observed in male Balb/c mice intraperitoneally injected for 40 d with 0.125 mg/0.1 ml/d humic acid-metal complexes. Among these complexes, the humic acid-As complex was relatively effective, whereas humic acid-25 metal complex was more effective, and humic acid-26 metal complex was most effective. However, humic acid or metal mixtures, or metal such as As alone, was not effective. Humic acid-metal complexes also significantly decreased hepatic catalase activity. A marked decrease of 60-kDa polypeptide in liver cytoplasm was also observed on SDS-polyacrylamide gel electrophoresis after the mice had been injected with the complexes. Morphological analysis of a histopathological biopsy of such treated mice revealed several changes in hepatocytes, including focal necrosis and cell infiltration, mild fatty changes, reactive nuclei, and hypertrophy. Humic acid-metal complexes affect activities of metabolic enzymes of fatty acids, and this results in accumulation of hydrogen peroxide and increase of the lipid peroxidation. The products of lipid peroxidation may be responsible for liver damage and possible carcinogenesis. Previous studies in this laboratory had shown that humic acid-metal complex altered the coagulation system and that humic acid, per se, caused vasculopathy. Therefore, humic acid-metal complexes may be main causal factors of not only so-called blackfoot disease, but also the liver cancer prevailing on the southwestern coast of Taiwan.

  7. The Aspergillus flavus Histone Acetyltransferase AflGcnE Regulates Morphogenesis, Aflatoxin Biosynthesis, and Pathogenicity

    PubMed Central

    Lan, Huahui; Sun, Ruilin; Fan, Kun; Yang, Kunlong; Zhang, Feng; Nie, Xin Y.; Wang, Xiunai; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    Histone acetyltransferases (HATs) help regulate fungal development and the production of secondary metabolites. In this study, we determined that the HAT AflGcnE influenced morphogenesis and aflatoxin biosynthesis in Aspergillus flavus. We observed that AflGcnE localized to the nucleus and cytoplasm during the conidial production and germination stages, while it was located mainly in the nucleus during the hyphal development stage. Deletion of AflgcnE inhibited the growth of A. flavus and decreased the hydrophobicity of the cell surface. The ΔAflgcnE mutant exhibited a lack of asexual sporulation and was unable to generate sclerotia. Additionally, AflgcnE was required to maintain cell wall integrity and genotoxic stress responses. Importantly, the ΔAflgcnE mutant did not produce aflatoxins, which was consistent with a significant down-regulation of aflatoxin gene expression levels. Furthermore, our data revealed that AflgcnE is a pathogenicity factor required for colonizing maize seeds. In summary, we revealed that A. flavus AflGcnE is crucial for morphological development, aflatoxin biosynthesis, stress responses, and pathogenicity. Our findings help clarify the functional divergence of GcnE orthologs, and may provide a possible target for controlling A. flavus infections of agriculturally important crops. PMID:27625637

  8. Molecular Evolution of Aralkylamine N-Acetyltransferase in Fish: A Genomic Survey

    PubMed Central

    Li, Jia; You, Xinxin; Bian, Chao; Yu, Hui; Coon, Steven L.; Shi, Qiong

    2015-01-01

    All living organisms synchronize biological functions with environmental changes; melatonin plays a vital role in regulating daily and seasonal variations. Due to rhythmic activity of the timezyme aralkylamine N-acetyltransferase (AANAT), the blood level of melatonin increases at night and decreases during daytime. Whereas other vertebrates have a single form of AANAT, bony fishes possess various isoforms of aanat genes, though the reasons are still unclear. Here, we have taken advantage of multiple unpublished teleost aanat sequences to explore and expand our understanding of the molecular evolution of aanat in fish. Our results confirm that two rounds of whole-genome duplication (WGD) led to the existence of three fish isoforms of aanat, i.e., aanat1a, aanat1b, and aanat2; in addition, gene loss led to the absence of some forms from certain special fish species. Furthermore, we suggest the different roles of two aanat1s in amphibious mudskippers, and speculate that the loss of aanat1a, may be related to terrestrial vision change. Several important sites of AANAT proteins and regulatory elements of aanat genes were analyzed for structural comparison and functional forecasting, respectively, which provides insights into the molecular evolution of the differences between AANAT1 and AANAT2. PMID:26729109

  9. P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth.

    PubMed

    Gang, Xiaokun; Yang, Yinhui; Zhong, Jian; Jiang, Kui; Pan, Yunqian; Karnes, R Jeffrey; Zhang, Jun; Xu, Wanhai; Wang, Guixia; Huang, Haojie

    2016-03-22

    De novo fatty acid (FA) synthesis is required for prostate cancer (PCa) survival and progression. As a key enzyme for FA synthesis fatty acid synthase (FASN) is often overexpressed in human prostate cancers and its expression correlates with worse prognosis and poor survival. P300 is an acetyltransferase that acts as a transcription co-activator. Increasing evidence suggests that P300 is a major PCa promoter, although the underlying mechanism remains poorly understood. Here, we demonstrated that P300 binds to and increases histone H3 lysine 27 acetylation (H3K27Ac) in the FASN gene promoter. We provided evidence that P300 transcriptionally upregulates FASN expression and promotes lipid accumulation in human PCa cells in culture and Pten knockout prostate tumors in mice. Pharmacological inhibition of P300 decreased FASN expression and lipid droplet accumulation in PCa cells. Immunohistochemistry analysis revealed that expression of P300 protein positively correlates with FASN protein levels in a cohort of human PCa specimens. We further showed that FASN is a key mediator of P300-induced growth of PCa cells in culture and in mice. Together, our findings demonstrate P300 as a key factor that regulates FASN expression, lipid accumulation and cell growth in PCa. They also suggest that this regulatory pathway can serve as a new therapeutic target for PCa treatment. PMID:26934656

  10. An aminoglycoside sensing riboswitch controls the expression of aminoglycoside resistance acetyltransferase and adenyltransferases.

    PubMed

    Chen, Dongrong; Murchie, Alastair I H

    2014-10-01

    The emergence of antibiotic resistance in human pathogens is an increasing threat to public health. The fundamental mechanisms that control the high levels of expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are one of the earliest classes of antibiotics that were introduced in the 1940s. In the clinic aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug although resistance through enzymatic modification of the target rRNA through methylation or the overexpression of efflux pumps is also appearing. An aminoglycoside sensing riboswitch has been identified that controls expression of the aminoglycoside resistance genes that encode the aminoglycoside acetyltransferase (AAC) and aminoglycoside nucleotidyltransferase (ANT) (adenyltransferase (AAD)) enzymes. AAC and ANT cause resistance to aminoglycoside antibiotics through modification of the drugs. Expression of the AAC and ANT resistance genes is regulated by aminoglycoside binding to the 5' leader RNA of the aac/aad genes. The aminoglycoside sensing RNA is also associated with the integron cassette system that captures antibiotic resistance genes. Specific aminoglycoside binding to the leader RNA induces a structural transition in the leader RNA, and consequently induction of resistance protein expression. Reporter gene expression, direct measurements of drug RNA binding, chemical probing and UV cross-linking combined with mutational analysis demonstrated that the leader RNA functioned as an aminoglycoside sensing riboswitch in which drug binding to the leader RNA leads to the induction of aminoglycoside antibiotic resistance. This article is part of a Special Issue entitled: Riboswitches. PMID:24631585

  11. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene.

    PubMed

    Knowles, Joshua W; Xie, Weijia; Zhang, Zhongyang; Chennamsetty, Indumathi; Chennemsetty, Indumathi; Assimes, Themistocles L; Paananen, Jussi; Hansson, Ola; Pankow, James; Goodarzi, Mark O; Carcamo-Orive, Ivan; Morris, Andrew P; Chen, Yii-Der I; Mäkinen, Ville-Petteri; Ganna, Andrea; Mahajan, Anubha; Guo, Xiuqing; Abbasi, Fahim; Greenawalt, Danielle M; Lum, Pek; Molony, Cliona; Lind, Lars; Lindgren, Cecilia; Raffel, Leslie J; Tsao, Philip S; Schadt, Eric E; Rotter, Jerome I; Sinaiko, Alan; Reaven, Gerald; Yang, Xia; Hsiung, Chao A; Groop, Leif; Cordell, Heather J; Laakso, Markku; Hao, Ke; Ingelsson, Erik; Frayling, Timothy M; Weedon, Michael N; Walker, Mark; Quertermous, Thomas

    2015-04-01

    Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 "A" allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity. PMID:25798622

  12. Cloning and characterization of a serotonin N-acetyltransferase from a gymnosperm, loblolly pine (Pinus taeda).

    PubMed

    Park, Sangkyu; Byeon, Yeong; Lee, Hyoung Yool; Kim, Young-Soon; Ahn, Taeho; Back, Kyoungwhan

    2014-10-01

    Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in melatonin biosynthesis in both animals and plants. SNAT catalyzes serotonin into N-acetylserotonin, an immediate precursor for melatonin biosynthesis by N-acetylserotonin methyltransferase (ASMT). We cloned the SNAT gene from a gymnosperm loblolly pine (Pinus teada). The loblolly pine SNAT (PtSNAT) gene encodes 255 amino acids harboring a transit sequence with 67 amino acids and shows 67% amino acid identity with rice SNAT when comparing the mature polypeptide regions. Purified recombinant PtSNAT showed peak activity at 55°C with the K(m) (428 μM) and Vmax (3.9 nmol/min/mg protein) values. As predicted, PtSNAT localized to chloroplasts. The SNAT mRNA was constitutively expressed in all tissues, including leaf, bud, flower, and pinecone, whereas the corresponding protein was detected only in leaf. In accordance with the exclusive SNAT protein expression in leaf, melatonin was detected only in leaf at 0.45 ng per gram fresh weight. Sequence and phylogenetic analysis indicated that the gymnosperm PtSNAT had high homology with SNATs from all plant phyla (even with cyanobacteria), and formed a clade separated from the angiosperm SNATs, suggestive of direct gene transfer from cyanobacteria via endosymbiosis. PMID:25208036

  13. Targeting of a histone acetyltransferase domain to a promoter enhances protein expression levels in mammalian cells.

    PubMed

    Kwaks, T H J; Sewalt, R G A B; van Blokland, R; Siersma, T J; Kasiem, M; Kelder, A; Otte, A P

    2005-01-12

    Silencing of transfected genes in mammalian cells is a fundamental problem that probably involves the (in)accessibility status of chromatin. A potential solution to this problem is to provide a cell with protein factors that make the chromatin of a promoter more open or accessible for transcription. We tested this by targeting such proteins to different promoters. We found that targeting the p300 histone acetyltransferase (HAT) domain to strong viral or cellular promoters is sufficient to result in higher expression levels of a reporter protein. In contrast, targeting the chromatin-remodeling factor Brahma does not result in stable, higher protein expression levels. The long-term effects of the targeted p300HAT domain on protein expression levels are positively reinforced, when also anti-repressor elements are applied to flank the reporter construct. These elements were previously shown to be potent blockers of chromatin-associated repressors. The simultaneous application of the targeted p300HAT domain and anti-repressor elements conveys long-term stability to protein expression. Whereas no copy number dependency is achieved by targeting of the p300HAT domain alone, copy number dependency is improved when anti-repressor elements are included. We conclude that targeting of protein domains such as HAT domains helps to facilitate expression of transfected genes in mammalian cells. However, the simultaneous application of other genomic elements such as the anti-repressor elements prevents silencing more efficiently. PMID:15607223

  14. The Aspergillus flavus Histone Acetyltransferase AflGcnE Regulates Morphogenesis, Aflatoxin Biosynthesis, and Pathogenicity.

    PubMed

    Lan, Huahui; Sun, Ruilin; Fan, Kun; Yang, Kunlong; Zhang, Feng; Nie, Xin Y; Wang, Xiunai; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    Histone acetyltransferases (HATs) help regulate fungal development and the production of secondary metabolites. In this study, we determined that the HAT AflGcnE influenced morphogenesis and aflatoxin biosynthesis in Aspergillus flavus. We observed that AflGcnE localized to the nucleus and cytoplasm during the conidial production and germination stages, while it was located mainly in the nucleus during the hyphal development stage. Deletion of AflgcnE inhibited the growth of A. flavus and decreased the hydrophobicity of the cell surface. The ΔAflgcnE mutant exhibited a lack of asexual sporulation and was unable to generate sclerotia. Additionally, AflgcnE was required to maintain cell wall integrity and genotoxic stress responses. Importantly, the ΔAflgcnE mutant did not produce aflatoxins, which was consistent with a significant down-regulation of aflatoxin gene expression levels. Furthermore, our data revealed that AflgcnE is a pathogenicity factor required for colonizing maize seeds. In summary, we revealed that A. flavus AflGcnE is crucial for morphological development, aflatoxin biosynthesis, stress responses, and pathogenicity. Our findings help clarify the functional divergence of GcnE orthologs, and may provide a possible target for controlling A. flavus infections of agriculturally important crops. PMID:27625637

  15. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury.

    PubMed

    Shin, Kyungha; Cha, Yeseul; Kim, Kwang Sei; Choi, Ehn-Kyoung; Choi, Youngjin; Guo, Haiyu; Ban, Young-Hwan; Kim, Jong-Choon; Park, Dongsun; Kim, Yun-Bae

    2016-01-01

    Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs) overexpressing choline acetyltransferase (ChAT) improve cognitive function of Alzheimer's disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh) level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA) in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing) time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level. PMID:27087745

  16. X-ray crystal structure of ornithine acetyltransferase from the clavulanic acid biosynthesis gene cluster.

    PubMed

    Elkins, Jonathan M; Kershaw, Nadia J; Schofield, Christopher J

    2005-01-15

    The orf6 gene from the clavulanic acid biosynthesis gene cluster encodes an OAT (ornithine acetyltransferase). Similar to other OATs the enzyme has been shown to catalyse the reversible transfer of an acetyl group from N-acetylornithine to glutamate. OATs are Ntn (N-terminal nucleophile) enzymes, but are distinct from the better-characterized Ntn hydrolase enzymes as they catalyse acetyl transfer rather than a hydrolysis reaction. In the present study, we describe the X-ray crystal structure of the OAT, corresponding to the orf6 gene product, to 2.8 A (1 A=0.1 nm) resolution. The larger domain of the structure consists of an alphabetabetaalpha sandwich as in the structures of Ntn hydrolase enzymes. However, differences in the connectivity reveal that OATs belong to a structural family different from that of other structurally characterized Ntn enzymes, with one exception: unexpectedly, the alphabetabetaalpha sandwich of ORF6 (where ORF stands for open reading frame) displays the same fold as an DmpA (L-aminopeptidase D-ala-esterase/amidase from Ochrobactrum anthropi), and so the OATs and DmpA form a new structural subfamily of Ntn enzymes. The structure reveals an alpha2beta2-heterotetrameric oligomerization state in which the intermolecular interface partly defines the active site. Models of the enzyme-substrate complexes suggest a probable oxyanion stabilization mechanism as well as providing insight into how the enzyme binds its two differently charged substrates. PMID:15352873

  17. P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth

    PubMed Central

    Zhong, Jian; Jiang, Kui; Pan, Yunqian; Karnes, R. Jeffrey; Zhang, Jun; Xu, Wanhai; Wang, Guixia; Huang, Haojie

    2016-01-01

    De novo fatty acid (FA) synthesis is required for prostate cancer (PCa) survival and progression. As a key enzyme for FA synthesis fatty acid synthase (FASN) is often overexpressed in human prostate cancers and its expression correlates with worse prognosis and poor survival. P300 is an acetyltransferase that acts as a transcription co-activator. Increasing evidence suggests that P300 is a major PCa promoter, although the underlying mechanism remains poorly understood. Here, we demonstrated that P300 binds to and increases histone H3 lysine 27 acetylation (H3K27Ac) in the FASN gene promoter. We provided evidence that P300 transcriptionally upregulates FASN expression and promotes lipid accumulation in human PCa cells in culture and Pten knockout prostate tumors in mice. Pharmacological inhibition of P300 decreased FASN expression and lipid droplet accumulation in PCa cells. Immunohistochemistry analysis revealed that expression of P300 protein positively correlates with FASN protein levels in a cohort of human PCa specimens. We further showed that FASN is a key mediator of P300-induced growth of PCa cells in culture and in mice. Together, our findings demonstrate P300 as a key factor that regulates FASN expression, lipid accumulation and cell growth in PCa. They also suggest that this regulatory pathway can serve as a new therapeutic target for PCa treatment. PMID:26934656

  18. Disubstituted naphthyl β-D-xylopyranosides: Synthesis, GAG priming, and histone acetyltransferase (HAT) inhibition.

    PubMed

    Thorsheim, Karin; Persson, Andrea; Siegbahn, Anna; Tykesson, Emil; Westergren-Thorsson, Gunilla; Mani, Katrin; Ellervik, Ulf

    2016-04-01

    Xylosides are a group of compounds that can induce glycosaminoglycan (GAG) chain synthesis independently of a proteoglycan core protein. We have previously shown that the xyloside 2-(6-hydroxynaphthyl)β-D-xylopyranoside has a tumor-selective growth inhibitory effect both in vitro and in vivo, and that the effect in vitro was correlated to a reduction in histone H3 acetylation. In addition, GAG chains have previously been reported to inhibit histone acetyltransferases (HAT). To investigate if xylosides, or the corresponding xyloside-primed GAG chains, can be used as HAT inhibitors, we have synthesized a series of naphthoxylosides carrying structural motifs similar to the aromatic moieties of the known HAT inhibitors garcinol and curcumin, and studied their biological activities. Here, we show that the disubstituted naphthoxylosides induced GAG chain synthesis, and that the ones with at least one free phenolic group exhibited moderate HAT inhibition in vitro, without affecting histone H3 acetylation in cell culture. The xyloside-primed GAG chains, on the other hand, had no effect on HAT activity, possibly explaining why the effect of the xylosides on histone H3 acetylation was absent in cell culture as the xylosides were recruited for GAG chain synthesis. Further investigations are required to find xylosides that are effective HAT inhibitors or xylosides producing GAG chains with HAT inhibitory effects. PMID:27023911

  19. Interaction of human arylamine N-acetyltransferase 1 with different nanomaterials.

    PubMed

    Deng, Zhou J; Butcher, Neville J; Mortimer, Gysell M; Jia, Zhongfan; Monteiro, Michael J; Martin, Darren J; Minchin, Rodney F

    2014-03-01

    Humans are exposed to nanoparticles in the environment as well as those in nanomaterials developed for biomedical applications. However, the safety and biologic effects of many nanoparticles remain to be elucidated. Over the past decade, our understanding of the interaction of proteins with various nanomaterials has grown. The protein corona can determine not only how nanoparticles interact with cells but also their biologic effects and toxicity. In this study, we describe the effects that several different classes of nanoparticles exert on the enzymatic activity of the cytosolic protein human arylamine N-acetyltransferase 1 (NAT1), a drug-metabolizing enzyme widely distributed in the body that is also responsible for the activation and detoxification of known carcinogens. We investigated three metal oxides (zinc oxide, titanium dioxide, and silicon dioxide), two synthetic clay nanoparticles (layered double hydroxide and layered silicate nanoparticles), and a self-assembling thermo-responsive polymeric nanoparticle that differ in size and surface characteristics. We found that the different nanoparticles induced very different responses, ranging from inhibition to marked enhancement of enzyme activity. The layered silicates did not directly inactivate NAT1, but was found to enhance substrate-dependent inhibition. These differing effects demonstrate the multiplicity of nanoparticle-protein interactions and suggest that enzyme activity may be compromised in organs exposed to nanoparticles, such as the lungs or reticulo-endothelial system. PMID:24346836

  20. Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization

    PubMed Central

    Kumar, Rajnish; Långström, Bengt; Darreh-Shori, Taher

    2016-01-01

    Recent reports have brought back the acetylcholine synthesizing enzyme, choline acetyltransferase in the mainstream research in dementia and the cholinergic anti-inflammatory pathway. Here we report, a specific strategy for the design of novel ChAT ligands based on molecular docking, Hologram Quantitative Structure Activity Relationship (HQSAR) and lead optimization. Molecular docking was performed on a series of ChAT inhibitors to decipher the molecular fingerprint of their interaction with the active site of ChAT. Then robust statistical fragment HQSAR models were developed. A library of novel ligands was generated based on the pharmacophoric and shape similarity scoring function, and evaluated in silico for their molecular interactions with ChAT. Ten of the top scoring invented compounds are reported here. We confirmed the activity of α-NETA, the only commercially available ChAT inhibitor, and one of the seed compounds in our model, using a new simple colorimetric ChAT assay (IC50 ~ 88 nM). In contrast, α-NETA exhibited an IC50 of ~30 μM for the ACh-degrading cholinesterases. In conclusion, the overall results may provide useful insight for discovering novel ChAT ligands and potential positron emission tomography tracers as in vivo functional biomarkers of the health of central cholinergic system in neurodegenerative disorders, such as Alzheimer’s disease. PMID:27507101

  1. Structural model of carnitine palmitoyltransferase I based on the carnitine acetyltransferase crystal.

    PubMed Central

    Morillas, Montserrat; López-VViñas, Eduardo; Valencia, Alfonso; Serra, Dolors; Gómez-Puertas, Paulino; Hegardt, Fausto G; Asins, Guillermina

    2004-01-01

    CPT I (carnitine palmitoyltransferase I) catalyses the conversion of palmitoyl-CoA into palmitoylcarnitine in the presence of L-carnitine, facilitating the entry of fatty acids into mitochondria. We propose a 3-D (three-dimensional) structural model for L-CPT I (liver CPT I), based on the similarity of this enzyme to the recently crystallized mouse carnitine acetyltransferase. The model includes 607 of the 773 amino acids of L-CPT I, and the positions of carnitine, CoA and the palmitoyl group were assigned by superposition and docking analysis. Functional analysis of this 3-D model included the mutagenesis of several amino acids in order to identify putative catalytic residues. Mutants D477A, D567A and E590D showed reduced L-CPT I activity. In addition, individual mutation of amino acids forming the conserved Ser685-Thr686-Ser687 motif abolished enzyme activity in mutants T686A and S687A and altered K(m) and the catalytic efficiency for carnitine in mutant S685A. We conclude that the catalytic residues are His473 and Asp477, while Ser687 probably stabilizes the transition state. Several conserved lysines, i.e. Lys455, Lys505, Lys560 and Lys561, were also mutated. Only mutants K455A and K560A showed decreases in activity of 50%. The model rationalizes the finding of nine natural mutations in patients with hereditary L-CPT I deficiencies. PMID:14711372

  2. Mechanistic and Structural Analysis of Drosophila melanogaster Arylalkylamine N-Acetyltransferases

    PubMed Central

    2015-01-01

    Arylalkylamine N-acetyltransferase (AANAT) catalyzes the penultimate step in the biosynthesis of melatonin and other N-acetylarylalkylamides from the corresponding arylalkylamine and acetyl-CoA. The N-acetylation of arylalkylamines is a critical step in Drosophila melanogaster for the inactivation of the bioactive amines and the sclerotization of the cuticle. Two AANAT variants (AANATA and AANATB) have been identified in D. melanogaster, in which AANATA differs from AANATB by the truncation of 35 amino acids from the N-terminus. We have expressed and purified both D. melanogaster AANAT variants (AANATA and AANATB) in Escherichia coli and used the purified enzymes to demonstrate that this N-terminal truncation does not affect the activity of the enzyme. Subsequent characterization of the kinetic and chemical mechanism of AANATA identified an ordered sequential mechanism, with acetyl-CoA binding first, followed by tyramine. We used a combination of pH–activity profiling and site-directed mutagenesis to study prospective residues believed to function in AANATA catalysis. These data led to an assignment of Glu-47 as the general base in catalysis with an apparent pKa of 7.0. Using the data generated for the kinetic mechanism, structure–function relationships, pH–rate profiles, and site-directed mutagenesis, we propose a chemical mechanism for AANATA. PMID:25406072

  3. Fungal Rtt109 Histone Acetyltransferase is an Unexpected Structural Homolog of Metazoan p300/CBP

    SciTech Connect

    Tang,Y.; Holbert, M.; Wurtele, H.; Meeth, K.; Rocha, W.; Gharib, M.; Jiang, E.; Thibault, P.; Verreault, A.; et al

    2008-01-01

    Rtt109, also known as KAT11, is a recently characterized fungal-specific histone acetyltransferase (HAT) that modifies histone H3 lysine 56 (H3K56) to promote genome stability. Rtt109 does not show sequence conservation with other known HATs and depends on association with either of two histone chaperones, Asf1 or Vps75, for HAT activity. Here we report the X-ray crystal structure of an Rtt109-acetyl coenzyme A complex and carry out structure-based mutagenesis, combined with in vitro biochemical studies of the Rtt109-Vps75 complex and studies of Rtt109 function in vivo. The Rtt109 structure reveals noteworthy homology to the metazoan p300/CBP HAT domain but exhibits functional divergence, including atypical catalytic properties and mode of cofactor regulation. The structure reveals a buried autoacetylated lysine residue that we show is also acetylated in the Rtt109 protein purified from yeast cells. Implications for understanding histone substrate and chaperone binding by Rtt109 are discussed.

  4. MYST2 acetyltransferase expression and Histone H4 Lysine acetylation are suppressed in AML.

    PubMed

    Sauer, Tim; Arteaga, Maria Francisca; Isken, Fabienne; Rohde, Christian; Hebestreit, Katja; Mikesch, Jan-Henrik; Stelljes, Matthias; Cui, Chunhong; Zhou, Fengbiao; Göllner, Stefanie; Bäumer, Nicole; Köhler, Gabriele; Krug, Utz; Thiede, Christian; Ehninger, Gerhard; Edemir, Bayram; Schlenke, Peter; Berdel, Wolfgang E; Dugas, Martin; Müller-Tidow, Carsten

    2015-09-01

    Chromatin-modifying enzymes are frequently altered in acute myeloid leukemia (AML). In the current study, we identified MYST2, a core histone acetyltransferase, to be suppressed in blast cells from AML patients compared with nonmalignant hematopoietic progenitor cells. Functionally, loss of MYST2 accelerated leukemic growth and colony formation, while forced expression of MYST2 induced H4K5 acetylation (H4K5Ac) and suppressed hematopoietic progenitor cell growth. Consistently, global H4K5Ac levels were frequently decreased in AML blasts. Low levels of H4K5Ac were most prominent in patients with complex karyotype AML and were associated with inferior overall survival in univariate but not multivariate analysis. ChIP-seq experiments in primary AML patients' blasts revealed widespread H4K5Ac deregulation, most prominent at gene promoters. Taken together, MYST2 is a repressed growth suppressor in AML mediating reduced acetylation of histone 4 at residue 5 and is associated with inferior AML patient survival. PMID:26072331

  5. Implication of ornithine acetyltransferase activity on l-ornithine production in Corynebacterium glutamicum.

    PubMed

    Hao, Ning; Mu, Jingrui; Hu, Nan; Xu, Sheng; Shen, Peng; Yan, Ming; Li, Yan; Xu, Lin

    2016-01-01

    l-Ornithine is an intermediate of the l-arginine biosynthetic pathway in Corynebacterium glutamicum. The effect of ornithine acetyltransferase (OATase; ArgJ) on l-ornithine production was investigated, and C. glutamicum 1006 was engineered to overproduce l-ornithine as a major product by inactivating regulatory repressor argR gene and overexpressing argJ gene. A genome sequence analysis indicated that the argF gene encoding ornithine carbamoyltransferase in C. glutamicum 1006 was mutated, resulting in the accumulation of a certain amount of l-ornithine (20.5 g/L). The assays using a crude extract of C. glutamicum 1006 indicated that the l-ornithine concentration for 50% inhibition of OAT was 5 mM. To enhance l-ornithine production, the argJ gene from C. glutamicum ATCC 13032 was overexpressed. In flask cultures, the resulting strain, C. glutamicum 1006∆argR-argJ, produced 31.6 g/L l-ornithine, which is 54.15% more than that produced by C. glutamicum 1006. The OAT activity of C. glutamicum 1006∆argR-argJ was significantly greater than that of C. glutamicum 1006, and this study achieved the highest conversion ratio of sugar to acid (0.396 g/g) compared with those of previous reports. ArgJ strongly influences the production of l-ornithine in C. glutamicum. PMID:25630515

  6. The acetyltransferase Tip60 contributes to mammary tumorigenesis by modulating DNA repair.

    PubMed

    Bassi, C; Li, Y-T; Khu, K; Mateo, F; Baniasadi, P S; Elia, A; Mason, J; Stambolic, V; Pujana, M A; Mak, T W; Gorrini, C

    2016-07-01

    The acetyltransferase Tip60/Kat5 acetylates both histone and non-histone proteins, and is involved in a variety of biological processes. By acetylating p53, Tip60 controls p53-dependent transcriptional activity and so is implicated as a tumor suppressor. However, many breast cancers with low Tip60 also show p53 mutation, implying that Tip60 has a tumor suppressor function independent of its acetylation of p53. Here, we show in a p53-null mouse model of sporadic invasive breast adenocarcinoma that heterozygosity for Tip60 deletion promotes mammary tumorigenesis. Low Tip60 reduces DNA repair in normal and tumor mammary epithelial cells, both under resting conditions and following genotoxic stress. We demonstrate that Tip60 controls homologous recombination (HR)-directed DNA repair, and that Tip60 levels correlate inversely with a gene expression signature associated with defective HR-directed DNA repair. In human breast cancer data sets, Tip60 mRNA is downregulated, with low Tip60 levels correlating with p53 mutations in basal-like breast cancers. Our findings indicate that Tip60 is a novel breast tumor suppressor gene whose loss results in genomic instability leading to cancer formation. PMID:26915295

  7. Acceptor substrate binding revealed by crystal structure of human glucosamine-6-phosphate N-acetyltransferase 1.

    PubMed

    Wang, Juan; Liu, Xiang; Liang, Yu-He; Li, Lan-Fen; Su, Xiao-Dong

    2008-09-01

    Glucosamine-6-phosphate (GlcN6P) N-acetyltransferase 1 (GNA1) is a key enzyme in the pathway toward biosynthesis of UDP-N-acetylglucosamine, an important donor substrate for N-linked glycosylation. GNA1 catalyzes the formation of N-acetylglucosamine-6-phosphate (GlcNAc6P) from acetyl-CoA (AcCoA) and the acceptor substrate GlcN6P. Here, we report crystal structures of human GNA1, including apo GNA1, the GNA1-GlcN6P complex and an E156A mutant. Our work showed that GlcN6P binds to GNA1 without the help of AcCoA binding. Structural analyses and mutagenesis studies have shed lights on the charge distribution in the GlcN6P binding pocket, and an important role for Glu156 in the substrate binding. Hence, these findings have broadened our knowledge of structural features required for the substrate affinity of GNA1. PMID:18675810

  8. Mechanistic and structural analysis of Drosophila melanogaster arylalkylamine N-acetyltransferases.

    PubMed

    Dempsey, Daniel R; Jeffries, Kristen A; Bond, Jason D; Carpenter, Anne-Marie; Rodriguez-Ospina, Santiago; Breydo, Leonid; Caswell, K Kenneth; Merkler, David J

    2014-12-16

    Arylalkylamine N-acetyltransferase (AANAT) catalyzes the penultimate step in the biosynthesis of melatonin and other N-acetylarylalkylamides from the corresponding arylalkylamine and acetyl-CoA. The N-acetylation of arylalkylamines is a critical step in Drosophila melanogaster for the inactivation of the bioactive amines and the sclerotization of the cuticle. Two AANAT variants (AANATA and AANATB) have been identified in D. melanogaster, in which AANATA differs from AANATB by the truncation of 35 amino acids from the N-terminus. We have expressed and purified both D. melanogaster AANAT variants (AANATA and AANATB) in Escherichia coli and used the purified enzymes to demonstrate that this N-terminal truncation does not affect the activity of the enzyme. Subsequent characterization of the kinetic and chemical mechanism of AANATA identified an ordered sequential mechanism, with acetyl-CoA binding first, followed by tyramine. We used a combination of pH-activity profiling and site-directed mutagenesis to study prospective residues believed to function in AANATA catalysis. These data led to an assignment of Glu-47 as the general base in catalysis with an apparent pKa of 7.0. Using the data generated for the kinetic mechanism, structure-function relationships, pH-rate profiles, and site-directed mutagenesis, we propose a chemical mechanism for AANATA. PMID:25406072

  9. Genome-Wide Relationships between TAF1 and Histone Acetyltransferases in Saccharomyces cerevisiae†

    PubMed Central

    Durant, Melissa; Pugh, B. Franklin

    2006-01-01

    Histone acetylation regulates gene expression, yet the functional contributions of the numerous histone acetyltransferases (HATs) to gene expression and their relationships with each other remain largely unexplored. The central role of the putative HAT-containing TAF1 subunit of TFIID in gene expression raises the fundamental question as to what extent, if any, TAF1 contributes to acetylation in vivo and to what extent it is redundant with other HATs. Our findings herein do not support the basic tenet that TAF1 is a major HAT in Saccharomyces cerevisiae, nor do we find that TAF1 is functionally redundant with other HATs, including Gcn5, Elp3, Hat1, Hpa2, Sas3, and Esa1, which is in contrast to previous conclusions regarding Gcn5. Our findings do reveal that of these HATs, only Gcn5 and Esa1 contribute substantially to gene expression genome wide. Interestingly, histone acetylation at promoter regions throughout the genome does not require TAF1 or RNA polymerase II, indicating that most acetylation is likely to precede transcription and not depend upon it. TAF1 function has been linked to Bdf1, which binds TFIID and acetylated histone H4 tails, but no linkage between TAF1 and the H4 HAT Esa1 has been established. Here, we present evidence for such a linkage through Bdf1. PMID:16537921

  10. Structural Basis for Microcin C7 Inactivation by the MccE Acetyltransferase

    SciTech Connect

    Agarwal, Vinayak; Metlitskaya, Anastasiya; Severinov, Konstantin; Nair, Satish K.

    2015-10-15

    The antibiotic microcin C7 (McC) acts as a bacteriocide by inhibiting aspartyl-tRNA synthetase and stalling the protein translation machinery. McC is synthesized as a heptapeptide-nucleotide conjugate, which is processed by cellular peptidases within target strains to yield the biologically active compound. As unwanted processing of intact McC can result in self-toxicity, producing strains utilize multiple mechanisms for autoimmunity against processed McC. We have shown previously that the mccE gene within the biosynthetic cluster can inactivate processed McC by acetylating the antibiotic. Here, we present the characterization of this acetylation mechanism through biochemical and structural biological studies of the MccE acetyltransferase domain (MccE{sup AcTase}). We have also determined five crystal structures of the MccE-acetyl-CoA complex with bound substrates, inhibitor, and reaction product. The structural data reveal an unexpected mode of substrate recognition through p-stacking interactions similar to those found in cap-binding proteins and nucleotidyltransferases. These studies provide a rationale for the observation that MccE{sup AcTase} can detoxify a range of aminoacylnucleotides, including those that are structurally distinct from microcin C7.

  11. Molecular Evolution of Aralkylamine N-Acetyltransferase in Fish: A Genomic Survey.

    PubMed

    Li, Jia; You, Xinxin; Bian, Chao; Yu, Hui; Coon, Steven L; Shi, Qiong

    2016-01-01

    All living organisms synchronize biological functions with environmental changes; melatonin plays a vital role in regulating daily and seasonal variations. Due to rhythmic activity of the timezyme aralkylamine N-acetyltransferase (AANAT), the blood level of melatonin increases at night and decreases during daytime. Whereas other vertebrates have a single form of AANAT, bony fishes possess various isoforms of aanat genes, though the reasons are still unclear. Here, we have taken advantage of multiple unpublished teleost aanat sequences to explore and expand our understanding of the molecular evolution of aanat in fish. Our results confirm that two rounds of whole-genome duplication (WGD) led to the existence of three fish isoforms of aanat, i.e., aanat1a, aanat1b, and aanat2; in addition, gene loss led to the absence of some forms from certain special fish species. Furthermore, we suggest the different roles of two aanat1s in amphibious mudskippers, and speculate that the loss of aanat1a, may be related to terrestrial vision change. Several important sites of AANAT proteins and regulatory elements of aanat genes were analyzed for structural comparison and functional forecasting, respectively, which provides insights into the molecular evolution of the differences between AANAT1 and AANAT2. PMID:26729109

  12. Arylamine N-acetyltransferase activity in bronchial epithelial cells and its inhibition by cellular oxidants

    SciTech Connect

    Dairou, Julien; Petit, Emile; Ragunathan, Nilusha; Baeza-Squiban, Armelle; Marano, Francelyne; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2009-05-01

    Bronchial epithelial cells express xenobiotic-metabolizing enzymes (XMEs) that are involved in the biotransformation of inhaled toxic compounds. The activities of these XMEs in the lung may modulate respiratory toxicity and have been linked to several diseases of the airways. Arylamine N-acetyltransferases (NAT) are conjugating XMEs that play a key role in the biotransformation of aromatic amine pollutants such as the tobacco-smoke carcinogens 4-aminobiphenyl (4-ABP) and {beta}-naphthylamine ({beta}-NA). We show here that functional human NAT1 or its murine counterpart Nat2 are present in different lung epithelial cells i.e. Clara cells, type II alveolar cells and bronchial epithelial cells, thus indicating that inhaled aromatic amines may undergo NAT-dependent biotransformation in lung epithelium. Exposure of these cells to pathophysiologically relevant amounts of oxidants known to contribute to lung dysfunction, such as H{sub 2}O{sub 2} or peroxynitrite, was found to impair the NAT1/Nat2-dependent cellular biotransformation of aromatic amines. Genetic and non genetic impairment of intracellular NAT enzyme activities has been suggested to compromise the important detoxification pathway of aromatic amine N-acetylation and subsequently to contribute to an exacerbation of untoward effects of these pollutants on health. Our study suggests that oxidative/nitroxidative stress in lung epithelial cells, due to air pollution and/or inflammation, could contribute to local and/or systemic dysfunctions through the alteration of the functions of pulmonary NAT enzymes.

  13. N-Acetyltransferase 2 genotype, exfoliated urothelial cells and benzidine exposure.

    PubMed

    Ma, Qing-wen; Lin, Guo-fang; Chen, Ji-gang; Guo, Wei-Chao; Qin, Yi-qiu; Golka, Klaus; Shen, Jian-hua

    2012-01-01

    Most studies report an association of the slow N-acetyltransferase 2 (NAT2) status with elevated bladder cancer risk. In this study, NAT2 genotypes and the decades-long records of Papanicolaou's grading of exfoliated urothelial cells in a former benzidine-exposed cohort of the Shanghai dyestuff industry (29 bladder cancer patients; 307 non-cancer cohort members, some of them presenting different grades of pre-malignant alterations of exfoliated urothelial cells) were investigated. The cohort members had been enrolled in regular medical surveillance since mid-1980s. No overall increase of slow NAT2 genotypes in the former benzidine-exposed bladder cancer patients was found, compared with non-diseased members of the same cohort. A lower presentation of the homozygous wild genotype NAT2 4/4 was observed in bladder cancer patients, compared with non-diseased members with averaged Papanicolaou's grading (APG)3 II (OR=0.31, 95 percent CI 0.10-0.96, p=0.034) or with APG less than II (OR=0.36,95 percent CI 0.12-1.10, p=0.063). Nevertheless, neither a protective influence of rapid NAT2 genotypes on bladder cancer risk nor on pre-malignant cytological alterations could be confirmed by the present data. PMID:22202012

  14. Histone acetyltransferase Hbo1: catalytic activity, cellular abundance, and links to primary cancers.

    PubMed

    Iizuka, Masayoshi; Takahashi, Yoshihisa; Mizzen, Craig A; Cook, Richard G; Fujita, Masatoshi; Allis, C David; Frierson, Henry F; Fukusato, Toshio; Smith, M Mitchell

    2009-05-01

    In addition to the well-characterized proteins that comprise the pre-replicative complex, recent studies suggest that chromatin structure plays an important role in DNA replication initiation. One of these chromatin factors is the histone acetyltransferase (HAT) Hbo1 which is unique among HAT enzymes in that it serves as a positive regulator of DNA replication. However, several of the basic properties of Hbo1 have not been previously examined, including its intrinsic catalytic activity, its molecular abundance in cells, and its pattern of expression in primary cancer cells. Here we show that recombinant Hbo1 can acetylate nucleosomal histone H4 in vitro, with a preference for lysines 5 and 12. Using semi-quantitative western blot analysis, we find that Hbo1 is approximately equimolar with the number of active replication origins in normal human fibroblasts but is an order of magnitude more abundant in both MCF7 and Saos-2 established cancer cell lines. Immunohistochemistry for Hbo1 in 11 primary human tumor types revealed strong Hbo1 protein expression in carcinomas of the testis, ovary, breast, stomach/esophagus, and bladder. PMID:19393168

  15. Catalytic Mechanism of Bleomycin N-Acetyltransferase Proposed on the Basis of Its Crystal Structure*

    PubMed Central

    Oda, Kosuke; Matoba, Yasuyuki; Noda, Masafumi; Kumagai, Takanori; Sugiyama, Masanori

    2010-01-01

    Bleomycin (Bm) N-acetyltransferase, BAT, is a self-resistance determinant in Bm-producing Streptomyces verticillus ATCC15003. In our present study, we crystallized BAT under both a terrestrial and a microgravity environment in the International Space Station. In addition to substrate-free BAT, the crystal structures of BAT in a binary complex with CoA and in a ternary complex with Bm and CoA were determined. BAT forms a dimer structure via interaction of its C-terminal domains in the monomers. However, each N-terminal domain in the dimer is positioned without mutual interaction. The tunnel observed in the N-terminal domain of BAT has two entrances: one that adopts a wide funnel-like structure necessary to accommodate the metal-binding domain of Bm, and another narrow entrance that accommodates acetyl-CoA (AcCoA). A groove formed on the dimer interface of two BAT C-terminal domains accommodates the DNA-binding domain of Bm. In a ternary complex of BAT, BmA2, and CoA, a thiol group of CoA is positioned near the primary amine of Bm at the midpoint of the tunnel. This proximity ensures efficient transfer of an acetyl group from AcCoA to the primary amine of Bm. Based on the BAT crystal structure and the enzymatic kinetic study, we propose that the catalytic mode of BAT takes an ordered-like mechanism. PMID:19889644

  16. Regulation of Antisense Transcription by NuA4 Histone Acetyltransferase and Other Chromatin Regulatory Factors.

    PubMed

    Uprety, Bhawana; Kaja, Amala; Ferdoush, Jannatul; Sen, Rwik; Bhaumik, Sukesh R

    2016-01-01

    NuA4 histone lysine (K) acetyltransferase (KAT) promotes transcriptional initiation of TATA-binding protein (TBP)-associated factor (TAF)-dependent ribosomal protein genes. TAFs have also been recently found to enhance antisense transcription from the 3' end of the GAL10 coding sequence. However, it remains unknown whether, like sense transcription of the ribosomal protein genes, TAF-dependent antisense transcription of GAL10 also requires NuA4 KAT. Here, we show that NuA4 KAT associates with the GAL10 antisense transcription initiation site at the 3' end of the coding sequence. Such association of NuA4 KAT depends on the Reb1p-binding site that recruits Reb1p activator to the GAL10 antisense transcription initiation site. Targeted recruitment of NuA4 KAT to the GAL10 antisense transcription initiation site promotes GAL10 antisense transcription. Like NuA4 KAT, histone H3 K4/36 methyltransferases and histone H2B ubiquitin conjugase facilitate GAL10 antisense transcription, while the Swi/Snf and SAGA chromatin remodeling/modification factors are dispensable for antisense, but not sense, transcription of GAL10. Taken together, our results demonstrate for the first time the roles of NuA4 KAT and other chromatin regulatory factors in controlling antisense transcription, thus illuminating chromatin regulation of antisense transcription. PMID:26755557

  17. Structure of the E. Coli Bifunctional GlmU Acetyltransferase Active Site with Substrates and Products

    SciTech Connect

    Olsen,L.; Vetting, M.; Roderick, S.

    2007-01-01

    The biosynthesis of UDP-GlcNAc in bacteria is carried out by GlmU, an essential bifunctional uridyltransferase that catalyzes the CoA-dependent acetylation of GlcN-1-PO{sub 4} to form GlcNAc-1-PO{sub 4} and its subsequent condensation with UTP to form pyrophosphate and UDP-GlcNAc. As a metabolite, UDP-GlcNAc is situated at a branch point leading to the biosynthesis of lipopolysaccharide and peptidoglycan. Consequently, GlmU is regarded as an important target for potential antibacterial agents. The crystal structure of the Escherichia coli GlmU acetyltransferase active site has been determined in complexes with acetyl-CoA, CoA/GlcN-1-PO{sub 4}, and desulpho-CoA/GlcNAc-1-PO{sub 4}. These structures reveal the enzyme groups responsible for binding the substrates. A superposition of these complex structures suggests that the 2-amino group of GlcN-1-PO{sub 4} is positioned in proximity to the acetyl-CoA to facilitate direct attack on its thioester by a ternary complex mechanism.

  18. Characterization of two metagenome-derived esterases that reactivate chloramphenicol by counteracting chloramphenicol acetyltransferase.

    PubMed

    Tao, Weixin; Lee, Myung Hwan; Yoon, Mi-Young; Kim, Jin-Cheol; Malhotra, Shweta; Wu, Jing; Hwang, Eul Chul; Lee, Seon-Woo

    2011-12-01

    Function-driven metagenomic analysis is a powerful approach to screening for novel biocatalysts. In this study, we investigated lipolytic enzymes selected from an alluvial soil metagenomic library, and identified two novel esterases, EstDL26 and EstDL136. EstDL26 and EstDL136 reactivated chloramphenicol from its acetyl derivates by counteracting the chloramphenicol acetyltransferase (CAT) activity in Escherichia coli. These two enzymes showed only 27% identity in amino acid sequence to each other; however both preferentially hydrolyzed short-chain p-nitrophenyl esters (< or =C5) and showed mesophilic properties. In vitro, EstDL136 catalyzed the deacetylation of 1- and 3- acetyl and 1,3-diacetyl derivates; in contrast, EstDL26 was not capable of the deacetylation at C1, indicating a potential regioselectivity. EstDL26 and EstDL136 were similar to microbial hormone-sensitive lipase (HSL), and since chloramphenicol acetate esterase (CAE) activity was detected from two other soil esterases in the HSL family, this suggests a distribution of CAE among the soil microorganisms. The isolation and characterization of EstDL26 and EstDL136 in this study may be helpful in understanding the diversity of CAE enzymes and their potential role in releasing active chloramphenicol in the producing bacteria. PMID:22210605

  19. Molecular cloning, purification, and properties of a plasmid-encoded chloramphenicol acetyltransferase from Staphylococcus haemolyticus.

    PubMed Central

    Schwarz, S; Cardoso, M

    1991-01-01

    A small chloramphenicol resistance (Cmr) plasmid of approximately 3.75 kb, designated pSCS5, was isolated from Staphylococcus haemolyticus. This plasmid encoded an inducible chloramphenicol acetyltransferase (CAT; EC 2.3.1.28). The cat gene of pSCS5 was cloned into the Escherichia coli plasmid vector pBluescript SKII+. It differed in its nucleotide sequence and deduced amino acid sequence from the cat genes described previously in staphylococci and other gram-positive bacteria. The CAT enzyme was purified from cell-free lysates by ammonium sulfate precipitation, ion-exchange chromatography, and fast protein liquid chromatography. The native enzyme had an Mr of 70,000 and was composed of three identical subunits, each with an Mr of approximately 23,000. Its isoelectric point was at pH 6.15. CAT from pSCS5 exhibited Km values of 2.81 and 51.8 microM for chloramphenicol and acetyl coenzyme A, respectively. The optimum pH for activity was 7.8. CAT encoded by pSCS5 proved to be relatively heat stable, but sensitive to mercury ions. The observed differences in the nucleotide sequence and the biochemical characteristics of the enzyme allowed the identification of the pSCS5-encoded CAT from S. haemolyticus as a CAT variant different from those described previously in gram-positive bacteria. Images PMID:1929282

  20. Application of the chloramphenicol acetyltransferase (CAT) diffusion assay to transgenic plant tissues.

    PubMed

    Peach, C; Velten, J

    1992-02-01

    Chloramphenicol acetyltransferase (CAT) activity was quantified in crude extracts from tobacco callus tissues using a modification of a previously reported diffusion assay. We describe here the alterations necessary in applying this rapid and simple assay procedure to plant materials. Due to the high concentration of nonspecific oxidases present in most plant tissues, some type of protective agent is required to maintain enzyme activity. We have tested beta-mercaptoethanol, cysteine, dithiothreitol, ascorbic acid and polyvinyl pyrrolidone as protective agents within the initial extraction buffer. We also investigated the effect of heat (60 degrees C, 10 min) and 5 mM EDTA on CAT activity. The highest CAT activity was obtained using 5 mM cysteine plus 5 mM EDTA in 40 mM Tris-HCl (pH 7.8) as the initial extraction buffer followed by a heat treatment. Using this buffer, CAT activity was stable on ice for more than two hours. In our hands, total acetyl-coenzyme A concentration within the assay mixture was found to be saturating at 250 microM and the Km determined to be 100 microM. Assays performed using the same crude plant extract indicate that 1) duplicate assays show less than 1.5% variation in activities and 2) CAT activity increases linearly with respect to volume of extract used. PMID:1616705

  1. Characterization of two acetyltransferase genes in the pyripyropene biosynthetic gene cluster from Penicillium coprobium

    PubMed Central

    Hu, Jie; Furutani, Ayako; Yamamoto, Kentaro; Oyama, Kazuhiko; Mitomi, Masaaki; Anzai, Hiroyuki

    2014-01-01

    Pyripyropenes potently and selectively inhibit acyl-CoA:cholesterol acyltransferase 2 (ACAT-2). Among multiple isomers of pyripyropene (A to R), pyripyropene A (PyA) has insecticidal properties in addition to its growth inhibition properties against human umbilical vein endothelial cells. Based on the predicted biosynthetic gene cluster of pyripyropene A, two genes (ppb8 and ppb9) encoding two acetyltransferases (ATs) were separately isolated and introduced into the model fungus Aspergillus oryzae, using the protoplast–polyethylene glycol method. The bioconversion of certain predicted intermediates in the transformants revealed the manner by which acetylation occurred in the biosynthetic pathway by the products expressed by these two genes (AT-1 and AT-2). The acetylated products detected by high-performance liquid chromatography (HPLC) in the extracts from AT-1 and AT-2 transformant clones were not present in the extract from the transformant clone with an empty vector. The HLPC charts of each bioconversion study exhibited high peaks at 12, 10.5 and 9 min, respectively. Further ultraviolet absorption and mass spectrometry analyses identified the products as PyE, PyO and PyA, respectively. AT-1 acetylated the C-1 of deacetyl-pyripyropene E (deAc-PyE), while AT-2 played an active role in acetylating the C-11 of 11-deAc-PyO and C-7 of deAc-PyA at two different steps of the biosynthetic pathway. PMID:26019565

  2. Testicular dysfunction in experimental chronic renal insufficiency: a deficiency of nocturnal pineal N-acetyltransferase activity.

