Sample records for acetyltransferase reporter gene

  1. Recent progress in N-acetyltransferase research: 7th international workshop on N-acetyltransferases (NAT): workshop report.

    PubMed

    Lichter, Jutta; Golka, Klaus; Sim, Edith; Blömeke, Brunhilde

    2017-07-01

    The 7th International Workshop on N-Acetyltransferases (NAT), held from 18 to 20 June 2016, was hosted by Brunhilde Blömeke and her team at the Trier University (Germany). The workshop addressed important aspects and latest advancements in the fields of NAT enzymes, endogenous functions of NATs, NAT gene nomenclature, genetic polymorphisms, and their associations with diseases as well as their use in diagnosis. Representatives from the leading teams performing research on NATs presented their excellent work, discussed the latest results, and created new ideas in the field of N-acetyltransferase research.

  2. No association between apolipoprotein E or N-acetyltransferase 2 gene polymorphisms and age-related hearing loss.

    PubMed

    Dawes, Piers; Platt, Hazel; Horan, Michael; Ollier, William; Munro, Kevin; Pendleton, Neil; Payton, Antony

    2015-01-01

    Age-related hearing loss has a genetic component, but there have been limited genetic studies in this field. Both N-acetyltransferase 2 and apolipoprotein E genes have previously been associated. However, these studies have either used small sample sizes, examined a limited number of polymorphisms, or have produced conflicting results. Here we use a haplotype tagging approach to determine association with age-related hearing loss and investigate epistasis between these two genes. Candidate gene association study of a continuous phenotype. We investigated haplotype tagging single nucleotide polymorphisms in the N-acetyltransferase 2 gene and the presence/absence of the apolipoprotein E ε4 allele for association with age-related hearing loss in a cohort of 265 Caucasian elderly volunteers from Greater Manchester, United Kingdom. Hearing phenotypes were generated using principal component analysis of the hearing threshold levels for the better ear (severity, slope, and concavity). Genotype data for the N-acetyltransferase 2 gene was obtained from existing genome-wide association study data from the Illumina 610-Quadv1 chip. Apolipoprotein E genotyping was performed using Sequenom technology. Linear regression analysis was performed using Plink and Stata software. No significant associations (P value, > 0.05) were observed between the N-acetyltransferase 2 or apolipoprotein E gene polymorphisms and any hearing factor. No significant association was observed for epistasis analysis of apolipoprotein E ε4 and the N-acetyltransferase 2 single nucleotide polymorphism rs1799930 (NAT2*6A). We found no evidence to support that either N-acetyltransferase 2 or apolipoprotein E gene polymorphisms are associated with age-related hearing loss in a cohort of 265 elderly volunteers. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Genetic Variation at the N-acetyltransferase (NAT) Genes in Global Populations

    EPA Science Inventory

    Functional variability at the N-acetyltransferase (NAT) genes is associated with adverse drug reactions and cancer susceptibility in humans. Previous studies of small sets of ethnic groups have indicated that the NAT genes have high levels of amino acid variation that differ in f...

  4. Insights into the phylogeny or arylamine N-acetyltransferases in fungi.

    PubMed

    Martins, Marta; Dairou, Julien; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Silar, Philippe

    2010-08-01

    Previous studies have shown that Eumycetes fungi can acylate arylamine thanks to arylamine N-acetyltransferases, xenobiotic-metabolizing enzymes also found in animals and bacteria. In this article, we present the results of mining 96 available fungal genome sequences for arylamine N-acetyltransferase genes and propose their phylogeny. The filamentous Pezizomycotina are shown to possess many putative N-acetyltransferases, whilst these are often lacking in other fungal groups. The evolution of the N-acetyltransferases is best explained by the presence of at least one gene in the opisthokont ancestor of the fungi and animal kingdoms, followed by recurrent gene losses and gene duplications. A possible horizontal gene transfer event may have occurred from bacteria to the basidiomycetous yeast Malassezia globosa.

  5. Molecular Characterization of a Novel N-Acetyltransferase from Chryseobacterium sp.

    PubMed Central

    Yoshida, Kenji; Tanaka, Kosei; Yoshida, Ken-ichi

    2014-01-01

    N-Acetyltransferase from Chryseobacterium sp. strain 5-3B is an acetyl coenzyme A (acetyl-CoA)-dependent enzyme that catalyzes the enantioselective transfer of an acetyl group from acetyl-CoA to the amino group of l-2-phenylglycine to produce (2S)-2-acetylamino-2-phenylacetic acid. We purified the enzyme from strain 5-3B and deduced the N-terminal amino acid sequence. The gene, designated natA, was cloned with two other hypothetical protein genes; the three genes probably form a 2.5-kb operon. The deduced amino acid sequence of NatA showed high levels of identity to sequences of putative N-acetyltransferases of Chryseobacterium spp. but not to other known arylamine and arylalkylamine N-acetyltransferases. Phylogenetic analysis indicated that NatA forms a distinct lineage from known N-acetyltransferases. We heterologously expressed recombinant NatA (rNatA) in Escherichia coli and purified it. rNatA showed high activity for l-2-phenylglycine and its chloro- and hydroxyl-derivatives. The Km and Vmax values for l-2-phenylglycine were 0.145 ± 0.026 mM and 43.6 ± 2.39 μmol · min−1 · mg protein−1, respectively. The enzyme showed low activity for 5-aminosalicylic acid and 5-hydroxytryptamine, which are reported as good substrates of a known arylamine N-acetyltransferase and an arylalkylamine N-acetyltransferase. rNatA had a comparatively broad acyl donor specificity, transferring acyl groups to l-2-phenylglycine and producing the corresponding 2-acetylamino-2-phenylacetic acids (relative activity with acetyl donors acetyl-CoA, propanoyl-CoA, butanoyl-CoA, pentanoyl-CoA, and hexanoyl-CoA, 100:108:122:10:<1). PMID:24375143

  6. The group B streptococcal sialic acid O-acetyltransferase is encoded by neuD, a conserved component of bacterial sialic acid biosynthetic gene clusters.

    PubMed

    Lewis, Amanda L; Hensler, Mary E; Varki, Ajit; Nizet, Victor

    2006-04-21

    Nearly two dozen microbial pathogens have surface polysaccharides or lipo-oligosaccharides that contain sialic acid (Sia), and several Sia-dependent virulence mechanisms are known to enhance bacterial survival or result in host tissue injury. Some pathogens are also known to O-acetylate their Sias, although the role of this modification in pathogenesis remains unclear. We report that neuD, a gene located within the Group B Streptococcus (GBS) Sia biosynthetic gene cluster, encodes a Sia O-acetyltransferase that is itself required for capsular polysaccharide (CPS) sialylation. Homology modeling and site-directed mutagenesis identified Lys-123 as a critical residue for Sia O-acetyltransferase activity. Moreover, a single nucleotide polymorphism in neuD can determine whether GBS displays a "high" or "low" Sia O-acetylation phenotype. Complementation analysis revealed that Escherichia coli K1 NeuD also functions as a Sia O-acetyltransferase in GBS. In fact, NeuD homologs are commonly found within Sia biosynthetic gene clusters. A bioinformatic approach identified 18 bacterial species with a Sia biosynthetic gene cluster that included neuD. Included in this list are the sialylated human pathogens Legionella pneumophila, Vibrio parahemeolyticus, Pseudomonas aeruginosa, and Campylobacter jejuni, as well as an additional 12 bacterial species never before analyzed for Sia expression. Phylogenetic analysis shows that NeuD homologs of sialylated pathogens share a common evolutionary lineage distinct from the poly-Sia O-acetyltransferase of E. coli K1. These studies define a molecular genetic approach for the selective elimination of GBS Sia O-acetylation without concurrent loss of sialylation, a key to further studies addressing the role(s) of this modification in bacterial virulence.

  7. N-acetyltransferase 2 gene polymorphism as a biomarker for susceptibility to bladder cancer in Bangladeshi population.

    PubMed

    Hosen, Md Bayejid; Islam, Jahidul; Salam, Md Abdus; Islam, Md Fakhrul; Hawlader, M Zakir Hossain; Kabir, Yearul

    2015-03-01

    To investigate the association between the three most common single nucleotide polymorphisms of the N-acetyltransferase 2 gene together with cigarette smoking and the risk of developing bladder cancer and its aggressiveness. A case-control study on 102 bladder cancer patients and 140 control subjects was conducted. The genomic DNA was extracted from peripheral white blood cells and N-acetyltransferase 2 alleles were differentiated by polymerase chain reaction-based restriction fragment length polymorphism methods. Bladder cancer risk was estimated as odds ratio and 95% confidence interval using binary logistic regression models adjusting for age and gender. Overall, N-acetyltransferase 2 slow genotypes were associated with bladder cancer risk (odds ratio=4.45; 95% confidence interval=2.26-8.77). The cigarette smokers with slow genotypes were found to have a sixfold increased risk to develop bladder cancer (odds ratio=6.05; 95% confidence interval=2.23-15.82). Patients with slow acetylating genotypes were more prone to develop high-grade (odds ratio=6.63; 95% confidence interval=1.15-38.13; P<0.05) and invasive (odds ratio=10.6; 95% confidence interval=1.00-111.5; P=0.05) tumor. N-acetyltransferase 2 slow genotype together with tobacco smoking increases bladder cancer risk. Patients with N-acetyltransferase 2 slow genotypes were more likely to develop a high-grade and invasive tumor. N-acetyltransferase 2 slow genotype is an important genetic determinant for bladder cancer in Bangladesh population. © 2014 Wiley Publishing Asia Pty Ltd.

  8. Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts.

    PubMed

    Byeon, Yeong; Yool Lee, Hyoung; Choi, Dong-Woog; Back, Kyoungwhan

    2015-02-01

    Melatonin biosynthesis involves the N-acetylation of arylalkylamines such as serotonin, which is catalysed by serotonin N-acetyltransferase (SNAT), the penultimate enzyme of melatonin biosynthesis in both animals and plants. Here, we report the functional characterization of a putative N-acetyltransferase gene in the chloroplast genome of the alga laver (Pyropia yezoensis, formerly known as Porphyra yezoensis) with homology to the rice SNAT gene. To confirm that the putative Pyropia yezoensis SNAT (PySNAT) gene encodes an SNAT, we cloned the full-length chloroplastidic PySNAT gene by PCR and purified the recombinant PySNAT protein from Escherichia coli. PySNAT was 174 aa and had 50% amino acid identity with cyanobacteria SNAT. Purified recombinant PySNAT showed a peak activity at 55 °C with a K m of 467 µM and V max of 28 nmol min-1 mg(-1) of protein. Unlike other plant SNATs, PySNAT localized to the cytoplasm due to a lack of N-terminal chloroplast transit peptides. Melatonin was present at 0.16ng g(-1) of fresh mass but increased during heat stress. Phylogenetic analysis of the sequence suggested that PySNAT has evolved from the cyanobacteria SNAT gene via endosymbiotic gene transfer. Additionally, the chloroplast transit peptides of plant SNATs were acquired 1500 million years ago, concurrent with the appearance of green algae. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases

    PubMed Central

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G. J.; Eleni Ourailidou, Maria; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J.; Dekker, Frank J.

    2016-01-01

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, applications of histone acetyltransferase inhibitors to reduce inflammatory responses are interesting. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4 μM for histone acetyltransferase p300). C646 was described to regulate the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. Interestingly, this pathway has been implicated in asthma and COPD. Therefore we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, here we demonstrate that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7 μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  10. Arylamine n-acetyltransferases in eukaryotic microorganisms

    USDA-ARS?s Scientific Manuscript database

    Microorganisms can survive highly toxic environments through numerous xenobiotic metabolizing enzymes, including arylamine N-acetyltransferases (NATs). NAT genes are present in bacteria, archaea, protists and fungi. In lower taxa of fungi, NAT genes are found in chytridiomycetes. In Dikarya, NAT gen...

  11. The histone acetyltransferase MOF overexpression blunts cardiac hypertrophy by targeting ROS in mice.

    PubMed

    Qiao, Weiwei; Zhang, Weili; Gai, Yusheng; Zhao, Lan; Fan, Juexin

    2014-06-13

    Imbalance between histone acetylation/deacetylation critically participates in the expression of hypertrophic fetal genes and development of cardiac hypertrophy. While histone deacetylases play dual roles in hypertrophy, current evidence reveals that histone acetyltransferase such as p300 and PCAF act as pro-hypertrophic factors. However, it remains elusive whether some histone acetyltransferases can prevent the development of hypertrophy. Males absent on the first (MOF) is a histone acetyltransferase belonging to the MYST (MOZ, Ybf2/Sas3, Sas2 and TIP60) family. Here in this study, we reported that MOF expression was down-regulated in failing human hearts and hypertrophic murine hearts at protein and mRNA levels. To evaluate the roles of MOF in cardiac hypertrophy, we generated cardiac-specific MOF transgenic mice. MOF transgenic mice did not show any differences from their wide-type littermates at baseline. However, cardiac-specific MOF overexpression protected mice from transverse aortic constriction (TAC)-induced cardiac hypertrophy, with reduced radios of heart weight (HW)/body weight (BW), lung weight/BW and HW/tibia length, decreased left ventricular wall thickness and increased fractional shortening. We also observed lower expression of hypertrophic fetal genes in TAC-challenged MOF transgenic mice compared with that of wide-type mice. Mechanically, MOF overexpression increased the expression of Catalase and MnSOD, which blocked TAC-induced ROS and ROS downstream c-Raf-MEK-ERK pathway that promotes hypertrophy. Taken together, our findings identify a novel anti-hypertrophic role of MOF, and MOF is the first reported anti-hypertrophic histone acetyltransferase. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Gene cloning and characterization of arylamine N-acetyltransferase from Bacillus cereus strain 10-L-2.

    PubMed

    Takenaka, Shinji; Cheng, Minyi; Mulyono; Koshiya, Atsushi; Murakami, Shuichiro; Aoki, Kenji

    2009-01-01

    Bacillus cereus strain 10-L-2 synthesizes two arylamine N-acetyltransferases (Nat-a and Nat-b) with broad substrate specificities toward aniline and its derivatives. In southern blot analysis using probes encoding the NH2-terminus of Nat-b and a conserved region of N-acetyltransferases, digested total DNA of strain 10-L-2 showed one positive band. We cloned and sequenced the gene encoding Nat-b. The NH2-terminal amino acid sequence predicted from the open reading frame (768 base pairs) corresponded to that of purified Nat-b. The cloned Nat-b gene was expressed in Escherichia coli. The expressed enzyme (BcNAT) from the recombinant strain was partially purified and characterized. Nat-b from strain 10-L-2 and BcNAT from the recombinant strain were slightly different from each others in substrate specificity and thermo-stability. We examined the biotransformations of 2-aminophenols and phenylenediamines by the whole cells of the recombinant strain. The cells converted these compounds into their corresponding acetanilides. Only one amino group of phenylenediamines was acetylated. The cells utilized 4-nitroacetanilide as an acetyl donor instead of acetyl-CoA. 4-Aminoacetanilide was produced and 4-nitroaniline was released almost stoichiometrically.

  13. N-acetyltransferase gene polymorphisms & plasma isoniazid concentrations in patients with tuberculosis.

    PubMed

    Hemanth Kumar, A K; Ramesh, K; Kannan, T; Sudha, V; Haribabu, Hemalatha; Lavanya, J; Swaminathan, Soumya; Ramachandran, Geetha

    2017-01-01

    Variations in the N-acetyltransferase (NAT2) gene among different populations could affect the metabolism and disposition of isoniazid (INH). This study was performed to genotype NAT2 gene polymorphisms in tuberculosis (TB) patients from Chennai, India, and compare plasma INH concentrations among the different genotypes. Adult patients with TB treated in the Revised National TB Control Programme (RNTCP) in Chennai, Tamil Nadu, were genotyped for NAT2 gene polymorphism, and two-hour post-dosing INH concentrations were compared between the different genotypes. Plasma INH was determined by high-performance liquid chromatography. Genotyping of the NAT2 gene polymorphism was performed by real-time polymerase chain reaction method. Among the 326 patients genotyped, there were 189 (58%), 114 (35%) and 23 (7%) slow, intermediate and fast acetylators, respectively. The median two-hour INH concentrations in slow, intermediate and fast acetylators were 10.2, 8.1 and 4.1 μg/ml, respectively. The differences in INH concentrations among the three genotypes were significant (P<0.001). Genotyping of TB patients from south India for NAT2 gene polymorphism revealed that 58 per cent of the study population comprised slow acetylators. Two-hour INH concentrations differed significantly among the three genotypes.

  14. N-acetyltransferase gene polymorphisms & plasma isoniazid concentrations in patients with tuberculosis

    PubMed Central

    Hemanth Kumar, A. K.; Ramesh, K.; Kannan, T.; Sudha, V.; Haribabu, Hemalatha; Lavanya, J.; Swaminathan, Soumya; Ramachandran, Geetha

    2017-01-01

    Background & objectives: Variations in the N-acetyltransferase (NAT2) gene among different populations could affect the metabolism and disposition of isoniazid (INH). This study was performed to genotype NAT2 gene polymorphisms in tuberculosis (TB) patients from Chennai, India, and compare plasma INH concentrations among the different genotypes. Methods: Adult patients with TB treated in the Revised National TB Control Programme (RNTCP) in Chennai, Tamil Nadu, were genotyped for NAT2 gene polymorphism, and two-hour post-dosing INH concentrations were compared between the different genotypes. Plasma INH was determined by high-performance liquid chromatography. Genotyping of the NAT2 gene polymorphism was performed by real-time polymerase chain reaction method. Results: Among the 326 patients genotyped, there were 189 (58%), 114 (35%) and 23 (7%) slow, intermediate and fast acetylators, respectively. The median two-hour INH concentrations in slow, intermediate and fast acetylators were 10.2, 8.1 and 4.1 μg/ml, respectively. The differences in INH concentrations among the three genotypes were significant (P<0.001). Interpretation & conclusions: Genotyping of TB patients from south India for NAT2 gene polymorphism revealed that 58 per cent of the study population comprised slow acetylators. Two-hour INH concentrations differed significantly among the three genotypes. PMID:28574024

  15. K-Lysine acetyltransferase 2a regulates a hippocampal gene expression network linked to memory formation

    PubMed Central

    Stilling, Roman M; Rönicke, Raik; Benito, Eva; Urbanke, Hendrik; Capece, Vincenzo; Burkhardt, Susanne; Bahari-Javan, Sanaz; Barth, Jonas; Sananbenesi, Farahnaz; Schütz, Anna L; Dyczkowski, Jerzy; Martinez-Hernandez, Ana; Kerimoglu, Cemil; Dent, Sharon YR; Bonn, Stefan; Reymann, Klaus G; Fischer, Andre

    2014-01-01

    Neuronal histone acetylation has been linked to memory consolidation, and targeting histone acetylation has emerged as a promising therapeutic strategy for neuropsychiatric diseases. However, the role of histone-modifying enzymes in the adult brain is still far from being understood. Here we use RNA sequencing to screen the levels of all known histone acetyltransferases (HATs) in the hippocampal CA1 region and find that K-acetyltransferase 2a (Kat2a)—a HAT that has not been studied for its role in memory function so far—shows highest expression. Mice that lack Kat2a show impaired hippocampal synaptic plasticity and long-term memory consolidation. We furthermore show that Kat2a regulates a highly interconnected hippocampal gene expression network linked to neuroactive receptor signaling via a mechanism that involves nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In conclusion, our data establish Kat2a as a novel and essential regulator of hippocampal memory consolidation. PMID:25024434

  16. Structure of a putative acetyltransferase (PA1377) from Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Anna M.; Tata, Renée; Chauviac, François-Xavier

    2008-05-01

    The crystal structure of an acetyltransferase encoded by the gene PA1377 from Pseudomonas aeruginosa has been determined at 2.25 Å resolution. Comparison with a related acetyltransferase revealed a structural difference in the active site that was taken to reflect a difference in substrate binding and/or specificity between the two enzymes. Gene PA1377 from Pseudomonas aeruginosa encodes a 177-amino-acid conserved hypothetical protein of unknown function. The structure of this protein (termed pitax) has been solved in space group I222 to 2.25 Å resolution. Pitax belongs to the GCN5-related N-acetyltransferase family and contains all four sequence motifs conserved among family members. Themore » β-strand structure in one of these motifs (motif A) is disrupted, which is believed to affect binding of the substrate that accepts the acetyl group from acetyl-CoA.« less

  17. Arylamine N-acetyltransferase 2 gene polymorphism in an Algerian population.

    PubMed

    Chelouti, Hiba; Khelil, Malika

    2017-09-01

    The arylamine N-acetyltransferase 2 (NAT2) is a key enzyme in the biotransformation of xenobiotics. NAT2 gene polymorphisms have been associated with the risk of isoniazid hepatotoxicity and these polymorphisms change among different populations. The objective of this study is to investigate NAT2 polymorphisms in order to predict the prevalence of NAT2 phenotype in an Algerian population. Genotyping of NAT2 was done using a PCR-RFLP method. Haplotype was analysed using the software package PHASE, version 2.0. The major haplotypes were NAT2*5B (23.72%), NAT2*6 A (18.61%), NAT2*4 (14.60%) and NAT2*5 F (10%). The average of the expected slow acetylator phenotype was 53%. Our results suggest that the high frequency of slow acetylator phenotype requires investigation into its possible association with ATDH.

  18. Insights into the Specificity of Lysine Acetyltransferases

    DOE PAGES

    Tucker, Alex C.; Taylor, Keenan C.; Rank, Katherine C.; ...

    2014-11-07

    Reversible lysine acetylation by protein acetyltransferases is a conserved regulatory mechanism that controls diverse cellular pathways. Gcn5-related N-acetyltransferases (GNATs), named after their founding member, are found in all domains of life. GNATs are known for their role as histone acetyltransferases, but non-histone bacterial protein acetytransferases have been identified. Only structures of GNAT complexes with short histone peptide substrates are available in databases. Given the biological importance of this modification and the abundance of lysine in polypeptides, how specificity is attained for larger protein substrates is central to understanding acetyl-lysine-regulated networks. In this paper, we report the structure of a GNATmore » in complex with a globular protein substrate solved to 1.9 Å. GNAT binds the protein substrate with extensive surface interactions distinct from those reported for GNAT-peptide complexes. Finally, our data reveal determinants needed for the recognition of a protein substrate and provide insight into the specificity of GNATs.« less

  19. Analysis of the aac(3)-VIa gene encoding a novel 3-N-acetyltransferase.

    PubMed Central

    Rather, P N; Mann, P A; Mierzwa, R; Hare, R S; Miller, G H; Shaw, K J

    1993-01-01

    Biochemical analysis (G. A. Papanicolaou, R. S. Hare, R. Mierzwa, and G. H. Miller, abstr. 152, Program Abstr. 29th Intersci. Conf. Antimicrob. Agents Chemother., 1989) demonstrated the presence of a novel 3-N-acetyltransferase in Enterobacter cloacae 88020217. This organism was resistant to gentamicin, and the MIC of 2'-N-ethylnetilmicin for it was fourfold lower than that of 6'-N-ethylnetilmicin, a resistance pattern which suggested 2'-acetylating activity. However, high-pressure liquid chromatography analysis demonstrated that the enzyme acetylated sisomicin in the 3 position. We have cloned the structural gene for this enzyme from a large (> 70-kb) conjugative plasmid present in E. cloacae. Subcloning experiments have localized the aac(3)-VIa gene to a 2.1-kb Sau3A fragment. The deduced AAC(3)-VIa protein showed 48% amino acid identity to the AAC(3)-IIa protein and 39% identity to the AAC(3)-VII protein. Examination of the 5'-flanking sequences demonstrated that the aac(3)-VIa gene was located 167 bp downstream of the aadA1 gene and was present in an integron. In addition, the aac(3)-VIa gene is also downstream of a 59-base element often seen in an integron environment. Primer extension analysis has identified a promoter for the aac(3)-VIa gene downstream of both the aadA1 gene and a 59-base element. Images PMID:8257126

  20. The human serotonin N-acetyltransferase (EC 2.3.1.87) gene (AANAT): Structure, chromosomal localization, and tissue expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coon, S.L.; Bernard, M.; Roseboom, P.H.

    Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AA-NAT, HGMW-approved symbol AANAT;EC 2.3.1.87) is the penultimate enzyme in melatonin synthesis and controls the night/day rhythm in melatonin production in the vertebrate pineal gland. We have found that the human AA-NAT gene spans {approx}2.5 kb, contains four exons, and is located at chromosome 17q25. The open reading frame encodes a 23.2-kDa protein that is {approx}80% identical to sheep and rat AA-NAT. The AA-NAT transcript ({approx}1 kb) is highly abundant in the pineal gland and is expressed at lower levels in the retina and in the Y79 retinoblastoma cell line. AA-NAT mRNA is also detectable atmore » low levels in several brain regions and the pituitary gland, but not in several peripheral tissues examined. Brain and pituitary AA-NAT could modulate serotonin-dependent aspects of human behavior and pituitary function. 31 refs., 5 figs.« less

  1. Changes in consensus arylamine N-acetyltransferase (NAT) gene nomenclature

    PubMed Central

    Hein, David W.; Boukouvala, Sotiria; Grant, Denis M.; Minchin, Rodney F.; Sim, Edith

    2008-01-01

    Changes in consensus arylamine N-acetyltransferase (NAT) gene nomenclature determined at the 2007 international NAT workshop include: 1) Alleles in all species except mouse and rat are all uppercase. For mouse and rat, the first letter is upper case followed by lower case. 2) The nomenclature system is now species-specific. Thus, NAT2*1 (chicken), NAT2*2 & NAT2*3 (rabbit), Nat2*8 Nat2*9, Nat2*22 & Nat2*23 (mouse), NAT2*15, NAT2*16A & NAT2*16B (Syrian hamster), and NAT2*20, NAT2*21A & NAT2*21B (rat) are retired and renumbered within a species. A species modifier incorporated into the allele designation is written in upper case Roman font, e.g., (MOUSE)Nat1*1 is now the reference Nat1 allele in mouse; and 3) The NAT website also can now be accessed at a webbalias address: http://N-acetyltransferasenomenclature.louisville.edu. New NAT alleles should continue to be submitted to the NAT nomenclature committee for inclusion on the website to ensure proper categorization and to continue consistency in nomenclature. PMID:18334921

  2. A bifunctional aminoglycoside acetyltransferase/phosphotransferase conferring tobramycin resistance provides an efficient selectable marker for plastid transformation.

    PubMed

    Tabatabaei, Iman; Ruf, Stephanie; Bock, Ralph

    2017-02-01

    A new selectable marker gene for stable transformation of the plastid genome was developed that is similarly efficient as the aadA, and produces no background of spontaneous resistance mutants. More than 25 years after its development for Chlamydomonas and tobacco, the transformation of the chloroplast genome still represents a challenging technology that is available only in a handful of species. The vast majority of chloroplast transformation experiments conducted thus far have relied on a single selectable marker gene, the spectinomycin resistance gene aadA. Although a few alternative markers have been reported, the aadA has remained unrivalled in efficiency and is, therefore, nearly exclusively used. The development of new marker genes for plastid transformation is of crucial importance to all efforts towards extending the species range of the technology as well as to those applications in basic research, biotechnology and synthetic biology that involve the multistep engineering of plastid genomes. Here, we have tested a bifunctional resistance gene for its suitability as a selectable marker for chloroplast transformation. The bacterial enzyme aminoglycoside acetyltransferase(6')-Ie/aminoglycoside phosphotransferase(2″)-Ia possesses an N-terminal acetyltransferase domain and a C-terminal phosphotransferase domain that can act synergistically and detoxify aminoglycoside antibiotics highly efficiently. We report that, in combination with selection for resistance to the aminoglycoside tobramycin, the aac(6')-Ie/aph(2″)-Ia gene represents an efficient marker for plastid transformation in that it produces similar numbers of transplastomic lines as the spectinomycin resistance gene aadA. Importantly, no spontaneous antibiotic resistance mutants appear under tobramycin selection.

  3. Implication of an Aldehyde Dehydrogenase Gene and a Phosphinothricin N-Acetyltransferase Gene in the Diversity of Pseudomonas cichorii Virulence

    PubMed Central

    Tanaka, Masayuki; Wali, Ullah Md; Nakayashiki, Hitoshi; Fukuda, Tatsuya; Mizumoto, Hiroyuki; Ohnishi, Kouhei; Kiba, Akinori; Hikichi, Yasufumi

    2011-01-01

    Pseudomonas cichorii harbors the hrp genes. hrp-mutants lose their virulence on eggplant but not on lettuce. A phosphinothricin N-acetyltransferase gene (pat) is located between hrpL and an aldehyde dehydrogenase gene (aldH) in the genome of P. cichorii. Comparison of nucleotide sequences and composition of the genes among pseudomonads suggests a common ancestor of hrp and pat between P. cichorii strains and P. viridiflava strains harboring the single hrp pathogenicity island. In contrast, phylogenetic diversification of aldH corresponded to species diversification amongst pseudomonads. In this study, the involvement of aldH and pat in P. cichorii virulence was analyzed. An aldH-deleted mutant (ΔaldH) and a pat-deleted mutant (Δpat) lost their virulence on eggplant but not on lettuce. P. cichorii expressed both genes in eggplant leaves, independent of HrpL, the transcriptional activator for the hrp. Inoculation into Asteraceae species susceptible to P. cichorii showed that the involvement of hrp, pat and aldH in P. cichorii virulence is independent of each other and has no relationship with the phylogeny of Asteraceae species based on the nucleotide sequences of ndhF and rbcL. It is thus thought that not only the hrp genes but also pat and aldH are implicated in the diversity of P. cichorii virulence on susceptible host plant species. PMID:24704843

  4. A method to detect transfected chloramphenicol acetyltransferase gene expression in intact animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, R.; Jastreboff, M.M.; Chiu, Chang Fang

    1988-01-01

    A rapid procedure is described for assaying chloramphenicol acetyltransferase enzyme activity in intact animals following transfection of the RSV CAT plasmid into mouse bone marrow cells by electroporation. The reconstituted mice were injected with ({sup 14}C)chloramphenicol and ethyl acetate extracts of 24-h urine samples were analyzed by TLC autoradiography for the excretion of {sup 14}C-labeled metabolites. CAT expression in vivo can be detected by the presence of acetylated {sup 14}C-labeled metabolites in the urine within 1 week after bone marrow transplantation and, under the conditions described, these metabolites can be detected for at least 3 months. CAT expression in intactmore » mice as monitored by the urine assay correlates with the CAT expression in the hematopoietic tissues assayed in vitro. This method offers a quick mode of screening for introduced CAT gene expression in vivo without sacrificing the mice.« less

  5. Development of a Plant Transformation Selection System Based on Expression of Genes Encoding Gentamicin Acetyltransferases

    PubMed Central

    Hayford, Maria B.; Medford, June I.; Hoffman, Nancy L.; Rogers, Stephen G.; Klee, Harry J.

    1988-01-01

    The development of selectable markers for transformation has been a major factor in the successful genetic manipulation of plants. A new selectable marker system has been developed based on bacterial gentamicin-3-N-acetyltransferases [AAC(3)]. These enzymes inactivate aminoglycoside antibiotics by acetylation. Two examples of AAC(3) enzymes have been manipulated to be expressed in plants. Chimeric AAC(3)-III and AAC(3)-IV genes were assembled using the constitutively expressed cauliflower mosaic virus 35S promoter and the nopaline synthase 3′ nontranslated region. These chimeric genes were engineered into vectors for Agrobacterium-mediated plant transformation. Petunia hybrida and Arabidopsis thaliana tissue transformed with these vectors grew in the presence of normally lethal levels of gentamicin. The transformed nature of regenerated Arabidopsis plants was confirmed by DNA hybridization analysis and inheritance of the selectable phenotype in progeny. The chimeric AAC(3)-IV gene has also been used to select transformants in several additional plant species. These results show that the bacterial AAC(3) genes will serve as useful selectable markers in plant tissue culture. Images Fig. 3 Fig. 4 Fig. 5 PMID:16666057

  6. Thiolsubtilisin acts as an acetyltransferase in organic solvents.

    PubMed

    Tai, Dar Fu; Liaw, Wen Chen

    2002-04-24

    The catalytic mechanism of arylamine N-acetyltransferase has been proposed to involve Cys-His-Asp as its catalytic triad. Thiolsubtilisin, a chemically modified enzyme that has a catalytic triad of Cys-His-Asp at the active site, mimics the catalysis of arylamine N-acetyltransferase, serotonin N-acetyltransferase, histone N-acetyltransferase and amino acid N-acetyltransferase. Thiolsubtilisin not only can catalyze amino acid transacetylation, but is also able to catalyze amine transacetylation. Ethyl acetate was used as the acylating reagent to form N-acetyl amino acids and amines in organic solvents with moderate yield. Hence, these findings broaden our understanding of the structural features required for N-acetyltransferases activity as well as provide a structural relationship between cysteine protease and other N-acyltransferases.

  7. Method to produce acetyldiacylglycerols (ac-TAGs) by expression of an acetyltransferase gene isolated from Euonymus alatus (burning bush)

    DOEpatents

    Durrett, Timothy; Ohlrogge, John; Pollard, Michael

    2016-05-03

    The present invention relates to novel diacylglycerol acyltransferase genes and proteins, and methods of their use. In particular, the invention describes genes encoding proteins having diacylglycerol acetyltransferase activity, specifically for transferring an acetyl group to a diacylglycerol substrate to form acetyl-Triacylglycerols (ac-TAGS), for example, a 3-acetyl-1,2-diacyl-sn-glycerol. The present invention encompasses both native and recombinant wild-type forms of the transferase, as well as mutants and variant forms. The present invention also relates to methods of using novel diacylglycerol acyltransferase genes and proteins, including their expression in transgenic organisms at commercially viable levels, for increasing production of 3-acetyl-1,2-diacyl-sn-glycerols in plant oils and altering the composition of oils produced by microorganisms, such as yeast, by increasing ac-TAG production. Additionally, oils produced by methods of the present inventions comprising genes and proteins are contemplated for use as biodiesel fuel, in polymer production and as naturally produced food oils with reduced calories.

  8. Biochemical characterization of rice xylan O-acetyltransferases.

    PubMed

    Zhong, Ruiqin; Cui, Dongtao; Dasher, Robert L; Ye, Zheng-Hua

    2018-06-01

    Rice xylan is predominantly monoacetylated at O-2 and O-3, and 14 rice DUF231 proteins were demonstrated to be xylan acetyltransferases. Acetylated xylans are the principal hemicellulose in the cell walls of grass species. Because xylan acetylation impedes the conversion of cellulosic biomass into biofuels, knowledge on acetyltransferases catalyzing xylan acetylation in grass species will be instrumental for a better utilization of grass biomass for biofuel production. Xylan in rice (Oryza sativa) is predominantly monoacetylated at O-2 and O-3 with a total degree of acetylation of 0.19. In this report, we have characterized 14 rice DUF231 proteins (OsXOAT1 to OsXOAT14) that are phylogenetically grouped together with Arabidopsis xylan acetyltransferases ESK1 and its close homologs. Complementation analysis demonstrated that the expression of OsXOAT1 to OsXOAT7 in the Arabidopsis esk1 mutant was able to rescue its defects in 2-O- and 3-O-monoacetylation and 2,3-di-O-acetylation. Activity assay of recombinant proteins revealed that all 14 OsXOATs exhibited acetyltransferase activities capable of transferring acetyl groups from acetyl-CoA to the xylohexaose acceptor with 10 of them having high activities. Structural analysis of the OsXOAT-catalyzed products showed that the acetylated structural units consisted mainly of 2-O- and 3-O-monoacetylated xylosyl residues with a minor amount of 2,3-di-O-acetylated xylosyl units, which is consistent with the acetyl substitution pattern of rice xylan. Further kinetic studies revealed that OsXOAT1, OsXOAT2, OsXOAT5, OsXOAT6 and OsXOAT7 had high affinity toward the xylohexaose acceptor. Our results provide biochemical evidence indicating that OsXOATs are acetyltransferases involved in xylan acetylation in rice.

  9. Saccharomyces cerevisiae sigma 1278b has novel genes of the N-acetyltransferase gene superfamily required for L-proline analogue resistance.

    PubMed

    Takagi, H; Shichiri, M; Takemura, M; Mohri, M; Nakamori, S

    2000-08-01

    We discovered on the chromosome of Saccharomyces cerevisiae Sigma 1278b novel genes involved in L-proline analogue L-azetidine-2-carboxylic acid resistance which are not present in the standard laboratory strains. The 5.4 kb-DNA fragment was cloned from the genomic library of the L-azetidine-2-carboxylic acid-resistant mutant derived from a cross between S. cerevisiae strains S288C and Sigma 1278b. The nucleotide sequence of a 4.5-kb segment exhibited no identity with the sequence in the genome project involving strain S288C. Deletion analysis indicated that one open reading frame encoding a predicted protein of 229 amino acids is indispensable for L-azetidine-2-carboxylic acid resistance. The protein sequence was found to be a member of the N-acetyltransferase superfamily. Genomic Southern analysis and gene disruption showed that two copies of the novel gene with one amino acid change at position 85 required for L-azetidine-2-carboxylic acid resistance were present on chromosomes X and XIV of Sigma 1278b background strains. When this novel MPR1 or MPR2 gene (sigma 1278b gene for L-proline analogue resistance) was introduced into the other S. cerevisiae strains, all of the recombinants were resistant to L-azetidine-2-carboxylic acid, indicating that both MPR1 and MPR2 are expressed and have a global function in S. cerevisiae.

  10. Transcriptional regulation of arylalkylamine-N-acetyltransferase-2 gene in the pineal gland of the gilthead seabream.

    PubMed

    Zilberman-Peled, B; Appelbaum, L; Vallone, D; Foulkes, N S; Anava, S; Anzulovich, A; Coon, S L; Klein, D C; Falcón, J; Ron, B; Gothilf, Y

    2007-01-01

    Pineal serotonin-N-acetyltransferase (arylalkylamine-N-acetyltransferase; AANAT) is considered the key enzyme in the generation of circulating melatonin rhythms; the rate of melatonin production is determined by AANAT activity. In all the examined species, AANAT activity is regulated at the post-translational level and, to a variable degree, also at the transcriptional level. Here, the transcriptional regulation of pineal aanat (aanat2) of the gilthead seabream (Sparus aurata) was investigated. Real-time polymerase chain reaction quantification of aanat2 mRNA levels in the pineal gland collected throughout the 24-h cycle revealed a rhythmic expression pattern. In cultured pineal glands, the amplitude was reduced, but the daily rhythmic expression pattern was maintained under constant illumination, indicating a circadian clock-controlled regulation of seabream aanat2. DNA constructs were prepared in which green fluorescent protein was driven by the aanat2 promoters of seabream and Northern pike. In vivo transient expression analyses in zebrafish embryos indicated that these promoters contain the necessary elements to drive enhanced expression in the pineal gland. In the light-entrainable clock-containing PAC-2 zebrafish cell line, a stably transfected seabream aanat2 promoter-luciferase DNA construct exhibited a clock-controlled circadian rhythm of luciferase activity, characteristic for an E-box-driven expression. In NIH-3T3 cells, the seabream aanat2 promoter was activated by a synergistic action of BMAL/CLOCK and orthodenticle homeobox 5 (OTX5). Promoter sequence analyses revealed the presence of the photoreceptor conserved element and an extended E-box (i.e. the binding sites for BMAL/CLOCK and OTX5 that have been previously associated with pineal-specific and rhythmic gene expression). These results suggest that seabream aanat2 is a clock-controlled gene that is regulated by conserved mechanisms.

  11. Phosphinothricin Acetyltransferases Identified Using In Vivo, In Vitro, and Bioinformatic Analyses

    PubMed Central

    VanDrisse, Chelsey M.; Hentchel, Kristy L.

    2016-01-01

    ABSTRACT Acetylation of small molecules is widespread in nature, and in some cases, cells use this process to detoxify harmful chemicals. Streptomyces species utilize a Gcn5 N-acetyltransferase (GNAT), known as Bar, to acetylate and detoxify a self-produced toxin, phosphinothricin (PPT), a glutamate analogue. Bar homologues, such as MddA from Salmonella enterica, acetylate methionine analogues such as methionine sulfoximine (MSX) and methionine sulfone (MSO), but not PPT, even though Bar homologues are annotated as PPT acetyltransferases. S. enterica was used as a heterologous host to determine whether or not putative PPT acetyltransferases from various sources could acetylate PPT, MSX, and MSO. In vitro and in vivo analyses identified substrates acetylated by putative PPT acetyltransferases from Deinococcus radiodurans (DR_1057 and DR_1182) and Geobacillus kaustophilus (GK0593 and GK2920). In vivo, synthesis of DR_1182, GK0593, and GK2920 blocked the inhibitory effects of PPT, MSX, and MSO. In contrast, DR_1057 did not detoxify any of the above substrates. Results of in vitro studies were consistent with the in vivo results. In addition, phylogenetic analyses were used to predict the functionality of annotated PPT acetyltransferases in Burkholderia xenovorans, Bacillus subtilis, Staphylococcus aureus, Acinetobacter baylyi, and Escherichia coli. IMPORTANCE The work reported here provides an example of the use of a heterologous system for the identification of enzyme function. Many members of this superfamily of proteins do not have a known function, or it has been annotated solely on the basis of sequence homology to previously characterized enzymes. The critical role of Gcn5 N-acetyltransferases (GNATs) in the modulation of central metabolic processes, and in controlling metabolic stress, necessitates approaches that can reveal their physiological role. The combination of in vivo, in vitro, and bioinformatics approaches reported here identified GNATs that can

  12. Effect of Increased Yeast Alcohol Acetyltransferase Activity on Flavor Profiles of Wine and Distillates

    PubMed Central

    Lilly, M.; Lambrechts, M. G.; Pretorius, I. S.

    2000-01-01

    The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid

  13. No Association Between Variant N-acetyltransferase Genes, Cigarette Smoking and Prostate Cancer Susceptibility Among Men of African Descent

    PubMed Central

    Kidd, La Creis Renee; VanCleave, Tiva T.; Doll, Mark A.; Srivastava, Daya S.; Thacker, Brandon; Komolafe, Oyeyemi; Pihur, Vasyl; Brock, Guy N.; Hein, David W.

    2011-01-01

    Objective We evaluated the individual and combination effects of NAT1, NAT2 and tobacco smoking in a case-control study of 219 incident prostate cancer (PCa) cases and 555 disease-free men. Methods Allelic discriminations for 15 NAT1 and NAT2 loci were detected in germ-line DNA samples using Taqman polymerase chain reaction (PCR) assays. Single gene, gene-gene and gene-smoking interactions were analyzed using logistic regression models and multi-factor dimensionality reduction (MDR) adjusted for age and subpopulation stratification. MDR involves a rigorous algorithm that has ample statistical power to assess and visualize gene-gene and gene-environment interactions using relatively small samples sizes (i.e., 200 cases and 200 controls). Results Despite the relatively high prevalence of NAT1*10/*10 (40.1%), NAT2 slow (30.6%), and NAT2 very slow acetylator genotypes (10.1%) among our study participants, these putative risk factors did not individually or jointly increase PCa risk among all subjects or a subset analysis restricted to tobacco smokers. Conclusion Our data do not support the use of N-acetyltransferase genetic susceptibilities as PCa risk factors among men of African descent; however, subsequent studies in larger sample populations are needed to confirm this finding. PMID:21709725

  14. HISTONE ACETYLTRANSFERASE p300 MODULATES GENE EXPRESSION IN AN EPIGENETIC MANNER AT HIGH BLOOD ALCOHOL LEVELS

    PubMed Central

    Bardag-Gorce, Fawzia; French, Barbara A.; Joyce, Michael; Baires, Mercedes; Montgomery, Rosalyn O.; Li, Jun; French., Samuel

    2007-01-01

    When rats are fed ethanol intragastrically at a constant rate for 1 month, the urinary alcohol level (UAL) cycles over 7–9 day intervals. At the peak UAL, the liver is hypoxic shifting from a redox state to a reduced rate. Microarray analysis done on livers at the UAL peaks shows changes in ~1300 gene expression compared to the pair-fed controls. To determine the mechanism of the gene expression changes, histone acetylation regulation was investigated in liver nuclear extracts at the peaks and troughs of the UAL and their pair-fed controls. No change occurred in SirT-1. P300, a histone acetyltransferase (HAT), which acetylates histone H3 on lysine 9, was increased at the peaks. Histone 3 acetylated at lysine 9 was also increased at the peaks. This indicates that the up regulated genes at the UAL peaks resulted from an increase in p300 transcription regulation, epigenetically. P300 activates transcription of numerous genes in response to signal transcription factors such as H1F 1α, increased in the nucleus at UAL peaks. Signal transduction pathways, such as NFκB, AP-1, ERK, JNK, and p38 were not increased at the peaks. β-catenin was increased in the nuclear extract at the UAL peaks and troughs, where increased gene expression was absent. The increase in gene expression at the peaks was due, in part, to increased acetylation of histone 3 at lysine 9. PMID:17208223

  15. A B-type histone acetyltransferase Hat1 regulates secondary metabolism, conidiation, and cell wall integrity in the taxol-producing fungus Pestalotiopsis microspora.

    PubMed

    Zhang, Qian; Chen, Longfei; Yu, Xi; Liu, Heng; Akhberdi, Oren; Pan, Jiao; Zhu, Xudong

    2016-12-01

    In filamentous fungi, many gene clusters for the biosynthesis of secondary metabolites often stay silent under laboratory culture conditions because of the absence of communication with its natural environment. Epigenetic processes have been demonstrated to be critical in the expression of the genes or gene clusters. Here, we report the identification of a B-type histone acetyltransferase, Hat1, and demonstrate its significant roles in secondary metabolism, conidiation, and the cell wall integrity in the fungus Pestalotiopsis microspora. An hat1 deletion strain shows a dramatic decrease of SMs in this fungus, suggesting hat1 functions as a global regulator on secondary metabolism. Moreover, the mutant strain hat1Δ delays to produce conidia with significantly decreased number of conidia, while shows little effect on vegetative growth, suggesting that it plays a critical role in conidiation. The hypersensitivity of hat1Δ to Congo red demonstrates that disruption of hat1 impairs the integrity of cell wall. Overexpression of the wild-type hat1 allele enhances conidiation by boosting the number of conidia. This is the first report on the role of a B-type histone acetyltransferase in fungal secondary metabolism and cell wall integrity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Comparative investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    USDA-ARS?s Scientific Manuscript database

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and higher eukaryotes. The role of NATs in fungal biology has only recently been investigated. The NAT1 gene of Gibberella moniliformis was the first NAT cloned and characterized from fun...

  17. Calcitonin gene-related Peptide and choline acetyltransferase colocalization in the human vestibular periphery.

    PubMed

    Popper, Paul; Ishiyama, Akira; Lopez, Ivan; Wackym, Phillip A

    2002-01-01

    Within the vestibular system, calcitonin gene-related peptide (CGRP) has been localized in the efferent terminals and their brainstem neuronal cell bodies in several animal models. Presently, very few studies have verified these findings in the vestibular system in adult primates or humans. CGRP immunoreactivity (CGRPi) and its colocalization with choline acetyltransferase immunoreactivity (ChATi) in human vestibular end organs and Scarpa's ganglion were studied using polyclonal antibodies against CGRP and ChAT, at the light-microscopic level. The CGRPi axons ramified to produce numerous CGRPi terminals throughout the neurosensory epithelium of the maculae and cristae, primarily in the basal and midbasal areas. Numerous CGRPi efferent terminals made contact with both type II vestibular hair cells and the afferent chalices surrounding type I vestibular hair cells. All CGRP immunoreactive fibers also exhibited ChATi. As in the animal models, no CGRPi was found within Scarpa's ganglion. This study provides evidence for CGRPi in the human vestibular periphery and validates the biomedical relevance of the current animal models. Copyright 2002 S. Karger AG, Basel

  18. Species specific substrates and products choices of 4-O-acetyltransferase from Trichoderma brevicompactum.

    PubMed

    Sharma, Shikha; Kumari, Indu; Hussain, Razak; Ahmed, Mushtaq; Akhter, Yusuf

    2017-09-01

    Antagonistic species of Trichoderma such as T. harzianum, T. viride, T. virens and T. koningii are well-known biocontrol agents that have been reported to suppress pathogenic soil microbes and enhance the growth of crop plants. Secondary metabolites (SMs) including trichothecenes are responsible for its biocontrol activities. The trichothecenes, trichodermin and harzianum A (HA) are produced in species dependent manner respectively, by Trichoderma brevicompactum (TB) and Trichoderma arundinaceum (TA). The last step in the pathway involves the conversion of trichodermol into trichodermin or HA alternatively, which is catalyzed by 4-O-acetyltransferase (encoded by tri3 gene). Comparative sequence analysis of acetyltransferase enzyme of TB with other chloramphenicol acetyltransferase (CAT) family proteins revealed the conserved motif involved in the catalysis. Multiple substrate binding studies were carried out to explore the mechanism behind the two different outcomes. His188 was found to have a role in initial substrate binding. In the case of trichodermin synthesis, represented by ternary complex 1, the trichodermol and acetic anhydride (AAn), the two substrates come very close to each other during molecular simulation analysis so that interactions become possible between them and acetyl group may get transferred from AAn to trichodermol, and Tyr476 residue mediates this phenomenon resulting in the formation of trichodermin. However, in case of the HA biosynthesis using the TB version of enzyme, represented by ternary complex 2, the two substrates, trichodermol and octa-2Z,4E,6E-trienedioic acid (OCTA) did not show any such interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Comparative Genomics and Reverse Genetics Analysis Reveal Indispensable Functions of the Serine Acetyltransferase Gene Family in Arabidopsis[W][OA

    PubMed Central

    Watanabe, Mutsumi; Mochida, Keiichi; Kato, Tomohiko; Tabata, Satoshi; Yoshimoto, Naoko; Noji, Masaaki; Saito, Kazuki

    2008-01-01

    Ser acetyltransferase (SERAT), which catalyzes O-acetyl-Ser (OAS) formation, plays a key role in sulfur assimilation and Cys synthesis. Despite several studies on SERATs from various plant species, the in vivo function of multiple SERAT genes in plant cells remains unaddressed. Comparative genomics studies with the five genes of the SERAT gene family in Arabidopsis thaliana indicated that all three Arabidopsis SERAT subfamilies are conserved across five plant species with available genome sequences. Single and multiple knockout mutants of all Arabidopsis SERAT gene family members were analyzed. All five quadruple mutants with a single gene survived, with three mutants showing dwarfism. However, the quintuple mutant lacking all SERAT genes was embryo-lethal. Thus, all five isoforms show functional redundancy in vivo. The developmental and compartment-specific roles of each SERAT isoform were also demonstrated. Mitochondrial SERAT2;2 plays a predominant role in cellular OAS formation, while plastidic SERAT2;1 contributes less to OAS formation and subsequent Cys synthesis. Three cytosolic isoforms, SERAT1;1, SERAT3;1, and SERAT3;2, may play a major role during seed development. Thus, the evolutionally conserved SERAT gene family is essential in cellular processes, and the substrates and products of SERAT must be exchangeable between the cytosol and organelles. PMID:18776059

  20. Horizontal gene transfer of acetyltransferases, invertases and chorismate mutases from different bacteria to diverse recipients.

    PubMed

    Noon, Jason B; Baum, Thomas J

    2016-04-12

    Hoplolaimina plant-parasitic nematodes (PPN) are a lineage of animals with many documented cases of horizontal gene transfer (HGT). In a recent study, we reported on three likely HGT candidate genes in the soybean cyst nematode Heterodera glycines, all of which encode secreted candidate effectors with putative functions in the host plant. Hg-GLAND1 is a putative GCN5-related N-acetyltransferase (GNAT), Hg-GLAND13 is a putative invertase (INV), and Hg-GLAND16 is a putative chorismate mutase (CM), and blastp searches of the non-redundant database resulted in highest similarity to bacterial sequences. Here, we searched nematode and non-nematode sequence databases to identify all the nematodes possible that contain these three genes, and to formulate hypotheses about when they most likely appeared in the phylum Nematoda. We then performed phylogenetic analyses combined with model selection tests of alternative models of sequence evolution to determine whether these genes were horizontally acquired from bacteria. Mining of nematode sequence databases determined that GNATs appeared in Hoplolaimina PPN late in evolution, while both INVs and CMs appeared before the radiation of the Hoplolaimina suborder. Also, Hoplolaimina GNATs, INVs and CMs formed well-supported clusters with different rhizosphere bacteria in the phylogenetic trees, and the model selection tests greatly supported models of HGT over descent via common ancestry. Surprisingly, the phylogenetic trees also revealed additional, well-supported clusters of bacterial GNATs, INVs and CMs with diverse eukaryotes and archaea. There were at least eleven and eight well-supported clusters of GNATs and INVs, respectively, from different bacteria with diverse eukaryotes and archaea. Though less frequent, CMs from different bacteria formed supported clusters with multiple different eukaryotes. Moreover, almost all individual clusters containing bacteria and eukaryotes or archaea contained species that inhabit very similar

  1. Diverse point mutations in the human gene for polymorphic N-acetyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatsis, K.P.; Martell, K.J.; Weber, W.W.

    1991-07-15

    Classification of humans as rapid or slow acetylators is based on hereditary differences in rates of N-acetylation of therapeutic and carcinogenic agents, but N-acetylation of certain arylamine drugs displays no genetic variation. Two highly homologous human genes for N-acetyltransferase NAT1 and NAT2, presumably code for the genetically invariant and variant NAT proteins, respectively. In the present investigation, 1.9-kilobase human genomic EcoRI fragments encoding NAT2 were generated by the polymerase chain reaction with liver and leukocyte DNA from seven subjects phenotyped as homozygous and heterozygous acetylators. Direct sequencing revealed multiple point mutations in the coding region of two distinct NAT2 variants.more » One of these was derived from leukocytes of a slow acetylator and was distinguished by a silent mutation (coden 94) and a separate G {r arrow} A transition (position 590) leading to replacement of Arg-197 by Gln; the mutated guanine was part of a CpG dinucleotide and a Taq I site. The second NAT2 variant originated from liver with low N-acetylation activity. It was characterized by three nucleotide transitions giving rise to a silent mutation (codon 161), accompanied by obliteration of the sole Kpn I site, and two amino acid substitutions. The results show conclusively that the genetically variant NAT is encoded by NAT2.« less

  2. N-acetyltransferase 2 (NAT2) gene polymorphism as a predisposing factor for phenytoin intoxication in tuberculous meningitis or tuberculoma patients having seizures - A pilot study.

    PubMed

    Adole, Prashant S; Kharbanda, Parampreet S; Sharma, Sadhna

    2016-05-01

    Simultaneous administration of phenytoin and isoniazid (INH) in tuberculous meningitis (TBM) or tuberculoma patients with seizures results in higher plasma phenytoin level and thus phenytoin intoxication. N-acetyltransferase 2 (NAT2) enzyme catalyses two acetylation reactions in INH metabolism and NAT2 gene polymorphism leads to slow and rapid acetylators. The present study was aimed to evaluate the effect of allelic variants of N-acetyltransferase 2 (NAT2) gene as a predisposing factor for phenytoin toxicity in patients with TBM or tuberculoma having seizures, and taking INH and phenytoin simultaneously. Sixty patients with TBM or tuberculoma with seizures and taking INH and phenytoin simultaneously for a minimum period of seven days were included in study. Plasma phenytoin was measured by high performance liquid chromatography. NAT2 gene polymorphism was studied using restriction fragment length polymorphism and allele specific PCR. The patients were grouped into those having phenytoin intoxication and those with normal phenytoin level, and also classified as rapid or slow acetylators by NAT2 genotyping. Genotypic analysis showed that of the seven SNPs (single nucleotide polymorphisms) of NAT2 gene studied, six mutations were found to be associated with phenytoin intoxication. For rs1041983 (C282T), rs1799929 (C481T), rs1799931 (G857A), rs1799930 (G590A), rs1208 (A803G) and rs1801280 (T341C) allelic variants, the proportion of homozygous mutant was higher in phenytoin intoxicated group than in phenytoin non-intoxicated group. Homozygous mutant allele of NAT2 gene at 481site may act as a predisposing factor for phenytoin intoxication among TBM or tuberculoma patients having seizures.

  3. N-acetyltransferase 2 (NAT2) gene polymorphism as a predisposing factor for phenytoin intoxication in tuberculous meningitis or tuberculoma patients having seizures - A pilot study

    PubMed Central

    Adole, Prashant S.; Kharbanda, Parampreet S.; Sharma, Sadhna

    2016-01-01

    Background & objectives: Simultaneous administration of phenytoin and isoniazid (INH) in tuberculous meningitis (TBM) or tuberculoma patients with seizures results in higher plasma phenytoin level and thus phenytoin intoxication. N-acetyltransferase 2 (NAT2) enzyme catalyses two acetylation reactions in INH metabolism and NAT2 gene polymorphism leads to slow and rapid acetylators. The present study was aimed to evaluate the effect of allelic variants of N-acetyltransferase 2 (NAT2) gene as a predisposing factor for phenytoin toxicity in patients with TBM or tuberculoma having seizures, and taking INH and phenytoin simultaneously. Methods: Sixty patients with TBM or tuberculoma with seizures and taking INH and phenytoin simultaneously for a minimum period of seven days were included in study. Plasma phenytoin was measured by high performance liquid chromatography. NAT2 gene polymorphism was studied using restriction fragment length polymorphism and allele specific PCR. Results: The patients were grouped into those having phenytoin intoxication and those with normal phenytoin level, and also classified as rapid or slow acetylators by NAT2 genotyping. Genotypic analysis showed that of the seven SNPs (single nucleotide polymorphisms) of NAT2 gene studied, six mutations were found to be associated with phenytoin intoxication. For rs1041983 (C282T), rs1799929 (C481T), rs1799931 (G857A), rs1799930 (G590A), rs1208 (A803G) and rs1801280 (T341C) allelic variants, the proportion of homozygous mutant was higher in phenytoin intoxicated group than in phenytoin non-intoxicated group. Interpretation & conclusions: Homozygous mutant allele of NAT2 gene at 481site may act as a predisposing factor for phenytoin intoxication among TBM or tuberculoma patients having seizures. PMID:27488001

  4. Regioselective Acetylation of C21 Hydroxysteroids by the Bacterial Chloramphenicol Acetyltransferase I.

    PubMed

    Mosa, Azzam; Hutter, Michael C; Zapp, Josef; Bernhardt, Rita; Hannemann, Frank

    2015-07-27

    Chloramphenicol acetyltransferase I (CATI) detoxifies the antibiotic chloramphenicol and confers a corresponding resistance to bacteria. In this study we identified this enzyme as a steroid acetyltransferase and designed a new and efficient Escherichia-coli-based biocatalyst for the regioselective acetylation of C21 hydroxy groups in steroids of pharmaceutical interest. The cells carried a recombinant catI gene controlled by a constitutive promoter. The capacity of the whole-cell system to modify different hydroxysteroids was investigated, and NMR spectroscopy revealed that all substrates were selectively transformed into the corresponding 21-acetoxy derivatives. The biotransformation was optimized, and the reaction mechanism is discussed on the basis of a computationally modeled substrate docking into the crystal structure of CATI. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A new arylalkylamine N-acetyltransferase in silkworm (Bombyx mori) affects integument pigmentation.

    PubMed

    Long, Yaohang; Li, Jiaorong; Zhao, Tianfu; Li, Guannan; Zhu, Yong

    2015-04-01

    Dopamine is a precursor for melanin synthesis. Arylalkylamine N-acetyltransferase (AANAT) is involved in the melatonin formation in insects because it could catalyze the transformation from dopamine to dopamine-N-acetyldopamine. In this study, we identified a new AANAT gene in the silkworm (Bombyx mori) and assessed its role in the silkworm. The cDNA of this gene encodes 233 amino acids that shares 57 % amino acid identity with the Bm-iAANAT protein. We thus refer to this gene as Bm-iAANAT2. To investigate the role of Bm-iAANAT2, we constructed a transgenic interference system using a 3xp3 promoter to suppress the expression of Bm-iAANAT2 in the silkworm. We observed that melanin deposition occurs in the head and integument in transgenic lines. To verify the melanism pattern, dopamine content and the enzyme activity of AANAT were determined by high-performance liquid chromatography (HPLC). We found that an increase in dopamine levels affects melanism patterns on the heads of transgenic B. mori. A reduction in the enzyme activity of AANAT leads to changes in dopamine levels. We analyzed the expression of the Bm-iAANAT2 genes by qPCR and found that the expression of Bm-iAANAT2 gene is significantly lower in transgenic lines. Our results lead us to conclude that Bm-iAANAT2 is a new arylalkylamine N-acetyltransferase gene in the silkworm and is involved in the metabolism of the dopamine to avoid the generation of melanin.

  6. Acetate ester production by Chinese yellow rice wine yeast overexpressing the alcohol acetyltransferase-encoding gene ATF2.

    PubMed

    Zhang, J; Zhang, C; Qi, Y; Dai, L; Ma, H; Guo, X; Xiao, D

    2014-11-27

    Acetate ester, which are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction, are responsible for the fruity character of fermented alcoholic beverages such as Chinese yellow rice wine. Alcohol acetyltransferase (AATase) is currently believed to be the key enzyme responsible for the production of acetate ester. In order to determine the precise role of the ATF2 gene in acetate ester production, an ATF2 gene encoding a type of AATase was overexpressed and the ability of the mutant to form acetate esters (including ethyl acetate, isoamyl acetate, and isobutyl acetate) was investigated. The results showed that after 5 days of fermentation, the concentrations of ethyl acetate, isoamyl acetate, and isobutyl acetate in yellow rice wines fermented with EY2 (pUC-PIA2K) increased to 137.79 mg/L (an approximate 4.9-fold increase relative to the parent cell RY1), 26.68 mg/L, and 7.60 mg/L, respectively. This study confirms that the ATF2 gene plays an important role in the production of acetate ester production during Chinese yellow rice wine fermentation, thereby offering prospects for the development of yellow rice wine yeast starter strains with optimized ester-producing capabilities.

  7. A Novel 6'-N-Aminoglycoside Acetyltransferase, AAC(6')-Ial, from a Clinical Isolate of Serratia marcescens.

    PubMed

    Tada, Tatsuya; Miyoshi-Akiyama, Tohru; Shimada, Kayo; Dahal, Rajan K; Mishra, Shyam K; Ohara, Hiroshi; Kirikae, Teruo; Pokhrel, Bharat M

    2016-03-01

    Serratia marcescens IOMTU115 has a novel 6'-N-aminoglycoside acetyltransferase-encoding gene, aac(6')-Ial. The encoded protein AAC(6')-Ial has 146 amino acids, with 91.8% identity to the amino acid sequence of AAC(6')-Ic in S. marcescens SM16 and 97.3% identity to the amino acid sequence of AAC(6')-Iap in S. marcescens WW4. The minimum inhibitory concentrations of aminoglycosides for Escherichia coli expressing AAC(6')-Ial were similar to those for E. coli expressing AAC(6')-Ic or AAC(6')-Iap. Thin-layer chromatography showed that AAC(6')-Ial, AAC(6')-Ic, or AAC(6')-Iap acetylated all the aminoglycosides tested, except for apramycin, gentamicin, and lividomycin. Kinetics assays revealed that AAC(6')-Ial is a functional acetyltransferase against aminoglycosides. The aac(6')-Ial gene was located on chromosomal DNA.

  8. Direct Introduction of Genes into Rats and Expression of the Genes

    NASA Astrophysics Data System (ADS)

    Benvenisty, Nissim; Reshef, Lea

    1986-12-01

    A method of introducing actively expressed genes into intact mammals is described. DNA precipitated with calcium phosphate has been injected intraperitoneally into newborn rats. The injected genes have been taken up and expressed by the animal tissues. To examine the generality of the method we have injected newborn rats with the chloramphenicol acetyltransferase prokaryotic gene fused with various viral and cellular gene promoters and the gene for hepatitis B surface antigen, and we observed appearance of chloramphenicol acetyltransferase activity and hepatitis B surface antigen in liver and spleen. In addition, administration of genes coding for hormones (insulin or growth hormone) resulted in their expression.

  9. Phylogenetic and biological investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    USDA-ARS?s Scientific Manuscript database

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and eukaryotic organisms. The role of NATs in fungal biology has only recently been investigated. The NAT1 (FDB2) gene of Fusarium verticillioides was the first NAT cloned and character...

  10. Transfection of cultured cells of the cotton boll weevil, Anthonomus grandis, with a heat-shock-promoter-chloramphenicol-acetyltransferase construct.