    PubMed Central

    Holmes, E. W.; Hojvat, S. A.; Kahn, S. E.; Bermes, E. W.

    1989-01-01

    Biochemical correlates of neuroendocrine/gonadal function and nocturnal levels of serotonin N-acetyltransferase (NAT) activity were determined in partially nephrectomized (PNx), male, Long Evans rats following a 5-week period of chronic renal insufficiency (CRI). PNx animals demonstrated two to four-fold elevations in urea nitrogen and three to four-fold reductions (P less than 0.02) in plasma total testosterone concentrations as compared to sham-operated controls. The pituitary LH contents of PNx rats were decreased to approximately 60% of the control value (P less than 0.05). There were no differences in plasma prolactin levels between the control and PNx groups either at mid-day or in the middle of the night. Nocturnal pineal NAT activity in PNx rats was markedly reduced to approximately 20% of the control value (P less than 0.001). Similar evidence of gonadal dysfunction (reduced plasma total testosterone and testes testosterone content) and a significant decrease in night-time levels of pineal NAT activity were also observed after 13 weeks of CRI in PNx rats of the Sprague-Dawley strain that were housed under a different photoperiod. These results suggest that pineal gland dysfunction is a feature of CRI in the PNx model. Such an abnormality might contribute to the pathogenesis of gonadal dysfunction in CRI. PMID:2765391

  3. Structural Analysis of a Putative Aminoglycoside N-Acetyltransferase from Bacillus anthracis

    SciTech Connect

    Klimecka, Maria M.; Chruszcz, Maksymilian; Font, Jose; Skarina, Tatiana; Shumilin, Igor; Onopryienko, Olena; Porebski, Przemyslaw J.; Cymborowski, Marcin; Zimmerman, Matthew D.; Hasseman, Jeremy; Glomski, Ian J.; Lebioda, Lukasz; Savchenko, Alexei; Edwards, Aled; Minor, Wladek

    2012-02-15

    For the last decade, worldwide efforts for the treatment of anthrax infection have focused on developing effective vaccines. Patients that are already infected are still treated traditionally using different types of standard antimicrobial agents. The most popular are antibiotics such as tetracyclines and fluoroquinolones. While aminoglycosides appear to be less effective antimicrobial agents than other antibiotics, synthetic aminoglycosides have been shown to act as potent inhibitors of anthrax lethal factor and may have potential application as antitoxins. Here, we present a structural analysis of the BA2930 protein, a putative aminoglycoside acetyltransferase, which may be a component of the bacterium's aminoglycoside resistance mechanism. The determined structures revealed details of a fold characteristic only for one other protein structure in the Protein Data Bank, namely, YokD from Bacillus subtilis. Both BA2930 and YokD are members of the Antibiotic-NAT superfamily (PF02522). Sequential and structural analyses showed that residues conserved throughout the Antibiotic-NAT superfamily are responsible for the binding of the cofactor acetyl coenzyme A. The interaction of BA2930 with cofactors was characterized by both crystallographic and binding studies.

  4. Retinal, pineal and diencephalic expression of frog arylalkylamine N-acetyltransferase-1.

    PubMed

    Isorna, Esther; Besseau, Laurence; Boeuf, Gilles; Desdevises, Yves; Vuilleumier, Robin; Alonso-Gómez, Angel L; Delgado, María J; Falcón, Jack

    2006-06-27

    The arylalkylamine N-acetyltransferase (AANAT) is a key enzyme in the rhythmic production of melatonin. Two Aanats are expressed in Teleost fish (Aanat1 in the retina and Aanat2 in the pineal organ) but only Aanat1 is found in tetrapods. This study reports the cloning of Aanat1 from R. perezi. Transcripts were mainly expressed in the retina, diencephalon, intestine and testis. In the retina and pineal organ, Aanat1 expression was in the photoreceptor cells. Expression was also seen in ependymal cells of the 3rd ventricle and discrete cells of the suprachiasmatic area. The expression of Aanat1 in both the retina and pineal organ, and the absence of Aanat2 suggests that green frog resembles more to birds and mammals than to Teleost fish, as far as Aanat is concerned. The significance of Aanat1 in extra-pineal and extra-retinal tissues remains to be elucidated; in the diencephalon, it might be associated to the so-called deep brain photoreceptor cells. PMID:16687207

  5. The Lysine Acetyltransferase Activator Brpf1 Governs Dentate Gyrus Development through Neural Stem Cells and Progenitors

    PubMed Central

    You, Linya; Yan, Kezhi; Zhou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-01-01

    Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis. PMID:25757017

  6. Catalytic mechanism of bleomycin N-acetyltransferase proposed on the basis of its crystal structure.

    PubMed

    Oda, Kosuke; Matoba, Yasuyuki; Noda, Masafumi; Kumagai, Takanori; Sugiyama, Masanori

    2010-01-01

    Bleomycin (Bm) N-acetyltransferase, BAT, is a self-resistance determinant in Bm-producing Streptomyces verticillus ATCC15003. In our present study, we crystallized BAT under both a terrestrial and a microgravity environment in the International Space Station. In addition to substrate-free BAT, the crystal structures of BAT in a binary complex with CoA and in a ternary complex with Bm and CoA were determined. BAT forms a dimer structure via interaction of its C-terminal domains in the monomers. However, each N-terminal domain in the dimer is positioned without mutual interaction. The tunnel observed in the N-terminal domain of BAT has two entrances: one that adopts a wide funnel-like structure necessary to accommodate the metal-binding domain of Bm, and another narrow entrance that accommodates acetyl-CoA (AcCoA). A groove formed on the dimer interface of two BAT C-terminal domains accommodates the DNA-binding domain of Bm. In a ternary complex of BAT, BmA(2), and CoA, a thiol group of CoA is positioned near the primary amine of Bm at the midpoint of the tunnel. This proximity ensures efficient transfer of an acetyl group from AcCoA to the primary amine of Bm. Based on the BAT crystal structure and the enzymatic kinetic study, we propose that the catalytic mode of BAT takes an ordered-like mechanism. PMID:19889644

  7. Polyamine-regulated translation of spermidine/spermine-N1-acetyltransferase.

    PubMed

    Perez-Leal, Oscar; Barrero, Carlos A; Clarkson, Allen B; Casero, Robert A; Merali, Salim

    2012-04-01

    Rapid synthesis of the polyamine catabolic enzyme spermidine/spermine-N(1)-acetyltransferase (SSAT) in response to increased polyamines is an important polyamine homeostatic mechanism. Indirect evidence has suggested that there is an important control mechanism involving the release of a translational repressor protein that allows the immediate initiation of SSAT protein synthesis without RNA transcription, maturation, or translocation. To identify a repressor protein, we used a mass spectroscopy-based RNA-protein interaction system and found six proteins that bind to the coding region of SSAT mRNA. Individual small interfering RNA (siRNA) experiments showed that nucleolin knockdown enhances SSAT translation. Nucleolin exists in several isoforms, and we report that the isoform that binds to SSAT mRNA undergoes autocatalysis in the presence of polyamines, a result suggesting that there is a negative feedback system that helps control the cellular content of polyamines. Preliminary molecular interaction data show that a nucleolin isoform binds to a 5' stem-loop of the coding region of SSAT mRNA. The glycine/arginine-rich C terminus of nucleolin is required for binding, and the four RNA recognition motif domains are included in the isoform that blocks SSAT translation. Understanding SSAT translational control mechanisms has the potential for the development of therapeutic strategies against cancer and obesity. PMID:22354986

  8. Control of genetic stability by a new heterochromatin compaction pathway involving the Tip60 histone acetyltransferase

    PubMed Central

    Grézy, Aude; Chevillard-Briet, Martine; Trouche, Didier; Escaffit, Fabrice

    2016-01-01

    Pericentric heterochromatin is a highly compacted structure required for accurate chromosome segregation in mitosis. In mammals, it relies on methylation of histone H3K9 by Suv39H enzymes, which provides a docking site for HP1 proteins, therefore mediating heterochromatin compaction. Here we show that, when this normal compaction pathway is defective, the histone acetyltransferase Tip60 is recruited to pericentric heterochromatin, where it mediates acetylation of histone H4K12. Furthermore, in such a context, depletion of Tip60 leads to derepression of satellite transcription, decompaction of pericentric heterochromatin, and defects in chromosome segregation in mitosis. Finally, we show that depletion of BRD2, a double bromodomain–containing protein that binds H4K12ac, phenocopies the Tip60 depletion with respect to heterochromatin decompaction and defects in chromosome segregation. Taking the results together, we identify a new compaction pathway of mammalian pericentric heterochromatin relying on Tip60 that might be dependent on BRD2 recruitment by H4K12 acetylation. We propose that the underexpression of Tip60 observed in many human tumors can promote genetic instability via defective pericentric heterochromatin. PMID:26700317

  9. Differential effect of lithium on spermidine/spermine N1-acetyltransferase expression in suicidal behaviour.

    PubMed

    Squassina, Alessio; Manchia, Mirko; Chillotti, Caterina; Deiana, Valeria; Congiu, Donatella; Paribello, Francesco; Roncada, Paola; Soggiu, Alessio; Piras, Cristian; Urbani, Andrea; Robertson, George S; Keddy, Paul; Turecki, Gustavo; Rouleau, Guy A; Alda, Martin; Del Zompo, Maria

    2013-11-01

    An altered polyamine system has been suggested to play a key role in mood disorders and suicide, a hypothesis corroborated by the evidence that lithium inhibits the polyamine mediated stress response in the rat brain. Recent post-mortem studies have shown that spermidine/spermine N1-acetyltransferase (SAT1), the key regulator of cellular polyamine content, is under-expressed in brains from suicide victims compared to controls. In our study we tested the effect of in vitro lithium treatment on SAT1 gene and protein expression in B lymphoblastoid cell lines (BLCLs) from bipolar disorder (BD) patients who committed suicide (and for which BLCLs were collected prior to their death), BD patients with high and low risk of suicide and a sample of non-psychiatric controls. Baseline mRNA levels were similar in the four groups of subjects (p > 0.05). Lithium had no effect in suicide completers (p > 0.05) while it significantly increased SAT1 expression in the high risk (p < 0.001) and low risk (p < 0.01) groups as well as in controls (p < 0.001). Protein and mRNA levels were not correlated; lithium significantly reduced protein levels only in the control sample (p < 0.05). Our findings suggest that SAT1 transcription is influenced by lithium and that this effect is altered in BD patients who completed suicide, further supporting a role for polyamines in suicide. PMID:23768751

  10. Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization.

    PubMed

    Kumar, Rajnish; Långström, Bengt; Darreh-Shori, Taher

    2016-01-01

    Recent reports have brought back the acetylcholine synthesizing enzyme, choline acetyltransferase in the mainstream research in dementia and the cholinergic anti-inflammatory pathway. Here we report, a specific strategy for the design of novel ChAT ligands based on molecular docking, Hologram Quantitative Structure Activity Relationship (HQSAR) and lead optimization. Molecular docking was performed on a series of ChAT inhibitors to decipher the molecular fingerprint of their interaction with the active site of ChAT. Then robust statistical fragment HQSAR models were developed. A library of novel ligands was generated based on the pharmacophoric and shape similarity scoring function, and evaluated in silico for their molecular interactions with ChAT. Ten of the top scoring invented compounds are reported here. We confirmed the activity of α-NETA, the only commercially available ChAT inhibitor, and one of the seed compounds in our model, using a new simple colorimetric ChAT assay (IC50 ~ 88 nM). In contrast, α-NETA exhibited an IC50 of ~30 μM for the ACh-degrading cholinesterases. In conclusion, the overall results may provide useful insight for discovering novel ChAT ligands and potential positron emission tomography tracers as in vivo functional biomarkers of the health of central cholinergic system in neurodegenerative disorders, such as Alzheimer's disease. PMID:27507101

  11. Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy

    PubMed Central

    Haery, Leila; Thompson, Ryan C.; Gilmore, Thomas D.

    2015-01-01

    The development of B and T cells from hematopoietic precursors and the regulation of the functions of these immune cells are complex processes that involve highly regulated signaling pathways and transcriptional control. The signaling pathways and gene expression patterns that give rise to these developmental processes are coordinated, in part, by two opposing classes of broad-based enzymatic regulators: histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs and HDACs can modulate gene transcription by altering histone acetylation to modify chromatin structure, and by regulating the activity of non-histone substrates, including an array of immune-cell transcription factors. In addition to their role in normal B and T cells, dysregulation of HAT and HDAC activity is associated with a variety of B- and T-cell malignancies. In this review, we describe the roles of HATs and HDACs in normal B- and T-cell physiology, describe mutations and dysregulation of HATs and HDACs that are implicated lymphoma and leukemia, and discuss HAT and HDAC inhibitors that have been explored as treatment options for leukemias and lymphomas. PMID:26124919

  12. Reconstitution of active and stoichiometric multisubunit lysine acetyltransferase complexes in insect cells.

    PubMed

    Yan, Kezhi; Wu, Chao-Jung; Pelletier, Nadine; Yang, Xiang-Jiao

    2012-01-01

    Protein lysine acetyltransferases (KATs) catalyze acetylation of the ε-amino group on a specific lysine residue, and this posttranslational modification is important for regulating the function and activities of thousands of proteins in diverse organisms from bacteria to humans. Interestingly, many known KATs exist in multisubunit complexes and complex formation is important for their proper structure, function, and regulation. Thus, it is necessary to reconstitute enzymatically active complexes for studying the relationship between subunits and determining structures of the complexes. Due to inherent limitations of bacterial and mammalian expression systems, baculovirus-mediated protein expression in insect cells has proven useful for assembling such multisubunit complexes. Related to this, we have adopted such an approach for reconstituting active tetrameric complexes of monocytic leukemia zinc (MOZ, finger protein, recently renamed MYST3 or KAT6A) and MOZ-related factor (MORF, also known as MYST4 or KAT6B), two KATs directly linked to development of leukemia and self-renewal of stem cells. Herein, we use these complexes as examples to describe the related procedures. Similar methods have been used for reconstituting active complexes of histone deacetylases, lysine demethylases, and ubiquitin ligases, so this simple approach can be adapted for molecular dissection of various multisubunit complexes. PMID:22113293

  13. Regulation of histone acetyltransferase TIP60 function by histone deacetylase 3.

    PubMed

    Yi, Jingjie; Huang, Xiangyang; Yang, Yuxia; Zhu, Wei-Guo; Gu, Wei; Luo, Jianyuan

    2014-12-01

    The key member of the MOZ (monocyticleukaemia zinc finger protein), Ybf2/Sas3, Sas2, and TIP60 acetyltransferases family, Tat-interactive protein, 60 kD (TIP60), tightly modulates a wide array of cellular processes, including chromatin remodeling, gene transcription, apoptosis, DNA repair, and cell cycle arrest. The function of TIP60 can be regulated by SIRT1 through deacetylation. Here we found that TIP60 can also be functionally regulated by HDAC3. We identified six lysine residues as its autoacetylation sites. Mutagenesis of these lysines to arginines completely abolishes the autoacetylation of TIP60. Overexpression of HDAC3 increases TIP60 ubiquitination levels. However, unlike SIRT1, HDAC3 increased the half-life of TIP60. Further study found that HDAC3 colocalized with TIP60 both in the nucleus and the cytoplasm, which could be the reason why HDAC3 can stabilize TIP60. The deacetylation of TIP60 by both SIRT1 and HDAC3 reduces apoptosis induced by DNA damage. Knockdown of HDAC3 in cells increased TIP60 acetylation levels and increased apoptosis after DNA damage. Together, our findings provide a better understanding of TIP60 regulation mechanisms, which is a significant basis for further studies of its cellular functions. PMID:25301942

  14. The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors.

    PubMed

    You, Linya; Yan, Kezhi; Zou, Jinfeng; Zhou, Jinfeng; Zhao, Hong; Bertos, Nicholas R; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-03-01

    Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis. PMID:25757017

  15. Characterizing the Covalent Targets of a Small Molecule Inhibitor of the Lysine Acetyltransferase P300.

    PubMed

    Shrimp, Jonathan H; Sorum, Alexander W; Garlick, Julie M; Guasch, Laura; Nicklaus, Marc C; Meier, Jordan L

    2016-02-11

    C646 inhibits the lysine acetyltransferases (KATs) p300 and CBP and represents the most potent and selective small molecule KAT inhibitor identified to date. To gain insights into the cellular activity of this epigenetic probe, we applied chemoproteomics to identify covalent targets of the C646 chemotype. Modeling and synthetic derivatization was used to develop a clickable analogue (C646-yne) that inhibits p300 similarly to the parent compound and enables enrichment of bound proteins. LC-MS/MS identified the major covalent targets of C646-yne as highly abundant cysteine-containing proteins, and follow-up studies found that C646 can inhibit tubulin polymerization in vitro. Finally, we provide evidence that thiol reactivity of C646 may limit its ability to antagonize acetylation in cells. These findings should enable a more precise interpretation of studies utilizing C646 as a chemical probe of KAT activity and suggest that an underappreciated liability of electrophile-containing inhibitors is a reduction in their cellular potency due to consumption by abundant protein and metabolite thiol sinks. PMID:26985290

  16. Microfluidic Mobility Shift Profiling of Lysine Acetyltransferases Enables Screening and Mechanistic Analysis of Cellular Acetylation Inhibitors.

    PubMed

    Sorum, Alexander W; Shrimp, Jonathan H; Roberts, Allison M; Montgomery, David C; Tiwari, Neil K; Lal-Nag, Madhu; Simeonov, Anton; Jadhav, Ajit; Meier, Jordan L

    2016-03-18

    Lysine acetyltransferases (KATs) are critical regulators of signaling in many diseases, including cancer. A major challenge in establishing the targetable functions of KATs in disease is a lack of well-characterized, cell-active KAT inhibitors. To confront this challenge, here we report a microfluidic mobility shift platform for the discovery and characterization of small molecule KAT inhibitors. Novel fluorescent peptide substrates were developed for four well-known KAT enzymes (p300, Crebbp, Morf, and Gcn5). Enzyme-catalyzed acetylation alters the electrophoretic mobility of these peptides in a microfluidic chip, allowing facile and direct monitoring of KAT activity. A pilot screen was used to demonstrate the utility of microfluidic mobility shift profiling to identify known and novel modulators of KAT activity. Real-time kinetic monitoring of KAT activity revealed that garcinol, a natural product KAT inhibitor used in cellular studies, exhibits time-dependent and detergent-sensitive inhibition, consistent with an aggregation-based mechanism. In contrast, the cell-permeable bisubstrate inhibitor Tat-CoA exhibited potent and time-independent KAT inhibition, highlighting its potential utility as a cellular inhibitor of KAT activity. These studies define microfluidic mobility shift profiling as a powerful platform for the discovery and characterization of small molecule inhibitors of KAT activity, and provide mechanistic insights potentially important for the application of KAT inhibitors in cellular contexts. PMID:26428393

  17. Rational design and validation of a Tip60 histone acetyltransferase inhibitor

    PubMed Central

    Gao, Chunxia; Bourke, Emer; Scobie, Martin; Famme, Melina Arcos; Koolmeister, Tobias; Helleday, Thomas; Eriksson, Leif A.; Lowndes, Noel F.; Brown, James A. L.

    2014-01-01

    Histone acetylation is required for many aspects of gene regulation, genome maintenance and metabolism and dysfunctional acetylation is implicated in numerous diseases, including cancer. Acetylation is regulated by histone acetyltransferases (HATs) and histone deacetylases and currently, few general HAT inhibitors have been described. We identified the HAT Tip60 as an excellent candidate for targeted drug development, as Tip60 is a key mediator of the DNA damage response and transcriptional co-activator. Our modeling of Tip60 indicated that the active binding pocket possesses opposite charges at each end, with the positive charges attributed to two specific side chains. We used structure based drug design to develop a novel Tip60 inhibitor, TH1834, to fit this specific pocket. We demonstrate that TH1834 significantly inhibits Tip60 activity in vitro and treating cells with TH1834 results in apoptosis and increased unrepaired DNA damage (following ionizing radiation treatment) in breast cancer but not control cell lines. Furthermore, TH1834 did not affect the activity of related HAT MOF, as indicated by H4K16Ac, demonstrating specificity. The modeling and validation of the small molecule inhibitor TH1834 represents a first step towards developing additional specific, targeted inhibitors of Tip60 that may lead to further improvements in the treatment of breast cancer. PMID:24947938

  18. Andrographolide: A potent antituberculosis compound that targets Aminoglycoside 2'-N-acetyltransferase in Mycobacterium tuberculosis.

    PubMed

    Prabu, Amudha; Hassan, Sameer; Prabuseenivasan; Shainaba, A S; Hanna, L E; Kumar, Vanaja

    2015-09-01

    Tuberculosis (TB) still remains a major challenging infectious disease. The increased rate of emergence of multi-drug resistant and extensively-drug resistant strains of the organism has further complicated the situation, resulting in an urgent need for new anti-TB drugs. Antimycobacterial activity of Andrographis paniculata was evaluated using a rapid LRP assay and the probable targets were identified by docking analysis. The methanolic extract of A. paniculata showed maximum antimycobacterial activity at 250μg/ml against all the tested strains of M. tuberculosis (H37Rv, MDR, and drug sensitive). Based on bioassay guided fractionation, andrographolide was identified as the potent molecule. With the docking analysis, both ICDH (Isocitrate Dehydrogenase) and AAC (Aminoglycoside 2'-N-acetyltransferase) were predicted as targets of andrographolide in M. tuberculosis. Molecular simulation revealed that, ICDH showed low binding affinity to andrographolide. However, for AAC, the andrographolide was observed to be well within the active site after 10ns of molecular simulation. This suggests that ACC (PDB ID 1M4I) could be the probable target for andrographolide. PMID:26245695

  19. N-acetyltransferase 2 (Nat2) polymorphism in the sand rat Psammomys obesus.

    PubMed

    Khelil, Malika; Djerdjouri, Bahia; Tayebi, Bouchentouf

    2010-10-01

    Human arylamine N-acetyltransferase 1 (NAT1) and its homologue in rodents (Nat2) are polymorphic xenobiotic metabolizing enzymes and also seem to play a role in endogenous metabolism. NAT1 and Nat2 polymorphism was associated to cancers under xenobiotic procarcinogens metabolism as well as under endogenous substrate metabolism. This study investigated the p-aminobenzoic acid (PABA) -Nat2 catalytic activity and its polymorphism in liver homogenates of adult sand rats Psammomys obesus Cretzschmar, 1828. These Saharian sand rats develop high incidence of spontaneous cancers under standard laboratory diet. The average value of PABA-Nat2 specific activity tested in nine sand rats was significant (2.96 ± 2.16 nmoles/min/mg). The N-acetylation exhibited a bimodal distribution. There was a significant difference (p<0.01) between PABA-Nat2 activity in the fast acetylators group (4.10 ± 1.67 nmol/min/mg) and slow acetylators group (0.7 ± 0.27 nmol/min/mg). The percentage of the fast acetylator group was 66.66%. These results support the presence of Nat2 polymorphism in the liver of the strain sand rats Psammomys obesus. This strain is useful for investigating the role of Nat2 polymorphisms in susceptibility to cancers related to arylamine carcinogen exposures as well as to endogenous substrate metabolism. PMID:20550432

  20. Effect of maternal deprivation on N-acetyltransferase activity rhythm in blinded rat pups.

    PubMed

    Katoh, Y; Takeuchi, Y; Yamazaki, K; Takahashi, K

    1998-02-15

    It has been reported that the rhythms of infant rats synchronize with the mother's rhythm until the light-dark cycle comes and has strong effects on their endogenous clocks. We found that periodic maternal deprivation (PMD) was able to cause a phase shift of serotonin N-acetyltransferase (NAT) in neonatal blinded rat pups. PMD in which contact with the mother was allowed for only 4 h caused a phase shift of NAT rhythm, irrespective of the timing of contact with the mother in a day. Acute single mother deprivation caused an excess of NAT activity for more hours than usual and contact with the mother prevented such an excessive response. Mother deprivation may act as a cold stress, since artificial warming of pups gave the same results as contact with the mother. When the pups were artificially warmed by a heater during a 1-week deprivation period, a flat 24-h pattern of NAT was observed. The mechanism causing a phase shift of NAT activity rhythm of rat pups may be complicated. PMID:9523895

  1. A chromosomal chloramphenicol acetyltransferase determinant from a probiotic strain of Bacillus clausii.

    PubMed

    Galopin, Sébastien; Cattoir, Vincent; Leclercq, Roland

    2009-06-01

    The mechanism of resistance to chloramphenicol was studied in four strains of Bacillus clausii included in a probiotic mixture, which is administered to humans for prevention of gastrointestinal side effects due to oral antibiotic therapy. By cloning experiments, a chloramphenicol acetyltransferase (CAT) gene, cat(Bcl), coding for a putative 228-amino acid CAT protein was identified in B. clausii SIN. The deduced amino acid sequence displayed from 31% to 85% identity with 56 CAT proteins from other Gram-positive bacterial strains. The cat(Bcl) gene was also detected by PCR in the three other B. clausii strains resistant to chloramphenicol, whereas it was absent in the three control strains susceptible to chloramphenicol. Pulse-field gel electrophoresis of total DNA digested by I-CeuI followed by hybridization with a cat-specific probe as well as unsuccessful repeated attempts of in vitro transfer of chloramphenicol resistance to various recipient cells indicated that cat(Bcl) was chromosomally located in all four resistant B. clausii strains. PMID:19459958

  2. Enhanced ubiquitination and proteasomal degradation of catalytically deficient human choline acetyltransferase mutants.

    PubMed

    Morey, Trevor M; Albers, Shawn; Shilton, Brian H; Rylett, R Jane

    2016-05-01

    Choline acetyltransferase (ChAT) is essential for cholinergic neuron function as it mediates synthesis of the neurotransmitter acetylcholine. ChAT mutations have been linked to the neuromuscular disorder congenital myasthenic syndrome (CMS). One CMS-related ChAT mutation, V18M, reduces enzyme activity and cellular protein levels, and is positioned within a highly conserved proline-rich motif with the sequence 14 PKLPVPP20 . We demonstrate that N-terminal truncation that includes this proline-rich motif, as well as mutation of prolines-17/19 together to alanine (P17A/P19A), dramatically reduces ChAT steady-state protein levels and cellular activity when expressed in cholinergic SN56 neural cells. The in vitro activity of bacterially expressed recombinant P17A/P19A-ChAT is also reduced, although this is not caused by changes in protein secondary structure or thermal stability. Treatment of SN56 cells with the proteasome inhibitor MG132 increases cellular P17A/P19A-ChAT steady-state protein levels, and by immunoprecipitation we found that ChAT is ubiquitinated and that polyubiquitination of P17A/P19A-ChAT is increased compared to wild-type (WT) ChAT. Using a novel fluorescent-biorthogonal pulse-chase protocol in SN56 cells, we determined that the protein half-life of P17A/P19A-ChAT (2.2 h) is substantially reduced compared to WT-ChAT (19.7 h). Lastly, we show that two CMS-related ChAT mutants (V18M and A513T) have enhanced ubiquitination, and that treatment with MG132 can partially restore both the steady-state protein levels as well as cellular activity of some CMS-mutant ChAT. These results identify a novel mechanism for regulation of ChAT through the ubiquitin-proteasome system that is influenced by the conserved N-terminal proline-rich motif of ChAT and may be implicated in CMS pathology. Choline acetyltransferase (ChAT) synthesizes acetylcholine in cholinergic neurons. In this study we find that steady-state protein levels of human 69-kDa ChAT are regulated by

  3. NolL of Rhizobium sp. Strain NGR234 Is Required for O-Acetyltransferase Activity

    PubMed Central

    Berck, S.; Perret, X.; Quesada-Vincens, D.; Promé, J.-C.; Broughton, W. J.; Jabbouri, S.

    1999-01-01

    Following (iso)flavonoid induction, nodulation genes of the symbiotic nitrogen-fixing bacterium Rhizobium sp. strain NGR234 elaborate a large family of lipooligosaccharidic Nod factors (NodNGR factors). When secreted into the rhizosphere of compatible legumes, these signal molecules initiate root hair deformation and nodule development. The nonreducing glucosamine residue of NodNGR factors are N acylated, N methylated, and mono- or biscarbamoylated, while position C-6 of the reducing extremity is fucosylated. This fucose residue is normally 2-O methylated and either sulfated or acetylated. Here we present an analysis of all acetylated NodNGR factors, which clearly shows that the acetate group may occupy position C-3 or C-4 of the fucose moiety. Disruption of the flavonoid-inducible nolL gene, which is preceded by a nod box, results in the synthesis of NodNGR factors that lack the 3-O- or 4-O-acetate groups. Interestingly, the nodulation capacity of the mutant NGRΩnolL is not impaired, whereas introduction of the nod box::nolL construct into the related strain Rhizobium fredii USDA257 extends the host range of this bacterium to Calopogonium caeruleum, Leucaena leucocephala, and Lotus halophilus. Nod factors produced by a USDA257(pnolL) transconjugant were also acetylated. The nod box::nolL construct was also introduced into ANU265 (NGR234 cured of its symbiotic plasmid), along with extra copies of the nodD1 gene. When permeabilized, these cells possessed acetyltransferase activity, although crude extracts did not. PMID:9922261

  4. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    SciTech Connect

    Matthew, E.; Parfitt, A.G.; Sugden, D.; Engelhardt, D.L.; Zimmerman, E.A.; Klein, D.C.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.

  5. A Novel Assay Platform for the Detection of Translation Modulators of Spermidine/Spermine Acetyltransferase

    PubMed Central

    Perez-Leal, Oscar; Abou-Gharbia, Magid; Gordon, John; Childers, Wayne E.; Merali, Salim

    2013-01-01

    Spermidine/spermine-N1-acetyltransferase (SSAT) is a mitochondrial-localized enzyme that is highly inducible and tightly controlled and is the rate-limiting enzyme in polyamine catabolism. It is known that SSAT is induced when polyamine level increases. Although multiple mechanisms have been implicated, translational control is thought to be paramount. Previous studies with transgenic and knockout mice suggested that for certain human conditions, the modulation of SSAT levels could offer therapeutic benefits. Besides polyamines and their analogs, certain stimuli can increase SSAT levels, suggesting that the development of reporters for high throughput screening can lead to the identification of novel pharmacophores that can modulate SSAT translation. Here we report the development and validation of a luciferase-based biosensor system for the identification of compounds that are able to either promote or prevent the translation of SSAT. The system uses HEK293T cells transfected with a construct composed of SSAT mRNA modified to lack upstream open reading frame (uORF) function, is mutated to reduce translational repression and is linked with luciferase. As a proof of principle of the utility of the SSAT translation sensor, we screened the Prestwick drug library (1,200 FDA Approved compounds). The library contained 14 compounds that activated SSAT translation by at least 40% more than the basal expression, but none exceeded the positive control N1, N11-diethylnorspermine. On the other hand, 38 compounds were found to strongly inhibit SSAT translation. We conclude that this biosensor can lead to the identification of novel pharmacophores that are able to modulate the translation of SSAT. PMID:23701549

  6. Degradation of Serotonin N-Acetyltransferase, a Circadian Regulator, by the N-end Rule Pathway.

    PubMed

    Wadas, Brandon; Borjigin, Jimo; Huang, Zheping; Oh, Jang-Hyun; Hwang, Cheol-Sang; Varshavsky, Alexander

    2016-08-12

    Serotonin N-acetyltransferase (AANAT) converts serotonin to N-acetylserotonin (NAS), a distinct biological regulator and the immediate precursor of melatonin, a circulating hormone that influences circadian processes, including sleep. N-terminal sequences of AANAT enzymes vary among vertebrates. Mechanisms that regulate the levels of AANAT are incompletely understood. Previous findings were consistent with the possibility that AANAT may be controlled through its degradation by the N-end rule pathway. By expressing the rat and human AANATs and their mutants not only in mammalian cells but also in the yeast Saccharomyces cerevisiae, and by taking advantage of yeast genetics, we show here that two "complementary" forms of rat AANAT are targeted for degradation by two "complementary" branches of the N-end rule pathway. Specifically, the N(α)-terminally acetylated (Nt-acetylated) Ac-AANAT is destroyed through the recognition of its Nt-acetylated N-terminal Met residue by the Ac/N-end rule pathway, whereas the non-Nt-acetylated AANAT is targeted by the Arg/N-end rule pathway, which recognizes the unacetylated N-terminal Met-Leu sequence of rat AANAT. We also show, by constructing lysine-to-arginine mutants of rat AANAT, that its degradation is mediated by polyubiquitylation of its Lys residue(s). Human AANAT, whose N-terminal sequence differs from that of rodent AANATs, is longer-lived than its rat counterpart and appears to be refractory to degradation by the N-end rule pathway. Together, these and related results indicate both a major involvement of the N-end rule pathway in the control of rodent AANATs and substantial differences in the regulation of rodent and human AANATs that stem from differences in their N-terminal sequences. PMID:27339900

  7. Role of Carnitine Acetyltransferases in Acetyl Coenzyme A Metabolism in Aspergillus nidulans ▿

    PubMed Central

    Hynes, Michael J.; Murray, Sandra L.; Andrianopoulos, Alex; Davis, Meryl A.

    2011-01-01

    The flow of carbon metabolites between cellular compartments is an essential feature of fungal metabolism. During growth on ethanol, acetate, or fatty acids, acetyl units must enter the mitochondrion for metabolism via the tricarboxylic acid cycle, and acetyl coenzyme A (acetyl-CoA) in the cytoplasm is essential for the biosynthetic reactions and for protein acetylation. Acetyl-CoA is produced in the cytoplasm by acetyl-CoA synthetase during growth on acetate and ethanol while β-oxidation of fatty acids generates acetyl-CoA in peroxisomes. The acetyl-carnitine shuttle in which acetyl-CoA is reversibly converted to acetyl-carnitine by carnitine acetyltransferase (CAT) enzymes is important for intracellular transport of acetyl units. In the filamentous ascomycete Aspergillus nidulans, a cytoplasmic CAT, encoded by facC, is essential for growth on sources of cytoplasmic acetyl-CoA while a second CAT, encoded by the acuJ gene, is essential for growth on fatty acids as well as acetate. We have shown that AcuJ contains an N-terminal mitochondrial targeting sequence and a C-terminal peroxisomal targeting sequence (PTS) and is localized to both peroxisomes and mitochondria, independent of the carbon source. Mislocalization of AcuJ to the cytoplasm does not result in loss of growth on acetate but prevents growth on fatty acids. Therefore, while mitochondrial AcuJ is essential for the transfer of acetyl units to mitochondria, peroxisomal localization is required only for transfer from peroxisomes to mitochondria. Peroxisomal AcuJ was not required for the import of acetyl-CoA into peroxisomes for conversion to malate by malate synthase (MLS), and export of acetyl-CoA from peroxisomes to the cytoplasm was found to be independent of FacC when MLS was mislocalized to the cytoplasm. PMID:21296915

  8. Improvement of L-arginine production by overexpression of a bifunctional ornithine acetyltransferase in Corynebacterium crenatum.

    PubMed

    Dou, Wenfang; Xu, Meijuan; Cai, Dongmei; Zhang, Xiaomei; Rao, Zhiming; Xu, Zhenghong

    2011-10-01

    Ornithine acetyltransferase (EC 2.3.1.35; OATase) gene (argJ) from the L-arginine-producing mutant Corynebacterium crenatum SYPA5-5 was cloned, sequenced, and expressed in Escherichia coli BL21 (DE3). Analysis of the argJ sequence revealed that the argJ coded a polypeptide of 388 amino acids with a calculated molecular weight of 39.7 kDa. In this study, the function of the OATase (argJ) of C. crenatum SYPA5-5 has been identified as a conserved ATML sequence for the autolysis of the protein to α- and β-subunits. When the argJ regions corresponding to the α- and β-subunits were cloned and expressed separately in E. coli BL21, OATase activities were abolished. At the same time, a functional study revealed that OATase from C. crenatum SYPA5-5 was a bifunctional enzyme with the functions of acetylglutamate synthase (EC 2.3.1.1, NAGS) and acetylornithine deacetylase (EC 3.5.1.16, AOase) activities. In order to investigate the effects of the overexpression of the argJ gene on L: -arginine production, the argJ gene was inserted into pJCtac to yield the recombinant shuttle plasmid pJCtac-argJ and then transformed into C. crenatum SYPA5-5. The results showed that the engineered strains could not only express more OATase (90.9%) but also increase the production of L: -arginine significantly (16.8%). PMID:21785983

  9. DNA hybridization and phosphinothricin acetyltransferase gene sequence detection based on zirconia/nanogold film modified electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Yang, Tao; Jiang, Chen; Jiao, Kui

    2008-05-01

    This study reports a novel electrochemical DNA biosensor based on zirconia (ZrO 2) and gold nanoparticles (NG) film modified glassy carbon electrode (GCE). NG was electrodeposited onto the glassy carbon electrode at 1.5 V, and then zirconia thin film on the NG/GCE was fabricated by cyclic voltammetric method (CV) in an aqueous electrolyte of ZrOCl 2 and KCl at a scan rate of 20 mV/s. DNA probes were attached onto the ZrO 2/NG/GCE due to the strong binding of the phosphate group of DNA with the zirconia film and the excellent biocompatibility of nanogold with DNA. CV and electrochemical impedance spectroscopy (EIS) were used to characterize the modification of the electrode and the probe DNA immobilization. The electrochemical response of the DNA hybridization was measured by differential pulse voltammetry (DPV) using methylene blue (MB) as the electroactive indicator. After the hybridization of DNA probe (ssDNA) with the complementary DNA (cDNA), the cathodic peak current of MB decreased obviously. The difference of the cathodic peak currents of MB between before and after the hybridization of the probe DNA was used as the signal for the detection of the target DNA. The sequence-specific DNA of phosphinothricin acetyltransferase (PAT) gene in the transgenic plants was detected with a detection range from 1.0 × 10 -10 to 1.0 × 10 -6 mol/L, and a detection limit of 3.1 × 10 -11 mol/L.

  10. Characterization and kinetic mechanism of mono- and bifunctional ornithine acetyltransferases from thermophilic microorganisms.

    PubMed

    Marc, F; Weigel, P; Legrain, C; Almeras, Y; Santrot, M; Glansdorff, N; Sakanyan, V

    2000-08-01

    The argJ gene coding for N2-acetyl-L-ornithine: L-glutamate N-acetyltransferase, the key enzyme involved in the acetyl cycle of L-arginine biosynthesis, has been cloned from thermophilic procaryotes: the archaeon Methanoccocus jannaschii, and the bacteria Thermotoga neapolitana and Bacillus stearothermophilus. Archaeal argJ only complements an Escherichia coli argE mutant (deficient in acetylornithinase, which catalyzes the fifth step in the linear biosynthetic pathway), whereas bacterial genes additionally complement an argA mutant (deficient in N-acetylglutamate synthetase, the first enzyme of the pathway). In keeping with these in vivo data the purified His-tagged ArgJ enzyme of M. jannaschii only catalyzes N2-acetylornithine conversion to ornithine, whereas T. neapolitana and B. stearothermophilus ArgJ also catalyze the conversion of glutamate to N-acetylglutamate using acetylCoA as the acetyl donor. M. jannaschii ArgJ is therefore a monofunctional enzyme, whereas T. neapolitana and B. stearothermophilus encoded ArgJ are bifunctional. Kinetic data demonstrate that in all three thermophilic organisms ArgJ-mediated catalysis follows ping-pong bi-bi kinetic mechanism. Acetylated ArgJ intermediates were detected in semireactions using [14C]acetylCoA or [14C]N2-acetyl-L-glutamate as acetyl donors. In this catalysis L-ornithine acts as an inhibitor; this amino acid therefore appears to be a key regulatory molecule in the acetyl cycle of L-arginine synthesis. Thermophilic ArgJ are synthesized as protein precursors undergoing internal cleavage to generate alpha and beta subunits which appear to assemble to alpha2beta2 heterotetramers in E. coli. The cleavage occurs between alanine and threonine residues within the highly conserved PXM-ATML motif detected in all available ArgJ sequences. PMID:10931207

  11. Deciphering the Ancient and Complex Evolutionary History of Human Arylamine N-Acetyltransferase Genes

    PubMed Central

    Patin, Etienne; Barreiro, Luis B.; Sabeti, Pardis C.; Austerlitz, Frédéric; Luca, Francesca; Sajantila, Antti; Behar, Doron M.; Semino, Ornella; Sakuntabhai, Anavaj; Guiso, Nicole; Gicquel, Brigitte; McElreavey, Ken; Harding, Rosalind M.; Heyer, Evelyne; Quintana-Murci, Lluís

    2006-01-01

    The human N-acetyltransferase genes NAT1 and NAT2 encode two phase-II enzymes that metabolize various drugs and carcinogens. Functional variability at these genes has been associated with adverse drug reactions and cancer susceptibility. Mutations in NAT2 leading to the so-called slow-acetylation phenotype reach high frequencies worldwide, which questions the significance of altered acetylation in human adaptation. To investigate the role of population history and natural selection in shaping NATs variation, we characterized genetic diversity through the resequencing and genotyping of NAT1, NAT2, and the pseudogene NATP in a collection of 13 different populations with distinct ethnic backgrounds and demographic pasts. This combined study design allowed us to define a detailed map of linkage disequilibrium of the NATs region as well as to perform a number of sequence-based neutrality tests and the long-range haplotype (LRH) test. Our data revealed distinctive patterns of variability for the two genes: the reduced diversity observed at NAT1 is consistent with the action of purifying selection, whereas NAT2 functional variation contributes to high levels of diversity. In addition, the LRH test identified a particular NAT2 haplotype (NAT2*5B) under recent positive selection in western/central Eurasians. This haplotype harbors the mutation 341T→C and encodes the “slowest-acetylator” NAT2 enzyme, suggesting a general selective advantage for the slow-acetylator phenotype. Interestingly, the NAT2*5B haplotype, which seems to have conferred a selective advantage during the past ∼6,500 years, exhibits today the strongest association with susceptibility to bladder cancer and adverse drug reactions. On the whole, the patterns observed for NAT2 well illustrate how geographically and temporally fluctuating xenobiotic environments may have influenced not only our genome variability but also our present-day susceptibility to disease. PMID:16416399

  12. Association between N-acetyltransferase 2 polymorphisms and pancreatic cancer risk: a meta-analysis.

    PubMed

    Liang, J X; Gao, W; Liang, Y; Zhou, X M

    2015-01-01

    N-acetyltransferase 2 (NAT2) is an essential phase II enzyme in the metabolism of aromatic and heterocyclic amines and of hydrazines. NAT2 activity can be divided into three phenotypes: rapid, intermediate, and slow. Studies identifying an association between NAT2 polymorphism and the risk of pancreatic cancer have shown conflicting results. In order to assess this relationship comprehensively, we performed a meta-analysis that involved 1607 patients with pancreatic cancer and 1682 controls from six studies, which were selected from a group of ten, identified by a search of PubMed and Embase databases up to July 2014. Relative risks (RRs) with 95% confidence intervals (CIs) were used to evaluate the relationships. In the overall analysis, no significant associations between NAT2 rapid acetylation genotypes and pancreatic cancer risk (RR = 0.93, 95%CI = 0.73-1.19) were found; however, the results showed significant heterogeneity (I2 = 55.0%). The results from subgroup analysis suggested that the rapid genotypes might decrease the risk of pancreatic cancer (RR = 0.56, 95%CI = 0.38-0.84) in Turkey, although the association was not significant in the United States population (RR = 0.97, 95%CI = 0.71-1.34) or in the multi-center studies (RR = 1.10, 95%CI = 0.90-1.34). Analysis of the slow acetylation genotypes demonstrated the converse outcomes. In conclusion, the results of our study suggested that the NAT2 slow acetylation genotypes might increase the susceptibility to pancreatic cancer in Europe but that these have no significant effects in the United States and multi-center populations. PMID:26681215

  13. Genetic polymorphism in N-Acetyltransferase (NAT): Population distribution of NAT1 and NAT2 activity.

    PubMed

    Walker, Katy; Ginsberg, Gary; Hattis, Dale; Johns, Douglas O; Guyton, Kathryn Z; Sonawane, Babasaheb

    2009-01-01

    N-Acetyltransferases (NAT) are key enzymes in the conjugation of certain drugs and other xenobiotics with an arylamine structure. Polymorphisms in NAT2 have long been recognized to modulate toxicity produced by the anti-tubercular drug isoniazid, with molecular epidemiologic studies suggesting a link between acetylator phenotype and increased risk for bladder cancer. Recent evidence indicates that the other major NAT isozyme, NAT1, is also polymorphic. The current analysis characterizes the main polymorphisms in both NAT2 and NAT1 in terms of their effect on enzyme activity and frequency in the population. Multiple NAT2 alleles (NAT2*5, *6, *7, and *14) have substantially decreased acetylation activity and are common in Caucasians and populations of African descent. In these groups, most individuals carry at least one copy of a slow acetylator allele, and less than 10% are homozygous for the wild type (fast acetylator) trait. Incorporation of these data into a Monte Carlo modeling framework led to a population distribution of NAT2 activity that was bimodal and associated with considerable variability in each population assessed. The ratio of the median to the first percentile of NAT2 activity ranged from 7 in Caucasians to 18 in the Chinese population. This variability indicates the need for more quantitative approaches (e.g., physiologically based pharmacokinetic [PBPK] modeling) to assess the full distribution of internal dose and adverse responses to aromatic amines and other NAT2 substrates. Polymorphisms in NAT1 are generally associated with relatively minor effects on acetylation function, with Monte Carlo analysis indicating less interindividual variability than seen in NAT2 analysis. PMID:20183529

  14. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery.

    PubMed

    Sim, E; Abuhammad, A; Ryan, A

    2014-06-01

    Arylamine N-acetyltransferases (NATs) are polymorphic drug-metabolizing enzymes, acetylating arylamine carcinogens and drugs including hydralazine and sulphonamides. The slow NAT phenotype increases susceptibility to hydralazine and isoniazid toxicity and to occupational bladder cancer. The two polymorphic human NAT loci show linkage disequilibrium. All mammalian Nat genes have an intronless open reading frame and non-coding exons. The human gene products NAT1 and NAT2 have distinct substrate specificities: NAT2 acetylates hydralazine and human NAT1 acetylates p-aminosalicylate (p-AS) and the folate catabolite para-aminobenzoylglutamate (p-abaglu). Human NAT2 is mainly in liver and gut. Human NAT1 and its murine homologue are in many adult tissues and in early embryos. Human NAT1 is strongly expressed in oestrogen receptor-positive breast cancer and may contribute to folate and acetyl CoA homeostasis. NAT enzymes act through a catalytic triad of Cys, His and Asp with the architecture of the active site-modulating specificity. Polymorphisms may cause unfolded protein. The C-terminus helps bind acetyl CoA and differs among NATs including prokaryotic homologues. NAT in Salmonella typhimurium supports carcinogen activation and NAT in mycobacteria metabolizes isoniazid with polymorphism a minor factor in isoniazid resistance. Importantly, nat is in a gene cluster essential for Mycobacterium tuberculosis survival inside macrophages. NAT inhibitors are a starting point for novel anti-tuberculosis drugs. Human NAT1-specific inhibitors may act in biomarker detection in breast cancer and in cancer therapy. NAT inhibitors for co-administration with 5-aminosalicylate (5-AS) in inflammatory bowel disease has prompted ongoing investigations of azoreductases in gut bacteria which release 5-AS from prodrugs including balsalazide. PMID:24467436

  15. Risks on N-acetyltransferase 2 and bladder cancer: a meta-analysis

    PubMed Central

    Zhu, Zongheng; Zhang, Jinshan; Jiang, Wei; Zhang, Xianjue; Li, Youkong; Xu, Xiaoming

    2015-01-01

    Background It is known that bladder cancer disease is closely related to aromatic amine compounds, which could cause cancer by regulating of N-acetylation and N-acetyltransferase 1 and 2 (NAT1 and NAT2). The NAT2 slowed acetylation and would increase the risk of bladder cancer, with tobacco smoke being regarded as a risk factor for this increased risk. However, the relationship between NAT2 slow acetylation and bladder cancer is still debatable at present. This study aims to explore preliminarily correlation of NAT2 slow acetylation and the risk of bladder cancer. Methods The articles were searched from PubMed, Cochran, McGrane English databases, CBM, CNKI, and other databases. The extraction of bladder cancer patients and a control group related with the NAT2 gene were detected by the state, and the referenced articles and publications were also used for data retrieval. Using a random effects model, the model assumes that the studies included in the analysis cases belong to the overall population in the study of random sampling, and considering the variables within and between studies. Data were analyzed using STATA Version 6.0 software, using the META module. According to the inclusion and exclusion criteria of the literature study, 20 independent studies are included in this meta-analysis. Results The results showed that the individual differences of bladder cancer susceptibility might be part of the metabolism of carcinogens. Slow acetylation status of bladder cancer associated with the pooled odds ratio was 1.31 (95% confidence interval: 1.11–1.55). Conclusion The status of NAT2 slow N-acetylation is associated with bladder cancer risks, and may increase the risk of bladder cancer. PMID:26715854

  16. Choline acetyltransferase mutations causing congenital myasthenic syndrome: molecular findings and genotype-phenotype correlations

    PubMed Central

    Arredondo, Juan; Lara, Marian; Gospe, Sídney M.; Mazia, Claudio G.; Vaccarezza, Maria; Garcia-Erro, Marcela; Bowe, Constance; Chang, Celia; Mezei, Michelle; Maselli, Ricardo A.

    2015-01-01

    Choline acetyltransferase catalyzes the synthesis of acetylcholine at cholinergic nerves. Mutations in human CHAT cause a congenital myasthenic syndrome (CMS) due to impaired synthesis of ACh; this severe variant of the disease is frequently associated with unexpected episodes of potentially fatal apnea. The severity of this condition varies remarkably, and the molecular factors determining this variability are poorly understood. Furthermore, genotype–phenotype correlations have been difficult to establish in patients with biallelic mutations. We analyzed the protein expression of seven ChAT mutations, p.Val136Met, p.Arg207His, p.Arg186Trp, p.Val194Leu, p.Pro211Ala, p.Arg566Cys and p.Ser694Cys, in HEK-293 cells to phosphorylated ChAT, determined their enzyme kinetics and thermal instability, and examined their structural changes. Three mutations, p.Arg207His, p.Arg186Trp and p.Arg566Cys, are novel, and p.Val136Met and p.Arg207His are homozygous in three families and associated with severe disease. The characterization of mutants showed a decrease in the overall catalytic efficiency of ChAT; in particular, those located near the active-site tunnel produced the most seriously disruptive phenotypic effects. On the other hand, p.Val136Met is located far from both active and substrate-binding sites produced the most drastic reduction of ChAT expression. Overall, CHAT mutations producing low enzyme expression and severe kinetic effects are associated with the most severe phenotypes. PMID:26080897

  17. Functional Consequences and Structural Interpretation of Mutations of Human Choline Acetyltransferase

    PubMed Central

    Shen, Xin-Ming; Crawford, Thomas O.; Brengman, Joan; Acsadi, Gyula; Iannaconne, Susan; Karaca, Emin; Khoury, Chaouky; Mah, Jean K.; Edvardson, Shimon; Bajzer, Zeljko; Rodgers, David; Engel, Andrew G.

    2011-01-01

    Choline acetyltransferase (ChAT; EC 2.3.1.6) catalyzes synthesis of acetylcholine from acetyl-CoA and choline in cholinergic neurons. Mutations in CHAT (MIM # 118490) cause potentially lethal congenital myasthenic syndromes associated with episodic apnea (ChAT-CMS) (MIM # 254210). Here we analyze the functional consequences of 12 missense and 1 nonsense mutations of CHAT in 11 patients. Nine of the mutations are novel. We examine expression of the recombinant missense mutants in Bosc 23 cells, determine their kinetic properties and thermal stability, and interpret the functional effects of 11 mutations in the context of the atomic structural model of human ChAT. Five mutations (p.Trp421Ser, p.Ser498Pro, p.Thr553Asn, p.Ala557Thr, p.Ser572Trp) reduce enzyme expression to <50% of wild-type. Mutations with severe kinetic effects are located in the active-site tunnel (p.Met202Arg, p.Thr553Asn and p.Ala557Thr) or adjacent to the substrate binding site (p.Ser572Trp), or exert their effect allosterically (p.Trp421Ser and p.Ile689Ser). Two mutations with milder kinetic effects (p.Val136Met, p.Ala235Thr) are also predicted to act allosterically. One mutation (p.Thr608Asn) below the nucleotide binding site of CoA enhances dissociation of AcCoA from the enzyme-substrate complex. Two mutations introducing a proline residue into an α-helix (p.Ser498Pro and p.Ser704Pro) impair the thermal stability of ChAT. PMID:21786365

  18. N-acetyltransferase 2, exposure to aromatic and heterocyclic amines, and receptor-defined breast cancer.

    PubMed

    Rabstein, Sylvia; Brüning, Thomas; Harth, Volker; Fischer, Hans-Peter; Haas, Susanne; Weiss, Tobias; Spickenheuer, Anne; Pierl, Christiane; Justenhoven, Christina; Illig, Thomas; Vollmert, Caren; Baisch, Christian; Ko, Yon-Dschun; Hamann, Ute; Brauch, Hiltrud; Pesch, Beate

    2010-03-01

    The role of N-acetyltransferase 2 (NAT2) polymorphism in breast cancer is still unclear. We explored the associations between potential sources of exposure to aromatic and heterocyclic amines (AHA), acetylation status and receptor-defined breast cancer in 1020 incident cases and 1047 population controls of the German GENICA study. Acetylation status was assessed as slow or fast. Therefore, NAT2 haplotypes were estimated using genotype information from six NAT2 polymorphisms. Most probable haplotypes served as alleles for the deduction of NAT2 acetylation status. The risks of developing estrogen receptor alpha (ER) and progesterone receptor (PR)-positive or negative tumors were estimated for tobacco smoking, consumption of red meat, grilled food, coffee, and tea, as well as expert-rated occupational exposure to AHA with logistic regression conditional on age and adjusted for potential confounders. Joint effects of these factors and NAT2 acetylation status were investigated. Frequent consumption of grilled food and coffee showed higher risks in slow acetylators for receptor-negative tumors [grilled food: ER-: odds ratio (OR) 2.57, 95% confidence interval (CI) 1.07-6.14 for regular vs. rare; coffee: ER-: OR 2.55, 95% CI 1.22-5.33 for >or=4 vs. 0 cups/day]. We observed slightly higher risks for never smokers that are fast acetylators for receptor-positive tumors compared with slow acetylators (ER-: OR 1.32, 95% CI 1.00-1.73). Our results support differing risk patterns for receptor-defined breast cancer. However, the modifying role of NAT2 for receptor-defined breast cancer is difficult to interpret in the light of complex mixtures of exposure to AHA. PMID:19996973

  19. Effect of arylamine acetyltransferase Nat3 gene knockout on N-acetylation in the mouse.

    PubMed

    Sugamori, K S; Brenneman, D; Wong, S; Gaedigk, A; Yu, V; Abramovici, H; Rozmahel, R; Grant, D M

    2007-07-01

    Arylamine N-acetyltransferases (NAT) catalyze the biotransformation of many important arylamine drugs and procarcinogens. NAT can either detoxify or activate procarcinogens, complicating the manner in which these enzymes may participate in enhancing or preventing toxic responses to particular agents. Mice possess three NAT isoenzymes: Nat1, Nat2, and Nat3. Whereas Nat1 and Nat2 can efficiently acetylate many arylamines, few substrates appear to be appreciably metabolized by Nat3. We generated a Nat3 knockout mouse strain and used it along with our double Nat1/2(-/-) knockout strain to further investigate the functional role of Nat3. Nat3(-/-) mice showed normal viability and reproductive capacity. Nat3 expression was very low in wild-type animals and completely undetectable in Nat3(-/-) mice. In contrast, greatly elevated expression of Nat3 transcript was observed in Nat1/2(-/-) mice. We used a transcribed marker polymorphism approach to establish that the increased expression of Nat3 in Nat1/2(-/-) mice is a positional artifact of insertion of the phosphoglycerate kinase-neomycin resistance cassette in place of the Nat1/Nat2 gene region and upstream of the intact Nat3 gene, rather than a biological compensatory mechanism. Despite the increase in Nat3 transcript, the N-acetylation of p-aminosalicylate, sulfamethazine, 2-aminofluorene, and 4-aminobiphenyl was undetectable either in vivo or in vitro in Nat1/2(-/-) animals. In parallel, no difference was observed in the in vivo clearance or in vitro metabolism of any of these substrates between wild-type and Nat3(-/-) mice. Thus, Nat3 is unlikely to play a significant role in the N-acetylation of arylamines either in wild-type mice or in mice lacking Nat1 and Nat2 activities. PMID:17403913

  20. N-acetyltransferase polymorphisms are associated with risk of lymphoma subtypes.

    PubMed

    Cocco, Pierluigi; Zucca, Mariagrazia; Sanna, Sonia; Satta, Giannina; Nonne, Tinucia; Angelucci, Emanuele; Gabbas, Attilio; Rais, Marco; Malpeli, Giorgio; Campagna, Marcello; Scarpa, Aldo; G Ennas, Maria

    2016-06-01

    Genes encoding for arylamine N-acetyltransferase 1 and 2 (NAT1 and NAT2) have been investigated with alternate findings in relation to risk of non-Hodgkin lymphoma (NHL). We tested functional haplotype-based NAT1 and NAT2 gene polymorphisms in relation to risk of lymphoma overall and its major B cell subtypes, diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL) and chronic lymphocytic leukaemia (CLL). We used allele specific primers and multiplex PCR to detect NAT1 and NAT2 haplotypes in 248 patients with incident lymphoma and 208 population controls. We inferred the NAT1 rapid and slow acetylator and the NAT2 rapid, intermediate or slow acetylator phenotype, based on published functional data on the respective genotypes. Odds ratios and 95% confidence intervals (95% CIs) for lymphoma, B-NHL, DLBCL, FL, CLL, and other B-NHL combined associated with the inferred rapid NAT1 acetylator and with the intermediate and slow NAT2 acetylator phenotypes were estimated with unconditional and polytomous logistic regression analysis, adjusting for age, gender and education. NAT1 rapid acetylators showed a 2.8-fold excess risk (95% CI 1.5-5.2) for lymphoma (all subtypes combined). Risk was highest for CLL and FL, with significant heterogeneity detected across subtypes. Risk also increased with decreasing NAT2 acetylating capacity with no heterogeneity detected across B cell lymphoma subtypes. Risks did not vary by gender. Although poor statistical power was a major limitation in our study, larger studies and pooled analyses are warranted to test whether NAT1 and NAT2 gene polymorphisms might modulate risk of specific lymphoma subtypes through the varying metabolic activity of their products. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25689677

  1. Small interfering RNA suppression of polyamine analog-induced spermidine/spermine n1-acetyltransferase.

    PubMed

    Chen, Ying; Kramer, Debora L; Jell, Jason; Vujcic, Slavoljub; Porter, Carl W

    2003-11-01

    N1,N11-diethylnorspermine (DENSPM) is a polyamine analog that down-regulates polyamine biosynthesis and potently upregulates the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SSAT). In certain cells, such as SKMEL-28 human melanoma cells, induction of SSAT is associated with rapid apoptosis. In this study, we used small interfering RNA (siRNA) to examine the role of SSAT induction in mediating polyamine pool depletion and apoptosis. siRNA duplexes were designed to target three independent sites in the SSAT mRNA coding region (siSSAT). When transfected under nontoxic conditions, two of the duplexes selectively reduced basal SSAT mRNA in HEK-293 cells by >80% and prevented DENSPM-induced SSAT mRNA by 95% in SK-MEL-28 cells. Treatment of SK-MEL-28 cells with 10 muM DENSPM in the presence of 83 nM siSSAT selectively prevented the 1400-fold induction of SSAT activity by approximately 90% and, in turn, prevented analog depletion of spermine (Spm) pools by approximately 35%. siSSAT also prevented DENSPM-induced cytochrome c release and caspase-3 cleavage at 36 h and apoptosis at 48 h as measured by annexin V staining. Overall, the data directly link analog induction of SSAT to Spm pool depletion and to caspase-dependent apoptosis in DENSPM-treated SK-MEL-28 cells. This represents the first use of siRNA technology directed toward a polyamine gene and the first unequivocal demonstration that SSAT induction initiates events leading to polyamine analog-induced apoptosis. PMID:14573765

  2. Garcinol, a Histone Acetyltransferase Inhibitor, Radiosensitizes Cancer Cells by Inhibiting Non-Homologous End Joining

    SciTech Connect

    Oike, Takahiro; Ogiwara, Hideaki; Torikai, Kohta; Nakano, Takashi; Yokota, Jun; Kohno, Takashi

    2012-11-01

    Purpose: Non-homologous end joining (NHEJ), a major pathway used to repair DNA double-strand breaks (DSBs) generated by ionizing radiation (IR), requires chromatin remodeling at DSB sites through the acetylation of histones by histone acetyltransferases (HATs). However, the effect of compounds with HAT inhibitory activities on the DNA damage response (DDR), including the NHEJ and cell cycle checkpoint, as well as on the radiosensitivity of cancer cells, remains largely unclear. Here, we investigated whether garcinol, a HAT inhibitor found in the rinds of Garcinia indica fruit (called mangosteens), has effects on DDR, and whether it can be used for radiosensitization. Methods and Materials: The following assays were used to examine the effect of garcinol on the inhibition of DSB repair, including the following: a conventional neutral comet assay; a cell-based assay recently developed by us, in which NHEJ repair of DSBs on chromosomal DNA was evaluated; the micrococcal nuclease sensitivity assay; and immunoblotting for autophosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs). We assessed the effect of garcinol on the cell cycle checkpoint after IR treatment by analyzing the phosphorylation levels of checkpoint kinases CHK1 and CHK2 and histone H3, and by cell cycle profile analysis using flow cytometry. The radiosensitizing effect of garcinol was assessed by a clonogenic survival assay, whereas its effects on apoptosis and senescence were examined by annexin V and senescence-associated {beta}-galactosidase (SA-{beta}-Gal) staining, respectively. Results: We found that garcinol inhibits DSB repair, including NHEJ, without affecting cell cycle checkpoint. Garcinol radiosensitized A549 lung and HeLa cervical carcinoma cells with dose enhancement ratios (at 10% surviving fraction) of 1.6 and 1.5, respectively. Cellular senescence induced by IR was enhanced by garcinol. Conclusion: These results suggest that garcinol is a radiosensitizer that

  3. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery

    PubMed Central

    Sim, E; Abuhammad, A; Ryan, A

    2014-01-01

    Arylamine N-acetyltransferases (NATs) are polymorphic drug-metabolizing enzymes, acetylating arylamine carcinogens and drugs including hydralazine and sulphonamides. The slow NAT phenotype increases susceptibility to hydralazine and isoniazid toxicity and to occupational bladder cancer. The two polymorphic human NAT loci show linkage disequilibrium. All mammalian Nat genes have an intronless open reading frame and non-coding exons. The human gene products NAT1 and NAT2 have distinct substrate specificities: NAT2 acetylates hydralazine and human NAT1 acetylates p-aminosalicylate (p-AS) and the folate catabolite para-aminobenzoylglutamate (p-abaglu). Human NAT2 is mainly in liver and gut. Human NAT1 and its murine homologue are in many adult tissues and in early embryos. Human NAT1 is strongly expressed in oestrogen receptor-positive breast cancer and may contribute to folate and acetyl CoA homeostasis. NAT enzymes act through a catalytic triad of Cys, His and Asp with the architecture of the active site-modulating specificity. Polymorphisms may cause unfolded protein. The C-terminus helps bind acetyl CoA and differs among NATs including prokaryotic homologues. NAT in Salmonella typhimurium supports carcinogen activation and NAT in mycobacteria metabolizes isoniazid with polymorphism a minor factor in isoniazid resistance. Importantly, nat is in a gene cluster essential for Mycobacterium tuberculosis survival inside macrophages. NAT inhibitors are a starting point for novel anti-tuberculosis drugs. Human NAT1-specific inhibitors may act in biomarker detection in breast cancer and in cancer therapy. NAT inhibitors for co-administration with 5-aminosalicylate (5-AS) in inflammatory bowel disease has prompted ongoing investigations of azoreductases in gut bacteria which release 5-AS from prodrugs including balsalazide. PMID:24467436

  4. Arylamine N-Acetyltransferase 2 (NAT2) Genetic Diversity and Traditional Subsistence: A Worldwide Population Survey

    PubMed Central

    Sabbagh, Audrey; Darlu, Pierre; Crouau-Roy, Brigitte; Poloni, Estella S.

    2011-01-01

    Arylamine N-acetyltransferase 2 (NAT2) is involved in human physiological responses to a variety of xenobiotic compounds, including common therapeutic drugs and exogenous chemicals present in the diet and the environment. Many questions remain about the evolutionary mechanisms that have led to the high prevalence of slow acetylators in the human species. Evidence from recent surveys of NAT2 gene variation suggests that NAT2 slow-causing variants might have become targets of positive selection as a consequence of the shift in modes of subsistence and lifestyle in human populations in the last 10,000 years. We aimed to test more extensively the hypothesis that slow acetylation prevalence in humans is related to the subsistence strategy adopted by the past populations. To this end, published frequency data on the most relevant genetic variants of NAT2 were collected from 128 population samples (14,679 individuals) representing different subsistence modes and dietary habits, allowing a thorough analysis at both a worldwide and continent scale. A significantly higher prevalence of the slow acetylation phenotype was observed in populations practicing farming (45.4%) and herding (48.2%) as compared to populations mostly relying on hunting and gathering (22.4%) (P = 0.0007). This was closely mirrored by the frequency of the slow 590A variant that was found to occur at a three-fold higher frequency in food producers (25%) as compared to hunter-gatherers (8%). These findings are consistent with the hypothesis that the Neolithic transition to subsistence economies based on agricultural and pastoral resources modified the selective regime affecting the NAT2 acetylation pathway. Furthermore, the vast amount of data collected enabled us to provide a comprehensive and up-to-date description of NAT2 worldwide genetic diversity, thus building up a useful resource of frequency data for further studies interested in epidemiological or anthropological research questions involving

  5. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds

    PubMed Central

    Durrett, Timothy P.; McClosky, Daniel D.; Tumaney, Ajay W.; Elzinga, Dezi A.; Ohlrogge, John; Pollard, Mike

    2010-01-01

    Endosperm and embryo tissues from the seeds of Euonymus alatus (Burning Bush) accumulate high levels of 3-acetyl-1,2-diacyl-sn-glycerols (acTAGs) as their major storage lipids. In contrast, the aril tissue surrounding the seed produces long-chain triacylglycerols (lcTAGs) typical of most other organisms. The presence of the sn-3 acetyl group imparts acTAGs with different physical and chemical properties, such as a 30% reduction in viscosity, compared to lcTAGs. Comparative transcriptome analysis of developing endosperm and aril tissues using pyrosequencing technology was performed to isolate the enzyme necessary for the synthesis of acTAGs. An uncharacterized membrane-bound O-acyltransferase (MBOAT) family member was the most abundant acyltransferase in the endosperm but was absent from the aril. Expression of this MBOAT in yeast resulted in the accumulation of acTAGs but not lcTAG; hence, the enzyme was named EaDAcT (Euonymus alatus diacylglycerol acetyltransferase). Yeast microsomes expressing EaDAcT possessed acetyl-CoA diacylglycerol acetyltransferase activity but lacked long-chain acyl-CoA diacylglycerol acyltransferase activity. Expression of EaDAcT under the control of a strong, seed-specific promoter in Arabidopsis resulted in the accumulation of acTAGs, up to 40 mol % of total TAG in the seed oil. These results demonstrate the utility of deep transcriptional profiling with multiple tissues as a gene discovery strategy for low-abundance proteins. They also show that EaDAcT is the acetyltransferase necessary and sufficient for the production of acTAGs in Euonymus seeds, and that this activity can be introduced into the seeds of other plants, allowing the evaluation of these unusual TAGs for biofuel and other applications. PMID:20439724

  6. Crystal structures of tubulin acetyltransferase reveal a conserved catalytic core and the plasticity of the essential N terminus.

    PubMed

    Kormendi, Vasilisa; Szyk, Agnieszka; Piszczek, Grzegorz; Roll-Mecak, Antonina

    2012-12-01

    Tubulin acetyltransferase (TAT) acetylates Lys-40 of α-tubulin in the microtubule lumen. TAT is inefficient, and its activity is enhanced when tubulin is incorporated in microtubules. Acetylation is associated with stable microtubules and regulates the binding of microtubule motors and associated proteins. TAT is important in neuronal polarity and mechanosensation, and decreased tubulin acetylation levels are associated with axonal transport defects and neurodegeneration. We present the first structure of TAT in complex with acetyl-CoA (Ac-CoA) at 2.7 Å resolution. The structure reveals a conserved stable catalytic core shared with other GCN5 superfamily acetyltransferases consisting of a central β-sheet flanked by α-helices and a C-terminal β-hairpin unique to TAT. Structure-guided mutagenesis establishes the molecular determinants for Ac-CoA and tubulin substrate recognition. The wild-type TAT construct is a monomer in solution. We identify a metastable interface between the conserved core and N-terminal domain that modulates the oligomerization of TAT in solution and is essential for activity. The 2.45 Å resolution structure of an inactive TAT construct with an active site point mutation near this interface reveals a domain-swapped dimer in which the functionally essential N terminus shows evidence of marked structural plasticity. The sequence segment corresponding to this structurally plastic region in TAT has been implicated in substrate recognition in other GCN5 superfamily acetyltransferases. Our structures provide a rational platform for the mechanistic dissection of TAT activity and the design of TAT inhibitors with therapeutic potential in neuronal regeneration. PMID:23105108

  7. Human NAT10 Is an ATP-dependent RNA Acetyltransferase Responsible for N4-Acetylcytidine Formation in 18 S Ribosomal RNA (rRNA)*

    PubMed Central

    Ito, Satoshi; Horikawa, Sayuri; Suzuki, Tateki; Kawauchi, Hiroki; Tanaka, Yoshikazu; Suzuki, Takeo; Suzuki, Tsutomu

    2014-01-01

    Human N-acetyltransferase 10 (NAT10) is known to be a lysine acetyltransferase that targets microtubules and histones and plays an important role in cell division. NAT10 is highly expressed in malignant tumors, and is also a promising target for therapies against laminopathies and premature aging. Here we report that NAT10 is an ATP-dependent RNA acetyltransferase responsible for formation of N4-acetylcytidine (ac4C) at position 1842 in the terminal helix of mammalian 18 S rRNA. RNAi-mediated knockdown of NAT10 resulted in growth retardation of human cells, and this was accompanied by high-level accumulation of the 30 S precursor of 18 S rRNA, suggesting that ac4C1842 formation catalyzed by NAT10 is involved in rRNA processing and ribosome biogenesis. PMID:25411247

  8. A unique GCN5-related glucosamine N-acetyltransferase region exist in the fungal multi-domain glycoside hydrolase family 3 β-N-acetylglucosaminidase

    PubMed Central

    Qin, Zhen; Xiao, Yibei; Yang, Xinbin; Mesters, Jeroen R.; Yang, Shaoqing; Jiang, Zhengqiang

    2015-01-01

    Glycoside hydrolase (GH) family 3 β-N-acetylglucosaminidases widely exist in the filamentous fungi, which may play a key role in chitin metabolism of fungi. A multi-domain GH family 3 β-N-acetylglucosaminidase from Rhizomucor miehei (RmNag), exhibiting a potential N-acetyltransferase region, has been recently reported to show great potential in industrial applications. In this study, the crystal structure of RmNag was determined at 2.80 Å resolution. The three-dimensional structure of RmNag showed four distinctive domains, which belong to two distinguishable functional regions — a GH family 3 β-N-acetylglucosaminidase region (N-terminal) and a N-acetyltransferase region (C-terminal). From structural and functional analysis, the C-terminal region of RmNag was identified as a unique tandem array linking general control non-derepressible 5 (GCN5)-related N-acetyltransferase (GNAT), which displayed glucosamine N-acetyltransferase activity. Structural analysis of this glucosamine N-acetyltransferase region revealed that a unique glucosamine binding pocket is located in the pantetheine arm binding terminal region of the conserved CoA binding pocket, which is different from all known GNAT members. This is the first structural report of a glucosamine N-acetyltransferase, which provides novel structural information about substrate specificity of GNATs. The structural and functional features of this multi-domain β-N-acetylglucosaminidase could be useful in studying the catalytic mechanism of GH family 3 proteins. PMID:26669854

  9. A unique GCN5-related glucosamine N-acetyltransferase region exist in the fungal multi-domain glycoside hydrolase family 3 β-N-acetylglucosaminidase.

    PubMed

    Qin, Zhen; Xiao, Yibei; Yang, Xinbin; Mesters, Jeroen R; Yang, Shaoqing; Jiang, Zhengqiang

    2015-01-01

    Glycoside hydrolase (GH) family 3 β-N-acetylglucosaminidases widely exist in the filamentous fungi, which may play a key role in chitin metabolism of fungi. A multi-domain GH family 3 β-N-acetylglucosaminidase from Rhizomucor miehei (RmNag), exhibiting a potential N-acetyltransferase region, has been recently reported to show great potential in industrial applications. In this study, the crystal structure of RmNag was determined at 2.80 Å resolution. The three-dimensional structure of RmNag showed four distinctive domains, which belong to two distinguishable functional regions--a GH family 3 β-N-acetylglucosaminidase region (N-terminal) and a N-acetyltransferase region (C-terminal). From structural and functional analysis, the C-terminal region of RmNag was identified as a unique tandem array linking general control non-derepressible 5 (GCN5)-related N-acetyltransferase (GNAT), which displayed glucosamine N-acetyltransferase activity. Structural analysis of this glucosamine N-acetyltransferase region revealed that a unique glucosamine binding pocket is located in the pantetheine arm binding terminal region of the conserved CoA binding pocket, which is different from all known GNAT members. This is the first structural report of a glucosamine N-acetyltransferase, which provides novel structural information about substrate specificity of GNATs. The structural and functional features of this multi-domain β-N-acetylglucosaminidase could be useful in studying the catalytic mechanism of GH family 3 proteins. PMID:26669854

  10. Three-dimensional structure of a Streptomyces sviceus GNAT acetyltransferase with similarity to the C-terminal domain of the human GH84 O-GlcNAcase

    SciTech Connect

    He, Yuan; Roth, Christian; Turkenburg, Johan P.; Davies, Gideon J.

    2014-01-01

    The crystal structure of a bacterial acetyltransferase with 27% sequence identity to the C-terminal domain of human O-GlcNAcase has been solved at 1.5 Å resolution. This S. sviceus protein is compared with known GCN5-related acetyltransferases, adding to the diversity observed in this superfamily. The mammalian O-GlcNAc hydrolysing enzyme O-GlcNAcase (OGA) is a multi-domain protein with glycoside hydrolase activity in the N-terminus and with a C-terminal domain that has low sequence similarity to known acetyltransferases, prompting speculation, albeit controversial, that the C-terminal domain may function as a histone acetyltransferase (HAT). There are currently scarce data available regarding the structure and function of this C-terminal region. Here, a bacterial homologue of the human OGA C-terminal domain, an acetyltransferase protein (accession No. ZP-05014886) from Streptomyces sviceus (SsAT), was cloned and its crystal structure was solved to high resolution. The structure reveals a conserved protein core that has considerable structural homology to the acetyl-CoA (AcCoA) binding site of GCN5-related acetyltransferases (GNATs). Calorimetric data further confirm that SsAT is indeed able to bind AcCoA in solution with micromolar affinity. Detailed structural analysis provided insight into the binding of AcCoA. An acceptor-binding cavity was identified, indicating that the physiological substrate of SsAT may be a small molecule. Consistent with recently published work, the SsAT structure further questions a HAT function for the human OGA domain.

  11. Histone acetyltransferase HAT4 modulates navigation across G2/M and re-entry into G1 in Leishmania donovani

    PubMed Central

    Yadav, Aarti; Chandra, Udita; Saha, Swati

    2016-01-01

    Histone acetyltransferases impact multiple processes. This study investigates the role of histone acetyltransferase HAT4 in Leishmania donovani. Though HAT4 was dispensable for survival, its elimination decreased cell viability and caused cell cycle defects, with HAT4-nulls experiencing an unusually long G2/M. Survival of HAT4-nulls in macrophages was also substantially compromised. DNA microarray analysis revealed that HAT4 modestly regulated the expression of only a select number of genes, thus not being a major modulator of global gene expression. Significantly, cdc20 was among the downregulated genes. To ascertain if decreased expression of cdc20 was responsible for HAT4-null growth and cell cycle defects we expressed LdCdc20 ectopically in HAT4-nulls. We found this to alleviate the aberrant growth and cell cycle progression patterns displayed by HAT4-nulls, with cells navigating G2/M phase and re-entering G1 phase smoothly. HAT4-nulls expressing LdCdc20 ectopically showed survival rates comparable to wild type within macrophages, suggesting that G2/M defects were responsible for poor survival of HAT4-nulls within host cells also. These are the first data analyzing the in vivo functional role of HAT4 in any trypanosomatid. Our results directly demonstrate for the first time a role for Cdc20 in regulating trypanosomatid G2/M events, opening avenues for further research in this area. PMID:27272906

  12. Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts.

    PubMed

    Byeon, Yeong; Yool Lee, Hyoung; Choi, Dong-Woog; Back, Kyoungwhan

    2015-02-01

    Melatonin biosynthesis involves the N-acetylation of arylalkylamines such as serotonin, which is catalysed by serotonin N-acetyltransferase (SNAT), the penultimate enzyme of melatonin biosynthesis in both animals and plants. Here, we report the functional characterization of a putative N-acetyltransferase gene in the chloroplast genome of the alga laver (Pyropia yezoensis, formerly known as Porphyra yezoensis) with homology to the rice SNAT gene. To confirm that the putative Pyropia yezoensis SNAT (PySNAT) gene encodes an SNAT, we cloned the full-length chloroplastidic PySNAT gene by PCR and purified the recombinant PySNAT protein from Escherichia coli. PySNAT was 174 aa and had 50% amino acid identity with cyanobacteria SNAT. Purified recombinant PySNAT showed a peak activity at 55 °C with a K m of 467 µM and V max of 28 nmol min-1 mg(-1) of protein. Unlike other plant SNATs, PySNAT localized to the cytoplasm due to a lack of N-terminal chloroplast transit peptides. Melatonin was present at 0.16ng g(-1) of fresh mass but increased during heat stress. Phylogenetic analysis of the sequence suggested that PySNAT has evolved from the cyanobacteria SNAT gene via endosymbiotic gene transfer. Additionally, the chloroplast transit peptides of plant SNATs were acquired 1500 million years ago, concurrent with the appearance of green algae. PMID:25183745

  13. A novel role for the histone acetyltransferase Hat1 in the CENP-A/CID assembly pathway in Drosophila melanogaster

    PubMed Central

    Boltengagen, Mark; Huang, Anming; Boltengagen, Anastasiya; Trixl, Lukas; Lindner, Herbert; Kremser, Leopold; Offterdinger, Martin; Lusser, Alexandra

    2016-01-01

    The incorporation of CENP-A into centromeric chromatin is an essential prerequisite for kinetochore formation. Yet, the molecular mechanisms governing this process are surprisingly divergent in different organisms. While CENP-A loading mechanisms have been studied in some detail in mammals, there are still large gaps to our understanding of CENP-A/Cid loading pathways in Drosophila. Here, we report on the characterization and delineation of at least three different CENP-A preloading complexes in Drosophila. Two complexes contain the CENP-A chaperones CAL1, FACT and/or Caf1/Rbap48. Notably, we identified a novel complex consisting of the histone acetyltransferase Hat1, Caf1 and CENP-A/H4. We show that Hat1 is required for proper CENP-A loading into chromatin, since knock-down in S2 cells leads to reduced incorporation of newly synthesized CENP-A. In addition, we demonstrate that CENP-A/Cid interacts with the HAT1 complex via an N-terminal region, which is acetylated in cytoplasmic but not in nuclear CENP-A. Since Hat1 is not responsible for acetylation of CENP-A/Cid, these results suggest a histone acetyltransferase activity-independent escort function for Hat1. Thus, our results point toward intriguing analogies between the complex processing pathways of newly synthesized CENP-A and canonical histones. PMID:26586808

  14. Crystallization and preliminary X-ray characterization of arylamine N-acetyltransferase C (BanatC) from Bacillus anthracis

    SciTech Connect

    Pluvinage, Benjamin; Li de la Sierra-Gallay, Inés; Martins, Marta; Ragunathan, Nilusha; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2007-10-01

    Bacillus anthracis arylamine N-acetyltransferase C (BanatC) is an enzyme that metabolizes the drug sulfamethoxazole. Crystals of the purified enzyme that diffract at 1.95 Å are reported. The arylamine N-acetyltransferase (NAT) enzymes are xenobiotic metabolizing enzymes that have been found in a large range of eukaryotes and prokaryotes. These enzymes catalyse the acetylation of arylamine drugs and/or pollutants. Recently, a Bacillus anthracis NAT isoform (BanatC) has been cloned and shown to acetylate the sulfonamide antimicrobial sulfamethoxazole (SMX). Subsequently, it was shown that BanatC contributes to the resistance of this bacterium to SMX. Here, the crystallization and the X-ray characterization of BanatC (Y38F mutant) are reported. The crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 53.70, c = 172.40 Å, and diffract to 1.95 Å resolution on a synchrotron source.

  15. The UmGcn5 gene encoding histone acetyltransferase from Ustilago maydis is involved in dimorphism and virulence.

    PubMed

    González-Prieto, Juan Manuel; Rosas-Quijano, Raymundo; Domínguez, Angel; Ruiz-Herrera, José

    2014-10-01

    We isolated a gene encoding a histone acetyltransferase from Ustilago maydis (DC.) Cda., which is orthologous to the Saccharomyces cerevisiae GCN5 gene. The gene was isolated from genomic clones identified by their specific hybridization to a gene fragment obtained by the polymerase chain reaction (PCR). This gene (Umgcn5; um05168) contains an open reading frame (ORF) of 1421bp that encodes a putative protein of 473 amino acids with a Mr. of 52.6kDa. The protein exhibits a high degree of homology with histone acetyltransferases from different organisms. Null a2b2 ΔUmgcn5 mutants were constructed by substitution of the region encoding the catalytic site with a hygromycin B resistance cassette. Null a1b1 ΔUmgcn5 mutants were isolated from genetic crosses of a2b2 ΔUmgcn5 and a1b1 wild-type strains in maize. Mutants displayed a slight reduction in growth rate under different conditions, and were more sensitive than the wild type to stress conditions, but more important, they grew as long mycelial cells, and formed fuzz-like colonies under all conditions where wild-type strains grew in the yeast-like morphology and formed smooth colonies. This phenotype was not reverted by cAMP addition. Mutants were not virulent to maize plants, and were unable to form teliospores. These phenotypic alterations of the mutants were reverted by their transformation with the wild-type gene. PMID:25242418

  16. The polyamine N-acetyltransferase-like enzyme PmvE plays a role in the virulence of Enterococcus faecalis.

    PubMed

    Martini, Cecilia; Michaux, Charlotte; Bugli, Francesca; Arcovito, Alessandro; Iavarone, Federica; Cacaci, Margherita; Paroni Sterbini, Francesco; Hartke, Axel; Sauvageot, Nicolas; Sanguinetti, Maurizio; Posteraro, Brunella; Giard, Jean-Christophe

    2015-01-01

    We previously showed that the mutant strain of Enterococcus faecalis lacking the transcriptional regulator SlyA is more virulent than the parental strain. We hypothesized that this phenotype was due to overexpression of the second gene of the slyA operon, ef_3001, renamed pmvE (for polyamine metabolism and virulence of E. faecalis). PmvE shares strong homologies with N(1)-spermidine/spermine acetyltransferase enzymes involved in the metabolism of polyamines. In this study, we used an E. faecalis strain carrying the recombinant plasmid pMSP3535-pmvE (V19/p3535-pmvE), which allows the induction of pmvE by addition of nisin. Thereby, we showed that the overexpression of PmvE increased the virulence of E. faecalis in the Galleria mellonella infection model, as well as the persistence within peritoneal macrophages. We were also able to show a direct interaction between the His-tagged recombinant PmvE (rPmvE) protein and putrescine by the surface plasmon resonance (SPR) technique on a Biacore instrument. Moreover, biochemical assays showed that PmvE possesses an N-acetyltransferase activity toward polyamine substrates. Our results suggest that PmvE contributes to the virulence of E. faecalis, likely through its involvement in the polyamine metabolism. PMID:25385793

  17. Histone acetyltransferase HAT4 modulates navigation across G2/M and re-entry into G1 in Leishmania donovani.

    PubMed

    Yadav, Aarti; Chandra, Udita; Saha, Swati

    2016-01-01

    Histone acetyltransferases impact multiple processes. This study investigates the role of histone acetyltransferase HAT4 in Leishmania donovani. Though HAT4 was dispensable for survival, its elimination decreased cell viability and caused cell cycle defects, with HAT4-nulls experiencing an unusually long G2/M. Survival of HAT4-nulls in macrophages was also substantially compromised. DNA microarray analysis revealed that HAT4 modestly regulated the expression of only a select number of genes, thus not being a major modulator of global gene expression. Significantly, cdc20 was among the downregulated genes. To ascertain if decreased expression of cdc20 was responsible for HAT4-null growth and cell cycle defects we expressed LdCdc20 ectopically in HAT4-nulls. We found this to alleviate the aberrant growth and cell cycle progression patterns displayed by HAT4-nulls, with cells navigating G2/M phase and re-entering G1 phase smoothly. HAT4-nulls expressing LdCdc20 ectopically showed survival rates comparable to wild type within macrophages, suggesting that G2/M defects were responsible for poor survival of HAT4-nulls within host cells also. These are the first data analyzing the in vivo functional role of HAT4 in any trypanosomatid. Our results directly demonstrate for the first time a role for Cdc20 in regulating trypanosomatid G2/M events, opening avenues for further research in this area. PMID:27272906

  18. Purification, crystallization and preliminary X-ray analysis of the glucosamine-6-phosphate N-acetyltransferase from human liver

    SciTech Connect

    Wang, Juan; Zhou, Yan-Feng; Li, Lan-Fen; Liang, Yu-He Su, Xiao-Dong

    2006-11-01

    Glucosamine-6-phosphate N-acetyltransferase from human liver was expressed, purified and crystallized. Diffraction data have been collected to 2.6 Å resolution. Glucosamine-6-phosphate N-acetyltransferase from human liver, which catalyzes the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to the primary amine of d-glucosamine 6-phosphate to form N-acetyl-d-glucosamine 6-phosphate, was expressed in a soluble form from Escherichia coli strain BL21 (DE3). The protein was purified to homogeneity using Ni{sup 2+}-chelating chromatography followed by size-exclusion chromatography. Crystals of the protein were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.6 Å resolution. The crystals belonged to space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 50.08, c = 142.88 Å.

  19. Structure of a bacterial putative acetyltransferase defines the fold of the human O-GlcNAcase C-terminal domain

    PubMed Central

    Rao, Francesco V.; Schüttelkopf, Alexander W.; Dorfmueller, Helge C.; Ferenbach, Andrew T.; Navratilova, Iva; van Aalten, Daan M. F.

    2013-01-01

    The dynamic modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc) is an essential posttranslational modification present in higher eukaryotes. Removal of O-GlcNAc is catalysed by O-GlcNAcase, a multi-domain enzyme that has been reported to be bifunctional, possessing both glycoside hydrolase and histone acetyltransferase (AT) activity. Insights into the mechanism, protein substrate recognition and inhibition of the hydrolase domain of human OGA (hOGA) have been obtained via the use of the structures of bacterial homologues. However, the molecular basis of AT activity of OGA, which has only been reported in vitro, is not presently understood. Here, we describe the crystal structure of a putative acetyltransferase (OgpAT) that we identified in the genome of the marine bacterium Oceanicola granulosus, showing homology to the hOGA C-terminal AT domain (hOGA-AT). The structure of OgpAT in complex with acetyl coenzyme A (AcCoA) reveals that, by homology modelling, hOGA-AT adopts a variant AT fold with a unique loop creating a deep tunnel. The structures, together with mutagenesis and surface plasmon resonance data, reveal that while the bacterial OgpAT binds AcCoA, the hOGA-AT does not, as explained by the lack of key residues normally required to bind AcCoA. Thus, the C-terminal domain of hOGA is a catalytically incompetent ‘pseudo’-AT. PMID:24088714

  20. Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase

    PubMed Central

    Chen, Ji-Yun; Liu, Liang; Cao, Chun-Ling; Li, Mei-Jun; Tan, Kemin; Yang, Xiaohan; Yun, Cai-Hong

    2016-01-01

    N-terminal acetylation (Nt-acetylation), carried out by N-terminal acetyltransferases (NATs), is a conserved and primary modification of nascent peptide chains. Naa60 (also named NatF) is a recently identified NAT found only in multicellular eukaryotes. This protein was shown to locate on the Golgi apparatus and mainly catalyze the Nt-acetylation of transmembrane proteins, and it also harbors lysine Nε-acetyltransferase (KAT) activity to catalyze the acetylation of lysine ε-amine. Here, we report the crystal structures of human Naa60 (hNaa60) in complex with Acetyl-Coenzyme A (Ac-CoA) or Coenzyme A (CoA). The hNaa60 protein contains an amphipathic helix following its GNAT domain that may contribute to Golgi localization of hNaa60, and the β7-β8 hairpin adopted different conformations in the hNaa60(1-242) and hNaa60(1-199) crystal structures. Remarkably, we found that the side-chain of Phe 34 can influence the position of the coenzyme, indicating a new regulatory mechanism involving enzyme, co-factor and substrates interactions. Moreover, structural comparison and biochemical studies indicated that Tyr 97 and His 138 are key residues for catalytic reaction and that a non-conserved β3-β4 long loop participates in the regulation of hNaa60 activity. PMID:27550639

  1. Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts

    PubMed Central

    Byeon, Yeong; Yool Lee, Hyoung; Choi, Dong-Woog; Back, Kyoungwhan

    2015-01-01

    Melatonin biosynthesis involves the N-acetylation of arylalkylamines such as serotonin, which is catalysed by serotonin N-acetyltransferase (SNAT), the penultimate enzyme of melatonin biosynthesis in both animals and plants. Here, we report the functional characterization of a putative N-acetyltransferase gene in the chloroplast genome of the alga laver (Pyropia yezoensis, formerly known as Porphyra yezoensis) with homology to the rice SNAT gene. To confirm that the putative Pyropia yezoensis SNAT (PySNAT) gene encodes an SNAT, we cloned the full-length chloroplastidic PySNAT gene by PCR and purified the recombinant PySNAT protein from Escherichia coli. PySNAT was 174 aa and had 50% amino acid identity with cyanobacteria SNAT. Purified recombinant PySNAT showed a peak activity at 55 °C with a K m of 467 µM and V max of 28 nmol min–1 mg–1 of protein. Unlike other plant SNATs, PySNAT localized to the cytoplasm due to a lack of N-terminal chloroplast transit peptides. Melatonin was present at 0.16ng g–1 of fresh mass but increased during heat stress. Phylogenetic analysis of the sequence suggested that PySNAT has evolved from the cyanobacteria SNAT gene via endosymbiotic gene transfer. Additionally, the chloroplast transit peptides of plant SNATs were acquired 1500 million years ago, concurrent with the appearance of green algae. PMID:25183745

  2. The human serotonin N-acetyltransferase (EC 2.3.1.87) gene (AANAT): Structure, chromosomal localization, and tissue expression

    SciTech Connect

    Coon, S.L.; Bernard, M.; Roseboom, P.H.

    1996-05-15

    Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AA-NAT, HGMW-approved symbol AANAT;EC 2.3.1.87) is the penultimate enzyme in melatonin synthesis and controls the night/day rhythm in melatonin production in the vertebrate pineal gland. We have found that the human AA-NAT gene spans {approx}2.5 kb, contains four exons, and is located at chromosome 17q25. The open reading frame encodes a 23.2-kDa protein that is {approx}80% identical to sheep and rat AA-NAT. The AA-NAT transcript ({approx}1 kb) is highly abundant in the pineal gland and is expressed at lower levels in the retina and in the Y79 retinoblastoma cell line. AA-NAT mRNA is also detectable at low levels in several brain regions and the pituitary gland, but not in several peripheral tissues examined. Brain and pituitary AA-NAT could modulate serotonin-dependent aspects of human behavior and pituitary function. 31 refs., 5 figs.

  3. Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase.

    PubMed

    Chen, Ji-Yun; Liu, Liang; Cao, Chun-Ling; Li, Mei-Jun; Tan, Kemin; Yang, Xiaohan; Yun, Cai-Hong

    2016-01-01

    N-terminal acetylation (Nt-acetylation), carried out by N-terminal acetyltransferases (NATs), is a conserved and primary modification of nascent peptide chains. Naa60 (also named NatF) is a recently identified NAT found only in multicellular eukaryotes. This protein was shown to locate on the Golgi apparatus and mainly catalyze the Nt-acetylation of transmembrane proteins, and it also harbors lysine N(ε)-acetyltransferase (KAT) activity to catalyze the acetylation of lysine ε-amine. Here, we report the crystal structures of human Naa60 (hNaa60) in complex with Acetyl-Coenzyme A (Ac-CoA) or Coenzyme A (CoA). The hNaa60 protein contains an amphipathic helix following its GNAT domain that may contribute to Golgi localization of hNaa60, and the β7-β8 hairpin adopted different conformations in the hNaa60(1-242) and hNaa60(1-199) crystal structures. Remarkably, we found that the side-chain of Phe 34 can influence the position of the coenzyme, indicating a new regulatory mechanism involving enzyme, co-factor and substrates interactions. Moreover, structural comparison and biochemical studies indicated that Tyr 97 and His 138 are key residues for catalytic reaction and that a non-conserved β3-β4 long loop participates in the regulation of hNaa60 activity. PMID:27550639

  4. Over-expression, purification, and characterization of recombinant human arylamine N-acetyltransferase 1.

    PubMed

    Wang, Haiqing; Vath, Gregory M; Kawamura, Akane; Bates, Caleb A; Sim, Edith; Hanna, Patrick E; Wagner, Carston R

    2005-02-01

    Human arylamine N-acetyltransferase 1 (NAT1) has been overexpressed in E. coli as a mutant dihydrofolic acid reductase (DHFR) fusion protein with a thrombin sensitive linker. An initial DEAE anion-exchange chromatography resulted in partial purification of the fusion protein. The fusion protein was cleaved with thrombin, and human rNAT1 was purified with a second DEAE column. A total of 8 mg of human rNAT1 from 2 1 of cell culture was purified to homogeneity with this methodology. Arylamine substrate specificities were determined for human rNATI and hamster rNAT2. With both NATs, the second order rate constants (k(cat)/ Kmb) for p-aminobenzoic acid (PABA) and 2-aminofluorene (2-AF) were several thousand-fold higher than those for procainamide (PA), consistent with the expected substrate specificities of the enzymes. However, p-aminosalicylic acid (PAS), previously reported to be a human NAT1 and hamster NAT2 selective substrate, exhibits 20-fold higher specificity for hamster rNAT2 (k(cat)/Kmb 3410 microM(-1) s(-1)) than for human rNAT1 (k(cat)/Kmb 169.4 microM(-1) s(-1)). p-aminobenzoyl-glutamic acid (pABglu) was acetylated 10-fold more efficiently by human rNAT1 than by hamster rNAT2. Inhibition studies of human rNAT1 and hamster rNAT2 revealed that folic acid and methotrexate (MTX) are competitive inhibitors of both the unacetylated and acetylated forms of the enzymes, with K(I) values in 50 - 300 micro range. Dihydrofolic acid (DHF) was a much poorer inhibitor of human rNAT1 than of hamster rNAT2. The combined results demonstrate that human rNAT1 and hamster rNAT2 have similar but distinct kinetic properties with certain substrates, and suggest that folic acid, at least in the non-polyglutamate form, may not have an effect on human NAT1 activity in vivo. PMID:16003948

  5. Bioprospecting for Trichothecene 3-O-acetyltransferases in the fungal genus Fusarium yields functional enzymes that vary in their Aaility to modify the mycotoxin deoxynivalenol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The trichothecene mycotoxin deoxynivalenol (DON) is a common contaminant of small grains, such as wheat and barley, in the United States. New strategies to mitigate the threat of DON need to be developed and implemented. TRI101 and TRI201 are trichothecene 3-O-acetyltransferases that are able to mod...

  6. Resistance to glufosinate is proportional to phosphinothricin acetyltransferase expression and activity in LibertyLink® and WideStrike® Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    LibertyLink® cotton cultivars are engineered for glufosinate resistance by overexpressing the bar gene that encodes phosphinothricin acetyltransferase (PAT), whereas the insect-resistant WideStrike® cultivars were obtained by using the similar pat gene as a selectable marker. The latter cultivars ca...

  7. Characterization of the Saccharomyces cerevisiae ARG7 gene encoding ornithine acetyltransferase, an enzyme also endowed with acetylglutamate synthase activity.