    PubMed

    Stiles, B; Heilmann, J; Sparks, R B; Santoso, A; Leopold, R A

    1992-01-01

    Expression of heat shock proteins (hsp) in the BRL-AG-3C cell line from the cotton boll weevil was examined. It was determined that the maximal expression of endogenous hsp occurred at 41 degrees C. Various transfection methods were then compared using this cell line in conjunction with a transiently expressed bacterial gene marker (chloramphenicol acetyltransferase) which was under the control of the Drosophila hsp 70 gene promoter. The cationic lipid preparation Lipofectin was found to be very efficient at transfecting the boll weevil cells. Polylysine and 20-hydroxyecdysone-conjugated polylysine were moderately effective, whereas polybrene and electroporation, under the conditions reported herein, were ineffective at transfecting this cell line.

  11. Resistance to glufosinate is proportional to phosphinothricin acetyltransferase expression and activity in LibertyLink® and WideStrike® Cotton

    USDA-ARS?s Scientific Manuscript database

    LibertyLink® cotton cultivars are engineered for glufosinate resistance by overexpressing the bar gene that encodes phosphinothricin acetyltransferase (PAT), whereas the insect-resistant WideStrike® cultivars were obtained by using the similar pat gene as a selectable marker. The latter cultivars ca...

  12. Construction of a self-cloning sake yeast that overexpresses alcohol acetyltransferase gene by a two-step gene replacement protocol.

    PubMed

    Hirosawa, I; Aritomi, K; Hoshida, H; Kashiwagi, S; Nishizawa, Y; Akada, R

    2004-07-01

    The commercial application of genetically modified industrial microorganisms has been problematic due to public concerns. We constructed a "self-cloning" sake yeast strain that overexpresses the ATF1 gene encoding alcohol acetyltransferase, to improve the flavor profile of Japanese sake. A constitutive yeast overexpression promoter, TDH3p, derived from the glyceraldehyde-3-phosphate dehydrogenase gene from sake yeast was fused to ATF1; and the 5' upstream non-coding sequence of ATF1 was further fused to TDH3p-ATF1. The fragment was placed on a binary vector, pGG119, containing a drug-resistance marker for transformation and a counter-selection marker for excision of unwanted DNA. The plasmid was integrated into the ATF1 locus of a sake yeast strain. This integration constructed tandem repeats of ATF1 and TDH3p-ATF1 sequences, between which the plasmid was inserted. Loss of the plasmid, which occurs through homologous recombination between either the TDH3p downstream ATF1 repeats or the TDH3p upstream repeat sequences, was selected by growing transformants on counter-selective medium. Recombination between the downstream repeats led to reversion to a wild type strain, but that between the upstream repeats resulted in a strain that possessed TDH3p-ATF1 without the extraneous DNA sequences. The self-cloning TDH3p-ATF1 yeast strain produced a higher amount of isoamyl acetate. This is the first expression-controlled self-cloning industrial yeast.

  13. LHX3 interacts with inhibitor of histone acetyltransferase complex subunits LANP and TAF-1β to modulate pituitary gene regulation.

    PubMed

    Hunter, Chad S; Malik, Raleigh E; Witzmann, Frank A; Rhodes, Simon J

    2013-01-01

    LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex.

  14. LHX3 Interacts with Inhibitor of Histone Acetyltransferase Complex Subunits LANP and TAF-1β to Modulate Pituitary Gene Regulation

    PubMed Central

    Witzmann, Frank A.; Rhodes, Simon J.

    2013-01-01

    LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex. PMID:23861948

  15. Subcellular distribution of serine acetyltransferase from Pisum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform.

    PubMed

    Ruffet, M L; Lebrun, M; Droux, M; Douce, R

    1995-01-15

    The intracellular compartmentation of serine acetyltransferase, a key enzyme in the L-cysteine biosynthesis pathway, has been investigated in pea (Pisum sativum) leaves, by isolation of organelles and fractionation of protoplasts. Enzyme activity was mainly located in mitochondria (approximately 76% of total cellular activity). Significant activity was also identified in both the cytosol (14% of total activity) and chloroplasts (10% of total activity). Three enzyme forms were separated by anion-exchange chromatography, and each form was found to be specific for a given intracellular compartment. To obtain cDNA encoding the isoforms, functional complementation experiments were performed using an Arabidopsis thaliana expression library and an Escherichia coli mutant devoid of serine acetyltransferase activity. This strategy allowed isolation of three distinct cDNAs encoding serine acetyltransferase isoforms, as confirmed by enzyme activity measurements, genomic hybridizations, and nucleotide sequencing. The cDNA and related gene for one of the three isoforms have been characterized. The predicted amino acid sequence shows that it encodes a polypeptide of M(r) 34,330 exhibiting 41% amino acid identity with the E. coli serine acetyltransferase. Since none of the general features of transit peptides could be observed in the N-terminal region of this isoform, we assume that it is a cytosolic form.

  16. Arylamine N-Acetyltransferases in Mycobacteria

    PubMed Central

    Sim, Edith; Sandy, James; Evangelopoulos, Dimitrios; Fullam, Elizabeth; Bhakta, Sanjib; Westwood, Isaac; Krylova, Anna; Lack, Nathan; Noble, Martin

    2008-01-01

    Polymorphic Human arylamine N-acetyltransferase (NAT2) inactivates the anti-tubercular drug isoniazid by acetyltransfer from acetylCoA. There are active NAT proteins encoded by homologous genes in mycobacteria including M. tuberculosis, M. bovis BCG, M. smegmatis and M. marinum. Crystallographic structures of NATs from M. smegmatis and M. marinum, as native enzymes and with isoniazid bound share a similar fold with the first NAT structure, Salmonella typhimurium NAT. There are three approximately equal domains and an active site essential catalytic triad of cysteine, histidine and aspartate in the first two domains. An acetyl group from acetylCoA is transferred to cysteine and then to the acetyl acceptor e.g. isoniazid. M. marinum NAT binds CoA in a more open mode compared with CoA binding to human NAT2. The structure of mycobacterial NAT may promote its role in synthesis of cell wall lipids, identified through gene deletion studies. NAT protein is essential for survival of M. bovis BCG in macrophage as are the proteins encoded by other genes in the same gene cluster (hsaA-D). HsaA-D degrade cholesterol, essential for mycobacterial survival inside macrophage. Nat expression remains to be fully understood but is co-ordinated with hsaA-D and other stress response genes in mycobacteria. Amide synthase genes in the streptomyces are also nat homologues. The amide synthases are predicted to catalyse intramolecular amide bond formation and creation of cyclic molecules, e.g. geldanamycin. Lack of conservation of the CoA binding cleft residues of M. marinum NAT suggests the amide synthase reaction mechanism does not involve a soluble CoA intermediate during amide formation and ring closure. PMID:18680471

  17. Comparative genomic, phylogenetic, and functional investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    USDA-ARS?s Scientific Manuscript database

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and higher eukaryotes. The role of NATs in fungal biology has only recently been investigated (Glenn and Bacon, 2009; Glenn et al., 2010). The NAT1 gene of Gibberella moniliformis was the...

  18. An extracellular factor regulating expression of the chromosomal aminoglycoside 2'-N-acetyltransferase of Providencia stuartii.

    PubMed Central

    Rather, P N; Parojcic, M M; Paradise, M R

    1997-01-01

    The chromosomal aac(2')-Ia gene in Providencia stuartii encodes a housekeeping 2'-N-acetyltransferase [AAC(2')-Ia] involved in the acetylation of peptidoglycan. In addition, the AAC(2')-Ia enzyme also acetylates and confers resistance to the clinically important aminoglycoside antibiotics gentamicin, tobramycin, and netilmicin. Expression of the aac(2')-Ia gene was found to be strongly influenced by cell density, with a sharp decrease in aac(2')-Ia mRNA accumulation as cells approached stationary phase. This decrease was mediated by the accumulation of an extracellular factor, designated AR (for acetyltransferase repressing)-factor. AR-factor was produced in both minimal and rich media and acted in a manner that was strongly dose dependent. The activity of AR-factor was also pH dependent, with optimal activity at pH 8.0 and above. Biochemical characterization of conditioned media from P. stuartii has shown that AR-factor is between 500 and 1,000 Da in molecular size and is heat stable. In addition, AR-factor was inactivated by a variety of proteases, suggesting that it may be a small peptide. PMID:9257754

  19. Neisseria meningitidis serogroup A capsular polysaccharide acetyltransferase, methods and compositions

    DOEpatents

    Stephens, David S [Stone Mountain, GA; Gudlavalleti, Seshu K [Kensington, MD; Tzeng, Yih-Ling [Atlanta, GA; Datta, Anup K [San Diego, CA; Carlson, Russell W [Athens, GA

    2011-02-08

    Provided are methods for recombinant production of an O-acetyltransferase and methods for acetylating capsular polysaccharides, especially those of a Serogroup A Neisseria meningitidis using the recombinant O-acetyltransferase, and immunogenic compositions comprising the acetylated capsular polysaccharide.

  20. Cloning, expression profiling, and acetylation identification of alpha-tubulin N-acetyltransferase 1 from Bombyx mori.

    PubMed

    Zhou, Huaixiang; Cheng, Xusheng; Xu, Xiaoyuan; Jiang, Tianlong; Zhou, Haimeng; Sheng, Qing; Nie, Zuoming

    2018-03-22

    Alpha-tubulin N-acetyltransferase 1 (ATAT1) is an acetyltransferase specific to α-tubulin and performs important functions in many cellular processes. Bombyx mori is an economic insect and also known as a model lepidoptera insect. In this study, we cloned a B. mori ATAT1 gene (BmATAT1) (Gen Bank accession number: XP_004932777.1). BmATAT1 contained an open reading frame (ORF) of 1,065 bp encoding 355 amino acids (aa). Expression profiling of BmATAT1 protein showed that the expression levels of BmATAT1 at different developmental stages and different tissues in fifth-instar larvae differ. BmATAT1 was highly expressed at the egg stage and in the head of the fifth-instar larvae. Subcellular localization showed that BmATAT1 was distributed in the cytoplasm and nucleus. Furthermore, BmATAT1 may lead to time-dependent induction of cell cycle arrest in the G2/M phase by flow cytometry analysis. Interestingly, using site-specific mutation, immunoprecipitation, and Western blotting, we further found a BmATAT1 acetylated site at K156, suggesting that this acetyltransferase could be regulated by acetylation itself. © 2018 Wiley Periodicals, Inc.

  1. Volatile Ester Formation in Roses. Identification of an Acetyl-Coenzyme A. Geraniol/Citronellol Acetyltransferase in Developing Rose Petals1

    PubMed Central

    Shalit, Moshe; Guterman, Inna; Volpin, Hanne; Bar, Einat; Tamari, Tal; Menda, Naama; Adam, Zach; Zamir, Dani; Vainstein, Alexander; Weiss, David; Pichersky, Eran; Lewinsohn, Efraim

    2003-01-01

    The aroma of roses (Rosa hybrida) is due to more than 400 volatile compounds including terpenes, esters, and phenolic derivatives. 2-Phenylethyl acetate, cis-3-hexenyl acetate, geranyl acetate, and citronellyl acetate were identified as the main volatile esters emitted by the flowers of the scented rose var. “Fragrant Cloud.” Cell-free extracts of petals acetylated several alcohols, utilizing acetyl-coenzyme A, to produce the corresponding acetate esters. Screening for genes similar to known plant alcohol acetyltransferases in a rose expressed sequence tag database yielded a cDNA (RhAAT1) encoding a protein with high similarity to several members of the BAHD family of acyltransferases. This cDNA was functionally expressed in Escherichia coli, and its gene product displayed acetyl-coenzyme A:geraniol acetyltransferase enzymatic activity in vitro. The RhAAT1 protein accepted other alcohols such as citronellol and 1-octanol as substrates, but 2-phenylethyl alcohol and cis-3-hexen-1-ol were poor substrates, suggesting that additional acetyltransferases are present in rose petals. The RhAAT1 protein is a polypeptide of 458 amino acids, with a calculated molecular mass of 51.8 kD, pI of 5.45, and is active as a monomer. The RhAAT1 gene was expressed exclusively in floral tissue with maximum transcript levels occurring at stage 4 of flower development, where scent emission is at its peak. PMID:12692346

  2. Rabbit N-acetyltransferase 2 genotyping method to investigate role of acetylation polymorphism on N- and O-acetylation of aromatic and heterocyclic amine carcinogens.

    PubMed

    Hein, David W; Doll, Mark A

    2017-09-01

    The rabbit was the initial animal model to investigate the acetylation polymorphism expressed in humans. Use of the rabbit model is compromised by lack of a rapid non-invasive method for determining acetylator phenotype. Slow acetylator phenotype in the rabbit results from deletion of the N-acetyltransferase 2 (NAT2) gene. A relatively quick and non-invasive method for identifying the gene deletion was developed and acetylator phenotypes confirmed by measurement of N- and O-acetyltransferase activities in hepatic cytosols. Rabbit liver cytosols catalyzed the N-acetylation of sulfamethazine (p = 0.0014), benzidine (p = 0.0257), 4-aminobiphenyl (p = 0.0012), and the O-acetylation of N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP; p = 0.002) at rates significantly higher in rabbits possessing NAT2 gene than rabbits with NAT2 gene deleted. In contrast, hepatic cytosols catalyzed the N-acetylation of p-aminobenzoic acid (an N-acetyltransferase 1 selective substrate) at rates that did not differ significantly (p > 0.05) between rabbits positive and negative for NAT2. The new NAT2 genotyping method facilitates use of the rabbit model to investigate the role of acetylator polymorphism in the metabolism of aromatic and heterocyclic amine drugs and carcinogens.

  3. Structure and function of histone acetyltransferase MOF

    PubMed Central

    Chen, Qiao Yi; Costa, Max; Sun, Hong

    2016-01-01

    MOF was first identified in Drosophila melanogaster as an important component of the dosage compensation complex. As a member of MYST family of histone acetyltransferase, MOF specifically deposits the acetyl groups to histone H4 lysine 16. Throughout evolution, MOF and its mammalian ortholog have retained highly conserved substrate specificity and similar enzymatic activities. MOF plays important roles in dosage compensation, ESC self-renewal, DNA damage and repair, cell survival, and gene expression regulation. Dysregulation of MOF has been implicated in tumor formation and progression of many types of human cancers. This review will discuss the structure and activity of mammalian hMOF as well as its function in H4K16 acetylation, DNA damage response, stem cell pluripotency, and carcinogenesis. PMID:28503659

  4. Structure and function of histone acetyltransferase MOF.

    PubMed

    Chen, Qiao Yi; Costa, Max; Sun, Hong

    2015-01-01

    MOF was first identified in Drosophila melanogaster as an important component of the dosage compensation complex. As a member of MYST family of histone acetyltransferase, MOF specifically deposits the acetyl groups to histone H4 lysine 16. Throughout evolution, MOF and its mammalian ortholog have retained highly conserved substrate specificity and similar enzymatic activities. MOF plays important roles in dosage compensation, ESC self-renewal, DNA damage and repair, cell survival, and gene expression regulation. Dysregulation of MOF has been implicated in tumor formation and progression of many types of human cancers. This review will discuss the structure and activity of mammalian hMOF as well as its function in H4K16 acetylation, DNA damage response, stem cell pluripotency, and carcinogenesis.

  5. N-acetylglucosamine sensing by a GCN5-related N-acetyltransferase induces transcription via chromatin histone acetylation in fungi.

    PubMed

    Su, Chang; Lu, Yang; Liu, Haoping

    2016-10-03

    N-acetylglucosamine (GlcNAc) exists ubiquitously as a component of the surface on a wide range of cells, from bacteria to humans. Many fungi are able to utilize environmental GlcNAc to support growth and induce cellular development, a property important for their survival in various host niches. However, how the GlcNAc signal is sensed and subsequently transduced is largely unknown. Here, we identify a gene that is essential for GlcNAc signalling (NGS1) in Candida albicans, a commensal and pathogenic yeast of humans. Ngs1 can bind GlcNAc through the N-terminal β-N-acetylglucosaminidase homology domain. This binding activates N-acetyltransferase activity in the C-terminal GCN5-related N-acetyltransferase domain, which is required for GlcNAc-induced promoter histone acetylation and transcription. Ngs1 is targeted to the promoters of GlcNAc-inducible genes constitutively by the transcription factor Rep1. Ngs1 is conserved in diverse fungi that have GlcNAc catabolic genes. Thus, fungi use Ngs1 as a GlcNAc-sensor and transducer for GlcNAc-induced transcription.

  6. N-acetylglucosamine sensing by a GCN5-related N-acetyltransferase induces transcription via chromatin histone acetylation in fungi

    PubMed Central

    Su, Chang; Lu, Yang; Liu, Haoping

    2016-01-01

    N-acetylglucosamine (GlcNAc) exists ubiquitously as a component of the surface on a wide range of cells, from bacteria to humans. Many fungi are able to utilize environmental GlcNAc to support growth and induce cellular development, a property important for their survival in various host niches. However, how the GlcNAc signal is sensed and subsequently transduced is largely unknown. Here, we identify a gene that is essential for GlcNAc signalling (NGS1) in Candida albicans, a commensal and pathogenic yeast of humans. Ngs1 can bind GlcNAc through the N-terminal β-N-acetylglucosaminidase homology domain. This binding activates N-acetyltransferase activity in the C-terminal GCN5-related N-acetyltransferase domain, which is required for GlcNAc-induced promoter histone acetylation and transcription. Ngs1 is targeted to the promoters of GlcNAc-inducible genes constitutively by the transcription factor Rep1. Ngs1 is conserved in diverse fungi that have GlcNAc catabolic genes. Thus, fungi use Ngs1 as a GlcNAc-sensor and transducer for GlcNAc-induced transcription. PMID:27694804

  7. The Apicomplexa-specific glucosamine-6-phosphate N-acetyltransferase gene family encodes a key enzyme for glycoconjugate synthesis with potential as therapeutic target.

    PubMed

    Cova, Marta; López-Gutiérrez, Borja; Artigas-Jerónimo, Sara; González-Díaz, Aida; Bandini, Giulia; Maere, Steven; Carretero-Paulet, Lorenzo; Izquierdo, Luis

    2018-03-05

    Apicomplexa form a phylum of obligate parasitic protozoa of great clinical and veterinary importance. These parasites synthesize glycoconjugates for their survival and infectivity, but the enzymatic steps required to generate the glycosylation precursors are not completely characterized. In particular, glucosamine-phosphate N-acetyltransferase (GNA1) activity, needed to produce the essential UDP-N-acetylglucosamine (UDP-GlcNAc) donor, has not been identified in any Apicomplexa. We scanned the genomes of Plasmodium falciparum and representatives from six additional main lineages of the phylum for proteins containing the Gcn5-related N-acetyltransferase (GNAT) domain. One family of GNAT-domain containing proteins, composed by a P. falciparum sequence and its six apicomplexan orthologs, rescued the growth of a yeast temperature-sensitive GNA1 mutant. Heterologous expression and in vitro assays confirmed the GNA1 enzymatic activity in all lineages. Sequence, phylogenetic and synteny analyses suggest an independent origin of the Apicomplexa-specific GNA1 family, parallel to the evolution of a different GNA1 family in other eukaryotes. The inability to disrupt an otherwise modifiable gene target suggests that the enzyme is essential for P. falciparum growth. The relevance of UDP-GlcNAc for parasite viability, together with the independent evolution and unique sequence features of Apicomplexa GNA1, highlights the potential of this enzyme as a selective therapeutic target against apicomplexans.

  8. Peripheral choline acetyltransferase in rat skin demonstrated by immunohistochemistry.

    PubMed

    Hanada, Keiji; Kishimoto, Saburo; Bellier, Jean-Pierre; Kimura, Hiroshi

    2013-03-01

    Conventional choline acetyltransferase immunohistochemistry has been used widely for visualizing central cholinergic neurons and fibers but not often for labeling peripheral structures, probably because of their poor staining. The recent identification of the peripheral type of choline acetyltransferase (pChAT) has enabled the clear immunohistochemical detection of many known peripheral cholinergic elements. Here, we report the presence of pChAT-immunoreactive nerve fibers in rat skin. Intensely stained nerve fibers were distributed in association with eccrine sweat glands, blood vessels, hair follicles and portions just beneath the epidermis. These results suggest that pChAT-positive nerves participate in the sympathetic cholinergic innervation of eccrine sweat glands. Moreover, pChAT also appears to play a role in cutaneous sensory nerve endings. These findings are supported by the presence of many pChAT-positive neuronal cells in the sympathetic ganglion and dorsal root ganglion. Thus, pChAT immunohistochemistry should provide a novel and unique tool for studying cholinergic nerves in the skin.

  9. Structural characterization of ribT from Bacillus subtilis reveals it as a GCN5-related N-acetyltransferase.

    PubMed

    Srivastava, Ritika; Kaur, Amanpreet; Sharma, Charu; Karthikeyan, Subramanian

    2018-04-01

    In bacteria, biosynthesis of riboflavin occurs through a series of enzymatic steps starting with one molecule of GTP and two molecules of ribulose-5-phosphate. In Bacillus subtilis (B. subtilis) the genes (ribD/G, ribE, ribA, ribH and ribT) which are involved in riboflavin biosynthesis are organized in an operon referred as rib operon. All the genes of rib operon are characterized functionally except for ribT. The ribT gene with unknown function is found at the distal terminal of rib operon and annotated as a putative N-acetyltransferase. Here, we report the crystal structure of ribT from B. subtilis (bribT) complexed with coenzyme A (CoA) at 2.1 Å resolution determined by single wavelength anomalous dispersion method. Our structural study reveals that bribT is a member of GCN5-related N-acetyltransferase (GNAT) superfamily and contains all the four conserved structural motifs that have been in other members of GNAT superfamily. The members of GNAT family transfers the acetyl group from acetyl coenzyme A (AcCoA) to a variety of substrates. Moreover, the structural analysis reveals that the residues Glu-67 and Ser-107 are suitably positioned to act as a catalytic base and catalytic acid respectively suggesting that the catalysis by bribT may follow a direct transfer mechanism. Surprisingly, the mutation of a non-conserved amino acid residue Cys-112 to alanine or serine affected the binding of AcCoA to bribT, indicating a possible role of Cys-112 in the catalysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A unique GCN5-related glucosamine N-acetyltransferase region exist in the fungal multi-domain glycoside hydrolase family 3 β-N-acetylglucosaminidase.

    PubMed

    Qin, Zhen; Xiao, Yibei; Yang, Xinbin; Mesters, Jeroen R; Yang, Shaoqing; Jiang, Zhengqiang

    2015-12-16

    Glycoside hydrolase (GH) family 3 β-N-acetylglucosaminidases widely exist in the filamentous fungi, which may play a key role in chitin metabolism of fungi. A multi-domain GH family 3 β-N-acetylglucosaminidase from Rhizomucor miehei (RmNag), exhibiting a potential N-acetyltransferase region, has been recently reported to show great potential in industrial applications. In this study, the crystal structure of RmNag was determined at 2.80 Å resolution. The three-dimensional structure of RmNag showed four distinctive domains, which belong to two distinguishable functional regions--a GH family 3 β-N-acetylglucosaminidase region (N-terminal) and a N-acetyltransferase region (C-terminal). From structural and functional analysis, the C-terminal region of RmNag was identified as a unique tandem array linking general control non-derepressible 5 (GCN5)-related N-acetyltransferase (GNAT), which displayed glucosamine N-acetyltransferase activity. Structural analysis of this glucosamine N-acetyltransferase region revealed that a unique glucosamine binding pocket is located in the pantetheine arm binding terminal region of the conserved CoA binding pocket, which is different from all known GNAT members. This is the first structural report of a glucosamine N-acetyltransferase, which provides novel structural information about substrate specificity of GNATs. The structural and functional features of this multi-domain β-N-acetylglucosaminidase could be useful in studying the catalytic mechanism of GH family 3 proteins.

  11. Choline acetyltransferase in the nettle Urtica dioica L

    PubMed Central

    Barlow, Richard B.; Dixon, Robert O. D.

    1973-01-01

    Extracts of acetone-dried powders prepared from nettle leaves were shown to catalyse the synthesis of acetylcholine. The specific activity of the enzyme in these extracts is of the same order as that of extracts from mammalian sources, such as ox brain, and the effects of temperature and pH are similar to those reported for mammalian choline acetyltransferase. Synthesis is not restricted to the younger leaves but appears to be continuous up to senescence. PMID:4737362

  12. Structural and Functional Evidence for Bacillus subtilis PaiA as a Novel N1-spermidine/spermine acetyltransferase (SSAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forouhar,F.; Lee, I.; Vujcic, J.

    2005-01-01

    Bacillus subtilis PaiA has been implicated in the negative control of sporulation as well as production of degradative enzymes. PaiA shares recognizable sequence homology with N-acetyltransferases, including those that can acetylate spermidine/spermine substrates (SSATs). We have determined the crystal structure of PaiA in complex with CoA at 1.9 Angstrom resolution and found that PaiA is a member of the N-acetyltransferase superfamily of enzymes. Unexpectedly, we observed the binding of an oxidized CoA dimer in the active site of PaiA, and the structural information suggests the substrates of the enzyme could be linear, positively charged compounds. Our biochemical characterization is alsomore » consistent with this possibility since purified PaiA possesses N1-acetyltransferase activity towards polyamine substrates including spermidine and spermine. Further, conditional over-expression of PaiA in bacteria results in increased acetylation of endogenous spermidine pools. Thus, our structural and biochemical analyses indicate that PaiA is a novel N-acetyltransferase capable of acetylating both spermidine and spermine. In this way, the pai operon may function in regulating intracellular polyamine concentrations and/or binding capabilities. In addition to preventing toxicity due to polyamine excess, this function may also serve to regulate expression of certain bacterial gene products such as those involved in sporulation.« less

  13. Expression, crystallization and preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins from Thermoplasma acidophilum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Sang Hee; Ha, Jun Yong; Kim, Kyoung Hoon

    2006-11-01

    An N-terminal acetyltransferase ARD1 subunit-related protein (Ta0058) and an N-terminal acetyltransferase-related protein (Ta1140) from T. acidophilum were crystallized. X-ray diffraction data were collected to 2.17 and 2.40 Å, respectively. N-terminal acetylation is one of the most common protein modifications in eukaryotes, occurring in approximately 80–90% of cytosolic mammalian proteins and about 50% of yeast proteins. ARD1 (arrest-defective protein 1), together with NAT1 (N-acetyltransferase protein 1) and possibly NAT5, is responsible for the NatA activity in Saccharomyces cerevisiae. In mammals, ARD1 is involved in cell proliferation, neuronal development and cancer. Interestingly, it has been reported that mouse ARD1 (mARD1{sup 225}) mediatesmore » ∊-acetylation of hypoxia-inducible factor 1α (HIF-1α) and thereby enhances HIF-1α ubiquitination and degradation. Here, the preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins encoded by the Ta0058 and Ta1140 genes of Thermoplasma acidophilum are reported. The Ta0058 protein is related to an N-terminal acetyltransferase complex ARD1 subunit, while Ta1140 is a putative N-terminal acetyltransferase-related protein. Ta0058 shows 26% amino-acid sequence identity to both mARD1{sup 225} and human ARD1{sup 235}.The sequence identity between Ta0058 and Ta1140 is 28%. Ta0058 and Ta1140 were overexpressed in Escherichia coli fused with an N-terminal purification tag. Ta0058 was crystallized at 297 K using a reservoir solution consisting of 0.1 M sodium acetate pH 4.6, 8%(w/v) polyethylene glycol 4000 and 35%(v/v) glycerol. X-ray diffraction data were collected to 2.17 Å. The Ta0058 crystals belong to space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 49.334, c = 70.384 Å, α = β = γ = 90°. The asymmetric unit contains a monomer, giving a calculated crystal volume per protein weight (V{sub M}) of 2.13 Å{sup 3} Da{sup −1} and a solvent

  14. A unique GCN5-related glucosamine N-acetyltransferase region exist in the fungal multi-domain glycoside hydrolase family 3 β-N-acetylglucosaminidase

    PubMed Central

    Qin, Zhen; Xiao, Yibei; Yang, Xinbin; Mesters, Jeroen R.; Yang, Shaoqing; Jiang, Zhengqiang

    2015-01-01

    Glycoside hydrolase (GH) family 3 β-N-acetylglucosaminidases widely exist in the filamentous fungi, which may play a key role in chitin metabolism of fungi. A multi-domain GH family 3 β-N-acetylglucosaminidase from Rhizomucor miehei (RmNag), exhibiting a potential N-acetyltransferase region, has been recently reported to show great potential in industrial applications. In this study, the crystal structure of RmNag was determined at 2.80 Å resolution. The three-dimensional structure of RmNag showed four distinctive domains, which belong to two distinguishable functional regions — a GH family 3 β-N-acetylglucosaminidase region (N-terminal) and a N-acetyltransferase region (C-terminal). From structural and functional analysis, the C-terminal region of RmNag was identified as a unique tandem array linking general control non-derepressible 5 (GCN5)-related N-acetyltransferase (GNAT), which displayed glucosamine N-acetyltransferase activity. Structural analysis of this glucosamine N-acetyltransferase region revealed that a unique glucosamine binding pocket is located in the pantetheine arm binding terminal region of the conserved CoA binding pocket, which is different from all known GNAT members. This is the first structural report of a glucosamine N-acetyltransferase, which provides novel structural information about substrate specificity of GNATs. The structural and functional features of this multi-domain β-N-acetylglucosaminidase could be useful in studying the catalytic mechanism of GH family 3 proteins. PMID:26669854

  15. Genetic heterogeneity among slow acetylator N-acetyltransferase 2 phenotypes in cryopreserved human hepatocytes.

    PubMed

    Doll, Mark A; Hein, David W

    2017-07-01

    Genetic polymorphisms in human N-acetyltransferase 2 (NAT2) modify the metabolism of numerous drugs and carcinogens. These genetic polymorphisms modify both drug efficacy and toxicity and cancer risk associated with carcinogen exposure. Previous studies have suggested phenotypic heterogeneity among different NAT2 slow acetylator genotypes. NAT2 phenotype was investigated in vitro and in situ in samples of human hepatocytes obtained from various NAT2 slow and intermediate NAT2 acetylator genotypes. NAT2 gene dose response (NAT2*5B/*5B > NAT2*5B/*6A > NAT2*6A/*6A) was observed towards the N-acetylation of the NAT2-specific drug sulfamethazine by human hepatocytes both in vitro and in situ. N-acetylation of 4-aminobiphenyl, an arylamine carcinogen substrate for both N-acetyltransferase 1 and NAT2, showed the same trend both in vitro and in situ although the differences were not significant (p > 0.05). The N-acetylation of the N-acetyltransferase 1-specific substrate p-aminobenzoic acid did not follow this trend. In comparisons of NAT2 intermediate acetylator genotypes, differences in N-acetylation between NAT2*4/*5B and NAT2*4/*6B hepatocytes were not observed in vitro or in situ towards any of these substrates. These results further support phenotypic heterogeneity among NAT2 slow acetylator genotypes, consistent with differential risks of drug failure or toxicity and cancer associated with carcinogen exposure.

  16. Slow acetylator mutations in the human polymorphic N-acetyltransferase gene in 786 Asians, blacks, Hispanics, and whites: Application to metabolic epidemiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, H.J.; Chunya Han; Lin, B.K.

    1993-04-01

    The aim was to determine the population frequencies of the major slow acetylator alleles of the polymorphic N-acetyltransferase (NA T2) gene, whose locus maps to chromosome 8. The authors used allele-specific PCR amplification on 786 dried blood spots obtained from Hong Kong Chinese, US Koreans, US blacks, US Hispanics, Germans, and US whites. Their results show that four slow acetylator alleles can be detected as mutations at positions 481, 590, and 857 in the NA T2 gene. Recognized base substitutions at positions 341 and 803 need not be determined, because they were almost always associated with the 481T mutation. Themore » known mutation at position 282 was strongly associated with the 590A mutation. The 481T, 590A, and 857A mutations accounted for virtually all of the slow acetylator alleles in Asian and white populations. The 857A mutation proved to be an Asiatic allele. The results will be useful in large-scale epidemiologic studies of cancer and other conditions potentially associated with the acetylator polymorphism. 20 refs., 3 figs., 4 tabs.« less

  17. Comparative genomic and phylogenetic investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family

    USDA-ARS?s Scientific Manuscript database

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes characterized in several bacteria and eukaryotic organisms. We report a comprehensive phylogenetic analysis employing an exhaustive dataset of NAT-homologous sequences recovered through inspection of 2445 genomes. We describe ...

  18. Transgenic tobacco simultaneously overexpressing glyphosate N-acetyltransferase and 5-enolpyruvylshikimate-3-phosphate synthase are more resistant to glyphosate than those containing one gene.

    PubMed

    Liu, Yunjun; Cao, Gaoyi; Chen, Rongrong; Zhang, Shengxue; Ren, Yuan; Lu, Wei; Wang, Jianhua; Wang, Guoying

    2015-08-01

    5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) and glyphosate N-acetyltransferase (GAT) can detoxify glyphosate by alleviating the suppression of shikimate pathway. In this study, we obtained transgenic tobacco plants overexpressing AM79 aroA, GAT, and both of them, respectively, to evaluate whether overexpression of both genes could confer transgenic plants with higher glyphosate resistance. The transgenic plants harboring GAT or AM79 aroA, respectively, showed good glyphosate resistance. As expected, the hybrid plants containing both GAT and AM79 aroA exhibited improved glyphosate resistance than the transgenic plants overexpressing only a single gene. When grown on media with high concentration of glyphosate, seedlings containing a single gene were severely inhibited, whereas plants expressing both genes were affected less. When transgenic plants grown in the greenhouse were sprayed with glyphosate, less damage was observed for the plants containing both genes. Metabolomics analysis showed that transgenic plants containing two genes could maintain the metabolism balance better than those containing one gene after glyphosate treatment. Glyphosate treatment did not lead to a huge increase of shikimate contents of tobacco leaves in transgenic plants overexpressing two genes, whereas significant increase of shikimate contents in transgenic plants containing only a single gene was observed. These results demonstrated that pyramiding both aroA and GAT in transgenic plants can enhance glyphosate resistance, and this strategy can be used for the development of transgenic glyphosate-resistant crops.

  19. Knock down of GCN5 histone acetyltransferase by siRNA decreases ethanol-induced histone acetylation and affects differential expression of genes in human hepatoma cells.

    PubMed

    Choudhury, Mahua; Pandey, Ravi S; Clemens, Dahn L; Davis, Justin Wade; Lim, Robert W; Shukla, Shivendra D

    2011-06-01

    We have investigated whether Gcn5, a histone acetyltransferase (HAT), is involved in ethanol-induced acetylation of histone H3 at lysine 9 (H3AcK9) and has any effect on the gene expression. Human hepatoma HepG2 cells transfected with ethanol-metabolizing enzyme alcohol dehydrogenase 1 (VA 13 cells) were used. Knock down of Gcn5 by siRNA silencing decreased mRNA and protein levels of general control nondepressible 5 (GCN5), HAT activity, and also attenuated ethanol-induced H3AcK9 in VA13 cells. Illumina gene microarray analysis using total RNA showed 940 transcripts affected by GCN5 silencing or ethanol. Silencing caused differential expression of 891 transcripts (≥1.5-fold upregulated or downregulated). Among these, 492 transcripts were upregulated and 399 were downregulated compared with their respective controls. Using a more stringent threshold (≥2.5-fold), the array data from GCN5-silenced samples showed 57 genes differentially expressed (39 upregulated and 18 downregulated). Likewise, ethanol caused differential regulation of 57 transcripts with ≥1.5-fold change (35 gene upregulated and 22 downregulated). Further analysis showed that eight genes were differentially regulated that were common for both ethanol treatment and GCN5 silencing. Among these, SLC44A2 (a putative choline transporter) was strikingly upregulated by ethanol (three fold), and GCN5 silencing downregulated it (1.5-fold). The quantitative real-time polymerase chain reaction profile corroborated the array findings. This report demonstrates for the first time that (1) GCN5 differentially affects expression of multiple genes, (2) ethanol-induced histone H3-lysine 9 acetylation is mediated via GCN5, and (3) GCN5 is involved in ethanol-induced expression of the putative choline transporter SLC44A2. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. New Molecular Bridge between RelA/p65 and NF-κB Target Genes via Histone Acetyltransferase TIP60 Cofactor*

    PubMed Central

    Kim, Jung-Woong; Jang, Sang-Min; Kim, Chul-Hong; An, Joo-Hee; Kang, Eun-Jin; Choi, Kyung-Hee

    2012-01-01

    The nuclear factor-κB (NF-κB) family is involved in the expressions of numerous genes, in development, apoptosis, inflammatory responses, and oncogenesis. In this study we identified four NF-κB target genes that are modulated by TIP60. We also found that TIP60 interacts with the NF-κB RelA/p65 subunit and increases its transcriptional activity through protein-protein interaction. Although TIP60 binds with RelA/p65 using its histone acetyltransferase domain, TIP60 does not directly acetylate RelA/p65. However, TIP60 maintained acetylated Lys-310 RelA/p65 levels in the TNF-α-dependent NF-κB signaling pathway. In chromatin immunoprecipitation assay, TIP60 was primarily recruited to the IL-6, IL-8, C-IAP1, and XIAP promoters in TNF-α stimulation followed by acetylation of histones H3 and H4. Chromatin remodeling by TIP60 involved the sequential recruitment of acetyl-Lys-310 RelA/p65 to its target gene promoters. Furthermore, we showed that up-regulated TIP60 expression was correlated with acetyl-Lys-310 RelA/p65 expressions in hepatocarcinoma tissues. Taken together these results suggest that TIP60 is involved in the NF-κB pathway through protein interaction with RelA/p65 and that it modulates the transcriptional activity of RelA/p65 in NF-κB-dependent gene expression. PMID:22249179

  1. The Lysine Acetyltransferase GCN5 Is Required for iNKT Cell Development through EGR2 Acetylation.

    PubMed

    Wang, Yajun; Yun, Chawon; Gao, Beixue; Xu, Yuanming; Zhang, Yana; Wang, Yiming; Kong, Qingfei; Zhao, Fang; Wang, Chyung-Ru; Dent, Sharon Y R; Wang, Jian; Xu, Xiangping; Li, Hua-Bin; Fang, Deyu

    2017-07-18

    The development of CD1d-restricted invariant natural killer T (iNKT) cells, a population that is critical for both innate and adaptive immunity, is regulated by multiple transcription factors, but the molecular mechanisms underlying how the transcriptional activation of these factors are regulated during iNKT development remain largely unknown. We found that the histone acetyltransferase general control non-derepressible 5 (GCN5) is essential for iNKT cell development during the maturation stage. GCN5 deficiency blocked iNKT cell development in a cell-intrinsic manner. At the molecular level, GCN5 is a specific lysine acetyltransferase of early growth responsive gene 2 (EGR2), a transcription factor required for iNKT cell development. GCN5-mediated acetylation positively regulated EGR2 transcriptional activity, and both genetic and pharmacological GCN5 suppression specifically inhibited the transcription of EGR2 target genes in iNKT cells, including Runx1, promyelocytic leukemia zinc finger protein (PLZF), interleukin (IL)-2Rb, and T-bet. Therefore, our study revealed GCN5-mediated EGR2 acetylation as a molecular mechanism that regulates iNKT development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Synergism between the N-acetyltransferase 2 gene and oxidant exposure increases the risk of idiopathic male infertility.

    PubMed

    Yarosh, Sergey L; Kokhtenko, Elena V; Churnosov, Mikhail I; Ataman, Alexander V; Solodilova, Maria A; Polonikov, Alexey V

    2014-09-01

    N-acetyltransferase (NAT2) is a phase-II xenobiotic-metabolizing enzyme participating in the detoxification of toxic arylamines, aromatic amines and hydrazines. The present study was designed to investigate whether two common single-nucleotide polymorphisms (SNP) of the NAT2 gene (481C>T, rs1799929; 590G>A, rs1799930) are associated with susceptibility to idiopathic male infertility and to assess if the risk is modified by oxidant and antioxidant exposures. A total 430 DNA samples (203 infertile patients and 227 fertile men) were genotyped for the polymorphisms by PCR and restriction fragment length polymorphism. No association was found between the NAT2 polymorphisms and idiopathic male infertility. However, gene-environment interaction analysis revealed that a low-acetylation genotype, 590GA, was significantly associated with increased disease risk in men who had environmental risk factors such as cigarette smoking (OR 1.71, 95% CI 1.02-2.87, P = 0.042), alcohol abuse (OR 2.14, 95% CI 1.08-4.27, P = 0.029) and low fruit/vegetable intake (OR 1.68, 95% CI 1.01-2.79, P = 0.04). This pilot study found, as far as is known for the first time, that the polymorphism 590G>A of NAT2 is a novel genetic marker for susceptibility to idiopathic male infertility, but the risk is potentiated by exposure to various environmental oxidants. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Pineal-specific expression of green fluorescent protein under the control of the serotonin-N-acetyltransferase gene regulatory regions in transgenic zebrafish.

    PubMed

    Gothilf, Yoav; Toyama, Reiko; Coon, Steven L; Du, Shao-Jun; Dawid, Igor B; Klein, David C

    2002-11-01

    Zebrafish serotonin-N-acetyltransferase-2 (zfAANAT-2) mRNA is exclusively expressed in the pineal gland (epiphysis) at the embryonic stage. Here, we have initiated an effort to study the mechanisms underlying tissue-specific expression of this gene. DNA constructs were prepared in which green fluorescent protein (GFP) is driven by regulatory regions of the zfAANAT-2 gene. In vivo transient expression analysis in zebrafish embryos indicated that in addition to the 5'-flanking region, a regulatory sequence in the 3'-flanking region is required for pineal-specific expression. This finding led to an effort to produce transgenic lines expressing GFP under the control of the 5' and 3' regulatory regions of the zfAANAT-2 gene. Embryos transiently expressing GFP were raised to maturity and tested for germ cell transmission of the transgene. Three transgenic lines were produced in which GFP fluorescence in the pineal was detected starting 1 to 2 days after fertilization. One line was crossed with mindbomb and floating head mutants that cause abnormal development of the pineal and an elevation or reduction of zfAANAT-2 mRNA levels, respectively. Homozygous mutant transgenic embryos exhibited similar effects on GFP expression in the pineal gland. These observations indicate that the transgenic lines described here will be useful in studying the development of the pineal gland and the mechanisms that determine pineal-specific gene expression in the zebrafish. Published 2002 Wiley-Liss, Inc.

  4. Characterization of a Glucosamine/Glucosaminide N-Acetyltransferase of Clostridium acetobutylicum▿†

    PubMed Central

    Reith, Jan; Mayer, Christoph

    2011-01-01

    Many bacteria, in particular Gram-positive bacteria, contain high proportions of non-N-acetylated amino sugars, i.e., glucosamine (GlcN) and/or muramic acid, in the peptidoglycan of their cell wall, thereby acquiring resistance to lysozyme. However, muramidases with specificity for non-N-acetylated peptidoglycan have been characterized as part of autolytic systems such as of Clostridium acetobutylicum. We aim to elucidate the recovery pathway for non-N-acetylated peptidoglycan fragments and present here the identification and characterization of an acetyltransferase of novel specificity from C. acetobutylicum, named GlmA (for glucosamine/glucosaminide N-acetyltransferase). The enzyme catalyzes the specific transfer of an acetyl group from acetyl coenzyme A to the primary amino group of GlcN, thereby generating N-acetylglucosamine. GlmA is also able to N-acetylate GlcN residues at the nonreducing end of glycosides such as (partially) non-N-acetylated peptidoglycan fragments and β-1,4-glycosidically linked chitosan oligomers. Km values of 114, 64, and 39 μM were determined for GlcN, (GlcN)2, and (GlcN)3, respectively, and a 3- to 4-fold higher catalytic efficiency was determined for the di- and trisaccharides. GlmA is the first cloned and biochemically characterized glucosamine/glucosaminide N-acetyltransferase and a member of the large GCN5-related N-acetyltransferases (GNAT) superfamily of acetyltransferases. We suggest that GlmA is required for the recovery of non-N-acetylated muropeptides during cell wall rescue in C. acetobutylicum. PMID:21784938

  5. Structure of Mesorhizobium loti arylamine N-acetyltransferase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holton, Simon J.; Dairou, Julien; Sandy, James

    2005-01-01

    The crystal structure of a M. loti arylamine N-acetyltransferase 1 has been determined at 2.0 Å resolution. The arylamine N-acetyltransferase (NAT) enzymes have been found in a broad range of both eukaryotic and prokaryotic organisms. The NAT enzymes catalyse the transfer of an acetyl group from acetyl Co-enzyme A onto the terminal nitrogen of a range of arylamine, hydrazine and arylhydrazine compounds. Recently, several NAT structures have been reported from different prokaryotic sources including Salmonella typhimurium, Mycobacterium smegmatis and Pseudomonas aeruginosa. Bioinformatics analysis of the Mesorhizobium loti genome revealed two NAT paralogues, the first example of multiple NAT isoenzymes inmore » a eubacterial organism. The M. loti NAT 1 enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme was crystallized in 0.5 M Ca(OAc){sub 2}, 16% PEG 3350, 0.1 M Tris–HCl pH 8.5 using the sitting-drop vapour-diffusion method. A data set diffracting to 2.0 Å was collected from a single crystal at 100 K. The crystal belongs to the orthorhombic spacegroup P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.2, b = 97.3, c = 114.3 Å. The structure was refined to a final free-R factor of 24.8%. The structure reveals that despite low sequence homology, M. loti NAT1 shares the common fold as reported in previous NAT structures and exhibits the same catalytic triad of residues (Cys-His-Asp) in the active site.« less

  6. Season-dependent effects of photoperiod and temperature on circadian rhythm of arylalkylamine N-acetyltransferase2 gene expression in pineal organ of an air-breathing catfish, Clarias gariepinus.

    PubMed

    Singh, Kshetrimayum Manisana; Saha, Saurav; Gupta, Braj Bansh Prasad

    2017-08-01

    Arylalkylamine N-acetyltransferase (AANAT) activity, aanat gene expression and melatonin production have been reported to exhibit prominent circadian rhythm in the pineal organ of most species of fish. Three types of aanat genes are expressed in fish, but the fish pineal organ predominantly expresses aanat2 gene. Increase and decrease in daylength is invariably associated with increase and decrease in temperature, respectively. But so far no attempt has been made to delineate the role of photoperiod and temperature in regulation of the circadian rhythm of aanat2 gene expression in the pineal organ of any fish with special reference to seasons. Therefore, we studied effects of various lighting regimes (12L-12D, 16L-8D, 8L-16D, LL and DD) at a constant temperature (25°C) and effects of different temperatures (15°, 25° and 35°C) under a common photoperiod 12L-12D on circadian rhythm of aanat2 gene expression in the pineal organ of Clarias gariepinus during summer and winter seasons. Aanat2 gene expression in fish pineal organ was studied by measuring aanat2 mRNA levels using Real-Time PCR. Our findings indicate that the pineal organ of C. gariepinus exhibits a prominent circadian rhythm of aanat2 gene expression irrespective of photoperiods, temperatures and seasons, and the circadian rhythm of aanat2 gene expression responds differently to different photoperiods and temperatures in a season-dependent manner. Existence of circadian rhythm of aanat2 gene expression in pineal organs maintained in vitro under 12L-12D and DD conditions as well as a free running rhythm of the gene expression in pineal organ of the fish maintained under LL and DD conditions suggest that the fish pineal organ possesses an endogenous circadian oscillator, which is entrained by light-dark cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. N-Acetyltransferase 2 Genotypes Are Associated With Diisocyanate-Induced Asthma.

    PubMed

    Yucesoy, Berran; Kissling, Grace E; Johnson, Victor J; Lummus, Zana L; Gautrin, Denyse; Cartier, André; Boulet, Louis-Philippe; Sastre, Joaquin; Quirce, Santiago; Tarlo, Susan M; Cruz, Maria-Jesus; Munoz, Xavier; Luster, Michael I; Bernstein, David I

    2015-12-01

    To investigate whether genetic variants of N-acetyltransferase (NAT) genes are associated with diisocyanate asthma (DA). The study population consisted of 354 diisocyanate-exposed workers. Genotyping was performed using a 5'-nuclease polymerase chain reaction assay. The NAT2 rs2410556 and NAT2 rs4271002 variants were significantly associated with DA in the univariate analysis. In the first logistic regression model comparing DA+ and asymptomatic worker groups, the rs2410556 (P = 0.004) and rs4271002 (P < 0.001) single nucleotide polymorphisms and the genotype combination, NAT2 rs4271002*NAT1 rs11777998, showed associations with DA risk (P = 0.014). In the second model comparing DA+ and DA- groups, NAT2 rs4271002 variant and the combined genotype, NAT1 rs8190845*NAT2 rs13277605, were significantly associated with DA risk (P = 0.022, P = 0.036, respectively). These findings suggest that variations in the NAT2 gene and their interactions contribute to DA susceptibility.

  8. A novel member of the GCN5-related N-acetyltransferase superfamily from Caenorhabditis elegans preferentially catalyses the N-acetylation of thialysine [S-(2-aminoethyl)-L-cysteine

    PubMed Central

    2004-01-01

    The putative diamine N-acetyltransferase D2023.4 has been cloned from the model nematode Caenorhabditis elegans. The 483 bp open reading frame of the cDNA encodes a deduced polypeptide of 18.6 kDa. Accordingly, the recombinantly expressed His6-tagged protein forms an enzymically active homodimer with a molecular mass of approx. 44000 Da. The protein belongs to the GNAT (GCN5-related N-acetyltransferase) superfamily, and its amino acid sequence exhibits considerable similarity to mammalian spermidine/spermine-N1-acetyltransferases. However, neither the polyamines spermidine and spermine nor the diamines putrescine and cadaverine were efficiently acetylated by the protein. The smaller diamines diaminopropane and ethylenediamine, as well as L-lysine, represent better substrates, but, surprisingly, the enzyme most efficiently catalyses the N-acetylation of amino acids analogous with L-lysine. As determined by the kcat/Km values, the C. elegans N-acetyltransferase prefers thialysine [S-(2-aminoethyl)-L-cysteine], followed by O-(2-aminoethyl)-L-serine and S-(2-aminoethyl)-D,L-homocysteine. Reversed-phase HPLC and mass spectrometric analyses revealed that N-acetylation of L-lysine and L-thialysine occurs exclusively at the amino moiety of the side chain. Remarkably, heterologous expression of C. elegans N-acetyltransferase D2023.4 in Escherichia coli, which does not possess a homologous gene, results in a pronounced resistance against the anti-metabolite thialysine. Furthermore, C. elegans N-acetyltransferase D2023.4 exhibits the highest homology with a number of GNATs found in numerous genomes from bacteria to mammals that have not been biochemically characterized so far, suggesting a novel group of GNAT enzymes closely related to spermidine/spermine-N1-acetyltransferase, but with a distinct substrate specificity. Taken together, we propose to name the enzyme ‘thialysine Nε-acetyltransferase’. PMID:15283700

  9. Genetic polymorphisms of N-acetyltransferase 2 & susceptibility to antituberculosis drug-induced hepatotoxicity.

    PubMed

    Sharma, Surendra K; Jha, Brajesh Kumar; Sharma, Abhishek; Sreenivas, V; Upadhyay, Vishwanath; Jaisinghani, Chandrita; Singla, Rohit; Mishra, Hemant Kumar; Soneja, Manish

    2016-12-01

    The N-acetyltransferase 2 (NAT2) gene encodes an enzyme which both activates and deactivates arylamine and other drugs and carcinogens. This study was aimed to investigate the role of NAT2 gene polymorphism in anti-tuberculosis drug-induced hepatotoxicity (DIH). In this prospective study, polymerase chain reaction-restriction fragment length polymorphism results for NAT2 gene were compared between 185 tuberculosis patients who did not develop DIH and 105 tuberculosis patients who developed DIH while on anti-tuberculosis drugs. Frequency of slow-acetylator genotype was commonly encountered and was not significantly different between DIH (82.8%) and non-DIH (77.2%) patients. However, the genotypic distribution of variant NAT2FNx015/FNx017 amongst slow-acetylator genotypes was significantly higher in DIH (56%) group as compared to non-DIH (39%) group (odds ratio 2.02; P=0.006). The present study demonstrated no association between NAT2 genotype and DIH in the north Indian patients with tuberculosis.

  10. Codominant Expression of N-Acetylation and O-Acetylation Activities Catalyzed by N-Acetyltransferase 2 in Human Hepatocytes

    PubMed Central

    Doll, Mark A.; Zang, Yu; Moeller, Timothy

    2010-01-01

    Human populations exhibit genetic polymorphism in N-acetylation capacity, catalyzed by N-acetyltransferase 2 (NAT2). We investigated the relationship between NAT2 acetylator genotype and phenotype in cryopreserved human hepatocytes. NAT2 genotypes determined in 256 human samples were assigned as rapid (two rapid alleles), intermediate (one rapid and one slow allele), or slow (two slow alleles) acetylator phenotypes based on functional characterization of the NAT2 alleles reported previously in recombinant expression systems. A robust and significant relationship was observed between deduced NAT2 phenotype (rapid, intermediate, or slow) and N-acetyltransferase activity toward sulfamethazine (p < 0.0001) and 4-aminobiphenyl (p < 0.0001) and for O-acetyltransferase-catalyzed metabolic activation of N-hydroxy-4-aminobiphenyl (p < 0.0001), N-hydroxy-2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (p < 0.01), and N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (p < 0.0001). NAT2-specific protein levels also significantly associated with the rapid, intermediate, and slow NAT2 acetylator phenotypes (p < 0.0001). As a negative control, p-aminobenzoic acid (an N-acetyltransferase 1-selective substrate) N-acetyltransferase activities from the same samples did not correlate with the three NAT2 acetylator phenotypes (p > 0.05). These results clearly document codominant expression of human NAT2 alleles resulting in rapid, intermediate, and slow acetylator phenotypes. The three phenotypes reflect levels of NAT2 protein catalyzing both N- and O-acetylation. Our results suggest a significant role of NAT2 acetylation polymorphism in arylamine-induced cancers and are consistent with differential cancer risk and/or drug efficacy/toxicity in intermediate compared with rapid or slow NAT2 acetylator phenotypes. PMID:20430842

  11. Systemic functional expression of N-acetyltransferase polymorphism in the F344 Nat2 congenic rat

    PubMed Central

    Hein, David W.; Bendaly, Jean; Neale, Jason R.; Doll, Mark A.

    2008-01-01

    Rat lines congenic for the rat N-acetyltransferase 2 [(RAT)Nat2] gene were constructed and characterized. F344 (homozygous Nat2 rapid) males were mated to WKY (homozygous Nat2 slow) females to produce heterozygous F1. F1 females were then backcrossed to F344 males. Heterozygous acetylator female progeny from this and each successive backcross were identified by rat Nat2 genotyping and mated with F344 rapid acetylator males. Following ten generations of backcross mating, heterozygous acetylator brother/sister progeny were mated to produce the homozgygous rapid and slow acetylator Nat2 congenic rat lines. p-Aminobenzoic acid (selective for rat NAT2) and 4-aminobiphenyl N-acetyltransferase activities were expressed in all tissues examined (liver, lung, esophagus, stomach, small intestine, colon, pancreas, kidney, skin, leukocytes, and urinary bladder in male and female rats and in breast of female and prostate of male rats). NAT2 expression in rat extrahepatic tissues was much higher than in liver. In each tissue, activities were Nat2-genotype dependent, with highest levels in homozygous rapid acetylators, intermediate levels in heterozygous acetylators, and lowest in homozygous slow acetylators. Sulfamethazine (selective for rat NAT1) N-acetyltransferase activities were observed in all tissues examined in both male and female rats except for breast (females), bladder and leukocytes. In each tissue, the activity was Nat2-genotype independent, with similar levels in homozygous rapid, heterozygous, and homozygous slow acetylators. These congenic rat lines are useful to investigate the role of NAT2 genetic polymorphism in susceptibility to cancers related to arylamine carcinogen exposures. PMID:18799801

  12. Crystal structure of bacillus subtilis YdaF protein : a putative ribosomal N-acetyltransferase.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunzelle, J. S.; Wu, R.; Korolev, S. V.

    2004-12-01

    Comparative sequence analysis suggests that the ydaF gene encodes a protein (YdaF) that functions as an N-acetyltransferase, more specifically, a ribosomal N-acetyltransferase. Sequence analysis using basic local alignment search tool (BLAST) suggests that YdaF belongs to a large family of proteins (199 proteins found in 88 unique species of bacteria, archaea, and eukaryotes). YdaF also belongs to the COG1670, which includes the Escherichia coli RimL protein that is known to acetylate ribosomal protein L12. N-acetylation (NAT) has been found in all kingdoms. NAT enzymes catalyze the transfer of an acetyl group from acetyl-CoA (AcCoA) to a primary amino group. Formore » example, NATs can acetylate the N-terminal {alpha}-amino group, the {epsilon}-amino group of lysine residues, aminoglycoside antibiotics, spermine/speridine, or arylalkylamines such as serotonin. The crystal structure of the alleged ribosomal NAT protein, YdaF, from Bacillus subtilis presented here was determined as a part of the Midwest Center for Structural Genomics. The structure maintains the conserved tertiary structure of other known NATs and a high sequence similarity in the presumed AcCoA binding pocket in spite of a very low overall level of sequence identity to other NATs of known structure.« less

  13. The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1

    PubMed Central

    Osada, Shigehiro; Sutton, Ann; Muster, Nemone; Brown, Christine E.; Yates, John R.; Sternglanz, Rolf; Workman, Jerry L.

    2001-01-01

    It is well established that acetylation of histone and nonhistone proteins is intimately linked to transcriptional activation. However, loss of acetyltransferase activity has also been shown to cause silencing defects, implicating acetylation in gene silencing. The something about silencing (Sas) 2 protein of Saccharomyces cerevisiae, a member of the MYST (MOZ, Ybf2/Sas3, Sas2, and TIP60) acetyltransferase family, promotes silencing at HML and telomeres. Here we identify a ∼450-kD SAS complex containing Sas2p, Sas4p, and the tf2f-related Sas5 protein. Mutations in the conserved acetyl-CoA binding motif of Sas2p are shown to disrupt the ability of Sas2p to mediate the silencing at HML and telomeres, providing evidence for an important role for the acetyltransferase activity of the SAS complex in silencing. Furthermore, the SAS complex is found to interact with chromatin assembly factor Asf1p, and asf1 mutants show silencing defects similar to mutants in the SAS complex. Thus, ASF1-dependent chromatin assembly may mediate the role of the SAS complex in silencing. PMID:11731479

  14. Endoplasmic reticulum stress-responsive transcription factor ATF6α directs recruitment of the Mediator of RNA polymerase II transcription and multiple histone acetyltransferase complexes.

    PubMed

    Sela, Dotan; Chen, Lu; Martin-Brown, Skylar; Washburn, Michael P; Florens, Laurence; Conaway, Joan Weliky; Conaway, Ronald C

    2012-06-29

    The basic leucine zipper transcription factor ATF6α functions as a master regulator of endoplasmic reticulum (ER) stress response genes. Previous studies have established that, in response to ER stress, ATF6α translocates to the nucleus and activates transcription of ER stress response genes upon binding sequence specifically to ER stress response enhancer elements in their promoters. In this study, we investigate the biochemical mechanism by which ATF6α activates transcription. By exploiting a combination of biochemical and multidimensional protein identification technology-based mass spectrometry approaches, we have obtained evidence that ATF6α functions at least in part by recruiting to the ER stress response enhancer elements of ER stress response genes a collection of RNA polymerase II coregulatory complexes, including the Mediator and multiple histone acetyltransferase complexes, among which are the Spt-Ada-Gcn5 acetyltransferase (SAGA) and Ada-Two-A-containing (ATAC) complexes. Our findings shed new light on the mechanism of action of ATF6α, and they outline a straightforward strategy for applying multidimensional protein identification technology mass spectrometry to determine which RNA polymerase II transcription factors and coregulators are recruited to promoters and other regulatory elements to control transcription.

  15. Early development of the enteric nervous system visualized by using a new transgenic zebrafish line harboring a regulatory region for choline acetyltransferase a (chata) gene.

    PubMed

    Nikaido, Masataka; Izumi, Saki; Ohnuki, Honoka; Takigawa, Yuki; Yamasu, Kyo; Hatta, Kohei

    2018-06-01

    The enteric nervous system (ENS) is the largest part of the peripheral nervous system in vertebrates. Toward the visualization of the development of the vertebrate ENS, we report our creation of a new transgenic line, Tg(chata:GGFF2) which has a 1.5-kb upstream region of the zebrafish choline acetyltransferase a (chata) gene followed by modified green fluorescent protein (gfp). During development, GFP + cells were detected in the gut by 60 h post-fertilization (hpf). In the gut of 6- and 12-days post-fertilization (dpf) larvae, an average of 92% of the GFP + cells were positive for the neuronal marker HuC/D, suggesting that GFP marks enteric neurons in this transgenic line. We also observed that 66% of the GFP + cells were choline acetyltransferase (ChAT)-immunopositive at 1.5 months. Thus, GFP is expressed at the larval stages at which ChAT protein expression is not yet detected by immunostaining. We studied the spatiotemporal pattern of neural differentiation in the ENS by live-imaging of this transgenic line. We observed that GFP + or gfp + cells initially formed a pair of bilateral rows at 60 hpf or 53 hpf, respectively, in the migrating enteric neural crest cells. Most of the GFP + cells did not migrate, and most of the new GFP + cells were added to fill the space among the previously formed GFP + cells. GFP expression reached the anus by 72 hpf. New GFP + cells then also appeared in the dorsal and ventral sides of the initial GFP + rows, resulting in their distribution on the entire gut by 4 dpf. A small number of new GFP + cells were found to move among older GFP + cells just before the cells stopped migration, suggesting that the moving GFP + cells may represent neural precursor cells searching for a place for the final differentiation. Our data suggest that the Tg(chata:GGFF2) line could serve as a useful tool for studies of enteric neural differentiation and cell behavior. Copyright © 2018. Published by Elsevier B.V.

  16. Expression Levels of the Yeast Alcohol Acetyltransferase Genes ATF1, Lg-ATF1, and ATF2 Control the Formation of a Broad Range of Volatile Esters

    PubMed Central

    Verstrepen, Kevin J.; Van Laere, Stijn D. M.; Vanderhaegen, Bart M. P.; Derdelinckx, Guy; Dufour, Jean-Pierre; Pretorius, Isak S.; Winderickx, Joris; Thevelein, Johan M.; Delvaux, Freddy R.

    2003-01-01

    Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages such as beer and wine. Esters are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction. In order to investigate and compare the roles of the known Saccharomyces cerevisiae alcohol acetyltransferases, Atf1p, Atf2p and Lg-Atf1p, in volatile ester production, the respective genes were either deleted or overexpressed in a laboratory strain and a commercial brewing strain. Subsequently, the ester formation of the transformants was monitored by headspace gas chromatography and gas chromatography combined with mass spectroscopy (GC-MS). Analysis of the fermentation products confirmed that the expression levels of ATF1 and ATF2 greatly affect the production of ethyl acetate and isoamyl acetate. GC-MS analysis revealed that Atf1p and Atf2p are also responsible for the formation of a broad range of less volatile esters, such as propyl acetate, isobutyl acetate, pentyl acetate, hexyl acetate, heptyl acetate, octyl acetate, and phenyl ethyl acetate. With respect to the esters analyzed in this study, Atf2p seemed to play only a minor role compared to Atf1p. The atf1Δ atf2Δ double deletion strain did not form any isoamyl acetate, showing that together, Atf1p and Atf2p are responsible for the total cellular isoamyl alcohol acetyltransferase activity. However, the double deletion strain still produced considerable amounts of certain other esters, such as ethyl acetate (50% of the wild-type strain), propyl acetate (50%), and isobutyl acetate (40%), which provides evidence for the existence of additional, as-yet-unknown ester synthases in the yeast proteome. Interestingly, overexpression of different alleles of ATF1 and ATF2 led to different ester production rates, indicating that differences in the aroma profiles of yeast strains may be partially due to mutations in their ATF genes. PMID:12957907

  17. Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, S.; Kamine, J.; Markovitz, D.

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, the authors demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBVmore » gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses.« less

  18. Purification and Kinetic Properties of Serine Acetyltransferase Free of O-Acetylserine(thiol)lyase from Spinach Chloroplasts.