    PubMed

    Crabeel, M; Abadjieva, A; Hilven, P; Desimpelaere, J; Soetens, O

    1997-12-01

    We have cloned by functional complementation and characterized the yeast ARG7 gene encoding mitochondrial ornithine acetyltransferase, the enzyme catalyzing the fifth step in arginine biosynthesis. While forming ornithine, this enzyme regenerates acetylglutamate, also produced in the first step by the ARG2-encoded acetylglutamate synthase. Interestingly, total deletion of the genomic ARG7 ORF resulted in an arginine-leaky phenotype, indicating that yeast cells possess an alternative route for generating ornithine from acetylornithine. Yeast ornithine acetyltransferase has been purified and characterized previously as a heterodimer of two subunits proposed to derive from a single precursor protein [Liu, Y-S., Van Heeswijck R., Hoj, P. & Hoogenraad, N. (1995) Eur. J. Biochem. 228, 291-296]; those authors further suggested that the internal processing of Arg7p, which is a mitochondrial enzyme, might occur in the matrix, while the leader peptide would be of the non-cleavable-type. The characterization of the gene (a) establishes that Arg7p is indeed encoded by a single gene, (b) demonstrates the existence of a cleaved mitochondrial prepeptide of eight residues, and (c) shows that the predicted internal processing site is unlike the mitochondrial proteolytic peptidase target sequence. Yeast Arg7p shares between 32-43% identity in pairwise comparisons with the ten analogous bacterial ArgJ enzymes characterized. Among these evolutionarily related enzymes, some but not all appear bifunctional, being able to produce acetylglutamate not only from acetylornithine but also from acetyl-CoA, thus catalyzing the same reaction as the apparently unrelated acetylglutamate synthase. We have addressed the question of the bifunctionality of the eucaryotic enzyme, showing that overexpressed ARG7 can complement yeast arg2 and Escherichia coli argA mutations (affecting acetylglutamate synthase). Furthermore, Arg7p-linked acetylglutamate synthase activity was measurable in an assay. The

  8. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo

    PubMed Central

    Kuo, Min-Hao; Zhou, Jianxin; Jambeck, Per; Churchill, Mair E.A.; Allis, C. David

    1998-01-01

    Gcn5p is a transcriptional coactivator required for correct expression of various genes in yeast. Several transcriptional regulators, including Gcn5p, possess intrinsic histone acetyltransferase (HAT) activity in vitro. However, whether the HAT activity of any of these proteins is required for gene activation remains unclear. Here, we demonstrate that the HAT activity of Gcn5p is critical for transcriptional activation of target genes in vivo. Core histones are hyperacetylated in cells overproducing functional Gcn5p, and promoters of Gcn5p-regulated genes are associated with hyperacetylated histones upon activation by low-copy Gcn5p. Point mutations within the Gcn5p catalytic domain abolish both promoter-directed histone acetylation and Gcn5p-mediated transcriptional activation. These data provide the first in vivo evidence that promoter-specific histone acetylation, catalyzed by functional Gcn5p, plays a critical role in gene activation. PMID:9499399

  9. Computational study of the three-dimensional structure of N-acetyltransferase 2-acetyl coenzyme a complex.

    PubMed

    Oda, Akifumi; Kobayashi, Kana; Takahashi, Ohgi

    2010-01-01

    N-Acetyltransferase 2 (NAT2) is one of the most important polymorphic drug-metabolizing enzymes and plays a significant role in individual differences of drug efficacies and/or side effects. Coenzyme A (CoA) is a cofactor in the experimentally determined crystal structure of NAT2, although the acetyl source of acetylation reactions catalyzed by NAT is not CoA, but rather acetyl CoA. In this study, the three-dimensional structure of NAT2, including acetyl CoA, was calculated using molecular dynamics simulation. By substituting acetyl CoA for CoA the amino acid residue Gly286, which is known to transform into a glutamate residue by NAT2*7A and NAT2*7B, comes close to the cofactor binding site. In addition, the binding pocket around the sulfur atom of acetyl CoA expanded in the NAT2-acetyl CoA complex. PMID:20930369

  10. The Endoplasmic Reticulum-based Acetyltransferases, ATase1 and ATase2, Associate with the Oligosaccharyltransferase to Acetylate Correctly Folded Polypeptides*

    PubMed Central

    Ding, Yun; Dellisanti, Cosma D.; Ko, Mi Hee; Czajkowski, Cynthia; Puglielli, Luigi

    2014-01-01

    The endoplasmic reticulum (ER) has two membrane-bound acetyltransferases responsible for the endoluminal Nϵ-lysine acetylation of ER-transiting and -resident proteins. Mutations that impair the ER-based acetylation machinery are associated with developmental defects and a familial form of spastic paraplegia. Deficient ER acetylation in the mouse leads to defects of the immune and nervous system. Here, we report that both ATase1 and ATase2 form homo- and heterodimers and associate with members of the oligosaccharyltransferase (OST) complex. In contrast to the OST, the ATases only modify correctly folded polypetides. Collectively, our studies suggest that one of the functions of the ATases is to work in concert with the OST and “select” correctly folded from unfolded/misfolded transiting polypeptides. PMID:25301944

  11. Novel 6′-N-Aminoglycoside Acetyltransferase AAC(6′)-Iaj from a Clinical Isolate of Pseudomonas aeruginosa

    PubMed Central

    Tada, Tatsuya; Miyoshi-Akiyama, Tohru; Shimada, Kayo; Shimojima, Masahiro

    2013-01-01

    Pseudomonas aeruginosa NCGM1588 has a novel chromosomal class 1 integron, In151, which includes the aac(6′)-Iaj gene. The encoded protein, AAC(6′)-Iaj, was found to consist of 184 amino acids, with 70% identity to AAC(6′)-Ia. Escherichia coli transformed with a plasmid containing the aac(6′)-Iaj gene acquired resistance to all aminoglycosides tested except gentamicin. Of note, aac(6′)-Iaj contributed to the resistance to arbekacin. Thin-layer chromatography revealed that AAC(6′)-Iaj acetylated all aminoglycosides tested except gentamicin. These findings indicated that AAC(6′)-Iaj is a functional acetyltransferase that modifies the amino groups at the 6′ positions of aminoglycosides and contributes to aminoglycoside resistance of P. aeruginosa NCGM1588, including arbekacin. PMID:23070167

  12. Coexistence of choline acetyltransferase and GABA in axon terminals in the dorsal cap of the rat inferior olive.

    PubMed

    Caffé, A R; Hawkins, R K; De Zeeuw, C I

    1996-06-10

    The dorsal cap of Kooy of the inferior olive (DC) is involved in compensatory eye movements. The rat DC receives a prominent input from the nucleus prepositus hypoglossi (NPH); part of these axon terminals are immunoreactive for choline acetyltransferase (ChAT) and part of them are GABAergic. In the present study we investigated the fine distribution of cholinergic terminals in the rat DC, and the possible coexistence of ChAT and GABA. ChAT-positive terminals were observed throughout the entire neuropil of the rat DC contacting both extraglomerular and intraglomerular dendrites. Twenty nine percent of these terminals also contained GABA. The ChAT/GABA double-labelled terminals showed the same morphological characteristics as terminals traced from the NPH. The present data demonstrate colocalization of ChAT and GABA in axon terminals of the rat DC and strongly suggest that neurons in the NPH are the source of these profiles. PMID:8816268

  13. CBP histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein-Taybi syndrome brain.

    PubMed

    Wang, Jing; Weaver, Ian C G; Gauthier-Fisher, Andrée; Wang, Haoran; He, Ling; Yeomans, John; Wondisford, Frederic; Kaplan, David R; Miller, Freda D

    2010-01-19

    Increasing evidence indicates that epigenetic changes regulate cell genesis. Here, we ask about neural precursors, focusing on CREB binding protein (CBP), a histone acetyltransferase that, when haploinsufficient, causes Rubinstein-Taybi syndrome (RTS), a genetic disorder with cognitive dysfunction. We show that neonatal cbp(+/-) mice are behaviorally impaired, displaying perturbed vocalization behavior. cbp haploinsufficiency or genetic knockdown with siRNAs inhibited differentiation of embryonic cortical precursors into all three neural lineages, coincident with decreased CBP binding and histone acetylation at promoters of neuronal and glial genes. Inhibition of histone deacetylation rescued these deficits. Moreover, CBP phosphorylation by atypical protein kinase C zeta was necessary for histone acetylation at neural gene promoters and appropriate differentiation. These data support a model in which environmental cues regulate CBP activity and histone acetylation to control neural precursor competency to differentiate, and indicate that cbp haploinsufficiency disrupts this mechanism, thereby likely causing cognitive dysfunction in RTS. PMID:20152182

  14. Mutation of the CH1 Domain in the Histone Acetyltransferase CREBBP Results in Autism-Relevant Behaviors in Mice.

    PubMed

    Zheng, Fei; Kasper, Lawryn H; Bedford, David C; Lerach, Stephanie; Teubner, Brett J W; Brindle, Paul K

    2016-01-01

    Autism spectrum disorders (ASDs) are a group of neurodevelopmental afflictions characterized by repetitive behaviors, deficits in social interaction, and impaired communication skills. For most ASD patients, the underlying causes are unknown. Genetic mutations have been identified in about 25 percent of ASD cases, including mutations in epigenetic regulators, suggesting that dysregulated chromatin or DNA function is a critical component of ASD. Mutations in the histone acetyltransferase CREB binding protein (CBP, CREBBP) cause Rubinstein-Taybi Syndrome (RTS), a developmental disorder that includes ASD-like symptoms. Recently, genomic studies involving large numbers of ASD patient families have theoretically modeled CBP and its paralog p300 (EP300) as critical hubs in ASD-associated protein and gene interaction networks, and have identified de novo missense mutations in highly conserved residues of the CBP acetyltransferase and CH1 domains. Here we provide animal model evidence that supports this notion that CBP and its CH1 domain are relevant to autism. We show that mice with a deletion mutation in the CBP CH1 (TAZ1) domain (CBPΔCH1/ΔCH1) have an RTS-like phenotype that includes ASD-relevant repetitive behaviors, hyperactivity, social interaction deficits, motor dysfunction, impaired recognition memory, and abnormal synaptic plasticity. Our results therefore indicate that loss of CBP CH1 domain function contributes to RTS, and possibly ASD, and that this domain plays an essential role in normal motor function, cognition and social behavior. Although the key physiological functions affected by ASD-associated mutation of epigenetic regulators have been enigmatic, our findings are consistent with theoretical models involving CBP and p300 in ASD, and with a causative role for recently described ASD-associated CBP mutations. PMID:26730956

  15. Molecular identification and functional characterization of the first Nα-acetyltransferase in plastids by global acetylome profiling

    PubMed Central

    Dinh, Trinh V; Bienvenut, Willy V; Linster, Eric; Feldman-Salit, Anna; Jung, Vincent A; Meinnel, Thierry; Hell, Rüdiger; Giglione, Carmela; Wirtz, Markus

    2015-01-01

    Protein Nα-terminal acetylation represents one of the most abundant protein modifications of higher eukaryotes. In humans, six Nα-acetyltransferases (Nats) are responsible for the acetylation of approximately 80% of the cytosolic proteins. N-terminal protein acetylation has not been evidenced in organelles of metazoans, but in higher plants is a widespread modification not only in the cytosol but also in the chloroplast. In this study, we identify and characterize the first organellar-localized Nat in eukaryotes. A primary sequence-based search in Arabidopsis thaliana revealed seven putatively plastid-localized Nats of which AT2G39000 (AtNAA70) showed the highest conservation of the acetyl-CoA binding pocket. The chloroplastic localization of AtNAA70 was demonstrated by transient expression of AtNAA70:YFP in Arabidopsis mesophyll protoplasts. Homology modeling uncovered a significant conservation of tertiary structural elements between human HsNAA50 and AtNAA70. The in vivo acetylation activity of AtNAA70 was demonstrated on a number of distinct protein Nα-termini with a newly established global acetylome profiling test after expression of AtNAA70 in E. coli. AtNAA70 predominately acetylated proteins starting with M, A, S and T, providing an explanation for most protein N-termini acetylation events found in chloroplasts. Like HsNAA50, AtNAA70 displays Nε-acetyltransferase activity on three internal lysine residues. All MS data have been deposited in the ProteomeXchange with identifier PXD001947 (http://proteomecentral.proteomexchange.org/dataset/PXD001947). PMID:25951519

  16. The Candida albicans Histone Acetyltransferase Hat1 Regulates Stress Resistance and Virulence via Distinct Chromatin Assembly Pathways

    PubMed Central

    Tscherner, Michael; Zwolanek, Florian; Jenull, Sabrina; Sedlazeck, Fritz J.; Petryshyn, Andriy; Frohner, Ingrid E.; Mavrianos, John; Chauhan, Neeraj; von Haeseler, Arndt; Kuchler, Karl

    2015-01-01

    Human fungal pathogens like Candida albicans respond to host immune surveillance by rapidly adapting their transcriptional programs. Chromatin assembly factors are involved in the regulation of stress genes by modulating the histone density at these loci. Here, we report a novel role for the chromatin assembly-associated histone acetyltransferase complex NuB4 in regulating oxidative stress resistance, antifungal drug tolerance and virulence in C. albicans. Strikingly, depletion of the NuB4 catalytic subunit, the histone acetyltransferase Hat1, markedly increases resistance to oxidative stress and tolerance to azole antifungals. Hydrogen peroxide resistance in cells lacking Hat1 results from higher induction rates of oxidative stress gene expression, accompanied by reduced histone density as well as subsequent increased RNA polymerase recruitment. Furthermore, hat1Δ/Δ cells, despite showing growth defects in vitro, display reduced susceptibility to reactive oxygen-mediated killing by innate immune cells. Thus, clearance from infected mice is delayed although cells lacking Hat1 are severely compromised in killing the host. Interestingly, increased oxidative stress resistance and azole tolerance are phenocopied by the loss of histone chaperone complexes CAF-1 and HIR, respectively, suggesting a central role for NuB4 in the delivery of histones destined for chromatin assembly via distinct pathways. Remarkably, the oxidative stress phenotype of hat1Δ/Δ cells is a species-specific trait only found in C. albicans and members of the CTG clade. The reduced azole susceptibility appears to be conserved in a wider range of fungi. Thus, our work demonstrates how highly conserved chromatin assembly pathways can acquire new functions in pathogenic fungi during coevolution with the host. PMID:26473952

  17. Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism.

    PubMed

    Nasuno, Ryo; Hirano, Yoshinori; Itoh, Takafumi; Hakoshima, Toshio; Hibi, Takao; Takagi, Hiroshi

    2013-07-16

    Mpr1 (sigma1278b gene for proline-analog resistance 1), which was originally isolated as N-acetyltransferase detoxifying the proline analog L-azetidine-2-carboxylate, protects yeast cells from various oxidative stresses. Mpr1 mediates the L-proline and L-arginine metabolism by acetylating L-Δ(1)-pyrroline-5-carboxylate, leading to the L-arginine-dependent production of nitric oxide, which confers oxidative stress tolerance. Mpr1 belongs to the Gcn5-related N-acetyltransferase (GNAT) superfamily, but exhibits poor sequence homology with the GNAT enzymes and unique substrate specificity. Here, we present the X-ray crystal structure of Mpr1 and its complex with the substrate cis-4-hydroxy-L-proline at 1.9 and 2.3 Å resolution, respectively. Mpr1 is folded into α/β-structure with eight-stranded mixed β-sheets and six α-helices. The substrate binds to Asn135 and the backbone amide of Asn172 and Leu173, and the predicted acetyl-CoA-binding site is located near the backbone amide of Phe138 and the side chain of Asn178. Alanine substitution of Asn178, which can interact with the sulfur of acetyl-CoA, caused a large reduction in the apparent kcat value. The replacement of Asn135 led to a remarkable increase in the apparent Km value. These results indicate that Asn178 and Asn135 play an important role in catalysis and substrate recognition, respectively. Such a catalytic mechanism has not been reported in the GNAT proteins. Importantly, the amino acid substitutions in these residues increased the L-Δ(1)-pyrroline-5-carboxylate level in yeast cells exposed to heat stress, indicating that these residues are also crucial for its physiological functions. These studies provide some benefits of Mpr1 applications, such as the breeding of industrial yeasts and the development of antifungal drugs. PMID:23818613

  18. Structures of Wild-Type and Mutant Human Spermidine/Spermine N1-acetyltransferase, a Potential Therapeutic Drug Target

    SciTech Connect

    Bewley,M.; Graziano, V.; Jiang, J.; Matz, E.; Studier, F.; Pegg, A.; Coleman, C.; Flanagan, J.

    2006-01-01

    Spermidine/spermine N{sup 1}-acetyltransferase (SSAT) is a key enzyme in the control of polyamine levels in human cells, as acetylation of spermidine and spermine triggers export or degradation. Increased intracellular polyamine levels accompany several types of cancers as well as other human diseases, and compounds that affect the expression, activity, or stability of SSAT are being explored as potential therapeutic drugs. We have expressed human SSAT from the cloned cDNA in Escherichia coli and have determined high-resolution structures of wild-type and mutant SSAT, as the free dimer and in binary and ternary complexes with CoA, acetyl-CoA (AcCoA), spermine, and the inhibitor N{sup 1},N{sup 11}-bis-(ethyl)-norspermine (BE-3-3-3). These structures show details of binding sites for cofactor, substrates, and inhibitor and provide a framework to understand enzymatic activity, mutations, and the action of potential drugs. Two dimer conformations were observed: a symmetric form with two open surface channels capable of binding substrate or cofactor, and an asymmetric form in which only one of the surface channels appears capable of binding and acetylating polyamines. SSAT was found to self-acetylate lysine-26 in the presence of AcCoA and absence of substrate, a reaction apparently catalyzed by AcCoA bound in the second channel of the asymmetric dimer. These unexpected and intriguing complexities seem likely to have some as yet undefined role in regulating SSAT activity or stability as a part of polyamine homeostasis. Sequence signatures group SSAT with proteins that appear to have thialysine N{sup {var_epsilon}}-acetyltransferase activity.

  19. Mutation of the CH1 Domain in the Histone Acetyltransferase CREBBP Results in Autism-Relevant Behaviors in Mice

    PubMed Central

    Zheng, Fei; Kasper, Lawryn H.; Bedford, David C.; Lerach, Stephanie; Teubner, Brett J. W.; Brindle, Paul K.

    2016-01-01

    Autism spectrum disorders (ASDs) are a group of neurodevelopmental afflictions characterized by repetitive behaviors, deficits in social interaction, and impaired communication skills. For most ASD patients, the underlying causes are unknown. Genetic mutations have been identified in about 25 percent of ASD cases, including mutations in epigenetic regulators, suggesting that dysregulated chromatin or DNA function is a critical component of ASD. Mutations in the histone acetyltransferase CREB binding protein (CBP, CREBBP) cause Rubinstein-Taybi Syndrome (RTS), a developmental disorder that includes ASD-like symptoms. Recently, genomic studies involving large numbers of ASD patient families have theoretically modeled CBP and its paralog p300 (EP300) as critical hubs in ASD-associated protein and gene interaction networks, and have identified de novo missense mutations in highly conserved residues of the CBP acetyltransferase and CH1 domains. Here we provide animal model evidence that supports this notion that CBP and its CH1 domain are relevant to autism. We show that mice with a deletion mutation in the CBP CH1 (TAZ1) domain (CBPΔCH1/ΔCH1) have an RTS-like phenotype that includes ASD-relevant repetitive behaviors, hyperactivity, social interaction deficits, motor dysfunction, impaired recognition memory, and abnormal synaptic plasticity. Our results therefore indicate that loss of CBP CH1 domain function contributes to RTS, and possibly ASD, and that this domain plays an essential role in normal motor function, cognition and social behavior. Although the key physiological functions affected by ASD-associated mutation of epigenetic regulators have been enigmatic, our findings are consistent with theoretical models involving CBP and p300 in ASD, and with a causative role for recently described ASD-associated CBP mutations. PMID:26730956

  20. Regulation of platelet activating factor synthesis: modulation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase by phosphorylation and dephosphorylation in rat spleen microsomes

    SciTech Connect

    Lenihan, D.J.; Lee, T.C.

    1984-05-16

    1-Alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase plays an important regulatory role in the biosynthesis of platelet activating factor, a potent bioactive mediator. The authors tested the hypothesis that the activity of acetyltransferase may be modulated by enzymatic phosphorylation and dephosphorylation. The results showed that acetyltransferase activity in rat spleens was 2- to 3-fold higher in microsomes isolated in the presence of F/sup -/ than in those isolated in the presence of Cl/sup -/. The microsomal acetyltransferase could be activated by preincubation of microsomes, isolated in the presence of Cl/sup -/, with ATP, Mg/sup 2 +/, and the soluble fraction from rat spleen. Addition of phosphatidylserine, diacylglycerols, plus Ca/sup 2 +/ further enhanced the activity. The increase in the activity of acetyltranferase was abolished by treatment of the activated microsomes with alkaline phosphatase. Conversely, the activity of acetyltransferase can be reactivated in the alkaline phosphatase-treated microsomes with incubation conditions that favor phosphorylation. Therefore, the findings suggest that acetyltransferase activity is regulated by reversible activation/inactivation through phosphorylation/dephosphorylation.

  1. Helix coupling

    DOEpatents

    Ginell, W.S.

    1982-03-17

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  2. Helix coupling

    DOEpatents

    Ginell, William S.

    1989-04-25

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  3. Inhibition of aminoglycoside 6'-N-acetyltransferase type Ib by zinc: reversal of amikacin resistance in Acinetobacter baumannii and Escherichia coli by a zinc ionophore.

    PubMed

    Lin, David L; Tran, Tung; Alam, Jamal Y; Herron, Steven R; Ramirez, Maria Soledad; Tolmasky, Marcelo E

    2014-07-01

    In vitro activity of the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib] was inhibited by ZnCl2 with a 50% inhibitory concentration (IC50) of 15 μM. Growth of Acinetobacter baumannii or Escherichia coli harboring aac(6')-Ib in cultures containing 8 μg/ml amikacin was significantly inhibited by the addition of 2 μM Zn(2+) in complex with the ionophore pyrithione (ZnPT). PMID:24820083

  4. Oridonin, a novel lysine acetyltransferases inhibitor, inhibits proliferation and induces apoptosis in gastric cancer cells through p53- and caspase-3-mediated mechanisms

    PubMed Central

    Zhang, Juan; Diao, Hua; Li, Guangming; Xu, Ling; Wang, Ting; Wei, Jue; Meng, Wenying; Ma, Jia-Li; Yu, Heguo; Wang, Yu-Gang

    2016-01-01

    Lysine acetylation has been reported to involve in the pathogenesis of multiple diseases including cancer. In our screening study to identify natural compounds with lysine acetyltransferase inhibitor (KATi) activity, oridonin was found to possess acetyltransferase-inhibitory effects on multiple acetyltransferases including P300, GCN5, Tip60, and pCAF. In gastric cancer cells, oridonin treatment inhibited cell proliferation in a concentration-dependent manner and down-regulated the expression of p53 downstream genes, whereas p53 inhibition by PFT-α reversed the antiproliferative effects of oridonin. Moreover, oridonin treatment induced cell apoptosis, increased the levels of activated caspase-3 and caspase-9, and decreased the mitochondrial membrane potential in gastric cancer cells in a concentration-dependent manner. Caspase-3 inhibition by Ac-DEVD-CHO reversed the proapoptosis effect of oridonin. In conclusion, our study identified oridonin as a novel KATi and demonstrated its tumor suppressive effects in gastric cancer cells at least partially through p53-and caspase-3-mediated mechanisms. PMID:26980707

  5. Histone acetyltransferase p300 mediates histone acetylation of PS1 and BACE1 in a cellular model of Alzheimer's disease.

    PubMed

    Lu, Xi; Deng, Yushuang; Yu, Daohai; Cao, Huiming; Wang, Li; Liu, Li; Yu, Caijia; Zhang, Yuping; Guo, Xiuming; Yu, Gang

    2014-01-01

    Epigenetic modifications, particularly histone acetylation, have been implicated in Alzheimer's disease (AD). While previous studies have suggested that histone hypoacetylation may regulate the expression of genes associated with memory and learning in AD, little is known about histone regulation of AD-related genes such as Presenilin 1(PS1) and beta-site amyloid precursor protein cleaving enzyme 1(BACE1). By utilizing neuroblastoma N2a cells transfected with Swedish mutated human amyloid precursor protein (APP) (N2a/APPswe) and wild-type APP (N2a/APPwt) as cellular models of AD, we examined the alterations of histone acetylation at the promoter regions of PS1 and BACE1 in these cells. Our results revealed that histone H3 acetylation in PS1 and BACE1 promoters is markedly increased in N2a/APPswe cells when compared to N2a/APPwt cells and control cells (vector-transfected), respectively, causing the elevated expression of PS1 and BACE1. In addition, expression of histone acetyltransferase (HAT) adenoviral E1A-associated 300-kDa protein (p300) is dramatically enhanced in N2a/APPswe cells compared to N2a/APPwt and control cells. We have further demonstrated the direct binding of p300 protein to the PS1 and BACE1 promoters in N2a/APPswe cells. The expression levels of H3 acetylation of the PS1 and BACE1 promoters and p300 protein, however, were found to be not significantly different in N2a/APPwt cells when compared to controls in our studies. Furthermore, curcumin, a natural selective inhibitor of p300 in HATs, significantly suppressed the expression of PS1 and BACE1 through inhibition of H3 acetylation in their promoter regions in N2a/APPswe cells. These findings indicated that histone acetyltransferase p300 plays a critical role in controlling the expression of AD-related genes through regulating the acetylation of their promoter regions, suggesting that p300 may represent a novel potential therapeutic target for AD. PMID:25051175

  6. The Acetyltransferase Tip60 Is a Critical Regulator of the Differentiation-Dependent Amplification of Human Papillomaviruses

    PubMed Central

    Hong, Shiyuan; Dutta, Anindya

    2015-01-01

    ABSTRACT The life cycle of human papillomaviruses (HPVs) is dependent upon differentiation of the infected host epithelial cell as well as activation of the ataxia telangiectasia mutated (ATM) DNA repair pathway that in normal cells acts to repair double-strand DNA breaks. In normal cells, following DNA damage the acetyltransferase Tip60 must acetylate ATM proteins prior to their full activation by autophosphorylation. E6 proteins have been shown to induce the degradation of Tip60, suggesting that Tip60 action may not be required for activation of the ATM pathway in HPV-positive cells. We investigated what role, if any, Tip60 plays in regulating the differentiation-dependent HPV life cycle. Our study indicates that Tip60 levels and activity are increased in cells that stably maintain complete HPV genomes as episomes, while low levels are seen in cells that express only HPV E6 and E7 proteins. Knockdown of Tip60 with short hairpin RNAs in cells that maintain HPV episomes blocked ATM induction and differentiation-dependent genome amplification, demonstrating the critical role of Tip60 in the viral life cycle. The JAK/STAT transcription factor STAT-5 has previously been shown to regulate the phosphorylation of ATM. Our studies demonstrate that STAT-5 regulates Tip60 activation and this occurs in part by targeting glycogen synthase kinase 3β (GSK3β). Inhibition of either STAT-5, Tip60, or GSK3β blocked differentiation-dependent genome amplification. Taken together, our findings identify Tip60 to be an important regulator of HPV genome amplification whose activity during the viral life cycle is controlled by STAT-5 and the kinase GSK3β. IMPORTANCE Human papillomaviruses (HPVs) are the etiological agents of cervical and other anogenital cancers. HPVs regulate their differentiation-dependent life cycle by activation of DNA damage pathways. This study demonstrates that HPVs regulate the ATM DNA damage pathway through the action of the acetyltransferase Tip60

  7. Differential expression of histone deacetylase and acetyltransferase genes in gastric cancer and their modulation by trichostatin A.

    PubMed

    Wisnieski, Fernanda; Calcagno, Danielle Queiroz; Leal, Mariana Ferreira; Chen, Elizabeth Suchi; Gigek, Carolina Oliveira; Santos, Leonardo Caires; Pontes, Thaís Brilhante; Rasmussen, Lucas Trevizani; Payão, Spencer Luiz Marques; Assumpção, Paulo Pimentel; Lourenço, Laércio Gomes; Demachki, Sâmia; Artigiani, Ricardo; Burbano, Rommel Rodríguez; Smith, Marília Cardoso

    2014-07-01

    Gastric cancer is still the second leading cause of cancer-related death worldwide, even though its incidence and mortality have declined over the recent few decades. Epigenetic control using histone deacetylase inhibitors, such as trichostatin A (TSA), is a promising cancer therapy. This study aimed to assess the messenger RNA (mRNA) levels of three histone deacetylases (HDAC1, HDAC2, and HDAC3), two histone acetyltransferases (GCN5 and PCAF), and two possible targets of these histone modifiers (MYC and CDKN1A) in 50 matched pairs of gastric tumors and corresponding adjacent nontumors samples from patients with gastric adenocarcinoma, as well as their correlations and their possible associations with clinicopathological features. Additionally, we evaluated whether these genes are sensitive to TSA in gastric cancer cell lines. Our results demonstrated downregulation of HDAC1, PCAF, and CDKN1A in gastric tumors compared with adjacent nontumors (P < 0.05). On the other hand, upregulation of HDAC2, GCN5, and MYC was observed in gastric tumors compared with adjacent nontumors (P < 0.05). The mRNA level of MYC was correlated to HDAC3 and GCN5 (P < 0.05), whereas CDKN1A was correlated to HDAC1 and GCN5 (P < 0.05 and P < 0.01, respectively). In addition, the reduced expression of PCAF was associated with intestinal-type gastric cancer (P = 0.03) and TNM stages I/II (P = 0.01). The increased expression of GCN5 was associated with advanced stage gastric cancer (P = 0.02) and tumor invasion (P = 0.03). The gastric cell lines treated with TSA showed different patterns of histone deacetylase and acetyltransferase mRNA expression, downregulation of MYC, and upregulation of CDKN1A. Our findings suggest that alteration of histone modifier genes play an important role in gastric carcinogenesis, contributing to MYC and CDKN1A deregulation. In addition, all genes studied here are modulated by TSA, although this modulation appears to be dependent of the genetic background of the cell

  8. Differences between human slow N-acetyltransferase 2 alleles in levels of 4-aminobiphenyl-induced DNA adducts and mutations

    PubMed Central

    Bendaly, Jean; Doll, Mark A.; Millner, Lori M.; Metry, Kristin J.; Smith, Ned B.; Pierce, William M.; Hein, David W.

    2009-01-01

    Aromatic amines such as 4-aminobiphenyl (ABP) require biotransformation to exert their carcinogenic effects. Genetic polymorphisms in biotransformation enzymes such as N-acetyltransferase 2 (NAT2) may modify cancer risk following exposure. Nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells stably transfected with human cytochrome P4501A1 (CYP1A1) and a single copy of either NAT2*4 (rapid acetylator), NAT2*5B (common Caucasian slow acetylator), or NAT2*7B (common Asian slow acetylator) alleles (haplotypes) were treated with ABP to test the effect of NAT2 polymorphisms on DNA adduct formation and mutagenesis. ABP N-acetyltransferase catalytic activities were detectable only in cell lines transfected with NAT2 and were highest in cells transfected with NAT2*4, lower in cells transfected with NAT2*7B, and lowest in cells transfected with NAT2*5B. Following ABP treatment, N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) was the primary adduct formed. Cells transfected with both CYP1A1 and NAT2*4 showed the highest concentration-dependent cytotoxicity, hypoxanthine phosphoribosyl transferase (hprt) mutants, and dG-C8-ABP adducts. Cells transfected with CYP1A1 and NAT2*7B showed lower levels of cytotoxicity, hprt mutagenesis, and dG-C8-ABP adducts. Cells transfected with CYP1A1 only or cells transfected with both CYP1A1 and NAT2*5B did not induce cytotoxicity, hprt mutagenesis or dG-C8-ABP adducts. ABP DNA adduct levels correlated very highly (r > 0.96) with ABP-induced hprt mutant levels following each treatment. The results of the present study suggest that investigations of NAT2 genotype or phenotype associations with disease or toxicity could be more precise and reproducible if heterogeneity within the “slow” NAT2 acetylator phenotype is considered and incorporated into the study design. PMID:19682468

  9. Structural analysis of PseH, the Campylobacter jejuni N-acetyltransferase involved in bacterial O-linked glycosylation

    SciTech Connect

    Song, Wan Seok; Nam, Mi Sun; Namgung, Byeol; Yoon, Sung-il

    2015-03-20

    Campylobacter jejuni is a bacterium that uses flagella for motility and causes worldwide acute gastroenteritis in humans. The C. jejuni N-acetyltransferase PseH (cjPseH) is responsible for the third step in flagellin O-linked glycosylation and plays a key role in flagellar formation and motility. cjPseH transfers an acetyl group from an acetyl donor, acetyl coenzyme A (AcCoA), to the amino group of UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine to produce UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. To elucidate the catalytic mechanism of cjPseH, crystal structures of cjPseH alone and in complex with AcCoA were determined at 1.95 Å resolution. cjPseH folds into a single-domain structure of a central β-sheet decorated by four α-helices with two continuously connected grooves. A deep groove (groove-A) accommodates the AcCoA molecule. Interestingly, the acetyl end of AcCoA points toward an open space in a neighboring shallow groove (groove-S), which is occupied by extra electron density that potentially serves as a pseudosubstrate, suggesting that the groove-S may provide a substrate-binding site. Structure-based comparative analysis suggests that cjPseH utilizes a unique catalytic mechanism of acetylation that has not been observed in other glycosylation-associated acetyltransferases. Thus, our studies on cjPseH will provide valuable information for the design of new antibiotics to treat C. jejuni-induced gastroenteritis. - Highlights: • cjPseH adopts a single-domain structure of a central β-sheet decorated by α-helices. • cjPseH features two continuously connected grooves on the protein surface. • Acetyl coenzyme A (AcCoA) binds into a deep groove of cjPseH in an ‘L’ shape. • The acetyl end of AcCoA points to a wide groove, a potential substrate-binding site.

  10. Optical coupling

    NASA Astrophysics Data System (ADS)

    Bock, J. J.; Gundersen, J.; Lee, A. T.; Richards, P. L.; Wollack, E.

    2009-03-01

    This paper describes contributions to the CMBpol Technology Study Workshop concerning optical coupling structures. These are structures in or near the focal plane which convert the free space wave to a superconducting microstrip on a SI wafer, or to the waveguide input to a HEMT receiver. In addition to an introduction and conclusions by the editor, this paper includes independent contributions by Bock on 'Planar Antenna-Coupled Bolometers for CMB Polarimetry', by Gunderson and Wollack on 'Millimeter-Wave Platlet Feeds', and by Lee on 'Multi-band Dual-Polarization Lens-coupled Planar Antennas for Bolometric CMB polarimetry.'

  11. Substrate-induced allosteric change in the quaternary structure of the spermidine N-acetyltransferase SpeG

    DOE PAGESBeta

    Filippova, Ekaterina V.; Weigand, Steven J.; Osipiuk, Jerzy; Kiryukhina, Olga; Joachimiak, Andrzej; Anderson, Wayne F.

    2015-09-26

    The spermidine N-acetyltransferase SpeG is a dodecameric enzyme that catalyzes the transfer of an acetyl group from acetyl coenzyme A to polyamines such as spermidine and spermine. SpeG has an allosteric polyamine-binding site and acetylating polyamines regulate their intracellular concentrations. The structures of SpeG from Vibrio cholerae in complexes with polyamines and cofactor have been characterized earlier. Here, we present the dodecameric structure of SpeG from V. cholerae in a ligand-free form in three different conformational states: open, intermediate and closed. All structures were crystallized in C2 space group symmetry and contain six monomers in the asymmetric unit cell. Twomore » hexamers related by crystallographic 2-fold symmetry form the SpeG dodecamer. The open and intermediate states have a unique open dodecameric ring. This SpeG dodecamer is asymmetric except for the one 2-fold axis and is unlike any known dodecameric structure. Using a fluorescence thermal shift assay, size-exclusion chromatography with multi-angle light scattering, small-angle X-ray scattering analysis, negative-stain electron microscopy and structural analysis, we demonstrate that this unique open dodecameric state exists in solution. As a result, our combined results indicate that polyamines trigger conformational changes and induce the symmetric closed dodecameric state of the protein when they bind to their allosteric sites.« less

  12. Insights into the O-Acetylation Reaction of Hydroxylated Heterocyclic Amines by Human Arylamine N-Acetyltransferases: A Computational Study

    SciTech Connect

    Lau, E Y; Felton, J S; Lightstone, F C

    2006-06-06

    A computational study was performed to better understand the differences between human arylamine N-acetyltransferase (NAT) 1 and 2. Homology models were constructed from available crystal structures and comparisons of the active site residues 125, 127, and 129 for these two enzymes provide insight into observed substrate differences. The NAT2 model provided a basis for understanding how some of the common mutations may affect the structure of the protein. Molecular dynamics simulations of the human NAT models and the template structure (NAT from Mycobacterium smegmatis) were performed and showed the models to be stable and reasonable. Docking studies of hydroxylated heterocyclic amines in the models of NAT1 and NAT2 probed the differences exhibited by these two proteins with mutagenic agents. The hydroxylated heterocyclic amines were only able to fit into the NAT2 active site, and an alternative binding site by the P-loop was found using our models and will be discussed. Additionally, quantum mechanical calculations were performed to study the O-acetylation reaction of the hydroxylated heterocyclic amines N-OH MeIQx and N-OH PhIP. This study has given us insight into why there are substrate differences among isoenzymes and explains some of the polymorphic activity differences.

  13. Homologues of xenobiotic metabolizing N-acetyltransferases in plant-associated fungi: Novel functions for an old enzyme family.

    PubMed

    Karagianni, Eleni P; Kontomina, Evanthia; Davis, Britton; Kotseli, Barbara; Tsirka, Theodora; Garefalaki, Vasiliki; Sim, Edith; Glenn, Anthony E; Boukouvala, Sotiria

    2015-01-01

    Plant-pathogenic fungi and their hosts engage in chemical warfare, attacking each other with toxic products of secondary metabolism and defending themselves via an arsenal of xenobiotic metabolizing enzymes. One such enzyme is homologous to arylamine N-acetyltransferase (NAT) and has been identified in Fusarium infecting cereal plants as responsible for detoxification of host defence compound 2-benzoxazolinone. Here we investigate functional diversification of NAT enzymes in crop-compromising species of Fusarium and Aspergillus, identifying three groups of homologues: Isoenzymes of the first group are found in all species and catalyse reactions with acetyl-CoA or propionyl-CoA. The second group is restricted to the plant pathogens and is active with malonyl-CoA in Fusarium species infecting cereals. The third group generates minimal activity with acyl-CoA compounds that bind non-selectively to the proteins. We propose that fungal NAT isoenzymes may have evolved to perform diverse functions, potentially relevant to pathogen fitness, acetyl-CoA/propionyl-CoA intracellular balance and secondary metabolism. PMID:26245863

  14. Choline acetyltransferase-like immunoreactivity in a physiologically distinct subtype of olfactory nonspiking local interneurons in the cockroach (periplaneta americana).

    PubMed

    Fusca, Debora; Husch, Andreas; Baumann, Arnd; Kloppenburg, Peter

    2013-10-15

    Behavioral and physiological studies have shown that local interneurons are pivotal for processing odor information in the insect antennal lobe. They mediate inhibitory and excitatory interactions between the glomerular pathways and ultimately shape the tuning profile of projection neurons. To identify putative cholinergic local interneurons in the antennal lobe of Periplaneta americana, an antibody raised against the biosynthetic enzyme choline acetyltransferase (ChAT) was applied to individual morphologically and electrophysiologically characterized local interneurons. In nonspiking type IIa1 local interneurons, which were classified in this study, we found ChAT-like immunoreactivity suggesting that they are most likely excitatory. This is a well-defined population of neurons that generates Ca(2+) -driven spikelets upon depolarization and stimulation with odorants, but not Na(+) -driven action potentials, because they lack voltage-activated transient Na(+) currents. The nonspiking type IIa2 and type IIb local interneurons, in which Ca(2+) -driven spikelets were absent, had no ChAT-like immunoreactivity. The GABA-like immunoreactive, spiking type I local interneurons had no ChAT-like immunoreactivity. In addition, we showed that uniglomerular projection neurons with cell bodies located in the ventral portion of the ventrolateral somata group and projections along the inner antennocerebral tract exhibited ChAT-like immunoreactivity. Assigning potential transmitters and neuromodulators to distinct morphological and electrophysiological types of antennal lobe neurons is an important prerequisite for a detailed understanding of odor information processing in insects. PMID:23749599

  15. Implication of an Aldehyde Dehydrogenase Gene and a Phosphinothricin N-Acetyltransferase Gene in the Diversity of Pseudomonas cichorii Virulence

    PubMed Central

    Tanaka, Masayuki; Wali, Ullah Md; Nakayashiki, Hitoshi; Fukuda, Tatsuya; Mizumoto, Hiroyuki; Ohnishi, Kouhei; Kiba, Akinori; Hikichi, Yasufumi

    2011-01-01

    Pseudomonas cichorii harbors the hrp genes. hrp-mutants lose their virulence on eggplant but not on lettuce. A phosphinothricin N-acetyltransferase gene (pat) is located between hrpL and an aldehyde dehydrogenase gene (aldH) in the genome of P. cichorii. Comparison of nucleotide sequences and composition of the genes among pseudomonads suggests a common ancestor of hrp and pat between P. cichorii strains and P. viridiflava strains harboring the single hrp pathogenicity island. In contrast, phylogenetic diversification of aldH corresponded to species diversification amongst pseudomonads. In this study, the involvement of aldH and pat in P. cichorii virulence was analyzed. An aldH-deleted mutant (ΔaldH) and a pat-deleted mutant (Δpat) lost their virulence on eggplant but not on lettuce. P. cichorii expressed both genes in eggplant leaves, independent of HrpL, the transcriptional activator for the hrp. Inoculation into Asteraceae species susceptible to P. cichorii showed that the involvement of hrp, pat and aldH in P. cichorii virulence is independent of each other and has no relationship with the phylogeny of Asteraceae species based on the nucleotide sequences of ndhF and rbcL. It is thus thought that not only the hrp genes but also pat and aldH are implicated in the diversity of P. cichorii virulence on susceptible host plant species. PMID:24704843

  16. Substrate-induced allosteric change in the quaternary structure of the spermidine N-acetyltransferase SpeG

    SciTech Connect

    Filippova, Ekaterina V.; Weigand, Steven J.; Osipiuk, Jerzy; Kiryukhina, Olga; Joachimiak, Andrzej; Anderson, Wayne F.

    2015-09-26

    The spermidine N-acetyltransferase SpeG is a dodecameric enzyme that catalyzes the transfer of an acetyl group from acetyl coenzyme A to polyamines such as spermidine and spermine. SpeG has an allosteric polyamine-binding site and acetylating polyamines regulate their intracellular concentrations. The structures of SpeG from Vibrio cholerae in complexes with polyamines and cofactor have been characterized earlier. Here, we present the dodecameric structure of SpeG from V. cholerae in a ligand-free form in three different conformational states: open, intermediate and closed. All structures were crystallized in C2 space group symmetry and contain six monomers in the asymmetric unit cell. Two hexamers related by crystallographic 2-fold symmetry form the SpeG dodecamer. The open and intermediate states have a unique open dodecameric ring. This SpeG dodecamer is asymmetric except for the one 2-fold axis and is unlike any known dodecameric structure. Using a fluorescence thermal shift assay, size-exclusion chromatography with multi-angle light scattering, small-angle X-ray scattering analysis, negative-stain electron microscopy and structural analysis, we demonstrate that this unique open dodecameric state exists in solution. As a result, our combined results indicate that polyamines trigger conformational changes and induce the symmetric closed dodecameric state of the protein when they bind to their allosteric sites.

  17. Method to produce acetyldiacylglycerols (ac-TAGs) by expression of an acetyltransferase gene isolated from Euonymus alatus (burning bush)

    DOEpatents

    Durrett, Timothy; Ohlrogge, John; Pollard, Michael

    2016-05-03

    The present invention relates to novel diacylglycerol acyltransferase genes and proteins, and methods of their use. In particular, the invention describes genes encoding proteins having diacylglycerol acetyltransferase activity, specifically for transferring an acetyl group to a diacylglycerol substrate to form acetyl-Triacylglycerols (ac-TAGS), for example, a 3-acetyl-1,2-diacyl-sn-glycerol. The present invention encompasses both native and recombinant wild-type forms of the transferase, as well as mutants and variant forms. The present invention also relates to methods of using novel diacylglycerol acyltransferase genes and proteins, including their expression in transgenic organisms at commercially viable levels, for increasing production of 3-acetyl-1,2-diacyl-sn-glycerols in plant oils and altering the composition of oils produced by microorganisms, such as yeast, by increasing ac-TAG production. Additionally, oils produced by methods of the present inventions comprising genes and proteins are contemplated for use as biodiesel fuel, in polymer production and as naturally produced food oils with reduced calories.

  18. Regulation of choline acetyltransferase expression by 17 β-oestradiol in NSC-34 cells and in the spinal cord.

    PubMed

    Johann, S; Dahm, M; Kipp, M; Zahn, U; Beyer, C

    2011-09-01

    Motoneurones located in the ventral horn of the spinal cord conciliate cholinergic innervation of skeletal muscles. These neurones appear to be exceedingly affected in neurodegenerative diseases such as amyotrophic lateral sclerosis. The dysfunction of motoneurones is typically accompanied by alterations of cholinergic metabolism and signalling, as demonstrated by a decrease in choline acetyltransferase (ChAT) expression. 17 β-Oestradiol (E(2)) is generally accepted as neuroprotective factor in the brain under acute toxic and neurodegenerative conditions and also appears to exert a protective role for motoneurones. In the present study, we attempted to analyse the role of E(2) signalling on ChAT expression in the motoneurone-like cell line NSC-34 and in vivo. In a first step, we demonstrated the presence of oestrogen receptor α and β in NSC-34 cells, as well as in the cervical and lumbar parts, of the male mouse spinal cord. Subsequently, we investigated the effect of E(2) treatment on ChAT expression. The application of E(2) significantly increased the transcription of ChAT in NSC-34 cells and in the cervical but not lumbar part of the spinal cord. Our results indicate that E(2) can influence the cholinergic system by increasing ChAT expression in the mouse spinal cord. This mechanism might support motoneurones, in addition to survival-promoting mechanisms, in the temporal balance toxic or neurodegenerative challenges. PMID:21790808

  19. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-induced Lysine Acetylation of Mitochondrial Proteins

    PubMed Central

    Davies, Michael N.; Kjalarsdottir, Lilja; Thompson, J. Will; Dubois, Laura G.; Stevens, Robert D.; Ilkayeva, Olga R.; Brosnan, M. Julia; Rolph, Timothy P.; Grimsrud, Paul A.; Muoio, Deborah M.

    2016-01-01

    Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK. PMID:26748706

  20. The Enok acetyltransferase complex interacts with Elg1 and negatively regulates PCNA unloading to promote the G1/S transition.

    PubMed

    Huang, Fu; Saraf, Anita; Florens, Laurence; Kusch, Thomas; Swanson, Selene K; Szerszen, Leanne T; Li, Ge; Dutta, Arnob; Washburn, Michael P; Abmayr, Susan M; Workman, Jerry L

    2016-05-15

    KAT6 histone acetyltransferases (HATs) are highly conserved in eukaryotes and are involved in cell cycle regulation. However, information regarding their roles in regulating cell cycle progression is limited. Here, we report the identification of subunits of the Drosophila Enok complex and demonstrate that all subunits are important for its HAT activity. We further report a novel interaction between the Enok complex and the Elg1 proliferating cell nuclear antigen (PCNA)-unloader complex. Depletion of Enok in S2 cells resulted in a G1/S cell cycle block, and this block can be partially relieved by depleting Elg1. Furthermore, depletion of Enok reduced the chromatin-bound levels of PCNA in both S2 cells and early embryos, suggesting that the Enok complex may interact with the Elg1 complex and down-regulate its PCNA-unloading function to promote the G1/S transition. Supporting this hypothesis, depletion of Enok also partially rescued the endoreplication defects in Elg1-depleted nurse cells. Taken together, our study provides novel insights into the roles of KAT6 HATs in cell cycle regulation through modulating PCNA levels on chromatin. PMID:27198229

  1. Microarray analysis of genes differentially expressed in melatonin-rich transgenic rice expressing a sheep serotonin N-acetyltransferase.

    PubMed

    Byeon, Yeong; Park, Sangkyu; Kim, Young Soon; Back, Kyoungwhan

    2013-11-01

    Transgenic rice plants overexpressing a sheep serotonin N-acetyltransferase led to an enhanced production of melatonin with various physiological effects, including seminal root elongation and resistance against cold and oxidative stress, which raises the possibility that melatonin may alter gene expression profiles in the transgenic rice. Therefore, we performed a microarray analysis to investigate the regulatory role of melatonin using the melatonin-rich transgenic rice. We identified 260 and 204 genes that were up- or downregulated in the melatonin-rich transgenic rice when compared with the wild type. Of these, 20 upregulated genes were identified in the seedlings of melatonin-rich rice at more than twice the levels in the wild type (P < 0.05), while 23 downregulated genes were also detected. The representative upregulated genes included caleosin, a Ca(2+) -binding oil-body surface protein involved in the degradation of lipids stored in oil bodies and various signaling proteins such as a cyclin F-box protein and leucine-rich repeat protein. In contrast, jasmonate-induced protein, senescence-associated protein, and polygalacturonase were included in the downregulated gene group. These results suggest that melatonin has an important role in modulating a wide range of gene expression, reflecting its pleiotropic physiological roles in plant growth and development. PMID:23889160

  2. Cohesin recruits the Esco1 acetyltransferase genome wide to repress transcription and promote cohesion in somatic cells.

    PubMed

    Rahman, Sadia; Jones, Mathew J K; Jallepalli, Prasad V

    2015-09-01

    The cohesin complex links DNA molecules and plays key roles in the organization, expression, repair, and segregation of eukaryotic genomes. In vertebrates the Esco1 and Esco2 acetyltransferases both modify cohesin's Smc3 subunit to establish sister chromatid cohesion during S phase, but differ in their N-terminal domains and expression during development and across the cell cycle. Here we show that Esco1 and Esco2 also differ dramatically in their interaction with chromatin, as Esco1 is recruited by cohesin to over 11,000 sites, whereas Esco2 is infrequently enriched at REST/NRSF target genes. Esco1's colocalization with cohesin occurs throughout the cell cycle and depends on two short motifs (the A-box and B-box) present in and unique to all Esco1 orthologs. Deleting either motif led to the derepression of Esco1-proximal genes and functional uncoupling of cohesion from Smc3 acetylation. In contrast, other mutations that preserved Esco1's recruitment separated its roles in cohesion establishment and gene silencing. We conclude that Esco1 uses cohesin as both a substrate and a scaffold for coordinating multiple chromatin-based transactions in somatic cells. PMID:26305936

  3. Homologues of xenobiotic metabolizing N-acetyltransferases in plant-associated fungi: Novel functions for an old enzyme family

    PubMed Central

    Karagianni, Eleni P.; Kontomina, Evanthia; Davis, Britton; Kotseli, Barbara; Tsirka, Theodora; Garefalaki, Vasiliki; Sim, Edith; Glenn, Anthony E.; Boukouvala, Sotiria

    2015-01-01

    Plant-pathogenic fungi and their hosts engage in chemical warfare, attacking each other with toxic products of secondary metabolism and defending themselves via an arsenal of xenobiotic metabolizing enzymes. One such enzyme is homologous to arylamine N-acetyltransferase (NAT) and has been identified in Fusarium infecting cereal plants as responsible for detoxification of host defence compound 2-benzoxazolinone. Here we investigate functional diversification of NAT enzymes in crop-compromising species of Fusarium and Aspergillus, identifying three groups of homologues: Isoenzymes of the first group are found in all species and catalyse reactions with acetyl-CoA or propionyl-CoA. The second group is restricted to the plant pathogens and is active with malonyl-CoA in Fusarium species infecting cereals. The third group generates minimal activity with acyl-CoA compounds that bind non-selectively to the proteins. We propose that fungal NAT isoenzymes may have evolved to perform diverse functions, potentially relevant to pathogen fitness, acetyl-CoA/propionyl-CoA intracellular balance and secondary metabolism. PMID:26245863

  4. Treatment of Rats with Apocynin Has Considerable Inhibitory Effects on Arylamine N-Acetyltransferase Activity in the Liver

    PubMed Central

    Francis, Sheena; Laurieri, Nicola; Nwokocha, Chukwuemeka; Delgoda, Rupika

    2016-01-01

    The effect of apocynin on the activity of arylamine N-acetyltransferases (NATs) in excised liver samples was examined using eighteen Sprague-Dawley rats. Three groups of six animals each were fed a normal diet alone or a treatment of 50 or 100 mg/kg/day of apocynin via gavages for eight (8) weeks. Chronic in vivo administration of apocynin led to significant (p < 0.001) reduction of in vitro liver NAT activity up to 93% as compared with untreated rats (18.80 ± 2.10 μmols p-anisidine/min/μg liver protein). In vitro exposure of untreated liver homogenates to apocynin led to a dose-dependent inhibition of NAT activity with IC50 = 0.69 ± 0.02 mM. In silico modelling of apocynin tautomers and radical species into human NAT crystal structures supported the hypothesis that thiol functionalities in NAT enzymes may be crucial in apocynin binding. The involvement of human NAT enzymes in different pathological conditions, such as cancer, has encouraged the research for selective NAT inhibitors in both humans and animal models with possible chemopreventive properties. PMID:27242013

  5. Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains

    PubMed Central

    2013-01-01

    Background Pathogen infection triggers a large-scale transcriptional reprogramming in plants, and the speed of this reprogramming affects the outcome of the infection. Our understanding of this process has significantly benefited from mutants that display either delayed or accelerated defense gene induction. In our previous work we demonstrated that the Arabidopsis Elongator complex subunit 2 (AtELP2) plays an important role in both basal immunity and effector-triggered immunity (ETI), and more recently showed that AtELP2 is involved in dynamic changes in histone acetylation and DNA methylation at several defense genes. However, the function of other Elongator subunits in plant immunity has not been characterized. Results In the same genetic screen used to identify Atelp2, we found another Elongator mutant, Atelp3-10, which mimics Atelp2 in that it exhibits a delay in defense gene induction following salicylic acid treatment or pathogen infection. Similarly to AtELP2, AtELP3 is required for basal immunity and ETI, but not for systemic acquired resistance (SAR). Furthermore, we demonstrate that both the histone acetyltransferase and radical S-adenosylmethionine domains of AtELP3 are essential for its function in plant immunity. Conclusion Our results indicate that the entire Elongator complex is involved in basal immunity and ETI, but not in SAR, and support that Elongator may play a role in facilitating the transcriptional induction of defense genes through alterations to their chromatin. PMID:23856002

  6. Competitive Inhibition of Lysine Acetyltransferase 2B by a Small Motif of the Adenoviral Oncoprotein E1A.

    PubMed

    Shi, Shasha; Liu, Ke; Chen, Yanheng; Zhang, Shijun; Lin, Juanyu; Gong, Chenfang; Jin, Quanwen; Yang, Xiang-Jiao; Chen, Ruichuan; Ji, Zhiliang; Han, Aidong

    2016-07-01

    The adenovirus early region 1A (E1A) oncoprotein hijacks host cells via direct interactions with many key cellular proteins, such as KAT2B, also known as PCAF (p300/CBP associated factor). E1A binds the histone acetyltransferase (HAT) domain of KAT2B to repress its transcriptional activation. However, the molecular mechanism by which E1A inhibits the HAT activity is not known. Here we demonstrate that a short and relatively conserved N-terminal motif (cNM) in the intrinsically disordered E1A protein is crucial for KAT2B interaction, and inhibits its HAT activity through a direct competition with acetyl-CoA, but not its substrate histone H3. Molecular modeling together with a series of mutagenesis experiments suggests that the major helix of E1A cNM binds to a surface of the acetyl-CoA pocket of the KAT2B HAT domain. Moreover, transient expression of the cNM peptide is sufficient to inhibit KAT2B-specific H3 acetylation H3K14ac in vivo Together, our data define an essential motif cNM in N-terminal E1A as an acetyl-CoA entry blocker that directly associates with the entrance of acetyl-CoA binding pocket to block the HAT domain access to its cofactor. PMID:27143356

  7. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae.

    PubMed

    Cheng, Cheng; Zhao, Xinqing; Zhang, Mingming; Bai, Fengwu

    2016-03-01

    RTT109 is a histone acetyltransferase for the acetylation of histone H3. It is still not clear whether RTT109 plays a role in regulation of gene expression under environmental stresses. In this study, the involvement of RTT109 in acetic acid stress tolerance of Saccharomyces cerevisiae was investigated. It was revealed that the absence of RTT109 enhanced resistance to 5.5 g L(-1) acetic acid, which was indicated by improved growth of RTT109Δ mutant compared with that of the wild-type BY4741 strain. Meanwhile, the lag phase was shortened for 48 h and glucose consumption completed 36 h in advance for RTT109Δ mutant compared to the wild-type strain, with ethanol production rate increased from 0.39 to 0.60 g L(-1) h(-1). Significantly, elevated transcription levels of HSP12, CTT1 and GSH1, as well as increased activities of antioxidant enzymes were observed in RTT109Δ under acetic acid stress. Improved flocculation of RTT109Δ compared to that of the control strain BY4741 under the acetic acid stress was also observed. These results suggest that the absence of RTT109 not only activates transcription of stress responsive genes, but also improves resistance to oxidative stress, which ultimately contributes to improved acetic acid tolerance in S. cerevisiae. PMID:26851403

  8. Placental arylamine N-acetyltransferase type 1: potential contributory source of urinary folate catabolite p-acetamidobenzoylglutamate during pregnancy.

    PubMed

    Upton, A; Smelt, V; Mushtaq, A; Aplin, R; Johnson, N; Mardon, H; Sim, E

    2000-12-15

    Human arylamine N-acetyltransferase type 1 (NAT1), better known as a drug-metabolising enzyme, has been proposed to acetylate the folate catabolite p-aminobenzoylglutamate (p-abaglu) to N-acetamidobenzoylglutamate (ap-abaglu) which is a major urinary folate catabolite. Using mass spectroscopic analysis, we demonstrate the formation of ap-abaglu by recombinant human NAT1 and human placental homogenates. Using density gradient centrifugation the placental enzymic activity which acetylates p-aba and the placental enzymic activity acetylating p-abaglu both have an S(20,w) value of 3.25 S. This is the expected value for a monomer of human NAT1 (33 kDa). The specific NAT1 inhibitor 5-iodosalicylate inhibits acetylation of both p-aba and p-abaglu catalysed by either recombinant human NAT1 or placental samples as the source of enzyme. These data demonstrate that NAT1 is the major placental enzyme involved in acetylating p-abaglu. PMID:11113560

  9. N-acetyltransferase 2 polymorphisms, tobacco smoking, and breast cancer risk in the breast and prostate cancer cohort consortium.

    PubMed

    Cox, David G; Dostal, Lucie; Hunter, David J; Le Marchand, Loïc; Hoover, Robert; Ziegler, Regina G; Thun, Michael J

    2011-12-01

    Common polymorphisms in the N-acetyltransferase 2 gene (NAT2) modify the association between cigarette smoking and bladder cancer and have been hypothesized to determine whether active cigarette smoking increases breast cancer risk. The authors sought to replicate the latter hypothesis in a prospective analysis of 6,900 breast cancer cases and 9,903 matched controls drawn from 6 cohorts (1989-2006) in the National Cancer Institute's Breast and Prostate Cancer Cohort Consortium. Standardized methods were used to genotype the 3 most common polymorphisms that define NAT2 acetylation phenotype (rs1799930, rs1799931, and rs1801280). In unconditional logistic regression analyses, breast cancer risk was higher in women with more than 20 pack-years of active cigarette smoking than in never smokers (odds ratio (OR) = 1.28, 95% confidence interval (CI): 1.17, 1.39), after controlling for established risk factors other than alcohol consumption and physical inactivity. However, associations were similar for the slow (OR = 1.25, 95% CI: 1.11, 1.39) and rapid/intermediate (OR = 1.24, 95% CI: 1.08, 1.42) acetylation phenotypes, with no evidence of interaction (P = 0.87). These results provide some support for the hypothesis that long-term cigarette smoking may be causally associated with breast cancer risk but underscore the need for caution when interpreting sparse data on gene-environment interactions. PMID:22074863

  10. Treatment of Rats with Apocynin Has Considerable Inhibitory Effects on Arylamine N-Acetyltransferase Activity in the Liver.

    PubMed

    Francis, Sheena; Laurieri, Nicola; Nwokocha, Chukwuemeka; Delgoda, Rupika

    2016-01-01

    The effect of apocynin on the activity of arylamine N-acetyltransferases (NATs) in excised liver samples was examined using eighteen Sprague-Dawley rats. Three groups of six animals each were fed a normal diet alone or a treatment of 50 or 100 mg/kg/day of apocynin via gavages for eight (8) weeks. Chronic in vivo administration of apocynin led to significant (p < 0.001) reduction of in vitro liver NAT activity up to 93% as compared with untreated rats (18.80 ± 2.10 μmols p-anisidine/min/μg liver protein). In vitro exposure of untreated liver homogenates to apocynin led to a dose-dependent inhibition of NAT activity with IC50 = 0.69 ± 0.02 mM. In silico modelling of apocynin tautomers and radical species into human NAT crystal structures supported the hypothesis that thiol functionalities in NAT enzymes may be crucial in apocynin binding. The involvement of human NAT enzymes in different pathological conditions, such as cancer, has encouraged the research for selective NAT inhibitors in both humans and animal models with possible chemopreventive properties. PMID:27242013

  11. Substrate-Induced Allosteric Change in the Quaternary Structure of the Spermidine N-Acetyltransferase SpeG.

    PubMed

    Filippova, Ekaterina V; Weigand, Steven; Osipiuk, Jerzy; Kiryukhina, Olga; Joachimiak, Andrzej; Anderson, Wayne F

    2015-11-01

    The spermidine N-acetyltransferase SpeG is a dodecameric enzyme that catalyzes the transfer of an acetyl group from acetyl coenzyme A to polyamines such as spermidine and spermine. SpeG has an allosteric polyamine-binding site and acetylating polyamines regulate their intracellular concentrations. The structures of SpeG from Vibrio cholerae in complexes with polyamines and cofactor have been characterized earlier. Here, we present the dodecameric structure of SpeG from V. cholerae in a ligand-free form in three different conformational states: open, intermediate and closed. All structures were crystallized in C2 space group symmetry and contain six monomers in the asymmetric unit cell. Two hexamers related by crystallographic 2-fold symmetry form the SpeG dodecamer. The open and intermediate states have a unique open dodecameric ring. This SpeG dodecamer is asymmetric except for the one 2-fold axis and is unlike any known dodecameric structure. Using a fluorescence thermal shift assay, size-exclusion chromatography with multi-angle light scattering, small-angle X-ray scattering analysis, negative-stain electron microscopy and structural analysis, we demonstrate that this unique open dodecameric state exists in solution. Our combined results indicate that polyamines trigger conformational changes and induce the symmetric closed dodecameric state of the protein when they bind to their allosteric sites. PMID:26410587

  12. N-Acetyltransferase 1 (NAT1) Genotype: A Risk Factor for Urinary Bladder Cancer in a Lebanese Population.

    PubMed

    Yassine, Ibrahim A; Kobeissi, Loulou; Jabbour, Michel E; Dhaini, Hassan R

    2012-01-01

    In Lebanon, bladder cancer is the second most incident cancer among men. This study investigates a possible association between N-acetyltransferase 1 (NAT1) genotype, a drug-metabolizing enzyme coding gene, and bladder cancer in Lebanese men. A case-control study (54 cases and 105 hospital-based controls) was conducted in two major hospitals in Beirut. Cases were randomly selected from patients diagnosed in the period of 2002-2008. Controls were conveniently identified and selected from the same settings. Data was collected using interview questionnaire and blood analysis. NAT1 genotypes were determined by PCR-RFLP. Statistical analysis revolved around univariate, bivariate, and multivariate logistic regression models, along with checks for effect modification. Results showed NAT1(∗)14A allele, smoking, occupational exposure to combustion fumes, and prostate-related symptoms, to be risk factors for bladder cancer. The odds of carrying at least one NAT1(∗)14A allele are 7 times higher in cases compared to controls (OR = 7.86, 95% CI: 1.53-40.39). A gene-environment interaction was identified for NAT1(∗)14A allele with occupational exposure to combustion fumes. Among carriers of NAT1(∗)14A allele, the odds of bladder cancer dropped to 2.03 from 3.72. Our study suggests NAT1(∗)14A allele as a possible biomarker for bladder cancer. Further research is recommended to confirm this association. PMID:22956951

  13. N-Acetyltransferase 1 (NAT1) Genotype: A Risk Factor for Urinary Bladder Cancer in a Lebanese Population

    PubMed Central

    Yassine, Ibrahim A.; Kobeissi, Loulou; Jabbour, Michel E.; Dhaini, Hassan R.

    2012-01-01

    In Lebanon, bladder cancer is the second most incident cancer among men. This study investigates a possible association between N-acetyltransferase 1 (NAT1) genotype, a drug-metabolizing enzyme coding gene, and bladder cancer in Lebanese men. A case-control study (54 cases and 105 hospital-based controls) was conducted in two major hospitals in Beirut. Cases were randomly selected from patients diagnosed in the period of 2002–2008. Controls were conveniently identified and selected from the same settings. Data was collected using interview questionnaire and blood analysis. NAT1 genotypes were determined by PCR-RFLP. Statistical analysis revolved around univariate, bivariate, and multivariate logistic regression models, along with checks for effect modification. Results showed NAT1∗14A allele, smoking, occupational exposure to combustion fumes, and prostate-related symptoms, to be risk factors for bladder cancer. The odds of carrying at least one NAT1∗14A allele are 7 times higher in cases compared to controls (OR = 7.86, 95% CI: 1.53–40.39). A gene-environment interaction was identified for NAT1∗14A allele with occupational exposure to combustion fumes. Among carriers of NAT1∗14A allele, the odds of bladder cancer dropped to 2.03 from 3.72. Our study suggests NAT1∗14A allele as a possible biomarker for bladder cancer. Further research is recommended to confirm this association. PMID:22956951

  14. Nuclear Arc Interacts with the Histone Acetyltransferase Tip60 to Modify H4K12 Acetylation1,2,3

    PubMed Central

    Wee, Caroline L.; Teo, Shaun; Oey, Nicodemus E.; Wright, Graham D.; VanDongen, Hendrika M.A.

    2014-01-01

    Abstract Arc is an immediate-early gene whose genetic ablation selectively abrogates long-term memory, indicating a critical role in memory consolidation. Although Arc protein is found at synapses, it also localizes to the neuronal nucleus, where its function is less understood. Nuclear Arc forms a complex with the β-spectrin isoform βSpIVΣ5 and associates with PML bodies, sites of epigenetic regulation of gene expression. We report here a novel interaction between Arc and Tip60, a histone-acetyltransferase and subunit of a chromatin-remodelling complex, using biochemistry and super-resolution microscopy in primary rat hippocampal neurons. Arc and βSpIVΣ5 are recruited to nuclear Tip60 speckles, and the three proteins form a tight complex that localizes to nuclear perichromatin regions, sites of transcriptional activity. Neuronal activity-induced expression of Arc (1) increases endogenous nuclear Tip60 puncta, (2) recruits Tip60 to PML bodies, and (3) increases histone acetylation of Tip60 substrate H4K12, a learning-induced chromatin modification. These mechanisms point to an epigenetic role for Arc in regulating memory consolidation. PMID:26464963

  15. Acetyl-L-carnitine restores choline acetyltransferase activity in the hippocampus of rats with partial unilateral fimbria-fornix transection.

    PubMed

    Piovesan, P; Quatrini, G; Pacifici, L; Taglialatela, G; Angelucci, L

    1995-02-01

    Transection of the fimbria-fornix bundle in adult rats results in degeneration of the septohippocampal cholinergic pathway, reminiscent of that occurring in aging as well as Alzheimer disease. We report here a study of the effect of a treatment with acetyl-L-carnitine (ALCAR) in three-month-old Fischer 344 rats bearing a partial unilateral fimbria-fornix transection. ALCAR is known to ameliorate some morphological and functional disturbances in the aged central nervous system (CNS). We used choline acetyltransferase (ChAT) and acetyl cholinesterase (AChE) as markers of central cholinergic function, and nerve growth factor (NGF) levels as indicative of the trophic regulation of the medio-septal cholinergic system. ChAT and AChE activities were significantly reduced in the hippocampus (HIPP) ipsilateral to the lesion as compared to the contralateral one, while no changes were observed in the septum (SPT), nucleus basalis magnocellularis (NBM) or frontal cortex (FCX). ALCAR treatment restored ChAT activity in the ipsilateral HIPP, while AChE levels were not different from those of untreated animals, and did not affect NGF content in either SPT or HIPP. PMID:7793306

  16. G9a-mediated methylation of ERα links the PHF20/MOF histone acetyltransferase complex to hormonal gene expression

    PubMed Central

    Zhang, Xi; Peng, Danni; Xi, Yuanxin; Yuan, Chao; Sagum, Cari A.; Klein, Brianna J.; Tanaka, Kaori; Wen, Hong; Kutateladze, Tatiana G.; Li, Wei; Bedford, Mark T.; Shi, Xiaobing

    2016-01-01

    The euchromatin histone methyltransferase 2 (also known as G9a) methylates histone H3K9 to repress gene expression, but it also acts as a coactivator for some nuclear receptors. The molecular mechanisms underlying this activation remain elusive. Here we show that G9a functions as a coactivator of the endogenous oestrogen receptor α (ERα) in breast cancer cells in a histone methylation-independent manner. G9a dimethylates ERα at K235 both in vitro and in cells. Dimethylation of ERαK235 is recognized by the Tudor domain of PHF20, which recruits the MOF histone acetyltransferase (HAT) complex to ERα target gene promoters to deposit histone H4K16 acetylation promoting active transcription. Together, our data suggest the molecular mechanism by which G9a functions as an ERα coactivator. Along with the PHF20/MOF complex, G9a links the crosstalk between ERα methylation and histone acetylation that governs the epigenetic regulation of hormonal gene expression. PMID:26960573

  17. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice

    PubMed Central

    Song, Xian Jun; Kuroha, Takeshi; Ayano, Madoka; Furuta, Tomoyuki; Nagai, Keisuke; Komeda, Norio; Segami, Shuhei; Miura, Kotaro; Ogawa, Daisuke; Kamura, Takumi; Suzuki, Takamasa; Higashiyama, Tetsuya; Yamasaki, Masanori; Mori, Hitoshi; Inukai, Yoshiaki; Wu, Jianzhong; Kitano, Hidemi; Sakakibara, Hitoshi; Jacobsen, Steven E.; Ashikari, Motoyuki

    2015-01-01

    Grain weight is an important crop yield component; however, its underlying regulatory mechanisms are largely unknown. Here, we identify a grain-weight quantitative trait locus (QTL) encoding a new-type GNAT-like protein that harbors intrinsic histone acetyltransferase activity (OsglHAT1). Our genetic and molecular evidences pinpointed the QTL-OsglHAT1’s allelic variations to a 1.2-kb region upstream of the gene body, which is consistent with its function as a positive regulator of the traits. Elevated OsglHAT1 expression enhances grain weight and yield by enlarging spikelet hulls via increasing cell number and accelerating grain filling, and increases global acetylation levels of histone H4. OsglHAT1 localizes to the nucleus, where it likely functions through the regulation of transcription. Despite its positive agronomical effects on grain weight, yield, and plant biomass, the rare allele elevating OsglHAT1 expression has so far escaped human selection. Our findings reveal the first example, to our knowledge, of a QTL for a yield component trait being due to a chromatin modifier that has the potential to improve crop high-yield breeding. PMID:25535376

  18. The Presence of Peptidoglycan O-Acetyltransferase in Various Staphylococcal Species Correlates with Lysozyme Resistance and Pathogenicity

    PubMed Central

    Bera, Agnieszka; Biswas, Raja; Herbert, Silvia; Götz, Friedrich

    2006-01-01

    Human-pathogenic bacteria that are able to cause persistent infections must have developed mechanisms to resist the immune defense system. Lysozyme, a cell wall-lytic enzyme, is one of the first defense compounds induced in serum and tissues after the onset of infection. Recently, we showed that Staphylococcus aureus is resistant to lysozyme by O acetylating its peptidoglycan (PG) by O-acetyltransferase (OatA). We asked the question of which staphylococcal species PG is O acetylated. We applied various methods, such as genome analysis, PCR, Southern blotting, lysozyme sensitivity assay, and verification of O acetylation of PG by high-performance liquid chromatography (HPLC) analysis. PCR analysis using S. aureus-derived oatA primers and Southern blotting did not yield reliable results with other staphylococcal species. Therefore, we used the HPLC-based assay to directly detect PG O acetylation. Our studies revealed that the muramic acid was O acetylated only in pathogenic, lysozyme-resistant staphylococci (e.g., S. aureus, S. epidermidis, S. lugdunensis, and others). All nonpathogenic species were lysozyme sensitive. They can be divided into sensitive species (e.g., S. carnosus, S. gallinarum, and S. xylosus) and hypersensitive species (e.g., S. equorum, S. lentus, and S. arlettae). In all lysozyme-sensitive species, the analyzed PG was de-O-acetylated. When we transformed the oatA gene from lysozyme-resistant S. aureus into S. carnosus, the corresponding transformants also became lysozyme resistant. PMID:16861647

  19. Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis.

    PubMed

    Hu, Zhaorong; Song, Na; Zheng, Mei; Liu, Xinye; Liu, Zhenshan; Xing, Jiewen; Ma, Junhua; Guo, Weiwei; Yao, Yingyin; Peng, Huiru; Xin, Mingming; Zhou, Dao-Xiu; Ni, Zhongfu; Sun, Qixin

    2015-12-01

    Exposure to temperatures exceeding the normal optimum levels, or heat stress (HS), constitutes an environmental disruption for plants, resulting in severe growth and development retardation. Here we show that loss of function of the Arabidopsis histone acetyltransferase GCN5 results in serious defects in terms of thermotolerance, and considerably impairs the transcriptional activation of HS-responsive genes. Notably, expression of several key regulators such as the HS transcription factors HSFA2 and HSFA3, Multiprotein Bridging Factor 1c (MBF1c) and UV-HYPERSENSITIVE 6 (UVH6) is down-regulated in the gcn5 mutant under HS compared with the wild-type. Chromatin immunoprecipitation (ChIP) assays indicated that GCN5 protein is enriched at the promoter regions of HSFA3 and UVH6 genes, but not in HSFA2 and MBF1c, and that GCN5 facilitates H3K9 and H3K14 acetylation, which are associated with HSFA3 and UVH6 activation under HS. Moreover, constitutive expression of UVH6 in the gcn5 mutant partially restores heat tolerance. Taken together, our data indicate that GCN5 plays a key role in the preservation of thermotolerance via versatile regulation in Arabidopsis. In addition, expression of the wheat TaGCN5 gene re-establishes heat tolerance in Arabidopsis gcn5 mutant plants, suggesting that GCN5-mediated thermotolerance may be conserved between Arabidopsis and wheat. PMID:26576681

  20. Raman and surface enhanced Raman spectroscopic studies of specific, small molecule activator of histone acetyltransferase p300

    NASA Astrophysics Data System (ADS)

    Kundu, Partha P.; Pavan Kumar, G. V.; Mantelingu, Kempegowda; Kundu, Tapas K.; Narayana, Chandrabhas

    2011-07-01

    We report for the first time, the Raman and surface enhanced Raman scattering (SERS) studies of N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-benzamide (CTB). This molecule is specific activator of human histone acetyltransferase (HAT), p300, and serves as lead molecule to design anti-neoplastic therapeutics. A detailed Raman and SERS band assignments have been performed for CTB, which are compared with the density functional theory calculations. The observed red shift of N sbnd H stretching frequency from the computed wavenumber indicates the weakening of N sbnd H bond resulting from proton transfer to the neighboring oxygen atom. We observe Ag sbnd N vibrational mode at 234 cm -1 in SERS of CTB. This indicates there is a metal-molecule bond leading to chemical enhancement in SERS. We also observe, enhancement in the modes pertaining to substituted benzene rings and methyl groups. Based on SERS analysis we propose the adsorption sites and the orientation of CTB on silver surface.

  1. Cereboost™, an American ginseng extract, improves cognitive function via up-regulation of choline acetyltransferase expression and neuroprotection.

    PubMed

    Shin, Kyungha; Guo, Haiyu; Cha, Yeseul; Ban, Young-Hwan; Seo, Da Woom; Choi, Youngjin; Kim, Tae-Su; Lee, Sung-Pyo; Kim, Jong-Choon; Choi, Ehn-Kyoung; Yon, Jung-Min; Kim, Yun-Bae

    2016-07-01

    In Alzheimer disease (AD), amyloid-beta (Aβ) peptides induce the degeneration of presynaptic cholinergic system, in which decreased activity of enzyme choline acetyltransferase (ChAT) responsible for acetylcholine synthesis is observed. Cereboost™, an extract of American ginseng extract, contains a high concentration of Rb1 ginsenoside which is a well-known ingredient improving human cognitive function. We investigated the effects of Cereboost™ on learning and memory function of mice challenged with an Aβ1-42 peptide and the underlying mechanisms in vitro. Cereboost™ protected against Aβ1-42-induced cytotoxicity in F3.ChAT stem cells, and enhanced the ChAT gene expression. Aβ1-42 injection into the mouse brain impaired the cognitive function, which was recovered by oral administration of Cereboost™. In addition, Cereboost™ restored brain microtubule-associated protein 2 and synaptophysin as well as acetylcholine concentration. The results demonstrate that Cereboost™ administration recovered the cognitive function of AD model animals by enhancing acetylcholine level via ChAT gene expression and neuroprotection. PMID:27112419

  2. In vivo knockdown of basal forebrain p75 neurotrophin receptor stimulates choline acetyltransferase activity in the mature hippocampus.

    PubMed

    Barrett, Graham L; Naim, Timur; Trieu, Jennifer; Huang, Mengjie

    2016-05-01

    This study seeks to determine whether knockdown of basal forebrain p75 neurotrophin receptor (p75(NTR) ) expression elicits increased hippocampal choline acetyltransferase (ChAT) activity in mature animals. Antisense (AS) oligonucleotides (oligos) targeting p75(NTR) were infused into the medial septal area of mature rats continuously for 4 weeks. In all rats, the cannula outlet was placed equidistant between the left and the right sides of the vertical diagonal band of Broca. We tested phosphorothioate (PS), morpholino (Mo), and gapmer (mixed PS/RNA) oligos. Gapmer AS infusions of 7.5 and 22 μg/day decreased septal p75(NTR) mRNA by 34% and 48%, respectively. The same infusions increased hippocampal ChAT activity by 41% and 55%. Increased hippocampal ChAT activity correlated strongly with septal p75(NTR) downregulation in individual rats. Infusions of PS and Mo AS oligos did not downregulate p75(NTR) mRNA or stimulate ChAT activity. These results demonstrate that p75(NTR) can dynamically regulate hippocampal ChAT activity in the mature CNS. They also reveal the different efficacies of three diverse AS oligo chemistries when infused intracerebrally. Among the three types, gapmer oligos worked best. PMID:26864466

  3. Melatonin production in Escherichia coli by dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase.

    PubMed

    Byeon, Yeong; Back, Kyoungwhan

    2016-08-01

    Melatonin is a well-known bioactive molecule produced in animals and plants and a well-studied natural compound. Two enzymatic steps are required for the biosynthesis of melatonin from serotonin. First, serotonin N-acetyltransferase (SNAT) catalyzes serotonin to N-acetylserotonin (NAS) followed by the action of N-acetylserotonin O-methyltransferase (ASMT), resulting in the synthesis of O-methylated NAS, also known as melatonin. Attempts to document melatonin production in Escherichia coli have been unsuccessful to date due to either low enzyme activity or inactive ASMT expression. Here, we employed caffeic acid O-methyltransferase (COMT) instead of ASMT, as COMT is a multifunctional enzyme that has ASMT activity as well. Among several combinations of dual expression cassettes, recombinant E. coli that expressed sheep SNAT with rice COMT produced a high quantity of melatonin, which was measured in a culture medium (1.46 mg/L in response to 1 mM serotonin). This level was several orders of magnitude higher than that produced in transgenic rice and tomato overexpressing sheep SNAT and ASMT, respectively. This heterologous expression system can be widely employed to screen various putative SNAT or ASMT genes from animals and plants as well as to overproduce melatonin in various useful microorganisms. PMID:27005412

  4. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    PubMed Central

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR, and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at fourfold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops. PMID:26528311

  5. Chromatic biosensor for detection of phosphinothricin acetyltransferase by use of polydiacetylene vesicles encapsulated within automatically generated immunohydrogel beads.

    PubMed

    Jung, Sung-Ho; Jang, Huisoo; Lim, Min-Cheol; Kim, Jae-Hwan; Shin, Kong-Sik; Kim, Sun Min; Kim, Hae-Yeong; Kim, Young-Rok; Jeon, Tae-Joon

    2015-02-17

    We developed a simple and sensitive colorimetric biosensor in the form of microparticles by using polydiacetylene (PDA) vesicles encapsulated within a hydrogel matrix for the detection of phosphinothricin acetyltransferase (PAT) protein, which is one of the most important marker proteins in genetically modified (GM) crops. Although PDA is commonly used as a sensing material due to its unique colorimetric properties, existing PDA biosensors are ineffective due to their low sensitivity as well as their lack of robustness. To overcome these disadvantages, we devised immunohydrogel beads made of anti-PAT-conjugated PDA vesicles embedded at high density within a poly(ethylene glycol) diacrylate (PEG-DA) hydrogel matrix. In addition, the construction of immunohydrogel beads was automated by use of a microfluidic device. In the immunoreaction, the sensitivity of antibody-conjugated PDA vesicles was significantly amplified, as monitored by the unaided eye. The limit of detection for target molecules reached as low as 20 nM, which is sufficiently low enough to detect target materials in GM organisms. Collectively, the results show that immunohydrogel beads constitute a promising colorimetric sensing platform for onsite testing in a number of fields, such as the food and medical industries, as well as warfare situations. PMID:25615891

  6. An efficient high-throughput screening method for MYST family acetyltransferases, a new class of epigenetic drug targets.

    PubMed

    Falk, Hendrik; Connor, Theresa; Yang, Hong; Loft, Karen J; Alcindor, Joanne L; Nikolakopoulos, George; Surjadi, Regina N; Bentley, John D; Hattarki, Meghan K; Dolezal, Olan; Murphy, James M; Monahan, Brendon J; Peat, Thomas S; Thomas, Tim; Baell, Jonathan B; Parisot, John P; Street, Ian P

    2011-12-01

    Epigenetic aberrations are increasingly regarded as key factors in cancer progression. Recently, deregulation of histone acetyltransferases (HATs) has been linked to several types of cancer. Monocytic leukemia zinc finger protein (MOZ) is a member of the MYST family of HATs, which regulate gene expression in cell proliferation and differentiation. Deregulation of these processes through constitutively active MOZ fusion proteins gives rise to the formation of leukemic stem cells, rendering MOZ an excellent target for treating myeloid leukemia. The authors implemented a hit discovery campaign to identify small-molecule inhibitors of MOZ-HAT activity. They developed a robust, homogeneous assay measuring the acetylation of synthetic histone peptides. In a primary screening campaign testing 243 000 lead-like compounds, they identified inhibitors from several chemical classes. Secondary assays were used to eliminate assay-interfering compounds and prioritize confirmed hits. This study establishes a new high-throughput assay for HAT activity and could provide the foundation for the development of a new class of drugs for the treatment of leukemias. PMID:22086725

  7. LHX3 Interacts with Inhibitor of Histone Acetyltransferase Complex Subunits LANP and TAF-1β to Modulate Pituitary Gene Regulation

    PubMed Central

    Witzmann, Frank A.; Rhodes, Simon J.

    2013-01-01

    LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex. PMID:23861948

  8. Neuropeptide Y-like immunoreactivity in rat cranial parasympathetic neurons: coexistence with vasoactive intestinal peptide and choline acetyltransferase

    SciTech Connect

    Leblanc, G.C.; Trimmer, B.A.; Landis, S.C.

    1987-05-01

    Neuropeptide Y (NPY) is widely distributed in the sympathetic nervous system, where it is colocalized with norepinephrine. The authors report here that NPY-immunoreactive neurons are also abundant in three cranial parasympathetic ganglia, the otic, sphenopalatine, and ciliary, in the rat measured by radioimmunoassay. High-performance liquid chromatographic analysis of the immunoreactive material present in the otic ganglion indicates that this material is very similar to porcine NPY and indistinguishable from the NPY-like immunoreactivity present in rat sympathetic neurons. These findings raise the possibility that NPY acts as a neuromodulator in the parasympathetic as well as the sympathetic nervous system. In contrast to what had been observed for sympathetic neurons, NPY-immunoreactive neurons in cranial parasympathetic ganglia do not contain detectable catecholamines or tyrosine hydroxylase immunoreactivity, and many do contain immunoreactivity for vasoactive intestinal peptide and/or choline acetyltransferase. These findings suggest that there is no simple rule governing coexpression of NPY with norepinephrine, acetylcholine, or vasoactive intestinal peptide in autonomic neurons. Further, while functional studies have indicated that NPY exerts actions on the peripheral vasculature which are antagonistic to those of acetylcholine and vasoactive intestinal peptide, the present results raise the possibility that these three substances may have complementary effects on other target tissues.

  9. Genotyping of the polymorphic N-acetyltransferase (NAT2) and loss of heterozygosity in bladder cancer patients.

    PubMed

    Schnakenberg, E; Ehlers, C; Feyerabend, W; Werdin, R; Hübotter, R; Dreikorn, K; Schloot, W

    1998-05-01

    Acetylation is one of the major routes in metabolism and detoxification of a large number of drugs, chemicals and carcinogens. Slow acetylators are said to be more susceptible to developing bladder cancer and because of investigations about tumor risk based on phenotyping procedures, it was our aim to study the distribution of allelic constellations of the N-acetyltransferase (NAT2) by genotyping patients with bladder cancer. We analysed NAT2 gene of blood and tumor DNA from 60 patients with primary bladder cancer and DNA of blood samples from 154 healthy individuals. Using ASO-PCR/RFLP techniques we identified 70% of patients with bladder cancer (n = 42) to be slow acetylators while genotyping of controls resulted in 61% with slow acetylators (n = 94). In addition, dividing bladder cancer patients in males and females the genotype NAT2*5B/NAT2*6A occured with much higher frequencies in males (OR = 4, 95%); CI = 1.8-8.9). Furthermore, investigating bladder cancer tissues we could detect loss of heterozygosity (LOH) in slow and rapid acetylator genotypes. In eleven out of 60 tumor samples (18.3%) we observed allelic loss at the NAT2 locus while in control DNA of blood from the same patients both alleles were still detectable. PMID:9660060

  10. Synergistic action of histone acetyltransferase GCN5 and receptor CLAVATA1 negatively affects ethylene responses in Arabidopsis thaliana.

    PubMed

    Poulios, Stylianos; Vlachonasios, Konstantinos E

    2016-02-01

    GENERAL CONTROL NON-REPRESSIBLE 5 (GCN5) is a histone acetyltransferase (HAT) and the catalytic subunit of several multicomponent HAT complexes that acetylate lysine residues of histone H3. Mutants in AtGCN5 display pleiotropic developmental defects including aberrant meristem function. Shoot apical meristem (SAM) maintenance is regulated by CLAVATA1 (CLV1), a receptor kinase that controls the size of the shoot and floral meristems. Upon activation through CLV3 binding, CLV1 signals to the transcription factor WUSCHEL (WUS), restricting WUS expression and thus the meristem size. We hypothesized that GCN5 and CLV1 act together to affect SAM function. Using genetic and molecular approaches, we generated and characterized clv gcn5 mutants. Surprisingly, the clv1-1 gcn5-1 double mutant exhibited constitutive ethylene responses, suggesting that GCN5 and CLV signaling act synergistically to inhibit ethylene responses in Arabidopsis. This genetic and molecular interaction was mediated by ETHYLENE INSENSITIVE 3/ EIN3-LIKE1 (EIN3/EIL1) transcription factors. Our data suggest that signals from the CLV transduction pathway reach the GCN5-containing complexes in the nucleus and alter the histone acetylation status of ethylene-responsive genes, thus translating the CLV information to transcriptional activity and uncovering a link between histone acetylation and SAM maintenance in the complex mode of ethylene signaling. PMID:26596766

  11. Localization of choline acetyltransferase (ChAT) immunoreactivity in the brain of a caecilian amphibian, Dermophis mexicanus (Amphibia: Gymnophiona).

    PubMed

    González, Agustín; López, Jesús M; Sánchez-Camacho, Cristina; Marín, Oscar

    2002-07-01

    The organization of the cholinergic system in the brain of anuran and urodele amphibians was recently studied, and significant differences were noted between both amphibian orders. However, comparable data are not available for the third order of amphibians, the limbless gymnophionans (caecilians). To further assess general and derived features of the cholinergic system in amphibians, we have investigated the distribution of choline acetyltransferase immunoreactive (ChAT-ir) cell bodies and fibers in the brain of the gymnophionan Dermophis mexicanus. This distribution showed particular features of gymnophionans such as the existence of a particularly large cholinergic population in the striatum, the presence of ChAT-ir cells in the mesencephalic tectum, and the organization of the cranial nerve motor nuclei. These peculiarities probably reflect major adaptations of gymnophionans to a fossorial habit. Comparison of our results with those in other vertebrates, including a segmental approach to correlate cell populations across species, shows that the general pattern of organization of cholinergic systems in vertebrates can be modified in certain species in response to adaptative processes that lead to morphological and behavioral modifications of members of a given class of vertebrates, as shown for gymnophionans. PMID:12115707

  12. Measurement of choline acetyltransferase with (/sup 14/C)acetate by a cycling procedure

    SciTech Connect

    O'Neill, J.J.; Hruschak, K.A.

    1987-06-01

    A multiple enzyme and multisubstrate cycling system is described for the radiometric determination of cholineacetyltransferase (ChAT) activity in crude tissue homogenates. The methods employs (/sup 14/C)acetate coupled with the enzymes acetate kinase (AK) and phosphotransacetylase (PTA) for the generation of (/sup 14/C)acetyl CoA. By recycling it was possible to avoid product inhibition of ChAT by CoA, ATP was maintained constant by rephosphorylation of ADP. Kinetics of the individual enzyme reactions were studied and the parameters obtained were used to select appropriate conditions to maintain linearity of varying amounts ChAT activity over a sixty minute time course. The sensitivity of the method is limited only by the specific activity of commercially available isotope labeled acetate.

  13. Spatial Memory Consolidation is Associated with Induction of Several Lysine-Acetyltransferase (Histone Acetyltransferase) Expression Levels and H2B/H4 Acetylation-Dependent Transcriptional Events in the Rat Hippocampus

    PubMed Central

    Bousiges, Olivier; Vasconcelos, Anne Pereira de; Neidl, Romain; Cosquer, Brigitte; Herbeaux, Karine; Panteleeva, Irina; Loeffler, Jean-Philippe; Cassel, Jean-Christophe; Boutillier, Anne-Laurence

    2010-01-01

    Numerous genetic studies have shown that the CREB-binding protein (CBP) is an essential component of long-term memory formation, through its histone acetyltransferase (HAT) function. E1A-binding protein p300 and p300/CBP-associated factor (PCAF) have also recently been involved in memory formation. By contrast, only a few studies have reported on acetylation modifications during memory formation, and it remains unclear as to how the system is regulated during this dynamic phase. We investigated acetylation-dependent events and the expression profiles of these HATs during a hippocampus-dependent task taxing spatial reference memory in the Morris water maze. We found a specific increase in H2B and H4 acetylation in the rat dorsal hippocampus, while spatial memory was being consolidated. This increase correlated with the degree of specific acetylated histones enrichment on some memory/plasticity-related gene promoters. Overall, a global increase in HAT activity was measured during this memory consolidation phase, together with a global increase of CBP, p300, and PCAF expression. Interestingly, these regulations were altered in a model of hippocampal denervation disrupting spatial memory consolidation, making it impossible for the hippocampus to recruit the CBP pathway (CBP regulation and acetylated-H2B-dependent transcription). CBP has long been thought to be present in limited concentrations in the cells. These results show, for the first time, that CBP, p300, and PCAF are dynamically modulated during the establishment of a spatial memory and are likely to contribute to the induction of a specific epigenetic tagging of the genome for hippocampus-dependent (spatial) memory consolidation. These findings suggest the use of HAT-activating molecules in new therapeutic strategies of pathological aging, Alzheimer's disease, and other neurodegenerative disorders. PMID:20811339

  14. Prosthesis coupling

    NASA Technical Reports Server (NTRS)

    Reswick, J. B.; Mooney, V.; Bright, C. W.; Owens, L. J. (Inventor)

    1979-01-01

    A coupling for use in an apparatus for connecting a prosthesis to the bone of a stump of an amputated limb is described which permits a bio-compatible carbon sleeve forming a part of the prosthesis connector to float so as to prevent disturbing the skin seal around the carbon sleeve. The coupling includes a flexible member interposed between a socket that is inserted within an intermedullary cavity of the bone and the sleeve. A lock pin is carried by the prosthesis and has a stem portion which is adapted to be coaxially disposed and slideably within the tubular female socket for securing the prosthesis to the stump. The skin around the percutaneous carbon sleeve is able to move as a result of the flexing coupling so as to reduce stresses caused by changes in the stump shape and/or movement between the bone and the flesh portion of the stump.

  15. FLEXIBLE COUPLING

    DOEpatents

    Babelay, E.F.

    1962-02-13

    A flexible shaft coupling for operation at speeds in excess of 14,000 rpm is designed which requires no lubrication. A driving sleeve member and a driven sleeve member are placed in concentric spaced relationship. A torque force is transmitted to the driven member from the driving member through a plurality of nylon balls symmetrically disposed between the spaced sleeves. The balls extend into races and recesses within the respective sleeve members. The sleeve members have a suitable clearance therebetween and the balls have a suitable radial clearance during operation of the coupling to provide a relatively loose coupling. These clearances accommodate for both parallel and/or angular misalignments and avoid metal-tometal contact between the sleeve members during operation. Thus, no lubrication is needed, and a minimum of vibrations is transmitted between the sleeve members. (AEC)

  16. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveal Substrate Specificity of Protein Acetyltransferases*

    PubMed Central

    Crosby, Heidi A.; Pelletier, Dale A.; Hurst, Gregory B.; Escalante-Semerena, Jorge C.

    2012-01-01

    N-Lysine acetylation is a posttranslational modification that has been well studied in eukaryotes and is likely widespread in prokaryotes as well. The central metabolic enzyme acetyl-CoA synthetase is regulated in both bacteria and eukaryotes by acetylation of a conserved lysine residue in the active site. In the purple photosynthetic α-proteobacterium Rhodopseudomonas palustris, two protein acetyltransferases (RpPat and the newly identified RpKatA) and two deacetylases (RpLdaA and RpSrtN) regulate the activities of AMP-forming acyl-CoA synthetases. In this work, we used LC/MS/MS to identify other proteins regulated by the N-lysine acetylation/deacetylation system of this bacterium. Of the 24 putative acetylated proteins identified, 14 were identified more often in a strain lacking both deacetylases. Nine of these proteins were members of the AMP-forming acyl-CoA synthetase family. RpPat acetylated all nine of the acyl-CoA synthetases identified by this work, and RpLdaA deacetylated eight of them. In all cases, acetylation occurred at the conserved lysine residue in the active site, and acetylation decreased activity of the enzymes by >70%. Our results show that many different AMP-forming acyl-CoA synthetases are regulated by N-lysine acetylation. Five non-acyl-CoA synthetases were identified as possibly acetylated, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Rpa1177, a putative 4-oxalocrotonate tautomerase. Neither RpPat nor RpKatA acetylated either of these proteins in vitro. It has been reported that Salmonella enterica Pat (SePat) can acetylate a number of metabolic enzymes, including GAPDH, but we were unable to confirm this claim, suggesting that the substrate range of SePat is not as broad as suggested previously. PMID:22416131

  17. Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated caucasian individuals: Correlation with phenotypic activity

    SciTech Connect

    Cascorbi, I.; Drakoulis, N.; Brockmoeller, J.

    1995-09-01

    The polymorphic arylamine N-acetyltransferase (NAT2; EC2.3.1.5) is supposed to be a susceptibility factor for several drug side effects and certain malignancies. A group of 844 unrelated German subjects was genotyped for their acetylation type, and 563 of them were also phenotyped. Seven mutations of the NAT2 gene were evaluated by allele-specific PCR (mutation 341C to T) and PCR-RFLP for mutations at nt positions 191, 282, 481, 590, 803, and 857. From the mutation pattern eight different alleles, including the wild type coding for rapid acetylation and seven alleles coding for slow phenotype, were determined. Four hundred ninety-seven subjects had a genotype of slow acetylation (58.9%; 95% confidence limits 55.5%-62.2%). Phenotypic acetylation capacity was expressed as the ratio of 5-acetylamino-6-formylamino-3-methyluracil and 1-methylxanthine in urine after caffeine intake. Some 6.7% of the cases deviated in genotype and phenotype, but sequencing DNA of these probands revealed no new mutations. Furthermore, linkage pattern of the mutations was always confirmed, as tested in 533 subjects. In vivo acetylation capacity of homozygous wild-type subjects (NAT2{sup *}4/{sup *}4) was significantly higher than in heterozygous genotypes (P = .001). All mutant alleles showed low in vivo acetylation capacities, including the previously not-yet-defined alleles {sup *}5A, {sup *}5C, and {sup *}13. Moreover, distinct slow genotypes differed significantly among each other, as reflected in lower acetylation capacity of {sup *}6A, {sup *}7B, and {sup *}13 alleles than the group of {sup *}5 alleles. The study demonstrated differential phenotypic activity of various NAT2 genes and gives a solid basis for clinical and molecular-epidemiological investigations. 34 refs., 4 figs., 7 tabs.

  18. Elevated arylalkylamine-N-acetyltransferase (AA-NAT) gene expression in medial habenular and suprachiasmatic nuclei of hibernating ground squirrels.