    PubMed

    Ruffet, M. L.; Droux, M.; Douce, R.

    1994-02-01

    Serine acetyltransferase, a key enzyme in the L-cysteine biosynthetic pathway, was purified over 300,000-fold from the stroma of spinach (Spinacia oleracea) leaf chloroplasts. The purification procedure consisted of ammonium sulfate precipitation, anion-exchange chromatography (Trisacryl M DEAE and Mono Q HR10/10), hydroxylapatite chromatography, and gel filtration (Superdex 200). The purified enzyme exhibited a specific activity higher than 200 units mg-1 and a subunit molecular mass of about 33 kD upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Moreover, the purified serine acetyltransferase appeared to be essentially free of O-acetyleserine(thiol)lyase, another enzyme component in the L-cysteine biosynthetic pathway. A steady-state kinetic analysis indicated that the mechanism of the enzyme-catalyzed reaction involves a double displacement. The apparent Km for the two substrates, L-serine and acetyl-coenzyme A, were 2.29 [plus or minus] 0.43 and 0.35 [plus or minus] 0.02 mM, respectively. The rate of L-cysteine synthesis in vitro was measured in a coupled enzyme assay using extensively purified O-acetylserine(thiol)lyase and serine acetyltransferase. This rate was maximum when the assay contained approximately a 400-fold excess of O-acetylserine(thiol)lyase over serine acetyltransferase. Measurements of the relative level of O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma indicated that the former enzyme was present in much larger quantities than the latter. Thus, the activity ratio for these two enzymes [O-acetylserine(thiol)lyase activity/serine acetyltransferase activity] measured in the stromal protein extract was 345. This strongly suggested that all the O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma are involved in bringing a full synthesis of L-cysteine in the chloroplast.

  19. Purification and Kinetic Properties of Serine Acetyltransferase Free of O-Acetylserine(thiol)lyase from Spinach Chloroplasts.

    PubMed Central

    Ruffet, M. L.; Droux, M.; Douce, R.

    1994-01-01

    Serine acetyltransferase, a key enzyme in the L-cysteine biosynthetic pathway, was purified over 300,000-fold from the stroma of spinach (Spinacia oleracea) leaf chloroplasts. The purification procedure consisted of ammonium sulfate precipitation, anion-exchange chromatography (Trisacryl M DEAE and Mono Q HR10/10), hydroxylapatite chromatography, and gel filtration (Superdex 200). The purified enzyme exhibited a specific activity higher than 200 units mg-1 and a subunit molecular mass of about 33 kD upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Moreover, the purified serine acetyltransferase appeared to be essentially free of O-acetyleserine(thiol)lyase, another enzyme component in the L-cysteine biosynthetic pathway. A steady-state kinetic analysis indicated that the mechanism of the enzyme-catalyzed reaction involves a double displacement. The apparent Km for the two substrates, L-serine and acetyl-coenzyme A, were 2.29 [plus or minus] 0.43 and 0.35 [plus or minus] 0.02 mM, respectively. The rate of L-cysteine synthesis in vitro was measured in a coupled enzyme assay using extensively purified O-acetylserine(thiol)lyase and serine acetyltransferase. This rate was maximum when the assay contained approximately a 400-fold excess of O-acetylserine(thiol)lyase over serine acetyltransferase. Measurements of the relative level of O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma indicated that the former enzyme was present in much larger quantities than the latter. Thus, the activity ratio for these two enzymes [O-acetylserine(thiol)lyase activity/serine acetyltransferase activity] measured in the stromal protein extract was 345. This strongly suggested that all the O-acetylserine(thiol)lyase and serine acetyltransferase activities in the stroma are involved in bringing a full synthesis of L-cysteine in the chloroplast. PMID:12232109

  20. Key gene regulating cell wall biosynthesis and recalcitrance in Populus, gene Y

    DOEpatents

    Chen, Jay; Engle, Nancy; Gunter, Lee E.; Jawdy, Sara; Tschaplinski, Timothy J.; Tuskan, Gerald A.

    2015-12-08

    This disclosure provides methods and transgenic plants for improved production of renewable biofuels and other plant-derived biomaterials by altering the expression and/or activity of Gene Y, an O-acetyltransferase. This disclosure also provides expression vectors containing a nucleic acid (Gene Y) which encodes the polypeptide of SEQ ID NO: 1 and is operably linked to a heterologous promoter.

  1. IL-1β-specific recruitment of GCN5 histone acetyltransferase induces the release of PAF1 from chromatin for the de-repression of inflammatory response genes.

    PubMed

    Kim, Nari; Sun, Hwa-Young; Youn, Min-Young; Yoo, Joo-Yeon

    2013-04-01

    To determine the functional specificity of inflammation, it is critical to orchestrate the timely activation and repression of inflammatory responses. Here, we explored the PAF1 (RNA polymerase II associated factor)-mediated signal- and locus-specific repression of genes induced through the pro-inflammatory cytokine interleukin (IL)-1β. Using microarray analysis, we identified the PAF1 target genes whose expression was further enhanced by PAF1 knockdown in IL-1β-stimulated HepG2 hepatocarcinomas. PAF1 bound near the transcription start sites of target genes and dissociated on stimulation. In PAF1-deficient cells, more elongating RNA polymerase II and acetylated histones were observed, although IL-1β-mediated activation and recruitment of nuclear factor κB (NF-κB) were not altered. Under basal conditions, PAF1 blocked histone acetyltransferase general control non-depressible 5 (GCN5)-mediated acetylation on H3K9 and H4K5 residues. On IL-1β stimulation, activated GCN5 discharged PAF1 from chromatin, allowing productive transcription to occur. PAF1 bound to histones but not to acetylated histones, and the chromatin-binding domain of PAF1 was essential for target gene repression. Moreover, IL-1β-induced cell migration was similarly controlled through counteraction between PAF1 and GCN5. These results suggest that the IL-1β signal-specific exchange of PAF1 and GCN5 on the target locus limits inappropriate gene induction and facilitates the timely activation of inflammatory responses.

  2. Crystallization and preliminary X-ray characterization of arylamine N-acetyltransferase C (BanatC) from Bacillus anthracis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluvinage, Benjamin; Li de la Sierra-Gallay, Inés; Martins, Marta

    2007-10-01

    Bacillus anthracis arylamine N-acetyltransferase C (BanatC) is an enzyme that metabolizes the drug sulfamethoxazole. Crystals of the purified enzyme that diffract at 1.95 Å are reported. The arylamine N-acetyltransferase (NAT) enzymes are xenobiotic metabolizing enzymes that have been found in a large range of eukaryotes and prokaryotes. These enzymes catalyse the acetylation of arylamine drugs and/or pollutants. Recently, a Bacillus anthracis NAT isoform (BanatC) has been cloned and shown to acetylate the sulfonamide antimicrobial sulfamethoxazole (SMX). Subsequently, it was shown that BanatC contributes to the resistance of this bacterium to SMX. Here, the crystallization and the X-ray characterization of BanatCmore » (Y38F mutant) are reported. The crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 53.70, c = 172.40 Å, and diffract to 1.95 Å resolution on a synchrotron source.« less

  3. An Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat.

    PubMed Central

    Kenney, S; Kamine, J; Markovitz, D; Fenrick, R; Pagano, J

    1988-01-01

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, we demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses. Images PMID:2830625

  4. An Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat.

    PubMed

    Kenney, S; Kamine, J; Markovitz, D; Fenrick, R; Pagano, J

    1988-03-01

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, we demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses.

  5. Immunohistochemical localization of serotonin and choline acetyltransferase in sensory neurones of the locust.

    PubMed

    Lutz, E M; Tyrer, N M

    1988-01-15

    Sensory neuronal cell bodies in the leg of locust, Schistocerca gregaria, were visualized with antibodies to locust choline acetyltransferase and with antibodies to serotonin by the avidin-biotin peroxidase technique. Two groups of sensory cells react with the antibody to choline acetyltransferase: One group is associated with external mechanoreceptors (i.e., hair-plate hairs and campaniform sensilla) and the other with internal proprioceptors (i.e., chordotonal organs and multiterminal receptors). Sensory cells which react with the antibody to serotonin are associated only with internal proprioceptors being found in both chordotonal organs and multiterminal receptors. In the metathoracic femoral chordotonal organ indirect evidence suggests that some sensory cells are reactive to both antibodies. Some multiterminal receptors react with anti-choline-acetyltransferase, while others react with antiserotonin. These results support the conclusion that most insect sensory neurones are cholinergic but some are serotoninergic.

  6. Inhibitors of acetyltransferase domain of N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). Part 1: Hit to lead evaluation of a novel arylsulfonamide series.

    PubMed

    Green, Oluyinka M; McKenzie, Andrew R; Shapiro, Adam B; Otterbein, Ludovic; Ni, Haihong; Patten, Arthur; Stokes, Suzanne; Albert, Robert; Kawatkar, Sameer; Breed, Jason

    2012-02-15

    A novel arylsulfonamide-containing series of compounds represented by 1, discovered by highthroughput screening, inhibit the acetyltransferase domain of N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). X-ray structure determination confirmed that inhibitor binds at the site occupied by acetyl-CoA, indicating that series is competitive with this substrate. This letter documents our early hit-to-lead evaluation of the chemical series and some of the findings that led to improvement in in-vitro potency against Gram-negative and Gram-positive bacterial isozymes, exemplified by compound 40. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Choline acetyltransferase-like immunofluorescence in epidermis of human skin.

    PubMed

    Johansson, O; Wang, L

    1993-01-01

    Using the indirect immunofluorescence approach the occurrence of choline acetyltransferase-like immunoreactivity in epidermis, except stratum basale, of human skin is described. Immunoreactive cells were also found in hair follicles, sweat gland ducts and sebaceous glands.

  8. Molecular Evolution of Aralkylamine N-Acetyltransferase in Fish: A Genomic Survey.

    PubMed

    Li, Jia; You, Xinxin; Bian, Chao; Yu, Hui; Coon, Steven L; Shi, Qiong

    2015-12-31

    All living organisms synchronize biological functions with environmental changes; melatonin plays a vital role in regulating daily and seasonal variations. Due to rhythmic activity of the timezyme aralkylamine N-acetyltransferase (AANAT), the blood level of melatonin increases at night and decreases during daytime. Whereas other vertebrates have a single form of AANAT, bony fishes possess various isoforms of aanat genes, though the reasons are still unclear. Here, we have taken advantage of multiple unpublished teleost aanat sequences to explore and expand our understanding of the molecular evolution of aanat in fish. Our results confirm that two rounds of whole-genome duplication (WGD) led to the existence of three fish isoforms of aanat, i.e., aanat1a, aanat1b, and aanat2; in addition, gene loss led to the absence of some forms from certain special fish species. Furthermore, we suggest the different roles of two aanat1s in amphibious mudskippers, and speculate that the loss of aanat1a, may be related to terrestrial vision change. Several important sites of AANAT proteins and regulatory elements of aanat genes were analyzed for structural comparison and functional forecasting, respectively, which provides insights into the molecular evolution of the differences between AANAT1 and AANAT2.

  9. Induction of spermidine/spermine N1-acetyltransferase by methylglyoxal bis(guanylhydrazone).

    PubMed

    Pegg, A E; Erwin, B G; Persson, L

    1985-10-17

    The anti-tumor agent methylglyoxal bis(guanylhydrazone) was found to be a competitive inhibitor of spermidine/spermine N1-acetyltransferase with a Ki of about 8 microM. Treatment of rats with this drug lead to a very large increase in the total amount of spermidine/spermine N1-acetyltransferase in liver, kidney and spleen. The total increase as measured using a specific antiserum amounted to 700-fold in liver and 100-fold in kidney within 18 h of treatment with 80 mg/kg doses. At least part of this induction was due to a pronounced increase in the half-life of the acetyltransferase which increased from 15 min to more than 12 h. The very large increase in the amount of the enzyme is likely to overwhelm the direct inhibition, and a net increase in the acetylation of polyamines by this enzyme would be expected to occur after treatment with methylglyoxal bis(guanylhydrazone). The acetylated polyamines are known to be rapidly degraded by polyamine oxidase producing putrescine. Direct evidence that a substantial part of the increase in the content of putrescine in the liver of rats treated with methylglyoxal bis(guanylhydrazone) occurs via the induction of this acetylase/oxidase pathway was obtained. These results indicate that methylglyoxal bis(guanylhydrazone) affects cellular polyamine levels not only by means of its inhibitory effect on S-adenosylmethionine decarboxylase and diamine oxidase but also by the induction of spermidine/spermine N1-acetyltransferase. They also raise the possibility that the enormous increase in this enzyme which occurs with higher doses may contribute to the very severe toxicity of methylglyoxal bis(guanylhydrazone).

  10. Synthesis of 4′-aminopantetheine and derivatives to probe aminoglycoside N-6′-acetyltransferase

    PubMed Central

    Yan, Xuxu; Akinnusi, T. Olukayode; Larsen, Aaron T.; Auclair, Karine

    2011-01-01

    Summary A convenient synthesis of 4′-aminopantetheine from commercial D-pantethine is reported. The amino group was introduced by reductive amination in order to avoid substitution at a sterically congested position. Derivatives of 4′-aminopantetheine were also prepared to evaluate the effect of O-to-N substitution on inhibitors of the resistance-causing enzyme aminoglycoside N-6′-acetyltransferase. The biological results combined with docking studies indicate that in spite of its reported unusual flexibility and ability to adopt different folds, this enzyme is highly specific for AcCoA. PMID:21225062

  11. Lysine acetyltransferase inhibitors: structure-activity relationships and potential therapeutic implications.

    PubMed

    Fiorentino, Francesco; Mai, Antonello; Rotili, Dante

    2018-05-01

    Lysine acetylation is a post-translational modification of both histone and nonhistone proteins that is catalyzed by lysine acetyltransferases and plays a key role in numerous biological contexts. The dysregulation of this enzyme activity is implicated in many human pathologies such as cancer, neurological and inflammatory disorders. Many lysine acetyltransferase inhibitors (KATi) have been developed so far, but there is still the need for new, more potent, metabolically stable and selective KATi as chemical tools for studying KAT biology and/or as potential therapeutic agents. This review will examine the features of KAT enzymes and related diseases, with particular emphasis on KATi (bisubstrate analogs, natural compounds and synthetic derivatives), analyzing their mechanism of action, structure-activity relationships, pharmacokinetic/pharmacodynamic properties and potential future applications.

  12. The time enzyme in melatonin biosynthesis in fish: Day/night expressions of three aralkylamine N-acetyltransferase genes in three-spined stickleback.

    PubMed

    Kulczykowska, Ewa; Kleszczyńska, Agnieszka; Gozdowska, Magdalena; Sokołowska, Ewa

    2017-06-01

    In vertebrates, aralkylamine N-acetyltransferase (AANAT; EC 2.3.1.87) is a time-keeping enzyme in melatonin (Mel) biosynthesis. Uniquely in fish, there are several AANAT isozymes belonging to two AANAT subfamilies, AANAT1 and AANAT2, which are encoded by distinct genes. The different substrate preferences, kinetics and spatial expression patterns of isozymes indicate that they may have different functions. In the three-spined stickleback (Gasterosteus aculeatus), there are three genes encoding three AANAT isozymes. In this study, for the first time, the levels of aanat1a, aanat1b and aanat2 mRNAs are measured by absolute RT-qPCR in the brain, eye, skin, stomach, gut, heart and kidney collected at noon and midnight. Melatonin levels are analysed by HPLC with fluorescence detection in homogenates of the brain, eye, skin and kidney. The levels of aanats mRNAs differ significantly within and among organs. In the brain, eye, stomach and gut, there are day/night variations in aanats mRNAs levels. The highest levels of aanat1a and aanat1b mRNAs are in the eye. The extremely high expressions of these genes which are reflected in the highest Mel concentrations at this site at noon and midnight strongly suggest that the eye is an important source of the hormone in the three-spined sticklebacks. A very low level of aanat2 mRNA in all organs may suggest that AANAT1a and/or AANAT1b are principal isozymes in the three-spine sticklebacks. A presence of the isozymes of defined substrate preferences provides opportunity for control of acetylation of amines by modulation of individual aanat expression and permits the fine-tuning of indolethylamines and phenylethylamines metabolism to meet the particular needs of a given organ. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The histone acetyltransferase MOF activates hypothalamic polysialylation to prevent diet-induced obesity in mice

    PubMed Central

    Brenachot, Xavier; Rigault, Caroline; Nédélec, Emmanuelle; Laderrière, Amélie; Khanam, Tasneem; Gouazé, Alexandra; Chaudy, Sylvie; Lemoine, Aleth; Datiche, Frédérique; Gascuel, Jean; Pénicaud, Luc; Benani, Alexandre

    2014-01-01

    Overfeeding causes rapid synaptic remodeling in hypothalamus feeding circuits. Polysialylation of cell surface molecules is a key step in this neuronal rewiring and allows normalization of food intake. Here we examined the role of hypothalamic polysialylation in the long-term maintenance of body weight, and deciphered the molecular sequence underlying its nutritional regulation. We found that upon high fat diet (HFD), reduced hypothalamic polysialylation exacerbated the diet-induced obese phenotype in mice. Upon HFD, the histone acetyltransferase MOF was rapidly recruited on the St8sia4 polysialyltransferase-encoding gene. Mof silencing in the mediobasal hypothalamus of adult mice prevented activation of the St8sia4 gene transcription, reduced polysialylation, altered the acute homeostatic feeding response to HFD and increased the body weight gain. These findings indicate that impaired hypothalamic polysialylation contribute to the development of obesity, and establish a role for MOF in the brain control of energy balance. PMID:25161885

  14. Aminoglycoside acetyltransferase 3-IV (aacC4) and hygromycin B 4-I phosphotransferase (hphB) in bacteria isolated from human and animal sources.

    PubMed

    Salauze, D; Otal, I; Gomez-Lus, R; Davies, J

    1990-10-01

    Members of the family Enterobacteriaceae harboring an enzyme of the aminoglycoside acetyltransferase 3 class (AAC-3-IV) (apramycin and gentamicin resistance) and hygromycin B phosphotransferase 4 (HPH-4-I) (hygromycin B resistance) have been isolated from human clinical sources in Europe. A cluster of genes containing IS140, aacC4, and hphB was found in these strains. We demonstrate by Southern hybridization that this cluster is identical to the operon found in animals that also contains insertion sequences belonging to the ISO family. This provides another example of presumptive transfer of antibiotic resistance genes between bacteria of animal and human origin.

  15. Choline acetyltransferase expression during periods of behavioral activity and across natural sleep-wake states in the basal forebrain.

    PubMed

    Greco, M A; McCarley, R W; Shiromani, P J

    1999-01-01

    The present study examined whether the expression of the messenger RNA encoding the protein responsible for acetylcholine synthesis is associated with sleep-wakefulness. Choline acetyltransferase messenger RNA levels were analysed using a semi-quantitative assay in which reverse transcription was coupled to complementary DNA amplification using the polymerase chain reaction. To examine the relationship between steady-state messenger RNA and behavioral activity, rats were killed during the day (4.00 p.m.) or night (4.00 a.m.), and tissue from the vertical and horizontal limbs of the diagonal bands of Broca was analysed. Choline acetyltransferase messenger RNA levels were higher during the day than during the night. The second study examined more closely the association between choline acetyltransferase messenger RNA levels and individual bouts of wakefulness, slow-wave sleep or rapid eye movement sleep. Choline acetyltransferase messenger RNA levels were low during wakefulness, intermediate in slow-wave sleep and high during rapid eye movement sleep. In contrast, protein activity, measured at a projection site of cholinergic neurons of the basal forebrain, was higher during wakefulness than during sleep. These findings suggest that choline acetyltransferase protein and messenger RNA levels exhibit an inverse relationship during sleep and wakefulness. The increased messenger RNA expression during sleep is consistent with a restorative function of sleep.

  16. Regulation of spermidine/spermine N1-acetyltransferase in L6 cells by polyamines and related compounds.

    PubMed Central

    Erwin, B G; Pegg, A E

    1986-01-01

    Exposure of rat L6 cells in culture to exogenous polyamines led to a very large increase in the activity of spermidine/spermine N1-acetyltransferase. Spermine was more potent than spermidine in bringing about this increase, but in both cases the elevated acetyltransferase activity increased the cellular conversion of spermidine into putrescine. The N1-acetyltransferase turned over very rapidly in the L6 cells, with a half-life of 9 min after spermidine and 18 min after spermine. A wide variety of synthetic polyamine analogues also brought about a substantial induction of spermidine/spermine N1-acetyltransferase activity. These included sym-norspermidine, sym-norspermine, sym-homospermidine, N4-substituted spermidine derivatives, 1,3,6-triaminohexane, 1,4,7-triaminoheptane and deoxyspergualin, which were comparable with spermidine in their potency, and N1N8-bis(ethyl)spermidine, N1N9-bis(ethyl)homospermidine, methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone) and 1,1'-[(methylethanediylidene)dinitrilo]bis(3-amino-guanidine ), which were even more active than spermidine. It is suggested that these polyamine analogues may bring about a decrease in cellular polyamines not only by inhibiting biosynthesis but by stimulating the degradation of spermidine into putrescine. PMID:3800951

  17. Isolation of Nicotiana plumbaginifolia cDNAs encoding isoforms of serine acetyltransferase and O-acetylserine (thiol) lyase in a yeast two-hybrid system with Escherichia coli cysE and cysK genes as baits.

    PubMed

    Liszewska, Frantz; Gaganidze, Dali; Sirko, Agnieszka

    2005-01-01

    We applied the yeast two-hybrid system for screening of a cDNA library of Nicotiana plumbaginifolia for clones encoding plant proteins interacting with two proteins of Escherichia coli: serine acetyltransferase (SAT, the product of cysE gene) and O-acetylserine (thiol)lyase A, also termed cysteine synthase (OASTL-A, the product of cysK gene). Two plant cDNA clones were identified when using the cysE gene as a bait. These clones encode a probable cytosolic isoform of OASTL and an organellar isoform of SAT, respectively, as indicated by evolutionary trees. The second clone, encoding SAT, was identified independently also as a "prey" when using cysK as a bait. Our results reveal the possibility of applying the two-hybrid system for cloning of plant cDNAs encoding enzymes of the cysteine synthase complex in the two-hybrid system. Additionally, using genome walking sequences located upstream of the sat1 cDNA were identified. Subsequently, in silico analyses were performed aiming towards identification of the potential signal peptide and possible location of the deduced mature protein encoded by sat1.

  18. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds.

    PubMed

    Durrett, Timothy P; McClosky, Daniel D; Tumaney, Ajay W; Elzinga, Dezi A; Ohlrogge, John; Pollard, Mike

    2010-05-18

    Endosperm and embryo tissues from the seeds of Euonymus alatus (Burning Bush) accumulate high levels of 3-acetyl-1,2-diacyl-sn-glycerols (acTAGs) as their major storage lipids. In contrast, the aril tissue surrounding the seed produces long-chain triacylglycerols (lcTAGs) typical of most other organisms. The presence of the sn-3 acetyl group imparts acTAGs with different physical and chemical properties, such as a 30% reduction in viscosity, compared to lcTAGs. Comparative transcriptome analysis of developing endosperm and aril tissues using pyrosequencing technology was performed to isolate the enzyme necessary for the synthesis of acTAGs. An uncharacterized membrane-bound O-acyltransferase (MBOAT) family member was the most abundant acyltransferase in the endosperm but was absent from the aril. Expression of this MBOAT in yeast resulted in the accumulation of acTAGs but not lcTAG; hence, the enzyme was named EaDAcT (Euonymus alatus diacylglycerol acetyltransferase). Yeast microsomes expressing EaDAcT possessed acetyl-CoA diacylglycerol acetyltransferase activity but lacked long-chain acyl-CoA diacylglycerol acyltransferase activity. Expression of EaDAcT under the control of a strong, seed-specific promoter in Arabidopsis resulted in the accumulation of acTAGs, up to 40 mol % of total TAG in the seed oil. These results demonstrate the utility of deep transcriptional profiling with multiple tissues as a gene discovery strategy for low-abundance proteins. They also show that EaDAcT is the acetyltransferase necessary and sufficient for the production of acTAGs in Euonymus seeds, and that this activity can be introduced into the seeds of other plants, allowing the evaluation of these unusual TAGs for biofuel and other applications.

  19. A heterologous hormone response element enhances expression of rat beta-casein promoter-driven chloramphenicol acetyltransferase fusion genes in the mammary gland of transgenic mice.

    PubMed

    Greenberg, N M; Reding, T V; Duffy, T; Rosen, J M

    1991-10-01

    Previous studies have demonstrated that the entire rat beta-casein (R beta C) gene and a -524/+490 R beta C fragment-chloramphenicol acetyltransferase (CAT) fusion gene are expressed preferentially in the mammary gland of transgenic mice in a developmentally regulated fashion. However, transgene expression was infrequent, less than 1% of that observed for the endogenous gene, and varied as much as 500-fold, presumably due to the site of chromosomal integration. To determine whether a heterologous hormone-responsive enhancer could be used to increase both the level and frequency of expression in the mammary gland, a fragment derived from the mouse mammary tumor virus long terminal repeat containing four hormone response elements (HREs) was inserted into the R beta C promoter at a site not known to contain transcriptional regulatory elements. Transgenic mice generated which carried HRE-enhanced R beta C-CAT fusion genes expressed CAT activity in the mammary glands of all founder lines examined at levels that were on average 13-fold greater than for lines generated with similar constructs not carrying HREs. In the highest expressing line, the level of HRE-enhanced transgene expression was found to be developmentally regulated, increasing 14-fold in the mammary gland from virgin to day 10 of lactation. In this line, expression was also observed in the thymus and spleen; however, the level of CAT activity was 4-fold lower than in the mammary gland and was not developmentally regulated. In adrenalectomized mice, the administration of dexamethasone stimulated CAT expression in the mammary gland but not in the thymus and spleen. These studies demonstrate that in the context of the R beta C promoter, the HRE functions in the mammary gland to increase both the frequency and level of transgene expression.

  20. Identification of aaNAT5b as a spermine N-acetyltransferase in the mosquito, Aedes aegypti.

    PubMed

    Guan, Huai; Wang, Maoying; Liao, Chenghong; Liang, Jing; Mehere, Prajwalini; Tian, Meiling; Liu, Hairong; Robinson, Howard; Li, Jianyong; Han, Qian

    2018-01-01

    Mosquitoes transmit a number of diseases in animals and humans, including Dengue, Chikungunya and Zika viruses that affect millions of people each year. Controlling the disease-transmitting mosquitoes has proven to be a successful strategy to reduce the viruses transmission. Polyamines are required for the life cycle of the RNA viruses, Chikungunya virus and Zika virus, and a depletion of spermidine and spermine in the host via induction of spermine N-acetyltransferase restricts their replication. Spermine N-acetyltransferase is a key catabolic enzyme in the polyamine pathway, however there is no information of the enzyme identification in any insects. Aliphatic polyamines play a fundamental role in tissue growth and development in organisms. They are acetylated by spermidine/spermine N1-acetyltransferase (SAT). In this study we provided a molecular and biochemical identification of SAT from Aedes aegypti mosquitoes. Screening of purified recombinant proteins against polyamines established that aaNAT5b, named previously based on sequence similarity with identified aaNAT1 in insects, is active to spermine and spermidine. A crystal structure was determined and used in molecular docking in this study. Key residues were identified to be involved in spermine binding using molecular docking and simulation. In addition, SAT transcript was down regulated by blood feeding using a real time PCR test. Based on its substrate profile and transcriptional levels after blood feeding, together with previous reports for polyamines required in arboviruses replication, SAT might be potentially used as a target to control arboviruses with human interference.

  1. A group of Populus trichocarpa DUF231 proteins exhibit differential O-acetyltransferase activities toward xylan.

    PubMed

    Zhong, Ruiqin; Cui, Dongtao; Ye, Zheng-Hua

    2018-01-01

    Wood represents the most abundant biomass produced by plants and one of its major components is acetyl xylan. Acetylation in xylan can occur at O-2 or O-3 of a xylosyl residue, at both O-2 and O-3 of a xylosyl residue, and at O-3 of a xylosyl residue substituted at O-2 with glucuronic acid. Acetyltransferases responsible for the regiospecific acetylation of xylan in tree species have not yet been characterized. Here we report the biochemical characterization of twelve Populus trichocarpa DUF231-containing proteins, named PtrXOATs, for their roles in the regiospecific acetylation of xylan. The PtrXOAT genes were found to be differentially expressed in Populus organs and among them, PtrXOAT1, PtrXOAT2, PtrXOAT9 and PtrXOAT10 exhibited the highest level of expression in stems undergoing wood formation. Activity assays of recombinant proteins demonstrated that all twelve PtrXOAT proteins were able to transfer acetyl groups from acetyl CoA onto a xylohexaose acceptor with PtrXOAT1, PtrXOAT2, PtrXOAT3, PtrXOAT11 and PtrXOAT12 having the highest activity. Structural analysis of the PtrXOAT-catalyzed reaction products using 1H NMR spectroscopy revealed that PtrXOAT1, PtrXAOT2 and PtrXOAT3 mediated 2-O- and 3-O-monoacetylation and 2,3-di-O-acetylation of xylosyl residues and PtrXOAT11 and PtrXOAT12 only catalyzed 2-O- and 3-O-monoacetylation of xylosyl residues. Of the twelve PtrXOATs, only PtrXOAT9 and PtrXOAT10 were capable of transferring acetyl groups onto the O-3 position of 2-O-glucuronic acid-substituted xylosyl residues. Furthermore, when expressed in the Arabidopsis eskimo1 mutant, PtrXOAT1, PtrXAOT2 and PtrXOAT3 were able to rescue the defects in xylan acetylation. Together, these results demonstrate that the twelve PtrXOATs are acetyltransferases with different roles in xylan acetylation in P. trichocarpa.

  2. Radiochemical micro assays for the determination of choline acetyltransferase and acetylcholinesterase activities

    PubMed Central

    Fonnum, F.

    1969-01-01

    1. The methods for the assay of choline acetyltransferase were based on the reaction between labelled acetyl-CoA and unlabelled choline to give labelled acetylcholine. 2. Both synthetic acetyl-CoA and acetyl-CoA formed from sodium [1-14C]acetate or sodium [3H]acetate by incubation with CoA, ATP, Mg2+ and extract from acetone-dried pigeon liver were used. 3. [1-14C]Acetylcholine was isolated by extraction with ketonic sodium tetraphenylboron. 4. [3H]Acetylcholine was precipitated with sodium tetraphenylboron to remove a ketone-soluble contaminant in sodium [3H]acetate and then extracted with ketonic sodium tetraphenylboron. 5. The values of choline acetyltransferase activity obtained in the presence of sodium cyanide or EDTA and synthetic acetyl-CoA were similar to those obtained with acetyl-CoA synthesized in situ. 6. The assay of acetylcholinesterase was based on the formation of labelled acetate from labelled acetylcholine. The labelled acetylcholine could be quantitatively removed from the acetate by extraction with ketonic sodium tetraphenylboron. 7. The methods were tested with samples from central and peripheral nervous tissues and purified enzymes. 8. The blank values for choline acetyltransferase and acetylcholinesterase corresponded to the activities in 20ng. and 5ng. of brain tissue respectively. PMID:4982085

  3. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bame, K.J.

    1986-01-01

    Acetyl-CoA:..cap alpha..-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal ..cap alpha..-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The bindingmore » of acetyl-CoA to the enzyme is measured by exchange label from (/sup 3/H)CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with (/sup 3/H)acetyl-CoA. The acetyl group can be transferred to glucosamine, forming (/sup 3/H)N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism.« less

  4. The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis

    PubMed Central

    Su, Jiaming; Wang, Fei; Cai, Yong; Jin, Jingji

    2016-01-01

    Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs). As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL) in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16); however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8), suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways. PMID:26784169

  5. The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis.

    PubMed

    Su, Jiaming; Wang, Fei; Cai, Yong; Jin, Jingji

    2016-01-14

    Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs). As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL) in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16); however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8), suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways.

  6. Molecular evolution of multiple arylalkylamine N-acetyltransferase (AANAT) in fish.

    PubMed

    Zilberman-Peled, Bina; Bransburg-Zabary, Sharron; Klein, David C; Gothilf, Yoav

    2011-01-01

    Arylalkylamine N-acetyltransferase (AANAT) catalyzes the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to arylalkylamines, including indolethylamines and phenylethylamines. Multiple aanats are present in teleost fish as a result of whole genome and gene duplications. Fish aanat1a and aanat2 paralogs display different patterns of tissue expression and encode proteins with different substrate preference: AANAT1a is expressed in the retina, and acetylates both indolethylamines and phenylethylamines; while AANAT2 is expressed in the pineal gland, and preferentially acetylates indolethylamines. The two enzymes are therefore thought to serve different roles. Here, the molecular changes that led to their specialization were studied by investigating the structure-function relationships of AANATs in the gilthead seabream (sb, Sperus aurata). Acetylation activity of reciprocal mutated enzymes pointed to specific residues that contribute to substrate specificity of the enzymes. Inhibition tests followed by complementary analyses of the predicted three-dimensional models of the enzymes, suggested that both phenylethylamines and indolethylamines bind to the catalytic pocket of both enzymes. These results suggest that substrate selectivity of AANAT1a and AANAT2 is determined by the positioning of the substrate within the catalytic pocket, and its accessibility to catalysis. This illustrates the evolutionary process by which enzymes encoded by duplicated genes acquire different activities and play different biological roles.

  7. Antisilencing role of the RNA-directed DNA methylation pathway and a histone acetyltransferase in Arabidopsis

    PubMed Central

    Li, Xiaojie; Qian, Weiqiang; Zhao, Yusheng; Wang, Chunlei; Shen, Jie; Zhu, Jian-Kang; Gong, Zhizhong

    2012-01-01

    REPRESSOR OF SILENCING 1 (ROS1) is a DNA demethylation enzyme that was previously identified during a genetic screen for the silencing of both RD29A-LUC and 35S-NPTII transgenes on a T-DNA construct. Here we performed a genetic screen to identify additional mutants in which the 35S-NPTII transgene is silenced. We identified several alleles of ros1 and of the following components of the RNA-directed DNA methylation (RdDM) pathway: NRPD1 (the largest subunit of polymerase IV), RDR2, NRPE1 (the largest subunit of polymerase V), NRPD2, AGO4, and DMS3. Our results show that the silencing of 35S-NPTII in the RdDM pathway mutants is due to the reduced expression of ROS1 in the mutants. We also identified a putative histone acetyltransferase (ROS4) from the genetic screen. The acetyltransferase contains a PHD-finger domain that binds to unmethylated histone H3K4. The mutation in ROS4 led to reduction of H3K18 and H3K23 acetylation levels. We show that the silencing of 35S-NPTII and some transposable element genes was released by the ddm1 mutation but that this also required ROS4. Our study identifies a unique antisilencing factor, and reveals that the RdDM pathway has an antisilencing function due to its role in maintaining ROS1 expression. PMID:22733760

  8. Estradiol increases choline acetyltransferase activity in specific basal forebrain nuclei and projection areas of female rats.

    PubMed

    Luine, V N

    1985-08-01

    Administration of estradiol to gonadectomized female, but not male rats, is associated with increased activity of choline acetyltransferase in the medial aspect of the horizontal diagonal band nucleus, the frontal cortex, and CA1 of the dorsal hippocampus. Four other basal forebrain cholinergic nuclei did not show changes in choline acetyltransferase activity after estradiol. These data have implications for possible benefits of estradiol administration to patients with senile dementia of the Alzheimer's type.

  9. Backbone resonance assignment of an insect arylalkylamine N-acetyltransferase from Bombyx mori reveals conformational heterogeneity.

    PubMed

    Aboalroub, Adam A; Zhang, Ziming; Keramisanou, Dimitra; Gelis, Ioannis

    2017-04-01

    Arylalkylamine N-acetyltransferases (AANATs) catalyze the transfer of an acetyl group from the acetyl-group donor, acetyl-CoA, to an arylalkylamine acceptor. Although a single AANAT has been identified in mammals, insects utilize multiple AANATs in a diverse array of biological processes. AANATs belong to the GCN5-related acetyltransferase (GNAT) superfamily of enzymes, which despite their overall very low sequence homology, are characterized by a well conserved catalytic core domain. The structural properties of many GNATs have been extensively studied by X-ray crystallography that revealed common features during the catalytic cycle. Here we report the 1 H, 13 C and 15 N backbone NMR resonance assignment of the 24 kDa AANAT3 from Bombyx mori (bmAANAT3) as a first step towards understanding the role of protein dynamics in the catalytic properties of AANATs. Our preliminary solution NMR studies reveal that bmAANAT3 is well-folded in solution. The P-loop, which is responsible for cofactor binding, is flexible in the free-state, while a large region of the enzyme interconverts between two distinct conformations in the slow exchange regime.

  10. Revealing the protein propionylation activity of the histone acetyltransferase MOF (males absent on the first).

    PubMed

    Han, Zhen; Wu, Hong; Kim, Sunjoo; Yang, Xiangkun; Li, Qianjin; Huang, He; Cai, Houjian; Bartlett, Michael G; Dong, Aiping; Zeng, Hong; Brown, Peter J; Yang, Xiang-Jiao; Arrowsmith, Cheryl H; Zhao, Yingming; Zheng, Y George

    2018-03-02

    Short-chain acylation of lysine residues has recently emerged as a group of reversible posttranslational modifications in mammalian cells. The diversity of acylation further broadens the landscape and complexity of the proteome. Identification of regulatory enzymes and effector proteins for lysine acylation is critical to understand functions of these novel modifications at the molecular level. Here, we report that the MYST family of lysine acetyltransferases (KATs) possesses strong propionyltransferase activity both in vitro and in cellulo Particularly, the propionyltransferase activity of MOF, MOZ, and HBO1 is as strong as their acetyltransferase activity. Overexpression of MOF in human embryonic kidney 293T cells induced significantly increased propionylation in multiple histone and non-histone proteins, which shows that the function of MOF goes far beyond its canonical histone H4 lysine 16 acetylation. We also resolved the X-ray co-crystal structure of MOF bound with propionyl-coenzyme A, which provides a direct structural basis for the propionyltransferase activity of the MYST KATs. Our data together define a novel function for the MYST KATs as lysine propionyltransferases and suggest much broader physiological impacts for this family of enzymes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds

    PubMed Central

    Durrett, Timothy P.; McClosky, Daniel D.; Tumaney, Ajay W.; Elzinga, Dezi A.; Ohlrogge, John; Pollard, Mike

    2010-01-01

    Endosperm and embryo tissues from the seeds of Euonymus alatus (Burning Bush) accumulate high levels of 3-acetyl-1,2-diacyl-sn-glycerols (acTAGs) as their major storage lipids. In contrast, the aril tissue surrounding the seed produces long-chain triacylglycerols (lcTAGs) typical of most other organisms. The presence of the sn-3 acetyl group imparts acTAGs with different physical and chemical properties, such as a 30% reduction in viscosity, compared to lcTAGs. Comparative transcriptome analysis of developing endosperm and aril tissues using pyrosequencing technology was performed to isolate the enzyme necessary for the synthesis of acTAGs. An uncharacterized membrane-bound O-acyltransferase (MBOAT) family member was the most abundant acyltransferase in the endosperm but was absent from the aril. Expression of this MBOAT in yeast resulted in the accumulation of acTAGs but not lcTAG; hence, the enzyme was named EaDAcT (Euonymus alatus diacylglycerol acetyltransferase). Yeast microsomes expressing EaDAcT possessed acetyl-CoA diacylglycerol acetyltransferase activity but lacked long-chain acyl-CoA diacylglycerol acyltransferase activity. Expression of EaDAcT under the control of a strong, seed-specific promoter in Arabidopsis resulted in the accumulation of acTAGs, up to 40 mol % of total TAG in the seed oil. These results demonstrate the utility of deep transcriptional profiling with multiple tissues as a gene discovery strategy for low-abundance proteins. They also show that EaDAcT is the acetyltransferase necessary and sufficient for the production of acTAGs in Euonymus seeds, and that this activity can be introduced into the seeds of other plants, allowing the evaluation of these unusual TAGs for biofuel and other applications. PMID:20439724

  12. Balance of Activities of Alcohol Acetyltransferase and Esterase in Saccharomyces cerevisiae Is Important for Production of Isoamyl Acetate

    PubMed Central

    Fukuda, Kiyoshi; Yamamoto, Nagi; Kiyokawa, Yoshifumi; Yanagiuchi, Toshiyasu; Wakai, Yoshinori; Kitamoto, Katsuhiko; Inoue, Yoshiharu; Kimura, Akira

    1998-01-01

    Isoamyl acetate is synthesized from isoamyl alcohol and acetyl coenzyme A by alcohol acetyltransferase (AATFase) in Saccharomyces cerevisiae and is hydrolyzed by esterases at the same time. We hypothesized that the balance of both enzyme activities was important for optimum production of isoamyl acetate in sake brewing. To test this hypothesis, we constructed yeast strains with different numbers of copies of the AATFase gene (ATF1) and the isoamyl acetate-hydrolyzing esterase gene (IAH1) and used these strains in small-scale sake brewing. Fermentation profiles as well as components of the resulting sake were largely alike; however, the amount of isoamyl acetate in the sake increased with an increasing ratio of AATFase/Iah1p esterase activity. Therefore, we conclude that the balance of these two enzyme activities is important for isoamyl acetate accumulation in sake mash. PMID:9758847

  13. Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair.

    PubMed

    Qin, Song; Parthun, Mark R

    2002-12-01

    The modification of newly synthesized histones H3 and H4 by type B histone acetyltransferases has been proposed to play a role in the process of chromatin assembly. The type B histone acetyltransferase Hat1p and specific lysine residues in the histone H3 NH(2)-terminal tail (primarily lysine 14) are redundantly required for telomeric silencing. As many gene products, including other factors involved in chromatin assembly, have been found to participate in both telomeric silencing and DNA damage repair, we tested whether mutations in HAT1 and the histone H3 tail were also sensitive to DNA-damaging agents. Indeed, mutations both in specific lysine residues in the histone H3 tail and in HAT1 resulted in sensitivity to methyl methanesulfonate. The DNA damage sensitivity of the histone H3 and HAT1 mutants was specific for DNA double-strand breaks, as these mutants were sensitive to the induction of an exogenous restriction endonuclease, EcoRI, but not to UV irradiation. While histone H3 mutations had minor effects on nonhomologous end joining, the primary defect in the histone H3 and HAT1 mutants was in the recombinational repair of DNA double-strand breaks. Epistasis analysis indicates that the histone H3 and HAT1 mutants may influence DNA double-strand break repair through Asf1p-dependent chromatin assembly.

  14. Structural and Functional Role of Acetyltransferase hMOF K274 Autoacetylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCullough, Cheryl E.; Song, Shufei; Shin, Michael H.

    Many histone acetyltransferases undergo autoacetylation, either through chemical or enzymatic means, to potentiate enzymatic cognate substrate lysine acetylation, although the mode and molecular role of such autoacetylation is poorly understood. The MYST family of histone acetyltransferases is autoacetylated at an active site lysine residue to facilitate cognate substrate lysine binding and acetylation. Here, we report on a detailed molecular investigation of Lys-274 autoacetylation of the human MYST protein Males Absent on the First (hMOF). A mutational scan of hMOF Lys-274 reveals that all amino acid substitutions of this residue are able to bind cofactor but are significantly destabilized, both inmore » vitro and in cells, and are catalytically inactive for cognate histone H4 peptide lysine acetylation. The x-ray crystal structure of a hMOF K274P mutant suggests that the reduced stability and catalytic activity stems from a disordering of the residue 274-harboring a α2-β7 loop. We also provide structural evidence that a C316S/E350Q mutant, which is defective for cognate substrate lysine acetylation; and biochemical evidence that a K268M mutant, which is defective for Lys-274 chemical acetylation in the context of a K274-peptide, can still undergo quantitative K274 autoacetylation. Together, these studies point to the critical and specific role of hMOF Lys-274 autoacetylation in hMOF stability and cognate substrate acetylation and argues that binding of Ac-CoA to hMOF likely drives Lys-274 autoacetylation for subsequent cognate substrate acetylation.« less

  15. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene.

    PubMed

    Knowles, Joshua W; Xie, Weijia; Zhang, Zhongyang; Chennamsetty, Indumathi; Chennemsetty, Indumathi; Assimes, Themistocles L; Paananen, Jussi; Hansson, Ola; Pankow, James; Goodarzi, Mark O; Carcamo-Orive, Ivan; Morris, Andrew P; Chen, Yii-Der I; Mäkinen, Ville-Petteri; Ganna, Andrea; Mahajan, Anubha; Guo, Xiuqing; Abbasi, Fahim; Greenawalt, Danielle M; Lum, Pek; Molony, Cliona; Lind, Lars; Lindgren, Cecilia; Raffel, Leslie J; Tsao, Philip S; Schadt, Eric E; Rotter, Jerome I; Sinaiko, Alan; Reaven, Gerald; Yang, Xia; Hsiung, Chao A; Groop, Leif; Cordell, Heather J; Laakso, Markku; Hao, Ke; Ingelsson, Erik; Frayling, Timothy M; Weedon, Michael N; Walker, Mark; Quertermous, Thomas

    2015-04-01

    Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 "A" allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity.

  16. Histone acetyltransferase activity of MOF is required for adult but not early fetal hematopoiesis in mice

    PubMed Central

    Valerio, Daria G.; Xu, Haiming; Eisold, Meghan E.; Woolthuis, Carolien M.; Pandita, Tej K.

    2017-01-01

    K(lysine) acetyltransferase 8 (KAT8, also known as MOF) mediates the acetylation of histone H4 at lysine 16 (H4K16ac) and is crucial for murine embryogenesis. Lysine acetyltransferases have been shown to regulate various stages of normal hematopoiesis. However, the function of MOF in hematopoietic stem cell (HSC) development has not yet been elucidated. We set out to study the role of MOF in general hematopoiesis by using a Vav1-cre–induced conditional murine Mof knockout system and found that MOF is critical for hematopoietic cell maintenance and HSC engraftment capacity in adult hematopoiesis. Rescue experiments with a MOF histone acetyltransferase domain mutant illustrated the requirement for MOF acetyltransferase activity in the clonogenic capacity of HSCs and progenitors. In stark contrast, fetal steady-state hematopoiesis at embryonic day (E) 14.5 was not affected by homozygous Mof deletion despite dramatic loss of global H4K16ac. Hematopoietic defects start manifesting in late gestation at E17.5. The discovery that MOF and its H4K16ac activity are required for adult but not early and midgestational hematopoiesis supports the notion that multiple chromatin regulators may be crucial for hematopoiesis at varying stages of development. MOF is therefore a developmental-stage–specific chromatin regulator found to be essential for adult but not early fetal hematopoiesis. PMID:27827827

  17. Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism

    PubMed Central

    Nasuno, Ryo; Hirano, Yoshinori; Itoh, Takafumi; Hakoshima, Toshio; Hibi, Takao; Takagi, Hiroshi

    2013-01-01

    Mpr1 (sigma1278b gene for proline-analog resistance 1), which was originally isolated as N-acetyltransferase detoxifying the proline analog l-azetidine-2-carboxylate, protects yeast cells from various oxidative stresses. Mpr1 mediates the l-proline and l-arginine metabolism by acetylating l-Δ1-pyrroline-5-carboxylate, leading to the l-arginine–dependent production of nitric oxide, which confers oxidative stress tolerance. Mpr1 belongs to the Gcn5-related N-acetyltransferase (GNAT) superfamily, but exhibits poor sequence homology with the GNAT enzymes and unique substrate specificity. Here, we present the X-ray crystal structure of Mpr1 and its complex with the substrate cis-4-hydroxy-l-proline at 1.9 and 2.3 Å resolution, respectively. Mpr1 is folded into α/β-structure with eight-stranded mixed β-sheets and six α-helices. The substrate binds to Asn135 and the backbone amide of Asn172 and Leu173, and the predicted acetyl-CoA–binding site is located near the backbone amide of Phe138 and the side chain of Asn178. Alanine substitution of Asn178, which can interact with the sulfur of acetyl-CoA, caused a large reduction in the apparent kcat value. The replacement of Asn135 led to a remarkable increase in the apparent Km value. These results indicate that Asn178 and Asn135 play an important role in catalysis and substrate recognition, respectively. Such a catalytic mechanism has not been reported in the GNAT proteins. Importantly, the amino acid substitutions in these residues increased the l-Δ1-pyrroline-5-carboxylate level in yeast cells exposed to heat stress, indicating that these residues are also crucial for its physiological functions. These studies provide some benefits of Mpr1 applications, such as the breeding of industrial yeasts and the development of antifungal drugs. PMID:23818613

  18. Linking Yeast Gcn5p Catalytic Function and Gene Regulation Using a Quantitative, Graded Dominant Mutant Approach

    PubMed Central

    Lanza, Amanda M.; Blazeck, John J.; Crook, Nathan C.; Alper, Hal S.

    2012-01-01

    Establishing causative links between protein functional domains and global gene regulation is critical for advancements in genetics, biotechnology, disease treatment, and systems biology. This task is challenging for multifunctional proteins when relying on traditional approaches such as gene deletions since they remove all domains simultaneously. Here, we describe a novel approach to extract quantitative, causative links by modulating the expression of a dominant mutant allele to create a function-specific competitive inhibition. Using the yeast histone acetyltransferase Gcn5p as a case study, we demonstrate the utility of this approach and (1) find evidence that Gcn5p is more involved in cell-wide gene repression, instead of the accepted gene activation associated with HATs, (2) identify previously unknown gene targets and interactions for Gcn5p-based acetylation, (3) quantify the strength of some Gcn5p-DNA associations, (4) demonstrate that this approach can be used to correctly identify canonical chromatin modifications, (5) establish the role of acetyltransferase activity on synthetic lethal interactions, and (6) identify new functional classes of genes regulated by Gcn5p acetyltransferase activity—all six of these major conclusions were unattainable by using standard gene knockout studies alone. We recommend that a graded dominant mutant approach be utilized in conjunction with a traditional knockout to study multifunctional proteins and generate higher-resolution data that more accurately probes protein domain function and influence. PMID:22558379

  19. Role of the histone acetyltransferase Rtt109 in development and pathogenicity of the rice blast fungus.

    PubMed

    Kwon, Seomun; Lee, Jaejoon; Jeon, Jongbum; Kim, Seongbeom; Park, Sook-Young; Jeon, Junhyun; Lee, Yong-Hwan

    2018-06-01

    Acetylation of histone H3 lysine 56 (H3K56) by the fungal-specific histone acetyltransferase Rtt109 plays important roles in maintaining genome integrity and surviving DNA damage. Here we investigated the implications of Rtt109-mediated response to DNA damage on development and pathogenesis of the rice blast fungus, Magnaporthe oryzae (anamorph: Pyricularia oryzae). The ortholog of Rtt109 in M. oryzae (MoRtt109) was found via sequence homology and its functionality confirmed by phenotypic complementation of the Saccharomyces cerevisiae Rtt109 deletion strain. Targeted deletion of MoRtt109 resulted in a significant reduction in acetylation of H3K56 and rendered the fungus defective in hyphal growth and asexual reproduction. Furthermore, the deletion mutant displayed hypersensitivity to genotoxic agents, confirming the conserved importance of Rtt109 in genome integrity maintenance and genotoxic stress tolerance. Elevated expression of DNA repair genes and the results of the comet assay were consistent with constitutive endogenous DNA damage. Although the conidia produced from the mutant were not impaired in germination and appressorium morphogenesis, the mutant was significantly less pathogenic on rice leaves. Transcriptomic analysis provided insight into the factors underlying phenotypic defects that are associated with deficiency of H3K56 acetylation. Overall, our results indicate that MoRtt109 is a conserved histone acetyltransferase that affects proliferation and asexual fecundity of M. oryzae through maintenance of genome integrity and response to DNA damage.

  20. Susceptibility of N-acetyltransferase 2 slow acetylators to antituberculosis drug-induced liver injury: a meta-analysis.

    PubMed

    Shi, Jing; Xie, Min; Wang, Jianmiao; Xu, Yongjian; Liu, Xiansheng

    2015-12-01

    This study aimed to evaluate the association between N-acetyltransferase 2 (NAT2) gene polymorphisms and the risk of antituberculosis drug-induced liver injury (ATLI). A meta-analysis was performed including 27 studies with 1289 cases and 5462 controls. Odds ratio with 95% CI was used to evaluate the strength of association. Our meta-analysis found that NAT2 slow acetylators were associated with increased risk of ATLI compared with fast and intermediate acetylators when standard dose of isoniazid was administrated (odds ratio: 3.08; 95% CI: 2.29-4.15). Individuals with NAT2 slow acetylators may have increased risk of ATLI when standard dose of isoniazid was used. Detection of NAT2 genotype may benefit to the prevention of ATLI.

  1. Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT)

    PubMed Central

    Salah Ud-Din, Abu Iftiaf Md; Tikhomirova, Alexandra; Roujeinikova, Anna

    2016-01-01

    General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) catalyze the transfer of an acyl moiety from acyl coenzyme A (acyl-CoA) to a diverse group of substrates and are widely distributed in all domains of life. This review of the currently available data acquired on GNAT enzymes by a combination of structural, mutagenesis and kinetic methods summarizes the key similarities and differences between several distinctly different families within the GNAT superfamily, with an emphasis on the mechanistic insights obtained from the analysis of the complexes with substrates or inhibitors. It discusses the structural basis for the common acetyltransferase mechanism, outlines the factors important for the substrate recognition, and describes the mechanism of action of inhibitors of these enzymes. It is anticipated that understanding of the structural basis behind the reaction and substrate specificity of the enzymes from this superfamily can be exploited in the development of novel therapeutics to treat human diseases and combat emerging multidrug-resistant microbial infections. PMID:27367672

  2. Histone acetyltransferase activity of MOF is required for adult but not early fetal hematopoiesis in mice.

    PubMed

    Valerio, Daria G; Xu, Haiming; Eisold, Meghan E; Woolthuis, Carolien M; Pandita, Tej K; Armstrong, Scott A

    2017-01-05

    K(lysine) acetyltransferase 8 (KAT8, also known as MOF) mediates the acetylation of histone H4 at lysine 16 (H4K16ac) and is crucial for murine embryogenesis. Lysine acetyltransferases have been shown to regulate various stages of normal hematopoiesis. However, the function of MOF in hematopoietic stem cell (HSC) development has not yet been elucidated. We set out to study the role of MOF in general hematopoiesis by using a Vav1-cre-induced conditional murine Mof knockout system and found that MOF is critical for hematopoietic cell maintenance and HSC engraftment capacity in adult hematopoiesis. Rescue experiments with a MOF histone acetyltransferase domain mutant illustrated the requirement for MOF acetyltransferase activity in the clonogenic capacity of HSCs and progenitors. In stark contrast, fetal steady-state hematopoiesis at embryonic day (E) 14.5 was not affected by homozygous Mof deletion despite dramatic loss of global H4K16ac. Hematopoietic defects start manifesting in late gestation at E17.5. The discovery that MOF and its H4K16ac activity are required for adult but not early and midgestational hematopoiesis supports the notion that multiple chromatin regulators may be crucial for hematopoiesis at varying stages of development. MOF is therefore a developmental-stage-specific chromatin regulator found to be essential for adult but not early fetal hematopoiesis. © 2017 by The American Society of Hematology.

  3. Molecular Cloning, Characterization, and Functional Analysis of Acetyl-CoA C-Acetyltransferase and Mevalonate Kinase Genes Involved in Terpene Trilactone Biosynthesis from Ginkgo biloba.

    PubMed

    Chen, Qiangwen; Yan, Jiaping; Meng, Xiangxiang; Xu, Feng; Zhang, Weiwei; Liao, Yongling; Qu, Jinwang

    2017-01-02

    Ginkgolides and bilobalide, collectively termed terpene trilactones (TTLs), are terpenoids that form the main active substance of Ginkgo biloba . Terpenoids in the mevalonate (MVA) biosynthetic pathway include acetyl-CoA C -acetyltransferase (AACT) and mevalonate kinase (MVK) as core enzymes. In this study, two full-length (cDNAs) encoding AACT ( GbAACT , GenBank Accession No. KX904942) and MVK ( GbMVK , GenBank Accession No. KX904944) were cloned from G. biloba . The deduced GbAACT and GbMVK proteins contain 404 and 396 amino acids with the corresponding open-reading frame (ORF) sizes of 1215 bp and 1194 bp, respectively. Tissue expression pattern analysis revealed that GbAACT was highly expressed in ginkgo fruits and leaves, and GbMVK was highly expressed in leaves and roots. The functional complementation of GbAACT in AACT-deficient Saccharomyces cerevisiae strain Δerg10 and GbMVK in MVK-deficient strain Δerg12 confirmed that GbAACT mediated the conversion of mevalonate acetyl-CoA to acetoacetyl-CoA and GbMVK mediated the conversion of mevalonate to mevalonate phosphate. This observation indicated that GbAACT and GbMVK are functional genes in the cytosolic mevalonate (MVA) biosynthesis pathway. After G. biloba seedlings were treated with methyl jasmonate and salicylic acid, the expression levels of GbAACT and GbMVK increased, and TTL production was enhanced. The cloning, characterization, expression and functional analysis of GbAACT and GbMVK will be helpful to understand more about the role of these two genes involved in TTL biosynthesis.

  4. Effects of AF64A on gene expression of choline acetyltransferase (ChAT) in the septo-hippocampal pathway and striatum in vivo.

    PubMed

    Fan, Q I; Hanin, I

    1999-01-01

    AF64A (ethylcholine mustard aziridinium ion) was stereotaxically administered bilaterally (1 nmol/side) into rat lateral cerebral ventricles. Choline acetyltransferase (ChAT) activity and ChAT mRNA levels were measured at predetermined time points in the septo-hippocampal pathway and striatum, both well identified as rich in cholinergic neurons. AF64A caused a rapid but transient increase in ChAT mRNA (167%, P < 0.05) and ChAT activity (164%, P < 0.01) in the septum. By day 7 post treatment, there was a significant decrease in ChAT mRNA (42.5% of control, P < 0.05) in the septum although the ChAT activity still stayed high. This decreased ChAT mRNA level in the septum lasted for at least four weeks, and was paralleled by a long-lasting decrease in ChAT activity in the hippocampus. In the striatum, on the other hand, there were no observed changes in either ChAT activity or ChAT mRNA. These data suggest that the long term effect of AF64A on the septo-hippocampal cholinergic pathway may, at least in part, be due to an action of AF64A on gene expression in the cholinergic neuron. The difference in the response to AF64A between the septo-hippocampal and striatal cholinergic systems might be due to their difference in neuron types.

  5. Cloning and characterization of a serotonin N-acetyltransferase from a gymnosperm, loblolly pine (Pinus taeda).

    PubMed

    Park, Sangkyu; Byeon, Yeong; Lee, Hyoung Yool; Kim, Young-Soon; Ahn, Taeho; Back, Kyoungwhan

    2014-10-01

    Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in melatonin biosynthesis in both animals and plants. SNAT catalyzes serotonin into N-acetylserotonin, an immediate precursor for melatonin biosynthesis by N-acetylserotonin methyltransferase (ASMT). We cloned the SNAT gene from a gymnosperm loblolly pine (Pinus teada). The loblolly pine SNAT (PtSNAT) gene encodes 255 amino acids harboring a transit sequence with 67 amino acids and shows 67% amino acid identity with rice SNAT when comparing the mature polypeptide regions. Purified recombinant PtSNAT showed peak activity at 55°C with the K(m) (428 μM) and Vmax (3.9 nmol/min/mg protein) values. As predicted, PtSNAT localized to chloroplasts. The SNAT mRNA was constitutively expressed in all tissues, including leaf, bud, flower, and pinecone, whereas the corresponding protein was detected only in leaf. In accordance with the exclusive SNAT protein expression in leaf, melatonin was detected only in leaf at 0.45 ng per gram fresh weight. Sequence and phylogenetic analysis indicated that the gymnosperm PtSNAT had high homology with SNATs from all plant phyla (even with cyanobacteria), and formed a clade separated from the angiosperm SNATs, suggestive of direct gene transfer from cyanobacteria via endosymbiosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhanam, U.; Ray, A.; Sehgal, P.B.

    1991-09-01

    The aberrant overexpression of interleukin 6 (IL-6) is implicated as an autocrine mechanism in the enhanced proliferation of the neoplastic cell elements in various B- and T-cell malignancies and in some carcinomas and sarcomas; many of these neoplasms have been shown to be associated with a mutated p53 gene. The possibility that wild-type (wt) p53, a nuclear tumor-suppressor protein, but not its transforming mutants might serve to repress IL-6 gene expression was investigated in HeLa cells. The authors transiently cotransfected these cells with constitutive cytomegalovirus (CMV) enhancer/promoter expression plasmids overproducing wt or mutant human or murine p53 and with appropriatemore » chloramphenicol acetyltransferase (CAT) reporter plasmids containing the promoter elements of human IL-6, c-fos, or {beta}-actin genes or of porcine major histocompatibility complex (MHC) class I gene in pN-38 to evaluate the effect of the various p53 species on these promoters. These observations identify transcriptional repression as a property of p53 and suggest that p53 and RB may be involved as transcriptional repressors in modulating IL-6 gene expression during cellular differentiation and oncogenesis.« less

  7. Ubiquitylation of the acetyltransferase MOF in Drosophila melanogaster

    PubMed Central

    Schunter, Sarah; Villa, Raffaella; Flynn, Victoria; Heidelberger, Jan B.; Classen, Anne-Kathrin; Beli, Petra; Becker, Peter B.

    2017-01-01

    The nuclear acetyltransferase MOF (KAT8 in mammals) is a subunit of at least two multi-component complexes involved in transcription regulation. In the context of complexes of the ‘Non-Specific-Lethal’ (NSL) type it controls transcription initiation of many nuclear housekeeping genes and of mitochondrial genes. While this function is conserved in metazoans, MOF has an additional, specific function in Drosophila in the context of dosage compensation. As a subunit of the male-specific-lethal dosage compensation complex (MSL-DCC) it contributes to the doubling of transcription output from the single male X chromosome by acetylating histone H4. Proper dosage compensation requires finely tuned levels of MSL-DCC and an appropriate distribution of MOF between the regulatory complexes. The amounts of DCC formed depends directly on the levels of the male-specific MSL2, which orchestrates the assembly of the DCC, including MOF recruitment. We found earlier that MSL2 is an E3 ligase that ubiquitylates most MSL proteins, including MOF, suggesting that ubiquitylation may contribute to a quality control of MOF’s overall levels and folding state as well as its partitioning between the complex entities. We now used mass spectrometry to map the lysines in MOF that are ubiquitylated by MSL2 in vitro and identified in vivo ubiquitylation sites of MOF in male and female cells. MSL2-specific ubiquitylation in vivo could not be traced due to the dominance of other, sex-independent ubiquitylation events and conceivably may be rare or transient. Expressing appropriately mutated MOF derivatives we assessed the importance of the ubiquitylated lysines for dosage compensation by monitoring DCC formation and X chromosome targeting in cultured cells, and by genetic complementation of the male-specific-lethal mof2 allele in flies. Our study provides a comprehensive analysis of MOF ubiquitylation as a reference for future studies. PMID:28510597

  8. Ubiquitylation of the acetyltransferase MOF in Drosophila melanogaster.

    PubMed

    Schunter, Sarah; Villa, Raffaella; Flynn, Victoria; Heidelberger, Jan B; Classen, Anne-Kathrin; Beli, Petra; Becker, Peter B

    2017-01-01

    The nuclear acetyltransferase MOF (KAT8 in mammals) is a subunit of at least two multi-component complexes involved in transcription regulation. In the context of complexes of the 'Non-Specific-Lethal' (NSL) type it controls transcription initiation of many nuclear housekeeping genes and of mitochondrial genes. While this function is conserved in metazoans, MOF has an additional, specific function in Drosophila in the context of dosage compensation. As a subunit of the male-specific-lethal dosage compensation complex (MSL-DCC) it contributes to the doubling of transcription output from the single male X chromosome by acetylating histone H4. Proper dosage compensation requires finely tuned levels of MSL-DCC and an appropriate distribution of MOF between the regulatory complexes. The amounts of DCC formed depends directly on the levels of the male-specific MSL2, which orchestrates the assembly of the DCC, including MOF recruitment. We found earlier that MSL2 is an E3 ligase that ubiquitylates most MSL proteins, including MOF, suggesting that ubiquitylation may contribute to a quality control of MOF's overall levels and folding state as well as its partitioning between the complex entities. We now used mass spectrometry to map the lysines in MOF that are ubiquitylated by MSL2 in vitro and identified in vivo ubiquitylation sites of MOF in male and female cells. MSL2-specific ubiquitylation in vivo could not be traced due to the dominance of other, sex-independent ubiquitylation events and conceivably may be rare or transient. Expressing appropriately mutated MOF derivatives we assessed the importance of the ubiquitylated lysines for dosage compensation by monitoring DCC formation and X chromosome targeting in cultured cells, and by genetic complementation of the male-specific-lethal mof2 allele in flies. Our study provides a comprehensive analysis of MOF ubiquitylation as a reference for future studies.

  9. Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation

    PubMed Central

    Kurat, Christoph F.; Lambert, Jean-Philippe; Petschnigg, Julia; Friesen, Helena; Pawson, Tony; Rosebrock, Adam; Gingras, Anne-Claude; Fillingham, Jeffrey; Andrews, Brenda

    2014-01-01

    DNA replication occurs during the synthetic (S) phase of the eukaryotic cell cycle and features a dramatic induction of histone gene expression for concomitant chromatin assembly. Ectopic production of core histones outside of S phase is toxic, underscoring the critical importance of regulatory pathways that ensure proper expression of histone genes. Several regulators of histone gene expression in the budding yeast Saccharomyces cerevisiae are known, yet the key oscillator responsible for restricting gene expression to S phase has remained elusive. Here, we show that suppressor of Ty (Spt)10, a putative histone acetyltransferase, and its binding partner Spt21 are key determinants of S-phase–specific histone gene expression. We show that Spt21 abundance is restricted to S phase in part by anaphase promoting complex Cdc20-homologue 1 (APCCdh1) and that it is recruited to histone gene promoters in S phase by Spt10. There, Spt21-Spt10 enables the recruitment of a cascade of regulators, including histone chaperones and the histone-acetyltransferase general control nonderepressible (Gcn) 5, which we hypothesize lead to histone acetylation and consequent transcription activation. PMID:25228766

  10. N-acetyltransferase polymorphisms are associated with risk of lymphoma subtypes.

    PubMed

    Cocco, Pierluigi; Zucca, Mariagrazia; Sanna, Sonia; Satta, Giannina; Nonne, Tinucia; Angelucci, Emanuele; Gabbas, Attilio; Rais, Marco; Malpeli, Giorgio; Campagna, Marcello; Scarpa, Aldo; G Ennas, Maria

    2016-06-01

    Genes encoding for arylamine N-acetyltransferase 1 and 2 (NAT1 and NAT2) have been investigated with alternate findings in relation to risk of non-Hodgkin lymphoma (NHL). We tested functional haplotype-based NAT1 and NAT2 gene polymorphisms in relation to risk of lymphoma overall and its major B cell subtypes, diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL) and chronic lymphocytic leukaemia (CLL). We used allele specific primers and multiplex PCR to detect NAT1 and NAT2 haplotypes in 248 patients with incident lymphoma and 208 population controls. We inferred the NAT1 rapid and slow acetylator and the NAT2 rapid, intermediate or slow acetylator phenotype, based on published functional data on the respective genotypes. Odds ratios and 95% confidence intervals (95% CIs) for lymphoma, B-NHL, DLBCL, FL, CLL, and other B-NHL combined associated with the inferred rapid NAT1 acetylator and with the intermediate and slow NAT2 acetylator phenotypes were estimated with unconditional and polytomous logistic regression analysis, adjusting for age, gender and education. NAT1 rapid acetylators showed a 2.8-fold excess risk (95% CI 1.5-5.2) for lymphoma (all subtypes combined). Risk was highest for CLL and FL, with significant heterogeneity detected across subtypes. Risk also increased with decreasing NAT2 acetylating capacity with no heterogeneity detected across B cell lymphoma subtypes. Risks did not vary by gender. Although poor statistical power was a major limitation in our study, larger studies and pooled analyses are warranted to test whether NAT1 and NAT2 gene polymorphisms might modulate risk of specific lymphoma subtypes through the varying metabolic activity of their products. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Environmental History Modulates Arabidopsis Pattern-Triggered Immunity in a HISTONE ACETYLTRANSFERASE1-Dependent Manner.

    PubMed

    Singh, Prashant; Yekondi, Shweta; Chen, Po-Wen; Tsai, Chia-Hong; Yu, Chun-Wei; Wu, Keqiang; Zimmerli, Laurent

    2014-06-01

    In nature, plants are exposed to a fluctuating environment, and individuals exposed to contrasting environmental factors develop different environmental histories. Whether different environmental histories alter plant responses to a current stress remains elusive. Here, we show that environmental history modulates the plant response to microbial pathogens. Arabidopsis thaliana plants exposed to repetitive heat, cold, or salt stress were more resistant to virulent bacteria than Arabidopsis grown in a more stable environment. By contrast, long-term exposure to heat, cold, or exposure to high concentrations of NaCl did not provide enhanced protection against bacteria. Enhanced resistance occurred with priming of Arabidopsis pattern-triggered immunity (PTI)-responsive genes and the potentiation of PTI-mediated callose deposition. In repetitively stress-challenged Arabidopsis, PTI-responsive genes showed enrichment for epigenetic marks associated with transcriptional activation. Upon bacterial infection, enrichment of RNA polymerase II at primed PTI marker genes was observed in environmentally challenged Arabidopsis. Finally, repetitively stress-challenged histone acetyltransferase1-1 (hac1-1) mutants failed to demonstrate enhanced resistance to bacteria, priming of PTI, and increased open chromatin states. These findings reveal that environmental history shapes the plant response to bacteria through the development of a HAC1-dependent epigenetic mark characteristic of a primed PTI response, demonstrating a mechanistic link between the primed state in plants and epigenetics. © 2014 American Society of Plant Biologists. All rights reserved.

  12. A novel, colorimetric method for biogenic amine detection based on arylalkylamine N-acetyltransferase.

    PubMed

    Leng, Pei-Qiang; Zhao, Feng-Lan; Yin, Bin-Cheng; Ye, Bang-Ce

    2015-05-21

    We developed a novel colorimetric method for rapid detection of biogenic amines based on arylalkylamine N-acetyltransferase (aaNAT). The proposed method offers distinct advantages including simple handling, high speed, low cost, good sensitivity and selectivity.

  13. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery

    PubMed Central

    Sim, E; Abuhammad, A; Ryan, A

    2014-01-01

    Arylamine N-acetyltransferases (NATs) are polymorphic drug-metabolizing enzymes, acetylating arylamine carcinogens and drugs including hydralazine and sulphonamides. The slow NAT phenotype increases susceptibility to hydralazine and isoniazid toxicity and to occupational bladder cancer. The two polymorphic human NAT loci show linkage disequilibrium. All mammalian Nat genes have an intronless open reading frame and non-coding exons. The human gene products NAT1 and NAT2 have distinct substrate specificities: NAT2 acetylates hydralazine and human NAT1 acetylates p-aminosalicylate (p-AS) and the folate catabolite para-aminobenzoylglutamate (p-abaglu). Human NAT2 is mainly in liver and gut. Human NAT1 and its murine homologue are in many adult tissues and in early embryos. Human NAT1 is strongly expressed in oestrogen receptor-positive breast cancer and may contribute to folate and acetyl CoA homeostasis. NAT enzymes act through a catalytic triad of Cys, His and Asp with the architecture of the active site-modulating specificity. Polymorphisms may cause unfolded protein. The C-terminus helps bind acetyl CoA and differs among NATs including prokaryotic homologues. NAT in Salmonella typhimurium supports carcinogen activation and NAT in mycobacteria metabolizes isoniazid with polymorphism a minor factor in isoniazid resistance. Importantly, nat is in a gene cluster essential for Mycobacterium tuberculosis survival inside macrophages. NAT inhibitors are a starting point for novel anti-tuberculosis drugs. Human NAT1-specific inhibitors may act in biomarker detection in breast cancer and in cancer therapy. NAT inhibitors for co-administration with 5-aminosalicylate (5-AS) in inflammatory bowel disease has prompted ongoing investigations of azoreductases in gut bacteria which release 5-AS from prodrugs including balsalazide. PMID:24467436

  14. Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants--structural and kinetic properties of the free and bound enzymes.

    PubMed

    Droux, M; Ruffet, M L; Douce, R; Job, D

    1998-07-01

    The last steps of cysteine synthesis in plants involve two consecutive enzymes. The first enzyme, serine acetyltransferase, catalyses the acetylation of L-serine in the presence of acetyl-CoA to form O-acetylserine. The second enzyme, O-acetylserine (thiol) lyase, converts O-acetylserine to L-cysteine in the presence of sulfide. We have, in the present work, over-produced in Escherichia coli harboring various type of plasmids, either a plant serine acetyltransferase or this enzyme with a plant O-acetylserine (thiol) lyase. The free recombinant serine acetyltransferase (subunit mass of 34 kDa) exhibited a high propensity to form high-molecular-mass aggregates and was found to be highly unstable in solution. However, these aggregates were prevented in the presence of O-acetylserine (thiol) lyase (subunit mass of 36 kDa). Under these conditions homotetrameric serine acetyltransferase associated with two molecules of homodimeric O-acetylserine (thiol) lyase to form a bienzyme complex (molecular mass approximately 300 kDa) called cysteine synthase containing 4 mol pyridoxal 5'-phosphate/mol complex. O-Acetylserine triggered the dissociation of the bienzyme complex, whereas sulfide counteracted the action of O-acetylserine. Protein-protein interactions within the bienzyme complex strongly modified the kinetic properties of plant serine acetyltransferase: there was a transition from a typical Michaelis-Menten model to a model displaying positive kinetic co-operativity with respect to serine and acetyl-CoA. On the other hand, the formation of the bienzyme complex resulted in a very dramatic decrease in the catalytic efficiency of bound O-acetylserine (thiol) lyase. The latter enzyme behaved as if it were a structural and/or regulatory subunit of serine acetyltransferase. Our results also indicated that bound serine acetyltransferase produces a build-up of O-acetylserine along the reaction path and that the full capacity for cysteine synthesis can only be achieved in the

  15. Role of N-acetyltransferase 2 acetylation polymorphism in 4, 4'-methylene bis (2-chloroaniline) biotransformation.

    PubMed

    Hein, David W; Zhang, Xiaoyan; Doll, Mark A

    2018-02-01

    Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) catalyze the acetylation of arylamine carcinogens. Single nucleotide polymorphisms in the NAT2 coding exon present in NAT2 haplotypes encode allozymes with reduced N-acetyltransferase activity towards the N-acetylation of arylamine carcinogens and the O-acetylation of their N-hydroxylated metabolites. NAT2 acetylator phenotype modifies urinary bladder cancer risk following exposures to arylamine carcinogens such as 4-aminobiphenyl. 4, 4'-methylene bis (2-chloroaniline) (MOCA) is a Group 1 carcinogen for which a role of the NAT2 acetylation polymorphism on cancer risk is unknown. We investigated the role of NAT2 and the genetic acetylation polymorphism on both MOCA N-acetylation and N-hydroxy-MOCA O-acetylation. MOCA N-acetylation exhibited a robust gene dose response in rabbit liver cytosol and in cryopreserved human hepatocytes derived from individuals of rapid, intermediate and slow acetylator NAT2 genotype. MOCA exhibited about 4-fold higher affinity for recombinant human NAT2 than NAT1. Recombinant human NAT2*4 (reference) and 15 variant recombinant human NAT2 allozymes catalyzed both the N-acetylation of MOCA and the O-acetylation of N-hydroxy-MOCA. Human NAT2 5, NAT2 6, NAT2 7 and NAT2 14 allozymes catalyzed MOCA N-acetylation and N-hydroxy-O-acetylation at rates much lower than the reference NAT2 4 allozyme. In conclusion, our results show that NAT2 acetylator genotype has an important role in MOCA metabolism and suggest that risk assessments related to MOCA exposures consider accounting for NAT2 acetylator phenotype in the analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Regulation of a Post-Translational Peptide Acetyltransferase: Strategies for Selectively Modifying the Biological Activity of Neural and Endocrine Peptides

    DTIC Science & Technology

    1988-02-01

    quantitatively miror pathway. Only two of the enzymes which process 8-endorphin have been firmly identified, peptide acetyltransferase and... quantitatively minor. This implied that perhaps peptide acetyltransferase is not a critical determinant of the bioactivity of B-endorphin in brain. If so...provided us with a more difinitive understanding of the role of processing enzyme regulation in the overall biochemical and cellular response of the

  17. Dapsone-induced agranulocytosis-possible involvement of low-activity N-acetyltransferase 2.

    PubMed

    Potočnjak, Ines; Likić, Robert; Šimić, Iveta; Juričić Nahal, Danica; Čegec, Ivana; Ganoci, Lana; Božina, Nada

    2017-10-01

    Dapsone-induced agranulocytosis is a rare but potentially fatal adverse drug reaction (ADR). A 45-year-old male Caucasian patient developed agranulocytosis caused by dapsone (diamino-diphenyl sulfone), which he was prescribed for leukocytoclastic vasculitis. Patient's treatment consisted of termination of dapsone, antibiotic therapy, and granulocyte colony-stimulating factor leading to prompt improvement of symptoms and normalization of laboratory blood values. Diagnostic evaluation revealed methemoglobinemia and excluded glucose-6-phosphate dehydrogenase deficiency. Pharmacogenetics testing showed that he was a carrier of NAT2 *5/*6 genotype, predisposing to low activity of the N-acetyltransferase 2 enzyme. This was the first and only ADR to dapsone reported in Croatia. In total, there have been 73 ADR to dapsone recorded worldwide, including only four cases of agranulocytosis. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  18. Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase

    DOE PAGES

    Chen, Ji-Yun; Liu, Liang; Cao, Chun-Ling; ...

    2016-08-23

    N-terminal acetylation (Nt-acetylation), carried out by N-terminal acetyltransferases (NATs), is a conserved and primary modification of nascent peptide chains. Naa60 (also named NatF) is a recently identified NAT found only in multicellular eukaryotes. This protein was shown to locate on the Golgi apparatus and mainly catalyze the Nt-acetylation of transmembrane proteins, and it also harbors lysine Nε -acetyltransferase (KAT) activity to catalyze the acetylation of lysine ε-amine. Here, we report the crystal structures of human Naa60 (hNaa60) in complex with Acetyl-Coenzyme A (Ac-CoA) or Coenzyme A (CoA). The hNaa60 protein contains an amphipathic helix following its GNAT domain that maymore » contribute to Golgi localization of hNaa60, and the β7-β8 hairpin adopted different conformations in the hNaa60(1-242) and hNaa60(1-199) crystal structures. Remarkably, we found that the side-chain of Phe 34 can influence the position of the coenzyme, indicating a new regulatory mechanism involving enzyme, co-factor and substrates interactions. Moreover, structural comparison and biochemical studies indicated that Tyr 97 and His 138 are key residues for catalytic reaction and that a non-conserved β3-β4 long loop participates in the regulation of hNaa60 activity.« less

  19. Conformational Flexibility and Subunit Arrangement of the Modular Yeast Spt-Ada-Gcn5 Acetyltransferase Complex*

    PubMed Central

    Setiaputra, Dheva; Ross, James D.; Lu, Shan; Cheng, Derrick T.; Dong, Meng-Qiu; Yip, Calvin K.

    2015-01-01

    The Spt-Ada-Gcn5 acetyltransferase (SAGA) complex is a highly conserved, 19-subunit histone acetyltransferase complex that activates transcription through acetylation and deubiquitination of nucleosomal histones in Saccharomyces cerevisiae. Because SAGA has been shown to display conformational variability, we applied gradient fixation to stabilize purified SAGA and systematically analyzed this flexibility using single-particle EM. Our two- and three-dimensional studies show that SAGA adopts three major conformations, and mutations of specific subunits affect the distribution among these. We also located the four functional modules of SAGA using electron microscopy-based labeling and transcriptional activator binding analyses and show that the acetyltransferase module is localized in the most mobile region of the complex. We further comprehensively mapped the subunit interconnectivity of SAGA using cross-linking mass spectrometry, revealing that the Spt and Taf subunits form the structural core of the complex. These results provide the necessary restraints for us to generate a model of the spatial arrangement of all SAGA subunits. According to this model, the chromatin-binding domains of SAGA are all clustered in one face of the complex that is highly flexible. Our results relate information of overall SAGA structure with detailed subunit level interactions, improving our understanding of its architecture and flexibility. PMID:25713136

  20. Cloning and characterization of the serotonin N-acetyltransferase-2 gene (SNAT2) in rice (Oryza sativa).

    PubMed

    Byeon, Yeong; Lee, Hyoung Yool; Back, Kyoungwhan

    2016-09-01

    The penultimate enzyme in melatonin synthesis is serotonin N-acetyltransferase (SNAT), which exists as a single copy in mammals and plants. Our recent studies of the Arabidopsis snat-knockout mutant and SNAT RNAi rice (Oryza sativa) plants predicted the presence of at least one other SNAT isogene in plants; that is, the snat-knockout mutant of Arabidopsis and the SNAT RNAi rice plants still produced melatonin, even in the absence or the suppression of SNAT expression. Here, we report a molecular cloning of an SNAT isogene (OsSNAT2) from rice. The mature amino acid sequences of SNAT proteins indicated that OsSNAT2 and OsSNAT1 proteins had 39% identity values and 60% similarity. The Km and Vmax values of the purified recombinant OsSNAT2 were 371 μm and 4700 pmol/min/mg protein, respectively; the enzyme's optimal activity temperature was 45°C. Confocal microscopy showed that the OsSNAT2 protein was localized to both the cytoplasm and chloroplasts. The in vitro enzyme activity of OsSNAT2 was severely inhibited by melatonin, but the activities of sheep SNAT (OaSNAT) and rice OsSNAT1 proteins were not. The enzyme activity of OsSNAT2 was threefold higher than that of OsSNAT1, but 232-fold lower than that of OaSNAT. The OsSNAT1 and OsSNAT2 transcripts were similarly suppressed in rice leaves during the melatonin induction after cadmium treatment. Phylogenetic analyses indicated that OsSNAT1 and OsSNAT2 are distantly related, suggesting that they evolved independently from Cyanobacteria prior to the endosymbiosis event. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. PCAF interacts with tax and stimulates tax transactivation in a histone acetyltransferase-independent manner.

    PubMed

    Jiang, H; Lu, H; Schiltz, R L; Pise-Masison, C A; Ogryzko, V V; Nakatani, Y; Brady, J N

    1999-12-01

    Recent studies have shown that the p300/CREB binding protein (CBP)-associated factor (PCAF) is involved in transcriptional activation. PCAF activity has been shown strongly associated with histone acetyltransferase (HAT) activity. In this report, we present evidence for a HAT-independent transcription function that is activated in the presence of the human T-cell leukemia virus type 1 (HTLV-1) Tax protein. In vitro and in vivo GST-Tax pull-down and coimmunoprecipitation experiments demonstrate that there is a direct interaction between Tax and PCAF, independent of p300/CBP. PCAF can be recruited to the HTLV-1 Tax responsive element in the presence of Tax, and PCAF cooperates with Tax in vivo to activate transcription from the HTLV-1 LTR over 10-fold. Point mutations at Tax amino acid 318 (TaxS318A) or 319 to 320 (Tax M47), which have decreased or no activity on the HTLV-1 promoter, are defective for PCAF binding. Strikingly, the ability of PCAF to stimulate Tax transactivation is not solely dependent on the PCAF HAT domain. Two independent PCAF HAT mutants, which knock out acetyltransferase enzyme activity, activate Tax transactivation to approximately the same level as wild-type PCAF. In contrast, p300 stimulation of Tax transactivation is HAT dependent. These studies provide experimental evidence that PCAF contains a coactivator transcription function independent of the HAT activity on the viral long terminal repeat.

  2. PCAF Interacts with Tax and Stimulates Tax Transactivation in a Histone Acetyltransferase-Independent Manner

    PubMed Central

    Jiang, Hua; Lu, Hanxin; Schiltz, R. Louis; Pise-Masison, Cynthia A.; Ogryzko, Vasily V.; Nakatani, Yoshihiro; Brady, John N.

    1999-01-01

    Recent studies have shown that the p300/CREB binding protein (CBP)-associated factor (PCAF) is involved in transcriptional activation. PCAF activity has been shown strongly associated with histone acetyltransferase (HAT) activity. In this report, we present evidence for a HAT-independent transcription function that is activated in the presence of the human T-cell leukemia virus type 1 (HTLV-1) Tax protein. In vitro and in vivo GST-Tax pull-down and coimmunoprecipitation experiments demonstrate that there is a direct interaction between Tax and PCAF, independent of p300/CBP. PCAF can be recruited to the HTLV-1 Tax responsive element in the presence of Tax, and PCAF cooperates with Tax in vivo to activate transcription from the HTLV-1 LTR over 10-fold. Point mutations at Tax amino acid 318 (TaxS318A) or 319 to 320 (Tax M47), which have decreased or no activity on the HTLV-1 promoter, are defective for PCAF binding. Strikingly, the ability of PCAF to stimulate Tax transactivation is not solely dependent on the PCAF HAT domain. Two independent PCAF HAT mutants, which knock out acetyltransferase enzyme activity, activate Tax transactivation to approximately the same level as wild-type PCAF. In contrast, p300 stimulation of Tax transactivation is HAT dependent. These studies provide experimental evidence that PCAF contains a coactivator transcription function independent of the HAT activity on the viral long terminal repeat. PMID:10567539

  3. Autoacetylation of the MYST Lysine Acetyltransferase MOF Protein*

    PubMed Central

    Yang, Chao; Wu, Jiang; Sinha, Sarmistha H.; Neveu, John M.; Zheng, Yujun George

    2012-01-01

    The MYST family of histone acetyltransferases (HATs) plays critical roles in diverse cellular processes, such as the epigenetic regulation of gene expression. Lysine autoacetylation of the MYST HATs has recently received considerable attention. Nonetheless, the mechanism and function of the autoacetylation process are not well defined. To better understand the biochemical mechanism of MYST autoacetylation and the impact of autoacetylation on the cognate histone acetylation, we carried out detailed analyses of males-absent-on-the-first (MOF), a key member of the MYST family. A number of mutant MOF proteins were produced with point mutations at several key residues near the active site of the enzyme. Autoradiography and immunoblotting data showed that mutation of these residues affects the autoacetylation activity and HAT activity of MOF by various degrees demonstrating that MOF activity is highly sensitive to the chemical changes in those residues. We produced MOF protein in the deacetylated form by using a nonspecific lysine deacetylase. Interestingly, both the autoacetylation activity and the histone acetylation activity of the deacetylated MOF were found to be very close to that of wild-type MOF, suggesting that autoacetylation of MOF only marginally modulates the enzymatic activity. Also, we found that the autoacetylation rates of MOF and deacetylated MOF were much slower than the cognate substrate acetylation. Thus, autoacetylation does not seem to contribute to the intrinsic enzymatic activity in a significant manner. These data provide new insights into the mechanism and function of MYST HAT autoacetylation. PMID:22918831

  4. Neural restrictive silencer factor and choline acetyltransferase expression in cerebral tissue of Alzheimer’s Disease patients: A pilot study

    PubMed Central

    González-Castañeda, Rocío E.; Sánchez-González, Víctor J.; Flores-Soto, Mario; Vázquez-Camacho, Gonzalo; Macías-Islas, Miguel A.; Ortiz, Genaro G.

    2013-01-01

    Decreased Choline Acetyltransferase (ChAT) brain level is one of the main biochemical disorders in Alzheimer’s Disease (AD). In rodents, recent data show that the CHAT gene can be regulated by a neural restrictive silencer factor (NRSF). The aim of the present work was to evaluate the gene and protein expression of CHAT and NRSF in frontal, temporal, entorhinal and parietal cortices of AD patient brains. Four brains from patients with AD and four brains from subjects without dementia were studied. Cerebral tissues were obtained and processed by the guanidine isothiocyanate method for RNA extraction. CHAT and NRSF gene and protein expression were determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. CHAT gene expression levels were 39% lower in AD patients as compared to the control group (p < 0.05, U test). ChAT protein levels were reduced by 17% (p = 0.02, U test). NRSF gene expression levels were 86% higher in the AD group (p = 0.001, U test) as compared to the control group. In the AD subjects, the NRSF protein levels were 57% higher (p > 0.05, U test) than in the control subjects. These findings suggest for the first time that in the brain of AD patients high NRSF protein levels are related to low CHAT gene expression levels. PMID:23569405

  5. Congenic rats with higher arylamine N-acetyltransferase 2 activity exhibit greater carcinogen-induced mammary tumor susceptibility independent of carcinogen metabolism.

    PubMed

    Stepp, Marcus W; Doll, Mark A; Samuelson, David J; Sanders, Mary Ann G; States, J Christopher; Hein, David W

    2017-03-31

    Recent investigations suggest role(s) of human arylamine N-acetyltransferase 1 (NAT1) in breast cancer. Rat NAT2 is orthologous to human NAT1 and the gene products are functional homologs. We conducted in vivo studies using F344.WKY-Nat2 rapid/slow rats, congenic at rat Nat2 for high (rapid) and low (slow) arylamine N-acetyltransferase activity, to assess a possible role for rat NAT2 in mammary tumor susceptibility. Mammary carcinogens, methylnitrosourea (MNU) and 7,12-dimethylbenzanthracene (DMBA) neither of which is metabolized by N-acetyltransferase, were administered to assess mammary tumors. MNU was administered at 3 or 8 weeks of age. DMBA was administered at 8 weeks of age. NAT2 enzymatic activity and endogenous acetyl-coenzyme A (AcCoA) levels were measured in tissue samples and embryonic fibroblasts isolated from the congenic rats. Tumor latency was shorter in rapid NAT2 rats compared to slow NAT2 rats, with statistical significance for MNU administered at 3 and 8 weeks of age (p = 0.009 and 0.050, respectively). Tumor multiplicity and incidence were higher in rapid NAT2 rats compared to slow NAT2 rats administered MNU or DMBA at 8 weeks of age (MNU, p = 0.050 and 0.035; DMBA, p = 0.004 and 0.027, respectively). Recombinant rat rapid-NAT2, as well as tissue samples and embryonic fibroblasts derived from rapid NAT2 rats, catalyzed p-aminobenzoic acid N-acetyl transfer and folate-dependent acetyl-coenzyme A (AcCoA) hydrolysis at higher rates than those derived from rat slow-NAT2. Embryonic fibroblasts isolated from rapid NAT2 rats displayed lower levels of cellular AcCoA than slow NAT2 rats (p < 0.01). A novel role for rat NAT2 in mammary cancer was discovered unrelated to carcinogen metabolism, suggesting a role for human NAT1 in breast cancer.

  6. Characterization of the Biosynthesis, Processing and Kinetic Mechanism of Action of the Enzyme Deficient in Mucopolysaccharidosis IIIC

    PubMed Central

    Fan, Xiaolian; Tkachyova, Ilona; Sinha, Ankit; Rigat, Brigitte; Mahuran, Don

    2011-01-01

    Heparin acetyl-CoA:alpha-glucosaminide N-acetyltransferase (N-acetyltransferase, EC 2.3.1.78) is an integral lysosomal membrane protein containing 11 transmembrane domains, encoded by the HGSNAT gene. Deficiencies of N-acetyltransferase lead to mucopolysaccharidosis IIIC. We demonstrate that contrary to a previous report, the N-acetyltransferase signal peptide is co-translationally cleaved and that this event is required for its intracellular transport to the lysosome. While we confirm that the N-acetyltransferase precursor polypeptide is processed in the lysosome into a small amino-terminal alpha- and a larger ß- chain, we further characterize this event by identifying the mature amino-terminus of each chain. We also demonstrate this processing step(s) is not, as previously reported, needed to produce a functional transferase, i.e., the precursor is active. We next optimize the biochemical assay procedure so that it remains linear as N-acetyltransferase is purified or protein-extracts containing N-acetyltransferase are diluted, by the inclusion of negatively charged lipids. We then use this assay to demonstrate that the purified single N-acetyltransferase protein is both necessary and sufficient to express transferase activity, and that N-acetyltransferase functions as a monomer. Finally, the kinetic mechanism of action of purified N-acetyltransferase was evaluated and found to be a random sequential mechanism involving the formation of a ternary complex with its two substrates; i.e., N-acetyltransferase does not operate through a ping-pong mechanism as previously reported. We confirm this conclusion by demonstrating experimentally that no acetylated enzyme intermediate is formed during the reaction. PMID:21957468

  7. Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains

    PubMed Central

    2013-01-01

    Background Pathogen infection triggers a large-scale transcriptional reprogramming in plants, and the speed of this reprogramming affects the outcome of the infection. Our understanding of this process has significantly benefited from mutants that display either delayed or accelerated defense gene induction. In our previous work we demonstrated that the Arabidopsis Elongator complex subunit 2 (AtELP2) plays an important role in both basal immunity and effector-triggered immunity (ETI), and more recently showed that AtELP2 is involved in dynamic changes in histone acetylation and DNA methylation at several defense genes. However, the function of other Elongator subunits in plant immunity has not been characterized. Results In the same genetic screen used to identify Atelp2, we found another Elongator mutant, Atelp3-10, which mimics Atelp2 in that it exhibits a delay in defense gene induction following salicylic acid treatment or pathogen infection. Similarly to AtELP2, AtELP3 is required for basal immunity and ETI, but not for systemic acquired resistance (SAR). Furthermore, we demonstrate that both the histone acetyltransferase and radical S-adenosylmethionine domains of AtELP3 are essential for its function in plant immunity. Conclusion Our results indicate that the entire Elongator complex is involved in basal immunity and ETI, but not in SAR, and support that Elongator may play a role in facilitating the transcriptional induction of defense genes through alterations to their chromatin. PMID:23856002

  8. Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains.

    PubMed

    Defraia, Christopher T; Wang, Yongsheng; Yao, Jiqiang; Mou, Zhonglin

    2013-07-16

    Pathogen infection triggers a large-scale transcriptional reprogramming in plants, and the speed of this reprogramming affects the outcome of the infection. Our understanding of this process has significantly benefited from mutants that display either delayed or accelerated defense gene induction. In our previous work we demonstrated that the Arabidopsis Elongator complex subunit 2 (AtELP2) plays an important role in both basal immunity and effector-triggered immunity (ETI), and more recently showed that AtELP2 is involved in dynamic changes in histone acetylation and DNA methylation at several defense genes. However, the function of other Elongator subunits in plant immunity has not been characterized. In the same genetic screen used to identify Atelp2, we found another Elongator mutant, Atelp3-10, which mimics Atelp2 in that it exhibits a delay in defense gene induction following salicylic acid treatment or pathogen infection. Similarly to AtELP2, AtELP3 is required for basal immunity and ETI, but not for systemic acquired resistance (SAR). Furthermore, we demonstrate that both the histone acetyltransferase and radical S-adenosylmethionine domains of AtELP3 are essential for its function in plant immunity. Our results indicate that the entire Elongator complex is involved in basal immunity and ETI, but not in SAR, and support that Elongator may play a role in facilitating the transcriptional induction of defense genes through alterations to their chromatin.

  9. Physiological role of D-amino acid-N-acetyltransferase of Saccharomyces cerevisiae: detoxification of D-amino acids.

    PubMed

    Yow, Geok-Yong; Uo, Takuma; Yoshimura, Tohru; Esaki, Nobuyoshi

    2006-03-01

    Saccharomyces cerevisiae is sensitive to D-amino acids: those corresponding to almost all proteinous L-amino acids inhibit the growth of yeast even at low concentrations (e.g. 0.1 mM). We have determined that D-amino acid-N-acetyltransferase (DNT) of the yeast is involved in the detoxification of D-amino acids on the basis of the following findings. When the DNT gene was disrupted, the resulting mutant was far less tolerant to D-amino acids than the wild type. However, when the gene was overexpressed with a vector plasmid p426Gal1 in the wild type or the mutant S. cerevisiae as a host, the recombinant yeast, which was found to show more than 100 times higher DNT activity than the wild type, was much more tolerant to D-amino acids than the wild type. We further confirmed that, upon cultivation with D-phenylalanine, N-acetyl-D-phenylalanine was accumulated in the culture but not in the wild type and hpa3Delta cells overproducing DNT cells. Thus, D-amino acids are toxic to S. cerevisiae but are detoxified with DNT by N-acetylation preceding removal from yeast cells.

  10. Metabolic regulation of histone acetyltransferases by endogenous Acyl-CoA cofactors | Center for Cancer Research

    Cancer.gov

    Unraveling the metabolic regulation of lysine acetyltransferases (KATs). Montgomery et al. detail the application of a competitive chemoproteomic strategy to quantitatively characterize the interactions of acyl-CoA metabolites with cellular KAT enzymes.

  11. Regulation of Histone Acetyltransferase TIP60 Function by Histone Deacetylase 3

    PubMed Central

    Yi, Jingjie; Huang, Xiangyang; Yang, Yuxia; Zhu, Wei-Guo; Gu, Wei; Luo, Jianyuan

    2014-01-01

    The key member of the MOZ (monocyticleukaemia zinc finger protein), Ybf2/Sas3, Sas2, and TIP60 acetyltransferases family, Tat-interactive protein, 60 kD (TIP60), tightly modulates a wide array of cellular processes, including chromatin remodeling, gene transcription, apoptosis, DNA repair, and cell cycle arrest. The function of TIP60 can be regulated by SIRT1 through deacetylation. Here we found that TIP60 can also be functionally regulated by HDAC3. We identified six lysine residues as its autoacetylation sites. Mutagenesis of these lysines to arginines completely abolishes the autoacetylation of TIP60. Overexpression of HDAC3 increases TIP60 ubiquitination levels. However, unlike SIRT1, HDAC3 increased the half-life of TIP60. Further study found that HDAC3 colocalized with TIP60 both in the nucleus and the cytoplasm, which could be the reason why HDAC3 can stabilize TIP60. The deacetylation of TIP60 by both SIRT1 and HDAC3 reduces apoptosis induced by DNA damage. Knockdown of HDAC3 in cells increased TIP60 acetylation levels and increased apoptosis after DNA damage. Together, our findings provide a better understanding of TIP60 regulation mechanisms, which is a significant basis for further studies of its cellular functions. PMID:25301942

  12. From Arylamine N-Acetyltransferase to Folate-Dependent Acetyl CoA Hydrolase: Impact of Folic Acid on the Activity of (HUMAN)NAT1 and Its Homologue (MOUSE)NAT2

    PubMed Central

    Laurieri, Nicola; Dairou, Julien; Egleton, James E.; Stanley, Lesley A.; Russell, Angela J.; Dupret, Jean-Marie; Sim, Edith; Rodrigues-Lima, Fernando

    2014-01-01

    Acetyl Coenzyme A-dependent N-, O- and N,O-acetylation of aromatic amines and hydrazines by arylamine N-acetyltransferases is well characterised. Here, we describe experiments demonstrating that human arylamine N-acetyltransferase Type 1 and its murine homologue (Type 2) can also catalyse the direct hydrolysis of acetyl Coenzyme A in the presence of folate. This folate-dependent activity is exclusive to these two isoforms; no acetyl Coenzyme A hydrolysis was found when murine arylamine N-acetyltransferase Type 1 or recombinant bacterial arylamine N-acetyltransferases were incubated with folate. Proton nuclear magnetic resonance spectroscopy allowed chemical modifications occurring during the catalytic reaction to be analysed in real time, revealing that the disappearance of acetyl CH 3 from acetyl Coenzyme A occurred concomitantly with the appearance of a CH 3 peak corresponding to that of free acetate and suggesting that folate is not acetylated during the reaction. We propose that folate is a cofactor for this reaction and suggest it as an endogenous function of this widespread enzyme. Furthermore, in silico docking of folate within the active site of human arylamine N-acetyltransferase Type 1 suggests that folate may bind at the enzyme’s active site, and facilitate acetyl Coenzyme A hydrolysis. The evidence presented in this paper adds to our growing understanding of the endogenous roles of human arylamine N-acetyltransferase Type 1 and its mouse homologue and expands the catalytic repertoire of these enzymes, demonstrating that they are by no means just xenobiotic metabolising enzymes but probably also play an important role in cellular metabolism. These data, together with the characterisation of a naphthoquinone inhibitor of folate-dependent acetyl Coenzyme A hydrolysis by human arylamine N-acetyltransferase Type 1/murine arylamine N-acetyltransferase Type 2, open up a range of future avenues of exploration, both for elucidating the developmental role of

  13. Functional effects of single nucleotide polymorphisms in the coding region of human N-acetyltransferase 1

    PubMed Central

    Zhu, Yuanqi; Hein, David W.

    2007-01-01

    Genetic variants of human N-acetyltransferase 1 (NAT1) are associated with cancer and birth defects. N- and O-acetyltransferase catalytic activities, Michaelis-Menten kinetic constants (Km & Vmax), and steady state expression levels of NAT1-specific mRNA and protein were determined for the reference NAT1*4 and variant human NAT1 haplotypes possessing single nucleotide polymorphisms (SNPs) in the open reading frame. Although none of the SNPs caused a significant effect on steady state levels of NAT1-specific mRNA, C97T(R33stop), C190T(R64W), C559T (R187stop) and A752T(D251V) each reduced NAT1 protein level and/or N- and O-acetyltransferase catalytic activities to levels below detection. G560A(R187Q) substantially reduced NAT1 protein level and catalytic activities and increased substrate Km. The G445A(V149I), G459A(synonymous) and T640G(S214A) haplotype present in NAT1*11 significantly (p<0.05) increased NAT1 protein level and catalytic activity. Neither T21G(synonymous), T402C(synonymous), A613G(M205V), T777C(synonymous), G781A(E261K), or A787G(I263V) significantly affected Km, catalytic activity, mRNA or protein level. These results suggest heterogeneity among slow NAT1 acetylator phenotypes. PMID:17909564

  14. NolL of Rhizobium sp. Strain NGR234 Is Required for O-Acetyltransferase Activity

    PubMed Central

    Berck, S.; Perret, X.; Quesada-Vincens, D.; Promé, J.-C.; Broughton, W. J.; Jabbouri, S.

    1999-01-01

    Following (iso)flavonoid induction, nodulation genes of the symbiotic nitrogen-fixing bacterium Rhizobium sp. strain NGR234 elaborate a large family of lipooligosaccharidic Nod factors (NodNGR factors). When secreted into the rhizosphere of compatible legumes, these signal molecules initiate root hair deformation and nodule development. The nonreducing glucosamine residue of NodNGR factors are N acylated, N methylated, and mono- or biscarbamoylated, while position C-6 of the reducing extremity is fucosylated. This fucose residue is normally 2-O methylated and either sulfated or acetylated. Here we present an analysis of all acetylated NodNGR factors, which clearly shows that the acetate group may occupy position C-3 or C-4 of the fucose moiety. Disruption of the flavonoid-inducible nolL gene, which is preceded by a nod box, results in the synthesis of NodNGR factors that lack the 3-O- or 4-O-acetate groups. Interestingly, the nodulation capacity of the mutant NGRΩnolL is not impaired, whereas introduction of the nod box::nolL construct into the related strain Rhizobium fredii USDA257 extends the host range of this bacterium to Calopogonium caeruleum, Leucaena leucocephala, and Lotus halophilus. Nod factors produced by a USDA257(pnolL) transconjugant were also acetylated. The nod box::nolL construct was also introduced into ANU265 (NGR234 cured of its symbiotic plasmid), along with extra copies of the nodD1 gene. When permeabilized, these cells possessed acetyltransferase activity, although crude extracts did not. PMID:9922261

  15. NuA4 Lysine Acetyltransferase Complex Contributes to Phospholipid Homeostasis in Saccharomyces cerevisiae.

    PubMed

    Dacquay, Louis; Flint, Annika; Butcher, James; Salem, Danny; Kennedy, Michael; Kaern, Mads; Stintzi, Alain; Baetz, Kristin

    2017-06-07

    Actively proliferating cells constantly monitor and readjust their metabolic pathways to ensure the replenishment of phospholipids necessary for membrane biogenesis and intracellular trafficking. In Saccharomyces cerevisiae , multiple studies have suggested that the lysine acetyltransferase complex NuA4 plays a role in phospholipid homeostasis. For one, NuA4 mutants induce the expression of the inositol-3-phosphate synthase gene, INO1 , which leads to excessive accumulation of inositol, a key metabolite used for phospholipid biosynthesis. Additionally, NuA4 mutants also display negative genetic interactions with sec14-1 ts , a mutant of a lipid-binding gene responsible for phospholipid remodeling of the Golgi. Here, using a combination of genetics and transcriptional profiling, we explore the connections between NuA4, inositol, and Sec14 Surprisingly, we found that NuA4 mutants did not suppress but rather exacerbated the growth defects of sec14-1 ts under inositol-depleted conditions. Transcriptome studies reveal that while loss of the NuA4 subunit EAF1 in sec14-1 ts does derepress INO1 expression, it does not derepress all inositol/choline-responsive phospholipid genes, suggesting that the impact of Eaf1 on phospholipid homeostasis extends beyond inositol biosynthesis. In fact, we find that NuA4 mutants have impaired lipid droplet levels and through genetic and chemical approaches, we determine that the genetic interaction between sec14-1 ts and NuA4 mutants potentially reflects a role for NuA4 in fatty acid biosynthesis. Altogether, our work identifies a new role for NuA4 in phospholipid homeostasis. Copyright © 2017 Dacquay et al.

  16. Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. Cloning and characterization of Tri101.

    PubMed

    Kimura, M; Kaneko, I; Komiyama, M; Takatsuki, A; Koshino, H; Yoneyama, K; Yamaguchi, I

    1998-01-16

    Trichothecene mycotoxins such as deoxynivalenol, 4,15-diacetoxyscirpenol, and T-2 toxin, are potent protein synthesis inhibitors for eukaryotic organisms. The 3-O-acetyl derivatives of these toxins were shown to reduce their in vitro activity significantly as assessed by assays using a rabbit reticulocyte translation system. The results suggested that the introduction of an O-acetyl group at the C-3 position in the biosynthetic pathway works as a resistance mechanism for Fusarium species that produce t-type trichothecenes (trichothecenes synthesized via the precursor trichotriol). A gene responsible for the 3-O-acetylation reaction, Tri101, has been successfully cloned from a Fusarium graminearum cDNA library that was designed to be expressed in Schizosaccharomyces pombe. Fission yeast transformants were selected for their ability to grow in the presence of T-2 toxin, and this strategy allowed isolation of 25 resistant clones, all of which contained a cDNA for Tri101. This is the first drug-inactivating O-acetyltransferase gene derived from antibiotic-producing organisms. The open reading frame of Tri101 codes for a polypeptide of 451 amino acid residues, which shows no similarity to any other proteins reported so far. TRI101 from recombinant Escherichia coli catalyzes O-acetylation of the trichothecene ring specifically at the C-3 position in an acetyl-CoA-dependent manner. By using the Tri101 cDNA as a probe, two least overlapping cosmid clones that cover a region of 70 kilobase pairs have been isolated from the genome of F. graminearum. Other trichothecene biosynthetic genes, Tri4, Tri5, and Tri6, were not clustered in the region covered by these cosmid clones. These new cosmid clones are considered to be located in other parts of the large biosynthetic gene cluster and might be useful for the study of trichothecene biosynthesis.

  17. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.

    PubMed

    Sasano, Yu; Takahashi, Shunsuke; Shima, Jun; Takagi, Hiroshi

    2010-03-31

    During bread-making processes, yeast cells are exposed to multiple stresses. Air-drying stress is one of the most harmful stresses by generation of reactive oxygen species (ROS). Previously, we discovered that the novel N-acetyltransferase Mpr1/2 confers oxidative stress tolerance by reducing intracellular ROS level in Saccharomyces cerevisiae Sigma1278b strain. In this study, we revealed that Japanese industrial baker's yeast possesses one MPR gene. The nucleotide sequence of the MPR gene in industrial baker's yeast was identical to the MPR2 gene in Sigma1278b strain. Gene disruption analysis showed that the MPR2 gene in industrial baker's yeast is involved in air-drying stress tolerance by reducing the intracellular oxidation levels. We also found that expression of the Lys63Arg and Phe65Leu variants with enhanced enzymatic activity and stability, respectively, increased the fermentation ability of bread dough after exposure to air-drying stress compared with the wild-type Mpr1. In addition, our recent study showed that industrial baker's yeast cells accumulating proline exhibited enhanced freeze tolerance in bread dough. Proline accumulation also enhanced the fermentation ability after air-drying stress treatment in industrial baker's yeast. Hence, the antioxidant enzyme Mpr1/2 could be promising for breeding novel yeast strains that are tolerant to air-drying stress. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Analysis of a cis-Acting Element Involved in Regulation by Estrogen of Human Angiotensinogen Gene Expression.

    PubMed

    Zhao, Yan-Yan; Sun, Kai-Lai; Ashok, Kumar

    1998-01-01

    The work was aimed to identify the estrogen responsive element in the human angiotensinogen gene. The nucleotide sequence between the transcription initiation site and TATA box in angiotensinogen gene promoter was found to be strongly homologous with the consensus estrogen responsive element. This sequence was confirmed as the estrogen responsive element (HAG ERE) by electrophoretic mobility shift assay. The recombinant expression vectors were constructed in which chloramphenicol acetyltransferase (CAT) reporter gene was driven by angiotensinogen core promoter with HAG ERE of by TK core promoter with multiplied HAG ERE, and were used in cotransfection with the human estrogen receptor expression vector into HepG(2) cells; CAT assays showed an increase of the CAT activity on 17beta-estradiol treatment in those transfectants. These results suggest that the human angiotensinogen gene is transcriptionally up-regulated by estrogen through the estrogen responsive element near TATA box of the promoter.

  19. Eaf1p Is Required for Recruitment of NuA4 in Targeting TFIID to the Promoters of the Ribosomal Protein Genes for Transcriptional Initiation In Vivo

    PubMed Central

    Uprety, Bhawana; Sen, Rwik

    2015-01-01

    NuA4 (nucleosome acetyltransferase of H4) promotes transcriptional initiation of TFIID (a complex of TBP and TBP-associated factors [TAFs])-dependent ribosomal protein genes involved in ribosome biogenesis. However, it is not clearly understood how NuA4 regulates the transcription of ribosomal protein genes. Here, we show that NuA4 is recruited to the promoters of ribosomal protein genes, such as RPS5, RPL2B, and RPS11B, for TFIID recruitment to initiate transcription, and the recruitment of NuA4 to these promoters is impaired in the absence of its Eaf1p component. Intriguingly, impaired NuA4 recruitment in a Δeaf1 strain depletes recruitment of TFIID (a TAF-dependent form of TBP) but not the TAF-independent form of TBP to the promoters of ribosomal protein genes. However, in the absence of NuA4, SAGA (Spt-Ada-Gcn5-acetyltransferase) is involved in targeting the TAF-independent form of TBP to the promoters of ribosomal protein genes for transcriptional initiation. Thus, NuA4 plays an important role in targeting TFIID to the promoters of ribosomal protein genes for transcriptional initiation in vivo. Such a function is mediated via its targeted histone acetyltransferase activity. In the absence of NuA4, ribosomal protein genes lose TFIID dependency and become SAGA dependent for transcriptional initiation. Collectively, these results provide significant insights into the regulation of ribosomal protein gene expression and, hence, ribosome biogenesis and functions. PMID:26100014

  20. Cloning, characterization, and expression analysis of the novel acetyltransferase retrogene Ard1b in the mouse.

    PubMed

    Pang, Alan Lap-Yin; Peacock, Stephanie; Johnson, Warren; Bear, Deborah H; Rennert, Owen M; Chan, Wai-Yee

    2009-08-01

    N-alpha-terminal acetylation is a modification process that occurs cotranslationally on most eukaryotic proteins. The major enzyme responsible for this process, N-alpha-terminal acetyltransferase, is composed of the catalytic subunit ARD1A and the auxiliary subunit NAT1. We cloned, characterized, and studied the expression pattern of Ard1b (also known as Ard2), a novel homolog of the mouse Ard1a. Comparison of the genomic structures suggests that the autosomal Ard1b is a retroposed copy of the X-linked Ard1a. Expression analyses demonstrated a testis predominance of Ard1b. A reciprocal expression pattern between Ard1a and Ard1b is also observed during spermatogenesis, suggesting that Ard1b is expressed to compensate for the loss of Ard1a starting from meiosis. Both ARD1A and ARD1B can interact with NAT1 to constitute a functional N-alpha-terminal acetyltransferase in vitro. The expression of ARD1B protein can be detected in mouse testes but is delayed until the first appearance of round spermatids. In a cell culture model, the inclusion of the long 3' untranslated region of Ard1b leads to reduction of luciferase reporter activity, which implicates its role in translational repression of Ard1b during spermatogenesis. Our results suggest that ARD1B may have an important role in the later course of the spermatogenic process.

  1. The Histone Acetyltransferase MOF is a Key Regulator of the Embryonic Stem Cell Core Transcriptional Network

    PubMed Central

    Li, Xiangzhi; Li, Li; Pandey, Ruchi; Byun, Jung S.; Gardner, Kevin; Qin, Zhaohui; Dou, Yali

    2012-01-01

    SUMMARY Pluripotent embryonic stem cells (ESCs) maintain self-renewal and the potential for rapid response to differentiation cues. Both ESC features are subject to epigenetic regulation. Here we show that histone acetyltransferase Mof plays an essential role in the maintenance of ESC self-renewal and pluripotency. ESCs with Mof deletion lose characteristic morphology, alkaline phosphatase (AP) staining and differentiation potential. They also have aberrant expression of core transcription factors Nanog, Oct4 and Sox2. Importantly, the phenotypes of Mof null ESCs can be partially suppressed by Nanog overexpression, supporting that Mof functions as an upstream regulator of Nanog in ESCs. Genome-wide ChIP sequencing and transcriptome analyses further demonstrate that Mof is an integral component of ESC core transcription network and Mof primes genes for diverse developmental programs. Mof is also required for Wdr5 recruitment and H3 K4 methylation at key regulatory loci, highlighting complexity and interconnectivity of various chromatin regulators in ESCs. PMID:22862943

  2. Functional Effects of Genetic Polymorphisms in the N-acetyltransferase 1 Coding and 3′ Untranslated Regions

    PubMed Central

    Zhu, Yuanqi; States, J. Christopher; Wang, Yang; Hein, David W.

    2011-01-01

    BACKGROUND The functional effects of N-acetyltransferase 1 (NAT1) polymorphisms and haplotypes are poorly understood, compromising the validity of associations reported with diseases including birth defects and numerous cancers. METHODS We investigated the effects of genetic polymorphisms within the NAT1 coding region and the 3′-untranslated region (3′-UTR) and their associated haplotypes on N- and O-acetyltransferase catalytic activities, and NAT1 mRNA and protein levels following recombinant expression in COS-1 cells. RESULTS 1088T>A (rs1057126; 3′-UTR) and 1095C>A (rs15561; 3′-UTR) each slightly reduced NAT1 catalytic activity and NAT1 mRNA and protein levels. A 9-base pair (TAATAATAA) deletion between nucleotides 1065-1090 (3′-UTR) reduced NAT1 catalytic activity and NAT1 mRNA and protein levels. In contrast, a 445G>A (rs4987076; V149I), 459G>A (rs4986990; T153T), 640T>G (rs4986783; S214A) coding region haplotype present in NAT1*11 increased NAT1 catalytic activity and NAT1 protein, but not NAT1 mRNA levels. A combination of the 9-base pair (TAATAATAA) deletion and the 445G>A, 459G>A, 640T>G coding region haplotypes, both present in NAT1*11, appeared to neutralize the opposing effects on NAT1 protein and catalytic activity, resulting in levels of NAT1 protein and catalytic activity that did not differ significantly from the NAT1*4 reference. CONCLUSIONS Since 1095C>A (3′-UTR) is the sole polymorphism present in NAT1*3, our data suggests that NAT1*3 is not functionally equivalent to the NAT1*4 reference. Furthermore, our findings provide biological support for reported associations of 1088T>A and 1095C>A polymorphisms with birth defects. PMID:21290563

  3. The role of lysine(100) in the binding of acetylcoenzyme A to human arylamine N-acetyltransferase 1: implications for other acetyltransferases.

    PubMed

    Minchin, Rodney F; Butcher, Neville J

    2015-04-01

    The arylamine N-acetyltransferases (NATs) catalyze the acetylation of aromatic and heterocyclic amines as well as hydrazines. All proteins in this family of enzymes utilize acetyl coenzyme A (AcCoA) as an acetyl donor, which initially binds to the enzyme and transfers an acetyl group to an active site cysteine. Here, we have investigated the role of a highly conserved amino acid (Lys(100)) in the enzymatic activity of human NAT1. Mutation of Lys(100) to either a glutamine or a leucine significantly increased the Ka for AcCoA without changing the Kb for the acetyl acceptor p-aminobenzoic acid. In addition, substrate inhibition was more marked with the mutant enzymes. Steady state kinetic analyzes suggested that mutation of Lys(100) to either leucine or glutamine resulted in a less stable enzyme-cofactor complex, which was not seen with a positively charged arginine at this position. When p-nitrophenylacetate was used as acetyl donor, no differences were seen between the wild-type and mutant enzymes because p-nitrophenylacetate is too small to interact with Lys(100) when bound to the active site. Using 3'-dephospho-AcCoA as the acetyl donor, kinetic data confirmed that Ly(100) interacts with the 3'-phosphoanion to stabilize the enzyme-cofactor complex. Mutation of Lys(100) decreases the affinity of AcCoA for the protein and increases the rate of CoA release. Crystal structures of several other unrelated acetyltransferases show a lysine or arginine residue within 3Å of the 3'-phosphoanion of AcCoA, suggesting that this mechanism for stabilizing the complex by the formation of a salt bridge may be widely applicable in nature. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The enhancing effect of genistein on apoptosis induced by trichostatin A in lung cancer cells with wild type p53 genes is associated with upregulation of histone acetyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tzu-Chin; Lin, Yi-Chin; Chen, Hsiao-Ling

    Genistein has been shown to enhance the antitumor activity of trichostatin A (TSA) in human lung carcinoma A549 cells. However, whether the combined treatment exerts the same effect in other lung cancer cells is unclear. In the present study we first compared the enhancing effect of genistein on the antitumor effect of TSA in ABC-1, NCI-H460 (H460) and A549 cells. Second, we investigated whether the effects of genistein are associated with increased histone/non-histone protein acetylation. We found that the enhancing effect of genistein on cell-growth-arrest in ABC-1 cells (p53 mutant) was less than in A549 and H460 cells. Genistein enhancedmore » TSA induced apoptosis in A549 and H460 cells rather than in ABC-1 cells. After silencing p53 expression in A549 and H460 cells, the enhancing effect of genistein was diminished. In addition, genistein increased TSA-induced histone H3/H4 acetylation in A549 and H460 cells. Genistein also increased p53 acetylation in H460 cells. The inhibitor of acetyltransferase, anacardic acid, diminished the enhancing effect of genistein on all TSA-induced histone/p53 acetylation and apoptosis. Genistein in combination with TSA increased the expression of p300 protein, an acetyltransferase, in A549 and NCI-H460 cells. Furthermore, we demonstrated that genistein also enhanced the antitumor effect of genistein in A549-tumor-bearing mice. Taken together, these results suggest that the enhancing effects of genistein on TSA-induced apoptosis in lung cancer cells were p53-dependent and were associated with histone/non-histone protein acetylation. - Highlights: • Genistein enhances the antitumor effect of TSA through p53-associated pathways. • Genistein enhances TSA-induced histone acetylation commonly. • An acetyltransferase inhibitor diminishes the antitumor effect of genistein + TSA. • TSA in combination with genistein increases the expression of p300. • Genistein given by i.p. injection increases the antitumor effect of TSA in

  5. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism.

    PubMed

    Gómez-Rodríguez, Elida Yazmín; Uresti-Rivera, Edith Elena; Patrón-Soberano, Olga Araceli; Islas-Osuna, María Auxiliadora; Flores-Martínez, Alberto; Riego-Ruiz, Lina; Rosales-Saavedra, María Teresa; Casas-Flores, Sergio

    2018-01-01

    Some filamentous fungi of the Trichoderma genus are used as biocontrol agents against airborne and soilborne phytopathogens. The proposed mechanism by which Trichoderma spp. antagonizes phytopathogens is through the release of lytic enzymes, antimicrobial compounds, mycoparasitism, and the induction of systemic disease-resistance in plants. Here we analyzed the role of TGF-1 (Trichoderma Gcn Five-1), a histone acetyltransferase of Trichoderma atroviride, in mycoparasitism and antibiosis against the phytopathogen Rhizoctonia solani. Trichostatin A (TSA), a histone deacetylase inhibitor that promotes histone acetylation, slightly affected T. atroviride and R. solani growth, but not the growth of the mycoparasite over R. solani. Application of TSA to the liquid medium induced synthesis of antimicrobial compounds. Expression analysis of the mycoparasitism-related genes ech-42 and prb-1, which encode an endochitinase and a proteinase, as well as the secondary metabolism-related genes pbs-1 and tps-1, which encode a peptaibol synthetase and a terpene synthase, respectively, showed that they were regulated by TSA. A T. atroviride strain harboring a deletion of tgf-1 gene showed slow growth, thinner and less branched hyphae than the wild-type strain, whereas its ability to coil around the R. solani hyphae was not affected. Δtgf-1 presented a diminished capacity to grow over R. solani, but the ability of its mycelium -free culture filtrates (MFCF) to inhibit the phytopathogen growth was enhanced. Intriguingly, addition of TSA to the culture medium reverted the enhanced inhibition growth of Δtgf-1 MFCF on R. solani at levels compared to the wild-type MFCF grown in medium amended with TSA. The presence of R. solani mycelium in the culture medium induced similar proteinase activity in a Δtgf-1 compared to the wild-type, whereas the chitinolytic activity was higher in a Δtgf-1 mutant in the absence of R. solani, compared to the parental strain. Expression of mycoparasitism

  6. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism

    PubMed Central

    Patrón-Soberano, Olga Araceli; Islas-Osuna, María Auxiliadora; Flores-Martínez, Alberto; Riego-Ruiz, Lina; Rosales-Saavedra, María Teresa

    2018-01-01

    Some filamentous fungi of the Trichoderma genus are used as biocontrol agents against airborne and soilborne phytopathogens. The proposed mechanism by which Trichoderma spp. antagonizes phytopathogens is through the release of lytic enzymes, antimicrobial compounds, mycoparasitism, and the induction of systemic disease-resistance in plants. Here we analyzed the role of TGF-1 (Trichoderma Gcn Five-1), a histone acetyltransferase of Trichoderma atroviride, in mycoparasitism and antibiosis against the phytopathogen Rhizoctonia solani. Trichostatin A (TSA), a histone deacetylase inhibitor that promotes histone acetylation, slightly affected T. atroviride and R. solani growth, but not the growth of the mycoparasite over R. solani. Application of TSA to the liquid medium induced synthesis of antimicrobial compounds. Expression analysis of the mycoparasitism-related genes ech-42 and prb-1, which encode an endochitinase and a proteinase, as well as the secondary metabolism-related genes pbs-1 and tps-1, which encode a peptaibol synthetase and a terpene synthase, respectively, showed that they were regulated by TSA. A T. atroviride strain harboring a deletion of tgf-1 gene showed slow growth, thinner and less branched hyphae than the wild-type strain, whereas its ability to coil around the R. solani hyphae was not affected. Δtgf-1 presented a diminished capacity to grow over R. solani, but the ability of its mycelium -free culture filtrates (MFCF) to inhibit the phytopathogen growth was enhanced. Intriguingly, addition of TSA to the culture medium reverted the enhanced inhibition growth of Δtgf-1 MFCF on R. solani at levels compared to the wild-type MFCF grown in medium amended with TSA. The presence of R. solani mycelium in the culture medium induced similar proteinase activity in a Δtgf-1 compared to the wild-type, whereas the chitinolytic activity was higher in a Δtgf-1 mutant in the absence of R. solani, compared to the parental strain. Expression of mycoparasitism

  7. N-acetyltransferase 1 and 2 polymorphisms and risk of diabetes mellitus type 2 in a Saudi population.

    PubMed

    Al-Shaqha, Waleed M; Alkharfy, Khalid M; Al-Daghri, Nasser M; Mohammed, Abdul Khader

    2015-01-01

    There have been inconsistent reports on N-acetyltransferase (NAT) gene polymorphism in type 2 diabetes mellitus (T2DM), and data is particularly limited in the Arab population. Therefore, the main objective of this study was to identify whether the genetic polymorphisms of NAT1 and NAT2 play a role in susceptibility to T2DM in the Saudi population. A population-based, prospective genetic association case-control study on a Saudi population. Whole blood, anthropometric measurements and biochemistry data were collected from 369 Saudi individuals (186 T2DM patients and 183 healthy controls). DNA was isolated from the blood. Polymorphism of NAT1 and NAT2 SNPs [NAT2*7B, rs1041983(C > T); NAT2*7, rs1799931(G > A); NAT2*6A, rs1799930(G > A); NAT2*5A, rs1799929(C > T); and NAT1*11A, rs4986988(C > T)] were evaluated by allelic discrimination using real-time PCR. Subjects with T2DM had a significantly increased body mass index (BMI), waist circumference, sys.tolic and diastolic blood pressure, glucose, triglycerides, and LDL-cholesterol compared with healthy controls (P < .05). The rs1799931(G > A) genotype was detected in the control population but not in the T2DM population (P < .001). The wild type (G) allele frequency was higher in T2DM than controls (P=.038). The mutant allele (A) in rs1799931(G > A) had a protective effect for T2DM (OR 0.32, 95% CI 0.16-0.62; P=.001). Regression analysis showed that BMI, systolic BP and triglycerides are potential risk factors for T2DM. The genotypes as well as the individual alleles of rs1799931(G > A) differed significantly be.tween the case and control populations. The variation in the data reported so far suggest that polymorphism of the NAT gene may vary among different geographical areas. Environmental or dietary factors may also contribute to disease manifestation.

  8. Structural and Biochemical Characterization of Acinetobacter spp. Aminoglycoside Acetyltransferases Highlights Functional and Evolutionary Variation among Antibiotic Resistance Enzymes.

    PubMed

    Stogios, Peter J; Kuhn, Misty L; Evdokimova, Elena; Law, Melissa; Courvalin, Patrice; Savchenko, Alexei

    2017-02-10

    Modification of aminoglycosides by N-acetyltransferases (AACs) is one of the major mechanisms of resistance to these antibiotics in human bacterial pathogens. More than 50 enzymes belonging to the AAC(6') subfamily have been identified in Gram-negative and Gram-positive clinical isolates. Our understanding of the molecular function and evolutionary origin of these resistance enzymes remains incomplete. Here we report the structural and enzymatic characterization of AAC(6')-Ig and AAC(6')-Ih from Acinetobacter spp. The crystal structure of AAC(6')-Ig in complex with tobramycin revealed a large substrate-binding cleft remaining partially unoccupied by the substrate, which is in stark contrast with the previously characterized AAC(6')-Ib enzyme. Enzymatic analysis indicated that AAC(6')-Ig and -Ih possess a broad specificity against aminoglycosides but with significantly lower turnover rates as compared to other AAC(6') enzymes. Structure- and function-informed phylogenetic analysis of AAC(6') enzymes led to identification of at least three distinct subfamilies varying in oligomeric state, active site composition, and drug recognition mode. Our data support the concept of AAC(6') functionality originating through convergent evolution from diverse Gcn5-related-N-acetyltransferase (GNAT) ancestral enzymes, with AAC(6')-Ig and -Ih representing enzymes that may still retain ancestral nonresistance functions in the cell as provided by their particular active site properties.

  9. Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen.

    PubMed

    Lee, Hyoung Yool; Byeon, Yeong; Tan, Dun-Xian; Reiter, Russel J; Back, Kyoungwhan

    2015-04-01

    Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in the melatonin biosynthesis pathway in plants. We examined the effects of SNAT gene inactivation in two Arabidopsis T-DNA insertion mutant lines. After inoculation with the avirulent pathogen Pseudomonas syringe pv. tomato DC3000 harboring the elicitor avrRpt2 (Pst-avrRpt2), melatonin levels in the snat knockout mutant lines were 50% less than in wild-type Arabidopsis Col-0 plants. The snat knockout mutant lines exhibited susceptibility to pathogen infection that coincided with decreased induction of defense genes including PR1, ICS1, and PDF1.2. Because melatonin acts upstream of salicylic acid (SA) synthesis, the reduced melatonin levels in the snat mutant lines led to decreased SA levels compared to wild-type, suggesting that the increased pathogen susceptibility of the snat mutant lines could be attributed to decreased SA levels and subsequent attenuation of defense gene induction. Exogenous melatonin treatment failed to induce defense gene expression in nahG Arabidopsis plants, but restored the induction of defense gene expression in the snat mutant lines. In addition, melatonin caused translocation of NPR1 (nonexpressor of PR1) protein from the cytoplasm into the nucleus indicating that melatonin-elicited pathogen resistance in response to avirulent pathogen attack is SA-dependent in Arabidopsis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. In Bacillus subtilis, the SatA (Formerly YyaR) Acetyltransferase Detoxifies Streptothricin via Lysine Acetylation

    PubMed Central

    Burckhardt, Rachel M.