    PubMed

    Yu, Erik Z; Hallenbeck, John M; Cai, Decheng; McCarron, Richard M

    2002-06-15

    Hibernation, an adaptive response for energy conservation in mammals, involves a variety of physiological changes. Melatonin is linked with the regulation of core body temperature and intervenes in generating circadian cycles; its role in seasonal (circannual) rhythms of hibernation is explored here. Melatonin is primarily produced in the pineal gland. Since arylalkylamine-N-acetyltransferase (AA-NAT) is the rate-limiting enzyme for synthesizing melatonin, AA-NAT gene expression was investigated to assess the possible role of melatonin in hibernation. The findings presented here utilized combined in situ hybridization and immunohistochemistry methodologies to evaluate the AA-NAT mRNA expression in brains of both hibernating and non-hibernating ground squirrels. Brains were examined for the expression of AA-NAT mRNA using a oligonucleotide AA-NAT probe; antibody against neurofilament-70 (NF-70) was used as a neuronal marker. All hibernating animals expressed significantly (P<0.01) elevated levels of AA-NAT mRNA in both the epithalamic medial habenular nuclei (MHb) area and the hypothalamic suprachiasmatic nuclei (SCN), which is also known as the master biologic clock. These findings represent the first demonstration of the expression of mRNA encoding for AA-NAT in the extra-pineal (i.e. SCN and MHb) sites of thirteen-lined ground squirrels and indicate that the habenular nucleus may be an important supplementary location for melatonin biosynthesis. The data presented here indicate that AA-NAT gene is one of the few specific genes up-regulated during hibernation and suggest that elevation of its expression in SCN and MHb may play an essential role in the generation and maintenance of hibernation. PMID:12191489

  19. Effects of human arylamine N-acetyltransferase I knockdown in triple-negative breast cancer cell lines

    PubMed Central

    Tiang, Jacky M; Butcher, Neville J; Minchin, Rodney F

    2015-01-01

    Expression of human arylamine N-acetyltransferase I (NAT1) has been associated with various cancer subtypes and inhibition of this enzyme with small molecule inhibitors or siRNA affects cell growth and survival. Here, we have investigated the role of NAT1 in the invasiveness of breast cancer cells both in vitro and in vivo. We knocked down NAT1 using a lentivirus-based shRNA approach and observed marked changes in cell morphology in the triple-negative breast cancer cell lines MDA-MB-231, MDA-MB-436, and BT-549. Most notable was a reduction in the number and size of the filopodia protrusions on the surface of the cells. The loss of filopodia could be rescued by the reintroduction of NAT1 into the knockdown cells. NAT1 expression was localized to the lamellipodia and extended into the filopodia protrusions. In vitro invasion through Geltrex was significantly inhibited in both the MDA cell lines but not in the BT-549 cells. The expression of Snail increased when NAT1 was knocked down, while other genes associated with mesenchymal to epithelial transition (vimentin, cytokeratin-18, and Twist) did not show any changes. By contrast, both N-cadherin and β-catenin were significantly reduced. When MDA-MB-231 cells expressing shRNA were injected in vivo into BALB/c nu/nu nude mice, a significant reduction in the number of colonies that formed in the lungs was observed. Taken together, the results show that NAT1 can alter the invasion and metastatic properties of some triple-negative breast cancer cells but not all. The study suggests that NAT1 may be a novel therapeutic target in a subset of breast cancers. PMID:25627111

  20. Immunohistochemical localization of two types of choline acetyltransferase in neurons and sensory cells of the octopus arm.

    PubMed

    Sakaue, Yuko; Bellier, Jean-Pierre; Kimura, Shin; D'Este, Loredana; Takeuchi, Yoshihiro; Kimura, Hiroshi

    2014-01-01

    Cholinergic structures in the arm of the cephalopod Octopus vulgaris were studied by immunohistochemistry using specific antisera for two types (common and peripheral) of acetylcholine synthetic enzyme choline acetyltransferase (ChAT): antiserum raised against the rat common type ChAT (cChAT), which is cross-reactive with molluscan cChAT, and antiserum raised against the rat peripheral type ChAT (pChAT), which has been used to delineate peripheral cholinergic structures in vertebrates, but not previously in invertebrates. Western blot analysis of octopus extracts revealed a single pChAT-positive band, suggesting that pChAT antiserum is cross-reactive with an octopus counterpart of rat pChAT. In immunohistochemistry, only neuronal structures of the octopus arm were stained by cChAT and pChAT antisera, although the pattern of distribution clearly differed between the two antisera. cChAT-positive varicose nerve fibers were observed in both the cerebrobrachial tract and neuropil of the axial nerve cord, while pChAT-positive varicose fibers were detected only in the neuropil of the axial nerve cord. After epitope retrieval, pChAT-positive neuronal cells and their processes became visible in all ganglia of the arm, including the axial and intramuscular nerve cords, and in ganglia of suckers. Moreover, pChAT-positive structures also became detectable in nerve fibers connecting the different ganglia, in smooth nerve fibers among muscle layers and dermal connective tissues, and in sensory cells of the suckers. These results suggest that the octopus arm has two types of cholinergic nerves: cChAT-positive nerves from brain ganglia and pChAT-positive nerves that are intrinsic to the arm. PMID:23354679

  1. Absence of Association between N-Acetyltransferase 2 Acetylator Status and Colorectal Cancer Susceptibility: Based on Evidence from 40 Studies

    PubMed Central

    Wang, Jun; Liang, Guo dong; Li, Jing ying; Zhu, Yi dan; Su, Yun tao

    2012-01-01

    Background and Objectives N-Acetyltransferase (NAT) 2 is an important enzyme involved in the metabolism of different xenobiotics, including potential carcinogens, whose phenotypes were reported to be related to individual susceptibility to colorectal cancer (CRC). However, the results remain conflicting. To assess the relationship between NAT2 phenotypes and CRC risk, we performed this meta-analysis. Methods A comprehensive literature search was conducted to identify all case-control or cohort studies of NAT2 acetylator status on the susceptibility of CRC by searching of PubMed and EMBASE, up to May 20, 2011. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the association. Results A total of over 40,000 subjects from 40 published literatures were identified by searching the databases. No significantly elevated CRC risk in individuals with NAT2 slow acetylators compared with fast acetylators was found when all studies pooled (OR = 0.95, 95% CI: 0.87–1.04, I2 = 52.6%). While three studies contributed to the source of heterogeneity were removed, there was still null result observed (OR = 0.96, 95% CI: 0.90–1.03, P = 0.17 for heterogeneity, I2 = 17.8%). In addition, we failed to detect any associations in the stratified analyses by race, sex, source of controls, smoking status, genotyping methods or tumor localization. No publication bias was observed in this study. Conclusions This meta-analysis suggests that the NAT2 phenotypes may not be associated with colorectal cancer development. PMID:22403658

  2. The role of nitric oxide in the PKA inhibitor induced spatial memory deficits in rat: involvement of choline acetyltransferase.

    PubMed

    Najafi, Sheyda; Payandemehr, Borna; Tabrizian, Kaveh; Shariatpanahi, Marjan; Nassireslami, Ehsan; Azami, Kian; Mohammadi, Mojdeh; Asadi, Farideh; Roghani, Ali; Sharifzadeh, Mohammad

    2013-08-15

    Several lines of evidence show that cAMP-PKA signaling pathway plays critical role in memory functions and suggest nitric oxide as an important modulator in learning and memory. In this study, we assessed the effects of intra-hippocampal infusion of H-89, a selective PKAII inhibitor, and 1400 W, a selective inducible nitric oxide synthase (iNOS) inhibitor, on spatial memory in rats. By using the Morris water maze, spatial memory retention parameters were examined 48 h after the infusions through measuring escape latency, traveled distance, and swimming speed. The rats receiving intra-hippocampal infusions of 1400 W (100 µM/side) showed a significant reduction (*P<0.05) in escape latency and traveled distance in comparison with the control saline group. In contrast, a significant increase (**P<0.01) in escape latency and traveled distance was observed after infusion of 10 µM H-89. Moreover, among combination groups, co-administration of 1400 W (400 µM/side) with 10 µM/side of H-89 caused a significant reduction (*P<0.05) in escape latency and traveled distance in comparison with the H-89 group. Also, we evaluated the molecular effects of 1400 W on the expression of choline acetyltransferase (ChAT), a cholinergic marker, in the CA1 region of the hippocampus and medial septal area (MSA). Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400 W revealed a significant increase in ChAT immunoreactivity levels in both the CA1 and the MSA regions. Overall, the results suggest that 1400 W has protective effect against H89-induced spatial memory impairment. Moreover, the observed memory improvements caused by 1400 W infusions, might be due to interaction of iNOS with the cholinergic system. PMID:23834774

  3. Enteric plexuses of two choline-acetyltransferase transgenic mouse lines: chemical neuroanatomy of the fluorescent protein-expressing nerve cells.

    PubMed

    Wilhelm, Márta; Lawrence, J Josh; Gábriel, Robert

    2015-02-01

    We studied cholinergic circuit elements in the enteric nervous system (ENS) of two distinct transgenic mouse lines in which fluorescent protein expression was driven by the choline-acetyltransferase (ChAT) promoter. In the first mouse line, green fluorescent protein was fused to the tau gene. This construct allowed the visualization of the fiber tracts and ganglia, however the nerve cells were poorly resolved. In the second mouse line (ChATcre-YFP), CRE/loxP recombination yielded cytosolic expression of yellow fluorescent protein (YFP). In these preparations the morphology of enteric neurons could be well studied. We also determined the neurochemical identity of ENS neurons in muscular and submucous layers using antibodies against YFP, calretinin (CALR), calbindin (CALB), and vasoactive intestinal peptide (VIP). Confocal microscopic imaging was used to visualize fluorescently-conjugated secondary antibodies. In ChATcre-YFP preparations, YFP was readily apparent in somatodendritic regions of ENS neurons. In the myenteric plexus, YFP/CALR/VIP staining revealed that 34% of cholinergic cells co-labeled with CALR. Few single-stained CR-positive cells were observed. Neither YFP nor CALR co-localized with VIP. In GFP/CALB/CALR staining, all co-localization combinations were represented. In the submucosal plexus, YFP/CALR/VIP staining revealed discrete neuronal populations. However, in separate preparations, double labeling was observed for YFP/CALR and CALR/VIP. In YFP/CALR/CALB staining, all combinations of double staining and triple labeling were verified. In conclusion, the neurochemical coding of ENS neurons in these mouse lines is consistent with many observations in non-transgenic animals. Thus, they provide useful tools for physiological and pharmacological studies on distinct neurochemical subtypes of ENS neurons. PMID:25592616

  4. Microscopy-based Saccharomyces cerevisiae complementation model reveals functional conservation and redundancy of N-terminal acetyltransferases.

    PubMed

    Osberg, Camilla; Aksnes, Henriette; Ninzima, Sandra; Marie, Michaël; Arnesen, Thomas

    2016-01-01

    N-terminal acetylation is a highly abundant protein modification catalyzed by N-terminal acetyltransferases (NATs) NatA-NatG. The Saccharomyces cerevisiae protein Arl3 depends on interaction with Sys1 for its localization to the Golgi and this targeting strictly requires NatC-mediated N-terminal acetylation of Arl3. We utilized the Arl3 acetylation-dependent localization phenotype as a model system for assessing the functional conservation and in vivo redundancy of several human NATs. The catalytic subunit of human NatC, hNaa30 (Mak3), restored Arl3 localization in the absence of yNaa30, but only in the presence of either yeast or human Naa35 subunit (Mak10). In contrast, hNaa35 was not able to replace its yeast orthologue without the co-expression of hNaa30, suggesting co-evolution of the two NatC subunits. The most recently discovered and organellar human NAT, NatF/Naa60, restored the Golgi localization of Arl3 in the absence of yNaa30. Interestingly, this was also true for hNaa60 lacking its membrane-binding domain whereas hNaa50 did not complement NatC function. This in vivo redundancy reflects NatC and NatF´s overlapping in vitro substrate specificities. The yeast model presented here provides a robust and rapid readout of NatC and NatF activity in vivo, and revealed evolutionary conservation of the NatC complex and redundancy between NatC and NatF. PMID:27555049

  5. Identification and functional characterization of novel polymorphisms associated with the genes for arylamine N-acetyltransferases in mice.

    PubMed

    Boukouvala, Sotiria; Price, Naomi; Sim, Edith

    2002-07-01

    Arylamine N-acetyltransferase (NAT) polymorphism in humans has been associated with variation in susceptibility to drug toxicity and cancer. In mice, three NAT isoenzymes are encoded by Nat1, Nat2 and Nat3 genes. Only Nat2 has been shown previously to be polymorphic, a single nucleotide substitution causing the slow acetylator phenotype in the A/J strain. We sequenced the Nat genes from inbred (CBA and 129/Ola), outbred (PO and TO) and wild-derived inbred (Mus spretus and Mus musculus castaneus) mouse strains and report polymorphism in all three Nat genes of M. spretus and in Nat2 and Nat3 genes of M. m. castaneus. Enzymatic activity assays using liver homogenates demonstrated that M. m. castaneus is a 'fast' and M. spretus a 'slow' acetylator. Western blot analysis indicated that hepatic NAT2 protein is less abundant in M. spretus than M. m. castaneus. The new allozymes were expressed in a mammalian cell line and NAT enzymatic activity was measured with a series of substrates. NAT1 and NAT2 isoenzymes of M. m. castaneus exhibited a higher rate of acetylation, compared with those of M. spretus. Activity of the NAT3 allozymes was hardly detectable, although the Nat3 gene does appear to be transcribed, since mRNA was detected by RT-PCR in the spleen. Additional polymorphisms, useful for Nat-related genetic studies, have been identified between BALB/c, C57Bl/6J, A/J, 129/Ola, CBA, PO, TO, M. m. castaneus and M. spretus strains in four microsatellite repeats located close to the Nat genes. PMID:12142728

  6. DNA Binding by Sgf11 Protein Affects Histone H2B Deubiquitination by Spt-Ada-Gcn5-Acetyltransferase (SAGA)*

    PubMed Central

    Koehler, Christian; Bonnet, Jacques; Stierle, Matthieu; Romier, Christophe; Devys, Didier; Kieffer, Bruno

    2014-01-01

    The yeast Spt-Ada-Gcn5-acetyltransferase (SAGA) complex is a transcription coactivator that contains a histone H2B deubiquitination activity mediated by its Ubp8 subunit. Full enzymatic activity requires the formation of a quaternary complex, the deubiquitination module (DUBm) of SAGA, which is composed of Ubp8, Sus1, Sgf11, and Sgf73. The crystal structures of the DUBm have shed light on the structure/function relationship of this complex. Specifically, both Sgf11 and Sgf73 contain zinc finger domains (ZnF) that appear essential for the DUBm activity. Whereas Sgf73 N-terminal ZnF is important for DUBm stability, Sgf11 C-terminal ZnF appears to be involved in DUBm function. To further characterize the role of these two zinc fingers, we have solved their structure by NMR. We show that, contrary to the previously reported structures, Sgf73 ZnF adopts a C2H2 coordination with unusual tautomeric forms for the coordinating histidines. We further report that the Sgf11 ZnF, but not the Sgf73 ZnF, binds to nucleosomal DNA with a binding interface composed of arginine residues located within the ZnF α-helix. Mutational analyses both in vitro and in vivo provide evidence for the functional relevance of our structural observations. The combined interpretation of our results leads to an uncommon ZnF-DNA interaction between the SAGA DUBm and nucleosomes, thus providing further functional insights into SAGA's epigenetic modulation of the chromatin structure. PMID:24509845

  7. Mechanism of action of peptidoglycan O-acetyltransferase B involves a Ser-His-Asp catalytic triad.

    PubMed

    Moynihan, Patrick J; Clarke, Anthony J

    2014-10-01

    The O-acetylation of the essential cell wall polymer peptidoglycan is essential in many bacteria for their integrity and survival, and it is catalyzed by peptidoglycan O-acetlytransferase B (PatB). Using PatB from Neisseria gonorrhoeae as the model, we have shown previously that the enzyme has specificity for polymeric muropeptides that possess tri- and tetrapeptide stems and that rates of reaction increase with increasing degrees of polymerization. Here, we present the catalytic mechanism of action of PatB, the first to be described for an O-acetyltransferase of any bacterial exopolysaccharide. The influence of pH on PatB activity was investigated, and pKa values of 6.4-6.45 and 6.25-6.35 for the enzyme-substrate complex (kcat vs pH) and the free enzyme (kcat·KM(-1) vs pH), respectively, were determined for the respective cosubstrates. The enzyme is partially inactivated by sulfonyl fluorides but not by EDTA, suggesting the participation of a serine residue in its catalytic mechanism. Alignment of the known and hypothetical PatB amino acid sequences identified Ser133, Asp302, and His305 as three invariant amino acid residues that could potentially serve as a catalytic triad. Replacement of Asp302 with Ala resulted in an enzyme with less than 20% residual activity, whereas activity was barely detectable with (His305 → Ala)PatB and (Ser133 → Ala)PatB was totally inactive. The reaction intermediate of the transferase reaction involving acetyl- and propionyl-acyl donors was trapped on both the wild-type and (Asp302 → Ala) enzymes and LC-MS/MS analysis of tryptic peptides identified Ser133 as the catalytic nucleophile. A transacetylase mechanism is proposed based on the mechanism of action of serine esterases. PMID:25215566

  8. Spt-Ada-Gcn5-Acetyltransferase (SAGA) Complex in Plants: Genome Wide Identification, Evolutionary Conservation and Functional Determination

    PubMed Central

    Srivastava, Rakesh; Rai, Krishan Mohan; Pandey, Bindu; Singh, Sudhir P.; Sawant, Samir V.

    2015-01-01

    The recruitment of RNA polymerase II on a promoter is assisted by the assembly of basal transcriptional machinery in eukaryotes. The Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex plays an important role in transcription regulation in eukaryotes. However, even in the advent of genome sequencing of various plants, SAGA complex has been poorly defined for their components and roles in plant development and physiological functions. Computational analysis of Arabidopsis thaliana and Oryza sativa genomes for SAGA complex resulted in the identification of 17 to 18 potential candidates for SAGA subunits. We have further classified the SAGA complex based on the conserved domains. Phylogenetic analysis revealed that the SAGA complex proteins are evolutionary conserved between plants, yeast and mammals. Functional annotation showed that they participate not only in chromatin remodeling and gene regulation, but also in different biological processes, which could be indirect and possibly mediated via the regulation of gene expression. The in silico expression analysis of the SAGA components in Arabidopsis and O. sativa clearly indicates that its components have a distinct expression profile at different developmental stages. The co-expression analysis of the SAGA components suggests that many of these subunits co-express at different developmental stages, during hormonal interaction and in response to stress conditions. Quantitative real-time PCR analysis of SAGA component genes further confirmed their expression in different plant tissues and stresses. The expression of representative salt, heat and light inducible genes were affected in mutant lines of SAGA subunits in Arabidopsis. Altogether, the present study reveals expedient evidences of involvement of the SAGA complex in plant gene regulation and stress responses. PMID:26263547

  9. Catalytic Mechanism of Perosamine N-Acetyltransferase Revealed by High-Resolution X-ray Crystallographic Studies and Kinetic Analyses

    SciTech Connect

    Thoden, James B.; Reinhardt, Laurie A.; Cook, Paul D.; Menden, Patrick; Cleland, W.W.; Holden, Hazel M.

    2012-09-17

    N-Acetylperosamine is an unusual dideoxysugar found in the O-antigens of some Gram-negative bacteria, including the pathogenic Escherichia coli strain O157:H7. The last step in its biosynthesis is catalyzed by PerB, an N-acetyltransferase belonging to the left-handed {beta}-helix superfamily of proteins. Here we describe a combined structural and functional investigation of PerB from Caulobacter crescentus. For this study, three structures were determined to 1.0 {angstrom} resolution or better: the enzyme in complex with CoA and GDP-perosamine, the protein with bound CoA and GDP-N-acetylperosamine, and the enzyme containing a tetrahedral transition state mimic bound in the active site. Each subunit of the trimeric enzyme folds into two distinct regions. The N-terminal domain is globular and dominated by a six-stranded mainly parallel {beta}-sheet. It provides most of the interactions between the protein and GDP-perosamine. The C-terminal domain consists of a left-handed {beta}-helix, which has nearly seven turns. This region provides the scaffold for CoA binding. On the basis of these high-resolution structures, site-directed mutant proteins were constructed to test the roles of His 141 and Asp 142 in the catalytic mechanism. Kinetic data and pH-rate profiles are indicative of His 141 serving as a general base. In addition, the backbone amide group of Gly 159 provides an oxyanion hole for stabilization of the tetrahedral transition state. The pH-rate profiles are also consistent with the GDP-linked amino sugar substrate entering the active site in its unprotonated form. Finally, for this investigation, we show that PerB can accept GDP-3-deoxyperosamine as an alternative substrate, thus representing the production of a novel trideoxysugar.

  10. Valproic acid exposure decreases Cbp/p300 protein expression and histone acetyltransferase activity in P19 cells.

    PubMed

    Lamparter, Christina L; Winn, Louise M

    2016-09-01

    The teratogenicity of the antiepileptic drug valproic acid (VPA) is well established and its inhibition of histone deacetylases (HDAC) is proposed as an initiating factor. Recently, VPA-mediated HDAC inhibition was demonstrated to involve transcriptional downregulation of histone acetyltransferases (HATs), which was proposed to compensate for the increased acetylation resulting from HDAC inhibition. Cbp and p300 are HATs required for embryonic development and deficiencies in either are associated with congenital malformations and embryolethality. The objective of the present study was to characterize Cbp/p300 following VPA exposure in P19 cells. Consistent with previous studies, exposure to 5mM VPA over 24h induced a moderate decrease in Cbp/p300 mRNA, which preceded a strong decrease in total cellular protein mediated by ubiquitin-proteasome degradation. Nuclear Cbp/p300 protein was also decreased following VPA exposure, although to a lesser extent. Total cellular and nuclear p300 HAT activity was reduced proportionately to p300 protein levels, however while total cellular HAT activity also decreased, nuclear HAT activity was unaffected. Using the Cbp/p300 HAT inhibitor C646, we demonstrated that HAT inhibition similarly affected many of the same endpoints as VPA, including increased reactive oxygen species and caspase-3 cleavage, the latter of which could be attenuated by pre-treatment with the antioxidant catalase. C646 exposure also decreased NF-κB/p65 protein, which was not due to reduced mRNA and was not attenuated with catalase pre-treatment. This study provides support for an adaptive HAT response following VPA exposure and suggests that reduced Cbp/p300 HAT activity could contribute to VPA-mediated alterations. PMID:27381264

  11. Epigenetic regulation of proliferation and invasion in hepatocellular carcinoma cells by CBP/p300 histone acetyltransferase activity.

    PubMed

    Inagaki, Yuji; Shiraki, Katsuya; Sugimoto, Kazushi; Yada, Takazumi; Tameda, Masahiko; Ogura, Suguru; Yamamoto, Norihiko; Takei, Yoshiyuki; Ito, Masaaki

    2016-02-01

    Altered epigenetic control of gene expression plays a substantial role in tumor development and progression. Accumulating studies suggest that somatic mutations of CREB binding proteins (CBP)/p300 occur in some cancer cells. CBP/p300 possess histone acetyltransferase (HAT) activity, and are involved in many cellular processes. In this study, we investigated the expression and functional role of CBP/p300 in hepatocellular carcinoma (HCC) using the specific inhibitor C646 of CBP/p300 HAT activity. We examined its effect on several apoptosis-related proteins and invasion-related genes. The results showed that CBP/p300 were highly expressed in HCC tissues and that expression of p300, but not of CBP, was strongly correlated with the malignant character of HCC. C646 inhibited proliferation of HCC cell lines in a dose dependent manner. C646 significantly augmented TRAIL-induced apoptotic sensitivity, which was accompanied by reduced levels of survivin, in HepG2, HLE and SK-HEP1 cells. C646 significantly inhibited invasion of Huh7, HLE and SK-HEP1 cells. The level of matrix metallopeptidase 15 (MMP15) mRNA expression was significantly reduced, whereas the level of laminin alpha 3 (LAMA3) and secreted phosphoprotein 1 (SPP1) mRNA expression was significantly increased in Huh7 cells following exposure to C646. In conclusion, our results suggest that CBP/p300 HAT activity has an important role in malignant transformation, proliferation, apoptotic sensitivity and invasion in HCC. CBP/p300 could be a promising therapeutic target in HCC. PMID:26676548

  12. NAT8L (N-Acetyltransferase 8-Like) Accelerates Lipid Turnover and Increases Energy Expenditure in Brown Adipocytes*

    PubMed Central

    Pessentheiner, Ariane R.; Pelzmann, Helmut J.; Walenta, Evelyn; Schweiger, Martina; Groschner, Lukas N.; Graier, Wolfgang F.; Kolb, Dagmar; Uno, Kyosuke; Miyazaki, Toh; Nitta, Atsumi; Rieder, Dietmar; Prokesch, Andreas; Bogner-Strauss, Juliane G.

    2013-01-01

    NAT8L (N-acetyltransferase 8-like) catalyzes the formation of N-acetylaspartate (NAA) from acetyl-CoA and aspartate. In the brain, NAA delivers the acetate moiety for synthesis of acetyl-CoA that is further used for fatty acid generation. However, its function in other tissues remained elusive. Here, we show for the first time that Nat8l is highly expressed in adipose tissues and murine and human adipogenic cell lines and is localized in the mitochondria of brown adipocytes. Stable overexpression of Nat8l in immortalized brown adipogenic cells strongly increases glucose incorporation into neutral lipids, accompanied by increased lipolysis, indicating an accelerated lipid turnover. Additionally, mitochondrial mass and number as well as oxygen consumption are elevated upon Nat8l overexpression. Concordantly, expression levels of brown marker genes, such as Prdm16, Cidea, Pgc1α, Pparα, and particularly UCP1, are markedly elevated in these cells. Treatment with a PPARα antagonist indicates that the increase in UCP1 expression and oxygen consumption is PPARα-dependent. Nat8l knockdown in brown adipocytes has no impact on cellular triglyceride content, lipogenesis, or oxygen consumption, but lipolysis and brown marker gene expression are increased; the latter is also observed in BAT of Nat8l-KO mice. Interestingly, the expression of ATP-citrate lyase is increased in Nat8l-silenced adipocytes and BAT of Nat8l-KO mice, indicating a compensatory mechanism to sustain the acetyl-CoA pool once Nat8l levels are reduced. Taken together, our data show that Nat8l impacts on the brown adipogenic phenotype and suggests the existence of the NAT8L-driven NAA metabolism as a novel pathway to provide cytosolic acetyl-CoA for lipid synthesis in adipocytes. PMID:24155240

  13. Paradoxical attenuation of autoimmune hepatitis by oral isoniazid in wild-type and N-acetyltransferase-deficient mice.

    PubMed

    Metushi, Imir G; Cai, Ping; Vega, Libia; Grant, Denis M; Uetrecht, Jack

    2014-06-01

    Isoniazid (INH) treatment can cause serious liver injury and autoimmunity. There are now several lines of evidence that INH-induced liver injury is immune mediated, but this type of liver injury has not been reproduced in animals, possibly because immune tolerance is the dominant response of the liver. In this study, we immunized mice with isonicotinic acid (INA)-modified proteins and Freund's adjuvant, which led to mild experimental autoimmune hepatitis (EAH) with an increase in cells staining positive for F4/80, CD11b, CD8, CD4, CD45R, and KI67. We expected that subsequent treatment of mice with oral INH would lead to more serious immune-mediated liver injury, but paradoxically it markedly attenuated the EAH caused by immunization with INA-modified hepatic proteins. In addition, patients of the slow acetylator phenotype are at increased risk of INH-induced liver injury. Treatment of arylamine N-acetyltransferase-deficient Nat1/2(-/-) mice with INH for up to 5 weeks produced mild increases in glutamate and sorbitol dehydrogenase activities, but not severe liver injury. Female Nat1/2(-/-) mice treated with INH for 1, 3, or 7 days developed steatosis, an increase in Oil Red O staining, and abnormal mitochondrial morphology in the liver. A decrease in M1 and an increase in M2a and M2b macrophages was observed in female Nat1/2(-/-) mice treated with INH for 1, 3, or 7 days; these changes returned to baseline levels by day 35. These data indicate that INH has immunosuppressive effects, even though it is also known to induce autoantibody production and a lupus-like autoimmune syndrome in humans. PMID:24623063

  14. Modification of N-acetyltransferases and glutathione S-transferases by coffee components: possible relevance for cancer risk.

    PubMed

    Huber, Wolfgang W; Parzefall, Wolfram

    2005-01-01

    Enzymes of xenobiotic metabolism are involved in the activation and detoxification of carcinogens and can play a pivotal role in the susceptibility of individuals toward chemically induced cancer. Differences in such susceptibility are often related to genetically predetermined enzyme polymorphisms but may also be caused by enzyme induction or inhibition through environmental factors or in the frame of chemopreventive intervention. In this context, coffee consumption, as an important lifestyle factor, has been under thorough investigation. Whereas the data on a potential procarcinogenic effect in some organs remained inconclusive, epidemiology has clearly revealed coffee drinkers to be at a lower risk of developing cancers of the colon and the liver and possibly of several other organs. The underlying mechanisms of such chemoprotection, modifications of xenobiotic metabolism in particular, were further investigated in rodent and in vitro models, as a result of which several individual chemoprotectants out of the >1000 constituents of coffee were identified as well as some strongly metabolized individual carcinogens against which they specifically protected. This chapter discusses the chemoprotective effects of several coffee components and whole coffee in association with modifications of the usually protective glutathione-S-transferase (GST) and the more ambivalent N-acetyltransferase (NAT). A key role is played by kahweol and cafestol (K/C), two diterpenic constituents of the unfiltered beverage that were found to reduce mutagenesis/tumorigenesis by strongly metabolized compounds, such as 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine, 7,12-dimethylbenz[a]anthracene, and aflatoxin B(1), and to cause various modifications of xenobiotic metabolism that were overwhelmingly beneficial, including induction of GST and inhibition of NAT. Other coffee components such as polyphenols and K/C-free coffee are also capable of increasing GST and partially of inhibiting NAT

  15. Overexpression of spermidine/spermine N1-acetyltransferase elevates the threshold to pentylenetetrazol-induced seizure activity in transgenic mice.

    PubMed

    Kaasinen, Selma K; Gröhn, Olli H J; Keinänen, Tuomo A; Alhonen, Leena; Jänne, Juhani

    2003-10-01

    Activation of polyamine catabolism in transgenic mice through an overexpression of spermidine/spermine N(1)-acetyltransferase (SSAT) results in a massive overaccumulation of the diamine putrescine in most tissues including brain. Putrescine pool in transgenic animals was strikingly expanded in every six brain regions analyzed at present. Pons (23-fold), cerebellum (37-fold), cerebrum (34-fold), and hippocampus (16-fold) showed the greatest increases in putrescine levels. Moreover, the molar ratio of putrescine to spermidine was increased in the different brain regions of the transgenic animals on an average of nearly 40-fold. Upon an exposure of the animals to pentylenetetrazol (PTZ) infusions, a compound known to induce epilepsy-like seizure activity, the SSAT transgenic mice showed significantly elevated seizure threshold to both clonic and tonic convulsions in comparison with their syngenic littermates. This difference, however, disappeared when the animals were treated with ifenprodil prior to PTZ infusions. The latter compound acts as an antagonist of N-methyl-D-aspartate receptor by binding to the polyamine site of the receptor. Overexpression of SSAT likewise appeared to protect the transgenic animals from PTZ-induced neuron loss in the hippocampus. As putrescine is known to serve as a precursor to gamma-aminobutyric acid (GABA), we carried out (1)H NMR analyses the results of which revealed that the levels of the inhibitory amino acid GABA and its excitatory counterpart glutamate were indistinguishable in syngenic and transgenic animals in all brain regions analyzed. The present results suggest that the frequently observed enhanced accumulation of putrescine in response to brain insults belongs to neuroprotective measures rather than being a cause of the subsequent injury. PMID:14552906

  16. 82-kDa choline acetyltransferase and SATB1 localize to β-amyloid induced matrix attachment regions.

    PubMed

    Winick-Ng, Warren; Caetano, Fabiana A; Winick-Ng, Jennifer; Morey, Trevor M; Heit, Bryan; Rylett, R Jane

    2016-01-01

    The M-transcript of human choline acetyltransferase (ChAT) produces an 82-kDa protein (82-kDa ChAT) that concentrates in nuclei of cholinergic neurons. We assessed the effects of acute exposure to oligomeric amyloid-β1-42 (Aβ1-42) on 82-kDa ChAT disposition in SH-SY5Y neural cells, finding that acute exposure to Aβ1-42 results in increased association of 82-kDa ChAT with chromatin and formation of 82-kDa ChAT aggregates in nuclei. When measured by chromatin immunoprecipitation with next-generation sequencing (ChIP-seq), we identified that Aβ1-42-exposure increases 82-kDa ChAT association with gene promoters and introns. The Aβ1-42-induced 82-kDa ChAT aggregates co-localize with special AT-rich binding protein 1 (SATB1), which anchors DNA to scaffolding/matrix attachment regions (S/MARs). SATB1 had a similar genomic association as 82-kDa ChAT, with both proteins associating with synapse and cell stress genes. After Aβ1-42 -exposure, both SATB1 and 82-kDa ChAT are enriched at the same S/MAR on the APP gene, with 82-kDa ChAT expression attenuating an increase in an isoform-specific APP mRNA transcript. Finally, 82-kDa ChAT and SATB1 have patterned genomic association at regions enriched with S/MAR binding motifs. These results demonstrate that 82-kDa ChAT and SATB1 play critical roles in the response of neural cells to acute Aβ-exposure. PMID:27052102

  17. Association of N-acetyltransferase-2 polymorphism with an increased risk of coronary heart disease in a Chinese population.

    PubMed

    Sun, J D; Yuan, H; Hu, H Q; Yu, H M

    2016-01-01

    We investigated the possible correlations between N-acetyltransferase-2 (NAT2) gene polymorphisms and the risk of coronary heart disease (CHD). CHD patients (113) and healthy controls (118) were enrolled from the First People's Hospital of Yuhang between January 2013 and June 2014. The patients were divided into mild CHD (N = 72) and severe CHD (N = 41) subgroups. DNA samples were extracted and the distributions of NAT2 polymorphisms were examined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Clinical characteristic indexes of severe CHD patients were also examined for relevant statistical analysis. WT, M1, M2, and M3 alleles were observed in both case and control groups. PCR-RFLP identified a wild-type homozygote, WT/WT; a mutant heterozygote, WT/Mx; and a mutant homozygote, Mx/Mx (x = 1, 2, and 3) variant of the NAT2 genotype. Mx/Mx differed significantly between case and control groups (P < 0.05); the frequencies of all four alleles did not differ significantly between case and control groups (P > 0.05). Slow acetylator genotype frequencies were notably higher in the case group than in the control group (P < 0.05). Individuals with the slow acetylator genotype were at 1.97-times higher risk of CHD and also displayed higher triglyceride and lower high-density lipoprotein cholesterol levels than those with the rapid acetylator genotype (P < 0.05). Therefore, the NAT2 polymorphism was believed to be associated with increased risk of CHD, with the NAT2 slow acetylator genotype serving as a risk factor for severe CHD in a Chinese population. PMID:26985933

  18. Subfunctionalization of arylalkylamine N-acetyltransferases in the sea bass Dicentrarchus labrax: two-ones for one two.

    PubMed

    Paulin, Charles-Hubert; Cazaméa-Catalan, Damien; Zilberman-Peled, Bina; Herrera-Perez, Patricia; Sauzet, Sandrine; Magnanou, Elodie; Fuentès, Michael; Gothilf, Yoav; Muñoz-Cueto, Jose Antonio; Falcón, Jack; Besseau, Laurence

    2015-10-01

    Melatonin is an important component of the vertebrates circadian system, synthetized from serotonin by the successive action of the arylalkylamine N-acetyltransferase (Aanat: serotonin→N-acetylserotonin) and acetylserotonin-O-methyltransferase (Asmt: N-acetylserotonin→melatonin). Aanat is responsible for the daily rhythm in melatonin production. Teleost fish are unique because they express two Aanat genes, aanat1 and aanat2, mainly expressed in the retina and pineal gland, respectively. In silico analysis indicated that the teleost-specific whole-genome duplication generated Aanat1 duplicates (aanat1a and aanat1b); some fish express both of them, while others express either one of the isoforms. Here, we bring the first information on the structure, function, and distribution of Aanat1a and Aanat1b in a teleost, the sea bass Dicentrarchus labrax. Aanat1a and Aanat1b displayed a wide and distinct distribution in the nervous system and peripheral tissues, while Aanat2 appeared as a pineal enzyme. Co-expression of Aanats with asmt was found in the pineal gland and the three retinal nuclear layers. Enzyme kinetics indicated subtle differences in the affinity and catalytic efficiency of Aanat1a and Aanat1b for indolethylamines and phenylethylamines, respectively. Our data are consistent with the idea that Aanat2 is a pineal enzyme involved in melatonin production, while Aanat1 enzymes have a broader range of functions including melatonin synthesis in the retina, and catabolism of serotonin and dopamine in the retina and other tissues. The data are discussed in light of the recently uncovered roles of N-acetylserotonin and N-acetyldopamine as antioxidants, neuroprotectants, and modulators of cell proliferation and enzyme activities. PMID:26267754

  19. The histone acetyltransferase p300 regulates the expression of pluripotency factors and odontogenic differentiation of human dental pulp cells.

    PubMed

    Wang, Tong; Liu, Huijuan; Ning, Yanyang; Xu, Qiong

    2014-01-01

    p300 is a well-known histone acetyltransferase (HAT) and coactivator that plays vital roles in many physiological processes. Despite extensive research on the involvement of p300 in the regulation of transcription in numerous cell lines, the roles of this protein in regulating pluripotency genes and odontogenic differentiation in human dental pulp cells (HDPCs) are poorly understood. To address this issue, we investigated the expression of OCT4, NANOG and SOX2 and the proliferation and odontogenic differentiation capacity of HDPCs following p300 overexpression. We found that p300 overexpression did not overtly affect the ability of HDPCs to proliferate. The overexpression of p300 upregulated the promoter activity and the mRNA and protein expression of NANOG and SOX2. The HAT activity of p300 appeared to partially mediate the regulation of these factors; indeed, when a mutant form of p300 lacking the HAT domain was overexpressed, the promoter activity and expression of NANOG and SOX2 decreased relative to p300 overexpression but was greater than in the control. Furthermore, we demonstrated that the mRNA levels of the odontogenic marker genes dentine matrix protein-1 (DMP-1), dentin sialophosphoprotein (DSPP), dentin sialoprotein (DSP), osteopontin (OPN) and osteocalcin (OCN) were significantly decreased in HDPCs overexpressing p300 cultured under normal culture conditions and increased in HDPCs inducted to undergo odontogenic differentiation. This finding was further confirmed by measuring levels of alkaline phosphatase (ALP) activity and assessing the formation of mineralized nodules. The HAT activity of p300 had no significant effect on odontogenic differentiation. p300 was recruited to the promoter regions of OCN and DSPP and might be acting as a coactivator to increase the acetylation of lysine 9 of histone H3 of OCN and DSPP. Collectively, our results show that p300 plays an important role in regulating the expression of key pluripotency genes in HDPCs and

  20. 82-kDa choline acetyltransferase and SATB1 localize to β-amyloid induced matrix attachment regions

    PubMed Central

    Winick-Ng, Warren; Caetano, Fabiana A.; Winick-Ng, Jennifer; Morey, Trevor M.; Heit, Bryan; Rylett, R. Jane

    2016-01-01

    The M-transcript of human choline acetyltransferase (ChAT) produces an 82-kDa protein (82-kDa ChAT) that concentrates in nuclei of cholinergic neurons. We assessed the effects of acute exposure to oligomeric amyloid-β1–42 (Aβ1–42) on 82-kDa ChAT disposition in SH-SY5Y neural cells, finding that acute exposure to Aβ1–42 results in increased association of 82-kDa ChAT with chromatin and formation of 82-kDa ChAT aggregates in nuclei. When measured by chromatin immunoprecipitation with next-generation sequencing (ChIP-seq), we identified that Aβ1–42 -exposure increases 82-kDa ChAT association with gene promoters and introns. The Aβ1–42 -induced 82-kDa ChAT aggregates co-localize with special AT-rich binding protein 1 (SATB1), which anchors DNA to scaffolding/matrix attachment regions (S/MARs). SATB1 had a similar genomic association as 82-kDa ChAT, with both proteins associating with synapse and cell stress genes. After Aβ1–42 -exposure, both SATB1 and 82-kDa ChAT are enriched at the same S/MAR on the APP gene, with 82-kDa ChAT expression attenuating an increase in an isoform-specific APP mRNA transcript. Finally, 82-kDa ChAT and SATB1 have patterned genomic association at regions enriched with S/MAR binding motifs. These results demonstrate that 82-kDa ChAT and SATB1 play critical roles in the response of neural cells to acute Aβ -exposure. PMID:27052102

  1. Adolescent, but Not Adult, Binge Ethanol Exposure Leads to Persistent Global Reductions of Choline Acetyltransferase Expressing Neurons in Brain

    PubMed Central

    Vetreno, Ryan P.; Broadwater, Margaret; Liu, Wen; Spear, Linda P.; Crews, Fulton T.

    2014-01-01

    During the adolescent transition from childhood to adulthood, notable maturational changes occur in brain neurotransmitter systems. The cholinergic system is composed of several distinct nuclei that exert neuromodulatory control over cognition, arousal, and reward. Binge drinking and alcohol abuse are common during this stage, which might alter the developmental trajectory of this system leading to long-term changes in adult neurobiology. In Experiment 1, adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) treatment led to persistent, global reductions of choline acetyltransferase (ChAT) expression. Administration of the Toll-like receptor 4 agonist lipopolysaccharide to young adult rats (P70) produced a reduction in ChAT+IR that mimicked AIE. To determine if the binge ethanol-induced ChAT decline was unique to the adolescent, Experiment 2 examined ChAT+IR in the basal forebrain following adolescent (P28–P48) and adult (P70–P90) binge ethanol exposure. Twenty-five days later, ChAT expression was reduced in adolescent, but not adult, binge ethanol-exposed animals. In Experiment 3, expression of ChAT and vesicular acetylcholine transporter expression was found to be significantly reduced in the alcoholic basal forebrain relative to moderate drinking controls. Together, these data suggest that adolescent binge ethanol decreases adult ChAT expression, possibly through neuroimmune mechanisms, which might impact adult cognition, arousal, or reward sensitivity. PMID:25405505

  2. The Effect of Choline Acetyltransferase Genotype on Donepezil Treatment Response in Patients with Alzheimer’s Disease

    PubMed Central

    Lee, Kang Uk; Lee, Jung Hie; Lee, Dong Young; Youn, Jong Chul; Kim, Jeong Lan; Moon, Seok Woo; Kim, Bong-Jo; Ryu, Seung-Ho; Kim, Moon Doo; Lee, Chang-Uk; Lee, Nam-Jin; Chang, Sung Man; Kim, Young Hoon; Kim, Do Hoon; Lee, Hae-Kook; Woo, Jong Inn; Kim, Ki Woong; Jhoo, Jin Hyeong

    2015-01-01

    Objective We examined the difference in responses to donepezil between carriers and non-carriers of the A allele at the +4 position of the choline acetyltransferase (ChAT) gene in Koreans. Methods Patients who met the criteria for probable Alzheimer’s disease (AD) (n=199) were recruited. Among these, 145 completed the 12-week follow-up evaluation and 135 completed the 26-week scheduled course. Differences and changes in the Korean version of the mini-mental state examination (MMSE-KC) score, Korean version of the Consortium to Establish a Registry for Alzheimer’s Disease Neuropsychological Assessment Battery (CERAD-K[N]) wordlist subtest score (WSS), CERAD-K(N) total score (TS), and the Korean version of geriatric depression scale (GDS-K) score between baseline and 12 weeks or 26 weeks were assessed by the Student’s t-test. Results At 12 weeks, the changes in the MMSE-KC score, CERAD-K(N) WSS, and CERAD-K(N) TS from baseline were not significant between ChAT A allele carriers and non-carriers; however, at 26 weeks, these changes were significantly larger in ChAT A allele carriers than in non-carriers (p=0.02 for MMSE-KC and p=0.03 for CERAD-K(N) WSS respectively). Conclusion Our findings in this study suggested that presence of the A allele at the +4 position of ChAT might positively influence the treatment effect of donepezil in the early stages of AD in Koreans. PMID:26243844

  3. The Chromatin Regulator BRPF3 Preferentially Activates the HBO1 Acetyltransferase but Is Dispensable for Mouse Development and Survival.

    PubMed

    Yan, Kezhi; You, Linya; Degerny, Cindy; Ghorbani, Mohammad; Liu, Xin; Chen, Lulu; Li, Lin; Miao, Dengshun; Yang, Xiang-Jiao

    2016-02-01

    To interpret epigenetic information, chromatin readers utilize various protein domains for recognition of DNA and histone modifications. Some readers possess multidomains for modification recognition and are thus multivalent. Bromodomain- and plant homeodomain-linked finger-containing protein 3 (BRPF3) is such a chromatin reader, containing two plant homeodomain-linked fingers, one bromodomain and a PWWP domain. However, its molecular and biological functions remain to be investigated. Here, we report that endogenous BRPF3 preferentially forms a tetrameric complex with HBO1 (also known as KAT7) and two other subunits but not with related acetyltransferases such as MOZ, MORF, TIP60, and MOF (also known as KAT6A, KAT6B, KAT5, and KAT8, respectively). We have also characterized a mutant mouse strain with a lacZ reporter inserted at the Brpf3 locus. Systematic analysis of β-galactosidase activity revealed dynamic spatiotemporal expression of Brpf3 during mouse embryogenesis and high expression in the adult brain and testis. Brpf3 disruption, however, resulted in no obvious gross phenotypes. This is in stark contrast to Brpf1 and Brpf2, whose loss causes lethality at E9.5 and E15.5, respectively. In Brpf3-null mice and embryonic fibroblasts, RT-quantitative PCR uncovered no changes in levels of Brpf1 and Brpf2 transcripts, confirming no compensation from them. These results indicate that BRPF3 forms a functional tetrameric complex with HBO1 but is not required for mouse development and survival, thereby distinguishing BRPF3 from its paralogs, BRPF1 and BRPF2. PMID:26677226

  4. Effects of chronic social defeat stress on behaviour, endoplasmic reticulum proteins and choline acetyltransferase in adolescent mice.

    PubMed

    Huang, Guang-Biao; Zhao, Tong; Muna, Sushma Shrestha; Bagalkot, Tarique Rajasaheb; Jin, Hong-Mei; Chae, Han-Jung; Chung, Young-Chul

    2013-08-01

    The present study investigated the effects of social defeat stress on the behaviours and expressions of 78-kDa glucose-regulated protein (Grp78), CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) and choline acetyltransferase (Chat) in the brains of adolescent mice. Adolescent male C57BL/6J mice were divided into two groups (susceptible and unsusceptible) after 10 d social defeat stress. In expt 1, behavioural tests were conducted and brains were processed for Western blotting on day 21 after stress. In expt 2, social avoidance tests were conducted and brains were subsequently processed for Western blotting on day 12 after stress. Chronic social defeat stress produced more pronounced depression-like behaviours such as decreased locomotion and social interaction, increased anxiety-like behaviours and immobility, and impaired memory performance in susceptible mice. Moreover, susceptible mice showed greater expression of Grp78 and CHOP in the amygdala (Amyg) on days 12 and 21 compared with the other groups. Susceptible and unsusceptible groups showed significant increases in Grp78 and CHOP expression in the prefrontal cortex (PFC) and hippocampus (Hipp) on day 12 compared with the control group; this persisted until day 21. The levels of Chat measured on days 12 and 21 were significantly lower in the PFC, Amyg and Hipp of all defeated mice compared with controls. The findings of the behavioural tests indicate that chronic social defeat in adolescents produces anxiety-like behaviours, social withdrawal, despair-like behaviours and cognitive impairment. The Grp78, CHOP and Chat results suggest that the selective response of endoplasmic reticulum stress proteins in the Amyg plays an important role in the vulnerability-stress model of depression. PMID:23442729

  5. No evidence for role of extracellular choline-acetyltransferase in generation of gamma oscillations in rat hippocampal slices in vitro.