    2017-01-01

    ABSTRACT Soil is a complex niche, where survival of microorganisms is at risk due to the presence of antimicrobial agents. Many microbes chemically modify cytotoxic compounds to block their deleterious effects. Streptothricin is a broad-spectrum antibiotic produced by streptomycetes that affects Gram-positive and Gram-negative bacteria alike. Here we identify the SatA (for streptothricin acetyltransferase A, formerly YyaR) enzyme of Bacillus subtilis as the mechanism used by this soil bacterium to detoxify streptothricin. B. subtilis strains lacking satA were susceptible to streptothricin. Ectopic expression of satA+ restored streptothricin resistance to B. subtilis satA (BsSatA) strains. Purified BsSatA acetylated streptothricin in vitro at the expense of acetyl-coenzyme A (acetyl-CoA). A single acetyl moiety transferred onto streptothricin by SatA blocked the toxic effects of the antibiotic. SatA bound streptothricin with high affinity (Kd [dissociation constant] = 1 μM), and did not bind acetyl-CoA in the absence of streptothricin. Expression of B. subtilis satA+ in Salmonella enterica conferred streptothricin resistance, indicating that SatA was necessary and sufficient to detoxify streptothricin. Using this heterologous system, we showed that the SatA homologue from Bacillus anthracis also had streptothricin acetyltransferase activity. Our data highlight the physiological relevance of lysine acetylation for the survival of B. subtilis in the soil. IMPORTANCE Experimental support is provided for the functional assignment of gene products of the soil-dwelling bacilli Bacillus subtilis and Bacillus anthracis. This study focuses on one enzyme that is necessary and sufficient to block the cytotoxic effects of a common soil antibiotic. The enzyme alluded to is a member of a family of proteins that are broadly distributed in all domains of life but poorly studied in B. subtilis and B. anthracis. The initial characterization of the enzyme provides insights into its

  11. Cinnamoyl compounds as simple molecules that inhibit p300 histone acetyltransferase.

    PubMed

    Costi, Roberta; Di Santo, Roberto; Artico, Marino; Miele, Gaetano; Valentini, Paola; Novellino, Ettore; Cereseto, Anna

    2007-04-19

    Cinnamoly compounds 1a-c and 2a-d were designed, synthesized, and in vitro tested as p300 inhibitors. At different degrees, all tested compounds were proven to inactivate p300, particularly, derivative 2c was the most active inhibitor, also showing high specificity for p300 as compared to other histone acetyltransferases. Most notably, 2c showed anti-acetylase activity in mammalian cells. These compounds represent a new class of synthetic inhibitors of p300, characterized by simple chemical structures.

  12. Cloning, Characterization, and Expression Analysis of the Novel Acetyltransferase Retrogene Ard1b in the Mouse1

    PubMed Central

    Pang, Alan Lap-Yin; Peacock, Stephanie; Johnson, Warren; Bear, Deborah H.; Rennert, Owen M.; Chan, Wai-Yee

    2009-01-01

    N-alpha-terminal acetylation is a modification process that occurs cotranslationally on most eukaryotic proteins. The major enzyme responsible for this process, N-alpha-terminal acetyltransferase, is composed of the catalytic subunit ARD1A and the auxiliary subunit NAT1. We cloned, characterized, and studied the expression pattern of Ard1b (also known as Ard2), a novel homolog of the mouse Ard1a. Comparison of the genomic structures suggests that the autosomal Ard1b is a retroposed copy of the X-linked Ard1a. Expression analyses demonstrated a testis predominance of Ard1b. A reciprocal expression pattern between Ard1a and Ard1b is also observed during spermatogenesis, suggesting that Ard1b is expressed to compensate for the loss of Ard1a starting from meiosis. Both ARD1A and ARD1B can interact with NAT1 to constitute a functional N-alpha-terminal acetyltransferase in vitro. The expression of ARD1B protein can be detected in mouse testes but is delayed until the first appearance of round spermatids. In a cell culture model, the inclusion of the long 3′ untranslated region of Ard1b leads to reduction of luciferase reporter activity, which implicates its role in translational repression of Ard1b during spermatogenesis. Our results suggest that ARD1B may have an important role in the later course of the spermatogenic process. PMID:19246321

  13. Structure of soybean serine acetyltransferase and formation of the cysteine regulatory complex as a molecular chaperone

    USDA-ARS?s Scientific Manuscript database

    Serine acetyltransferase (SAT) catalyzes the limiting reaction in plant and microbial biosynthesis of cysteine. In addition to its enzymatic function, SAT forms a macromolecular complex with O-acetylserine sulfhydrylase (OASS). Formation of the cysteine regulatory complex (CRC) is a critical biochem...

  14. Rational design and validation of a Tip60 histone acetyltransferase inhibitor

    NASA Astrophysics Data System (ADS)

    Gao, Chunxia; Bourke, Emer; Scobie, Martin; Famme, Melina Arcos; Koolmeister, Tobias; Helleday, Thomas; Eriksson, Leif A.; Lowndes, Noel F.; Brown, James A. L.

    2014-06-01

    Histone acetylation is required for many aspects of gene regulation, genome maintenance and metabolism and dysfunctional acetylation is implicated in numerous diseases, including cancer. Acetylation is regulated by histone acetyltransferases (HATs) and histone deacetylases and currently, few general HAT inhibitors have been described. We identified the HAT Tip60 as an excellent candidate for targeted drug development, as Tip60 is a key mediator of the DNA damage response and transcriptional co-activator. Our modeling of Tip60 indicated that the active binding pocket possesses opposite charges at each end, with the positive charges attributed to two specific side chains. We used structure based drug design to develop a novel Tip60 inhibitor, TH1834, to fit this specific pocket. We demonstrate that TH1834 significantly inhibits Tip60 activity in vitro and treating cells with TH1834 results in apoptosis and increased unrepaired DNA damage (following ionizing radiation treatment) in breast cancer but not control cell lines. Furthermore, TH1834 did not affect the activity of related HAT MOF, as indicated by H4K16Ac, demonstrating specificity. The modeling and validation of the small molecule inhibitor TH1834 represents a first step towards developing additional specific, targeted inhibitors of Tip60 that may lead to further improvements in the treatment of breast cancer.

  15. Acetyl group coordinated progression through the catalytic cycle of an arylalkylamine N-acetyltransferase.

    PubMed

    Aboalroub, Adam A; Bachman, Ashleigh B; Zhang, Ziming; Keramisanou, Dimitra; Merkler, David J; Gelis, Ioannis

    2017-01-01

    The transfer of an acetyl group from acetyl-CoA to an acceptor amine is a ubiquitous biochemical transformation catalyzed by Gcn5-related N-acetyltransferases (GNATs). Although it is established that the reaction proceeds through a sequential ordered mechanism, the role of the acetyl group in driving the ordered formation of binary and ternary complexes remains elusive. Herein, we show that CoA and acetyl-CoA alter the conformation of the substrate binding site of an arylalkylamine N-acetyltransferase (AANAT) to facilitate interaction with acceptor substrates. However, it is the presence of the acetyl group within the catalytic funnel that triggers high affinity binding. Acetyl group occupancy is relayed through a conserved salt bridge between the P-loop and the acceptor binding site, and is manifested as differential dynamics in the CoA and acetyl-CoA-bound states. The capacity of the acetyl group carried by an acceptor to promote its tight binding even in the absence of CoA, but also its mutually exclusive position to the acetyl group of acetyl-CoA underscore its importance in coordinating the progression of the catalytic cycle.

  16. Acetyl group coordinated progression through the catalytic cycle of an arylalkylamine N-acetyltransferase

    PubMed Central

    Aboalroub, Adam A.; Bachman, Ashleigh B.; Zhang, Ziming; Keramisanou, Dimitra; Merkler, David J.

    2017-01-01

    The transfer of an acetyl group from acetyl-CoA to an acceptor amine is a ubiquitous biochemical transformation catalyzed by Gcn5-related N-acetyltransferases (GNATs). Although it is established that the reaction proceeds through a sequential ordered mechanism, the role of the acetyl group in driving the ordered formation of binary and ternary complexes remains elusive. Herein, we show that CoA and acetyl-CoA alter the conformation of the substrate binding site of an arylalkylamine N-acetyltransferase (AANAT) to facilitate interaction with acceptor substrates. However, it is the presence of the acetyl group within the catalytic funnel that triggers high affinity binding. Acetyl group occupancy is relayed through a conserved salt bridge between the P-loop and the acceptor binding site, and is manifested as differential dynamics in the CoA and acetyl-CoA-bound states. The capacity of the acetyl group carried by an acceptor to promote its tight binding even in the absence of CoA, but also its mutually exclusive position to the acetyl group of acetyl-CoA underscore its importance in coordinating the progression of the catalytic cycle. PMID:28486510

  17. Structural and Functional Survey of Environmental Aminoglycoside Acetyltransferases Reveals Functionality of Resistance Enzymes.

    PubMed

    Xu, Zhiyu; Stogios, Peter J; Quaile, Andrew T; Forsberg, Kevin J; Patel, Sanket; Skarina, Tatiana; Houliston, Scott; Arrowsmith, Cheryl; Dantas, Gautam; Savchenko, Alexei

    2017-09-08

    Aminoglycoside N-acetyltransferases (AACs) confer resistance against the clinical use of aminoglycoside antibiotics. The origin of AACs can be traced to environmental microbial species representing a vast reservoir for new and emerging resistance enzymes, which are currently undercharacterized. Here, we performed detailed structural characterization and functional analyses of four metagenomic AAC (meta-AACs) enzymes recently identified in a survey of agricultural and grassland soil microbiomes ( Forsberg et al. Nature 2014 , 509 , 612 ). These enzymes are new members of the Gcn5-Related-N-Acetyltransferase superfamily and confer resistance to the aminoglycosides gentamicin C, sisomicin, and tobramycin. Moreover, the meta-AAC0020 enzyme demonstrated activity comparable with an AAC(3)-I enzyme that serves as a model AAC enzyme identified in a clinical bacterial isolate. The crystal structure of meta-AAC0020 in complex with sisomicin confirmed an unexpected AAC(6') regiospecificity of this enzyme and revealed a drug binding mechanism distinct from previously characterized AAC(6') enzymes. Together, our data highlights the presence of highly active antibiotic-modifying enzymes in the environmental microbiome and reveals unexpected diversity in substrate specificity. These observations of additional AAC enzymes must be considered in the search for novel aminoglycosides less prone to resistance.

  18. The glpD gene is a novel reporter gene for E. coli that is superior to established reporter genes like lacZ and gusA.

    PubMed

    Wegener, Marius; Vogtmann, Kristina; Huber, Madeleine; Laass, Sebastian; Soppa, Jörg

    2016-12-01

    Reporter genes facilitate the characterization of promoter activities, transcript stabilities, translational efficiencies, or intracellular localization. Various reporter genes for Escherichia coli have been established, however, most of them have drawbacks like transcript instability or the inability to be used in genetic selections. Therefore, the glpD gene encoding glycerol-3-phosphate dehydrogenase was introduced as a novel reporter gene for E. coli. The enzymatic assay was optimized, and it was verified that growth on glycerol strictly depends on the presence of GlpD. The 5'-UTRs of three E. coli genes were chosen and cloned upstream of the new reporter gene glpD as well as the established reporter genes lacZ and gusA. Protein and transcript levels were quantified and translational efficiencies were calculated. The lacZ transcript was very unstable and its level highly depended on its translation, compromising its use as a reporter. The results obtained with gusA and glpD were similar, however, only glpD can be used for genetic selections. Therefore, glpD was found to be a superior novel reporter gene compared to the established reporter genes lacZ and gusA. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Substrate Binding and Catalytic Mechanism of Human Choline Acetyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim,A.; Rylett, J.; Shilton, B.

    2006-01-01

    Choline acetyltransferase (ChAT) catalyzes the synthesis of the neurotransmitter acetylcholine from choline and acetyl-CoA, and its presence is a defining feature of cholinergic neurons. We report the structure of human ChAT to a resolution of 2.2 {angstrom} along with structures for binary complexes of ChAT with choline, CoA, and a nonhydrolyzable acetyl-CoA analogue, S-(2-oxopropyl)-CoA. The ChAT-choline complex shows which features of choline are important for binding and explains how modifications of the choline trimethylammonium group can be tolerated by the enzyme. A detailed model of the ternary Michaelis complex fully supports the direct transfer of the acetyl group from acetyl-CoAmore » to choline through a mechanism similar to that seen in the serine hydrolases for the formation of an acyl-enzyme intermediate. Domain movements accompany CoA binding, and a surface loop, which is disordered in the unliganded enzyme, becomes localized and binds directly to the phosphates of CoA, stabilizing the complex. Interactions between this surface loop and CoA may function to lower the K{sub M} for CoA and could be important for phosphorylation-dependent regulation of ChAT activity.« less

  20. Histone acetyltransferase activity of MOF is required for MLL-AF9 leukemogenesis

    PubMed Central

    Valerio, Daria G.; Xu, Haiming; Chen, Chun-Wei; Hoshii, Takayuki; Eisold, Meghan E.; Delaney, Christopher; Cusan, Monica; Deshpande, Aniruddha J.; Huang, Chun-Hao; Lujambio, Amaia; Zheng, George; Zuber, Johannes; Pandita, Tej K.; Lowe, Scott W.; Armstrong, Scott A.

    2017-01-01

    Chromatin-based mechanisms offer therapeutic targets in acute myeloid leukemia (AML) that are of great current interest. In this study, we conducted an RNAi-based screen to identify druggable chromatin regulator-based targets in leukemias marked by oncogenic rearrangements of the MLL gene. In this manner, we discovered the H4K16 histone acetyltransferase (HAT) MOF to be important for leukemia cell growth. Conditional deletion of Mof in a mouse model of MLL-AF9-driven leukemogenesis reduced tumor burden and prolonged host survival. RNA sequencing showed an expected downregulation of genes within DNA damage repair pathways that are controlled by MOF, as correlated with a significant increase in yH2AX nuclear foci in Mof-deficient MLL-AF9 tumor cells. In parallel, Mof loss also impaired global H4K16 acetylation in the tumor cell genome. Rescue experiments with catalytically inactive mutants of MOF showed that its enzymatic activity was required to maintain cancer pathogenicity. In support of the role of MOF in sustaining H4K16 acetylation, a small molecule inhibitor of the HAT component MYST blocked the growth of both murine and human MLL-AF9 leukemia cell lines. Furthermore Mof inactivation suppressed leukemia development in a NUP98-HOXA9 driven AML model. Taken together, our results establish that the HAT activity of MOF is required to sustain MLL-AF9 leukemia and may be important for multiple AML subtypes. Blocking this activity is sufficient to stimulate DNA damage, offering a rationale to pursue MOF inhibitors as a targeted approach to treat MLL-rearranged leukemias. PMID:28202522

  1. Human Immunodeficiency Virus Tat-Activated Expression of Poliovirus Protein 2A Inhibits mRNA Translation

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Hong; Baltimore, David

    1989-04-01

    To study the effect of poliovirus protein 2A on cellular RNA translation, the tat control system of human immunodeficiency virus (HIV) was used. Protein 2A was expressed from a plasmid construct (pHIV/2A) incorporating the HIV long terminal repeat. Protein synthesis was measured by using chloramphenicol acetyltransferase as a reporter gene driven by the Rous sarcoma virus long terminal repeat. When HIV/2A was contransfected with the reporter, addition of a tat-producing plasmid caused at least a 50-fold drop in chloramphenicol acetyltransferase synthesis. A HeLa cell line carrying HIV/2A was established. In it, tat expression caused more than a 10-fold drop in chloramphenicol acetyltransferase synthesis from the reporter plasmid. Furthermore, 2A induction by tat caused cleavage of the cellular translation factor P220, a part of eukaryotic translation initiation factor 4F. Thus protein 2A can, by itself, carry out the inhibition of cellular protein synthesis characteristic of a poliovirus infection. Also, the HIV tat activation provides a very effective method to control gene expression in mammalian cells.

  2. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants

    PubMed Central

    Tavares, Sílvia; Wirtz, Markus; Beier, Marcel P.; Bogs, Jochen; Hell, Rüdiger; Amâncio, Sara

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription. PMID:25741355

  3. A 20 bp cis-acting element is both necessary and sufficient to mediate elicitor response of a maize PRms gene.

    PubMed

    Raventós, D; Jensen, A B; Rask, M B; Casacuberta, J M; Mundy, J; San Segundo, B

    1995-01-01

    Transient gene expression assays in barley aleurone protoplasts were used to identify a cis-regulatory element involved in the elicitor-responsive expression of the maize PRms gene. Analysis of transcriptional fusions between PRms 5' upstream sequences and a chloramphenicol acetyltransferase reporter gene, as well as chimeric promoters containing PRms promoter fragments or repeated oligonucleotides fused to a minimal promoter, delineated a 20 bp sequence which functioned as an elicitor-response element (ERE). This sequence contains a motif (-246 AATTGACC) similar to sequences found in promoters of other pathogen-responsive genes. The analysis also indicated that an enhancing sequence(s) between -397 and -296 is required for full PRms activation by elicitors. The protein kinase inhibitor staurosporine was found to completely block the transcriptional activation induced by elicitors. These data indicate that protein phosphorylation is involved in the signal transduction pathway leading to PRms expression.

  4. Effect of dietary γ-aminobutyric acid on the nerve growth factor and the choline acetyltransferase in the cerebral cortex and hippocampus of ovariectomized female rats.

    PubMed

    Tujioka, Kazuyo; Thanapreedawat, Panicha; Yamada, Takashi; Yokogoshi, Hidehiko; Horie, Kenji; Kim, Mujo; Tsutsui, Kazumi; Hayase, Kazutoshi

    2014-01-01

    The brain protein synthesis and the plasma concentration of growth hormone (GH) is sensitive to the dietary γ-aminobutyric acid (GABA) in ovariectomized female rats; however, the role of dietary GABA on biomarkers including nerve growth factor (NGF) and choline acetyltransferase for the function of cholinergic neurons remains unknown in ovariectomized female rats. The purpose of this study was to determine whether the dietary GABA affects the concentration and mRNA level of NGF, and the activity of choline acetyltransferase in the brains of ovariectomized female rats. Experiments were done on two groups of 24-wk-old ovariectomized female rats given 0 or 0.5% GABA added to a 20% casein diet. The concentrations of NGF and activities of choline acetyltransferase in the cerebral cortex and hippocampus, and mRNA level of NGF in the hippocampus increased significantly with the 20% casein+0.5% GABA compared with the 20% casein diet alone. In the hippocampus, the mRNA level of NGF significantly correlated with the NGF concentration (r=0.714, p<0.01). These results suggest that the administration of GABA to ovariectomized female rats is likely to control the mRNA level and concentration of NGF and cause an increase in the activity of choline acetyltransferase in the brains.

  5. Genetic disruption of tubulin acetyltransferase, αTAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/β-catenin signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Somi; You, Eunae; Ko, Panseon

    Microtubules are required for diverse cellular processes, and abnormal regulation of microtubule dynamics is closely associated with severe diseases including malignant tumors. In this study, we report that α-tubulin N-acetyltransferase (αTAT1), a regulator of α-tubulin acetylation, is required for colon cancer proliferation and invasion via regulation of Wnt1 and its downstream genes expression. Public transcriptome analysis showed that expression of ATAT1 is specifically upregulated in colon cancer tissue. A knockout (KO) of ATAT1 in the HCT116 colon cancer cell line, using the CRISPR/Cas9 system showed profound inhibition of proliferative and invasive activities of these cancer cells. Overexpression of αTAT1 ormore » the acetyl-mimic K40Q α-tubulin mutant in αTAT1 KO cells restored the invasiveness, indicating that microtubule acetylation induced by αTAT1 is critical for HCT116 cell invasion. Analysis of colon cancer-related gene expression in αTAT1 KO cells revealed that the loss of αTAT1 decreased the expression of WNT1. Mechanistically, abrogation of tubulin acetylation by αTAT1 knockout inhibited localization of β-catenin to the plasma membrane and nucleus, thereby resulting in the downregulation of Wnt1 and of its downstream genes including CCND1, MMP-2, and MMP-9. These results suggest that αTAT1-mediated Wnt1 expression via microtubule acetylation is important for colon cancer progression. - Highlights: • Ablation of αTAT1 inhibits HCT116 colon cancer cell invasion. • αTAT1/acetylated microtubules regulate expression of Wnt1/β-catenin target genes. • Acetylated microtubules regulate cellular localization of β-catenin. • Loss of αTAT1 prevents Wnt1 from inducing β-catenin-dependent and -independent pathways.« less

  6. Low melatonin production by suppression of either serotonin N-acetyltransferase or N-acetylserotonin methyltransferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile growth under anoxic conditions.

    PubMed

    Byeon, Yeong; Back, Kyoungwhan

    2016-04-01

    Serotonin N-acetyltransferase (SNAT) and N-acetylserotonin methyltransferase (ASMT) are the last two key enzymes for melatonin biosynthesis in living organisms. In this study, we demonstrated that transgenic rice (Oryza sativa L.) plants, in which expression of either endogenous SNAT or ASMT was suppressed, had reduced melatonin synthesis, confirming that both SNAT and ASMT are functionally involved in melatonin synthesis. The melatonin-deficient SNAT rice had retarded seedling growth, which was partially restored by exogenous melatonin application, suggesting melatonin's role in seedling growth. In addition, the plants were more sensitive to various abiotic stresses, including salt and cold, compared with the wild type. Melatonin-deficient SNAT rice had increased coleoptile growth under anoxic conditions, indicating that melatonin also inversely regulates plant growth under anaerobic conditions with the concomitant high expression of alcohol dehydrogenase genes. Similarly, the melatonin-deficient ASMT rice exhibited accelerated senescence in detached flag leaves, as well as significantly reduced yield. These loss-of-function studies on the melatonin biosynthetic genes confirmed most previous pharmacological reports that melatonin not only promotes plant growth but also mitigates various abiotic stresses. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. An Acetyltransferase Conferring Tolerance to Toxic Aromatic Amine Chemicals

    PubMed Central

    Martins, Marta; Rodrigues-Lima, Fernando; Dairou, Julien; Lamouri, Aazdine; Malagnac, Fabienne; Silar, Philippe; Dupret, Jean-Marie

    2009-01-01

    Aromatic amines (AA) are a major class of environmental pollutants that have been shown to have genotoxic and cytotoxic potentials toward most living organisms. Fungi are able to tolerate a diverse range of chemical compounds including certain AA and have long been used as models to understand general biological processes. Deciphering the mechanisms underlying this tolerance may improve our understanding of the adaptation of organisms to stressful environments and pave the way for novel pharmaceutical and/or biotechnological applications. We have identified and characterized two arylamine N-acetyltransferase (NAT) enzymes (PaNAT1 and PaNAT2) from the model fungus Podospora anserina that acetylate a wide range of AA. Targeted gene disruption experiments revealed that PaNAT2 was required for the growth and survival of the fungus in the presence of toxic AA. Functional studies using the knock-out strains and chemically acetylated AA indicated that tolerance of P. anserina to toxic AA was due to the N-acetylation of these chemicals by PaNAT2. Moreover, we provide proof-of-concept remediation experiments where P. anserina, through its PaNAT2 enzyme, is able to detoxify the highly toxic pesticide residue 3,4-dichloroaniline in experimentally contaminated soil samples. Overall, our data show that a single xenobiotic-metabolizing enzyme can mediate tolerance to a major class of pollutants in a eukaryotic species. These findings expand the understanding of the role of xenobiotic-metabolizing enzyme and in particular of NATs in the adaptation of organisms to their chemical environment and provide a basis for new systems for the bioremediation of contaminated soils. PMID:19416981

  8. Immunolocalization of choline acetyltransferase of common type in the central brain mass of Octopus vulgaris

    PubMed Central

    Casini, A.; Vaccaro, R.; D'Este, L.; Sakaue, Y.; Bellier, J.P.; Kimura, H.; Renda, T.G.

    2012-01-01

    Acetylcholine, the first neurotransmitter to be identified in the vertebrate frog, is widely distributed among the animal kingdom. The presence of a large amount of acetylcholine in the nervous system of cephalopods is well known from several biochemical and physiological studies. However, little is known about the precise distribution of cholinergic structures due to a lack of a suitable histochemical technique for detecting acetylcholine. The most reliable method to visualize the cholinergic neurons is the immunohistochemical localization of the enzyme choline acetyltransferase, the synthetic enzyme of acetylcholine. Following our previous study on the distribution patterns of cholinergic neurons in the Octopus vulgaris visual system, using a novel antibody that recognizes choline acetyltransferase of the common type (cChAT), now we extend our investigation on the octopus central brain mass. When applied on sections of octopus central ganglia, immunoreactivity for cChAT was detected in cell bodies of all central brain mass lobes with the notable exception of the subfrontal and subvertical lobes. Positive varicosed nerves fibers where observed in the neuropil of all central brain mass lobes. PMID:23027350

  9. Immunolocalization of choline acetyltransferase of common type in the central brain mass of Octopus vulgaris.

    PubMed

    Casini, A; Vaccaro, R; D'Este, L; Sakaue, Y; Bellier, J P; Kimura, H; Renda, T G

    2012-07-19

    Acetylcholine, the first neurotransmitter to be identified in the vertebrate frog, is widely distributed among the animal kingdom. The presence of a large amount of acetylcholine in the nervous system of cephalopods is well known from several biochemical and physiological studies. However, little is known about the precise distribution of cholinergic structures due to a lack of a suitable histochemical technique for detecting acetylcholine. The most reliable method to visualize the cholinergic neurons is the immunohistochemical localization of the enzyme choline acetyltransferase, the synthetic enzyme of acetylcholine. Following our previous study on the distribution patterns of cholinergic neurons in the Octopus vulgaris visual system, using a novel antibody that recognizes choline acetyltransferase of the common type (cChAT), now we extend our investigation on the octopus central brain mass. When applied on sections of octopus central ganglia, immunoreactivity for cChAT was detected in cell bodies of all central brain mass lobes with the notable exception of the subfrontal and subvertical lobes. Positive varicosed nerves fibers where observed in the neuropil of all central brain mass lobes.

  10. Valproic acid exposure decreases Cbp/p300 protein expression and histone acetyltransferase activity in P19 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamparter, Christina L.

    The teratogenicity of the antiepileptic drug valproic acid (VPA) is well established and its inhibition of histone deacetylases (HDAC) is proposed as an initiating factor. Recently, VPA-mediated HDAC inhibition was demonstrated to involve transcriptional downregulation of histone acetyltransferases (HATs), which was proposed to compensate for the increased acetylation resulting from HDAC inhibition. Cbp and p300 are HATs required for embryonic development and deficiencies in either are associated with congenital malformations and embryolethality. The objective of the present study was to characterize Cbp/p300 following VPA exposure in P19 cells. Consistent with previous studies, exposure to 5 mM VPA over 24 hmore » induced a moderate decrease in Cbp/p300 mRNA, which preceded a strong decrease in total cellular protein mediated by ubiquitin-proteasome degradation. Nuclear Cbp/p300 protein was also decreased following VPA exposure, although to a lesser extent. Total cellular and nuclear p300 HAT activity was reduced proportionately to p300 protein levels, however while total cellular HAT activity also decreased, nuclear HAT activity was unaffected. Using the Cbp/p300 HAT inhibitor C646, we demonstrated that HAT inhibition similarly affected many of the same endpoints as VPA, including increased reactive oxygen species and caspase-3 cleavage, the latter of which could be attenuated by pre-treatment with the antioxidant catalase. C646 exposure also decreased NF-κB/p65 protein, which was not due to reduced mRNA and was not attenuated with catalase pre-treatment. This study provides support for an adaptive HAT response following VPA exposure and suggests that reduced Cbp/p300 HAT activity could contribute to VPA-mediated alterations. - Highlights: • VPA exposure in vitro downregulates Cbp/p300 mRNA and induces protein degradation. • Cbp/p300 histone acetyltransferase activity is similarly reduced with VPA exposure. • Inhibition of Cbp/p300 acetyltransferase

  11. Homologues of xenobiotic metabolizing N-acetyltransferases in plant-associated fungi: Novel functions for an old enzyme family

    USDA-ARS?s Scientific Manuscript database

    Plant-pathogenic fungi and their hosts engage in chemical warfare, attacking each other with toxic products of secondary metabolism and defending themselves via an arsenal of xenobiotic metabolizing enzymes. One such enzyme is homologous to arylamine N-acetyltransferase (NAT) and has been identified...

  12. Clinical and Genetic Features of Congenital Myasthenic Syndromes due to CHAT Mutations: Case Report and Literature Review.

    PubMed

    Arican, Pinar; Gencpinar, Pinar; Cavusoglu, Dilek; Olgac Dundar, Nihal

    2018-05-21

    Congenital myasthenic syndromes (CMS) are neuromuscular transmission disorders caused by mutations in genes encoding neuromuscular junction proteins. CMS due to choline acetyltransferase (CHAT) gene is characterized by episodic apnea. We report a case of a 12-month-old female patient presented with recurrent episodic apnea carrying a mutation in CHAT gene, p.I336T. Furthermore, we describe the genetic and clinical findings in 44 CMS patients due to CHAT mutations in the literature up to date. Episodes of apnea and respiratory insufficiency are the hallmarks of CHAT mutations. Clinical manifestations usually provoked by infections and fever. CMS due to CHAT mutations are rare, but it is important to diagnosis. Early diagnosis and appropriate treatment can improve morbidity and mortality. Georg Thieme Verlag KG Stuttgart · New York.

  13. Self-Immolative Polycations as Gene Delivery Vectors and Prodrugs Targeting Polyamine Metabolism in Cancer

    PubMed Central

    2015-01-01

    Polycations are explored as carriers to deliver therapeutic nucleic acids. Polycations are conventionally pharmacological inert with the sole function of delivering therapeutic cargo. This study reports synthesis of a self-immolative polycation (DSS-BEN) based on a polyamine analogue drug N1,N11-bisethylnorspermine (BENSpm). The polycation was designed to function dually as a gene delivery carrier and a prodrug targeting dysregulated polyamine metabolism in cancer. Using a combination of NMR and HPLC, we confirm that the self-immolative polycation undergoes intracellular degradation into the parent drug BENSpm. The released BENSpm depletes cellular levels of spermidine and spermine and upregulates polyamine catabolic enzymes spermine/spermidine N1-acetyltransferase (SSAT) and spermine oxidase (SMO). The synthesized polycations form polyplexes with DNA and facilitate efficient transfection. Taking advantage of the ability of BENSpm to sensitize cancer cells to TNFα-induced apoptosis, we show that DSS-BEN enhances the cell killing activity of TNFα gene therapy. The reported findings validate DSS-BEN as a dual-function delivery system that can deliver a therapeutic gene and improve the outcome of gene therapy as a result of the intracellular degradation of DSS-BEN to BENSpm and the subsequent beneficial effect of BENSpm on dysregulated polyamine metabolism in cancer. PMID:25153488

  14. Insight into cofactor recognition in arylamine N-acetyltransferase enzymes: structure of Mesorhizobium loti arylamine N-acetyltransferase in complex with coenzyme A.

    PubMed

    Xu, Ximing; Li de la Sierra-Gallay, Inés; Kubiak, Xavier; Duval, Romain; Chaffotte, Alain F; Dupret, Jean Marie; Haouz, Ahmed; Rodrigues-Lima, Fernando

    2015-02-01

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes that catalyze the acetyl-CoA-dependent acetylation of arylamines. To better understand the mode of binding of the cofactor by this family of enzymes, the structure of Mesorhizobium loti NAT1 [(RHILO)NAT1] was determined in complex with CoA. The F42W mutant of (RHILO)NAT1 was used as it is well expressed in Escherichia coli and displays enzymatic properties similar to those of the wild type. The apo and holo structures of (RHILO)NAT1 F42W were solved at 1.8 and 2 Å resolution, respectively. As observed in the Mycobacterium marinum NAT1-CoA complex, in (RHILO)NAT1 CoA binding induces slight structural rearrangements that are mostly confined to certain residues of its `P-loop'. Importantly, it was found that the mode of binding of CoA is highly similar to that of M. marinum NAT1 but different from the modes reported for Bacillus anthracis NAT1 and Homo sapiens NAT2. Therefore, in contrast to previous data, this study shows that different orthologous NATs can bind their cofactors in a similar way, suggesting that the mode of binding CoA in this family of enzymes is less diverse than previously thought. Moreover, it supports the notion that the presence of the `mammalian/eukaryotic insertion loop' in certain NAT enzymes impacts the mode of binding CoA by imposing structural constraints.

  15. Homology modeling and prediction of the amino acid residues participating in the transfer of acetyl-CoA to arylalkylamine by the N-acetyltransferase from Chryseobacterium sp.

    PubMed

    Takenaka, Shinji; Ozeki, Takahiro; Tanaka, Kosei; Yoshida, Ken-Ichi

    2017-11-01

    To predict the amino acid residues playing important roles in acetyl-CoA and substrate binding and to study the acetyl group transfer mechanism of Chryseobacterium sp. 5-3B N-acetyltransferase (5-3B NatA). A 3-dimensional homology model of 5-3B NatA was constructed to compare the theoretical structure of this compound with the structures of previously reported proteins belonging to the bacterial GCN5 N-acetyltransferase family. Homology modeling of the 5-3B NatA structure and a characterization of the enzyme's kinetic parameters identified the essential amino acid residues involved in binding and acetyl-group transfer. 126 Leu, 132 Leu, and 135 Lys were implicated in the binding of phosphopantothenic acid, and 100 Tyr and 131 Lys in that of adenosyl biphosphate. The data supported the participation of 83 Glu and 133 Tyr in catalyzing acetyl-group transfer to L-2-phenylglycine. 5-3B NatA catalyzes the enantioselective N-acetylation of L-2-phenylglycine via a ternary complex comprising the enzyme, acetyl-CoA, and the substrate.

  16. Histone Acetyltransferase Activity of MOF Is Required for MLL-AF9 Leukemogenesis.

    PubMed

    Valerio, Daria G; Xu, Haiming; Chen, Chun-Wei; Hoshii, Takayuki; Eisold, Meghan E; Delaney, Christopher; Cusan, Monica; Deshpande, Aniruddha J; Huang, Chun-Hao; Lujambio, Amaia; Zheng, YuJun George; Zuber, Johannes; Pandita, Tej K; Lowe, Scott W; Armstrong, Scott A

    2017-04-01

    Chromatin-based mechanisms offer therapeutic targets in acute myeloid leukemia (AML) that are of great current interest. In this study, we conducted an RNAi-based screen to identify druggable chromatin regulator-based targets in leukemias marked by oncogenic rearrangements of the MLL gene. In this manner, we discovered the H4K16 histone acetyltransferase (HAT) MOF to be important for leukemia cell growth. Conditional deletion of Mof in a mouse model of MLL-AF9 -driven leukemogenesis reduced tumor burden and prolonged host survival. RNA sequencing showed an expected downregulation of genes within DNA damage repair pathways that are controlled by MOF, as correlated with a significant increase in yH2AX nuclear foci in Mof -deficient MLL-AF9 tumor cells. In parallel, Mof loss also impaired global H4K16 acetylation in the tumor cell genome. Rescue experiments with catalytically inactive mutants of MOF showed that its enzymatic activity was required to maintain cancer pathogenicity. In support of the role of MOF in sustaining H4K16 acetylation, a small-molecule inhibitor of the HAT component MYST blocked the growth of both murine and human MLL-AF9 leukemia cell lines. Furthermore, Mof inactivation suppressed leukemia development in an NUP98-HOXA9 -driven AML model. Taken together, our results establish that the HAT activity of MOF is required to sustain MLL-AF9 leukemia and may be important for multiple AML subtypes. Blocking this activity is sufficient to stimulate DNA damage, offering a rationale to pursue MOF inhibitors as a targeted approach to treat MLL -rearranged leukemias. Cancer Res; 77(7); 1753-62. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. A Luciferase Reporter Gene System for High-Throughput Screening of γ-Globin Gene Activators.

    PubMed

    Xie, Wensheng; Silvers, Robert; Ouellette, Michael; Wu, Zining; Lu, Quinn; Li, Hu; Gallagher, Kathleen; Johnson, Kathy; Montoute, Monica

    2016-01-01

    Luciferase reporter gene assays have long been used for drug discovery due to their high sensitivity and robust signal. A dual reporter gene system contains a gene of interest and a control gene to monitor non-specific effects on gene expression. In our dual luciferase reporter gene system, a synthetic promoter of γ-globin gene was constructed immediately upstream of the firefly luciferase gene, followed downstream by a synthetic β-globin gene promoter in front of the Renilla luciferase gene. A stable cell line with the dual reporter gene was cloned and used for all assay development and HTS work. Due to the low activity of the control Renilla luciferase, only the firefly luciferase activity was further optimized for HTS. Several critical factors, such as cell density, serum concentration, and miniaturization, were optimized using tool compounds to achieve maximum robustness and sensitivity. Using the optimized reporter assay, the HTS campaign was successfully completed and approximately 1000 hits were identified. In this chapter, we also describe strategies to triage hits that non-specifically interfere with firefly luciferase.

  18. Choline acetyltransferase immunoreactivity in the human vestibular end-organs.

    PubMed

    Ishiyama, A; Lopez, I; Wackym, P A

    1994-10-01

    Acetylcholine (ACh) is believed to play a major role in the efferent vestibular system in several animal models, however no information regarding the role of ACh in the human efferent vestibular system has been published. Post-embedding immunohistochemistry in a hydrophilic resin was used to investigate the choline acetyltransferase immunoreactivity (ChATi) and acetylcholinesterase (AChE) histochemistry in human vestibular end-organs. ChATi and AChE activity was found in numerous bouton-type terminals at the basal area of the vestibular hair cells. These terminals were found to contact type II vestibular hair cells and the afferent chalices surrounding type I hair cells. This study provides the first evidence that the human efferent vestibular axons and terminals are cholinergic.

  19. A human parvovirus, adeno-associated virus, as a eucaryotic vector: Transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tratschin, J.D.; West, M.H.P.; Sandbank, T.

    1984-10-01

    The authors have used the defective human parvovirus adeno-associated virus (AAV) as a novel eurocaryotic vector (parvector) for the expression of a foreign gene in human cells. The recombinant, pAV2, contains the AAV genome in a pBR322-derived bacterial plasmid. When pAV2 is transfected into human cells together with helper adenovirus particles, the AAV genome is rescued from the recombinant plasmid and replicated to produce infectious AAV particles at high efficiency. To create a vector, we inserted a procaryotic sequence coding for chloramphenicol acetyltransferase (CAT) into derivatives of pAV2 following either of the AAV promoters p/sub 40/ (pAVHiCAT) and p/sub 19/more » (pAVBcCAT). When transfected into human 293 cells or HeLa cells, pAVHiCAT expressed CAT activity in the absence of adenovirus. In the presence of adenovirus, this vector produced increased amounts of CAT activity and the recombinant AAV-CAT genome was replicated. In 293 cells, pAVBcCAT expressed a similar amount of CAT activity in the absence or presence of adenovirus and the recombinant AAV-CAT genome was not replicated. In HeLa cells, pAVBcCAT expressed low levels of CAT activity, but this level was elevated by coinfection with adenovirus particles or by cotransfection with a plasmid which expressed the adenovirus early region 1A (E1A) product. The E1A product is a transcriptional activator and is expressed in 293 cells. Thus, expression from two AAV promoters is differentially regulated: expression from p/sub 19/ is increased by E1A, whereas p/sub 40/ yields high levels of constitutive expression in the absence of E1A. Both AAV vectors were packaged into AAV particles by complementation with wild-type AAV and yielded CAT activity when subsequently infected into cells in the presence of adenovirus.« less

  20. Histone acetyltransferase Enok regulates oocyte polarization by promoting expression of the actin nucleation factor spire.

    PubMed

    Huang, Fu; Paulson, Ariel; Dutta, Arnob; Venkatesh, Swaminathan; Smolle, Michaela; Abmayr, Susan M; Workman, Jerry L

    2014-12-15

    KAT6 histone acetyltransferases (HATs) are highly conserved in eukaryotes and have been shown to play important roles in transcriptional regulation. Here, we demonstrate that the Drosophila KAT6 Enok acetylates histone H3 Lys 23 (H3K23) in vitro and in vivo. Mutants lacking functional Enok exhibited defects in the localization of Oskar (Osk) to the posterior end of the oocyte, resulting in loss of germline formation and abdominal segments in the embryo. RNA sequencing (RNA-seq) analysis revealed that spire (spir) and maelstrom (mael), both required for the posterior localization of Osk in the oocyte, were down-regulated in enok mutants. Chromatin immunoprecipitation showed that Enok is localized to and acetylates H3K23 at the spir and mael genes. Furthermore, Gal4-driven expression of spir in the germline can largely rescue the defective Osk localization in enok mutant ovaries. Our results suggest that the Enok-mediated H3K23 acetylation (H3K23Ac) promotes the expression of spir, providing a specific mechanism linking oocyte polarization to histone modification. © 2014 Huang et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Acetyl coenzyme A synthetase is acetylated on multiple lysine residues by a protein acetyltransferase with a single Gcn5-type N-acetyltransferase (GNAT) domain in Saccharopolyspora erythraea.

    PubMed

    You, Di; Yao, Li-Li; Huang, Dan; Escalante-Semerena, Jorge C; Ye, Bang-Ce

    2014-09-01

    Reversible lysine acetylation (RLA) is used by cells of all domains of life to modulate protein function. To date, bacterial acetylation/deacetylation systems have been studied in a few bacteria (e.g., Salmonella enterica, Bacillus subtilis, Escherichia coli, Erwinia amylovora, Mycobacterium tuberculosis, and Geobacillus kaustophilus), but little is known about RLA in antibiotic-producing actinomycetes. Here, we identify the Gcn5-like protein acetyltransferase AcuA of Saccharopolyspora erythraea (SacAcuA, SACE_5148) as the enzyme responsible for the acetylation of the AMP-forming acetyl coenzyme A synthetase (SacAcsA, SACE_2375). Acetylated SacAcsA was deacetylated by a sirtuin-type NAD(+)-dependent consuming deacetylase (SacSrtN, SACE_3798). In vitro acetylation/deacetylation of SacAcsA enzyme was studied by Western blotting, and acetylation of lysine residues Lys(237), Lys(380), Lys(611), and Lys(628) was confirmed by mass spectrometry. In a strain devoid of SacAcuA, none of the above-mentioned Lys residues of SacAcsA was acetylated. To our knowledge, the ability of SacAcuA to acetylate multiple Lys residues is unique among AcuA-type acetyltransferases. Results from site-specific mutagenesis experiments showed that the activity of SacAcsA was controlled by lysine acetylation. Lastly, immunoprecipitation data showed that in vivo acetylation of SacAcsA was influenced by glucose and acetate availability. These results suggested that reversible acetylation may also be a conserved regulatory posttranslational modification strategy in antibiotic-producing actinomycetes. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Purification, crystallization and preliminary X-ray analysis of the glucosamine-6-phosphate N-acetyltransferase from human liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juan; Zhou, Yan-Feng; Li, Lan-Fen

    2006-11-01

    Glucosamine-6-phosphate N-acetyltransferase from human liver was expressed, purified and crystallized. Diffraction data have been collected to 2.6 Å resolution. Glucosamine-6-phosphate N-acetyltransferase from human liver, which catalyzes the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to the primary amine of d-glucosamine 6-phosphate to form N-acetyl-d-glucosamine 6-phosphate, was expressed in a soluble form from Escherichia coli strain BL21 (DE3). The protein was purified to homogeneity using Ni{sup 2+}-chelating chromatography followed by size-exclusion chromatography. Crystals of the protein were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.6 Å resolution. The crystals belonged to space group P4{sub 1}2{sub 1}2more » or P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 50.08, c = 142.88 Å.« less

  3. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-{kappa}B acetylation in fibroblast-like synoviocyte MH7A cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul

    Highlights: {yields} Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. {yields} Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. {yields} Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-{kappa}B. {yields} Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymesmore » (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKB{alpha}. Accordingly, DP treatment inhibited TNF{alpha}-stimulated increases in NF-{kappa}B function and expression of NF-{kappa}B target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.« less

  4. The histone acetyltransferase GCN5 and the transcriptional coactivator ADA2b affect leaf development and trichome morphogenesis in Arabidopsis.

    PubMed

    Kotak, Jenna; Saisana, Marina; Gegas, Vasilis; Pechlivani, Nikoletta; Kaldis, Athanasios; Papoutsoglou, Panagiotis; Makris, Athanasios; Burns, Julia; Kendig, Ashley L; Sheikh, Minnah; Kuschner, Cyrus E; Whitney, Gabrielle; Caiola, Hanna; Doonan, John H; Vlachonasios, Konstantinos E; McCain, Elizabeth R; Hark, Amy T

    2018-05-30

    The histone acetyltransferase GCN5 and associated transcriptional coactivator ADA2b are required to couple endoreduplication and trichome branching. Mutation of ADA2b also disrupts the relationship between ploidy and leaf cell size. Dynamic chromatin structure has been established as a general mechanism by which gene function is temporally and spatially regulated, but specific chromatin modifier function is less well understood. To address this question, we have investigated the role of the histone acetyltransferase GCN5 and the associated coactivator ADA2b in developmental events in Arabidopsis thaliana. Arabidopsis plants with T-DNA insertions in GCN5 (also known as HAG1) or ADA2b (also known as PROPORZ1) display pleiotropic phenotypes including dwarfism and floral defects affecting fertility. We undertook a detailed characterization of gcn5 and ada2b phenotypic effects in rosette leaves and trichomes to establish a role for epigenetic control in these developmental processes. ADA2b and GCN5 play specific roles in leaf tissue, affecting cell growth and division in rosette leaves often in complex and even opposite directions. Leaves of gcn5 plants display overall reduced ploidy levels, while ada2b-1 leaves show increased ploidy. Endoreduplication leading to increased ploidy is also known to contribute to normal trichome morphogenesis. We demonstrate that gcn5 and ada2b mutants display alterations in the number and patterning of trichome branches, with ada2b-1 and gcn5-1 trichomes being significantly less branched, while gcn5-6 trichomes show increased branching. Elongation of the trichome stalk and branches also vary in different mutant backgrounds, with stalk length having an inverse relationship with branch number. Taken together, our data indicate that, in Arabidopsis, leaves and trichomes ADA2b and GCN5 are required to couple nuclear content with cell growth and morphogenesis.

  5. N-acetyltransferase 2 polymorphism and breast cancer risk with smoking: a case control study in Japanese women.

    PubMed

    Hara, Akio; Taira, Naruto; Mizoo, Taeko; Nishiyama, Keiko; Nogami, Tomohiro; Iwamoto, Takayuki; Motoki, Takayuki; Shien, Tadahiko; Matsuoka, Junji; Doihara, Hiroyoshi; Ishihara, Setsuko; Kawai, Hiroshi; Kawasaki, Kensuke; Ishibe, Youichi; Ogasawara, Yutaka; Miyoshi, Shinichiro

    2017-03-01

    Recent studies have suggested that the association between smoking and breast cancer risk might be modified by polymorphisms in the N-acetyltransferase 2 gene (NAT2). Most of these studies were conducted in Western countries, with few reports from East Asia. We conducted a case-control study of 511 breast cancer cases and 527 unmatched healthy controls from December 2010 to November 2011 in Japan. Unconditional logistic regression was used to analyze the association of smoking with breast cancer risk stratified by NAT2 phenotype. In this population, 11 % of the cases and 10 % of the controls were classified as a slow acetylator phenotype. Compared to never smokers, current smokers had an increased breast cancer risk in multivariate analysis [odds ratio (OR) = 2.27, 95 % confidence interval (95 %CI) = 1.38-3.82]. Subgroup analyses of menopausal status indicated the same tendency. Subgroup analyses of NAT2 phenotype, the ORs in both of rapid and slow acetylator phenotype subgroups were comparable, and no interactions were observed between smoking status and NAT2 phenotype (p = 0.97). A dose-dependent effect of smoking on breast cancer risk was seen for the rapid acetylator phenotype, but not for the slow acetylator phenotype. Given the high frequency of the rapid acetylator phenotype, these results show that smoking is a risk factor for breast cancer among most Japanese women. It may be of little significance to identify the NAT2 phenotype in the Japanese population.

  6. Eis, a novel family of arylalkylamine N-acetyltransferase (EC 2.3.1.87).

    PubMed

    Pan, Qian; Zhao, Feng-Lan; Ye, Bang-Ce

    2018-02-05

    Enhanced intracellular survival (Eis) proteins were found to enhance the intracellular survival of mycobacteria in macrophages by acetylating aminoglycoside antibiotics to confer resistance to these antibiotics and by acetylating DUSP16/MPK-7 to suppress host innate immune defenses. Eis homologs composing of two GCN5 N-acetyltransferase regions and a sterol carrier protein fold are found widely in gram-positive bacteria. In this study, we found that Eis proteins have an unprecedented ability to acetylate many arylalkylamines, are a novel type of arylalkylamine N-acetyltransferase AANAT (EC 2.3.1.87). Sequence alignment and phyletic distribution analysis confirmed Eis belongs to a new aaNAT-like cluster. Among the cluster, we studied three typical Eis proteins: Eis_Mtb from Mycobacterium tuberculosis, Eis_Msm from Mycobacterium smegmatis, and Eis_Sen from Saccharopolyspora erythraea. Eis_Mtb prefers to acetylate histamine and octopamine, while Eis_Msm uses tyramine and octopamine as substrates. Unlike them, Eis_Sen exihibits good catalytic efficiencies for most tested arylalkylamines. Considering arylalkylamines such as histamine plays a fundamental role in immune reactions, future work linking of AANAT activity of Eis proteins to their physiological function will broaden our understanding of gram-positive pathogen-host interactions. These findings shed insights into the molecular mechanism of Eis, and reveal potential clinical implications for many gram-positive pathogens.

  7. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield.

    PubMed

    Lee, Kyungjin; Back, Kyoungwhan

    2017-04-01

    While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T 2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Positional effects of monofluorinated phenylalanines on histone acetyltransferase stability and activity.

    PubMed

    Voloshchuk, Natalya; Zhu, Anita Y; Snydacker, David; Montclare, Jin Kim

    2009-09-15

    To explore the impact of global incorporation of fluorinated aromatic amino acids on protein function, we investigated the effects of three monofluorinated phenylalanine analogs para-fluorophenylalanine (pFF), meta-fluorophenylalanine (mFF), and ortho-fluorophenylalanine (oFF) on the stability and enzymatic activity of the histone acetyltransferase (HAT), tGCN5. We selected this set of fluorinated amino acids because they bear the same size and overall polarity but alter in side chain shape and dipole direction. Our experiments showed that among three fluorinated amino acids, the global incorporation of pFF affords the smallest perturbation to the structure and function of tGCN5.

  9. Drosophila variable nurse cells encodes Arrest defective 1 (ARD1), the catalytic subunit of the major N-terminal acetyltransferase complex

    PubMed Central

    Wang, Ying; Mijares, Michelle; Gall, Megan D.; Turan, Tolga; Javier, Anna; Bornemann, Douglas J; Manage, Kevin; Warrior, Rahul

    2010-01-01

    Mutations in the Drosophila variable nurse cells (vnc) gene result in female sterility and oogenesis defects, including egg chambers with too many or too few nurse cells. We show that vnc corresponds to Arrest Defective1 (Ard1) and encodes the catalytic subunit of NatA, the major N-terminal acetyl-transferase complex. While N-terminal acetylation is one of the most prevalent covalent protein modifications in eukaryotes, analysis of its role in development has been challenging since mutants that compromise NatA activity have not been described in any multicellular animal. Our data show that reduced ARD1 levels result in pleiotropic oogenesis defects including abnormal cyst encapsulation, desynchronized cystocyte division, disrupted nurse cell chromosome dispersion and abnormal chorion patterning, consistent with the wide range of predicted NatA substrates. Further we find that loss of Ard1 affects cell survival/proliferation and is lethal for the animal, providing the first demonstration that this modification is essential in higher eukaryotes. PMID:20882681

  10. Gallic Acid Decreases Inflammatory Cytokine Secretion Through Histone Acetyltransferase/Histone Deacetylase Regulation in High Glucose-Induced Human Monocytes.

    PubMed

    Lee, Wooje; Lee, Sang Yeol; Son, Young-Jin; Yun, Jung-Mi

    2015-07-01

    Hyperglycemia contributes to diabetes and several diabetes-related complications. Gallic acid is a polyhydroxy phenolic compound found in various natural products. In this study, we investigated the effects and mechanism of gallic acid on proinflammatory cytokine secretion in high glucose-induced human monocytes (THP-1 cells). THP-1 cells were cultured under normoglycemic or hyperglycemic conditions, in the absence or presence of gallic acid. Hyperglycemic conditions significantly induced histone acetylation, nuclear factor-κB (NF-κB) activation, and proinflammatory cytokine release from THP-1 cells, whereas gallic acid suppressed NF-κB activity and cytokine release. It also significantly reduced CREB-binding protein/p300 (CBP/p300, a NF-κB coactivator) gene expression, acetylation levels, and CBP/p300 histone acetyltransferase (HAT) activity. In addition, histone deacetylase 2 (HDAC2) expression was significantly induced. These results suggest that gallic acid inhibits hyperglycemic-induced cytokine production in monocytes through epigenetic changes involving NF-κB. Therefore, gallic acid may have potential for the treatment and prevention of diabetes and its complications.

  11. Resveratrol Promotes Nerve Regeneration via Activation of p300 Acetyltransferase-Mediated VEGF Signaling in a Rat Model of Sciatic Nerve Crush Injury.

    PubMed

    Ding, Zhuofeng; Cao, Jiawei; Shen, Yu; Zou, Yu; Yang, Xin; Zhou, Wen; Guo, Qulian; Huang, Changsheng

    2018-01-01

    Peripheral nerve injuries are generally associated with incomplete restoration of motor function. The slow rate of nerve regeneration after injury may account for this. Although many benefits of resveratrol have been shown in the nervous system, it is not clear whether resveratrol could promote fast nerve regeneration and motor repair after peripheral nerve injury. This study showed that the motor deficits caused by sciatic nerve crush injury were alleviated by daily systematic resveratrol treatment within 10 days. Resveratrol increased the number of axons in the distal part of the injured nerve, indicating enhanced nerve regeneration. In the affected ventral spinal cord, resveratrol enhanced the expression of several vascular endothelial growth factor family proteins (VEGFs) and increased the phosphorylation of p300 through Akt signaling, indicating activation of p300 acetyltransferase. Inactivation of p300 acetyltransferase reversed the resveratrol-induced expression of VEGFs and motor repair in rats that had undergone sciatic nerve crush injury. The above results indicated that daily systematic resveratrol treatment promoted nerve regeneration and led to rapid motor repair. Resveratrol activated p300 acetyltransferase-mediated VEGF signaling in the affected ventral spinal cord, which may have thus contributed to the acceleration of nerve regeneration and motor repair.

  12. Effect of Single Nucleotide Polymorphisms in Cytochrome P450 Isoenzyme and N-Acetyltransferase 2 Genes on the Metabolism of Artemisinin-Based Combination Therapies in Malaria Patients from Cambodia and Tanzania

    PubMed Central

    Staehli Hodel, Eva Maria; Csajka, Chantal; Ariey, Frédéric; Guidi, Monia; Kabanywanyi, Abdunoor Mulokozi; Duong, Socheat; Decosterd, Laurent Arthur; Olliaro, Piero; Genton, Blaise

    2013-01-01

    The pharmacogenetics of antimalarial agents are poorly known, although the application of pharmacogenetics might be critical in optimizing treatment. This population pharmacokinetic-pharmacogenetic study aimed at assessing the effects of single nucleotide polymorphisms (SNPs) in cytochrome P450 isoenzyme genes (CYP, namely, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5) and the N-acetyltransferase 2 gene (NAT2) on the pharmacokinetics of artemisinin-based combination therapies in 150 Tanzanian patients treated with artemether-lumefantrine, 64 Cambodian patients treated with artesunate-mefloquine, and 61 Cambodian patients treated with dihydroartemisinin-piperaquine. The frequency of SNPs varied with the enzyme and the population. Higher frequencies of mutant alleles were found in Cambodians than Tanzanians for CYP2C9*3, CYP2D6*10 (100C→T), CYP3A5*3, NAT2*6, and NAT2*7. In contrast, higher frequencies of mutant alleles were found in Tanzanians for CYP2D6*17 (1023C→T and 2850C→T), CYP3A4*1B, NAT2*5, and NAT2*14. For 8 SNPs, no significant differences in frequencies were observed. In the genetic-based population pharmacokinetic analyses, none of the SNPs improved model fit. This suggests that pharmacogenetic data need not be included in appropriate first-line treatments with the current artemisinin derivatives and quinolines for uncomplicated malaria in specific populations. However, it cannot be ruled out that our results represent isolated findings, and therefore more studies in different populations, ideally with the same artemisinin-based combination therapies, are needed to evaluate the influence of pharmacogenetic factors on the clearance of antimalarials. PMID:23229480

  13. Mycobacterium tuberculosis Arylamine N-Acetyltransferase Acetylates and Thus Inactivates para-Aminosalicylic Acid.

    PubMed

    Wang, Xude; Yang, Shanshan; Gu, Jing; Deng, Jiaoyu

    2016-12-01

    Mycobacterium tuberculosis arylamine N-acetyltransferase (TBNAT) is able to acetylate para-aminosalicylic acid (PAS) both in vitro and in vivo as determined by high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (ESI-MS) techniques. The antituberculosis activity of the acetylated PAS is significantly reduced. As a result, overexpression of TBNAT in M. tuberculosis results in PAS resistance, as determined by MIC tests and drug exposure experiments. Taken together, our results suggest that TBNAT from M. tuberculosis is able to inactivate PAS by acetylating the compound. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. The relationship of choline acetyltransferase activity at the neuromuscular junction to changes in muscle mass and function

    PubMed Central

    Diamond, Ivan; Franklin, Gary M.; Milfay, Dale

    1974-01-01

    1. The role of muscle mass and function in the regulation of choline acetyltransferase activity at the neuromuscular junction has been investigated in the rat. 2. Choline acetyltransferase (ChAc) is located in presynaptic nerve terminals and is a specific enzymatic marker of cholinergic innervation in muscle. 3. ChAc activity increased co-ordinately with developmental growth of the soleus muscle. However, another form of muscle growth, work hypertrophy, did not produce an increase in ChAc. 4. Growth arrest of muscle by hypophysectomy did not alter the normal development of ChAc activity, and cortisone-induced muscle atrophy did not reduce ChAc activity in the soleus or plantaris. 5. Tenotomy-induced muscle atrophy provoked a significant fall in ChAc in the soleus and plantaris. 6. The tonic soleus had significantly greater ChAc activity than the phasic plantaris. 7. These observations suggest that muscle mass per se does not influence the development and regulation of ChAc in muscle but that the quality of muscle contraction may modulate enzyme activity. PMID:4818500

  15. The histone acetyltransferases CBP and Chameau integrate developmental and DNA replication programs in Drosophila ovarian follicle cells

    PubMed Central

    McConnell, Kristopher H.; Dixon, Michael; Calvi, Brian R.

    2012-01-01

    DNA replication origin activity changes during development. Chromatin modifications are known to influence the genomic location of origins and the time during S phase that they initiate replication in different cells. However, how chromatin regulates origins in concert with cell differentiation remains poorly understood. Here, we use developmental gene amplification in Drosophila ovarian follicle cells as a model to investigate how chromatin modifiers regulate origins in a developmental context. We find that the histone acetyltransferase (HAT) Chameau (Chm) binds to amplicon origins and is partially required for their function. Depletion of Chm had relatively mild effects on origins during gene amplification and genomic replication compared with previous knockdown of its ortholog HBO1 in human cells, which has severe effects on origin function. We show that another HAT, CBP (Nejire), also binds amplicon origins and is partially required for amplification. Knockdown of Chm and CBP together had a more severe effect on nucleosome acetylation and amplicon origin activity than knockdown of either HAT alone, suggesting that these HATs collaborate in origin regulation. In addition to their local function at the origin, we show that Chm and CBP also globally regulate the developmental transition of follicle cells into the amplification stages of oogenesis. Our results reveal a complexity of origin epigenetic regulation by multiple HATs during development and suggest that chromatin modifiers are a nexus that integrates differentiation and DNA replication programs. PMID:22951641

  16. Biochemical and Structural Analysis of an Eis Family Aminoglycoside Acetyltransferase from Bacillus anthracis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Keith D.; Biswas, Tapan; Chang, Changsoo

    Proteins from the enhanced intracellular survival (Eis) family are versatile acetyltransferases that acetylate amines at multiple positions of several aminoglycosides (AGs). Their upregulation confers drug resistance. Homologues of Eis are present in diverse bacteria, including many pathogens. Eis from Mycobacterium tuberculosis (Eis_Mtb) has been well characterized. In this study, we explored the AG specificity and catalytic efficiency of the Eis family protein from Bacillus anthracis (Eis_Ban). Kinetic analysis of specificity and catalytic efficiency of acetylation of six AGs indicates that Eis_Ban displays significant differences from Eis_Mtb in both substrate binding and catalytic efficiency. The number of acetylated amines was alsomore » different for several AGs, indicating a distinct regiospecificity of Eis_Ban. Furthermore, most recently identified inhibitors of Eis_Mtb did not inhibit Eis_Ban, underscoring the differences between these two enzymes. To explain these differences, we determined an Eis_Ban crystal structure. The comparison of the crystal structures of Eis_Ban and Eis_Mtb demonstrates that critical residues lining their respective substrate binding pockets differ substantially, explaining their distinct specificities. Our results suggest that acetyltransferases of the Eis family evolved divergently to garner distinct specificities while conserving catalytic efficiency, possibly to counter distinct chemical challenges. The unique specificity features of these enzymes can be utilized as tools for developing AGs with novel modifications and help guide specific AG treatments to avoid Eis-mediated resistance.« less

  17. Arylalkylamine N-acetyltransferase 1 gene (TcAANAT1) is required for cuticle morphology and pigmentation of the adult red flour beetle, Tribolium castaneum.

    PubMed

    Noh, Mi Young; Koo, Bonwoo; Kramer, Karl J; Muthukrishnan, Subbaratnam; Arakane, Yasuyuki

    2016-12-01

    In the insect cuticle tanning pathway (sclerotization and pigmentation), the enzyme arylalkylamine N-acetyltransferase (AANAT) catalyzes the acetylation of dopamine to form N-acetyldopamine (NADA), which is one of the major precursors for quinone-mediated tanning. In this study we characterized and investigated the function of TcAANAT1 in cuticle pigmentation of the red flour beetle, Tribolium castaneum. We isolated a full length TcAANAT1 cDNA that encodes a protein of 256 amino acid residues with a predicted GCN5-related acetyltransferase domain containing an acetyl-CoA binding motif. TcAANAT1 transcripts were detected at all stages of development with lowest expressions at the embryonic and pharate pupal stages. We expressed and purified the encoded recombinant TcAANAT1 protein (rTcAANAT1) that exhibited highest activity at slightly basic pH values (for example, pH 7.5 to 8.5 using dopamine as the substrate). In addition, rTcAANAT1 acts on a wide range of substrates including tryptamine, octopamine and norepinephrine with similar substrate affinities with K m values in the range of 0.05-0.11 mM except for tyramine (K m  = 0.56 mM). Loss of function of TcAANAT1 caused by RNAi had no effect on larval and pupal development. The tanning of pupal setae, gin traps and urogomphi proceeded normally. However, the resulting adults (∼70%) exhibited a roughened exoskeletal surface, separated elytra and improperly folded hindwings. The body wall, elytra and veins of the hindwing of the mature adults were significantly darker than those of control insects probably due to the accumulation of dopamine melanin. A dark pigmentation surrounding the bristles located on the inter-veins of the elytron was evident primarily because of the underlying darkly pigmented trabeculae that partition the dorsal and ventral layers of the elytron. These results support the hypothesis that TcAANAT1 acetylates dopamine and plays a role in development of the morphology and pigmentation of T

  18. Effect of chemical sympathectomy on the content of acetylcholine, choline and choline acetyltransferase activity in the cat spleen and iris.

    PubMed

    Consolo, S; Garattini, S; Ladinsky, H; Thoenen, H

    1972-02-01

    1. Acetylcholine and choline were measured in the spleens and irides of normal and 6-hydroxydopamine-treated cats. In addition, choline acetyltransferase activity was measured in the spleens.2. No acetylcholine or choline acetyltransferase activity were found in spleens of normal or treated cats. The choline content of normal spleens was 12.4 +/- 1.5 mug/g wet wt. (mean +/- S.E. of mean), which was not significantly altered by chemical sympathectomy.3. The acetylcholine and choline contents of the cat iris were 3.0 +/- 0.3 mug/g wet wt. and 7.7 +/- 0.9 mug/g wet wt., respectively. There was no difference in acetylcholine and choline concentrations between left and right or normal and sympathectomized irides.4. These results are discussed in relation to the question of a cholinergic link in post-ganglionic sympathetic transmission.

  19. GCN5 regulates the activation of PI3K/Akt survival pathway in B cells exposed to oxidative stress via controlling gene expressions of Syk and Btk.

    PubMed

    Kikuchi, Hidehiko; Kuribayashi, Futoshi; Takami, Yasunari; Imajoh-Ohmi, Shinobu; Nakayama, Tatsuo

    2011-02-25

    Histone acetyltransferase(s) (HATs) are involved in the acetylation of core histones, which is an important event for transcription regulation through alterations in the chromatin structure in eukaryotes. General control non-depressible 5 (GCN5) was first identified as a global coactivator and transcription-related HAT. Here we report that GCN5 regulates the activation of phosphatidylinositol 3-kinase (PI3K)/acutely transforming retrovirus AKT8 in rodent T cell lymphoma (Akt) survival pathway in B cells exposed to oxidative stress via controlling gene expressions of spleen tyrosine kinase (Syk) and Bruton's tyrosine kinase (Btk). The GCN5-deficiency remarkably caused apoptotic cell death by treatment with exogenous hydrogen peroxide (H(2)O(2)) in chicken DT40 cells. In GCN5-deficient DT40 cells, gene expressions of Syk and Btk, which are involved in activation of PI3K/Akt survival pathway in DT40 cells exposed to exogenous H(2)O(2), were remarkably decreased compared with those in wild type DT40 cells. In addition, phosphorylation of Akt in H(2)O(2)-treated GCN5-deficient cells was remarkably suppressed as compared to that of DT40. Chromatin immunoprecipitation assay revealed that GCN5 binds to proximal 5'-upstream regions of Syk and Btk genes in vivo. These results suggest that GCN5 takes part in transcriptional regulations of the Syk and Btk genes, and plays a key role in epigenetic regulation of PI3K/Akt survival pathway in B cells exposed to reactive oxygen species such as H(2)O(2). Copyright © 2011 Elsevier Inc. All rights reserved.

  20. New plasmid-mediated aminoglycoside 6'-N-acetyltransferase, AAC(6')-Ian, and ESBL, TLA-3, from a Serratia marcescens clinical isolate.

    PubMed

    Jin, Wanchun; Wachino, Jun-Ichi; Kimura, Kouji; Yamada, Keiko; Arakawa, Yoshichika

    2015-05-01

    Enterobacteriaceae clinical isolates showing amikacin resistance (MIC 64 to >256 mg/L) in the absence of 16S rRNA methyltransferase (MTase) genes were found. The aim of this study was to clarify the molecular mechanisms underlying amikacin resistance in Enterobacteriaceae clinical isolates that do not produce 16S rRNA MTases. PCR was performed to detect already-known amikacin resistance determinants. Cloning experiments and sequence analyses were performed to characterize unknown amikacin resistance determinants. Transfer of amikacin resistance determinants was performed by conjugation and transformation. The complete nucleotide sequence of the plasmids was determined by next-generation sequencing technology. Amikacin resistance enzymes were purified with a column chromatography system. The enzymatic function of the purified protein was investigated by thin-layer chromatography (TLC) and HPLC. Among the 14 isolates, 9 were found to carry already-known amikacin resistance determinants such as aac(6')-Ia and aac(6')-Ib. Genetic analyses revealed the presence of a new amikacin acetyltransferase gene, named aac(6')-Ian, located on a 169 829 bp transferable plasmid (p11663) of the Serratia marcescens strain NUBL-11663, one of the five strains negative for known aac(6') genes by PCR. Plasmid p11663 also carried a novel ESBL gene, named blaTLA-3. HPLC and TLC analyses demonstrated that AAC(6')-Ian catalysed the transfer of an acetyl group from acetyl coenzyme A onto an amine at the 6'-position of various aminoglycosides. We identified aac(6')-Ian as a novel amikacin resistance determinant together with a new ESBL gene, blaTLA-3, on a transferable plasmid of a S. marcescens clinical isolate. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. The NSL Complex Regulates Housekeeping Genes in Drosophila

    PubMed Central

    Raja, Sunil Jayaramaiah; Holz, Herbert; Luscombe, Nicholas M.; Manke, Thomas; Akhtar, Asifa

    2012-01-01

    MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP–seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP–seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication–related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription. PMID:22723752

  2. Acetylation of aromatic cysteine conjugates by recombinant human N-acetyltransferase 8.

    PubMed

    Deol, Reema; Josephy, P David

    2017-03-01

    1. The mercapturic acid (MA) pathway is a metabolic route for the processing of glutathione conjugates to MA (N-acetylcysteine conjugates). An N-acetyltransferase enzyme, NAT8, catalyzes the transfer of an acetyl group from acetyl-CoA to the cysteine amino group, producing a MA, which is excreted in the urine. We expressed human NAT8 in HEK293T cells and developed an HPLC-MS method for the quantitation of the S-aryl-substituted cysteine conjugates and their MA. 2. We measured the activity of the enzyme for acetylation of benzyl-, 4-nitrobenzyl-, and 1-menaphthylcysteine substrates. 3. NAT8 catalyzed the acetylation of all three cysteine conjugates with similar Michaelis-Menten kinetics.

  3. Risks on N-acetyltransferase 2 and bladder cancer: a meta-analysis.

    PubMed

    Zhu, Zongheng; Zhang, Jinshan; Jiang, Wei; Zhang, Xianjue; Li, Youkong; Xu, Xiaoming

    2015-01-01

    It is known that bladder cancer disease is closely related to aromatic amine compounds, which could cause cancer by regulating of N-acetylation and N-acetyltransferase 1 and 2 (NAT1 and NAT2). The NAT2 slowed acetylation and would increase the risk of bladder cancer, with tobacco smoke being regarded as a risk factor for this increased risk. However, the relationship between NAT2 slow acetylation and bladder cancer is still debatable at present. This study aims to explore preliminarily correlation of NAT2 slow acetylation and the risk of bladder cancer. The articles were searched from PubMed, Cochran, McGrane English databases, CBM, CNKI, and other databases. The extraction of bladder cancer patients and a control group related with the NAT2 gene were detected by the state, and the referenced articles and publications were also used for data retrieval. Using a random effects model, the model assumes that the studies included in the analysis cases belong to the overall population in the study of random sampling, and considering the variables within and between studies. Data were analyzed using STATA Version 6.0 software, using the META module. According to the inclusion and exclusion criteria of the literature study, 20 independent studies are included in this meta-analysis. The results showed that the individual differences of bladder cancer susceptibility might be part of the metabolism of carcinogens. Slow acetylation status of bladder cancer associated with the pooled odds ratio was 1.31 (95% confidence interval: 1.11-1.55). The status of NAT2 slow N-acetylation is associated with bladder cancer risks, and may increase the risk of bladder cancer.

  4. Xenobiotic-metabolizing enzymes in Bacillus anthracis: molecular and functional analysis of a truncated arylamine N-acetyltransferase isozyme.

    PubMed

    Kubiak, Xavier; Duval, Romain; Pluvinage, Benjamin; Chaffotte, Alain F; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2017-07-01

    The arylamine N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes that play an important role in the detoxification and/or bioactivation of arylamine drugs and xenobiotics. In bacteria, NATs may contribute to the resistance against antibiotics such as isoniazid or sulfamides through their acetylation, which makes this enzyme family a possible drug target. Bacillus anthracis, a bacterial species of clinical significance, expresses three NAT isozymes with distinct structural and enzymatic properties, including an inactive isozyme ((BACAN)NAT3). (BACAN)NAT3 features both a non-canonical Glu residue in its catalytic triad and a truncated C-terminus domain. However, the role these unusual characteristics play in the lack of activity of the (BACAN)NAT3 isozyme remains unclear. Protein engineering, recombinant expression, enzymatic analyses with aromatic amine substrates and phylogenetic analysis approaches were conducted. The deletion of guanine 580 (G580) in the nat3 gene was shown to be responsible for the expression of a truncated (BACAN)NAT3 isozyme. Artificial re-introduction of G580 in the nat3 gene led to a functional enzyme able to acetylate several arylamine drugs displaying structural characteristics comparable with its functional Bacillus cereus homologue ((BACCR)NAT3). Phylogenetic analysis of the nat3 gene in the B. cereus group further indicated that nat3 may constitute a pseudogene of the B. anthracis species. The existence of NATs with distinct properties and evolution in Bacillus species may account for their adaptation to their diverse chemical environments. A better understanding of these isozymes is of importance for their possible use as drug targets. This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc. © 2016 The British Pharmacological Society.

  5. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    PubMed

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  6. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    PubMed Central

    TEIXEIRA, Bertinellys; RODULFO, Hectorina; CARREÑO, Numirin; GUZMÁN, Militza; SALAZAR, Elsa; DONATO, Marcos DE

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America. PMID:27007556

  7. Structural and functional characterization of an arylamine N-acetyltransferase from the pathogen Mycobacterium abscessus: differences from other mycobacterial isoforms and implications for selective inhibition.

    PubMed

    Cocaign, Angélique; Kubiak, Xavier; Xu, Ximing; Garnier, Guillaume; Li de la Sierra-Gallay, Inès; Chi-Bui, Linh; Dairou, Julien; Busi, Florent; Abuhammad, Areej; Haouz, Ahmed; Dupret, Jean Marie; Herrmann, Jean Louis; Rodrigues-Lima, Fernando

    2014-11-01

    Mycobacterium abscessus is the most pathogenic rapid-growing mycobacterium and is one of the most resistant organisms to chemotherapeutic agents. However, structural and functional studies of M. abscessus proteins that could modify/inactivate antibiotics remain nonexistent. Here, the structural and functional characterization of an arylamine N-acetyltransferase (NAT) from M. abscessus [(MYCAB)NAT1] are reported. This novel prokaryotic NAT displays significant N-acetyltransferase activity towards aromatic substrates, including antibiotics such as isoniazid and p-aminosalicylate. The enzyme is endogenously expressed and functional in both the rough and smooth M. abscessus morphotypes. The crystal structure of (MYCAB)NAT1 at 1.8 Å resolution reveals that it is more closely related to Nocardia farcinica NAT than to mycobacterial isoforms. In particular, structural and physicochemical differences from other mycobacterial NATs were found in the active site. Peculiarities of (MYCAB)NAT1 were further supported by kinetic and docking studies showing that the enzyme was poorly inhibited by the piperidinol inhibitor of mycobacterial NATs. This study describes the first structure of an antibiotic-modifying enzyme from M. abscessus and provides bases to better understand the substrate/inhibitor-binding specificities among mycobacterial NATs and to identify/optimize specific inhibitors. These data should also contribute to the understanding of the mechanisms that are responsible for the pathogenicity and extensive chemotherapeutic resistance of M. abscessus.

  8. Mycothiol acetyltransferase (Rv0819) of Mycobacterium tuberculosis is a potential biomarker for direct diagnosis of tuberculosis using patient serum specimens.

    PubMed

    Zeitoun, H; Bahey-El-Din, M; Kassem, M A; Aboushleib, H M

    2017-12-01

    Mycobacterium tuberculosis infection constitutes a global threat that results in significant morbidity and mortality worldwide. Efficient and early diagnosis of tuberculosis (TB) is of paramount importance for successful treatment. The aim of the current study is to investigate the mycobacterial mycothiol acetyltransferase Rv0819 as a potential novel biomarker for the diagnosis of active TB infection. The gene encoding Rv0819 was cloned and successfully expressed in Escherichia coli. The recombinant Rv0819 was purified using metal affinity chromatography and was used to raise murine polyclonal antibodies against Rv0819. The raised antibodies were employed for direct detection of Rv0819 in patient serum samples using dot blot assay and competitive enzyme-linked immunosorbent assay (ELISA). Serum samples were obtained from 68 confirmed new TB patients and 35 healthy volunteers as negative controls. The dot blot assay showed sensitivity of 64·7% and specificity of 100%, whereas the competitive ELISA assay showed lower sensitivity (54·4%) and specificity (88·57%). The overall sensitivity of the combined results of the two tests was found to be 89·7%. Overall, the mycobacterial Rv0819 is a potential TB serum biomarker that can be exploited, in combination with other TB biomarkers, for efficient and reliable diagnosis of active TB infection. The early and accurate diagnosis of tuberculosis infection is of paramount importance for initiating treatment and avoiding clinical complications. Most current diagnostic tests have poor sensitivity and/or specificity and in many cases they are too expensive for routine diagnostic testing in resource-limited settings. In the current study, we examined a novel mycobacterial serum biomarker, namely mycothiol acetyltransferase Rv0819. The antigen was detectable in serum specimens of a significant number of tuberculosis patients. This article proves the importance of Rv0819 and paves the way towards its future use as a useful

  9. Purification and characterization of glutamate N-acetyltransferase involved in citrulline accumulation in wild watermelon.

    PubMed

    Takahara, Kentaro; Akashi, Kinya; Yokota, Akiho

    2005-10-01

    Citrulline is an efficient hydroxyl radical scavenger that can accumulate at concentrations of up to 30 mm in the leaves of wild watermelon during drought in the presence of strong light; however, the mechanism of this accumulation remains unclear. In this study, we characterized wild watermelon glutamate N-acetyltransferase (CLGAT) that catalyses the transacetylation reaction between acetylornithine and glutamate to form acetylglutamate and ornithine, thereby functioning in the first and fifth steps in citrulline biosynthesis. CLGAT enzyme purified 7000-fold from leaves was composed of two subunits with different N-terminal amino acid sequences. Analysis of the corresponding cDNA revealed that these two subunits have molecular masses of 21.3 and 23.5 kDa and are derived from a single precursor polypeptide, suggesting that the CLGAT precursor is cleaved autocatalytically at the conserved ATML motif, as in other glutamate N-acetyltransferases of microorganisms. A green fluorescence protein assay revealed that the first 26-amino acid sequence at the N-terminus of the precursor functions as a chloroplast transit peptide. The CLGAT exhibited thermostability up to 70 degrees C, suggesting an increase in enzyme activity under high leaf temperature conditions during drought/strong-light stresses. Moreover, CLGAT was not inhibited by citrulline or arginine at physiologically relevant high concentrations. These findings suggest that CLGAT can effectively participate in the biosynthesis of citrulline in wild watermelon leaves during drought/strong-light stress.

  10. Molecular-genetic imaging based on reporter gene expression.

    PubMed

    Kang, Joo Hyun; Chung, June-Key

    2008-06-01

    Molecular imaging includes proteomic, metabolic, cellular biologic process, and genetic imaging. In a narrow sense, molecular imaging means genetic imaging and can be called molecular-genetic imaging. Imaging reporter genes play a leading role in molecular-genetic imaging. There are 3 major methods of molecular-genetic imaging, based on optical, MRI, and nuclear medicine modalities. For each of these modalities, various reporter genes and probes have been developed, and these have resulted in successful transitions from bench to bedside applications. Each of these imaging modalities has its unique advantages and disadvantages. Fluorescent and bioluminescent optical imaging modalities are simple, less expensive, more convenient, and more user friendly than other imaging modalities. Another advantage, especially of bioluminescence imaging, is its ability to detect low levels of gene expression. MRI has the advantage of high spatial resolution, whereas nuclear medicine methods are highly sensitive and allow data from small-animal imaging studies to be translated to clinical practice. Moreover, multimodality imaging reporter genes will allow us to choose the imaging technologies that are most appropriate for the biologic problem at hand and facilitate the clinical application of reporter gene technologies. Reporter genes can be used to visualize the levels of expression of particular exogenous and endogenous genes and several intracellular biologic phenomena, including specific signal transduction pathways, nuclear receptor activities, and protein-protein interactions. This technique provides a straightforward means of monitoring tumor mass and can visualize the in vivo distributions of target cells, such as immune cells and stem cells. Molecular imaging has gradually evolved into an important tool for drug discovery and development, and transgenic mice with an imaging reporter gene can be useful during drug and stem cell therapy development. Moreover, instrumentation

  11. Estrogen Nuclear Receptor Coactivators in Pathogenesis of Breast Cancer.

    DTIC Science & Technology

    1999-08-01

    gene to be disrupted. 2) Mutations are produced in embryonic stem (ES) cells in culture by homologous recombination of the target gene with the...Approved for public release; distribution unlimited The views, opinions and/or findings contained in this report are those of the author(s) and...and retinoic acid- dependent gene expression. The critical role of the intrinsic acetyltransferase enzymatic activity of PCAF in hormone regulated

  12. Effect of chemical sympathectomy on the content of acetylcholine, choline and choline acetyltransferase activity in the cat spleen and iris

    PubMed Central

    Consolo, S.; Garattini, S.; Ladinsky, H.; Thoenen, H.

    1972-01-01

    1. Acetylcholine and choline were measured in the spleens and irides of normal and 6-hydroxydopamine-treated cats. In addition, choline acetyltransferase activity was measured in the spleens. 2. No acetylcholine or choline acetyltransferase activity were found in spleens of normal or treated cats. The choline content of normal spleens was 12·4 ± 1·5 μg/g wet wt. (mean ± S.E. of mean), which was not significantly altered by chemical sympathectomy. 3. The acetylcholine and choline contents of the cat iris were 3·0 ± 0·3 μg/g wet wt. and 7·7 ± 0·9 μg/g wet wt., respectively. There was no difference in acetylcholine and choline concentrations between left and right or normal and sympathectomized irides. 4. These results are discussed in relation to the question of a cholinergic link in post-ganglionic sympathetic transmission. PMID:4335730

  13. Characterization, Localization, Essentiality, and High-Resolution Crystal Structure of Glucosamine 6-Phosphate N-Acetyltransferase from Trypanosoma brucei ▿ ‡ §

    PubMed Central

    Mariño, Karina; Güther, M. Lucia Sampaio; Wernimont, Amy K.; Qiu, Wei; Hui, Raymond; Ferguson, Michael A. J.

    2011-01-01

    A gene predicted to encode Trypanosoma brucei glucosamine 6-phosphate N-acetyltransferase (TbGNA1; EC 2.3.1.4) was cloned and expressed in Escherichia coli. The recombinant protein was enzymatically active, and its high-resolution crystal structure was obtained at 1.86 Å. Endogenous TbGNA1 protein was localized to the peroxisome-like microbody, the glycosome. A bloodstream-form T. brucei GNA1 conditional null mutant was constructed and shown to be unable to sustain growth in vitro under nonpermissive conditions, demonstrating that there are no metabolic or nutritional routes to UDP-GlcNAc other than via GlcNAc-6-phosphate. Analysis of the protein glycosylation phenotype of the TbGNA1 mutant under nonpermissive conditions revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite and that the glycosylation profile of the principal parasite surface coat component, the variant surface glycoprotein (VSG), was modified. The significance of results and the potential of TbGNA1 as a novel drug target for African sleeping sickness are discussed. PMID:21531872

  14. N-acetyltransferase 2 activity and folate levels

    PubMed Central

    Cao, Wen; Strnatka, Diana; McQueen, Charlene A.; Hunter, Robert J.; Erickson, Robert P.

    2010-01-01

    Aims To determine whether increased N-acetyltransferase (NAT) activity might have a toxic effect during development and an influence on folate levels since previous work has shown that only low levels of exogenous NAT can be achieved in constitutionally transgenic mice (Cao, et al, 2005) Main Methods A human NAT1 tet-inducible construct was used that would not be expressed until the inducer was delivered. Human NAT1 cDNA was cloned into pTRE2 and injected into mouse oocytes. Two transgenic lines were crossed to mouse line TgN(rtTahCMV)4Uh containing the CMV promoted “teton.”Measurements of red blood cell folate levels in inbred strains of mice were performed. Key findings Only low levels of human NAT1 could be achieved in kidney (highly responsive in other studies) whether the inducer, doxycycline, was given by gavage or in drinking water.An inverse correlation of folate levels with Nat2 enzyme activity was found. Significance Since increasing NAT1 activity decrease folate in at least one tissue, the detrimental effect of expression of human NAT1 in combination with endogenous mouse Nat2 may be a consequence of increased catabolism of folate. PMID:19932120

  15. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae.

    PubMed

    Cheng, Cheng; Zhao, Xinqing; Zhang, Mingming; Bai, Fengwu

    2016-03-01

    RTT109 is a histone acetyltransferase for the acetylation of histone H3. It is still not clear whether RTT109 plays a role in regulation of gene expression under environmental stresses. In this study, the involvement of RTT109 in acetic acid stress tolerance of Saccharomyces cerevisiae was investigated. It was revealed that the absence of RTT109 enhanced resistance to 5.5 g L(-1) acetic acid, which was indicated by improved growth of RTT109Δ mutant compared with that of the wild-type BY4741 strain. Meanwhile, the lag phase was shortened for 48 h and glucose consumption completed 36 h in advance for RTT109Δ mutant compared to the wild-type strain, with ethanol production rate increased from 0.39 to 0.60 g L(-1) h(-1). Significantly, elevated transcription levels of HSP12, CTT1 and GSH1, as well as increased activities of antioxidant enzymes were observed in RTT109Δ under acetic acid stress. Improved flocculation of RTT109Δ compared to that of the control strain BY4741 under the acetic acid stress was also observed. These results suggest that the absence of RTT109 not only activates transcription of stress responsive genes, but also improves resistance to oxidative stress, which ultimately contributes to improved acetic acid tolerance in S. cerevisiae. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts

    PubMed Central

    Dron, Michel; Clouse, Steven D.; Dixon, Richard A.; Lawton, Michael A.; Lamb, Christopher J.

    1988-01-01

    To investigate the mechanisms underlying activation of plant defenses against microbial attack we have studied elicitor regulation of a chimeric gene comprising the 5′ flanking region of a defense gene encoding the phytoalexin biosynthetic enzyme chalcone synthase fused to a bacterial chloramphenicol acetyltransferase gene. Glutathione or fungal elicitor caused a rapid, marked but transient expression of the chimeric gene electroporated into soybean protoplasts. The response closely resembled that of endogenous chalcone synthase genes in suspension cultured cells. Functional analysis of 5′ deletions suggests that promoter activity is determined by an elicitor-regulated activator located between the “TATA box” and nucleotide position -173 and an upstream silencer between -173 and -326. These cis-acting elements function in the transduction of the elicitation signal to initiate elaboration of an inducible defense response. Images PMID:16593981

  17. Effects of surgical lesions on choline acetyltransferase activity in the cat cochlea.

    PubMed

    Frilling, Mark J; Wiet, Gregory J; Godfrey, Donald A; Parli, Judy A; Dunn, Jon D; Ross, C David

    2017-12-01

    Although it is well established that the choline acetyltransferase (ChAT, the enzyme for acetylcholine synthesis) in the mammalian cochlea is associated with its olivocochlear innervation, the distribution of this innervation in the cochlea varies somewhat among mammalian species. The quantitative distribution of ChAT activity in the cochlea has been reported for guinea pigs and rats. The present study reports the distribution of ChAT activity within the organ of Corti among the three turns of the cat cochlea and the effects of removing olivocochlear innervation either by a lateral cut aimed to totally transect the left olivocochlear bundle or a more medial cut additionally damaging the superior olivary complex on the same side. Similarly to results for guinea pig and rat, the distribution of ChAT activity in the cat outer hair cell region showed a decrease from base to apex, but, unlike in the guinea pig and rat, the cat inner hair cell region did not. As in the rat, little ChAT activity was measured in the outer supporting cell region. As previously reported for whole cat cochlea and for rat cochlear regions, transection of the olivocochlear bundle resulted in almost total loss of ChAT activity in the hair cell regions of the cat cochlea. Lesions of the superior olivary complex resulted in loss of ChAT activity in the inner hair cell region of all cochlear turns only on the lesion side but bilateral losses in the outer hair cell region of all turns. The results are consistent with previous evidence that virtually all cholinergic synapses in the mammalian cochlea are associated with its olivocochlear innervation, that the olivocochlear innervation to the inner hair cell region is predominantly ipsilateral, and that the olivocochlear innervation to the outer hair cells is bilateral. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization

    NASA Astrophysics Data System (ADS)

    Kumar, Rajnish; Långström, Bengt; Darreh-Shori, Taher

    2016-08-01

    Recent reports have brought back the acetylcholine synthesizing enzyme, choline acetyltransferase in the mainstream research in dementia and the cholinergic anti-inflammatory pathway. Here we report, a specific strategy for the design of novel ChAT ligands based on molecular docking, Hologram Quantitative Structure Activity Relationship (HQSAR) and lead optimization. Molecular docking was performed on a series of ChAT inhibitors to decipher the molecular fingerprint of their interaction with the active site of ChAT. Then robust statistical fragment HQSAR models were developed. A library of novel ligands was generated based on the pharmacophoric and shape similarity scoring function, and evaluated in silico for their molecular interactions with ChAT. Ten of the top scoring invented compounds are reported here. We confirmed the activity of α-NETA, the only commercially available ChAT inhibitor, and one of the seed compounds in our model, using a new simple colorimetric ChAT assay (IC50 ~ 88 nM). In contrast, α-NETA exhibited an IC50 of ~30 μM for the ACh-degrading cholinesterases. In conclusion, the overall results may provide useful insight for discovering novel ChAT ligands and potential positron emission tomography tracers as in vivo functional biomarkers of the health of central cholinergic system in neurodegenerative disorders, such as Alzheimer’s disease.

  19. Crystal Structure of the Golgi-Associated Human Nα-Acetyltransferase 60 Reveals the Molecular Determinants for Substrate-Specific Acetylation.

    PubMed

    Støve, Svein Isungset; Magin, Robert S; Foyn, Håvard; Haug, Bengt Erik; Marmorstein, Ronen; Arnesen, Thomas

    2016-07-06

    N-Terminal acetylation is a common and important protein modification catalyzed by N-terminal acetyltransferases (NATs). Six human NATs (NatA-NatF) contain one catalytic subunit each, Naa10 to Naa60, respectively. In contrast to the ribosome-associated NatA to NatE, NatF/Naa60 specifically associates with Golgi membranes and acetylates transmembrane proteins. To gain insight into the molecular basis for the function of Naa60, we developed an Naa60 bisubstrate CoA-peptide conjugate inhibitor, determined its X-ray structure when bound to CoA and inhibitor, and carried out biochemical experiments. We show that Naa60 adapts an overall fold similar to that of the catalytic subunits of ribosome-associated NATs, but with the addition of two novel elongated loops that play important roles in substrate-specific binding. One of these loops mediates a dimer to monomer transition upon substrate-specific binding. Naa60 employs a catalytic mechanism most similar to Naa50. Collectively, these data reveal the molecular basis for Naa60-specific acetyltransferase activity with implications for its Golgi-specific functions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Melatonin production in Escherichia coli by dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase.

    PubMed

    Byeon, Yeong; Back, Kyoungwhan

    2016-08-01

    Melatonin is a well-known bioactive molecule produced in animals and plants and a well-studied natural compound. Two enzymatic steps are required for the biosynthesis of melatonin from serotonin. First, serotonin N-acetyltransferase (SNAT) catalyzes serotonin to N-acetylserotonin (NAS) followed by the action of N-acetylserotonin O-methyltransferase (ASMT), resulting in the synthesis of O-methylated NAS, also known as melatonin. Attempts to document melatonin production in Escherichia coli have been unsuccessful to date due to either low enzyme activity or inactive ASMT expression. Here, we employed caffeic acid O-methyltransferase (COMT) instead of ASMT, as COMT is a multifunctional enzyme that has ASMT activity as well. Among several combinations of dual expression cassettes, recombinant E. coli that expressed sheep SNAT with rice COMT produced a high quantity of melatonin, which was measured in a culture medium (1.46 mg/L in response to 1 mM serotonin). This level was several orders of magnitude higher than that produced in transgenic rice and tomato overexpressing sheep SNAT and ASMT, respectively. This heterologous expression system can be widely employed to screen various putative SNAT or ASMT genes from animals and plants as well as to overproduce melatonin in various useful microorganisms.

  1. Structure-based molecular design for thermostabilization of N-acetyltransferase Mpr1 involved in a novel pathway of L-arginine synthesis in yeast.

    PubMed

    Nasuno, Ryo; Hirase, Saeka; Norifune, Saki; Watanabe, Daisuke; Takagi, Hiroshi

    2016-02-01

    Previously, N-Acetyltransferase Mpr1 was suggested to be involved in a novel pathway of L-arginine biosynthesis in yeast. Our recent crystallographic analysis demonstrated that the overall structure of Mpr1 is a typical folding among proteins in the Gcn5-related N-acetyltransferase superfamily, and also provided clues to the design of mutations for improvement of the enzymatic functions. Here, we constructed new stable variants, Asn203Lys- and Asn203Arg-Mpr1, which exhibited 2.4-fold and 2.2-fold longer activity half-lives than wild-type Mpr1, respectively, by structure-based molecular design. The replacement of Asn203 with a basic amino acid was suggested to stabilize α-helix 2, which is important for the Mpr1 structure, probably by neutralizing its dipole. In addition, the combination of two amino acid substitutions at positions 65 and 203 in Mpr1, Phe65Leu, which was previously isolated by the screening from PCR random mutagenesis library of MPR1, and Asn203Lys or Asn203Arg, led to further stabilization of Mpr1. Our growth assay suggests that overexpression of the stable Mpr1 variants increase L-arginine synthesis in yeast cells. Our finding is the first report on the rational engineering of Mpr1 for thermostabilization and could be useful in the construction of new yeast strains with higher L-arginine synthetic activity and also improved fermentation ability. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  2. HAC1 and HAF1 Histone Acetyltransferases Have Different Roles in UV-B Responses in Arabidopsis.

    PubMed

    Fina, Julieta P; Masotti, Fiorella; Rius, Sebastián P; Crevacuore, Franco; Casati, Paula

    2017-01-01

    Arabidopsis has 12 histone acetyltransferases grouped in four families: the GNAT/HAG, the MYST/HAM, the p300/CBP/HAC and the TAFII250/HAF families. We previously showed that ham1 and ham2 mutants accumulated higher damaged DNA after UV-B exposure than WT plants. In contrast, hag3 RNA interference transgenic plants showed less DNA damage and lower inhibition of plant growth by UV-B, and increased levels of UV-B-absorbing compounds. These results demonstrated that HAM1, HAM2, and HAG3 participate in UV-B-induced DNA damage repair and signaling. In this work, to further explore the role of histone acetylation in UV-B responses, a putative function of other acetyltransferases of the HAC and the HAF families was analyzed. Neither HAC nor HAF acetyltrasferases participate in DNA damage and repair after UV-B radiation in Arabidopsis. Despite this, haf1 mutants presented lower inhibition of leaf and root growth by UV-B, with altered expression of E2F transcription factors. On the other hand, hac1 plants showed a delay in flowering time after UV-B exposure and changes in FLC and SOC1 expression patterns. Our data indicate that HAC1 and HAF1 have crucial roles for in UV-B signaling, confirming that, directly or indirectly, both enzymes also have a role in UV-B responses.

  3. HAC1 and HAF1 Histone Acetyltransferases Have Different Roles in UV-B Responses in Arabidopsis

    PubMed Central

    Fina, Julieta P.; Masotti, Fiorella; Rius, Sebastián P.; Crevacuore, Franco; Casati, Paula

    2017-01-01

    Arabidopsis has 12 histone acetyltransferases grouped in four families: the GNAT/HAG, the MYST/HAM, the p300/CBP/HAC and the TAFII250/HAF families. We previously showed that ham1 and ham2 mutants accumulated higher damaged DNA after UV-B exposure than WT plants. In contrast, hag3 RNA interference transgenic plants showed less DNA damage and lower inhibition of plant growth by UV-B, and increased levels of UV-B-absorbing compounds. These results demonstrated that HAM1, HAM2, and HAG3 participate in UV-B-induced DNA damage repair and signaling. In this work, to further explore the role of histone acetylation in UV-B responses, a putative function of other acetyltransferases of the HAC and the HAF families was analyzed. Neither HAC nor HAF acetyltrasferases participate in DNA damage and repair after UV-B radiation in Arabidopsis. Despite this, haf1 mutants presented lower inhibition of leaf and root growth by UV-B, with altered expression of E2F transcription factors. On the other hand, hac1 plants showed a delay in flowering time after UV-B exposure and changes in FLC and SOC1 expression patterns. Our data indicate that HAC1 and HAF1 have crucial roles for in UV-B signaling, confirming that, directly or indirectly, both enzymes also have a role in UV-B responses. PMID:28740501

  4. Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley-derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases

    PubMed Central

    2011-01-01

    Background The trichothecene mycotoxin deoxynivalenol (DON) may be concentrated in distillers dried grains with solubles (DDGS; a co-product of fuel ethanol fermentation) when grain containing DON is used to produce fuel ethanol. Even low levels of DON (≤ 5 ppm) in DDGS sold as feed pose a significant threat to the health of monogastric animals. New and improved strategies to reduce DON in DDGS need to be developed and implemented to address this problem. Enzymes known as trichothecene 3-O-acetyltransferases convert DON to 3-acetyldeoxynivalenol (3ADON), and may reduce its toxicity in plants and animals. Results Two Fusarium trichothecene 3-O-acetyltransferases (FgTRI101 and FfTRI201) were cloned and expressed in yeast (Saccharomyces cerevisiae) during a series of small-scale ethanol fermentations using barley (Hordeum vulgare). DON was concentrated 1.6 to 8.2 times in DDGS compared with the starting ground grain. During the fermentation process, FgTRI101 converted 9.2% to 55.3% of the DON to 3ADON, resulting in DDGS with reductions in DON and increases in 3ADON in the Virginia winter barley cultivars Eve, Thoroughbred and Price, and the experimental line VA06H-25. Analysis of barley mashes prepared from the barley line VA04B-125 showed that yeast expressing FfTRI201 were more effective at acetylating DON than those expressing FgTRI101; DON conversion for FfTRI201 ranged from 26.1% to 28.3%, whereas DON conversion for FgTRI101 ranged from 18.3% to 21.8% in VA04B-125 mashes. Ethanol yields were highest with the industrial yeast strain Ethanol Red®, which also consumed galactose when present in the mash. Conclusions This study demonstrates the potential of using yeast expressing a trichothecene 3-O-acetyltransferase to modify DON during commercial fuel ethanol fermentation. PMID:21888629

  5. In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression.

    PubMed

    Carlin, Sean; Pugachev, Andrei; Sun, Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C Clifton; Humm, John L

    2009-10-01

    To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer (18)F-fluoromisonidazole ((18)F-FMISO). Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe (124)I-2'-fluoro-2'-deoxy-1-beta-d-arabinofuranosyl-5-iodouracil ((124)I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between (124)I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe (18)F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with (124)I-FIAU (3 h before sacrifice) and (18)F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between (18)F-FMISO and (124)I-FIAU on a pixel-by-pixel basis was performed. Correlation coefficients between (124)I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between (18)F-FMISO and (124)I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of this model for the

  6. Human Arylamine N-Acetyltransferase 1 Is Inhibited by the Dithiocarbamate Pesticide Thiram.

    PubMed

    Xu, Ximing; Mathieu, Cécile; Berthelet, Jérémy; Duval, Romain; Bui, Linh Chi; Busi, Florent; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2017-09-01

    Thiram (tetramethylthiuram disulfide) is a representative dithiocarbamate (DTC) pesticide used in both the field and as a seed protectant. The widespread use of Thiram and other DTC pesticides has raised concerns for health, because these compounds can exert neuropathic, endocrine disruptive, and carcinogenic effects. These toxic effects are thought to rely, at least in part, on the reaction of Thiram (and certain of its metabolites) with cellular protein thiols with subsequent loss of protein function. So far, a limited number of molecular targets of Thiram have been reported, including few enzymes such as dopamine β -hydroxylase, 11 β -hydroxysteroid dehydrogenase, and brain glycogen phosphorylase. We provide evidence that Thiram is an inhibitor ( K I = 23 μ M; k inact = 0.085 second -1 ; k inact / K I = 3691 M -1 ⋅s -1 ) of human arylamine N -acetyltransferase 1 (NAT1), a phase II xenobiotic-metabolizing enzyme that plays a key role in the biotransformation of aromatic amine xenobiotics. Thiram was found to act as an irreversible inhibitor through the modification of NAT1 catalytic cysteine residue as also reported for other enzymes targeted by this pesticide. We also showed using purified NAT1 and human keratinocytes that Thiram impaired the N -acetylation of 3,4-dichloroaniline (3,4-DCA), a major toxic metabolite of aromatic amine pesticides (such as Diuron or Propanil). As coexposure to different classes of pesticides is common, our data suggest that pharmacokinetic drug-drug interactions between DTC pesticides such as Thiram and aromatic amine pesticides may occur through alteration of NAT1 enzymes functions. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Diverse Antibiotic Resistance Genes in Dairy Cow Manure

    PubMed Central

    Wichmann, Fabienne; Udikovic-Kolic, Nikolina; Andrew, Sheila; Handelsman, Jo

    2014-01-01

    ABSTRACT Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. PMID:24757214

  8. Comparative studies on glutamate decarboxylase and choline acetyltransferase activities in the vertebrate vestibule.

    PubMed

    López, I; Meza, G

    1990-01-01

    1. Vestibular putative neurotransmitters GABA and acetylcholine synthesizing enzymes were quantified in four vertebrate species to find a correlation between all-vertebrate vestibular hair cell II (HCII) and synaptic contacts and appearance of hair cell I (HCI) and related synapses in terrestrial species. 2. Glutamate decarboxylase (GAD) and choline acetyltransferase (ChAT) values were: 3.76; 15.38; 21.68; 27.78 and 9.44; 450; 720; 970 n(pico)mol/mg protein/hr (min) in, respectively, frogs, guinea pigs, rats and chicks. 3. GAD and ChAT omnipresence may indicate constant GABAergic HCII and its cholinergic efferent synapses, their raised content, appearance of GABA-containing HCI and related cholinergic boutons in higher vertebrates.

  9. Structural and functional characterization of TRI3 trichothecene 15-O-acetyltransferase from Fusarium sporotrichioides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garvey, Graeme S.; McCormick, Susan P.; Alexander, Nancy J.

    2009-08-14

    Fusarium head blight is a devastating disease of cereal crops whose worldwide incidence is increasing and at present there is no satisfactory way of combating this pathogen or its associated toxins. There is a wide variety of trichothecene mycotoxins and they all contain a 12,13-epoxytrichothecene skeleton but differ in their substitutions. Indeed, there is considerable variation in the toxin profile across the numerous Fusarium species that has been ascribed to differences in the presence or absence of biosynthetic enzymes and their relative activity. This article addresses the source of differences in acetylation at the C15 position of the trichothecene molecule.more » Here, we present the in vitro structural and biochemical characterization of TRI3, a 15-O-trichothecene acetyltransferase isolated from F. sporotrichioides and the 'in vivo' characterization of Deltatri3 mutants of deoxynivalenol (DON) producing F. graminearum strains. A kinetic analysis shows that TRI3 is an efficient enzyme with the native substrate, 15-decalonectrin, but is inactive with either DON or nivalenol. The structure of TRI3 complexed with 15-decalonectrin provides an explanation for this specificity and shows that Tri3 and Tri101 (3-O-trichothecene acetyltransferase) are evolutionarily related. The active site residues are conserved across all sequences for TRI3 orthologs, suggesting that differences in acetylation at C15 are not due to differences in Tri3. The tri3 deletion mutant shows that acetylation at C15 is required for DON biosynthesis even though DON lacks a C15 acetyl group. The enzyme(s) responsible for deacetylation at the 15 position of the trichothecene mycotoxins have not been identified.« less

  10. Nuclear 82-kDa choline acetyltransferase decreases amyloidogenic APP metabolism in neurons from APP/PS1 transgenic mice.

    PubMed

    Albers, Shawn; Inthathirath, Fatima; Gill, Sandeep K; Winick-Ng, Warren; Jaworski, Ewa; Wong, Daisy Y L; Gros, Robert; Rylett, R Jane

    2014-09-01

    Alzheimer disease (AD) is associated with increased amyloidogenic processing of amyloid precursor protein (APP) to β-amyloid peptides (Aβ), cholinergic neuron loss with decreased choline acetyltransferase (ChAT) activity, and cognitive dysfunction. Both 69-kDa ChAT and 82-kDa ChAT are expressed in cholinergic neurons in human brain and spinal cord with 82-kDa ChAT localized predominantly to neuronal nuclei, suggesting potential alternative functional roles for the enzyme. By gene microarray analysis, we found that 82-kDa ChAT-expressing IMR32 neural cells have altered expression of genes involved in diverse cellular functions. Importantly, genes for several proteins that regulate APP processing along amyloidogenic and non-amyloidogenic pathways are differentially expressed in 82-kDa ChAT-containing cells. The predicted net effect based on observed changes in expression patterns of these genes would be decreased amyloidogenic APP processing with decreased Aβ production. This functional outcome was verified experimentally as a significant decrease in BACE1 protein levels and activity and a concomitant reduction in the release of endogenous Aβ1-42 from neurons cultured from brains of AD-model APP/PS1 transgenic mice. The expression of 82-kDa ChAT in neurons increased levels of GGA3, which is involved in trafficking BACE1 to lysosomes for degradation. shRNA-induced decreases in GGA3 protein levels attenuated the 82-kDa ChAT-mediated decreases in BACE1 protein and activity and Aβ1-42 release. Evidence that 82-kDa ChAT can enhance GGA3 gene expression is shown by enhanced GGA3 gene promoter activity in SN56 neural cells expressing this ChAT protein. These studies indicate a novel relationship between cholinergic neurons and APP processing, with 82-kDa ChAT acting as a negative regulator of Aβ production. This decreased formation of Aβ could result in protection for cholinergic neurons, as well as protection of other cells in the vicinity that are sensitive to

  11. Design and optimization of aspartate N-acetyltransferase inhibitors for the potential treatment of Canavan disease.

    PubMed

    Thangavelu, Bharani; Mutthamsetty, Vinay; Wang, Qinzhe; Viola, Ronald E

    2017-02-01

    Canavan disease is a fatal neurological disorder caused by defects in the metabolism of N-acetyl-l-aspartate (NAA). Recent work has shown that the devastating symptoms of this disorder are correlated with the elevated levels of NAA observed in these patients, caused as a consequence of the inability of mutated forms of aspartoacylase to adequately catalyze its breakdown. The membrane-associated enzyme responsible for the synthesis of NAA, aspartate N-acetyltransferase (ANAT), has recently been purified and examined (Wang et al., Prot Expr Purif. 2016;119:11). With the availability, for the first time, of a stable and soluble form of ANAT we can now report the identification of initial inhibitors against this biosynthetic enzyme, obtained from the screening of several focused compound libraries. Two core structures of these moderate binding compounds have subsequently been optimized, with the most potent inhibitors in these series possessing sub-micromolar inhibition constants (K i values) against ANAT. Slowing the production of NAA via the inhibition of ANAT will lower the elevated levels of this metabolite and can potentially serve as a treatment option to moderate the symptoms of Canavan disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Mutation screening of melatonin-related genes in patients with autism spectrum disorders

    PubMed Central

    2010-01-01

    Background One consistent finding in autism spectrum disorders (ASD) is a decreased level of the pineal gland hormone melatonin and it has recently been demonstrated that this decrease to a large extent is due to low activity of the acetylserotonin O-methyltransferase (ASMT), the last enzyme in the melatonin synthesis pathway. Moreover, mutations in the ASMT gene have been identified, including a splice site mutation, that were associated with low ASMT activity and melatonin secretion, suggesting that the low ASMT activity observed in autism is, at least partly, due to variation within the ASMT gene. Methods In the present study, we have investigated all the genes involved in the melatonin pathway by mutation screening of AA-NAT (arylalkylamine N-acetyltransferase), ASMT, MTNR1A, MTNR1B (melatonin receptor 1A and 1B) and GPR50 (G protein-coupled receptor 50), encoding both synthesis enzymes and the three main receptors of melatonin, in 109 patients with autism spectrum disorders (ASD). A cohort of 188 subjects from the general population was used as a comparison group and was genotyped for the variants identified in the patient sample. Results Several rare variants were identified in patients with ASD, including the previously reported splice site mutation in ASMT (IVS5+2T>C). Of the variants affecting protein sequence, only the V124I in the MTNR1B gene was absent in our comparison group. However, mutations were found in upstream regulatory regions in three of the genes investigated, ASMT, MTNR1A, and MTNR1B. Conclusions Our report of another ASD patient carrying the splice site mutation IVS5+2T>C, in ASMT further supports an involvement of this gene in autism. Moreover, our results also suggest that other melatonin related genes might be interesting candidates for further investigation in the search for genes involved in autism spectrum disorders and related neurobehavioral phenotypes. However, further studies of the novel variants identified in this study are

  13. Mutation screening of melatonin-related genes in patients with autism spectrum disorders.

    PubMed

    Jonsson, Lina; Ljunggren, Elin; Bremer, Anna; Pedersen, Christin; Landén, Mikael; Thuresson, Kent; Giacobini, Maibritt; Melke, Jonas

    2010-04-08

    One consistent finding in autism spectrum disorders (ASD) is a decreased level of the pineal gland hormone melatonin and it has recently been demonstrated that this decrease to a large extent is due to low activity of the acetylserotonin O-methyltransferase (ASMT), the last enzyme in the melatonin synthesis pathway. Moreover, mutations in the ASMT gene have been identified, including a splice site mutation, that were associated with low ASMT activity and melatonin secretion, suggesting that the low ASMT activity observed in autism is, at least partly, due to variation within the ASMT gene. In the present study, we have investigated all the genes involved in the melatonin pathway by mutation screening of AA-NAT (arylalkylamine N-acetyltransferase), ASMT, MTNR1A, MTNR1B (melatonin receptor 1A and 1B) and GPR50 (G protein-coupled receptor 50), encoding both synthesis enzymes and the three main receptors of melatonin, in 109 patients with autism spectrum disorders (ASD). A cohort of 188 subjects from the general population was used as a comparison group and was genotyped for the variants identified in the patient sample. Several rare variants were identified in patients with ASD, including the previously reported splice site mutation in ASMT (IVS5+2T>C). Of the variants affecting protein sequence, only the V124I in the MTNR1B gene was absent in our comparison group. However, mutations were found in upstream regulatory regions in three of the genes investigated, ASMT, MTNR1A, and MTNR1B. Our report of another ASD patient carrying the splice site mutation IVS5+2T>C, in ASMT further supports an involvement of this gene in autism. Moreover, our results also suggest that other melatonin related genes might be interesting candidates for further investigation in the search for genes involved in autism spectrum disorders and related neurobehavioral phenotypes. However, further studies of the novel variants identified in this study are warranted to shed light on their potential

  14. Methamphetamine Causes Differential Alterations in Gene Expression and Patterns of Histone Acetylation/Hypoacetylation in the Rat Nucleus Accumbens

    PubMed Central

    Martin, Tracey A.; Jayanthi, Subramaniam; McCoy, Michael T.; Brannock, Christie; Ladenheim, Bruce; Garrett, Tiffany; Lehrmann, Elin; Becker, Kevin G.; Cadet, Jean Lud

    2012-01-01

    Methamphetamine (METH) addiction is associated with several neuropsychiatric symptoms. Little is known about the effects of METH on gene expression and epigenetic modifications in the rat nucleus accumbens (NAC). Our study investigated the effects of a non-toxic METH injection (20 mg/kg) on gene expression, histone acetylation, and the expression of the histone acetyltransferase (HAT), ATF2, and of the histone deacetylases (HDACs), HDAC1 and HDAC2, in that structure. Microarray analyses done at 1, 8, 16 and 24 hrs after the METH injection identified METH-induced changes in the expression of genes previously implicated in the acute and longterm effects of psychostimulants, including immediate early genes and corticotropin-releasing factor (Crf). In contrast, the METH injection caused time-dependent decreases in the expression of other genes including Npas4 and cholecystokinin (Cck). Pathway analyses showed that genes with altered expression participated in behavioral performance, cell-to-cell signaling, and regulation of gene expression. PCR analyses confirmed the changes in the expression of c-fos, fosB, Crf, Cck, and Npas4 transcripts. To determine if the METH injection caused post-translational changes in histone markers, we used western blot analyses and identified METH-mediated decreases in histone H3 acetylated at lysine 9 (H3K9ac) and lysine 18 (H3K18ac) in nuclear sub-fractions. In contrast, the METH injection caused time-dependent increases in acetylated H4K5 and H4K8. The changes in histone acetylation were accompanied by decreased expression of HDAC1 but increased expression of HDAC2 protein levels. The histone acetyltransferase, ATF2, showed significant METH-induced increased in protein expression. These results suggest that METH-induced alterations in global gene expression seen in rat NAC might be related, in part, to METH-induced changes in histone acetylation secondary to changes in HAT and HDAC expression. The causal role that HATs and HDACs might

  15. Evolution of insect arylalkylamine N-acetyltransferases: Structural evidence from the yellow fever mosquito, Aedes aegypti

    PubMed Central

    Han, Qian; Robinson, Howard; Ding, Haizhen; Christensen, Bruce M.; Li, Jianyong

    2012-01-01

    Arylalkylamine N-acetyltransferase (aaNAT) catalyzes the transacetylation from acetyl-CoA to arylalkylamines. aaNATs are involved in sclerotization and neurotransmitter inactivation in insects. Phyletic distribution analysis confirms three clusters of aaNAT-like sequences in insects: typical insect aaNAT, polyamine NAT-like aaNAT, and mosquito unique putative aaNAT (paaNAT). Here we studied three proteins: aaNAT2, aaNAT5b, and paaNAT7, each from a different cluster. aaNAT2, a protein from the typical insect aaNAT cluster, uses histamine as a substrate as well as the previously identified arylalkylamines. aaNAT5b, a protein from polyamine NAT -like aaNAT cluster, uses hydrazine and histamine as substrates. The crystal structure of aaNAT2 was determined using single-wavelength anomalous dispersion methods, and that of native aaNAT2, aaNAT5b and paaNAT7 was detected using molecular replacement techniques. All three aaNAT structures have a common fold core of GCN5-related N-acetyltransferase superfamily proteins, along with a unique structural feature: helix/helices between β3 and β4 strands. Our data provide a start toward a more comprehensive understanding of the structure–function relationship and physiology of aaNATs from the mosquito Aedes aegypti and serve as a reference for studying the aaNAT family of proteins from other insect species. The structures of three different types of aaNATs may provide targets for designing insecticides for use in mosquito control. PMID:22753468

  16. Hepatocyte-specific ablation of spermine/spermidine-N1-acetyltransferase gene reduces the severity of CCl4-induced acute liver injury

    PubMed Central

    Barone, Sharon L.; Xu, Jie; Steinbergs, Nora; Schuster, Rebecca; Lentsch, Alex B.; Amlal, Hassane; Wang, Jiang; Casero, Robert A.; Soleimani, Manoocher

    2012-01-01

    Activation of spermine/spermidine-N1-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl4). The expression and activity of SSAT increase in the liver subsequent to CCl4 administration. Furthermore, the early liver injury after CCl4 treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl4. Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl4-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration. PMID:22723264

  17. Hepatocyte-specific ablation of spermine/spermidine-N1-acetyltransferase gene reduces the severity of CCl4-induced acute liver injury.

    PubMed

    Zahedi, Kamyar; Barone, Sharon L; Xu, Jie; Steinbergs, Nora; Schuster, Rebecca; Lentsch, Alex B; Amlal, Hassane; Wang, Jiang; Casero, Robert A; Soleimani, Manoocher

    2012-09-01

    Activation of spermine/spermidine-N(1)-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl(4)). The expression and activity of SSAT increase in the liver subsequent to CCl(4) administration. Furthermore, the early liver injury after CCl(4) treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl(4). Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl(4)-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration.

  18. The metal tolerance profile of Thlaspi goesingense is mimicked in Arabidopsis thaliana heterologously expressing serine acetyl-transferase.

    PubMed

    Freeman, John L; Salt, David E

    2007-11-28

    The Ni hyperaccumulator Thlaspi goesingense is tolerant to Ni congruent with Zn, congruent with Co and slightly resistant to > Cd. We previously observed that elevated glutathione, driven by constitutive activation of serine acetyltransferase (SAT), plays a role in the Ni tolerance of T. goesingense. Here we show that the elevated shoot concentration of glutathione, previously shown to cause elevated Ni tolerance in Arabidopsis thaliana heterologously expressing T. goesingense mitochondrial serine acetyltransferase (SATm), also causes tolerance to Co and Zn while slightly enhancing resistance to Cd. The level of tolerance afforded to each metal is ranked Ni congruent with Co, > Zn > Cd. The Ni congruent with Co, > Zn tolerances are positively correlated with both the accumulation of glutathione (GSH) and the ability to resist the oxidative damage induced by these different metals. Based on the relative concentrations of each metal used a relatively low level of resistance to Cd was observed in both T. goesingense and TgSATm expressing lines and Cd resistance was least correlated to GSH accumulation. Such data supports the conclusion that elevated glutathione levels, driven by constitutively enhanced SAT activity in the hyperaccumulator T. goesingense, plays an important role in the Ni, Co and Zn tolerance of this and other Thlaspi species. The hyper-activation of S assimilation through SAT is an excellent strategy for engineering enhanced metal tolerance in transgenic plants potentially used for phytoremediation.

  19. The metal tolerance profile of Thlaspi goesingense is mimicked in Arabidopsis thaliana heterologously expressing serine acetyl-transferase

    PubMed Central

    Freeman, John L; Salt, David E

    2007-01-01

    Background The Ni hyperaccumulator Thlaspi goesingense is tolerant to Ni ≅ Zn, ≅ Co and slightly resistant to > Cd. We previously observed that elevated glutathione, driven by constitutive activation of serine acetyltransferase (SAT), plays a role in the Ni tolerance of T. goesingense. Results Here we show that the elevated shoot concentration of glutathione, previously shown to cause elevated Ni tolerance in Arabidopsis thaliana heterologously expressing T. goesingense mitochondrial serine acetyltransferase (SATm), also causes tolerance to Co and Zn while slightly enhancing resistance to Cd. The level of tolerance afforded to each metal is ranked Ni ≅ Co, > Zn > Cd. The Ni ≅ Co, > Zn tolerances are positively correlated with both the accumulation of glutathione (GSH) and the ability to resist the oxidative damage induced by these different metals. Based on the relative concentrations of each metal used a relatively low level of resistance to Cd was observed in both T. goesingense and TgSATm expressing lines and Cd resistance was least correlated to GSH accumulation. Conclusion Such data supports the conclusion that elevated glutathione levels, driven by constitutively enhanced SAT activity in the hyperaccumulator T. goesingense, plays an important role in the Ni, Co and Zn tolerance of this and other Thlaspi species. The hyper-activation of S assimilation through SAT is an excellent strategy for engineering enhanced metal tolerance in transgenic plants potentially used for phytoremediation. PMID:18045473

  20. Gene structure of CYP3A4, an adult-specific form of cytochrome P450 in human livers, and its transcriptional control.

    PubMed

    Hashimoto, H; Toide, K; Kitamura, R; Fujita, M; Tagawa, S; Itoh, S; Kamataki, T

    1993-12-01

    CYP3 A4 is the adult-specific form of cytochrome P450 in human livers [Komori, M., Nishio, K., Kitada, M., Shiramatsu, K., Muroya, K., Soma, M., Nagashima, K. & Kamataki, T. (1990) Biochemistry 29, 4430-4433]. The sequences of three genomic clones for CYP3A4 were analyzed for all exons, exon-intron junctions and the 5'-flanking region from the major transcription site to nucleotide position -1105, and compared with those of the CYP3A7 gene, a fetal-specific form of cytochrome P450 in humans. The results showed that the identity of 5'-flanking sequences between CYP3A4 and CYP3A7 genes was 91%, and that each 5'-flanking region had characteristic sequences termed as NFSE (P450NF-specific element) and HFLaSE (P450HFLa specific element), respectively. A basic transcription element (BTE) also lay in the 5'-flanking region of the CYP3A4 gene as seen in many CYP genes [Yanagida, A., Sogawa, K., Yasumoto, K. & Fujii-Kuriyama, Y. (1990) Mol. Cell. Biol. 10, 1470-1475]. The BTE binding factor (BTEB) was present in both adult and fetal human livers. To examine the transcriptional activity of the CYP3A4 gene, DNA fragments in the 5'-flanking region of the gene were inserted in front of the simian virus 40 promoter and the chloramphenicol acetyltransferase structural gene, and the constructs were transfected in HepG2 cells. The analysis of the chloramphenicol acetyltransferase activity indicated that (a) specific element(s) which could bind with a factor(s) in livers was present in the 5'-flanking region of the CYP3A4 gene to show the transcriptional activity.

  1. Effects of acute ethanol administration on nocturnal pineal serotonin N-acetyltransferase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creighton, J.A.; Rudeen, P.K.

    The effect of acute ethanol administration on pineal serotonin N-acetyltransferase (NAT) activity, norepinephrine and indoleamine content was examined in male rats. When ethanol was administered in two equal doses (2 g/kg body weight) over a 4 hour period during the light phase, the nocturnal rise in NAT activity was delayed by seven hours. The nocturnal pineal norepinephrine content was not altered by ethanol except for a delay in the reduction of NE with the onset of the following light phase. Although ethanol treatment led to a significant reduction in nocturnal levels of pineal serotonin content, there was no significant effectmore » upon pineal content of 5-hydroxyindoleacetic acid (5-HIAA). The data indicate that ethanol delays the onset of the rise of nocturnal pineal NAT activity.« less

  2. Identification of genes for melatonin synthetic enzymes in 'Red Fuji' apple (Malus domestica Borkh.cv.Red) and their expression and melatonin production during fruit development.

    PubMed

    Lei, Qiong; Wang, Lin; Tan, Dun-Xian; Zhao, Yu; Zheng, Xiao-Dong; Chen, Hao; Li, Qing-Tian; Zuo, Bi-Xiao; Kong, Jin

    2013-11-01

    Melatonin is present in many edible fruits; however, the presence of melatonin in apple has not previously been reported. In this study, the genes for melatonin synthetic enzymes including tryptophan decarboxylase, tryptamine 5-hydroxylase (T5H), arylalkylamine N-acetyltransferase, and N-acetylserotonin methyltransferase were identified in 'Red Fuji' apple. Each gene has several homologous genes. Sequence analysis shows that these genes have little homology with those of animals and they only have limited homology with known genes of rice melatonin synthetic enzymes. Multiple origins of melatonin synthetic genes during the evolution are expected. The expression of these genes is fully coordinated with melatonin production in apple development. Melatonin levels in apple exhibit an inverse relationship with the content of malondialdehyde, a product of lipid peroxidation. Two major melatonin synthetic peaks appeared on July 17 and on October 8 in both unbagged and bagged apple samples. At the periods mentioned above, apples experienced rapid expansion and increased respiration. These episodes significantly elevate reactive oxygen species production in the apple. Current data further confirmed that melatonin produced in apple was used to neutralize the toxic oxidants and protect the developing apple against oxidative stress. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Purification and characterization of an N alpha-acetyltransferase from Saccharomyces cerevisiae.

    PubMed

    Lee, F J; Lin, L W; Smith, J A

    1988-10-15

    N alpha-Acetyltransferase, which catalyzes the transfer of an acetyl group from acetyl coenzyme A to the alpha-NH2 group of proteins and peptides, was isolated from Saccharomyces cerevisiae and demonstrated by protein sequence analysis to be NH2-terminally blocked. The enzyme was purified 4,600-fold to apparent homogeneity by successive purification steps using DEAE-Sepharose, hydroxylapatite, DE52 cellulose, and Affi-Gel blue. The Mr of the native enzyme was estimated to be 180,000 +/- 10,000 by gel filtration chromatography, and the Mr of each subunit was estimated to be 95,000 +/- 2,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has a pH optimum near 9.0, and its pI is 4.3 as determined by chromatofocusing on Mono-P. The enzyme catalyzed the transfer of an acetyl group to various synthetic peptides, including human adrenocorticotropic hormone (ACTH) (1-24) and its [Phe2] analogue, yeast alcohol dehydrogenase I (1-24), yeast alcohol dehydrogenase II (1-24), and human superoxide dismutase (1-24). These peptides contain either Ser or Ala as NH2-terminal residues which together with Met are the most commonly acetylated NH2-terminal residues (Persson, B., Flinta, C., von Heijne, G., and Jornvall, H. (1985) Eur. J. Biochem. 152, 523-527). Yeast enolase, containing a free NH2-terminal Ala residue, is known not to be N alpha-acetylated in vivo (Chin, C. C. Q., Brewer, J. M., and Wold, F. (1981) J. Biol. Chem. 256, 1377-1384), and enolase (1-24), a synthetic peptide mimicking the protein's NH2 terminus, was not acetylated in vitro by yeast acetyltransferase. The enzyme did not catalyze the N alpha-acetylation of other synthetic peptides including ACTH(11-24), ACTH(7-38), ACTH(18-39), human beta-endorphin, yeast superoxide dismutase (1-24). Each of these peptides has an NH2-terminal residue which is rarely acetylated in proteins (Lys, Phe, Arg, Tyr, Val, respectively). Among a series of divalent cations, Cu2+ and Zn2+ were demonstrated to be

  4. Obesity and lipid stress inhibit carnitine acetyltransferase activity.

    PubMed

    Seiler, Sarah E; Martin, Ola J; Noland, Robert C; Slentz, Dorothy H; DeBalsi, Karen L; Ilkayeva, Olga R; An, Jie; Newgard, Christopher B; Koves, Timothy R; Muoio, Deborah M

    2014-04-01

    Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes.

  5. TRPV4 Stimulation Induced Melatonin Secretion by Increasing Arylalkymine N-acetyltransferase (AANAT) Protein Level.

    PubMed

    Alkozi, Hanan Awad; Perez de Lara, Maria J; Sánchez-Naves, Juan; Pintor, Jesús

    2017-04-01

    Melatonin is a molecule which has gained a great deal of interest in many areas of science; its synthesis was classically known to be in the pineal gland. However, many organs synthesize melatonin, such as several ocular structures. Melatonin is known to participate in many functions apart from its main action regulating the circadian rhythm. It is synthesized from serotonin in two steps, with a rate-limiting step carried out by arylalkymine N -acetyltransferase (AANAT). In this report, the role of TRPV4 channel present in human ciliary body epithelial cells in AANAT production was studied. Several experiments were undertaken to verify the adequate time to reach the maximal effect by using the TRPV4 agonist GSK1016790A, together with a dose-response study. An increase of 2.4 folds in AANAT was seen after 18 h of incubation with 10 nM of GSK1016790A ( p < 0.001, n = 6). This increment was verified by antagonist assays. In summary, AANAT levels and therefore melatonin synthesis change after TRPV4 channel stimulation. Using this cell model together with human ciliary body tissue it is possible to suggest that AANAT plays an important role in pathologies related to intraocular pressure.