    PubMed

    Hollnagel, J O; ul Haq, R; Behrens, C J; Maslarova, A; Mody, I; Heinemann, U

    2015-01-22

    Acetylcholine (ACh) is well known to induce persistent γ-oscillations in the hippocampus when applied together with physostigmine, an inhibitor of the ACh degrading enzyme acetylcholinesterase (AChE). Here we report that physostigmine alone can also dose-dependently induce γ-oscillations in rat hippocampal slices. We hypothesized that this effect was due to the presence of choline in the extracellular space and that this choline is taken up into cholinergic fibers where it is converted to ACh by the enzyme choline-acetyltransferase (ChAT). Release of ACh from cholinergic fibers in turn may then induce γ-oscillations. We therefore tested the effects of the choline uptake inhibitor hemicholinium-3 (HC-3) on persistent γ-oscillations either induced by physostigmine alone or by co-application of ACh and physostigmine. We found that HC-3 itself did not induce γ-oscillations and also did not prevent physostigmine-induced γ-oscillation while washout of physostigmine and ACh-induced γ-oscillations was accelerated. It was recently reported that ChAT might also be present in the extracellular space (Vijayaraghavan et al., 2013). Here we show that the effect of physostigmine was prevented by the ChAT inhibitor (2-benzoylethyl)-trimethylammonium iodide (BETA) which could indicate extracellular synthesis of ACh. However, when we tested for effects of extracellularly applied acetyl-CoA, a substrate of ChAT for synthesis of ACh, physostigmine-induced γ-oscillations were attenuated. Together, these findings do not support the idea that ACh can be synthesized by an extracellularly located ChAT. PMID:25453770

  6. Modulation of the biliary expression of arylalkylamine N-acetyltransferase alters the autocrine proliferative responses of cholangiocytes

    PubMed Central

    Renzi, Anastasia; DeMorrow, Sharon; Onori, Paolo; Carpino, Guido; Mancinelli, Romina; Meng, Fanyin; Venter, Julie; White, Mellanie; Franchitto, Antonio; Francis, Heather; Han, Yuyan; Ueno, Yoshiyuki; Dusio, Giuseppina; Jensen, Kendal J; Greene, John J; Glaser, Shannon; Gaudio, Eugenio; Alpini, Gianfranco

    2012-01-01

    Background & Aims Secretin stimulates ductal secretion by interacting with secretin receptor (SR) activating cAMP⇒CFTR⇒Cl−/HCO3− AE2 signaling that is elevated by biliary hyperplasia. Cholangiocytes secrete several neuroendocrine factors regulating biliary functions by autocrine mechanisms. Melatonin inhibits biliary growth and secretin-stimulated choleresis in cholestatic bile duct ligated (BDL) rats by interaction with melatonin type 1 (MT1) receptor via downregulation of cAMP-dependent signaling. No data exists regarding the role of melatonin synthesized locally by cholangiocytes in the autocrine regulation of biliary growth and function. Methods In this study, we evaluated: (i) the expression of arylalkylamine N-acetyltransferase (AANAT, the rate-limiting enzyme for melatonin synthesis from serotonin) in cholangiocytes; and (ii) the effect of local modulation of biliary AANAT expression on the autocrine proliferative/secretory responses of cholangiocytes. Results In the liver, cholangiocytes (and to lower extent BDL hepatocytes) expressed AANAT. AANAT expression and melatonin secretion: (i) increased in BDL compared to normal rats and BDL rats treated with melatonin; and (ii) decreased in normal and BDL rats treated with AANAT Vivo-Morpholino compared to controls. The decrease in AANAT expression and subsequent lower melatonin secretion by cholangiocytes was associated with increased biliary proliferation and increased SR, CFTR, and Cl−/HCO3− AE2 expression. Overexpression of AANAT in cholangiocyte cell lines decreased the basal proliferative rate and expression of SR, CFTR, and Cl−/HCO3− AE2 and ablated secretin-stimulated biliary secretion in these cells. Conclusion Local modulation of melatonin synthesis may be important for the management of the balance between biliary proliferation/damage that is typical of cholangiopathies. PMID:23080076

  7. Cloning and characterization of the serotonin N-acetyltransferase-2 gene (SNAT2) in rice (Oryza sativa).

    PubMed

    Byeon, Yeong; Lee, Hyoung Yool; Back, Kyoungwhan

    2016-09-01

    The penultimate enzyme in melatonin synthesis is serotonin N-acetyltransferase (SNAT), which exists as a single copy in mammals and plants. Our recent studies of the Arabidopsis snat-knockout mutant and SNAT RNAi rice (Oryza sativa) plants predicted the presence of at least one other SNAT isogene in plants; that is, the snat-knockout mutant of Arabidopsis and the SNAT RNAi rice plants still produced melatonin, even in the absence or the suppression of SNAT expression. Here, we report a molecular cloning of an SNAT isogene (OsSNAT2) from rice. The mature amino acid sequences of SNAT proteins indicated that OsSNAT2 and OsSNAT1 proteins had 39% identity values and 60% similarity. The Km and Vmax values of the purified recombinant OsSNAT2 were 371 μm and 4700 pmol/min/mg protein, respectively; the enzyme's optimal activity temperature was 45°C. Confocal microscopy showed that the OsSNAT2 protein was localized to both the cytoplasm and chloroplasts. The in vitro enzyme activity of OsSNAT2 was severely inhibited by melatonin, but the activities of sheep SNAT (OaSNAT) and rice OsSNAT1 proteins were not. The enzyme activity of OsSNAT2 was threefold higher than that of OsSNAT1, but 232-fold lower than that of OaSNAT. The OsSNAT1 and OsSNAT2 transcripts were similarly suppressed in rice leaves during the melatonin induction after cadmium treatment. Phylogenetic analyses indicated that OsSNAT1 and OsSNAT2 are distantly related, suggesting that they evolved independently from Cyanobacteria prior to the endosymbiosis event. PMID:27121038

  8. Microscopy-based Saccharomyces cerevisiae complementation model reveals functional conservation and redundancy of N-terminal acetyltransferases

    PubMed Central

    Osberg, Camilla; Aksnes, Henriette; Ninzima, Sandra; Marie, Michaël; Arnesen, Thomas

    2016-01-01

    N-terminal acetylation is a highly abundant protein modification catalyzed by N-terminal acetyltransferases (NATs) NatA-NatG. The Saccharomyces cerevisiae protein Arl3 depends on interaction with Sys1 for its localization to the Golgi and this targeting strictly requires NatC-mediated N-terminal acetylation of Arl3. We utilized the Arl3 acetylation-dependent localization phenotype as a model system for assessing the functional conservation and in vivo redundancy of several human NATs. The catalytic subunit of human NatC, hNaa30 (Mak3), restored Arl3 localization in the absence of yNaa30, but only in the presence of either yeast or human Naa35 subunit (Mak10). In contrast, hNaa35 was not able to replace its yeast orthologue without the co-expression of hNaa30, suggesting co-evolution of the two NatC subunits. The most recently discovered and organellar human NAT, NatF/Naa60, restored the Golgi localization of Arl3 in the absence of yNaa30. Interestingly, this was also true for hNaa60 lacking its membrane-binding domain whereas hNaa50 did not complement NatC function. This in vivo redundancy reflects NatC and NatF´s overlapping in vitro substrate specificities. The yeast model presented here provides a robust and rapid readout of NatC and NatF activity in vivo, and revealed evolutionary conservation of the NatC complex and redundancy between NatC and NatF. PMID:27555049

  9. The Rtt109 histone acetyltransferase facilitates error-free replication to prevent CAG/CTG repeat contractions

    PubMed Central

    Yang, Jiahui H.; Freudenreich, Catherine H.

    2010-01-01

    Lysine 56 is acetylated on newly synthesized histone H3 in yeast, Drosophila and mammalian cells. All of the proteins involved in histone H3 lysine 56 (H3K56) acetylation are important for maintaining genome integrity. These include Rtt109, a histone acetyltransferase, responsible for acetylating H3K56, Asf1, a histone H3/H4 chaperone, and Hst3 and Hst4, histone deacetylases which remove the acetyl group from H3K56. Here we demonstrate a new role for Rtt109 and H3K56 acetylation in maintaining repetitive DNA sequences in Saccharomyces cerevisiae. We found that cells lacking RTT109 had a high level of CAG/CTG repeat contractions and a two-fold increase in breakage at CAG/CTG repeats. In addition, repeat contractions were significantly increased in cells lacking ASF1 and in an hst3Δhst4Δ double mutant. Because the Rtt107/Rtt101 complex was previously shown to be recruited to stalled replication forks in an Rtt109-dependent manner, we tested whether this complex was involved. However, contractions in rtt109Δ cells were not due to an inability to recruit the Rtt107/Rtt101 complex to repeats, as absence of these proteins had no effect on repeat stability. On the other hand, Dnl4 and Rad51-dependent pathways did play a role in creating some of the repeat contractions in rtt109Δ cells. Our results show that H3K56 acetylation by Rtt109 is important for stabilizing DNA repeats, likely by facilitating proper nucleosome assembly at the replication fork to prevent DNA structure formation and subsequent slippage events or fork breakage. PMID:20083442

  10. Expression, crystallization and preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins from Thermoplasma acidophilum

    SciTech Connect

    Han, Sang Hee; Ha, Jun Yong; Kim, Kyoung Hoon; Oh, Sung Jin; Kim, Do Jin; Kang, Ji Yong; Yoon, Hye Jin; Kim, Se-Hee; Seo, Ji Hae; Kim, Kyu-Won; Suh, Se Won

    2006-11-01

    An N-terminal acetyltransferase ARD1 subunit-related protein (Ta0058) and an N-terminal acetyltransferase-related protein (Ta1140) from T. acidophilum were crystallized. X-ray diffraction data were collected to 2.17 and 2.40 Å, respectively. N-terminal acetylation is one of the most common protein modifications in eukaryotes, occurring in approximately 80–90% of cytosolic mammalian proteins and about 50% of yeast proteins. ARD1 (arrest-defective protein 1), together with NAT1 (N-acetyltransferase protein 1) and possibly NAT5, is responsible for the NatA activity in Saccharomyces cerevisiae. In mammals, ARD1 is involved in cell proliferation, neuronal development and cancer. Interestingly, it has been reported that mouse ARD1 (mARD1{sup 225}) mediates ∊-acetylation of hypoxia-inducible factor 1α (HIF-1α) and thereby enhances HIF-1α ubiquitination and degradation. Here, the preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins encoded by the Ta0058 and Ta1140 genes of Thermoplasma acidophilum are reported. The Ta0058 protein is related to an N-terminal acetyltransferase complex ARD1 subunit, while Ta1140 is a putative N-terminal acetyltransferase-related protein. Ta0058 shows 26% amino-acid sequence identity to both mARD1{sup 225} and human ARD1{sup 235}.The sequence identity between Ta0058 and Ta1140 is 28%. Ta0058 and Ta1140 were overexpressed in Escherichia coli fused with an N-terminal purification tag. Ta0058 was crystallized at 297 K using a reservoir solution consisting of 0.1 M sodium acetate pH 4.6, 8%(w/v) polyethylene glycol 4000 and 35%(v/v) glycerol. X-ray diffraction data were collected to 2.17 Å. The Ta0058 crystals belong to space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 49.334, c = 70.384 Å, α = β = γ = 90°. The asymmetric unit contains a monomer, giving a calculated crystal volume per protein weight (V{sub M}) of 2.13 Å{sup 3} Da{sup −1} and a solvent content of 42

  11. l-Methionine sulfoximine, but not phosphinothricin, is a substrate for an acetyltransferase (gene PA4866) from Pseudomonas aeruginosa: structural and functional studies.

    PubMed

    Davies, Anna M; Tata, Renée; Beavil, Rebecca L; Sutton, Brian J; Brown, Paul R

    2007-02-20

    The gene PA4866 from Pseudomonas aeruginosa is documented in the Pseudomonas genome database as encoding a 172 amino acid hypothetical acetyltransferase. We and others have described the 3D structure of this protein (termed pita) [Davies et al. (2005) Proteins: Struct., Funct., Bioinf. 61, 677-679; Nocek et al., unpublished results], and structures have also been reported for homologues from Agrobacterium tumefaciens (Rajashankar et al., unpublished results) and Bacillus subtilis [Badger et al. (2005) Proteins: Struct., Funct., Bioinf. 60, 787-796]. Pita homologues are found in a large number of bacterial genomes, and while the majority of these have been assigned putative phosphinothricin acetyltransferase activity, their true function is unknown. In this paper we report that pita has no activity toward phosphinothricin. Instead, we demonstrate that pita acts as an acetyltransferase using the glutamate analogues l-methionine sulfoximine and l-methionine sulfone as substrates, with Km(app) values of 1.3 +/- 0.21 and 1.3 +/- 0.13 mM and kcat(app) values of 505 +/- 43 and 610 +/- 23 s-1 for l-methionine sulfoximine and l-methionine sulfone, respectively. A high-resolution (1.55 A) crystal structure of pita in complex with one of these substrates (l-methionine sulfoximine) has been solved, revealing the mode of its interaction with the enzyme. Comparison with the apoenzyme structure has also revealed how certain active site residues undergo a conformational change upon substrate binding. To investigate the role of pita in P. aeruginosa, a mutant strain, Depp4, in which pita was inactivated through an in-frame deletion, was constructed by allelic exchange. Growth of strain Depp4 in the absence of glutamine was inhibited by l-methionine sulfoximine, suggesting a role for pita in protecting glutamine synthetase from inhibition. PMID:17253769

  12. Isolation of a gene encoding a 1,2-diacylglycerol-sn-acetyl-CoA acetyltransferase from developing seeds of Euonymus alatus.

    PubMed

    Milcamps, Anne; Tumaney, Ajay W; Paddock, Troy; Pan, David A; Ohlrogge, John; Pollard, Mike

    2005-02-18

    1,2-Diacyl-3-acetyl-sn-glycerols (ac-TAG) are unusual triacylglycerols that constitute the major storage lipid in the seeds of Euonymus alatus (Burning Bush). These ac-TAGs have long-chain acyl groups esterified at both the sn-1 and sn-2 positions of glycerol. Cell-free extracts of developing seeds of E. alatus contain both long-chain acyl-CoA and acetyl-CoA sn-1,2-diacylglycerol acyltransferase (DGAT) activity. We have isolated a gene from developing seeds of Euonymus alatus that shows a very high sequence similarity to the members of the DGAT1 gene family (i.e. related to acyl-CoA:cholesterol acyltransferases). This Euonymus DGAT1 gene, when expressed in wild type yeast, results in a 5-fold enhancement of long-chain triacylglycerol (lc-TAG) accumulation, as well as the appearance of low levels of ac-TAG. Hydrogenated ac-TAG molecular species were identified by gas chromatography-mass spectrometry. Microsomes isolated from this transformed yeast show diacylglycerol:acetyl-CoA acetyltransferase activity, which is about 40-fold higher than that measured in microsomes prepared from yeast transformed with the empty vector or with the Arabidopsis thaliana DGAT1 gene. The specific activity of this microsomal acetyltransferase activity is of the same order of magnitude as the microsomal long-chain DGAT activities measured for yeast lines transformed with the empty vector or either the Arabidopsis or Euonymus DGAT1 genes. Despite this, ac-TAG accumulation in yeast transformed with the Euonymus DGAT1 gene was very low (0.26% of lc-TAG), whereas lc-TAG accumulation was enhanced. Possible reasons for this anomaly are discussed. Expression of the Euonymus DGAT1-like gene in yeast lines where endogenous TAG synthesis has been deleted confirmed that the gene product has both long-chain acyl- and acetyltransferase activity. PMID:15579902

  13. Cloning and characterization of two genes coding for the histone acetyltransferases, Elp3 and Mof, in brown planthopper (BPH), Nilaparvata lugens (Stål).

    PubMed

    Zhu, Youli; Xie, Zhijuan; Wang, Jian; Liu, Yaping; Wang, Jianjun

    2013-01-15

    Histone acetylation is a vital mechanism for the post-translational modifications of chromatin components. Histone acetyltransferases (HATs) are critical elements that determine histone acetylation and regulate chromatin dynamics and gene expression. While histone acetyltransferases have been well studied in mammals and Drosophila melanogaster, information from agriculturally important insect pests is still limited. In our effort to understand the epigenetic mechanisms regulating development in the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Geometroidea), a major rice pest in many parts of Asia, two full-length cDNA sequences encoding HAT members of the GNAT and MYST family, namely NlElp3 and NlMof, respectively, were isolated and structurally and phylogenetically characterized. The NlElp3 contains an open reading frame (ORF) of 1656bp encoding a protein of 551 amino acids. The NlMof contains a 1353bp ORF encoding a protein of 450 amino acids. Sequence analysis showed that NlElp3 contains GNAT-type HAT domain and Radical SAM domain, and NlMof contains chromodomain and MOZ-SAS acetyltransferase domain. Multiple sequence alignments showed that NlElp3 and NlMof have high amino acid sequence identity with other insect homologues. Expression analysis of the NlElp3 and NlMof revealed significant differences in mRNA expression levels among N. lugens developmental stages, suggesting that HAT activities of NlElp3 and NlMof may be controlled, at least in part, by their developmental regulation. Remarkably, the mRNA expression levels of NlElp3 and NlMof in female adults were significantly higher than that in male adults, supporting an important role for both genes in female reproductive function in N. lugens. PMID:23142031

  14. C646, a Novel p300/CREB-Binding Protein-Specific Inhibitor of Histone Acetyltransferase, Attenuates Influenza A Virus Infection

    PubMed Central

    Zhao, Dongming; Fukuyama, Satoshi; Sakai-Tagawa, Yuko; Takashita, Emi; Shoemaker, Jason E.

    2015-01-01

    New strategies to develop novel broad-spectrum antiviral drugs against influenza virus infections are needed due to the emergence of antigenic variants and drug-resistant viruses. Here, we evaluated C646, a novel p300/CREB-binding protein-specific inhibitor of histone acetyltransferase (HAT), as an anti-influenza virus agent in vitro and in vivo and explored how C646 affects the viral life cycle and host response. Our studies highlight the value of targeting HAT activity for anti-influenza drug development. PMID:26711748

  15. C646, a Novel p300/CREB-Binding Protein-Specific Inhibitor of Histone Acetyltransferase, Attenuates Influenza A Virus Infection.

    PubMed

    Zhao, Dongming; Fukuyama, Satoshi; Sakai-Tagawa, Yuko; Takashita, Emi; Shoemaker, Jason E; Kawaoka, Yoshihiro

    2016-03-01

    New strategies to develop novel broad-spectrum antiviral drugs against influenza virus infections are needed due to the emergence of antigenic variants and drug-resistant viruses. Here, we evaluated C646, a novel p300/CREB-binding protein-specific inhibitor of histone acetyltransferase (HAT), as an anti-influenza virus agent in vitro and in vivo and explored how C646 affects the viral life cycle and host response. Our studies highlight the value of targeting HAT activity for anti-influenza drug development. PMID:26711748

  16. Inhibition of aminoglycoside 6'-N-acetyltransferase type Ib-mediated amikacin resistance in Klebsiella pneumoniae by zinc and copper pyrithione.

    PubMed

    Chiem, Kevin; Fuentes, Brooke A; Lin, David L; Tran, Tung; Jackson, Alexis; Ramirez, Maria S; Tolmasky, Marcelo E

    2015-09-01

    The in vitro activity of the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib] was inhibited by CuCl2 with a 50% inhibitory concentration (IC50) of 2.8 μM. The growth of an amikacin-resistant Klebsiella pneumoniae strain isolated from a neonate with meningitis was inhibited when amikacin was supplemented by the addition of Zn(2+) or Cu(2+) in complex with the ionophore pyrithione. Coordination complexes between cations and ionophores could be developed for their use, in combination with aminoglycosides, to treat resistant infections. PMID:26169410

  17. Inhibition of Aminoglycoside 6′-N-Acetyltransferase Type Ib-Mediated Amikacin Resistance in Klebsiella pneumoniae by Zinc and Copper Pyrithione

    PubMed Central

    Chiem, Kevin; Fuentes, Brooke A.; Lin, David L.; Tran, Tung; Jackson, Alexis; Ramirez, Maria S.

    2015-01-01

    The in vitro activity of the aminoglycoside 6′-N-acetyltransferase type Ib [AAC(6′)-Ib] was inhibited by CuCl2 with a 50% inhibitory concentration (IC50) of 2.8 μM. The growth of an amikacin-resistant Klebsiella pneumoniae strain isolated from a neonate with meningitis was inhibited when amikacin was supplemented by the addition of Zn2+ or Cu2+ in complex with the ionophore pyrithione. Coordination complexes between cations and ionophores could be developed for their use, in combination with aminoglycosides, to treat resistant infections. PMID:26169410

  18. Identification of a novel 6'-N-aminoglycoside acetyltransferase, AAC(6')-Iak, from a multidrug-resistant clinical isolate of Stenotrophomonas maltophilia.

    PubMed

    Tada, Tatsuya; Miyoshi-Akiyama, Tohru; Dahal, Rajan K; Mishra, Shyam K; Shimada, Kayo; Ohara, Hiroshi; Kirikae, Teruo; Pokhrel, Bharat M

    2014-10-01

    Stenotrophomonas maltophilia IOMTU250 has a novel 6'-N-aminoglycoside acetyltransferase-encoding gene, aac(6')-Iak. The encoded protein, AAC(6')-Iak, consists of 153 amino acids and has 86.3% identity to AAC(6')-Iz. Escherichia coli transformed with a plasmid containing aac(6')-Iak exhibited decreased susceptibility to arbekacin, dibekacin, neomycin, netilmicin, sisomicin, and tobramycin. Thin-layer chromatography showed that AAC(6')-Iak acetylated amikacin, arbekacin, dibekacin, isepamicin, kanamycin, neomycin, netilmicin, sisomicin, and tobramycin but not apramycin, gentamicin, or lividomycin. PMID:25092711

  19. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-{kappa}B acetylation in fibroblast-like synoviocyte MH7A cells

    SciTech Connect

    Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul; Lee, Mee-Hee; Lee, Yoo-Hyun; Lee, Jeongmin; Jun, Woojin; Kim, Sunoh; Yoon, Ho-Geun

    2011-07-08

    Highlights: {yields} Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. {yields} Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. {yields} Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-{kappa}B. {yields} Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymes (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKB{alpha}. Accordingly, DP treatment inhibited TNF{alpha}-stimulated increases in NF-{kappa}B function and expression of NF-{kappa}B target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.

  20. Structural and biochemical characterization of an active arylamine N-acetyltransferase possessing a non-canonical Cys-His-Glu catalytic triad.

    PubMed

    Kubiak, Xavier; Li de la Sierra-Gallay, Inès; Chaffotte, Alain F; Pluvinage, Benjamin; Weber, Patrick; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2013-08-01

    Arylamine N-acetyltransferases (NATs), a class of xenobiotic-metabolizing enzymes, catalyze the acetylation of aromatic amine compounds through a strictly conserved Cys-His-Asp catalytic triad. Each residue is essential for catalysis in both prokaryotic and eukaryotic NATs. Indeed, in (HUMAN)NAT2 variants, mutation of the Asp residue to Asn, Gln, or Glu dramatically impairs enzyme activity. However, a putative atypical NAT harboring a catalytic triad Glu residue was recently identified in Bacillus cereus ((BACCR)NAT3) but has not yet been characterized. We report here the crystal structure and functional characterization of this atypical NAT. The overall fold of (BACCR)NAT3 and the geometry of its Cys-His-Glu catalytic triad are similar to those present in functional NATs. Importantly, the enzyme was found to be active and to acetylate prototypic arylamine NAT substrates. In contrast to (HUMAN) NAT2, the presence of a Glu or Asp in the triad of (BACCR)NAT3 did not significantly affect enzyme structure or function. Computational analysis identified differences in residue packing and steric constraints in the active site of (BACCR)NAT3 that allow it to accommodate a Cys-His-Glu triad. These findings overturn the conventional view, demonstrating that the catalytic triad of this family of acetyltransferases is plastic. Moreover, they highlight the need for further study of the evolutionary history of NATs and the functional significance of the predominant Cys-His-Asp triad in both prokaryotic and eukaryotic forms. PMID:23770703

  1. Two proteins with ornithine acetyltransferase activity show different functions in Streptomyces clavuligerus: Oat2 modulates clavulanic acid biosynthesis in response to arginine.

    PubMed

    de la Fuente, A; Martín, J F; Rodríguez-García, A; Liras, P

    2004-10-01

    The oat2 gene, located in the clavulanic acid gene cluster in Streptomyces clavuligerus, is similar to argJ, which encodes N-acetylornithine:glutamic acid acetyltransferase activity. Purified proteins obtained by expression in Escherichia coli of the argJ and oat2 genes of S. clavuligerus posses N-acetyltransferase activity. The kinetics and substrate specificities of both proteins are very similar. Deletion of the oat2 gene did not affect the total N-acetylornithine transferase activity and slightly reduced the formation of clavulanic acid under standard culture conditions. However, the oat2 mutant produced more clavulanic acid than the parental strain in cultures supplemented with high levels (above 1 mM) of arginine. The purified S. clavuligerus ArgR protein bound the arginine box in the oat2 promoter, and the expression of oat2 was higher in mutants with a disruption in argR (arginine-deregulated), confirming that the Arg boxes of oat2 are functional in vivo. Our results suggest that the Oat2 protein or one of its reaction products has a regulatory role that modulates clavulanic acid biosynthesis in response to high arginine concentrations. PMID:15375131

  2. The chromomycin CmmA acetyltransferase: a membrane-bound enzyme as a tool for increasing structural diversity of the antitumour mithramycin.

    PubMed

    García, Beatriz; González-Sabín, Javier; Menéndez, Nuria; Braña, Alfredo F; Núñez, Luz Elena; Morís, Francisco; Salas, José A; Méndez, Carmen

    2011-03-01

    Mithramycin and chromomycin A(3) are two structurally related antitumour compounds, which differ in the glycosylation profiles and functional group substitutions of the sugars. Chromomycin contains two acetyl groups, which are incorporated during the biosynthesis by the acetyltransferase CmmA in Streptomyces griseus ssp. griseus. A bioconversion strategy using an engineered S. griseus strain generated seven novel acetylated mithramycins. The newly formed compounds were purified and characterized by MS and NMR. These new compounds differ from their parental compounds in the presence of one, two or three acetyl groups, attached at 3E, 4E and/or 4D positions. All new mithramycin analogues showed antitumour activity at micromolar of lower concentrations. Some of the compounds showed improved activities against glioblastoma or pancreas tumour cells. The CmmA acetyltransferase was located in the cell membrane and was shown to accept several acyl-CoA substrates. All these results highlight the potential of CmmA as a tool to create structural diversity in these antitumour compounds. PMID:21342468

  3. Structure-based molecular design for thermostabilization of N-acetyltransferase Mpr1 involved in a novel pathway of L-arginine synthesis in yeast.

    PubMed

    Nasuno, Ryo; Hirase, Saeka; Norifune, Saki; Watanabe, Daisuke; Takagi, Hiroshi

    2016-02-01

    Previously, N-Acetyltransferase Mpr1 was suggested to be involved in a novel pathway of L-arginine biosynthesis in yeast. Our recent crystallographic analysis demonstrated that the overall structure of Mpr1 is a typical folding among proteins in the Gcn5-related N-acetyltransferase superfamily, and also provided clues to the design of mutations for improvement of the enzymatic functions. Here, we constructed new stable variants, Asn203Lys- and Asn203Arg-Mpr1, which exhibited 2.4-fold and 2.2-fold longer activity half-lives than wild-type Mpr1, respectively, by structure-based molecular design. The replacement of Asn203 with a basic amino acid was suggested to stabilize α-helix 2, which is important for the Mpr1 structure, probably by neutralizing its dipole. In addition, the combination of two amino acid substitutions at positions 65 and 203 in Mpr1, Phe65Leu, which was previously isolated by the screening from PCR random mutagenesis library of MPR1, and Asn203Lys or Asn203Arg, led to further stabilization of Mpr1. Our growth assay suggests that overexpression of the stable Mpr1 variants increase L-arginine synthesis in yeast cells. Our finding is the first report on the rational engineering of Mpr1 for thermostabilization and could be useful in the construction of new yeast strains with higher L-arginine synthetic activity and also improved fermentation ability. PMID:26454877

  4. The Ssc protein of enteric bacteria has significant homology to the acyltransferase Lpxa of lipid A biosynthesis, and to three acetyltransferases.

    PubMed

    Vuorio, R; Hirvas, L; Vaara, M

    1991-11-01

    The Ssc protein, a novel essential protein affecting the function of the enterobacterial outer membrane, matched in a protein homology search best with LpxA (UDP-N-acetylglucosamine 3-hydroxymyristoyl transferase), the enzyme which catalyzes the first step of lipid A biosynthesis. The corresponding genes, located 0.56 kb apart, were 46.7% identical. The search also revealed homology to the bacterial acetyltransferases LacA and NodL, as well as to a hypothetical protein Yglm. The region of residues 109-149 Ssc displayed the highest homology and was also homologous with another bacterial acetyltransferase, CysE, and three other bacterial proteins, two of which are hypothetical. This region and the corresponding regions of all other proteins were found to have a peculiar repeated hexapeptide pattern. Each hexapeptide unit starts with isoleucine (or its equivalent leucine and valine). In most units, the second residue is glycine and the fifth residue either valine or alanine. PMID:1959635

  5. Endoplasmic Reticulum Stress-responsive Transcription Factor ATF6α Directs Recruitment of the Mediator of RNA Polymerase II Transcription and Multiple Histone Acetyltransferase Complexes*♦

    PubMed Central

    Sela, Dotan; Chen, Lu; Martin-Brown, Skylar; Washburn, Michael P.; Florens, Laurence; Conaway, Joan Weliky; Conaway, Ronald C.

    2012-01-01

    The basic leucine zipper transcription factor ATF6α functions as a master regulator of endoplasmic reticulum (ER) stress response genes. Previous studies have established that, in response to ER stress, ATF6α translocates to the nucleus and activates transcription of ER stress response genes upon binding sequence specifically to ER stress response enhancer elements in their promoters. In this study, we investigate the biochemical mechanism by which ATF6α activates transcription. By exploiting a combination of biochemical and multidimensional protein identification technology-based mass spectrometry approaches, we have obtained evidence that ATF6α functions at least in part by recruiting to the ER stress response enhancer elements of ER stress response genes a collection of RNA polymerase II coregulatory complexes, including the Mediator and multiple histone acetyltransferase complexes, among which are the Spt-Ada-Gcn5 acetyltransferase (SAGA) and Ada-Two-A-containing (ATAC) complexes. Our findings shed new light on the mechanism of action of ATF6α, and they outline a straightforward strategy for applying multidimensional protein identification technology mass spectrometry to determine which RNA polymerase II transcription factors and coregulators are recruited to promoters and other regulatory elements to control transcription. PMID:22577136

  6. Crystal Structure of the Golgi-Associated Human Nα-Acetyltransferase 60 Reveals the Molecular Determinants for Substrate-Specific Acetylation.

    PubMed

    Støve, Svein Isungset; Magin, Robert S; Foyn, Håvard; Haug, Bengt Erik; Marmorstein, Ronen; Arnesen, Thomas

    2016-07-01

    N-Terminal acetylation is a common and important protein modification catalyzed by N-terminal acetyltransferases (NATs). Six human NATs (NatA-NatF) contain one catalytic subunit each, Naa10 to Naa60, respectively. In contrast to the ribosome-associated NatA to NatE, NatF/Naa60 specifically associates with Golgi membranes and acetylates transmembrane proteins. To gain insight into the molecular basis for the function of Naa60, we developed an Naa60 bisubstrate CoA-peptide conjugate inhibitor, determined its X-ray structure when bound to CoA and inhibitor, and carried out biochemical experiments. We show that Naa60 adapts an overall fold similar to that of the catalytic subunits of ribosome-associated NATs, but with the addition of two novel elongated loops that play important roles in substrate-specific binding. One of these loops mediates a dimer to monomer transition upon substrate-specific binding. Naa60 employs a catalytic mechanism most similar to Naa50. Collectively, these data reveal the molecular basis for Naa60-specific acetyltransferase activity with implications for its Golgi-specific functions. PMID:27320834

  7. Depletion of histone N-terminal-acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway.

    PubMed

    Pavlou, Demetria; Kirmizis, Antonis

    2016-03-01

    Protein N-terminal acetylation is an abundant post-translational modification in eukaryotes implicated in various fundamental cellular and biochemical processes. This modification is catalysed by evolutionarily conserved N-terminal acetyltransferases (NATs) whose deregulation has been linked to cancer development and thus, are emerging as useful diagnostic and therapeutic targets. Naa40 is a highly selective NAT that acetylates the amino-termini of histones H4 and H2A and acts as a sensor of cell growth in yeast. In the present study, we examine the role of Naa40 in cancer cell survival. We demonstrate that depletion of Naa40 in HCT116 and HT-29 colorectal cancer cells decreases cell survival by enhancing apoptosis, whereas Naa40 reduction in non-cancerous mouse embryonic fibroblasts has no effect on cell viability. Specifically, Naa40 knockdown in colon cancer cells activates the mitochondrial caspase-9-mediated apoptotic cascade. Consistent with this, we show that caspase-9 activation is required for the induced apoptosis because treatment of cells with an irreversible caspase-9 inhibitor impedes apoptosis when Naa40 is depleted. Furthermore, the effect of Naa40-depletion on cell-death is mediated through a p53-independent mechanism since p53-null HCT116 cells still undergo apoptosis upon reduction of the acetyltransferase. Altogether, these findings reveal an anti-apoptotic role for Naa40 and exhibit its potential as a therapeutic target in colorectal cancers. PMID:26666750

  8. A single nucleotide polymorphism tags variation in the arylamine N-acetyltransferase 2 phenotype in populations of European background.

    PubMed

    García-Closas, Montserrat; Hein, David W; Silverman, Debra; Malats, Núria; Yeager, Meredith; Jacobs, Kevin; Doll, Mark A; Figueroa, Jonine D; Baris, Dalsu; Schwenn, Molly; Kogevinas, Manolis; Johnson, Alison; Chatterjee, Nilanjan; Moore, Lee E; Moeller, Timothy; Real, Francisco X; Chanock, Stephen; Rothman, Nathaniel

    2011-04-01

    The arylamine N-acetyltransferase 2 (NAT2) slow acetylation phenotype is an established risk factor for urinary bladder cancer. We reported earlier on this risk association using NAT2 phenotypic categories inferred from NAT2 haplotypes based on seven single nucleotide polymorphisms (SNPs) in a study in Spain. In a subsequent genome-wide scan, we have identified a single common tag SNP (rs1495741) located in the 3' end of NAT2 that is also associated with bladder cancer risk. The aim of this report is to evaluate the agreement between the common tag SNP and the 7-SNP NAT2 inferred phenotype. The agreement between the 7-SNP NAT2 inferred phenotype and the tag SNP, rs1495741, was initially assessed in 2174 individuals from the Spanish Bladder Cancer Study (SBCS), and confirmed in a subset of individuals from the Main and Vermont component the New England Bladder Cancer Study (NEBCS). We also investigated the association of rs1495741 genotypes with NAT2 catalytic activity in cryopreserved hepatocytes from 154 individuals of European background. We observed very strong agreement between rs1495741 and the 7-SNP inferred NAT2 phenotype: sensitivity and specificity for the NAT2 slow phenotype was 99 and 95%, respectively. Our findings were replicated in an independent population from the NEBCS. Estimates for the association between NAT2 slow phenotype and bladder cancer risk in the SBCS and its interaction with cigarette smoking were comparable for the 7-SNP inferred NAT2 phenotype and rs1495741. In addition, rs1495741 genotypes were strongly related to NAT2 activity measured in hepatocytes (P<0.0001). A novel NAT2 tag SNP (rs1495741) predicts with high accuracy the 7-SNP inferred NAT2 phenotype, and thus can be used as a sole marker in pharmacogenetic or epidemiological studies of populations of European background. These findings illustrate the utility of tag SNPs, often used in genome-wide association studies (GWAS), to identify novel phenotypic markers. Further studies

  9. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants

    PubMed Central

    Tavares, Sílvia; Wirtz, Markus; Beier, Marcel P.; Bogs, Jochen; Hell, Rüdiger; Amâncio, Sara

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription. PMID:25741355

  10. Differential transcription of the human spermidine/spermine N1-acetyltransferase (SSAT) gene in human lung carcinoma cells.

    PubMed Central

    Xiao, L; Casero, R A

    1996-01-01

    The expression of spermidine/spermine N1-acetyltransferase (SSAT), the rate-limiting enzyme in the catabolism of polyamines, is highly regulated by a number of factors including the natural polyamines and their analogues. The phenotype-specific cytotoxicity that occurs in response to a class of polyamine analogues, the diethylpolyamines, is associated with a phenotype-specific superinduction of SSAT in human non-small-cell lung carcinomas, whereas in non-responding cell types, including the small-cell lung carcinomas, the superinduction of SSAT does not occur. In this study, we have investigated the molecular basis of this phenotype-specific SSAT induction in human lung carcinoma cells in response to N1,N12-diethylspermine (BESpm). To facilitate the study of transcriptional regulation, we have cloned and characterized 11 kb of the human SSAT locus, including 3500 bp of the 5' promoter region. Nuclear run-on transcription studies suggest that the initial induction of SSAT results from an increase in the rate of gene transcription. Results from Northern blot analysis and ribonuclease protection assays indicate a differential expression of SSAT mRNA between the analogue-responsive H157 and non-responsive H82 cells. There is no detectable SSAT mRNA in H82 cells, even after a 24-h analogue treatment, whereas SSAT mRNA in H157 cells was detectable by Northern blot analysis and increased more than 100-fold following drug exposure. Furthermore, nuclear run-on transcription assays do not detect any active transcription of SSAT gene in either treated or untreated H82 cells. These results indicate that at least one component of the phenotype-specific induction of SSAT appears to be due to differences in transcriptional regulation of the gene. In addition, mapping of DNase I-hypersensitive sites of the SSAT gene suggest that the cell type-specific promoter/enhancer utilization may control the expression of the SSAT gene in differentially sensitive cell types in vivo. PMID

  11. Genetic variation in N-acetyltransferase 1 (NAT1) and 2 (NAT2) and risk of non-Hodgkin lymphoma

    PubMed Central

    Morton, Lindsay M.; Schenk, Maryjean; Hein, David W.; Davis, Scott; Zahm, Shelia Hoar; Cozen, Wendy; Cerhan, James R.; Hartge, Patricia; Welch, Robert; Chanock, Stephen J.; Rothman, Nathaniel; Wang, Sophia S.

    2007-01-01

    Background Animal studies suggest that lymphomagenesis can be induced by exposure to carcinogenic aromatic and heterocyclic amines found in diet, cigarette smoke, and the environment, but human epidemiologic investigations of these exogenous exposures have yielded conflicting results. As part of our evaluation of the role of aromatic and heterocyclic amines, which are metabolized by N-acetyltransferase (NAT) enzymes, in the etiology of non-Hodgkin lymphoma (NHL), we examined NHL risk in relation to genetic variation in NAT1 and NAT2 and exposure to cigarette smoke and dietary heterocyclic amines and mutagens. Methods We genotyped ten common single nucleotide polymorphisms (SNPs) in NAT1 and NAT2 among 1136 cases and 922 controls from a population-based case–control study in four geographic areas of the US. Relative risk of NHL for NAT1 and NAT2 genotypes, NAT2 acetylation phenotype, and exposure to cigarette smoke and dietary heterocyclic amines and mutagens was estimated using odds ratios (ORs) and 95% confidence intervals (CIs) derived from unconditional logistic regression models. Results We observed increased risk of NHL among individuals with the NAT1*10/*10 genotype compared with individuals with other NAT1 genotypes (OR=1.60, 95% CI 1.04–2.46, p=0.03). We also observed increased NHL risk in a dose-dependent model among NAT2 intermediate- and rapid-acetylators in comparison with slow-acetylators, although only the trend was statistically significant (intermediate: OR=1.18, 95% CI 0.97–1.44, p=0.1; rapid: OR=1.43, 95% CI 0.97–2.14, p=0.07; p for linear trend=0.03). Compared with nonsmokers, NHL risk estimates for current cigarette smoking were increased only among NAT2 intermediate/rapid-acetylators (OR=2.44, 95% CI 1.15–5.20, p=0.02). Conclusions Our data provide evidence that NAT1 and NAT2 genotypes are associated with NHL risk and support a contributory role for carcinogenic aromatic and/or heterocyclic amines in the multi-factorial etiology of

  12. Tubular Coupling

    NASA Technical Reports Server (NTRS)

    Rosenbaum, Bernard J. (Inventor)

    2000-01-01

    A system for coupling a vascular overflow graft or cannula to a heart pump. A pump pipe outlet is provided with an external tapered surface which receives the end of a compressible connula. An annular compression ring with a tapered internal bore surface is arranged about the cannula with the tapered internal surface in a facing relationship to the external tapered surface. The angle of inclination of the tapered surfaces is converging such that the spacing between the tapered surfaces decreases from one end of the external tapered surface to the other end thereby providing a clamping action of the tapered surface on a cannula which increases as a function of the length of cannula segment between the tapered surfaces. The annular compression ring is disposed within a tubular locking nut which threadedly couples to the pump and provides a compression force for urging the annular ring onto the cannula between the tapered surfaces. The nut has a threaded connection to the pump body. The threaded coupling to the pump body provides a compression force for the annular ring. The annular ring has an annular enclosure space in which excess cannula material from the compression between the tapered surfaces to "bunch up" in the space and serve as an enlarged annular ring segment to assist holding the cannula in place. The clamped cannula provides a seamless joint connection to the pump pipe outlet where the clamping force is uniformly applied to the cannula because of self alignment of the tapered surfaces. The nut can be easily disconnected to replace the pump if necessary.

  13. Mapping the lipoylation site of Arabidopsis thaliana plastidial dihydrolipoamide S-acetyltransferase using mass spectrometry and site-directed mutagenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The catalytic enhancement achieved by the pyruvate dehydrogenase complex (PDC) results from a combination of substrate channeling plus active-site coupling. The mechanism for active-site coupling involves lipoic acid prosthetic groups covalently attached to Lys residues in the primary ...

  14. Dark coupling

    SciTech Connect

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S. E-mail: d.hernandez@uam.es E-mail: omena@ific.uv.es

    2009-07-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed.

  15. Thermoacoustic couple

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-10-04

    An apparatus and method for determining acoustic power density level and its direction in a fluid using a single sensor are disclosed. The preferred embodiment of the apparatus, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  16. A novel method to quantify the activity of alcohol acetyltransferase Using a SnO2-based sensor of electronic nose.

    PubMed

    Hu, Zhongqiu; Li, Xiaojing; Wang, Huxuan; Niu, Chen; Yuan, Yahong; Yue, Tianli

    2016-07-15

    Alcohol acetyltransferase (AATFase) extensively catalyzes the reactions of alcohols to acetic esters in microorganisms and plants. In this work, a novel method has been proposed to quantify the activity of AATFase using a SnO2-based sensor of electronic nose, which was determined on the basis of its higher sensitivity to the reducing alcohol than the oxidizing ester. The maximum value of the first-derivative of the signals from the SnO2-based sensor was therein found to be an eigenvalue of isoamyl alcohol concentration. Quadratic polynomial regression perfectly fitted the correlation between the eigenvalue and the isoamyl alcohol concentration. The method was used to determine the AATFase activity in this type of reaction by calculating the conversion rate of isoamyl alcohol. The proposed method has been successfully applied to determine the AATFase activity of a cider yeast strain. Compared with GC-MS, the method shows promises with ideal recovery and low cost. PMID:26948643

  17. Cloning, sequencing, and use as a molecular probe of a gene encoding an aminoglycoside 6'-N-acetyltransferase of broad substrate profile.

    PubMed Central

    Terán, F J; Suárez, J E; Mendoza, M C

    1991-01-01

    A gene coding for an aminoglycoside 6'-N-acetyltransferase that was able to modify amikacin was cloned from a plasmid isolated from a clinical strain of Enterobacter cloacae. Sequencing of a 955-bp segment which mediates the modifying activity revealed a single open reading frame of 432 nucleotides that predicted a polypeptide of 144 amino acid residues with a molecular weight of 16,021. Putative ribosomal binding sites and -10 and -35 sequences were located at the 5' end of the gene. The size of the polypeptide was confirmed through minicell analysis of the expression products of plasmids containing the sequence. The use of the gene as a molecular probe revealed its specificity toward strains harboring genes coding for related enzymes. This probe is therefore useful for epidemiological studies. Images PMID:2069376

  18. Insight into the secondary structure of chloramphenicol acetyltransferase type I — computer analysis and FT-IR spectroscopic characterization of the protein structure

    NASA Astrophysics Data System (ADS)

    Andreeva, A. E.; Karamancheva, I. R.

    2001-05-01

    The secondary structure of chloramphenicol O-acetyltransferase type I (CAT I) and an N-terminal deleted mutant has been studied by Fourier transform infrared spectroscopy. The analysis of the amide I band of different samples (KBr, hydrated films and buffer solution) by Fourier self-deconvolution followed by a curve fitting was performed. The spectroscopic data have been utilized to determine the α-helix and β-structure % contents, which depend strongly on the protein sample preparation. Furthermore, the secondary structure of the enzyme-inhibitor Crystal Violet complex was analyzed. The observed difference in the secondary structural contents suggests that some conformational changes of the enzyme are induced by the inhibitor after binding.

  19. Analysis of Streptococcus pyogenes promoters by using novel Tn916-based shuttle vectors for the construction of transcriptional fusions to chloramphenicol acetyltransferase.

    PubMed Central

    Geist, R T; Okada, N; Caparon, M G

    1993-01-01

    We have developed a series of shuttle vectors based on the conjugative transposon Tn916 that have been designed for the analysis of transcriptional regulation in Streptococcus pyogenes and other gram-positive bacteria. Designated the pVIT vectors (vectors for integration into Tn916), the vectors are small, stable plasmids in Escherichia coli to facilitate the fusion of promoters from cloned S. pyogenes genes to a promoterless gene which encodes chloramphenicol acetyltransferase. The vectors each contain one or more small regions of Tn916 to direct the integration of the transcriptional fusion into the transposon via homologous recombination following transformation of S. pyogenes or other suitable gram-positive hosts. Integration can be monitored by the inactivation or replacement of an antibiotic resistance determinant in modified derivatives of Tn916. Promoter activity can then be quantitated by the determination of chloramphenicol acetyltransferase-specific activity. In addition, since integration is into loci that do not disrupt the conjugative transpositional functions of Tn916, the vectors are useful for analysis of regulation in strains that are difficult or impossible to transform and can be introduced into these strains by conjugation following transformation of an intermediate host. The promoters for the genes which encode both the M protein and protein F of S. pyogenes were active in pVIT vectors, as was the region which controls transcription of mry, a trans-acting positive regulator of M protein expression. However, neither of the two characterized promoters for mry demonstrated activity when independently analyzed in pVIT-generated partial diploid strains, suggesting that regulation of mry is more complex than predicted by current models. The broad host range of Tn916 should make the pVIT vectors useful for analysis of regulation in numerous other bacterial species. PMID:8244925

  20. The Methionine Transamination Pathway Controls Hepatic Glucose Metabolism through Regulation of the GCN5 Acetyltransferase and the PGC-1α Transcriptional Coactivator.

    PubMed

    Tavares, Clint D J; Sharabi, Kfir; Dominy, John E; Lee, Yoonjin; Isasa, Marta; Orozco, Jose M; Jedrychowski, Mark P; Kamenecka, Theodore M; Griffin, Patrick R; Gygi, Steven P; Puigserver, Pere

    2016-05-13

    Methionine is an essential sulfur amino acid that is engaged in key cellular functions such as protein synthesis and is a precursor for critical metabolites involved in maintaining cellular homeostasis. In mammals, in response to nutrient conditions, the liver plays a significant role in regulating methionine concentrations by altering its flux through the transmethylation, transsulfuration, and transamination metabolic pathways. A comprehensive understanding of how hepatic methionine metabolism intersects with other regulatory nutrient signaling and transcriptional events is, however, lacking. Here, we show that methionine and derived-sulfur metabolites in the transamination pathway activate the GCN5 acetyltransferase promoting acetylation of the transcriptional coactivator PGC-1α to control hepatic gluconeogenesis. Methionine was the only essential amino acid that rapidly induced PGC-1α acetylation through activating the GCN5 acetyltransferase. Experiments employing metabolic pathway intermediates revealed that methionine transamination, and not the transmethylation or transsulfuration pathways, contributed to methionine-induced PGC-1α acetylation. Moreover, aminooxyacetic acid, a transaminase inhibitor, was able to potently suppress PGC-1α acetylation stimulated by methionine, which was accompanied by predicted alterations in PGC-1α-mediated gluconeogenic gene expression and glucose production in primary murine hepatocytes. Methionine administration in mice likewise induced hepatic PGC-1α acetylation, suppressed the gluconeogenic gene program, and lowered glycemia, indicating that a similar phenomenon occurs in vivo These results highlight a communication between methionine metabolism and PGC-1α-mediated hepatic gluconeogenesis, suggesting that influencing methionine metabolic flux has the potential to be therapeutically exploited for diabetes treatment. PMID:27022023

  1. The enhancing effect of genistein on apoptosis induced by trichostatin A in lung cancer cells with wild type p53 genes is associated with upregulation of histone acetyltransferase.

    PubMed

    Wu, Tzu-Chin; Lin, Yi-Chin; Chen, Hsiao-Ling; Huang, Pei-Ru; Liu, Shang-Yu; Yeh, Shu-Lan

    2016-02-01

    Genistein has been shown to enhance the antitumor activity of trichostatin A (TSA) in human lung carcinoma A549 cells. However, whether the combined treatment exerts the same effect in other lung cancer cells is unclear. In the present study we first compared the enhancing effect of genistein on the antitumor effect of TSA in ABC-1, NCI-H460 (H460) and A549 cells. Second, we investigated whether the effects of genistein are associated with increased histone/non-histone protein acetylation. We found that the enhancing effect of genistein on cell-growth-arrest in ABC-1 cells (p53 mutant) was less than in A549 and H460 cells. Genistein enhanced TSA induced apoptosis in A549 and H460 cells rather than in ABC-1 cells. After silencing p53 expression in A549 and H460 cells, the enhancing effect of genistein was diminished. In addition, genistein increased TSA-induced histone H3/H4 acetylation in A549 and H460 cells. Genistein also increased p53 acetylation in H460 cells. The inhibitor of acetyltransferase, anacardic acid, diminished the enhancing effect of genistein on all TSA-induced histone/p53 acetylation and apoptosis. Genistein in combination with TSA increased the expression of p300 protein, an acetyltransferase, in A549 and NCI-H460 cells. Furthermore, we demonstrated that genistein also enhanced the antitumor effect of genistein in A549-tumor-bearing mice. Taken together, these results suggest that the enhancing effects of genistein on TSA-induced apoptosis in lung cancer cells were p53-dependent and were associated with histone/non-histone protein acetylation. PMID:26768552

  2. Identification of cancer chemopreventive isothiocyanates as direct inhibitors of the arylamine N-acetyltransferase-dependent acetylation and bioactivation of aromatic amine carcinogens

    PubMed Central

    Duval, Romain; Xu, Ximing; Bui, Linh-Chi; Mathieu, Cécile; Petit, Emile; Cariou, Kevin; Dodd, Robert H.; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-01-01

    Aromatic amines (AAs) are chemicals of industrial, pharmacological and environmental relevance. Certain AAs, such as 4-aminobiphenyl (4-ABP), are human carcinogens that require enzymatic metabolic activation to reactive chemicals to form genotoxic DNA adducts. Arylamine N-acetyltransferases (NAT) are xenobiotic metabolizing enzymes (XME) that play a major role in this carcinogenic bioactivation process. Isothiocyanates (ITCs), including benzyl-ITC (BITC) and phenethyl-ITC (PEITC), are phytochemicals known to have chemopreventive activity against several aromatic carcinogens. In particular, ITCs have been shown to modify the bioactivation and subsequent mutagenicity of carcinogenic AA chemicals such as 4-ABP. However, the molecular and biochemical mechanisms by which these phytochemicals may modulate AA carcinogens bioactivation and AA-DNA damage remains poorly understood. This manuscript provides evidence indicating that ITCs can decrease the metabolic activation of carcinogenic AAs via the irreversible inhibition of NAT enzymes and subsequent alteration of the acetylation of AAs. We demonstrate that BITC and PEITC react with NAT1 and inhibit readily its acetyltransferase activity (ki = 200 M−1.s−1 and 66 M−1.s−1 for BITC and PEITC, respectively). Chemical labeling, docking approaches and substrate protection assays indicated that inhibition of the acetylation of AAs by NAT1 was due to the chemical modification of the enzyme active site cysteine. Moreover, analyses of AAs acetylation and DNA adducts in cells showed that BITC was able to modulate the endogenous acetylation and bioactivation of 4-ABP. In conclusion, we show that direct inhibition of NAT enzymes may be an important mechanism by which ITCs exert their chemopreventive activity towards AA chemicals. PMID:26840026

  3. Identification of cancer chemopreventive isothiocyanates as direct inhibitors of the arylamine N-acetyltransferase-dependent acetylation and bioactivation of aromatic amine carcinogens.