  6. Site-specific methylation of the rat prolactin and growth hormone promoters correlates with gene expression.

    PubMed Central

    Ngô, V; Gourdji, D; Laverrière, J N

    1996-01-01

    The methylation patterns of the rat prolactin (rPRL) (positions -440 to -20) and growth hormone (rGH) (positions -360 to -110) promoters were analyzed by bisulfite genomic sequencing. Two normal tissues, the anterior pituitary and the liver, and three rat pituitary GH3 cell lines that differ considerably in their abilities to express both genes were tested. High levels of rPRL gene expression were correlated with hypomethylation of the CpG dinucleotides located at positions -277 and -97, near or within positive cis-acting regulatory elements. For the nine CpG sites analyzed in the rGH promoter, an overall hypomethylation-expression coupling was also observed for the anterior pituitary, the liver, and two of the cell lines. The effect of DNA methylation was tested by measuring the transient expression of the chloramphenicol acetyltransferase reporter gene driven by a regionally methylated rPRL promoter. CpG methylation resulted in a decrease in the activity of the rPRL promoter which was proportional to the number of modified CpG sites. The extent of the inhibition was also found to be dependent on the position of methylated sites. Taken together, these data suggest that site-specific methylation may modulate the action of transcription factors that dictate the tissue-specific expression of the rPRL and rGH genes in vivo. PMID:8668139

  7. Histone posttranslational modifications and cell fate determination: lens induction requires the lysine acetyltransferases CBP and p300

    PubMed Central

    Wolf, Louise; Harrison, Wilbur; Huang, Jie; Xie, Qing; Xiao, Ningna; Sun, Jian; Kong, Lingkun; Lachke, Salil A.; Kuracha, Murali R.; Govindarajan, Venkatesh; Brindle, Paul K.; Ashery-Padan, Ruth; Beebe, David C.; Overbeek, Paul A.; Cvekl, Ales

    2013-01-01

    Lens induction is a classical embryologic model to study cell fate determination. It has been proposed earlier that specific changes in core histone modifications accompany the process of cell fate specification and determination. The lysine acetyltransferases CBP and p300 function as principal enzymes that modify core histones to facilitate specific gene expression. Herein, we performed conditional inactivation of both CBP and p300 in the ectodermal cells that give rise to the lens placode. Inactivation of both CBP and p300 resulted in the dramatic discontinuation of all aspects of lens specification and organogenesis, resulting in aphakia. The CBP/p300−/− ectodermal cells are viable and not prone to apoptosis. These cells showed reduced expression of Six3 and Sox2, while expression of Pax6 was not upregulated, indicating discontinuation of lens induction. Consequently, expression of αB- and αA-crystallins was not initiated. Mutant ectoderm exhibited markedly reduced levels of histone H3 K18 and K27 acetylation, subtly increased H3 K27me3 and unaltered overall levels of H3 K9ac and H3 K4me3. Our data demonstrate that CBP and p300 are required to establish lens cell-type identity during lens induction, and suggest that posttranslational histone modifications are integral to normal cell fate determination in the mammalian lens. PMID:24038357

  8. Crystal structure of Helicobacter pylori pseudaminic acid biosynthesis N-acetyltransferase PseH: implications for substrate specificity and catalysis.

    PubMed

    Ud-Din, Abu I; Liu, Yu C; Roujeinikova, Anna

    2015-01-01

    Helicobacter pylori infection is the common cause of gastroduodenal diseases linked to a higher risk of the development of gastric cancer. Persistent infection requires functional flagella that are heavily glycosylated with 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (pseudaminic acid). Pseudaminic acid biosynthesis protein H (PseH) catalyzes the third step in its biosynthetic pathway, producing UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. It belongs to the GCN5-related N-acetyltransferase (GNAT) superfamily. The crystal structure of the PseH complex with cofactor acetyl-CoA has been determined at 2.3 Å resolution. This is the first crystal structure of the GNAT superfamily member with specificity to UDP-4-amino-4,6-dideoxy-β-L-AltNAc. PseH is a homodimer in the crystal, each subunit of which has a central twisted β-sheet flanked by five α-helices and is structurally homologous to those of other GNAT superfamily enzymes. Interestingly, PseH is more similar to the GNAT enzymes that utilize amino acid sulfamoyl adenosine or protein as a substrate than a different GNAT-superfamily bacterial nucleotide-sugar N-acetyltransferase of the known structure, WecD. Analysis of the complex of PseH with acetyl-CoA revealed the location of the cofactor-binding site between the splayed strands β4 and β5. The structure of PseH, together with the conservation of the active-site general acid among GNAT superfamily transferases, are consistent with a common catalytic mechanism for this enzyme that involves direct acetyl transfer from AcCoA without an acetylated enzyme intermediate. Based on structural homology with microcin C7 acetyltransferase MccE and WecD, the Michaelis complex can be modeled. The model suggests that the nucleotide- and 4-amino-4,6-dideoxy-β-L-AltNAc-binding pockets form extensive interactions with the substrate and are thus the most significant determinants of substrate specificity. A hydrophobic pocket accommodating the

  9. Identification of a Gene Cluster for Biosynthesis of Mannosylerythritol Lipids in the Basidiomycetous Fungus Ustilago maydis

    PubMed Central

    Hewald, Sandra; Linne, Uwe; Scherer, Mario; Marahiel, Mohamed A.; Kämper, Jörg; Bölker, Michael

    2006-01-01

    Many microorganisms produce surface-active substances that enhance the availability of water-insoluble substrates. Although many of these biosurfactants have interesting potential applications, very little is known about their biosynthesis. The basidiomycetous fungus Ustilago maydis secretes large amounts of mannosylerythritol lipids (MELs) under conditions of nitrogen starvation. We recently described a putative glycosyltransferase, Emt1, which is essential for MEL biosynthesis and whose expression is strongly induced by nitrogen limitation. We used DNA microarray analysis to identify additional genes involved in MEL biosynthesis. Here we show that emt1 is part of a gene cluster which comprises five open reading frames. Three of the newly identified proteins, Mac1, Mac2, and Mat1, contain short sequence motifs characteristic for acyl- and acetyltransferases. Mutational analysis revealed that Mac1 and Mac2 are essential for MEL production, which suggests that they are involved in the acylation of mannosylerythritol. Deletion of mat1 resulted in the secretion of completely deacetylated MELs, as determined by mass spectrometry. We overexpressed Mat1 in Escherichia coli and demonstrated that this enzyme acts as an acetyl coenzyme A-dependent acetyltransferase. Remarkably, Mat1 displays relaxed regioselectivity and is able to acetylate mannosylerythritol at both the C-4 and C-6 hydroxyl groups. Based on these results, we propose a biosynthesis pathway for the generation of mannosylerythritol lipids in U. maydis. PMID:16885300

  10. Identification of a TAAT-containing motif required for high level expression of the COL1A1 promoter in differentiated osteoblasts of transgenic mice

    NASA Technical Reports Server (NTRS)

    Dodig, M.; Kronenberg, M. S.; Bedalov, A.; Kream, B. E.; Gronowicz, G.; Clark, S. H.; Mack, K.; Liu, Y. H.; Maxon, R.; Pan, Z. Z.; hide

    1996-01-01

    Our previous studies have shown that the 49-base pair region of promoter DNA between -1719 and -1670 base pairs is necessary for transcription of the rat COL1A1 gene in transgenic mouse calvariae. In this study, we further define this element to the 13-base pair region between -1683 and -1670. This element contains a TAAT motif that binds homeodomain-containing proteins. Site-directed mutagenesis of this element in the context of a COL1A1-chloramphenicol acetyltransferase construct extending to -3518 base pairs decreased the ratio of reporter gene activity in calvariae to tendon from 3:1 to 1:1, suggesting a preferential effect on activity in calvariae. Moreover, chloramphenicol acetyltransferase-specific immunofluorescence microscopy of transgenic calvariae showed that the mutation preferentially reduced levels of chloramphenicol acetyltransferase protein in differentiated osteoblasts. Gel mobility shift assays demonstrate that differentiated osteoblasts contain a nuclear factor that binds to this site. This binding activity is not present in undifferentiated osteoblasts. We show that Msx2, a homeodomain protein, binds to this motif; however, Northern blot analysis revealed that Msx2 mRNA is present in undifferentiated bone cells but not in fully differentiated osteoblasts. In addition, cotransfection studies in ROS 17/2.8 osteosarcoma cells using an Msx2 expression vector showed that Msx2 inhibits a COL1A1 promoter-chloramphenicol acetyltransferase construct. Our results suggest that high COL1A1 expression in bone is mediated by a protein that is induced during osteoblast differentiation. This protein may contain a homeodomain; however, it is distinct from homeodomain proteins reported previously to be present in bone.

  11. Unexpected Function of the Glucanosyltransferase Gas1 in the DNA Damage Response Linked to Histone H3 Acetyltransferases in Saccharomyces cerevisiae

    PubMed Central

    Eustice, Moriah; Pillus, Lorraine

    2014-01-01

    Chromatin organization and structure are crucial for transcriptional regulation, DNA replication, and damage repair. Although initially characterized in remodeling cell wall glucans, the β-1,3-glucanosyltransferase Gas1 was recently discovered to regulate transcriptional silencing in a manner separable from its activity at the cell wall. However, the function of Gas1 in modulating chromatin remains largely unexplored. Our genetic characterization revealed that GAS1 had critical interactions with genes encoding the histone H3 lysine acetyltransferases Gcn5 and Sas3. Specifically, whereas the gas1gcn5 double mutant was synthetically lethal, deletion of both GAS1 and SAS3 restored silencing in Saccharomyces cerevisiae. The loss of GAS1 also led to broad DNA damage sensitivity with reduced Rad53 phosphorylation and defective cell cycle checkpoint activation following exposure to select genotoxins. Deletion of SAS3 in the gas1 background restored both Rad53 phosphorylation and checkpoint activation following exposure to genotoxins that trigger the DNA replication checkpoint. Our analysis thus uncovers previously unsuspected functions for both Gas1 and Sas3 in DNA damage response and cell cycle regulation. PMID:24532730

  12. Design and interpretation of microRNA-reporter gene activity.

    PubMed

    Carroll, Adam P; Tooney, Paul A; Cairns, Murray J

    2013-06-15

    MicroRNAs (miRNAs) are small noncoding RNA molecules that act as sequence specificity guides to direct post-transcriptional gene silencing. In doing so, miRNAs regulate many critical developmental processes, including cellular proliferation, differentiation, migration, and apoptosis, as well as more specialized biological functions such as dendritic spine development and synaptogenesis. Interactions between miRNAs and their miRNA recognition elements occur via partial complementarity, rendering tremendous redundancy in targeting such that miRNAs are predicted to regulate 60% of the genome, with each miRNA estimated to regulate more than 200 genes. Because these predictions are prone to false positives and false negatives, there is an ever present need to provide material support to these assertions to firmly establish the biological function of specific miRNAs in both normal and pathophysiological contexts. Using schizophrenia-associated miR-181b as an example, we present detailed guidelines and novel insights for the rapid establishment of a streamlined miRNA-reporter gene assay and explore various design concepts for miRNA-reporter gene applications, including bidirectional miRNA modulation. In exemplifying this approach, we report seven novel miR-181b target sites for five schizophrenia candidate genes (DISC1, BDNF, ENKUR, GRIA1, and GRIK1) and dissect a number of vital concepts regarding future developments for miRNA-reporter gene assays and the interpretation of their results. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. The Regulation of a Post-Translational Peptide Acetyltransferase: Strategies for Selectively Modifying the Biological Activity of Neural and Endocrine Peptides

    DTIC Science & Technology

    1991-05-01

    peptidase H is not induced by chronic haloperidol treatment (Fig. 3). That peptide acetyltransferase, but not carboxypeptidase H, is induced by...J.F., Millington, W.R., Schwaber, J.S. and Lewis. M.E. NPY, somatostatin and a-MSH: Combined in situ hybridization, immunohistochemistry and axonal...365-372, 1985. Fricker, L.D. Neuropeptide biosynthesis: focus on the carboxy- peptidase processing enzyme. Trends in Neurosciences 8:210-214, 1985

  14. Epigenetic Regulation of Axonal Growth of Drosophila Pacemaker Cells by Histone Acetyltransferase Tip60 Controls Sleep

    PubMed Central

    Pirooznia, Sheila K.; Chiu, Kellie; Chan, May T.; Zimmerman, John E.; Elefant, Felice

    2012-01-01

    Tip60 is a histone acetyltransferase (HAT) enzyme that epigenetically regulates genes enriched for neuronal functions through interaction with the amyloid precursor protein (APP) intracellular domain. However, whether Tip60-mediated epigenetic dysregulation affects specific neuronal processes in vivo and contributes to neurodegeneration remains unclear. Here, we show that Tip60 HAT activity mediates axonal growth of the Drosophila pacemaker cells, termed “small ventrolateral neurons” (sLNvs), and their production of the neuropeptide pigment-dispersing factor (PDF) that functions to stabilize Drosophila sleep–wake cycles. Using genetic approaches, we show that loss of Tip60 HAT activity in the presence of the Alzheimer’s disease-associated APP affects PDF expression and causes retraction of the sLNv synaptic arbor required for presynaptic release of PDF. Functional consequence of these effects is evidenced by disruption of the sleep–wake cycle in these flies. Notably, overexpression of Tip60 in conjunction with APP rescues these sleep–wake disturbances by inducing overelaboration of the sLNv synaptic terminals and increasing PDF levels, supporting a neuroprotective role for dTip60 in sLNv growth and function under APP-induced neurodegenerative conditions. Our findings reveal a novel mechanism for Tip60 mediated sleep–wake regulation via control of axonal growth and PDF levels within the sLNv-encompassing neural network and provide insight into epigenetic-based regulation of sleep disturbances observed in neurodegenerative diseases like Alzheimer’s disease. PMID:22982579

  15. Structural and Biochemical Characterization of a Bifunctional Ketoisomerase/N-acetyltransferase from Shewanella denitrificans¶

    PubMed Central

    Chantigian, Daniel P.; Thoden, James B.; Holden, Hazel M.

    2014-01-01

    Unusual N-acetylated sugars have been observed on the O-antigens of some Gram-negative bacteria and on the S-layers of both Gram-positive and Gram-negative bacteria. One such sugar is 3-acetamido-3,6-dideoxy-α-d-galactose or Fuc3NAc. The pathway for its production requires five enzymes with the first step involving the attachment of dTMP to glucose-1-phosphate. Here we report a structural and biochemical characterization of a bifunctional enzyme from Shewanella denitificans thought to be involved in the biosynthesis of dTDP-Fuc3NAc. On the basis of a bioinformatics analysis, the enzyme, hereafter referred to as FdtD, has been postulated to catalyze the third and fifth steps in the pathway, namely a 3,4-keto isomerization and an N-acetyltransferase reaction. For the X-ray analysis reported here, the enzyme was crystallized in the presence of dTDP and CoA. The crystal structure shows that FdtD adopts a hexameric quaternary structure with 322 symmetry. Each subunit of the hexamer folds into two distinct domains connected by a flexible loop. The N-terminal domain adopts a left-handed β-helix motif and is responsible for the N-acetylation reaction. The C-terminal domain folds into an antiparallel flattened β-barrel that harbors the active site responsible for the isomerization reaction. Biochemical assays verify the two proposed catalytic activities of the enzyme and reveal that the 3,4-keto isomerization event leads to inversion of configuration about the hexose C-4' carbon. PMID:24128043

  16. Peripheral type of choline acetyltransferase: biological and evolutionary implications for novel mechanisms in cholinergic system.

    PubMed

    Bellier, J-P; Kimura, H

    2011-12-01

    The peripheral type of choline acetyltransferase (pChAT) is an isoform of the well-studied common type of choline acetyltransferase (cChAT), the synthesizing enzyme of acetylcholine. Since pChAT arises by exons skipping, its amino acid sequence is similar to that of cChAT, except the lack of a continuous peptide sequence encoded by all the four exons from 6 to 9. While cChAT expression has been observed in both the central and peripheral nervous systems, pChAT is preferentially expressed in the peripheral nervous system. pChAT appears to be a reliable marker for the visualization of peripheral cholinergic neurons and their processes, whereas other conventional markers including cChAT have not been used successfully for it. In mammals like rodents, pChAT immunoreactivity has been observed in most, if not all, physiologically identified peripheral cholinergic structures such as all parasympathetic postganglionic neurons and most neurons of the enteric nervous system. In addition, pChAT has been found in many peripheral neurons that are derived from the neural crest. These include sensory neurons of the trigeminal ganglion and the dorsal root ganglion, and sympathetic postganglionic neurons. Recent studies moreover indicate that pChAT, as well as cChAT, appears ubiquitously expressed among various species not only of vertebrate mammals but also of invertebrate mollusks. This finding implies that the alternative splicing mechanism to generate pChAT and cChAT has been preserved during evolution, probably for some functional benefits. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Carnitine Acetyltransferase Mitigates Metabolic Inertia and Muscle Fatigue during Exercise.

    PubMed

    Seiler, Sarah E; Koves, Timothy R; Gooding, Jessica R; Wong, Kari E; Stevens, Robert D; Ilkayeva, Olga R; Wittmann, April H; DeBalsi, Karen L; Davies, Michael N; Lindeboom, Lucas; Schrauwen, Patrick; Schrauwen-Hinderling, Vera B; Muoio, Deborah M

    2015-07-07

    Acylcarnitine metabolites have gained attention as biomarkers of nutrient stress, but their physiological relevance and metabolic purpose remain poorly understood. Short-chain carnitine conjugates, including acetylcarnitine, derive from their corresponding acyl-CoA precursors via the action of carnitine acetyltransferase (CrAT), a bidirectional mitochondrial matrix enzyme. We show here that contractile activity reverses acetylcarnitine flux in muscle, from net production and efflux at rest to net uptake and consumption during exercise. Disruption of this switch in mice with muscle-specific CrAT deficiency resulted in acetyl-CoA deficit, perturbed energy charge, and diminished exercise tolerance, whereas acetylcarnitine supplementation produced opposite outcomes in a CrAT-dependent manner. Likewise, in exercise-trained compared to untrained humans, post-exercise phosphocreatine recovery rates were positively associated with CrAT activity and coincided with dramatic shifts in muscle acetylcarnitine dynamics. These findings show acetylcarnitine serves as a critical acetyl buffer for working muscles and provide insight into potential therapeutic strategies for combatting exercise intolerance. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A rice chloroplast transit peptide sequence does not alter the cytoplasmic localization of sheep serotonin N-acetyltransferase expressed in transgenic rice plants.

    PubMed

    Byeon, Yeong; Lee, Hyoung Yool; Lee, Kyungjin; Back, Kyoungwhan

    2014-09-01

    Ectopic overexpression of melatonin biosynthetic genes of animal origin has been used to generate melatonin-rich transgenic plants to examine the functional roles of melatonin in plants. However, the subcellular localization of these proteins expressed in the transgenic plants remains unknown. We studied the localization of sheep (Ovis aries) serotonin N-acetyltransferase (OaSNAT) and a translational fusion of a rice SNAT transit peptide to OaSNAT (TS:OaSNAT) in plants. Laser confocal microscopy analysis revealed that both OaSNAT and TS:OaSNAT proteins were localized to the cytoplasm even with the addition of the transit sequence to OaSNAT. Transgenic rice plants overexpressing the TS:OaSNAT fusion transgene exhibited high SNAT enzyme activity relative to untransformed wild-type plants, but lower activity than transgenic rice plants expressing the wild-type OaSNAT gene. Melatonin levels in both types of transgenic rice plant corresponded well with SNAT enzyme activity levels. The TS:OaSNAT transgenic lines exhibited increased seminal root growth relative to wild-type plants, but less than in the OaSNAT transgenic lines, confirming that melatonin promotes root growth. Seed-specific OaSNAT expression under the control of a rice prolamin promoter did not confer high levels of melatonin production in transgenic rice seeds compared with seeds from transgenic plants expressing OaSNAT under the control of the constitutive maize ubiquitin promoter. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs.

    PubMed

    Maye, Peter; Stover, Mary Louise; Liu, Yaling; Rowe, David W; Gong, Shiaochin; Lichtler, Alexander C

    2009-03-13

    Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP) reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1) subclone genes of interest into BAC linking vectors, (2) insert desired reporter genes into respective genes and (3) link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  20. Structural analysis of PseH, the Campylobacter jejuni N-acetyltransferase involved in bacterial O-linked glycosylation.

    PubMed

    Song, Wan Seok; Nam, Mi Sun; Namgung, Byeol; Yoon, Sung-il

    2015-03-20

    Campylobacter jejuni is a bacterium that uses flagella for motility and causes worldwide acute gastroenteritis in humans. The C. jejuni N-acetyltransferase PseH (cjPseH) is responsible for the third step in flagellin O-linked glycosylation and plays a key role in flagellar formation and motility. cjPseH transfers an acetyl group from an acetyl donor, acetyl coenzyme A (AcCoA), to the amino group of UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine to produce UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. To elucidate the catalytic mechanism of cjPseH, crystal structures of cjPseH alone and in complex with AcCoA were determined at 1.95 Å resolution. cjPseH folds into a single-domain structure of a central β-sheet decorated by four α-helices with two continuously connected grooves. A deep groove (groove-A) accommodates the AcCoA molecule. Interestingly, the acetyl end of AcCoA points toward an open space in a neighboring shallow groove (groove-S), which is occupied by extra electron density that potentially serves as a pseudosubstrate, suggesting that the groove-S may provide a substrate-binding site. Structure-based comparative analysis suggests that cjPseH utilizes a unique catalytic mechanism of acetylation that has not been observed in other glycosylation-associated acetyltransferases. Thus, our studies on cjPseH will provide valuable information for the design of new antibiotics to treat C. jejuni-induced gastroenteritis. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Optical imaging of reporter gene expression using a positron-emission-tomography probe

    NASA Astrophysics Data System (ADS)

    Liu, Hongguang; Ren, Gang; Liu, Shuanglong; Zhang, Xiaofen; Chen, Luxi; Han, Peizhen; Cheng, Zhen

    2010-11-01

    Reporter gene/reporter probe technology is one of the most important techniques in molecular imaging. Lately, many reporter gene/reporter probe systems have been coupled to different imaging modalities such as positron emission tomography (PET) and optical imaging (OI). It has been recently found that OI techniques could be used to monitor radioactive tracers in vitro and in living subjects. In this study, we further demonstrate that a reporter gene/nuclear reporter probe system [herpes simplex virus type-1 thymidine kinase (HSV1-tk) and 9-(4-18F-fluoro-3-[hydroxymethyl] butyl) guanine ([18F]FHBG)] could be successfully imaged by OI in vitro and in vivo. OI with radioactive reporter probes will facilitate and broaden the applications of reporter gene/reporter probe techniques in medical research.

  2. Altered xanthine oxidase and N-acetyltransferase activity in obese children.

    PubMed

    Chiney, Manoj S; Schwarzenberg, Sarah J; Johnson, L'aurelle A

    2011-07-01

    It is well established that oxidative and conjugative enzyme activity differs between obese and healthy-weight adults. However, the effect of obesity on drug metabolism in children has not been studied extensively. This study examined whether obese and healthy-weight children vary with respect to oxidative enzyme activity of CYP1A2, xanthine oxidase (XO) and conjugative enzyme activity of N-acetyltransferase 2 (NAT2). In vivo CYP1A2, XO and NAT2 activity was assessed in obese (n= 9) and lean (n= 16) children between the ages of 6-10 years using caffeine (118.3 ml Coca Cola®) as probe. Urine samples were collected in 2-h increments over 8 h. Caffeine and metabolites were measured using LC/MS, and urinary metabolic ratios were determined based on reported methods. Sixteen healthy-weight and nine obese children were evaluated. XO activity was elevated in paediatric obese volunteers compared with non-obese paediatric volunteers (XO metabolic ratio of 0.7 ± 0.06 vs. 0.6 ± 0.06, respectively, 95% CI 0.046, 0.154, P < 0.001). NAT2 activity was fivefold higher in the obese (1 ± 0.4) as compared with non-obese children (0.2 ± 0.1), 95% CI 0.26, 1.34, P < 0.05. However, no difference was observed in CYP1A2 activity between the groups (95% CI -2.72, 0.12, P > 0.05). This study provides evidence that obese children have elevated XO and NAT2 enzyme activity when compared with healthy-weight controls. Further studies are needed to determine how this may impact the efficacy of therapeutic agents that may undergo metabolism by these enzymes. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.

  3. Heart-specific overexpression of choline acetyltransferase gene protects murine heart against ischemia through hypoxia-inducible factor-1α-related defense mechanisms.

    PubMed

    Kakinuma, Yoshihiko; Tsuda, Masayuki; Okazaki, Kayo; Akiyama, Tsuyoshi; Arikawa, Mikihiko; Noguchi, Tatsuya; Sato, Takayuki

    2013-01-18

    Murine and human ventricular cardiomyocytes rich in acetylcholine (Ach) receptors are poorly innervated by the vagus, compared with whole ventricular innervation by the adrenergic nerve. However, vagal nerve stimulation produces a favorable outcome even in the murine heart, despite relatively low ventricular cholinergic nerve density. Such a mismatch and missing link suggest the existence of a nonneuronal cholinergic system in ventricular myocardium. To examine the role of the nonneuronal cardiac cholinergic system, we generated choline acetyltransferase (ChAT)-expressing cells and heart-specific ChAT transgenic (ChAT-tg) mice. Compared with cardiomyocytes of wild-type (WT) mice, those of the ChAT-tg mice had high levels of ACh and hypoxia-inducible factor (HIF)-1α protein and augmented glucose uptake. These phenotypes were also reproduced by ChAT-overexpressing cells, which utilized oxygen less. Before myocardial infarction (MI), the WT and ChAT-tg mice showed similar hemodynamics; after MI, however, the ChAT-tg mice had better survival than did the WT mice. In the ChAT-tg hearts, accelerated angiogenesis at the ischemic area, and accentuated glucose utilization prevented post-MI remodeling. The ChAT-tg heart was more resistant to ischemia-reperfusion injury than was the WT heart. These results suggest that the activated cardiac ACh-HIF-1α cascade improves survival after MI. We conclude that de novo synthesis of ACh in cardiomyocytes is a pivotal mechanism for self-defense against ischemia.

  4. Regulated expression of the human cytomegalovirus pp65 gene: Octamer sequence in the promoter is required for activation by viral gene products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Depto, A.S.; Stenberg, R.M.

    1989-03-01

    To better understand the regulation of late gene expression in human cytomegalovirus (CMV)-infected cells, the authors examined expression of the gene that codes for the 65-kilodalton lower-matrix phosphoprotein (pp65). Analysis of RNA isolated at 72 h from cells infected with CMV Towne or ts66, a DNA-negative temperature-sensitive mutant, supported the fact that pp65 is expressed at low levels prior to viral DNA replication but maximally expressed after the initiation of viral DNA replication. To investigate promoter activation in a transient expression assay, the pp65 promoter was cloned into the indicator plasmid containing the gene for chloramphenicol acetyltransferase (CAT). Transfection ofmore » the promoter-CAT construct and subsequent superinfection with CMV resulted in activation of the promoter at early times after infection. Cotransfection with plasmids capable of expressing immediate-early (IE) proteins demonstrated that the promoter was activated by IE proteins and that both IE regions 1 and 2 were necessary. These studies suggest that interactions between IE proteins and this octamer sequence may be important for the regulation and expression of this CMV gene.« less

  5. O-acetyltransferase gene neuO is segregated according to phylogenetic background and contributes to environmental desiccation resistance in Escherichia coli K1.

    PubMed

    Mordhorst, Ines L; Claus, Heike; Ewers, Christa; Lappann, Martin; Schoen, Christoph; Elias, Johannes; Batzilla, Julia; Dobrindt, Ulrich; Wieler, Lothar H; Bergfeld, Anne K; Mühlenhoff, Martina; Vogel, Ulrich

    2009-12-01

    Escherichia coli K1 causes disease in humans and birds. Its polysialic acid capsule can be O-acetylated via phase-variable expression of the acetyltransferase NeuO encoded by prophage CUS-3. The role of capsule O-acetylation in ecological adaptation or pathogenic invasion of E. coli K1 is largely unclear. A population genetics approach was performed to study the distribution of neuO among E. coli K1 isolates from human and avian sources. Multilocus sequence typing revealed 39 different sequence types (STs) among 183 E. coli K1 strains. The proportion of the ST95 complex (STC95) was 44%. NeuO was found in 98% of the STC95 strains, but only in 24% of other STs. Grouping of STs and prophage genotypes revealed a segregation of prophage types according to STs, suggesting coevolution of CUS-3 and the E. coli K1 host. Within the STC95, which is known to harbour both human and avian pathogenic isolates, CUS-3 genotypes were shared irrespective of the host species. Functional analysis of a variety of strain pairs revealed that NeuO-mediated K1 capsule O-acetylation enhanced desiccation resistance. In contrast, NeuO expression led to a reduced biofilm formation in biofilm positive E. coli K1 isolates. These findings suggest a delicate ecological balance of neuO'on'/'off' switching.

  6. Polymorphisms in NAT2 (N-acetyltransferase 2) gene in patients with systemic lupus erythematosus.

    PubMed

    Santos, Elaine Cristina Lima Dos; Pinto, Amanda Chaves; Klumb, Evandro Mendes; Macedo, Jacyara Maria Brito

    To investigate potential associations of four substitutions in NAT2 gene and of acetylator phenotype of NAT2 with systemic lupus erythematosus (SLE) and clinical phenotypes. Molecular analysis of 481C>T, 590G>A, 857G>A, and 191G>A substitutions in the NAT2 gene was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique, from DNA extracted from peripheral blood samples obtained from patients with SLE (n=91) and controls (n=97). The 857GA genotype was more prevalent among nonwhite SLE patients (OR=4.01, 95% CI=1.18-13.59). The 481T allele showed a positive association with hematological disorders that involve autoimmune mechanisms, specifically autoimmune hemolytic anemia or autoimmune thrombocytopenia (OR=1.97; 95% CI=1.01-3.81). Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  7. Development of Plant Gene Vectors for Tissue-Specific Expression Using GFP as a Reporter Gene

    NASA Technical Reports Server (NTRS)

    Jackson, Jacquelyn; Egnin, Marceline; Xue, Qi-Han; Prakash, C. S.

    1997-01-01

    Reporter genes are widely employed in plant molecular biology research to analyze gene expression and to identify promoters. Gus (UidA) is currently the most popular reporter gene but its detection requires a destructive assay. The use of jellyfish green fluorescent protein (GFP) gene from Aequorea Victoria holds promise for noninvasive detection of in vivo gene expression. To study how various plant promoters are expressed in sweet potato (Ipomoea batatas), we are transcriptionally fusing the intron-modified (mGFP) or synthetic (modified for codon-usage) GFP coding regions to these promoters: double cauliflower mosaic virus 35S (CaMV 35S) with AMV translational enhancer, ubiquitin7-intron-ubiquitin coding region (ubi7-intron-UQ) and sporaminA. A few of these vectors have been constructed and introduced into E. coli DH5a and Agrobacterium tumefaciens EHA105. Transient expression studies are underway using protoplast-electroporation and particle bombardment of leaf tissues.

  8. Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated caucasian individuals: Correlation with phenotypic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cascorbi, I.; Drakoulis, N.; Brockmoeller, J.

    1995-09-01

    The polymorphic arylamine N-acetyltransferase (NAT2; EC2.3.1.5) is supposed to be a susceptibility factor for several drug side effects and certain malignancies. A group of 844 unrelated German subjects was genotyped for their acetylation type, and 563 of them were also phenotyped. Seven mutations of the NAT2 gene were evaluated by allele-specific PCR (mutation 341C to T) and PCR-RFLP for mutations at nt positions 191, 282, 481, 590, 803, and 857. From the mutation pattern eight different alleles, including the wild type coding for rapid acetylation and seven alleles coding for slow phenotype, were determined. Four hundred ninety-seven subjects had amore » genotype of slow acetylation (58.9%; 95% confidence limits 55.5%-62.2%). Phenotypic acetylation capacity was expressed as the ratio of 5-acetylamino-6-formylamino-3-methyluracil and 1-methylxanthine in urine after caffeine intake. Some 6.7% of the cases deviated in genotype and phenotype, but sequencing DNA of these probands revealed no new mutations. Furthermore, linkage pattern of the mutations was always confirmed, as tested in 533 subjects. In vivo acetylation capacity of homozygous wild-type subjects (NAT2{sup *}4/{sup *}4) was significantly higher than in heterozygous genotypes (P = .001). All mutant alleles showed low in vivo acetylation capacities, including the previously not-yet-defined alleles {sup *}5A, {sup *}5C, and {sup *}13. Moreover, distinct slow genotypes differed significantly among each other, as reflected in lower acetylation capacity of {sup *}6A, {sup *}7B, and {sup *}13 alleles than the group of {sup *}5 alleles. The study demonstrated differential phenotypic activity of various NAT2 genes and gives a solid basis for clinical and molecular-epidemiological investigations. 34 refs., 4 figs., 7 tabs.« less

  9. N-acetyltransferase 1*10 genotype in bladder cancer patients.

    PubMed

    Höhne, Svetlana; Gerullis, Holger; Blaszkewicz, Meinolf; Selinski, Silvia; Hengstler, Jan G; Otto, Thomas; Golka, Klaus

    2017-01-01

    In a large bladder cancer study in the greater Berlin area with 425 cases and 343 controls, the haplotype N-acetyltransferase 1*10 (NAT1*10) was associated with a decreased bladder cancer risk. In a recently published meta-analysis, results of the studies were found to be inconclusive. Therefore, the aim of this study was to investigate the frequency of NAT1*10 in bladder cancer patients and controls recruited in an area without industries reported to be associated with increased bladder cancer risk. Rs1057126 (1088 T > A) and rs15561 (1095 C > A) were determined in 412 bladder cancer patients and 415 controls without a known history of malignancies. With these two single-nucleotide polymorphisms (SNP), it was possible to distinguish between NAT1*4 (wild type), NAT1*3 (1095 C > A), and NAT1*10 (1088 T > A, 1095C > A). The frequencies of the determined NAT1 haplotypes did not differ markedly between cases and controls: NAT1*4: 74%, NAT1*3: 6%, NAT1*10: 20%. Bladder cancer risk was not significantly modulated by NAT1*10/*10 (OR 1.03, 95% CI 0.71-1.48) but was higher for NAT1*3/*3 genotypes (OR 2.05, 95% CI 1.32-3.21). In contrast to the Berlin study from 2001, data in present study demonstrated that NAT1*10 haplotype was not associated with a significantly decreased bladder cancer risk. This may be due to local effects in the greater Berlin area, particularly at the time of investigation. The findings of the present study are in agreement with observations of a recently published meta-analysis which also showed no relevant impact of NAT1*10 haplotype on bladder cancer risk. The impact of the rare NAT1*3/*3 genotype was significant but this may be attributed to rarity without major practical relevance.

  10. Visualization of ecdysteroid activity using a reporter gene in the crustacean, Daphnia.

    PubMed

    Asada, Miki; Kato, Yasuhiko; Matsuura, Tomoaki; Watanabe, Hajime

    2014-02-01

    Ecdysone is a hormone known to play a pivotal role in crustaceans and insects. In order to evaluate the ecdysone activities in the environment and within the organism, we have developed a biomonitoring Daphnia strain by introducing a reporter gene. In this study, the ecdysone response element was inserted in the upstream region of a reporter gene, and the DNA construct was injected into Daphnia eggs. The expression of the reporter gene was detected during the early embryonic development stage. In addition, when the eggs expressing the reporter gene were exposed to ecdysone, there was enhanced expression of the reporter gene at detectable levels, while the presence of an antagonist led to its downregulation. These results suggested that this system could be potentially developed for monitoring ecdysone activities in media. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Epidemiology and gene markers of ulcerative colitis in the Chinese

    PubMed Central

    Yun, Jun; Xu, Chang-Tai; Pan, Bo-Rong

    2009-01-01

    Inflammatory bowel disease (IBD) includes two similar yet distinct conditions called ulcerative colitis (UC) and Crohn's disease (CD). These diseases affect the digestive system and cause the inflammation of intestinal tissue, form sores and bleed easily. Most children with IBD are diagnosed in late childhood and adolescence. However, both UC and CD have been reported as early as in infancy. Most information pertaining to the epidemiology of IBD is based upon adult studies. Symptoms include abdominal pain, cramping, fatigue and diarrhea. Genetic factors play a significant role in determining IBD susceptibility. Epidemiological data support a genetic contribution to the pathogenesis of IBD. Recently, numerous new genes have been identified as being involved in the genetic susceptibility to IBD: TNF-308A, CARD15 (NOD2), MIF-173, N-acetyltransferase 2 (NAT2), NKG2D (natural killer cell 2D), STAT6 (signal transducer and activator of transcription 6), CTLA-4 (cytotoxic T lymphocyte antigen-4), MICA-MICB (major histocompatibility complex A and B), HLA-DRB1, HLA class-II, IL-18, IL-4, MICA-A5, CD14, TLR4, Fas-670, p53 and NF-κB. The characterization of these novel genes has the potential to identify therapeutic agents and aid clinical assessment of phenotype and prognosis in patients with IBD (UC and CD). PMID:19230040

  12. rs1495741 as a tag single nucleotide polymorphism of N-acetyltransferase 2 acetylator phenotype associates bladder cancer risk and interacts with smoking: A systematic review and meta-analysis.

    PubMed

    Ma, Chong; Gu, Liyan; Yang, Mingyuan; Zhang, Zhensheng; Zeng, Shuxiong; Song, Ruixiang; Xu, Chuanliang; Sun, Yinghao

    2016-08-01

    Rs1495741 has been identified to infer N-acetyltransferase 2 (NAT2) acetylator phenotype, and to decrease the risk of bladder cancer. However, a number of studies conducted in various regions showed controversial results. To quantify the association between rs1495741 and the risk of bladder cancer and to estimate the interaction effect of this genetic variant with smoking, we performed a systematic literature review and meta-analysis involving 14,815 cases and 58,282 controls from 29 studies. Our results indicates rs1495741 significantly associated with bladder cancer risk (OR = 0.85, 95% CI = 0.82-0.89, test for heterogeneity P = 0.36, I = 7.0%). And we verified this association in populations from Europe, America, and Asia. Further, our stratified meta-analysis showed rs1495741's role is typically evident only in ever smokers, which suggests its interaction with smoking. This study may provide new insight into gene-environment study on bladder cancer.

  13. A sequence in the rat Pit-1 gene promoter confers synergistic activation by glucocorticoids and protein kinase-C.

    PubMed

    Jong, M T; Raaka, B M; Samuels, H H

    1994-10-01

    The 5'-flanking region of the gene for Pit-1, a pituitary-specific transcription factor, was isolated from a rat liver genomic library and sequenced. Expression of a reporter construct containing Pit-1 promoter sequences linked to the bacterial chloramphenicol acetyltransferase (CAT) gene was assessed by transient transfection in rat pituitary GH4C1 cells. Treatment of transfected cells with either dexamethasone (DEX) for 48 h or the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) for the final 20 h of the 48-h posttransfection period had minimal effects on CAT expression. However, CAT activity was elevated about 20-fold when transfected cells were treated with both DEX and TPA. This apparent synergistic activation was lost when DEX treatment was also limited to the final 20 h of the 48-h posttransfection period, suggesting that a time-dependent accumulation of a DEX-induced gene product might be involved. This putative DEX-induced product appeared to be relatively stable, because synergistic activation was observed in cells treated with DEX alone for 36 h, followed by a 10-h incubation without DEX before the addition of TPA. The Pit-1 gene promoter region between -210 and -142 from the transcription start site conferred synergistic regulation by DEX and TPA when placed upstream of position -105 in the herpes viral thymidine kinase promoter.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Upregulation of human heme oxygenase gene expression by Ets-family proteins.

    PubMed

    Deramaudt, B M; Remy, P; Abraham, N G

    1999-03-01

    Overexpression of human heme oxygenase-1 has been shown to have the potential to promote EC proliferation and angiogenesis. Since Ets-family proteins have been shown to play an important role in angiogenesis, we investigated the presence of ETS binding sites (EBS), GGAA/T, and ETS protein contributing to human HO-1 gene expression. Several chloramphenicol acetyltransferase constructs were examined in order to analyze the effect of ETS family proteins on the transduction of HO-1 in Xenopus oocytes and in microvessel endothelial cells. Heme oxygenase promoter activity was up-regulated by FLI-1ERGETS-1 protein(s). Chloramphenicol acetyltransferase (CAT) assays demonstrated that the promoter region (-1500 to +19) contains positive and negative control elements and that all three members of the ETS protein family were responsible for the up-regulation of HHO-1. Electrophoretic mobility shift assays (EMSA), performed with nuclear extracts from endothelial cells overexpressing HHO-1 gene, and specific HHO-1 oligonucleotides probes containing putative EBS resulted in a specific and marked bandshift. Synergistic binding was observed in EMSA between AP-1 on the one hand, FLI-1, ERG, and ETS-1 protein on the other. Moreover, 5'-deletion analysis demonstrated the existence of a negative control element of HHO-1 expression located between positions -1500 and -120 on the HHO-1 promoter. The presence of regulatory sequences for transcription factors such as ETS-1, FLI-1, or ERG, whose activity is associated with cell proliferation, endothelial cell differentiation, and matrix metalloproteinase transduction, may be an indication of the important role that HO-1 may play in coronary collateral circulation, tumor growth, angiogenesis, and hemoglobin-induced endothelial cell injuries.

  15. Obesity and lipid stress inhibit carnitine acetyltransferase activity[S

    PubMed Central

    Seiler, Sarah E.; Martin, Ola J.; Noland, Robert C.; Slentz, Dorothy H.; DeBalsi, Karen L.; Ilkayeva, Olga R.; An, Jie; Newgard, Christopher B.; Koves, Timothy R.; Muoio, Deborah M.

    2014-01-01

    Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes. PMID:24395925

  16. Watch out for reporter gene assays with Renilla luciferase and paclitaxel.

    PubMed

    Theile, Dirk; Spalwisz, Adriana; Weiss, Johanna

    2013-06-15

    Luminescence-based reporter gene assays are widely used in biochemistry. Signals from reporter genes (e.g., firefly luminescence) are usually normalized to signals from constantly luminescing luciferases such as Renilla luciferase. This normalization step can be performed by modern luminometry devices automatically providing final results. Here we demonstrate paclitaxel to strikingly enhance Renilla luminescence, thereby potentially flawing results from reporter gene assays. In consequence, these data advocate for careful examination of raw data and militate against automatic data processing. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Molecular identification and functional characterization of the first Nα-acetyltransferase in plastids by global acetylome profiling.

    PubMed

    Dinh, Trinh V; Bienvenut, Willy V; Linster, Eric; Feldman-Salit, Anna; Jung, Vincent A; Meinnel, Thierry; Hell, Rüdiger; Giglione, Carmela; Wirtz, Markus

    2015-07-01

    Protein N(α) -terminal acetylation represents one of the most abundant protein modifications of higher eukaryotes. In humans, six N(α) -acetyltransferases (Nats) are responsible for the acetylation of approximately 80% of the cytosolic proteins. N-terminal protein acetylation has not been evidenced in organelles of metazoans, but in higher plants is a widespread modification not only in the cytosol but also in the chloroplast. In this study, we identify and characterize the first organellar-localized Nat in eukaryotes. A primary sequence-based search in Arabidopsis thaliana revealed seven putatively plastid-localized Nats of which AT2G39000 (AtNAA70) showed the highest conservation of the acetyl-CoA binding pocket. The chloroplastic localization of AtNAA70 was demonstrated by transient expression of AtNAA70:YFP in Arabidopsis mesophyll protoplasts. Homology modeling uncovered a significant conservation of tertiary structural elements between human HsNAA50 and AtNAA70. The in vivo acetylation activity of AtNAA70 was demonstrated on a number of distinct protein N(α) -termini with a newly established global acetylome profiling test after expression of AtNAA70 in E. coli. AtNAA70 predominately acetylated proteins starting with M, A, S and T, providing an explanation for most protein N-termini acetylation events found in chloroplasts. Like HsNAA50, AtNAA70 displays N(ε) -acetyltransferase activity on three internal lysine residues. All MS data have been deposited in the ProteomeXchange with identifier PXD001947 (http://proteomecentral.proteomexchange.org/dataset/PXD001947). © 2015 The Authors. PROTEOMICS Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females

    PubMed Central

    Popp, Bernt; Støve, Svein I; Endele, Sabine; Myklebust, Line M; Hoyer, Juliane; Sticht, Heinrich; Azzarello-Burri, Silvia; Rauch, Anita; Arnesen, Thomas; Reis, André

    2015-01-01

    Recent studies revealed the power of whole-exome sequencing to identify mutations in sporadic cases with non-syndromic intellectual disability. We now identified de novo missense variants in NAA10 in two unrelated individuals, a boy and a girl, with severe global developmental delay but without any major dysmorphism by trio whole-exome sequencing. Both de novo variants were predicted to be deleterious, and we excluded other variants in this gene. This X-linked gene encodes N-alpha-acetyltransferase 10, the catalytic subunit of the NatA complex involved in multiple cellular processes. A single hypomorphic missense variant p.(Ser37Pro) was previously associated with Ogden syndrome in eight affected males from two different families. This rare disorder is characterized by a highly recognizable phenotype, global developmental delay and results in death during infancy. In an attempt to explain the discrepant phenotype, we used in vitro N-terminal acetylation assays which suggested that the severity of the phenotype correlates with the remaining catalytic activity. The variant in the Ogden syndrome patients exhibited a lower activity than the one seen in the boy with intellectual disability, while the variant in the girl was the most severe exhibiting only residual activity in the acetylation assays used. We propose that N-terminal acetyltransferase deficiency is clinically heterogeneous with the overall catalytic activity determining the phenotypic severity. PMID:25099252

  19. Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wenjing; Biswas, Tapan; Porter, Vanessa R.

    2011-09-06

    The emergence of multidrug-resistant and extensively drug-resistant (XDR) tuberculosis (TB) is a serious global threat. Aminoglycoside antibiotics are used as a last resort to treat XDR-TB. Resistance to the aminoglycoside kanamycin is a hallmark of XDR-TB. Here, we reveal the function and structure of the mycobacterial protein Eis responsible for resistance to kanamycin in a significant fraction of kanamycin-resistant Mycobacterium tuberculosis clinical isolates. We demonstrate that Eis has an unprecedented ability to acetylate multiple amines of many aminoglycosides. Structural and mutagenesis studies of Eis indicate that its acetylation mechanism is enabled by a complex tripartite fold that includes two generalmore » control non-derepressible 5 (GCN5)-related N-acetyltransferase regions. An intricate negatively charged substrate-binding pocket of Eis is a potential target of new antitubercular drugs expected to overcome aminoglycoside resistance.« less

  20. Catalytic properties and heat stabilities of novel recombinant human N-acetyltransferase 2 allozymes support existence of genetic heterogeneity within the slow acetylator phenotype.

    PubMed

    Hein, David W; Doll, Mark A

    2017-08-01

    Human N-acetyltransferase 2 (NAT2) catalyzes the N-acetylation of numerous aromatic amine drugs such as sulfamethazine (SMZ) and hydrazine drugs such as isoniazid (INH). NAT2 also catalyzes the N-acetylation of aromatic amine carcinogens such as 2-aminofluorene and the O- and N,O-acetylation of aromatic amine and heterocyclic amine metabolites. Genetic polymorphism in NAT2 modifies drug efficacy and toxicity as well as cancer risk. Acetyltransferase catalytic activities and heat stability associated with six novel NAT2 haplotypes (NAT2*6C, NAT2*14C, NAT2*14D, NAT2*14E, NAT2*17, and NAT2*18) were compared with that of the reference NAT2*4 haplotype following recombinant expression in Escherichia coli. N-acetyltransferase activities towards SMZ and INH were significantly (p < 0.0001) lower when catalyzed by the novel recombinant human NAT2 allozymes compared to NAT2 4. SMZ and INH N-acetyltransferase activities catalyzed by NAT2 14C and NAT2 14D were significantly lower (p < 0.001) than catalyzed by NAT2 6C and NAT2 14E. N-Acetylation catalyzed by recombinant human NAT2 17 was over several hundred-fold lower than by recombinant NAT2 4 precluding measurement of its kinetic or heat inactivation constants. Similar results were observed for the O-acetylation of N-hydroxy-2-aminofluorene and N-hydroxy-2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine and the intramolecular N,O-acetylation of N-hydroxy-N-acetyl-2-aminofluorene. The apparent V max of the novel recombinant NAT2 allozymes NAT2 6C, NAT2 14C, NAT2 14D, and NAT2 14E towards AF, 4-aminobiphenyl (ABP), and 3,2'-dimethyl-4-aminobiphenyl (DMABP) were each significantly (p < 0.001) lower while their apparent K m values did not differ significantly (p > 0.05) from recombinant NAT2 4. The apparent V max catalyzed by NAT2 14C and NAT2 14D were significantly lower (p < 0.05) than the apparent V max catalyzed by NAT2 6C and NAT2 14E towards AF, ABP, and DMABP. Heat inactivation rate constants for recombinant

  1. Alpha-fetoprotein-targeted reporter gene expression imaging in hepatocellular carcinoma.

    PubMed

    Kim, Kwang Il; Chung, Hye Kyung; Park, Ju Hui; Lee, Yong Jin; Kang, Joo Hyun

    2016-07-21

    Hepatocellular carcinoma (HCC) is one of the most common cancers in Eastern Asia, and its incidence is increasing globally. Numerous experimental models have been developed to better our understanding of the pathogenic mechanism of HCC and to evaluate novel therapeutic approaches. Molecular imaging is a convenient and up-to-date biomedical tool that enables the visualization, characterization and quantification of biologic processes in a living subject. Molecular imaging based on reporter gene expression, in particular, can elucidate tumor-specific events or processes by acquiring images of a reporter gene's expression driven by tumor-specific enhancers/promoters. In this review, we discuss the advantages and disadvantages of various experimental HCC mouse models and we present in vivo images of tumor-specific reporter gene expression driven by an alpha-fetoprotein (AFP) enhancer/promoter system in a mouse model of HCC. The current mouse models of HCC development are established by xenograft, carcinogen induction and genetic engineering, representing the spectrum of tumor-inducing factors and tumor locations. The imaging analysis approach of reporter genes driven by AFP enhancer/promoter is presented for these different HCC mouse models. Such molecular imaging can provide longitudinal information about carcinogenesis and tumor progression. We expect that clinical application of AFP-targeted reporter gene expression imaging systems will be useful for the detection of AFP-expressing HCC tumors and screening of increased/decreased AFP levels due to disease or drug treatment.

  2. Muscle-specific Deletion of Carnitine Acetyltransferase Compromises Glucose Tolerance and Metabolic Flexibility

    PubMed Central

    Muoio, Deborah M.; Noland, Robert C.; Kovalik, Jean-Paul; Seiler, Sarah E.; Davies, Michael N.; DeBalsi, Karen L.; Ilkayeva, Olga R.; Stevens, Robert D.; Kheterpal, Indu; Zhang, Jingying; Covington, Jeffrey D.; Bajpeyi, Sudip; Ravussin, Eric; Kraus, William; Koves, Timothy R.; Mynatt, Randall L.

    2012-01-01

    Summary The concept of “metabolic inflexibility” was first introduced to describe the failure of insulin resistant human subjects to appropriately adjust mitochondrial fuel selection in response to nutritional cues. This phenomenon has since gained increasing recognition as a core component of the metabolic syndrome, but the underlying mechanisms have remained elusive. Here, we identify an essential role for the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT), in regulating substrate switching and glucose tolerance. By converting acetyl-CoA to its membrane permeant acetylcarnitine ester, CrAT regulates mitochondrial and intracellular carbon trafficking. Studies in muscle-specific Crat knockout mice, primary human skeletal myocytes and human subjects undergoing L-carnitine supplementation support a model wherein CrAT combats nutrient stress, promotes metabolic flexibility and enhances insulin action by permitting mitochondrial efflux of excess acetyl moieties that otherwise inhibit key regulatory enzymes such as pyruvate dehydrogenase. These findings offer therapeutically relevant insights into the molecular basis of metabolic inflexibility. PMID:22560225

  3. Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility.

    PubMed

    Muoio, Deborah M; Noland, Robert C; Kovalik, Jean-Paul; Seiler, Sarah E; Davies, Michael N; DeBalsi, Karen L; Ilkayeva, Olga R; Stevens, Robert D; Kheterpal, Indu; Zhang, Jingying; Covington, Jeffrey D; Bajpeyi, Sudip; Ravussin, Eric; Kraus, William; Koves, Timothy R; Mynatt, Randall L

    2012-05-02

    The concept of "metabolic inflexibility" was first introduced to describe the failure of insulin-resistant human subjects to appropriately adjust mitochondrial fuel selection in response to nutritional cues. This phenomenon has since gained increasing recognition as a core component of the metabolic syndrome, but the underlying mechanisms have remained elusive. Here, we identify an essential role for the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT), in regulating substrate switching and glucose tolerance. By converting acetyl-CoA to its membrane permeant acetylcarnitine ester, CrAT regulates mitochondrial and intracellular carbon trafficking. Studies in muscle-specific Crat knockout mice, primary human skeletal myocytes, and human subjects undergoing L-carnitine supplementation support a model wherein CrAT combats nutrient stress, promotes metabolic flexibility, and enhances insulin action by permitting mitochondrial efflux of excess acetyl moieties that otherwise inhibit key regulatory enzymes such as pyruvate dehydrogenase. These findings offer therapeutically relevant insights into the molecular basis of metabolic inflexibility. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Mapping the local protein interactome of the NuA3 histone acetyltransferase

    PubMed Central

    Smart, Sherri K; Mackintosh, Samuel G; Edmondson, Ricky D; Taverna, Sean D; Tackett, Alan J

    2009-01-01

    Protein–protein interactions modulate cellular functions ranging from the activity of enzymes to signal transduction cascades. A technology termed transient isotopic differentiation of interactions as random or targeted (transient I-DIRT) is described for the identification of stable and transient protein–protein interactions in vivo. The procedure combines mild in vivo chemical cross-linking and non-stringent affinity purification to isolate low abundance chromatin-associated protein complexes. Using isotopic labeling and mass spectrometric readout, purified proteins are categorized with respect to the protein ‘bait’ as stable, transient, or contaminant. Here we characterize the local interactome of the chromatin-associated NuA3 histone lysine-acetyltransferase protein complex. We describe transient associations with the yFACT nucleosome assembly complex, RSC chromatin remodeling complex and a nucleosome assembly protein. These novel, physical associations with yFACT, RSC, and Nap1 provide insight into the mechanism of NuA3-associated transcription and chromatin regulation. PMID:19621382

  5. The Histone Acetyltransferase MOF Promotes Induces Generation of Pluripotent Stem Cells.

    PubMed

    Mu, Xupeng; Yan, Shaohua; Fu, Changhao; Wei, Anhui

    2015-08-01

    Histone modification plays an important role in maintaining pluripotency and self-renewal of embryonic stem cells (ESCs). The histone acetyltransferase MOF is a key regulator of ESCs; however, the role of MOF in the process of reprogramming back to induced pluripotent stem cells (iPSCs) remains unclear. In this study, we investigated the function of MOF on the generation of iPSCs. We show that iPSCs contain high levels of MOF mRNA, and the expression level of MOF protein is dramatically upregulated following reprogramming. Most importantly, overexpression of MOF improves reprogramming efficiency and facilitates the formation of iPSCs, whereas small hairpin RNA (shRNA)-mediated knockdown of MOF impairs iPSCs generation during reprogramming. Further investigation reveals that MOF interacts with the H3K4 methyltransferase Wdr5 to promote endogenous Oct4 expression during the reprogramming process. Knockdown of MOF reduces H4K16ac and H3K4me3 modification at the Oct4 promoter. In conclusion, our data indicate that MOF is an important epigenetic regulator that is critical for efficient reprogramming.

  6. Heart‐Specific Overexpression of Choline Acetyltransferase Gene Protects Murine Heart Against Ischemia Through Hypoxia‐Inducible Factor‐1α–Related Defense Mechanisms

    PubMed Central

    Kakinuma, Yoshihiko; Tsuda, Masayuki; Okazaki, Kayo; Akiyama, Tsuyoshi; Arikawa, Mikihiko; Noguchi, Tatsuya; Sato, Takayuki

    2013-01-01

    Background Murine and human ventricular cardiomyocytes rich in acetylcholine (Ach) receptors are poorly innervated by the vagus, compared with whole ventricular innervation by the adrenergic nerve. However, vagal nerve stimulation produces a favorable outcome even in the murine heart, despite relatively low ventricular cholinergic nerve density. Such a mismatch and missing link suggest the existence of a nonneuronal cholinergic system in ventricular myocardium. Methods and Results To examine the role of the nonneuronal cardiac cholinergic system, we generated choline acetyltransferase (ChAT)–expressing cells and heart‐specific ChAT transgenic (ChAT‐tg) mice. Compared with cardiomyocytes of wild‐type (WT) mice, those of the ChAT‐tg mice had high levels of ACh and hypoxia‐inducible factor (HIF)‐1α protein and augmented glucose uptake. These phenotypes were also reproduced by ChAT‐overexpressing cells, which utilized oxygen less. Before myocardial infarction (MI), the WT and ChAT‐tg mice showed similar hemodynamics; after MI, however, the ChAT‐tg mice had better survival than did the WT mice. In the ChAT‐tg hearts, accelerated angiogenesis at the ischemic area, and accentuated glucose utilization prevented post‐MI remodeling. The ChAT‐tg heart was more resistant to ischemia–reperfusion injury than was the WT heart. Conclusions These results suggest that the activated cardiac ACh‐HIF‐1α cascade improves survival after MI. We conclude that de novo synthesis of ACh in cardiomyocytes is a pivotal mechanism for self‐defense against ischemia. PMID:23525439

  7. Non-invasive imaging using reporter genes altering cellular water permeability

    NASA Astrophysics Data System (ADS)

    Mukherjee, Arnab; Wu, Di; Davis, Hunter C.; Shapiro, Mikhail G.

    2016-12-01

    Non-invasive imaging of gene expression in live, optically opaque animals is important for multiple applications, including monitoring of genetic circuits and tracking of cell-based therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high spatiotemporal resolution. However, existing MRI reporter genes based on metalloproteins or chemical exchange probes are limited by their reliance on metals or relatively low sensitivity. Here we introduce a new class of MRI reporters based on the human water channel aquaporin 1. We show that aquaporin overexpression produces contrast in diffusion-weighted MRI by increasing tissue water diffusivity without affecting viability. Low aquaporin levels or mixed populations comprising as few as 10% aquaporin-expressing cells are sufficient to produce MRI contrast. We characterize this new contrast mechanism through experiments and simulations, and demonstrate its utility in vivo by imaging gene expression in tumours. Our results establish an alternative class of sensitive, metal-free reporter genes for non-invasive imaging.

  8. Activation of p300 histone acetyltransferase activity and acetylation of the androgen receptor by bombesin in prostate cancer cells.

    PubMed

    Gong, J; Zhu, J; Goodman, O B; Pestell, R G; Schlegel, P N; Nanus, D M; Shen, R

    2006-03-30

    Androgen receptor signaling in prostate cancer cells is augmented by the androgen receptor (AR) coactivator p300, which transactivates and acetylates the AR in the presence of dihydrotestosterone (DHT). As prostate cancer (PC) cells progress to androgen independence, AR signaling remains intact, indicating that other factors stimulate AR activities in the absence of androgen. We previously reported that neuropeptide growth factors could transactivate the AR in the presence of very low concentrations of DHT. Here, we examine the involvement of p300 in neuropeptide activation of AR signaling. Transfection of increasing concentrations of p300 in the presence of bombesin into PC-3 cells resulted in a linear increase in AR transactivation, suggesting that p300 acts as a coactivator in neuropeptide-mediated AR transactivation. P300 is endowed with histone acetyltransferase (HAT) activity. Therefore, we examine the effect of bombesin on p300 HAT activity. At 4 h after the addition of bombesin, p300 HAT activity increased 2.0-fold (P<0.01). Incubation with neutral endopeptidase, which degrades bombesin, or bombesin receptor antagonists blocked bombesin-induced p300 HAT activity. To explore the potential signaling pathways involved in bombesin-induced p300 HAT activity, we examined Src and PKCdelta pathways that mediate bombesin signaling. Inhibitors of Src kinase activity or Src kinase siRNA blocked bombesin-induced p300 HAT activity, whereas PKCdelta inhibitors or PKCdelta siRNA significantly increased bombesin-induced p300 HAT activity suggesting that Src kinase and PKCdelta kinase are involved in the regulation of p300 HAT activity. As AR is acetylated in the presence of 100 nM DHT, we next examined whether bombesin-induced p300 HAT activity would result in enhanced AR acetylation. Bombesin-induced AR acetylation at the same motif KLKK observed in DHT-induced acetylation. Elimination of p300 using p300 siRNA reduced AR acetylation, demonstrating that AR acetylation was

  9. A silk peptide fraction restores cognitive function in AF64A-induced Alzheimer disease model rats by increasing expression of choline acetyltransferase gene.

    PubMed

    Cha, Yeseul; Lee, Sang Hoon; Jang, Su Kil; Guo, Haiyu; Ban, Young-Hwan; Park, Dongsun; Jang, Gwi Yeong; Yeon, Sungho; Lee, Jeong-Yong; Choi, Ehn-Kyoung; Joo, Seong Soo; Jeong, Heon-Sang; Kim, Yun-Bae

    2017-01-01

    This study investigated the effects of a silk peptide fraction obtained by incubating silk proteins with Protease N and Neutrase (SP-NN) on cognitive dysfunction of Alzheimer disease model rats. In order to elucidate underlying mechanisms, the effect of SP-NN on the expression of choline acetyltransferase (ChAT) mRNA was assessed in F3.ChAT neural stem cells and Neuro2a neuroblastoma cells; active amino acid sequence was identified using HPLC-MS. The expression of ChAT mRNA in F3.ChAT cells increased by 3.79-fold of the control level by treatment with SP-NN fraction. The active peptide in SP-NN was identified as tyrosine-glycine with 238.1 of molecular weight. Male rats were orally administered with SP-NN (50 or 300mg/kg) and challenged with a cholinotoxin AF64A. As a result of brain injury and decreased brain acetylcholine level, AF64A induced astrocytic activation, resulting in impairment of learning and memory function. Treatment with SP-NN exerted recovering activities on acetylcholine depletion and brain injury, as well as cognitive deficit induced by AF64A. The results indicate that, in addition to a neuroprotective activity, the SP-NN preparation restores cognitive function of Alzheimer disease model rats by increasing the release of acetylcholine. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Tissue plasminogen activator (tPA) as a reporter gene in transient gene expression.

    PubMed

    Cheng, S M; Lee, S G; Kalyan, N K; McCloud, S; Levner, M; Hung, P P

    1987-01-01

    Using the gene coding for tissue plasminogen activator (tPA) as a reporter gene, a transient gene expression system has been established. Vectors containing the full-length cDNA of tPA with its signal sequences were introduced into mammalian recipient cells by a modified gene transfer procedure. Thirty hours after transfection, the secreted tPA was found in serum-free medium and measured by a fibrin-agarose plate assay (FAPA). In this assay, tPA converts plasminogen into plasmin which then degrades high-Mr fibrin to produce cleared zones. The sizes of these zones correspond to quantities of tPA. The combination of transient tPA expression system and the FAPA provides a quick, sensitive, quantitative and non-destructive method to examine the strength of eukaryotic regulatory elements in tissue-culture cells.

  11. Terminator Operon Reporter: combining a transcription termination switch with reporter technology for improved gene synthesis and synthetic biology applications.

    PubMed

    Zampini, Massimiliano; Mur, Luis A J; Rees Stevens, Pauline; Pachebat, Justin A; Newbold, C James; Hayes, Finbarr; Kingston-Smith, Alison

    2016-05-25

    Synthetic biology is characterized by the development of novel and powerful DNA fabrication methods and by the application of engineering principles to biology. The current study describes Terminator Operon Reporter (TOR), a new gene assembly technology based on the conditional activation of a reporter gene in response to sequence errors occurring at the assembly stage of the synthetic element. These errors are monitored by a transcription terminator that is placed between the synthetic gene and reporter gene. Switching of this terminator between active and inactive states dictates the transcription status of the downstream reporter gene to provide a rapid and facile readout of the accuracy of synthetic assembly. Designed specifically and uniquely for the synthesis of protein coding genes in bacteria, TOR allows the rapid and cost-effective fabrication of synthetic constructs by employing oligonucleotides at the most basic purification level (desalted) and without the need for costly and time-consuming post-synthesis correction methods. Thus, TOR streamlines gene assembly approaches, which are central to the future development of synthetic biology.

  12. Thymidine Kinase PET Reporter Gene Imaging of Cancer Cells In Vivo.

    PubMed

    McCracken, Melissa N

    2018-01-01

    Positron emission tomography (PET) is a three dimensional imaging modality that detects the accumulation of radiolabeled isotopes in vivo. Ectopic expression of a thymidine kinase reporter gene allows for the specific detection of reporter cells in vivo by imaging with the reporter specific probe. PET reporter imaging is sensitive, quantitative and can be scaled into larger tumors or animals with little to no tissue diffraction. Here, we describe how thymidine kinase PET reporter genes can be used to noninvasively image cancer cells in vivo.