    PubMed

    Duval, Romain; Xu, Ximing; Bui, Linh-Chi; Mathieu, Cécile; Petit, Emile; Cariou, Kevin; Dodd, Robert H; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-02-23

    Aromatic amines (AAs) are chemicals of industrial, pharmacological and environmental relevance. Certain AAs, such as 4-aminobiphenyl (4-ABP), are human carcinogens that require enzymatic metabolic activation to reactive chemicals to form genotoxic DNA adducts. Arylamine N-acetyltransferases (NAT) are xenobiotic metabolizing enzymes (XME) that play a major role in this carcinogenic bioactivation process. Isothiocyanates (ITCs), including benzyl-ITC (BITC) and phenethyl-ITC (PEITC), are phytochemicals known to have chemopreventive activity against several aromatic carcinogens. In particular, ITCs have been shown to modify the bioactivation and subsequent mutagenicity of carcinogenic AA chemicals such as 4-ABP. However, the molecular and biochemical mechanisms by which these phytochemicals may modulate AA carcinogens bioactivation and AA-DNA damage remains poorly understood.This manuscript provides evidence indicating that ITCs can decrease the metabolic activation of carcinogenic AAs via the irreversible inhibition of NAT enzymes and subsequent alteration of the acetylation of AAs. We demonstrate that BITC and PEITC react with NAT1 and inhibit readily its acetyltransferase activity (ki = 200 M-1.s-1 and 66 M-1.s-1 for BITC and PEITC, respectively). Chemical labeling, docking approaches and substrate protection assays indicated that inhibition of the acetylation of AAs by NAT1 was due to the chemical modification of the enzyme active site cysteine. Moreover, analyses of AAs acetylation and DNA adducts in cells showed that BITC was able to modulate the endogenous acetylation and bioactivation of 4-ABP. In conclusion, we show that direct inhibition of NAT enzymes may be an important mechanism by which ITCs exert their chemopreventive activity towards AA chemicals. PMID:26840026

  4. Expression Levels of the Yeast Alcohol Acetyltransferase Genes ATF1, Lg-ATF1, and ATF2 Control the Formation of a Broad Range of Volatile Esters

    PubMed Central

    Verstrepen, Kevin J.; Van Laere, Stijn D. M.; Vanderhaegen, Bart M. P.; Derdelinckx, Guy; Dufour, Jean-Pierre; Pretorius, Isak S.; Winderickx, Joris; Thevelein, Johan M.; Delvaux, Freddy R.

    2003-01-01

    Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages such as beer and wine. Esters are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction. In order to investigate and compare the roles of the known Saccharomyces cerevisiae alcohol acetyltransferases, Atf1p, Atf2p and Lg-Atf1p, in volatile ester production, the respective genes were either deleted or overexpressed in a laboratory strain and a commercial brewing strain. Subsequently, the ester formation of the transformants was monitored by headspace gas chromatography and gas chromatography combined with mass spectroscopy (GC-MS). Analysis of the fermentation products confirmed that the expression levels of ATF1 and ATF2 greatly affect the production of ethyl acetate and isoamyl acetate. GC-MS analysis revealed that Atf1p and Atf2p are also responsible for the formation of a broad range of less volatile esters, such as propyl acetate, isobutyl acetate, pentyl acetate, hexyl acetate, heptyl acetate, octyl acetate, and phenyl ethyl acetate. With respect to the esters analyzed in this study, Atf2p seemed to play only a minor role compared to Atf1p. The atf1Δ atf2Δ double deletion strain did not form any isoamyl acetate, showing that together, Atf1p and Atf2p are responsible for the total cellular isoamyl alcohol acetyltransferase activity. However, the double deletion strain still produced considerable amounts of certain other esters, such as ethyl acetate (50% of the wild-type strain), propyl acetate (50%), and isobutyl acetate (40%), which provides evidence for the existence of additional, as-yet-unknown ester synthases in the yeast proteome. Interestingly, overexpression of different alleles of ATF1 and ATF2 led to different ester production rates, indicating that differences in the aroma profiles of yeast strains may be partially due to mutations in their ATF genes. PMID:12957907

  5. N-acetyltransferase 2 (NAT2) gene polymorphism as a predisposing factor for phenytoin intoxication in tuberculous meningitis or tuberculoma patients having seizures - A pilot study

    PubMed Central

    Adole, Prashant S.; Kharbanda, Parampreet S.; Sharma, Sadhna

    2016-01-01

    Background & objectives: Simultaneous administration of phenytoin and isoniazid (INH) in tuberculous meningitis (TBM) or tuberculoma patients with seizures results in higher plasma phenytoin level and thus phenytoin intoxication. N-acetyltransferase 2 (NAT2) enzyme catalyses two acetylation reactions in INH metabolism and NAT2 gene polymorphism leads to slow and rapid acetylators. The present study was aimed to evaluate the effect of allelic variants of N-acetyltransferase 2 (NAT2) gene as a predisposing factor for phenytoin toxicity in patients with TBM or tuberculoma having seizures, and taking INH and phenytoin simultaneously. Methods: Sixty patients with TBM or tuberculoma with seizures and taking INH and phenytoin simultaneously for a minimum period of seven days were included in study. Plasma phenytoin was measured by high performance liquid chromatography. NAT2 gene polymorphism was studied using restriction fragment length polymorphism and allele specific PCR. Results: The patients were grouped into those having phenytoin intoxication and those with normal phenytoin level, and also classified as rapid or slow acetylators by NAT2 genotyping. Genotypic analysis showed that of the seven SNPs (single nucleotide polymorphisms) of NAT2 gene studied, six mutations were found to be associated with phenytoin intoxication. For rs1041983 (C282T), rs1799929 (C481T), rs1799931 (G857A), rs1799930 (G590A), rs1208 (A803G) and rs1801280 (T341C) allelic variants, the proportion of homozygous mutant was higher in phenytoin intoxicated group than in phenytoin non-intoxicated group. Interpretation & conclusions: Homozygous mutant allele of NAT2 gene at 481site may act as a predisposing factor for phenytoin intoxication among TBM or tuberculoma patients having seizures. PMID:27488001

  6. Molecular mechanism of the enterococcal aminoglycoside 6'-N-acetyltransferase': role of GNAT-conserved residues in the chemistry of antibiotic inactivation.

    PubMed

    Draker, Kari-ann; Wright, Gerard D

    2004-01-20

    The Gram-positive pathogen Enterococcus faecium is intrinsically resistant to aminoglycoside antibiotics due to the presence of a chromosomally encoded aminoglycoside 6'-N-acetyltransferase [AAC(6')-Ii]. This enzyme is a member of the GCN5-related N-acetyltransferase (GNAT) superfamily and is therefore structurally homologous to proteins that catalyze acetyl transfer to diverse acyl-accepting substrates. This study reports the investigation of several potential catalytic residues that are present in the AAC(6')-Ii active site and also conserved in many GNAT enzymes. Site-directed mutagenesis of Glu72, His74, Leu76, and Tyr147 with characterization of the purified site mutants gave valuable information about the roles of these amino acids in acetyl transfer chemistry. More specifically, steady-state kinetic analysis of protein activity, solvent viscosity effects, pH studies, and antibiotic resistance profiles were all used to assess the roles of Glu72 and His74 as potential active site bases, Tyr147 as a general acid, and the importance of the amide NH group of Leu76 in transition-state stabilization. Taken together, our results indicate that Glu72 is not involved in general base catalysis, but is instead critical for the proper positioning and orientation of aminoglycoside substrates in the active site. Similarly, His74 is also not acting as the active site base, with pH studies revealing that this residue must be protonated for optimal AAC(6')-Ii activity. Mutation of Tyr147 was found not to affect the chemical step of catalysis, and our results were not consistent with this residue acting as a general acid. Last, the amide NH group of Leu76 is implicated in important interactions with acetyl-CoA and transition-state stabilization. In summary, the work described here provides important information regarding the molecular mechanism of AAC(6')-Ii catalysis that allows us to contrast our findings with those of other GNAT proteins and to demonstrate that these enzymes

  7. Subunits of ADA-two-A-containing (ATAC) or Spt-Ada-Gcn5-acetyltrasferase (SAGA) Coactivator Complexes Enhance the Acetyltransferase Activity of GCN5.

    PubMed

    Riss, Anne; Scheer, Elisabeth; Joint, Mathilde; Trowitzsch, Simon; Berger, Imre; Tora, László

    2015-11-27

    Histone acetyl transferases (HATs) play a crucial role in eukaryotes by regulating chromatin architecture and locus specific transcription. GCN5 (KAT2A) is a member of the GNAT (Gcn5-related N-acetyltransferase) family of HATs. In metazoans this enzyme is found in two functionally distinct coactivator complexes, SAGA (Spt Ada Gcn5 acetyltransferase) and ATAC (Ada Two A-containing). These two multiprotein complexes comprise complex-specific and shared subunits, which are organized in functional modules. The HAT module of ATAC is composed of GCN5, ADA2a, ADA3, and SGF29, whereas in the SAGA HAT module ADA2b is present instead of ADA2a. To better understand how the activity of human (h) hGCN5 is regulated in the two related, but different, HAT complexes we carried out in vitro HAT assays. We compared the activity of hGCN5 alone with its activity when it was part of purified recombinant hATAC or hSAGA HAT modules or endogenous hATAC or hSAGA complexes using histone tail peptides and full-length histones as substrates. We demonstrated that the subunit environment of the HAT complexes into which GCN5 incorporates determines the enhancement of GCN5 activity. On histone peptides we show that all the tested GCN5-containing complexes acetylate mainly histone H3K14. Our results suggest a stronger influence of ADA2b as compared with ADA2a on the activity of GCN5. However, the lysine acetylation specificity of GCN5 on histone tails or full-length histones was not changed when incorporated in the HAT modules of ATAC or SAGA complexes. Our results thus demonstrate that the catalytic activity of GCN5 is stimulated by subunits of the ADA2a- or ADA2b-containing HAT modules and is further increased by incorporation of the distinct HAT modules in the ATAC or SAGA holo-complexes. PMID:26468280

  8. Differences in Enzymatic Properties of the Saccharomyces kudriavzevii and Saccharomyces uvarum Alcohol Acetyltransferases and Their Impact on Aroma-Active Compounds Production

    PubMed Central

    Stribny, Jiri; Querol, Amparo; Pérez-Torrado, Roberto

    2016-01-01

    Higher alcohols and acetate esters belong to the most important yeast secondary metabolites that significantly contribute to the overall flavor and aroma profile of fermented products. In Saccharomyces cerevisiae, esterification of higher alcohols is catalyzed mainly by the alcohol acetyltransferases encoded by genes ATF1 and ATF2. Previous investigation has shown other Saccharomyces species, e.g., S. kudriavzevii and S. uvarum, to vary in aroma-active higher alcohols and acetate esters formation when compared to S. cerevisiae. Here, we aimed to analyze the enzymes encoded by the ATF1 and ATF2 genes from S. kudriavzevii (SkATF1, SkATF2) and S. uvarum (SuATF1, SuATF2). The heterologous expression of the individual ATF1 and ATF2 genes in a host S. cerevisiae resulted in the enhanced production of several higher alcohols and acetate esters. Particularly, an increase of 2-phenylethyl acetate production by the strains that harbored ATF1 and ATF2 genes from S. kudriavzevii and S. uvarum was observed. When grown with individual amino acids as the nitrogen source, the strain that harbored SkATF1 showed particularly high 2-phenylethyl acetate production and the strains with introduced SkATF2 or SuATF2 revealed increased production of isobutyl acetate, isoamyl acetate, and 2-phenylethyl acetate compared to the reference strains with endogenous ATF genes. The alcohol acetyltransferase activities of the individual Atf1 and Atf2 enzymes measured in the cell extracts of the S. cerevisiae atf1 atf2 iah1 triple-null strain were detected for all the measured substrates. This indicated that S. kudriavzevii and S. uvarum Atf enzymes had broad range substrate specificity as S. cerevisiae Atf enzymes. Individual Atf1 enzymes exhibited markedly different kinetic properties since SkAtf1p showed c. twofold higher and SuAtf1p c. threefold higher Km for isoamyl alcohol than ScAtf1p. Together these results indicated that the differences found among the three Saccharomyces species during the

  9. Members of the GCN5 histone acetyltransferase complex regulate PLETHORA-mediated root stem cell niche maintenance and transit amplifying cell proliferation in Arabidopsis.

    PubMed

    Kornet, Noortje; Scheres, Ben

    2009-04-01

    The PLETHORA (PLT) stem cell transcription factors form a developmentally instructive protein gradient in Arabidopsis thaliana roots. Histone acetylation is known to facilitate gene transcription and plays an important role in developmental processes. Here, we show that histone acetyltransferase GCN5 (for general control nonderepressible 5) attenuates the PLT gradient. Based on genetic evidence, we establish that GCN5 is essential for root stem cell niche maintenance and acts in the PLT pathway. The GCN5-associated factor ADA2b (for alteration/deficiency in activation 2b) is also positioned in the PLT pathway and regulates PLT expression, similar to GCN5. Both GCN5 and ADA2b mediate proliferation of the transit amplifying cells, but ADA2b does not affect stem cell niche maintenance. Overexpression of PLT2 rescues the stem cell niche defect of gcn5 mutants, indicating that GCN5 regulation of PLT expression is essential for maintenance of the root stem cell niche. We conclude that histone acetylation complexes play an important role in shaping a developmentally instructive gradient in the root. PMID:19376933

  10. Members of the GCN5 Histone Acetyltransferase Complex Regulate PLETHORA-Mediated Root Stem Cell Niche Maintenance and Transit Amplifying Cell Proliferation in Arabidopsis[W

    PubMed Central

    Kornet, Noortje; Scheres, Ben

    2009-01-01

    The PLETHORA (PLT) stem cell transcription factors form a developmentally instructive protein gradient in Arabidopsis thaliana roots. Histone acetylation is known to facilitate gene transcription and plays an important role in developmental processes. Here, we show that histone acetyltransferase GCN5 (for general control nonderepressible 5) attenuates the PLT gradient. Based on genetic evidence, we establish that GCN5 is essential for root stem cell niche maintenance and acts in the PLT pathway. The GCN5-associated factor ADA2b (for alteration/deficiency in activation 2b) is also positioned in the PLT pathway and regulates PLT expression, similar to GCN5. Both GCN5 and ADA2b mediate proliferation of the transit amplifying cells, but ADA2b does not affect stem cell niche maintenance. Overexpression of PLT2 rescues the stem cell niche defect of gcn5 mutants, indicating that GCN5 regulation of PLT expression is essential for maintenance of the root stem cell niche. We conclude that histone acetylation complexes play an important role in shaping a developmentally instructive gradient in the root. PMID:19376933

  11. Using VAAST to Identify an X-Linked Disorder Resulting in Lethality in Male Infants Due to N-Terminal Acetyltransferase Deficiency

    PubMed Central

    Rope, Alan F.; Wang, Kai; Evjenth, Rune; Xing, Jinchuan; Johnston, Jennifer J.; Swensen, Jeffrey J.; Johnson, W. Evan; Moore, Barry; Huff, Chad D.; Bird, Lynne M.; Carey, John C.; Opitz, John M.; Stevens, Cathy A.; Jiang, Tao; Schank, Christa; Fain, Heidi Deborah; Robison, Reid; Dalley, Brian; Chin, Steven; South, Sarah T.; Pysher, Theodore J.; Jorde, Lynn B.; Hakonarson, Hakon; Lillehaug, Johan R.; Biesecker, Leslie G.; Yandell, Mark; Arnesen, Thomas; Lyon, Gholson J.

    2011-01-01

    We have identified two families with a previously undescribed lethal X-linked disorder of infancy; the disorder comprises a distinct combination of an aged appearance, craniofacial anomalies, hypotonia, global developmental delays, cryptorchidism, and cardiac arrhythmias. Using X chromosome exon sequencing and a recently developed probabilistic algorithm aimed at discovering disease-causing variants, we identified in one family a c.109T>C (p.Ser37Pro) variant in NAA10, a gene encoding the catalytic subunit of the major human N-terminal acetyltransferase (NAT). A parallel effort on a second unrelated family converged on the same variant. The absence of this variant in controls, the amino acid conservation of this region of the protein, the predicted disruptive change, and the co-occurrence in two unrelated families with the same rare disorder suggest that this is the pathogenic mutation. We confirmed this by demonstrating a significantly impaired biochemical activity of the mutant hNaa10p, and from this we conclude that a reduction in acetylation by hNaa10p causes this disease. Here we provide evidence of a human genetic disorder resulting from direct impairment of N-terminal acetylation, one of the most common protein modifications in humans. PMID:21700266

  12. An Approach to Identify SNPs in the Gene Encoding Acetyl-CoA Acetyltransferase-2 (ACAT-2) and Their Proposed Role in Metabolic Processes in Pig

    PubMed Central

    Song, Ki Duk; Sharma, Neelesh; Kim, Jeong Hyun; Kim, Nam Eun; Lee, Sung Jin; Kang, Chul Woong; Oh, Sung Jong; Jeong, Dong Kee

    2014-01-01

    The novel liver protein acetyl-CoA acetyltransferase-2 (ACAT2) is involved in the beta-oxidation and lipid metabolism. Its comprehensive relative expression, in silico non-synonymous single nucleotide polymorphism (nsSNP) analysis, as well as its annotation in terms of metabolic process with another protein from the same family, namely, acetyl-CoA acyltransferase-2 (ACAA2) was performed in Sus scrofa. This investigation was conducted to understand the most important nsSNPs of ACAT2 in terms of their effects on metabolic activities and protein conformation. The two most deleterious mutations at residues 122 (I to V) and 281 (R to H) were found in ACAT2. Validation of expression of genes in the laboratory also supported the idea of differential expression of ACAT2 and ACAA2 conceived through the in silico analysis. Analysis of the relative expression of ACAT2 and ACAA2 in the liver tissue of Jeju native pig showed that the former expressed significantly higher (P<0.05). Overall, the computational prediction supported by wet laboratory analysis suggests that ACAT2 might contribute more to metabolic processes than ACAA2 in swine. Further associations of SNPs in ACAT2 with production traits might guide efforts to improve growth performance in Jeju native pigs. PMID:25050817

  13. Modeling the Interaction between β-Amyloid Aggregates and Choline Acetyltransferase Activity and Its Relation with Cholinergic Dysfunction through Two-Enzyme/Two-Compartment Model

    PubMed Central

    Fgaier, Hedia; Mustafa, Ibrahim H. I.; Awad, Asmaa A. R.; Elkamel, Ali

    2015-01-01

    The effect of β-amyloid aggregates on activity of choline acetyltransferase (ChAT) which is responsible for synthesizing acetylcholine (ACh) in human brain is investigated through the two-enzyme/two-compartment (2E2C) model where the presynaptic neuron is considered as compartment 1 while both the synaptic cleft and the postsynaptic neuron are considered as compartment 2 through suggesting three different kinetic mechanisms for the inhibition effect. It is found that the incorporation of ChAT inhibition by β-amyloid aggregates into the 2E2C model is able to yield dynamic solutions for concentrations of generated β-amyloid, ACh, choline, acetate, and pH in addition to the rates of ACh synthesis and ACh hydrolysis in compartments 1 and 2. It is observed that ChAT activity needs a high concentration of β-amyloid aggregates production rate. It is found that ChAT activity is reduced significantly when neurons are exposed to high levels of β-amyloid aggregates leading to reduction in levels of ACh which is one of the most significant physiological symptoms of AD. Furthermore, the system of ACh neurocycle is dominated by the oscillatory behavior when ChAT enzyme is completely inhibited by β-amyloid. It is observed that the direct inactivation of ChAT by β-amyloid aggregates may be a probable mechanism contributing to the development of AD. PMID:26413144

  14. Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity.

    PubMed

    Mitchell, Leslie; Lambert, Jean-Philippe; Gerdes, Maria; Al-Madhoun, Ashraf S; Skerjanc, Ilona S; Figeys, Daniel; Baetz, Kristin

    2008-04-01

    The Saccharomyces cerevisiae NuA4 histone acetyltransferase complex catalyzes the acetylation of histone H4 and the histone variant Htz1 to regulate key cellular events, including transcription, DNA repair, and faithful chromosome segregation. To further investigate the cellular processes impacted by NuA4, we exploited the nonessential subunits of the complex to build an extensive NuA4 genetic-interaction network map. The map reveals that NuA4 is a genetic hub whose function buffers a diverse range of cellular processes, many not previously linked to the complex, including Golgi complex-to-vacuole vesicle-mediated transport. Further, we probe the role that nonessential subunits play in NuA4 complex integrity. We find that most nonessential subunits have little impact on NuA4 complex integrity and display between 12 and 42 genetic interactions. In contrast, the deletion of EAF1 causes the collapse of the NuA4 complex and displays 148 genetic interactions. Our study indicates that Eaf1 plays a crucial function in NuA4 complex integrity. Further, we determine that Eaf5 and Eaf7 form a subcomplex, which reflects their similar genetic interaction profiles and phenotypes. Our integrative study demonstrates that genetic interaction maps are valuable in dissecting complex structure and provides insight into why the human NuA4 complex, Tip60, has been associated with a diverse range of pathologies. PMID:18212056

  15. Small angle X-ray scattering data and structure factor fitting for the study of the quaternary structure of the spermidine N-acetyltransferase SpeG

    PubMed Central

    Weigand, Steven; Filippova, Ekaterina V.; Kiryukhina, Olga; Anderson, Wayne F.

    2015-01-01

    Here we describe the treatment of the small-angle X-ray Scattering (SAXS) data used during SpeG quaternary structure study as part of the research article “Substrate induced allosteric change in the quaternary structure of the spermidine N-acetyltransferase SpeG” published in Journal of Molecular Biology [1]. These data were collected on two separate area detectors as separate dilution series of the SpeG and the SpeG with spermine samples along with data from their companion buffers. The data were radially integrated, corrected for incident beam variation, and scaled to absolute units. After subtraction of volume-fraction scaled buffer scattering and division by the SpeG concentration, multiple scattering curves free of an inter-molecular structure factor were derived from the dilution series. Rather than extrapolating to infinite dilution, the structure factor contribution was estimated by fitting to the full set of data provided by dividing the scattering curves of a dilution series by the curve from the most dilute sample in that series. PMID:26793756

  16. Promotion of Cell Viability and Histone Gene Expression by the Acetyltransferase Gcn5 and the Protein Phosphatase PP2A in Saccharomyces cerevisiae.

    PubMed

    Petty, Emily L; Lafon, Anne; Tomlinson, Shannon L; Mendelsohn, Bryce A; Pillus, Lorraine

    2016-08-01

    Histone modifications direct chromatin-templated events in the genome and regulate access to DNA sequence information. There are multiple types of modifications, and a common feature is their dynamic nature. An essential step for understanding their regulation, therefore, lies in characterizing the enzymes responsible for adding and removing histone modifications. Starting with a dosage-suppressor screen in Saccharomyces cerevisiae, we have discovered a functional interaction between the acetyltransferase Gcn5 and the protein phosphatase 2A (PP2A) complex, two factors that regulate post-translational modifications. We find that RTS1, one of two genes encoding PP2A regulatory subunits, is a robust and specific high-copy suppressor of temperature sensitivity of gcn5∆ and a subset of other gcn5∆ phenotypes. Conversely, loss of both PP2A(Rts1) and Gcn5 function in the SAGA and SLIK/SALSA complexes is lethal. RTS1 does not restore global transcriptional defects in gcn5∆; however, histone gene expression is restored, suggesting that the mechanism of RTS1 rescue includes restoration of specific cell cycle transcripts. Pointing to new mechanisms of acetylation-phosphorylation cross-talk, RTS1 high-copy rescue of gcn5∆ growth requires two residues of H2B that are phosphorylated in human cells. These data highlight the potential significance of dynamic phosphorylation and dephosphorylation of these deeply conserved histone residues for cell viability. PMID:27317677

  17. Anacardic acid, a histone acetyltransferase inhibitor, modulates LPS-induced IL-8 expression in a human alveolar epithelial cell line A549

    PubMed Central

    Takizawa, Hajime

    2013-01-01

    Objective and design: The histone acetylation processes, which are believed to play a critical role in the regulation of many inflammatory genes, are reversible and regulated by histone acetyltransferases (HATs), which promote acetylation, and histone deacetylases (HDACs), which promote deacetylation. We studied the effects of lipopolysaccharide (LPS) on histone acetylation and its role in the regulation of interleukin (IL)-8 expression.  Material: A human alveolar epithelial cell line A549 was used in vitro. Methods: Histone H4 acetylation at the IL-8 promoter region was assessed by a chromatin immunoprecipitation (ChIP) assay. The expression and production of IL-8 were evaluated by quantitative polymerase chain reaction and specific immunoassay. Effects of a HDAC inhibitor, trichostatin A (TSA), and a HAT inhibitor, anacardic acid, were assessed.  Results: Escherichia coli-derived LPS showed a dose- and time-dependent stimulatory effect on IL-8 protein production and mRNA expression in A549 cells in vitro. LPS showed a significant stimulatory effect on histone H4 acetylation at the IL-8 promoter region by ChIP assay. Pretreatment with TSA showed a dose-dependent stimulatory effect on IL-8 release from A549 cells as compared to LPS alone. Conversely, pretreatment with anacardic acid inhibited IL-8 production and expression in A549 cells.  Conclusion: These data suggest that LPS-mediated proinflammatory responses in the lungs might be modulated via changing chromatin remodeling by HAT inhibition. PMID:24627774

  18. MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3)

    PubMed Central

    Sobulo, Olatoyosi M.; Borrow, Julian; Tomek, Ronald; Reshmi, Shalini; Harden, Alanna; Schlegelberger, Brigitte; Housman, David; Doggett, Norman A.; Rowley, Janet D.; Zeleznik-Le, Nancy J.

    1997-01-01

    The recurring translocation t(11;16)(q23;p13.3) has been documented only in cases of acute leukemia or myelodysplasia secondary to therapy with drugs targeting DNA topoisomerase II. We show that the MLL gene is fused to the gene that codes for CBP (CREB-binding protein), the protein that binds specifically to the DNA-binding protein CREB (cAMP response element-binding protein) in this translocation. MLL is fused in-frame to a different exon of CBP in two patients producing chimeric proteins containing the AT-hooks, methyltransferase homology domain, and transcriptional repression domain of MLL fused to the CREB binding domain or to the bromodomain of CBP. Both fusion products retain the histone acetyltransferase domain of CBP and may lead to leukemia by promoting histone acetylation of genomic regions targeted by the MLL AT-hooks, leading to transcriptional deregulation via aberrant chromatin organization. CBP is the first partner gene of MLL containing well defined structural and functional motifs that provide unique insights into the potential mechanisms by which these translocations contribute to leukemogenesis. PMID:9238046

  19. A rice chloroplast transit peptide sequence does not alter the cytoplasmic localization of sheep serotonin N-acetyltransferase expressed in transgenic rice plants.

    PubMed

    Byeon, Yeong; Lee, Hyoung Yool; Lee, Kyungjin; Back, Kyoungwhan

    2014-09-01

    Ectopic overexpression of melatonin biosynthetic genes of animal origin has been used to generate melatonin-rich transgenic plants to examine the functional roles of melatonin in plants. However, the subcellular localization of these proteins expressed in the transgenic plants remains unknown. We studied the localization of sheep (Ovis aries) serotonin N-acetyltransferase (OaSNAT) and a translational fusion of a rice SNAT transit peptide to OaSNAT (TS:OaSNAT) in plants. Laser confocal microscopy analysis revealed that both OaSNAT and TS:OaSNAT proteins were localized to the cytoplasm even with the addition of the transit sequence to OaSNAT. Transgenic rice plants overexpressing the TS:OaSNAT fusion transgene exhibited high SNAT enzyme activity relative to untransformed wild-type plants, but lower activity than transgenic rice plants expressing the wild-type OaSNAT gene. Melatonin levels in both types of transgenic rice plant corresponded well with SNAT enzyme activity levels. The TS:OaSNAT transgenic lines exhibited increased seminal root growth relative to wild-type plants, but less than in the OaSNAT transgenic lines, confirming that melatonin promotes root growth. Seed-specific OaSNAT expression under the control of a rice prolamin promoter did not confer high levels of melatonin production in transgenic rice seeds compared with seeds from transgenic plants expressing OaSNAT under the control of the constitutive maize ubiquitin promoter. PMID:24920304

  20. Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations.

    PubMed

    Lee, Hyoung Yool; Byeon, Yeong; Lee, Kyungjin; Lee, Hye-Jung; Back, Kyoungwhan

    2014-11-01

    Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in melatonin biosynthesis. We cloned SNAT from Arabidopsis thaliana (AtSNAT) and functionally characterized this enzyme for the first time from dicotyledonous plants. Similar to rice SNAT, AtSNAT was found to localize to chloroplasts with peak enzyme activity at 45 °C (Km , 309 μm; Vmax , 1400 pmol/min/mg protein). AtSNAT also catalyzed 5-methoxytryptamine (5-MT) into melatonin with high catalytic activity (Km , 51 μm; Vmax , 5300 pmol/min/mg protein). In contrast, Arabidopsis caffeic acid O-methyltransferase (AtCOMT) localized to the cytoplasm. Interestingly, AtCOMT can methylate serotonin into 5-MT with low catalytic activity (Km , 3.396 mm; Vmax , 528 pmol/min/mg protein). These data suggest that serotonin can be converted into either N-acetylserotonin by SNAT or into 5-MT by COMT, after which it is metabolized into melatonin by COMT or SNAT, respectively. To support this hypothesis, serotonin was incubated in the presence of both AtSNAT and AtCOMT enzymes. In addition to melatonin production, the production of major intermediates depended on incubation temperatures; N-acetylserotonin was predominantly produced at high temperatures (45 °C), while low temperatures (37 °C) favored the production of 5-MT. Our results provide biochemical evidence for the presence of a serotonin O-methylation pathway in plant melatonin biosynthesis. PMID:25250906

  1. Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen.

    PubMed

    Lee, Hyoung Yool; Byeon, Yeong; Tan, Dun-Xian; Reiter, Russel J; Back, Kyoungwhan

    2015-04-01

    Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in the melatonin biosynthesis pathway in plants. We examined the effects of SNAT gene inactivation in two Arabidopsis T-DNA insertion mutant lines. After inoculation with the avirulent pathogen Pseudomonas syringe pv. tomato DC3000 harboring the elicitor avrRpt2 (Pst-avrRpt2), melatonin levels in the snat knockout mutant lines were 50% less than in wild-type Arabidopsis Col-0 plants. The snat knockout mutant lines exhibited susceptibility to pathogen infection that coincided with decreased induction of defense genes including PR1, ICS1, and PDF1.2. Because melatonin acts upstream of salicylic acid (SA) synthesis, the reduced melatonin levels in the snat mutant lines led to decreased SA levels compared to wild-type, suggesting that the increased pathogen susceptibility of the snat mutant lines could be attributed to decreased SA levels and subsequent attenuation of defense gene induction. Exogenous melatonin treatment failed to induce defense gene expression in nahG Arabidopsis plants, but restored the induction of defense gene expression in the snat mutant lines. In addition, melatonin caused translocation of NPR1 (nonexpressor of PR1) protein from the cytoplasm into the nucleus indicating that melatonin-elicited pathogen resistance in response to avirulent pathogen attack is SA-dependent in Arabidopsis. PMID:25652756

  2. Chemically induced oxidative stress increases polyamine levels by activating the transcription of ornithine decarboxylase and spermidine/spermine-N1-acetyltransferase in human hepatoma HUH7 cells.

    PubMed

    Smirnova, Olga A; Isaguliants, Maria G; Hyvonen, Mervi T; Keinanen, Tuomo A; Tunitskaya, Vera L; Vepsalainen, Jouko; Alhonen, Leena; Kochetkov, Sergey N; Ivanov, Alexander V

    2012-09-01

    Biogenic polyamines spermine and spermidine participate in numerous cellular processes including transcription, RNA processing and translation. Specifically, they counteract oxidative stress, an alteration of cell redox balance involved in generation and progression of various pathological states including cancer. Here, we investigated how chemically induced oxidative stress affects polyamine metabolism, specifically the expression and activities of enzymes catalyzing polyamine synthesis (ornithine decarboxylase; ODC) and degradation (spermidine/spermine-N(1)-acetyltransferase; SSAT), in human hepatoma cells. Oxidative stress induced the up-regulation of ODC and SSAT gene transcription mediated by Nrf2, and in case of SSAT, also by NF-κB transcription factors. Activation of transcription led to the elevated intracellular activities of both enzymes. The balance in antagonistic activities of ODC and SSAT in the stressed hepatoma cells was shifted towards polyamine biosynthesis, which resulted in increased intracellular levels of putrescine, spermidine, and spermine. Accumulation of putrescine is indicating for accelerated degradation of polyamines by SSAT - acetylpolyamine oxidase (APAO) pathway generating toxic products that promote carcinogenesis, whereas accelerated polyamine synthesis via activation of ODC is favorable for proliferation of cells including those sub-lethally damaged by oxidative stress. PMID:22579641

  3. Lipopolysaccharide-induced anti-inflammatory acute phase response is enhanced in spermidine/spermine N1-acetyltransferase (SSAT) overexpressing mice.

    PubMed

    Pirnes-Karhu, Sini; Sironen, Reijo; Alhonen, Leena; Uimari, Anne

    2012-02-01

    Bacterial lipopolysaccharide (LPS) is an effective activator of the components of innate immunity. It has been shown that polyamines and their metabolic enzymes affect the LPS-induced immune response by modulating both pro- and anti-inflammatory actions. On the other hand, LPS causes changes in cellular polyamine metabolism. In this study, the LPS-induced inflammatory response in spermidine/spermine N(1)-acetyltransferase overexpressing transgenic mice (SSAT mice) was analyzed. In liver and kidneys, LPS enhanced the activity of the polyamine biosynthetic enzyme ornithine decarboxylase and increased the intracellular putrescine content in both SSAT overexpressing and wild-type mice. In survival studies, the enhanced polyamine catabolism and concomitantly altered cellular polyamine pools in SSAT mice did not affect the LPS-induced mortality of these animals. However, in the acute phase of LPS-induced inflammatory response, the serum levels of proinflammatory cytokines interleukin-1β and interferon-γ were significantly reduced and, on the contrary, anti-inflammatory cytokine interleukin-10 was significantly increased in the sera of SSAT mice compared with the wild-type animals. In addition, hepatic acute-phase proteins C-reactive protein, haptoglobin and α(1)-acid glycoprotein were expressed in higher amounts in SSAT mice than in the wild-type animals. In summary, the study suggests that SSAT overexpression obtained in SSAT mice enhances the anti-inflammatory actions in the acute phase of LPS-induced immune response. PMID:21814792

  4. RNAi-mediated knock-down of arylamine N-acetyltransferase-1 expression induces E-cadherin up-regulation and cell-cell contact growth inhibition.

    PubMed

    Tiang, Jacky M; Butcher, Neville J; Cullinane, Carleen; Humbert, Patrick O; Minchin, Rodney F

    2011-01-01

    Arylamine N-acetyltransferase-1 (NAT1) is an enzyme that catalyzes the biotransformation of arylamine and hydrazine substrates. It also has a role in the catabolism of the folate metabolite p-aminobenzoyl glutamate. Recent bioinformatics studies have correlated NAT1 expression with various cancer subtypes. However, a direct role for NAT1 in cell biology has not been established. In this study, we have knocked down NAT1 in the colon adenocarcinoma cell-line HT-29 and found a marked change in cell morphology that was accompanied by an increase in cell-cell contact growth inhibition and a loss of cell viability at confluence. NAT1 knock-down also led to attenuation in anchorage independent growth in soft agar. Loss of NAT1 led to the up-regulation of E-cadherin mRNA and protein levels. This change in E-cadherin was not attributed to RNAi off-target effects and was also observed in the prostate cancer cell-line 22Rv1. In vivo, NAT1 knock-down cells grew with a longer doubling time compared to cells stably transfected with a scrambled RNAi or to parental HT-29 cells. This study has shown that NAT1 affects cell growth and morphology. In addition, it suggests that NAT1 may be a novel drug target for cancer therapeutics. PMID:21347396

  5. Eubacterial arylamine N-acetyltransferases - identification and comparison of 18 members of the protein family with conserved active site cysteine, histidine and aspartate residues.

    PubMed

    Payton, M; Mushtaq, A; Yu, T W; Wu, L J; Sinclair, J; Sim, E

    2001-05-01

    Arylamine N-acetyltransferases (NATs) are enzymes involved in the detoxification of a range of arylamine and hydrazine-based xenobiotics. NATs have been implicated in the endogenous metabolism of p-aminobenzoyl glutamate in eukaryotes, although very little is known about the distribution and function of NAT in the prokaryotic kingdom. Using DNA library screening techniques and the analysis of data from whole-genome sequencing projects, we have identified 18 nat-like sequences from the Proteobacteria and Firmicutes. Recently, the three-dimensional structure of NAT derived from the bacterium Salmonella typhimurium (PDB accession code 1E2T) was resolved and revealed an active site catalytic triad composed of Cys(69)-His(107)-Asp(122). These residues have been shown to be conserved in all prokaryotic and eukaryotic NAT homologues together with three highly conserved regions which are found proximal to the active site triad. The characterization of prokaryotic NATs and NAT-like enzymes is reported. It is also predicted that prokaryotic NATs, based on gene cluster composition and distribution amongst genomes, participate in the metabolism of xenobiotics derived from decomposition of organic materials. PMID:11320117

  6. An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role.

    PubMed

    Nishimura, Akira; Kotani, Tetsuya; Sasano, Yu; Takagi, Hiroshi

    2010-09-01

    Saccharomyces cerevisiaeSigma1278b has the MPR1 gene encoding the N-acetyltransferase Mpr1 that acetylates the proline metabolism intermediate Delta(1)-pyrroline-5-carboxylate (P5C)/glutamate-gamma-semialdehyde (GSA) in vitro. In addition, Mpr1 protects cells from various oxidative stresses by regulating the levels of intracellular reactive oxygen species (ROS). However, the relationship between P5C/GSA acetylation and antioxidative mechanism involving Mpr1 remains unclear. Here, we report the synthesis of oxidative stress-induced arginine via P5C/GSA acetylation catalyzed by Mpr1. Gene disruption analysis revealed that Mpr1 converts P5C/GSA into N-acetyl-GSA for arginine synthesis in the mitochondria, indicating that Mpr1 mediates the proline and arginine metabolic pathways. More importantly, Mpr1 regulate ROS generation by acetylating toxic P5C/GSA. Under oxidative stress conditions, the transcription of PUT1 encoding the proline oxidase Put1 and MPR1 was strongly induced, and consequently, the arginine content was significantly increased. We also found that two deletion mutants (Deltampr1/2 and Deltaput1) were more sensitive to high-temperature stress than the wild-type strain, but that direct treatment with arginine restored the cell viability of these mutants. These results suggest that Mpr1-dependent arginine synthesis confers stress tolerance. We propose an antioxidative mechanism that is involved in stress-induced arginine synthesis requiring Mpr1 and Put1. PMID:20550582

  7. Small molecule inhibition of arylamine N-acetyltransferase Type I inhibits proliferation and invasiveness of MDA-MB-231 breast cancer cells

    SciTech Connect

    Tiang, Jacky M.; Butcher, Neville J.; Minchin, Rodney F.

    2010-02-26

    Arylamine N-acetyltransferase 1 is a phase II metabolizing enzyme that has been associated with certain breast cancer subtypes. While it has been linked to breast cancer risk because of its role in the metabolic activation and detoxification of carcinogens, recent studies have suggested it may be important in cell growth and survival. To address the possible importance of NAT1 in breast cancer, we have used a novel small molecule inhibitor (Rhod-o-hp) of the enzyme to examine growth and invasion of the breast adenocarcinoma line MDA-MB-231. The inhibitor significantly reduced cell growth by increasing the percent of cells in G2/M phase of the cell cycle. Rhod-o-hp also reduced the ability of the MDA-MB-231 cells to grow in soft agar. Using an in vitro invasion assay, the inhibitor significantly reduced the invasiveness of the cells. To test whether this effect was due to inhibition of NAT1, the enzyme was knocked down using a lentivirus-based shRNA approach and invasion potential was significantly reduced. Taken together, the results of this study demonstrate that NAT1 activity may be important in breast cancer growth and metastasis. The study suggests that NAT1 is a novel target for breast cancer treatment.

  8. Heterogeneous ribonucleoprotein R regulates arylalkylamine N-acetyltransferase synthesis via internal ribosomal entry site-mediated translation in a circadian manner.

    PubMed

    Lee, Hwa-Rim; Kim, Tae-Don; Kim, Hyo-Jin; Jung, Youngseob; Lee, Dohyun; Lee, Kyung-Ha; Kim, Do-Yeon; Woo, Kyung-Chul; Kim, Kyong-Tai

    2015-11-01

    Rhythmic arylalkylamine N-acetyltransferase (AANAT) synthesis is a prominent circadian-controlled response that occurs in most mammals. AANAT is the core enzyme in melatonin production; because melatonin participates in many physiological processes, the regulation of AANAT is an important research topic. In this study, we focused on the role of heterogeneous ribonucleoprotein R (hnRNP R) in the translation of AANAT. A novel RNA-binding protein hnRNP R widely interacted with the 5' untranslated region (UTR) of AANAT mRNA and contributed to translation through an internal ribosomal entry site (IRES). Fine-tuning of AANAT protein synthesis occurred in response to knockdown and overexpression of hnRNP R. Nocturnal elevation of AANAT protein was dependent on the rhythmic changes of hnRNP R, whose levels are elevated in the pineal gland during nighttime. Increases in hnRNP R additionally improved AANAT production in rat pinealocytes under norepinephrine (NE) treatment. These results suggest that cap-independent translation of AANAT mRNA plays a role in the rhythmic synthesis of melatonin through the recruitment of translational machinery to hnRNP R-bound AANAT mRNA. PMID:26444903

  9. Human acetyl-CoA:glucosamine-6-phosphate N-acetyltransferase 1 has a relaxed donor specificity and transfers acyl groups up to four carbons in length.

    PubMed

    Brockhausen, Inka; Nair, Dileep G; Chen, Min; Yang, Xiaojing; Allingham, John S; Szarek, Walter A; Anastassiades, Tassos

    2016-04-01

    Glucosamine-6-phosphate N-acetyltransferase1 (GNA1) catalyses the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to glucosamine-6-phosphate (GlcN6P) to form N-acetylglucosamine-6-phosphate (GlcNAc6P), which is an essential intermediate in UDP-GlcNAc biosynthesis. An analog of GlcNAc, N-butyrylglucosamine (GlcNBu) has shown healing properties for bone and articular cartilage in animal models of arthritis. The goal of this work was to examine whether GNA1 has the ability to transfer a butyryl group from butyryl-CoA to GlcN6P to form GlcNBu6P, which can then be converted to GlcNBu. We developed fluorescent and radioactive assays and examined the donor specificity of human GNA1. Acetyl, propionyl, n-butyryl, and isobutyryl groups were all transferred to GlcN6P, but isovaleryl-CoA and decanoyl-CoA did not serve as donor substrates. Site-specific mutants were produced to examine the role of amino acids potentially affecting the size and properties of the AcCoA binding pocket. All of the wild type and mutant enzymes showed activities of both acetyl and butyryl transfer and can therefore be used for the enzymatic synthesis of GlcNBu for biomedical applications. PMID:26935656

  10. Small angle X-ray scattering data and structure factor fitting for the study of the quaternary structure of the spermidine N-acetyltransferase SpeG.

    PubMed

    Weigand, Steven; Filippova, Ekaterina V; Kiryukhina, Olga; Anderson, Wayne F

    2016-03-01

    Here we describe the treatment of the small-angle X-ray Scattering (SAXS) data used during SpeG quaternary structure study as part of the research article "Substrate induced allosteric change in the quaternary structure of the spermidine N-acetyltransferase SpeG" published in Journal of Molecular Biology [1]. These data were collected on two separate area detectors as separate dilution series of the SpeG and the SpeG with spermine samples along with data from their companion buffers. The data were radially integrated, corrected for incident beam variation, and scaled to absolute units. After subtraction of volume-fraction scaled buffer scattering and division by the SpeG concentration, multiple scattering curves free of an inter-molecular structure factor were derived from the dilution series. Rather than extrapolating to infinite dilution, the structure factor contribution was estimated by fitting to the full set of data provided by dividing the scattering curves of a dilution series by the curve from the most dilute sample in that series. PMID:26793756

  11. Inhibition of p300 lysine acetyltransferase activity by luteolin reduces tumor growth in head and neck squamous cell carcinoma (HNSCC) xenograft mouse model.

    PubMed

    Selvi, Ruthrotha B; Swaminathan, Amrutha; Chatterjee, Snehajyoti; Shanmugam, Muthu K; Li, Feng; Ramakrishnan, Gowsica B; Siveen, Kodappully Sivaraman; Chinnathambi, Arunachalam; Zayed, M Emam; Alharbi, Sulaiman Ali; Basha, Jeelan; Bhat, Akshay; Vasudevan, Madavan; Dharmarajan, Arunasalam; Sethi, Gautam; Kundu, Tapas K

    2015-12-22

    Chromatin acetylation is attributed with distinct functional relevance with respect to gene expression in normal and diseased conditions thereby leading to a topical interest in the concept of epigenetic modulators and therapy. We report here the identification and characterization of the acetylation inhibitory potential of an important dietary flavonoid, luteolin. Luteolin was found to inhibit p300 acetyltransferase with competitive binding to the acetyl CoA binding site. Luteolin treatment in a xenografted tumor model of head and neck squamous cell carcinoma (HNSCC), led to a dramatic reduction in tumor growth within 4 weeks corresponding to a decrease in histone acetylation. Cells treated with luteolin exhibit cell cycle arrest and decreased cell migration. Luteolin treatment led to an alteration in gene expression and miRNA profile including up-regulation of p53 induced miR-195/215, let7C; potentially translating into a tumor suppressor function. It also led to down-regulation of oncomiRNAs such as miR-135a, thereby reflecting global changes in the microRNA network. Furthermore, a direct correlation between the inhibition of histone acetylation and gene expression was established using chromatin immunoprecipitation on promoters of differentially expressed genes. A network of dysregulated genes and miRNAs was mapped along with the gene ontology categories, and the effects of luteolin were observed to be potentially at multiple levels: at the level of gene expression, miRNA expression and miRNA processing. PMID:26517526

  12. On-chip enzymatic assay for chloramphenicol acetyltransferase using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Choi, Inseong; Kim, Dong-Eun; Ahn, Joong-Hoon; Yeo, Woon-Seok

    2015-12-01

    Herein, we report a chloramphenicol (CAP) acetyltransferase (CAT) activity assay based on self-assembled monolayers on gold as an alternative to conventional CAT reporter gene assay systems, which sometimes require toxic materials and complicated steps that limit their use. A CAP derivative presented on a monolayer was converted to the acetylated CAP by CAT in the presence of acetyl-CoA. The conversion was directly monitored by observing the molecular weight changes in CAP using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. CAT activity was determined under various reaction conditions by changing reaction times, CAT and acetyl-CoA concentrations. As a practical application, we identified gene expression in bacteria that were transformed with pCAT plasmid DNA. Our strategy can provide a simple and rapid assay that eliminates some commonly used but potentially detrimental steps in enzymatic assays, such as radioactive labeling and complicated separation and purification of analytes prior to detection. PMID:26448379

  13. Inhibition of p300 lysine acetyltransferase activity by luteolin reduces tumor growth in head and neck squamous cell carcinoma (HNSCC) xenograft mouse model

    PubMed Central

    Selvi, Ruthrotha B.; Swaminathan, Amrutha; Chatterjee, Snehajyoti; Shanmugam, Muthu K.; Li, Feng; Ramakrishnan, Gowsica B.; Siveen, Kodappully Sivaraman; Chinnathambi, Arunachalam; Zayed, M. Emam; Alharbi, Sulaiman Ali; Basha, Jeelan; Bhat, Akshay; Vasudevan, Madavan; Dharmarajan, Arunasalam; Sethi, Gautam; Kundu, Tapas K.

    2015-01-01

    Chromatin acetylation is attributed with distinct func