  13. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo.

    PubMed Central

    Kass-Eisler, A; Falck-Pedersen, E; Alvira, M; Rivera, J; Buttrick, P M; Wittenberg, B A; Cipriani, L; Leinwand, L A

    1993-01-01

    To optimize the use of modified adenoviruses as vectors for gene delivery to the myocardium, we have characterized infection of cultured fetal and adult rat cardiac myocytes in vitro and of adult cardiac myocytes in vivo by using a replication-defective adenovirus carrying the chloramphenicol acetyltransferase (CAT) reporter gene driven by the cytomegalovirus promoter (AdCMVCATgD). In vitro, virtually all fetal or adult cardiocytes express the CAT gene when infected with 1 plaque-forming unit of virus per cell. CAT enzymatic activity can be detected in these cells as early as 4 hr after infection, reaching near-maximal levels at 48 hr. In fetal cells, CAT expression was maintained without a loss in activity for at least 1 week. Using in vitro studies as a guide, we introduced the AdCMVCATgD virus directly into adult rat myocardium and compared the expression results obtained from virus injection with those obtained by direct injection of pAdCMVCATgD plasmid DNA. The amount of CAT activity resulting from adenovirus infection of the myocardium was orders of magnitude higher than that seen from DNA injection and was proportional to the amount of input virus. Immunostaining for CAT protein in cardiac tissue sections following adenovirus injection demonstrated large numbers of positive cells, reaching nearly 100% of the myocytes in many regions of the heart. Expression of genes introduced by adenovirus peaked at 5 days but was still detectable 55 days following infection. Adenoviruses are therefore a very useful tool for high-efficiency gene transfer into the cardiovascular system. Images Fig. 1 Fig. 5 PMID:8265580

  14. Irradiation with heavy-ion particles changes the cellular distribution of human histone acetyltransferase HAT1.

    PubMed

    Lebel, Emily A; Boukamp, Petra; Tafrov, Stefan T

    2010-06-01

    Hat1 was the first histone acetyltransferase identified; however, its biological function is still unclear. In this report, it is shown for the first time that human Hat1 has two isoforms. Isoform a has 418 amino acids (aa) and is localized exclusively in the nuclear matrix of normal human keratinocytes (NHKs). Isoform b has 334 aa and is located in the cytoplasm, the nucleoplasm, attached to the chromatin and to the nuclear matrix. Immunohistochemical analyses revealed that the bulk of Hat1 is confined to the nucleus, with much lesser amounts in the cytoplasm. Cells undergoing mitotic division have an elevated amount of Hat1 compared to those that are non-mitotic. Senescent cells, however, exhibit a higher concentration of Hat1 in the cytoplasm compare to proliferating cells and the amount of Hat1 in the nucleus decreases with the progression of senescence. NHKs exposed to hydrogen peroxide (H(2)O(2)) or to a beam of high mass and energy ion particles displayed bright nuclear staining for Hat1, a phenotype that was not observed in NHKs exposed to gamma-rays. We established that the enhanced nuclear staining for Hat1 in response to these treatments is regulated by the PI3K and the mitogen-activated protein kinase signaling pathways. Our observations clearly implicate Hat1 in the cellular response assuring the survival of the treated cells.

  15. Reporter gene bioassays in environmental analysis.

    PubMed

    Köhler, S; Belkin, S; Schmid, R D

    2000-01-01

    In parallel to the continuous development of increasingly more sophisticated physical and chemical analytical technologies for the detection of environmental pollutants, there is a progressively more urgent need also for bioassays which report not only on the presence of a chemical but also on its bioavailability and its biological effects. As a partial fulfillment of that need, there has been a rapid development of biosensors based on genetically engineered bacteria. Such microorganisms typically combine a promoter-operator, which acts as the sensing element, with reporter gene(s) coding for easily detectable proteins. These sensors have the ability to detect global parameters such as stress conditions, toxicity or DNA-damaging agents as well as specific organic and inorganic compounds. The systems described in this review, designed to detect different groups of target chemicals, vary greatly in their detection limits, specificity, response times and more. These variations reflect on their potential applicability which, for most of the constructs described, is presently rather limited. Nevertheless, present trends promise that additional improvements will make microbial biosensors an important tool for future environmental analysis.

  16. Single nucleotide polymorphism coverage and inference of N-acetyltransferase-2 acetylator phenotypes in wordwide population groups.

    PubMed

    Suarez-Kurtz, Guilherme; Fuchshuber-Moraes, Mateus; Struchiner, Claudio J; Parra, Esteban J

    2016-08-01

    Several algorithms have been proposed to reduce the genotyping effort and cost, while retaining the accuracy of N-acetyltransferase-2 (NAT2) phenotype prediction. Data from the 1000 Genomes (1KG) project and an admixed cohort of Black Brazilians were used to assess the accuracy of NAT2 phenotype prediction using algorithms based on paired single nucleotide polymorphisms (SNPs) (rs1041983 and rs1801280) or a tag SNP (rs1495741). NAT2 haplotypes comprising SNPs rs1801279, rs1041983, rs1801280, rs1799929, rs1799930, rs1208 and rs1799931 were assigned according to the arylamine N-acetyltransferases database. Contingency tables were used to visualize the agreement between the NAT2 acetylator phenotypes on the basis of these haplotypes versus phenotypes inferred by the prediction algorithms. The paired and tag SNP algorithms provided more than 96% agreement with the 7-SNP derived phenotypes in Europeans, East Asians, South Asians and Admixed Americans, but discordance of phenotype prediction occurred in 30.2 and 24.8% 1KG Africans and in 14.4 and 18.6% Black Brazilians, respectively. Paired SNP panel misclassification occurs in carriers of NATs haplotypes *13A (282T alone), *12B (282T and 803G), *6B (590A alone) and *14A (191A alone), whereas haplotype *14, defined by the 191A allele, is the major culprit of misclassification by the tag allele. Both the paired SNP and the tag SNP algorithms may be used, with economy of scale, to infer NAT2 acetylator phenotypes, including the ultra-slow phenotype, in European, East Asian, South Asian and American populations represented in the 1KG cohort. Both algorithms, however, perform poorly in populations of predominant African descent, including admixed African-Americans, African Caribbeans and Black Brazilians.

  17. Identification of genes in anonymous DNA sequences. Final report: Report period, 15 April 1993--15 April 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, C.A.

    1994-09-01

    This Report concludes the DOE Human Genome Program project, ``Identification of Genes in Anonymous DNA Sequence.`` The central goals of this project have been (1) understanding the problem of identifying genes in anonymous sequences, and (2) development of tools, primarily the automated identification system gm, for identifying genes. The activities supported under the previous award are summarized here to provide a single complete report on the activities supported as part of the project from its inception to its completion.

  18. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment.

    PubMed Central

    Yang, N S; Burkholder, J; Roberts, B; Martinell, B; McCabe, D

    1990-01-01

    Chimeric chloramphenicol acetyltransferase and beta-galactosidase marker genes were coated onto fine gold particles and used to bombard a variety of mammalian tissues and cells. Transient expression of the genes was obtained in liver, skin, and muscle tissues of rat and mouse bombarded in vivo. Similar results were obtained with freshly isolated ductal segments of rat and human mammary glands and primary cultures derived from these explants. Gene transfer and transient expression were also observed in eight human cell culture lines, including cells of epithelial, endothelial, fibroblast, and lymphocyte origin. Using CHO and MCF-7 cell cultures as models, we obtained stable gene transfer at frequencies of 1.7 x 10(-3) and 6 x 10(-4), respectively. The particle bombardment technology thus provides a useful means to transfer foreign genes into a variety of mammalian somatic cell systems. The method is applicable to tissues in vivo as well as to isolated cells in culture and has proven effective with all cell or tissue types tested thus far. This technology may therefore prove to be applicable in various aspects of gene therapy. Images PMID:2175906

  19. Ferritin heavy chain as a molecular imaging reporter gene in glioma xenografts.

    PubMed

    Cheng, Sen; Mi, Ruifang; Xu, Yu; Jin, Guishan; Zhang, Junwen; Zhou, Yiqiang; Chen, Zhengguang; Liu, Fusheng

    2017-06-01

    The development of glioma therapy in clinical practice (e.g., gene therapy) calls for efficiently visualizing and tracking glioma cells in vivo. Human ferritin heavy chain is a novel gene reporter in magnetic resonance imaging. This study proposes hFTH as a reporter gene for MR molecular imaging in glioma xenografts. Rat C6 glioma cells were infected by packaged lentivirus carrying hFTH and EGFP genes and obtained by fluorescence-activated cell sorting. The iron-loaded ability was analyzed by the total iron reagent kit. Glioma nude mouse models were established subcutaneously and intracranially. Then, in vivo tumor bioluminescence was performed via the IVIS spectrum imaging system. The MR imaging analysis was analyzed on a 7T animal MRI scanner. Finally, the expression of hFTH was analyzed by western blotting and histological analysis. Stable glioma cells carrying hFTH and EGFP reporter genes were successfully obtained. The intracellular iron concentration was increased without impairing the cell proliferation rate. Glioma cells overexpressing hFTH showed significantly decreased signal intensity on T 2 -weighted MRI both in vitro and in vivo. EGFP fluorescent imaging could also be detected in the subcutaneous and intracranial glioma xenografts. Moreover, the expression of the transferritin receptor was significantly increased in glioma cells carrying the hFTH reporter gene. Our study illustrated that hFTH generated cellular MR imaging contrast efficiently in glioma via regulating the expression of transferritin receptor. This might be a useful reporter gene in cell tracking and MR molecular imaging for glioma diagnosis, gene therapy and tumor metastasis.

  20. Virulence and the presence of aminoglycoside resistance genes of Staphylococcus haemolyticus strains isolated from clinical specimens.

    PubMed

    Krzymińska, Sylwia; Szczuka, Ewa; Dudzińska, Kinga; Kaznowski, Adam

    2015-04-01

    We examined thirty methicillin-resistant Staphylococcus haemolyticus isolates cultured from clinical specimens for antibiotic resistance, various important interactions of the bacteria with epithelial cells and putative virulence determinants. All strains were resistant to oxacillin and carried the mecA gene. Aminocyclitol-3'-phosphotransferase (aph(3')-IIIa) gene encoding nucleotidyltransferases was detected in 43 %, aminocyclitol-6'-acetyltransferase-aminocyclitol-2″-phosphotransferase (aac(6')/aph(2″)) gene encoding bifunctional acetyltransferases/phosphotransferases in 33 %, aminocyclitol-4'-adenylyltransferase (ant(4')-Ia) gene encoding phosphotransferases in 20 %. The coexistence of resistance to methicillin and aminoglycosides was investigated in multi-resistant strains. Coexisting (aac(6')/aph(2″)) and (aph(3')-IIIa) genes were detected in 33 % of isolates, whereas 63 % of isolates had at least one of these genes. All strains revealed adherence ability and most of them (63 %) were invasive to epithelial cells. Electron microscopy revealed that the bacteria were found in vacuoles inside the cells. We observed that the contact of the bacteria with host epithelial cells is a prerequisite to their cytotoxicity at 5 h-incubation. Culture supernatant of the strains induced a low effect of cytotoxicity at the same time of incubation. Cell-free supernatant of all isolates expressed cytotoxic activity which caused destruction of HEp-2 cells at 24 h. None of the strains was cytotonic towards CHO cells. Among thirty strains, 27 % revealed lipolytic activity, 43 % produced lecithinase and 20 % were positive for proteinase activity. Analyses of cellular morphology and DNA fragmentation exhibited typical characteristic features of those undergoing apoptosis. The Pearson linear test revealed positive correlations between the apoptotic index at 24 h and percentage of cytotoxicity. Our results provided new insights into the mechanisms contributing to the

  1. Circadian dynamics of the cone-rod homeobox (CRX) transcription factor in the rat pineal gland and its role in regulation of arylalkylamine N-acetyltransferase (AANAT).

    PubMed

    Rohde, Kristian; Rovsing, Louise; Ho, Anthony K; Møller, Morten; Rath, Martin F

    2014-08-01

    The cone-rod homeobox (Crx) gene encodes a transcription factor in the retina and pineal gland. Crx deficiency influences the pineal transcriptome, including a reduced expression of arylalkylamine N-acetyltransferase (Aanat), a key enzyme in nocturnal pineal melatonin production. However, previous functional studies on pineal Crx have been performed in melatonin-deficient mice. In this study, we have investigated the role of Crx in the melatonin-proficient rat pineal gland. The current study shows that pineal Crx transcript levels exhibit a circadian rhythm with a peak in the middle of the night, which is transferred into daily changes in CRX protein. The study further shows that the sympathetic innervation of the pineal gland controls the Crx rhythm. By use of adenovirus-mediated short hairpin RNA gene knockdown targeting Crx mRNA in primary rat pinealocyte cell culture, we here show that intact levels of Crx mRNA are required to obtain high levels of Aanat expression, whereas overexpression of Crx induces Aanat transcription in vitro. This regulatory function of Crx is further supported by circadian analysis of Aanat in the pineal gland of the Crx-knockout mouse. Our data indicate that the rhythmic nature of pineal CRX protein may directly modulate the daily profile of Aanat expression by inducing nighttime expression of this enzyme, thus facilitating nocturnal melatonin synthesis in addition to its role in ensuring a correct tissue distribution of Aanat expression.

  2. Genes down-regulated in spaceflight are involved in the control of longevity in Caenorhabditis elegans.

    PubMed

    Honda, Yoko; Higashibata, Akira; Matsunaga, Yohei; Yonezawa, Yukiko; Kawano, Tsuyoshi; Higashitani, Atsushi; Kuriyama, Kana; Shimazu, Toru; Tanaka, Masashi; Szewczyk, Nathaniel J; Ishioka, Noriaki; Honda, Shuji

    2012-01-01

    How microgravitational space environments affect aging is not well understood. We observed that, in Caenorhabditis elegans, spaceflight suppressed the formation of transgenically expressed polyglutamine aggregates, which normally accumulate with increasing age. Moreover, the inactivation of each of seven genes that were down-regulated in space extended lifespan on the ground. These genes encode proteins that are likely related to neuronal or endocrine signaling: acetylcholine receptor, acetylcholine transporter, choline acetyltransferase, rhodopsin-like receptor, glutamate-gated chloride channel, shaker family of potassium channel, and insulin-like peptide. Most of them mediated lifespan control through the key longevity-regulating transcription factors DAF-16 or SKN-1 or through dietary-restriction signaling, singly or in combination. These results suggest that aging in C. elegans is slowed through neuronal and endocrine response to space environmental cues.

  3. Genes down-regulated in spaceflight are involved in the control of longevity in Caenorhabditis elegans

    PubMed Central

    Honda, Yoko; Higashibata, Akira; Matsunaga, Yohei; Yonezawa, Yukiko; Kawano, Tsuyoshi; Higashitani, Atsushi; Kuriyama, Kana; Shimazu, Toru; Tanaka, Masashi; Szewczyk, Nathaniel J.; Ishioka, Noriaki; Honda, Shuji

    2012-01-01

    How microgravitational space environments affect aging is not well understood. We observed that, in Caenorhabditis elegans, spaceflight suppressed the formation of transgenically expressed polyglutamine aggregates, which normally accumulate with increasing age. Moreover, the inactivation of each of seven genes that were down-regulated in space extended lifespan on the ground. These genes encode proteins that are likely related to neuronal or endocrine signaling: acetylcholine receptor, acetylcholine transporter, choline acetyltransferase, rhodopsin-like receptor, glutamate-gated chloride channel, shaker family of potassium channel, and insulin-like peptide. Most of them mediated lifespan control through the key longevity-regulating transcription factors DAF-16 or SKN-1 or through dietary-restriction signaling, singly or in combination. These results suggest that aging in C. elegans is slowed through neuronal and endocrine response to space environmental cues. PMID:22768380

  4. Mice with reduced brain-derived neurotrophic factor expression show decreased choline acetyltransferase activity, but regular brain monoamine levels and unaltered emotional behavior.

    PubMed

    Chourbaji, Sabine; Hellweg, Rainer; Brandis, Dorothee; Zörner, Björn; Zacher, Christiane; Lang, Undine E; Henn, Fritz A; Hörtnagl, Heide; Gass, Peter

    2004-02-05

    The "neurotrophin hypothesis" of depression predicts that depressive disorders in humans coincide with a decreased activity and/or expression of brain-derived neurotrophic factor (BDNF) in the brain. Therefore, we investigated whether mice with a reduced BDNF expression due to heterozygous gene disruption demonstrate depression-like neurochemical changes or behavioral symptoms. BNDF protein levels of adult BDNF(+/-) mice were reduced to about 60% in several brain areas investigated, including the hippocampus, frontal cortex, striatum, and hypothalamus. The content of monoamines (serotonin, norepinephrine, and dopamine) as well as of serotonin and dopamine degradation products was unchanged in these brain regions. By contrast, choline acetyltransferase activity was significantly reduced by 19% in the hippocampus of BDNF(+/-) mice, indicating that the cholinergic system of the basal forebrain is critically dependent on sufficient endogenous BDNF levels in adulthood. Moreover, BDNF(+/-) mice exhibited normal corticosterone and adrenocorticotropic hormone (ACTH) serum levels under baseline conditions and following immobilization stress. In a panel of behavioral tests investigating locomotor activity, exploration, anxiety, fear-associated learning, and behavioral despair, BDNF(+/-) mice were indistinguishable from wild-type littermates. Thus, a chronic reduction of BDNF protein content in adult mice is not sufficient to induce neurochemical or behavioral alterations that are reminiscent of depressive symptoms in humans.

  5. N-acetyltransferase single nucleotide polymorphisms: Emerging concepts serve as a paradigm for understanding complexities of personalized medicine

    PubMed Central

    Hein, David W.

    2009-01-01

    Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) exhibit single nucleotide polymorphisms (SNPs) in human populations that modify drug and carcinogen metabolism. This paper updates the identity, location, and functional effects of these SNPs and then follows with emerging concepts for understanding why pharmacogenetic findings may not be replicated consistently. Using this paradigm as an example, laboratory-based mechanistic analyses can reveal complexities such that genetic polymorphisms become biologically and medically relevant when confounding factors are more fully understood and considered. As medical care moves to a more personalized approach, the implications of these confounding factors will be important in understanding the complexities of personalized medicine. PMID:19379125

  6. Non-specific activities of the major herbicide-resistance gene BAR.

    PubMed

    Christ, Bastien; Hochstrasser, Ramon; Guyer, Luzia; Francisco, Rita; Aubry, Sylvain; Hörtensteiner, Stefan; Weng, Jing-Ke

    2017-12-01

    Bialaphos resistance (BAR) and phosphinothricin acetyltransferase (PAT) genes, which convey resistance to the broad-spectrum herbicide phosphinothricin (also known as glufosinate) via N-acetylation, have been globally used in basic plant research and genetically engineered crops 1-4 . Although early in vitro enzyme assays showed that recombinant BAR and PAT exhibit substrate preference toward phosphinothricin over the 20 proteinogenic amino acids 1 , indirect effects of BAR-containing transgenes in planta, including modified amino acid levels, have been seen but without the identification of their direct causes 5,6 . Combining metabolomics, plant genetics and biochemical approaches, we show that transgenic BAR indeed converts two plant endogenous amino acids, aminoadipate and tryptophan, to their respective N-acetylated products in several plant species. We report the crystal structures of BAR, and further delineate structural basis for its substrate selectivity and catalytic mechanism. Through structure-guided protein engineering, we generated several BAR variants that display significantly reduced non-specific activities compared with its wild-type counterpart in vivo. The transgenic expression of enzymes can result in unintended off-target metabolism arising from enzyme promiscuity. Understanding such phenomena at the mechanistic level can facilitate the design of maximally insulated systems featuring heterologously expressed enzymes.

  7. Piperidinols That Show Anti-Tubercular Activity as Inhibitors of Arylamine N-Acetyltransferase: An Essential Enzyme for Mycobacterial Survival Inside Macrophages

    PubMed Central

    Abuhammad, Areej; Fullam, Elizabeth; Lowe, Edward D.; Staunton, David; Kawamura, Akane; Westwood, Isaac M.; Bhakta, Sanjib; Garner, Alun Christopher; Wilson, David L.; Seden, Peter T.; Davies, Stephen G.; Russell, Angela J.; Garman, Elspeth F.; Sim, Edith

    2012-01-01

    Latent M. tuberculosis infection presents one of the major obstacles in the global eradication of tuberculosis (TB). Cholesterol plays a critical role in the persistence of M. tuberculosis within the macrophage during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into cell-wall lipids. Arylamine N-acetyltransferase (NAT) is encoded within a gene cluster that is involved in the cholesterol sterol-ring degradation and is essential for intracellular survival. The ability of the NAT from M. tuberculosis (TBNAT) to utilise propionyl-CoA links it to the cholesterol-catabolism pathway. Deleting the nat gene or inhibiting the NAT enzyme prevents intracellular survival and results in depletion of cell-wall lipids. TBNAT has been investigated as a potential target for TB therapies. From a previous high-throughput screen, 3-benzoyl-4-phenyl-1-methylpiperidinol was identified as a selective inhibitor of prokaryotic NAT that exhibited antimycobacterial activity. The compound resulted in time-dependent irreversible inhibition of the NAT activity when tested against NAT from M. marinum (MMNAT). To further evaluate the antimycobacterial activity and the NAT inhibition of this compound, four piperidinol analogues were tested. All five compounds exert potent antimycobacterial activity against M. tuberculosis with MIC values of 2.3–16.9 µM. Treatment of the MMNAT enzyme with this set of inhibitors resulted in an irreversible time-dependent inhibition of NAT activity. Here we investigate the mechanism of NAT inhibition by studying protein-ligand interactions using mass spectrometry in combination with enzyme analysis and structure determination. We propose a covalent mechanism of NAT inhibition that involves the formation of a reactive intermediate and selective cysteine residue modification. These piperidinols present a unique class of antimycobacterial compounds that have a novel mode of action different

  8. Mechanistic and Structural Analysis of Drosophila melanogaster Arylalkylamine N-Acetyltransferases

    PubMed Central

    2015-01-01

    Arylalkylamine N-acetyltransferase (AANAT) catalyzes the penultimate step in the biosynthesis of melatonin and other N-acetylarylalkylamides from the corresponding arylalkylamine and acetyl-CoA. The N-acetylation of arylalkylamines is a critical step in Drosophila melanogaster for the inactivation of the bioactive amines and the sclerotization of the cuticle. Two AANAT variants (AANATA and AANATB) have been identified in D. melanogaster, in which AANATA differs from AANATB by the truncation of 35 amino acids from the N-terminus. We have expressed and purified both D. melanogaster AANAT variants (AANATA and AANATB) in Escherichia coli and used the purified enzymes to demonstrate that this N-terminal truncation does not affect the activity of the enzyme. Subsequent characterization of the kinetic and chemical mechanism of AANATA identified an ordered sequential mechanism, with acetyl-CoA binding first, followed by tyramine. We used a combination of pH–activity profiling and site-directed mutagenesis to study prospective residues believed to function in AANATA catalysis. These data led to an assignment of Glu-47 as the general base in catalysis with an apparent pKa of 7.0. Using the data generated for the kinetic mechanism, structure–function relationships, pH–rate profiles, and site-directed mutagenesis, we propose a chemical mechanism for AANATA. PMID:25406072

  9. Alpha-fetoprotein-targeted reporter gene expression imaging in hepatocellular carcinoma

    PubMed Central

    Kim, Kwang Il; Chung, Hye Kyung; Park, Ju Hui; Lee, Yong Jin; Kang, Joo Hyun

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers in Eastern Asia, and its incidence is increasing globally. Numerous experimental models have been developed to better our understanding of the pathogenic mechanism of HCC and to evaluate novel therapeutic approaches. Molecular imaging is a convenient and up-to-date biomedical tool that enables the visualization, characterization and quantification of biologic processes in a living subject. Molecular imaging based on reporter gene expression, in particular, can elucidate tumor-specific events or processes by acquiring images of a reporter gene’s expression driven by tumor-specific enhancers/promoters. In this review, we discuss the advantages and disadvantages of various experimental HCC mouse models and we present in vivo images of tumor-specific reporter gene expression driven by an alpha-fetoprotein (AFP) enhancer/promoter system in a mouse model of HCC. The current mouse models of HCC development are established by xenograft, carcinogen induction and genetic engineering, representing the spectrum of tumor-inducing factors and tumor locations. The imaging analysis approach of reporter genes driven by AFP enhancer/promoter is presented for these different HCC mouse models. Such molecular imaging can provide longitudinal information about carcinogenesis and tumor progression. We expect that clinical application of AFP-targeted reporter gene expression imaging systems will be useful for the detection of AFP-expressing HCC tumors and screening of increased/decreased AFP levels due to disease or drug treatment. PMID:27468205

  10. Effects of human arylamine N-acetyltransferase I knockdown in triple-negative breast cancer cell lines

    PubMed Central

    Tiang, Jacky M; Butcher, Neville J; Minchin, Rodney F

    2015-01-01

    Expression of human arylamine N-acetyltransferase I (NAT1) has been associated with various cancer subtypes and inhibition of this enzyme with small molecule inhibitors or siRNA affects cell growth and survival. Here, we have investigated the role of NAT1 in the invasiveness of breast cancer cells both in vitro and in vivo. We knocked down NAT1 using a lentivirus-based shRNA approach and observed marked changes in cell morphology in the triple-negative breast cancer cell lines MDA-MB-231, MDA-MB-436, and BT-549. Most notable was a reduction in the number and size of the filopodia protrusions on the surface of the cells. The loss of filopodia could be rescued by the reintroduction of NAT1 into the knockdown cells. NAT1 expression was localized to the lamellipodia and extended into the filopodia protrusions. In vitro invasion through Geltrex was significantly inhibited in both the MDA cell lines but not in the BT-549 cells. The expression of Snail increased when NAT1 was knocked down, while other genes associated with mesenchymal to epithelial transition (vimentin, cytokeratin-18, and Twist) did not show any changes. By contrast, both N-cadherin and β-catenin were significantly reduced. When MDA-MB-231 cells expressing shRNA were injected in vivo into BALB/c nu/nu nude mice, a significant reduction in the number of colonies that formed in the lungs was observed. Taken together, the results show that NAT1 can alter the invasion and metastatic properties of some triple-negative breast cancer cells but not all. The study suggests that NAT1 may be a novel therapeutic target in a subset of breast cancers. PMID:25627111

  11. Effects of human arylamine N-acetyltransferase I knockdown in triple-negative breast cancer cell lines.

    PubMed

    Tiang, Jacky M; Butcher, Neville J; Minchin, Rodney F

    2015-04-01

    Expression of human arylamine N-acetyltransferase I (NAT1) has been associated with various cancer subtypes and inhibition of this enzyme with small molecule inhibitors or siRNA affects cell growth and survival. Here, we have investigated the role of NAT1 in the invasiveness of breast cancer cells both in vitro and in vivo. We knocked down NAT1 using a lentivirus-based shRNA approach and observed marked changes in cell morphology in the triple-negative breast cancer cell lines MDA-MB-231, MDA-MB-436, and BT-549. Most notable was a reduction in the number and size of the filopodia protrusions on the surface of the cells. The loss of filopodia could be rescued by the reintroduction of NAT1 into the knockdown cells. NAT1 expression was localized to the lamellipodia and extended into the filopodia protrusions. In vitro invasion through Geltrex was significantly inhibited in both the MDA cell lines but not in the BT-549 cells. The expression of Snail increased when NAT1 was knocked down, while other genes associated with mesenchymal to epithelial transition (vimentin, cytokeratin-18, and Twist) did not show any changes. By contrast, both N-cadherin and β-catenin were significantly reduced. When MDA-MB-231 cells expressing shRNA were injected in vivo into BALB/c nu/nu nude mice, a significant reduction in the number of colonies that formed in the lungs was observed. Taken together, the results show that NAT1 can alter the invasion and metastatic properties of some triple-negative breast cancer cells but not all. The study suggests that NAT1 may be a novel therapeutic target in a subset of breast cancers. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  12. Purification and characterization of aspartate N-acetyltransferase: A critical enzyme in brain metabolism.

    PubMed

    Wang, Qinzhe; Zhao, Mojun; Parungao, Gwenn G; Viola, Ronald E

    2016-03-01

    Canavan disease (CD) is a neurological disorder caused by an interruption in the metabolism of N-acetylaspartate (NAA). Numerous mutations have been found in the enzyme that hydrolyzes NAA, and the catalytic activity of aspartoacylase is significantly impaired in CD patients. Recent studies have also supported an important role in CD for the enzyme that catalyzes the synthesis of NAA in the brain. However, previous attempts to study this enzyme had not succeeded in obtaining a soluble, stable and active form of this membrane-associated protein. We have now utilized fusion constructs with solubilizing protein partners to obtain an active and soluble form of aspartate N-acetyltransferase. Characterization of the properties of this enzyme has set the stage for the development of selective inhibitors that can lower the elevated levels of NAA that are observed in CD patients and potentially serve as a new treatment therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Homeobox genes and melatonin synthesis: regulatory roles of the cone-rod homeobox transcription factor in the rodent pineal gland.

    PubMed

    Rohde, Kristian; Møller, Morten; Rath, Martin Fredensborg

    2014-01-01

    Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a cAMP-based induction of Aanat transcription. However, additional transcriptional control mechanisms exist. Homeobox genes, which are generally known to encode transcription factors controlling developmental processes, are also expressed in the mature rodent pineal gland. Among these, the cone-rod homeobox (CRX) transcription factor is believed to control pineal-specific Aanat expression. Based on recent advances in our understanding of Crx in the rodent pineal gland, we here suggest that homeobox genes play a role in adult pineal physiology both by ensuring pineal-specific Aanat expression and by facilitating cAMP response element-based circadian melatonin production.

  14. Homeobox Genes and Melatonin Synthesis: Regulatory Roles of the Cone-Rod Homeobox Transcription Factor in the Rodent Pineal Gland

    PubMed Central

    Rath, Martin Fredensborg

    2014-01-01

    Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a cAMP-based induction of Aanat transcription. However, additional transcriptional control mechanisms exist. Homeobox genes, which are generally known to encode transcription factors controlling developmental processes, are also expressed in the mature rodent pineal gland. Among these, the cone-rod homeobox (CRX) transcription factor is believed to control pineal-specific Aanat expression. Based on recent advances in our understanding of Crx in the rodent pineal gland, we here suggest that homeobox genes play a role in adult pineal physiology both by ensuring pineal-specific Aanat expression and by facilitating cAMP response element-based circadian melatonin production. PMID:24877149

  15. Structural Analysis of a Putative Aminoglycoside N-Acetyltransferase from Bacillus anthracis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimecka, Maria M.; Chruszcz, Maksymilian; Font, Jose

    2012-02-15

    For the last decade, worldwide efforts for the treatment of anthrax infection have focused on developing effective vaccines. Patients that are already infected are still treated traditionally using different types of standard antimicrobial agents. The most popular are antibiotics such as tetracyclines and fluoroquinolones. While aminoglycosides appear to be less effective antimicrobial agents than other antibiotics, synthetic aminoglycosides have been shown to act as potent inhibitors of anthrax lethal factor and may have potential application as antitoxins. Here, we present a structural analysis of the BA2930 protein, a putative aminoglycoside acetyltransferase, which may be a component of the bacterium's aminoglycosidemore » resistance mechanism. The determined structures revealed details of a fold characteristic only for one other protein structure in the Protein Data Bank, namely, YokD from Bacillus subtilis. Both BA2930 and YokD are members of the Antibiotic-NAT superfamily (PF02522). Sequential and structural analyses showed that residues conserved throughout the Antibiotic-NAT superfamily are responsible for the binding of the cofactor acetyl coenzyme A. The interaction of BA2930 with cofactors was characterized by both crystallographic and binding studies.« less

  16. Using the 2A Protein Coexpression System: Multicistronic 2A Vectors Expressing Gene(s) of Interest and Reporter Proteins.

    PubMed

    Luke, Garry A; Ryan, Martin D

    2018-01-01

    To date, a huge range of different proteins-many with cotranslational and posttranslational subcellular localization signals-have been coexpressed together with various reporter proteins in vitro and in vivo using 2A peptides. The pros and cons of 2A co-expression technology are considered below, followed by a simple example of a "how to" protocol to concatenate multiple genes of interest, together with a reporter gene, into a single gene linked via 2As for easy identification or selection of transduced cells.

  17. Overexpression of DYRK1A inhibits choline acetyltransferase induction by oleic acid in cellular models of Down syndrome.

    PubMed

    Hijazi, Maruan; Fillat, Cristina; Medina, José M; Velasco, Ana

    2013-01-01

    Histological brain studies of individuals with DS have revealed an aberrant formation of the cerebral cortex. Previous work from our laboratory has shown that oleic acid acts as a neurotrophic factor and induces neuronal differentiation. In order to characterize the effects of oleic acid in a cellular model of DS, immortalized cell lines derived from the cortex of trisomy Ts16 (CTb) and normal mice (CNh) were incubated in the absence or presence of oleic acid. Oleic acid increased choline acetyltransferase expression (ChAT), a marker of cholinergic differentiation in CNh cells. However, in trisomic cells (CTb line) oleic acid failed to increase ChAT expression. These results suggest that the overdose of specific genes in trisomic lines delays differentiation in the presence of oleic acid by inhibiting acetylcholine production mediated by ChAT. The dual-specificity tyrosine (Y) phosphorylation-regulated kinase 1A (DYRK1A) gene is located on human chromosome 21 and encodes a proline-directed protein kinase. It has been proposed that DYRK1A plays a prominent role in several biological functions, leading to mental retardation in DS patients. Here we explored the potential role of DYRK1A in the modulation of ChAT expression in trisomic cells and in the signaling pathways of oleic acid. Down-regulation of DYRK1A by siRNA in trisomic CTb cells rescued ChAT expression up to levels similar to those of normal cells in the presence of oleic acid. In agreement with these results, oleic acid was unable to increase ChAT expression in neuronal cultures of transgenic mice overexpressing DYRK1A. In summary, our results highlight the role played by DYRK1A in brain development through the control of ChAT expression. In addition, the overexpression of DYRK1A in DS models prevented the neurotrophic effect of oleic acid, a fact that may account for mental retardation in DS patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Interaction with a kinesin-2 tail propels choline acetyltransferase flow towards synapse

    PubMed Central

    Sadananda, Aparna; Hamid, Runa; Doodhi, Harinath; Ghosal, Debnath; Girotra, Mukul; Jana, Swadhin Chandra; Ray, Krishanu

    2012-01-01

    Bulk flow constitutes a substantial part of the slow transport of soluble proteins in axons. Though the underlying mechanism is unclear, evidences indicate that intermittent, kinesin based movement of large protein-aggregates aids this process. Choline acetyl-transferase (ChAT), a soluble enzyme catalyzing acetylcholine synthesis, propagates towards synapse at an intermediate, slow rate. The presynaptic enrichment of ChAT requires heterotrimeric kinesin-2, comprising KLP64D, KLP68D and DmKAP, in Drosophila. Here, we show that the bulk flow of a recombinant Green Fluorescent Protein-tagged ChAT (GFP::ChAT), in Drosophila axons, lacks particulate features. It occurs for a brief period during the larval stages. In addition, both the endogenous ChAT and GFP::ChAT directly bind to the KLP64D tail, which is essential for the GFP::ChAT entry and anterograde flow in axon. These evidences suggest that a direct interaction with motor proteins could regulate the bulk flow of soluble proteins, and thus establish their asymmetric distribution. PMID:22486887

  19. Immunocytochemical localization of choline acetyltransferase-like immunoreactivity in the guinea pig cochlea.

    PubMed

    Altschuler, R A; Kachar, B; Rubio, J A; Parakkal, M H; Fex, J

    1985-07-08

    The immunocytochemical localization of the enzyme choline acetyltransferase (ChAT) was examined in the guinea pig organ of Corti to determine if both lateral and medial systems of efferents would show immunoreactive labeling for this specific enzyme marker of cholinergic neurons. Cochleae were also examined after lesion of efferents to determine if ChAT-like immunoreactivity is confined to efferents. ChAT-like immunoreactivity was seen in the inner spiral bundle, tunnel spiral bundle and by the bases of inner hair cells corresponding to the lateral system of efferents. ChAT-like immunoreactivity was also seen in crossing fibers and puncta at the bases and by the nuclei of outer hair cells corresponding to the medial system of efferents. With the use of video enhanced contrast microscopy more than 9 ChAT-like immunoreactive puncta at the bases of outer hair cells could be resolved. In cochleae examined 6 weeks after ipsilateral lesion of efferents, no ChAT-like immunoreactivity was observed. These results add strong evidence that acetylcholine is a transmitter of both the medial and lateral systems of efferents.

  20. A simple and rapid radiochemical choline acetyltransferase (ChAT) assay screening test.

    PubMed

    Shiba, Kazuhiro; Ogawa, Kazuma; Kinuya, Seigo; Yajima, Kazuyoshi; Mori, Hirofumi

    2006-10-15

    A simple radiochemical choline acetyltransferase (ChAT) assay screening test was developed by measuring for [(3)H]acetylcholine ([(3)H]ACh) formed from 0.2 mM [(3)H]acetyl-coenzyme A ([(3)H]acetyl-CoA) and 1 mM choline by 0.2 mg of rat brain homogenates containing ChAT into 96-well microplates. A simple and rapid procedure for isolating [(3)H]ACh from the incubation mixture into 96-well microplates was achieved by using a sodium tetraphenylboron (Kalibor) solution (in ethyl acetate, 0.75%, w/v) and a hydrophobic liquid scintillator mixture (1:5, v/v, 0.2 mL) as an extraction solvent. The benefits of this radiochemical method using 96-well microplates are as follows: (1) this method is reliable and reproducible; (2) many samples can be examined at the same time by this method; (3) this method is economical and effective in reducing radioactive waste. The development of a new simple radiochemical ChAT assay screening test is the first stage of development of radiolabeled ChAT mapping agent.

  1. Use of the Aspergillus oryzae actin gene promoter in a novel reporter system for exploring antifungal compounds and their target genes.

    PubMed

    Marui, Junichiro; Yoshimi, Akira; Hagiwara, Daisuke; Fujii-Watanabe, Yoshimi; Oda, Ken; Koike, Hideaki; Tamano, Koichi; Ishii, Tomoko; Sano, Motoaki; Machida, Masayuki; Abe, Keietsu

    2010-08-01

    Demand for novel antifungal drugs for medical and agricultural uses has been increasing because of the diversity of pathogenic fungi and the emergence of drug-resistant strains. Genomic resources for various living species, including pathogenic fungi, can be utilized to develop novel and effective antifungal compounds. We used Aspergillus oryzae as a model to construct a reporter system for exploring novel antifungal compounds and their target genes. The comprehensive gene expression analysis showed that the actin-encoding actB gene was transcriptionally highly induced by benomyl treatment. We therefore used the actB gene to construct a novel reporter system for monitoring responses to cytoskeletal stress in A. oryzae by introducing the actB promoter::EGFP fusion gene. Distinct fluorescence was observed in the reporter strain with minimum background noise in response to not only benomyl but also compounds inhibiting lipid metabolism that is closely related to cell membrane integrity. The fluorescent responses indicated that the reporter strain can be used to screen for lead compounds affecting fungal microtubule and cell membrane integrity, both of which are attractive antifungal targets. Furthermore, the reporter strain was shown to be technically applicable for identifying novel target genes of antifungal drugs triggering perturbation of fungal microtubules or membrane integrity.

  2. Genetic and small molecule inhibition of arylamine N-acetyltransferase 1 reduces anchorage-independent growth in human breast cancer cell line MDA-MB-231.

    PubMed

    Stepp, Marcus W; Doll, Mark A; Carlisle, Samantha M; States, J Christopher; Hein, David W

    2018-04-01

    Arylamine N-acetyltransferase 1 (NAT1) expression is reported to affect proliferation, invasiveness, and growth of cancer cells. MDA-MB-231 breast cancer cells were engineered such that NAT1 expression was elevated or suppressed, or treated with a small molecule inhibitor of NAT1. The MDA-MB-231 human breast cancer cell lines were engineered with a scrambled shRNA, a NAT1 specific shRNA or a NAT1 overexpression cassette stably integrated into a single flippase recognition target (FRT) site facilitating incorporation of these different genetic elements into the same genomic location. NAT1-specific shRNA reduced NAT1 activity in vitro by 39%, increased endogenous acetyl coenzyme A levels by 35%, and reduced anchorage-independent growth (sevenfold) without significant effects on cell morphology, growth rates, anchorage-dependent colony formation, or invasiveness compared to the scrambled shRNA cell line. Despite 12-fold overexpression of NAT1 activity in the NAT1 overexpression cassette transfected MDA-MB-231 cell line, doubling time, anchorage-dependent cell growth, anchorage-independent cell growth, and relative invasiveness were not changed significantly when compared to the scrambled shRNA cell line. A small molecule (5E)-[5-(4-hydroxy-3,5-diiodobenzylidene)-2-thioxo-1,3-thiazolidin-4-one (5-HDST) was 25-fold more selective towards the inhibition of recombinant human NAT1 than N-acetyltransferase 2. Incubation of MDA-MB-231 cell line with 5-HDST resulted in 60% reduction in NAT1 activity and significant decreases in cell growth, anchorage-dependent growth, and anchorage-independent growth. In summary, inhibition of NAT1 activity by either shRNA or 5-HDST reduced anchorage-independent growth in the MDA-MB-231 human breast cancer cell line. These findings suggest that human NAT1 could serve as a target for the prevention and/or treatment of breast cancer. © 2018 Wiley Periodicals, Inc.

  3. Candidate Chemosensory Genes in the Stemborer Sesamia nonagrioides

    PubMed Central

    Glaser, Nicolas; Gallot, Aurore; Legeai, Fabrice; Montagné, Nicolas; Poivet, Erwan; Harry, Myriam; Calatayud, Paul-André; Jacquin-Joly, Emmanuelle

    2013-01-01

    The stemborer Sesamia nonagrioides is an important pest of maize in the Mediterranean Basin. Like other moths, this noctuid uses its chemosensory system to efficiently interact with its environment. However, very little is known on the molecular mechanisms that underlie chemosensation in this species. Here, we used next-generation sequencing (454 and Illumina) on different tissues from adult and larvae, including chemosensory organs and female ovipositors, to describe the chemosensory transcriptome of S. nonagrioides and identify key molecular components of the pheromone production and detection systems. We identified a total of 68 candidate chemosensory genes in this species, including 31 candidate binding-proteins and 23 chemosensory receptors. In particular, we retrieved the three co-receptors Orco, IR25a and IR8a necessary for chemosensory receptor functioning. Focusing on the pheromonal communication system, we identified a new pheromone-binding protein in this species, four candidate pheromone receptors and 12 carboxylesterases as candidate acetate degrading enzymes. In addition, we identified enzymes putatively involved in S. nonagrioides pheromone biosynthesis, including a ∆11-desaturase and different acetyltransferases and reductases. RNAseq analyses and RT-PCR were combined to profile gene expression in different tissues. This study constitutes the first large scale description of chemosensory genes in S. nonagrioides. PMID:23781142

  4. Arylamine N-acetyltransferase 2 genotype-dependent N-acetylation of isoniazid in cryopreserved human hepatocytes.

    PubMed

    Doll, Mark A; Salazar-González, Raúl A; Bodduluri, Srineil; Hein, David W

    2017-07-01

    Cryopreserved human hepatocytes were used to investigate the role of arylamine N -acetyltransferase 2 (NAT2; EC 2.3.1.5) polymorphism on the N -acetylation of isoniazid (INH). NAT2 genotype was determined by Taqman allelic discrimination assay and INH N -acetylation was measured by high performance liquid chromatography. INH N -acetylation rates in vitro exhibited a robust and highly significant ( P <0.005) NAT2 phenotype-dependent metabolism. N -acetylation rates in situ were INH concentration- and time-dependent. Following incubation for 24 h with 12.5 or 100 µmol/L INH, acetyl-INH concentrations varied significantly ( P = 0.0023 and P = 0.0002) across cryopreserved human hepatocytes samples from rapid, intermediate, and slow acetylators, respectively. The clear association between NAT2 genotype and phenotype supports use of NAT2 genotype to guide INH dosing strategies in the treatment and prevention of tuberculosis.

  5. Association of N-acetyltransferase-2 polymorphism with an increased risk of coronary heart disease in a Chinese population.

    PubMed

    Sun, J D; Yuan, H; Hu, H Q; Yu, H M

    2016-03-04

    We investigated the possible correlations between N-acetyltransferase-2 (NAT2) gene polymorphisms and the risk of coronary heart disease (CHD). CHD patients (113) and healthy controls (118) were enrolled from the First People's Hospital of Yuhang between January 2013 and June 2014. The patients were divided into mild CHD (N = 72) and severe CHD (N = 41) subgroups. DNA samples were extracted and the distributions of NAT2 polymorphisms were examined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Clinical characteristic indexes of severe CHD patients were also examined for relevant statistical analysis. WT, M1, M2, and M3 alleles were observed in both case and control groups. PCR-RFLP identified a wild-type homozygote, WT/WT; a mutant heterozygote, WT/Mx; and a mutant homozygote, Mx/Mx (x = 1, 2, and 3) variant of the NAT2 genotype. Mx/Mx differed significantly between case and control groups (P < 0.05); the frequencies of all four alleles did not differ significantly between case and control groups (P > 0.05). Slow acetylator genotype frequencies were notably higher in the case group than in the control group (P < 0.05). Individuals with the slow acetylator genotype were at 1.97-times higher risk of CHD and also displayed higher triglyceride and lower high-density lipoprotein cholesterol levels than those with the rapid acetylator genotype (P < 0.05). Therefore, the NAT2 polymorphism was believed to be associated with increased risk of CHD, with the NAT2 slow acetylator genotype serving as a risk factor for severe CHD in a Chinese population.

  6. A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses.

    PubMed

    He, Peng; Zhang, Yun-Fei; Hong, Duan-Yang; Wang, Jun; Wang, Xing-Liang; Zuo, Ling-Hua; Tang, Xian-Fu; Xu, Wei-Ming; He, Ming

    2017-03-01

    Female moths synthesize species-specific sex pheromone components and release them to attract male moths, which depend on precise sex pheromone chemosensory system to locate females. Two types of genes involved in the sex pheromone biosynthesis and degradation pathways play essential roles in this important moth behavior. To understand the function of genes in the sex pheromone pathway, this study investigated the genome-wide and digital gene expression of sex pheromone biosynthesis and degradation genes in various adult tissues in the diamondback moth (DBM), Plutella xylostella, which is a notorious vegetable pest worldwide. A massive transcriptome data (at least 39.04 Gb) was generated by sequencing 6 adult tissues including male antennae, female antennae, heads, legs, abdomen and female pheromone glands from DBM by using Illumina 4000 next-generation sequencing and mapping to a published DBM genome. Bioinformatics analysis yielded a total of 89,332 unigenes among which 87 transcripts were putatively related to seven gene families in the sex pheromone biosynthesis pathway. Among these, seven [two desaturases (DES), three fatty acyl-CoA reductases (FAR) one acetyltransferase (ACT) and one alcohol dehydrogenase (AD)] were mainly expressed in the pheromone glands with likely function in the three essential sex pheromone biosynthesis steps: desaturation, reduction, and esterification. We also identified 210 odorant-degradation related genes (including sex pheromone-degradation related genes) from seven major enzyme groups. Among these genes, 100 genes are new identified and two aldehyde oxidases (AOXs), one aldehyde dehydrogenase (ALDH), five carboxyl/cholinesterases (CCEs), five UDP-glycosyltransferases (UGTs), eight cytochrome P450 (CYP) and three glutathione S-transferases (GSTs) displayed more robust expression in the antennae, and thus are proposed to participate in the degradation of sex pheromone components and plant volatiles. To date, this is the most

  7. Two distinct promoters drive transcription of the human D1A dopamine receptor gene.

    PubMed

    Lee, S H; Minowa, M T; Mouradian, M M

    1996-10-11

    The human D1A dopamine receptor gene has a GC-rich, TATA-less promoter located upstream of a small, noncoding exon 1, which is separated from the coding exon 2 by a 116-base pair (bp)-long intron. Serial 3'-deletions of the 5'-noncoding region of this gene, including the intron and 5'-end of exon 2, resulted in 80 and 40% decrease in transcriptional activity of the upstream promoter in two D1A-expressing neuroblastoma cell lines, SK-N-MC and NS20Y, respectively. To investigate the function of this region, the intron and 245 bp at the 5'-end of exon 2 were investigated. Transient expression analyses using various chloramphenicol acetyltransferase constructs showed that the transcriptional activity of the intron is higher than that of the upstream promoter by 12-fold in SK-N-MC cells and by 5.5-fold in NS20Y cells in an orientation-dependent manner, indicating that the D1A intron is a strong promoter. Primer extension and ribonuclease protection assays revealed that transcription driven by the intron promoter is initiated at the junction of intron and exon 2 and at a cluster of nucleotides located 50 bp downstream from this junction. The same transcription start sites are utilized by the chloramphenicol acetyltransferase constructs employed in transfections as well as by the D1A gene expressed within the human caudate. The relative abundance of D1A transcripts originating from the upstream promoter compared with those transcribed from the intron promoter is 1.5-2.9 times in SK-N-MC cells and 2 times in the human caudate. Transcript stability studies in SK-N-MC cells revealed that longer D1A mRNA molecules containing exon 1 are degraded 1.8 times faster than shorter transcripts lacking exon 1. Although gel mobility shift assay could not detect DNA-protein interaction at the D1A intron, competitive co-transfection using the intron as competitor confirmed the presence of trans-acting factors at the intron. These data taken together indicate that the human D1A gene has

  8. Regulation of adeno-associated virus gene expression in 293 cells: control of mRNA abundance and translation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trempe, J.P.; Carter, B.J.

    1988-01-01

    The authors studied the effects of the adeno-associated virus (AAV) rep gene on the control of gene expression from the AAV p/sub 40/ promoter in 293 cells in the absence of an adenovirus coinfection. AAV vectors containing the chloramphenicol acetyltransferase (cat) gene were used to measure the levels of cat expression and steady-state mRNA from p/sub 40/. When the rep gene was present in cis or in trans, cat expression from p/sub 40/ was decreased 3- to 10-fold, but there was a 2- to 10-fold increase in the level of p/sub 40/ mRNA. Conversely, cat expression increased and the p/submore » 40/ mRNA level decreased in the absence of the rep gene. Both wild-type and carboxyl-terminal truncated Rep proteins were capable of eliciting both effects. These data suggest two roles for the pleiotropic AAV rep gene: as a translational inhibitor and as a positive regulator of p/sub 40/ mRNA levels. They also provide additional evidence for a cis-acting negative regulatory region which decreases RNA from the AAV p/sub 5/ promoter in a fashion independent of rep.« less

  9. Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes.

    PubMed

    Amos, G C A; Zhang, L; Hawkey, P M; Gaze, W H; Wellington, E M

    2014-07-16

    The environment harbours a significant diversity of uncultured bacteria and a potential source of novel and extant resistance genes which may recombine with clinically important bacteria disseminated into environmental reservoirs. There is evidence that pollution can select for resistance due to the aggregation of adaptive genes on mobile elements. The aim of this study was to establish the impact of waste water treatment plant (WWTP) effluent disposal to a river by using culture independent methods to study diversity of resistance genes downstream of the WWTP in comparison to upstream. Metagenomic libraries were constructed in Escherichia coli and screened for phenotypic resistance to amikacin, gentamicin, neomycin, ampicillin and ciprofloxacin. Resistance genes were identified by using transposon mutagenesis. A significant increase downstream of the WWTP was observed in the number of phenotypic resistant clones recovered in metagenomic libraries. Common β-lactamases such as blaTEM were recovered as well as a diverse range of acetyltransferases and unusual transporter genes, with evidence for newly emerging resistance mechanisms. The similarities of the predicted proteins to known sequences suggested origins of genes from a very diverse range of bacteria. The study suggests that waste water disposal increases the reservoir of resistance mechanisms in the environment either by addition of resistance genes or by input of agents selective for resistant phenotypes. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors

    PubMed Central

    Hu, Jiabiao; Lei, Yong; Wong, Wing-Ki; Liu, Senquan; Lee, Kai-Chuen; He, Xiangjun; You, Wenxing; Zhou, Rui; Guo, Jun-Tao; Chen, Xiongfong; Peng, Xianlu; Sun, Hao; Huang, He; Zhao, Hui; Feng, Bo

    2014-01-01

    The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around −120 to −80 bp, while highly effective sgRNAs targeted from −147 to −89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells. PMID:24500196

  11. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors.

    PubMed

    Hu, Jiabiao; Lei, Yong; Wong, Wing-Ki; Liu, Senquan; Lee, Kai-Chuen; He, Xiangjun; You, Wenxing; Zhou, Rui; Guo, Jun-Tao; Chen, Xiongfong; Peng, Xianlu; Sun, Hao; Huang, He; Zhao, Hui; Feng, Bo

    2014-04-01

    The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around -120 to -80 bp, while highly effective sgRNAs targeted from -147 to -89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells.

  12. Epigenetics provides a new generation of oncogenes and tumour-suppressor genes

    PubMed Central

    Esteller, M

    2006-01-01

    Cancer is nowadays recognised as a genetic and epigenetic disease. Much effort has been devoted in the last 30 years to the elucidation of the ‘classical' oncogenes and tumour-suppressor genes involved in malignant cell transformation. However, since the acceptance that major disruption of DNA methylation, histone modification and chromatin compartments are a common hallmark of human cancer, epigenetics has come to the fore in cancer research. One piece is still missing from the story: are the epigenetic genes themselves driving forces on the road to tumorigenesis? We are in the early stages of finding the answer, and the data are beginning to appear: knockout mice defective in DNA methyltransferases, methyl-CpG-binding proteins and histone methyltransferases strongly affect the risk of cancer onset; somatic mutations, homozygous deletions and methylation-associated silencing of histone acetyltransferases, histone methyltransferases and chromatin remodelling factors are being found in human tumours; and the first cancer-prone families arising from germline mutations in epigenetic genes, such as hSNF5/INI1, have been described. Even more importantly, all these ‘new' oncogenes and tumour-suppressor genes provide novel molecular targets for designed therapies, and the first DNA-demethylating agents and inhibitors of histone deacetylases are reaching the bedside of patients with haematological malignancies. PMID:16404435

  13. Structural analysis of PseH, the Campylobacter jejuni N-acetyltransferase involved in bacterial O-linked glycosylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Wan Seok; Nam, Mi Sun; Namgung, Byeol

    2015-03-20

    Campylobacter jejuni is a bacterium that uses flagella for motility and causes worldwide acute gastroenteritis in humans. The C. jejuni N-acetyltransferase PseH (cjPseH) is responsible for the third step in flagellin O-linked glycosylation and plays a key role in flagellar formation and motility. cjPseH transfers an acetyl group from an acetyl donor, acetyl coenzyme A (AcCoA), to the amino group of UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine to produce UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. To elucidate the catalytic mechanism of cjPseH, crystal structures of cjPseH alone and in complex with AcCoA were determined at 1.95 Å resolution. cjPseH folds into a single-domain structure of a central β-sheet decorated by four α-helicesmore » with two continuously connected grooves. A deep groove (groove-A) accommodates the AcCoA molecule. Interestingly, the acetyl end of AcCoA points toward an open space in a neighboring shallow groove (groove-S), which is occupied by extra electron density that potentially serves as a pseudosubstrate, suggesting that the groove-S may provide a substrate-binding site. Structure-based comparative analysis suggests that cjPseH utilizes a unique catalytic mechanism of acetylation that has not been observed in other glycosylation-associated acetyltransferases. Thus, our studies on cjPseH will provide valuable information for the design of new antibiotics to treat C. jejuni-induced gastroenteritis. - Highlights: • cjPseH adopts a single-domain structure of a central β-sheet decorated by α-helices. • cjPseH features two continuously connected grooves on the protein surface. • Acetyl coenzyme A (AcCoA) binds into a deep groove of cjPseH in an ‘L’ shape. • The acetyl end of AcCoA points to a wide groove, a potential substrate-binding site.« less

  14. Arginine methylation regulates c-Myc-dependent transcription by altering promoter recruitment of the acetyltransferase p300.

    PubMed

    Tikhanovich, Irina; Zhao, Jie; Bridges, Brian; Kumer, Sean; Roberts, Ben; Weinman, Steven A

    2017-08-11

    Protein arginine methyltransferase 1 (PRMT1) is an essential enzyme controlling about 85% of the total cellular arginine methylation in proteins. We have shown previously that PRMT1 is an important regulator of innate immune responses and that it is required for M2 macrophage differentiation. c-Myc is a transcription factor that is critical in regulating cell proliferation and also regulates the M2 transcriptional program in macrophages. Here, we sought to determine whether c-Myc in myeloid cells is regulated by PRMT1-dependent arginine methylation. We found that PRMT1 activity was necessary for c-Myc binding to the acetyltransferase p300. PRMT1 inhibition decreased p300 recruitment to c-Myc target promoters and increased histone deacetylase 1 (HDAC1) recruitment, thereby decreasing transcription at these sites. Moreover, PRMT1 inhibition blocked c-Myc-mediated induction of several of its target genes, including peroxisome proliferator-activated receptor γ ( PPARG ) and mannose receptor C-type 1 ( MRC1 ), suggesting that PRMT1 is necessary for c-Myc function in M2 macrophage differentiation. Of note, in primary human blood monocytes, p300-c-Myc binding was strongly correlated with PRMT1 expression, and in liver sections, PRMT1, c-Myc, and M2 macrophage levels were strongly correlated with each other. Both PRMT1 levels and M2 macrophage numbers were significantly lower in livers from individuals with a history of spontaneous bacterial peritonitis, known to have defective cellular immunity. In conclusion, our findings demonstrate that PRMT1 is an important regulator of c-Myc function in myeloid cells. PRMT1 loss in individuals with cirrhosis may contribute to their immune defects. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Depletion of histone N-terminal-acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway.

    PubMed

    Pavlou, Demetria; Kirmizis, Antonis

    2016-03-01

    Protein N-terminal acetylation is an abundant post-translational modification in eukaryotes implicated in various fundamental cellular and biochemical processes. This modification is catalysed by evolutionarily conserved N-terminal acetyltransferases (NATs) whose deregulation has been linked to cancer development and thus, are emerging as useful diagnostic and therapeutic targets. Naa40 is a highly selective NAT that acetylates the amino-termini of histones H4 and H2A and acts as a sensor of cell growth in yeast. In the present study, we examine the role of Naa40 in cancer cell survival. We demonstrate that depletion of Naa40 in HCT116 and HT-29 colorectal cancer cells decreases cell survival by enhancing apoptosis, whereas Naa40 reduction in non-cancerous mouse embryonic fibroblasts has no effect on cell viability. Specifically, Naa40 knockdown in colon cancer cells activates the mitochondrial caspase-9-mediated apoptotic cascade. Consistent with this, we show that caspase-9 activation is required for the induced apoptosis because treatment of cells with an irreversible caspase-9 inhibitor impedes apoptosis when Naa40 is depleted. Furthermore, the effect of Naa40-depletion on cell-death is mediated through a p53-independent mechanism since p53-null HCT116 cells still undergo apoptosis upon reduction of the acetyltransferase. Altogether, these findings reveal an anti-apoptotic role for Naa40 and exhibit its potential as a therapeutic target in colorectal cancers.

  16. A Synthetic DNA-Binding Domain Guides Distinct Chromatin-Modifying Small Molecules to Activate an Identical Gene Network.

    PubMed

    Han, Le; Pandian, Ganesh N; Chandran, Anandhakumar; Sato, Shinsuke; Taniguchi, Junichi; Kashiwazaki, Gengo; Sawatani, Yoshito; Hashiya, Kaori; Bando, Toshikazu; Xu, Yufang; Qian, Xuhong; Sugiyama, Hiroshi

    2015-07-20

    Synthetic dual-function ligands targeting specific DNA sequences and histone-modifying enzymes were applied to achieve regulatory control over multi-gene networks in living cells. Unlike the broad array of targeting small molecules for histone deacetylases (HDACs), few modulators are known for histone acetyltransferases (HATs), which play a central role in transcriptional control. As a novel chemical approach to induce selective HAT-regulated genes, we conjugated a DNA-binding domain (DBD) "I" to N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-benzamide (CTB), an artificial HAT activator. In vitro enzyme activity assays and microarray studies were used to demonstrate that distinct functional small molecules could be transformed to have identical bioactivity when conjugated with a targeting DBD. This proof-of-concept synthetic strategy validates the switchable functions of HDACs and HATs in gene regulation and provides a molecular basis for developing versatile bioactive ligands. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Regulation of Spi 2.1 and 2.2 gene expression after turpentine inflammation: discordant responses to IL-6.

    PubMed

    Berry, S A; Bergad, P L; Stolz, A M; Towle, H C; Schwarzenberg, S J

    1999-06-01

    The rat serine protease inhibitor (Spi) 2 gene family includes both positive (Spi 2.2) and negative (Spi 2.1) acute phase reactants, facilitating modeling of regulation of hepatic acute phase response (APR). To examine the role of signal transducer and activation of transcription (STAT) proteins in the divergent regulation of these model genes after induction of APR, we evaluated the proximal promoters of the genes, focusing on STAT binding sites contained in these promoter elements. Induction of APR by turpentine injection includes activation of a STAT3 complex that can bind to a gamma-activated sequence (GAS) in the Spi 2.2 gene promoter, although the Spi 2.2 GAS site can bind STAT1 or STAT5 as well. To create an in vitro model of APR, primary hepatocytes were treated with combinations of cytokines and hormones to mimic the hormonal milieu of the whole animal after APR induction. Incubation of primary rat hepatocytes with interleukin (IL)-6, a critical APR cytokine, leads to activation of STAT3 and a 28-fold induction of a chloramphenicol acetyltransferase reporter construct containing the -319 to +85 region of the Spi 2.2 promoter. This suggests the turpentine-induced increase of Spi 2.2 is mediated primarily by IL-6. In contrast, although turpentine treatment reduces Spi 2.1 mRNA in vivo and IL-6 does not increase Spi 2.1 mRNA in primary rat hepatocytes, treatment of hepatocytes with IL-6 results in a 5. 4-fold induction of Spi 2.1 promoter activity mediated through the paired GAS elements in this promoter. Differential regulation of Spi 2.1 and 2.2 genes is due in part to differences in the promoters of these genes at the GAS sites. IL-6 alone fails to reproduce the pattern of rat Spi 2 gene expression that results from turpentine-induced inflammation.

  18. Characterization of the active site, substrate specificity and kinetic properties of acetyl-CoA:arylamine N-acetyltransferase from pigeon liver.

    PubMed

    Andres, H H; Kolb, H J; Schreiber, R J; Weiss, L

    1983-08-16

    It could be demonstrated that a sulfhydryl group is involved in the catalysis of acetyl-CoA:arylamine N-acetyltransferase from pigeon liver (EC 2.3.1.5). From ping-pong kinetics it was concluded that there is a covalent acetyl-enzyme intermediate. The respective intermediate could be isolated and chemically characterized as a cysteinyl thioester. Electrophoretically homogeneous acetyl-CoA:acylamine N-acetyltransferase from pigeon liver was able to acetylate a broad variety of aromatic and aliphatic amines from different acetyldonors such as acetyl-CoA, p-nitroacetanilide and p-nitrophenylacetate. Apparent Km values were determined for a number of acetyl donors and acetyl acceptors. Additionally, Ki values were evaluated for CoA, 3',5'-ADP and AMP. Correlation studies of basicity of acceptor amines and acetylation rate demonstrated that there is a limit of the pKa value (about pKa = 1) where the covalently-bound acetyl-enzyme intermediate can still be saponified. Testing crude liver homogenates of several animals including turkey, duck, chicken, cow, pig, horse, sheep, carp, trout and herring the outstanding nature of the pigeon liver enzyme in acetylating very weakly basic amines could be demonstrated. It is shown that the enzyme is quite flexible concerning sterically different acceptor amines, because arylamines whose amino group was effected by large o-substituents could be quantitatively acetylated. After enzymatic acetylation of the first amino group, 1,2-phenylendiamine formed the heterocyclic compound 2-methylbenzimidazole by a spontaneous condensation reaction. There is evidence that with distinct amines formation of heterocyclic compounds may also occur in vivo.

  19. Sulfonamide-Based Inhibitors of Aminoglycoside Acetyltransferase Eis Abolish Resistance to Kanamycin in Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzan, Atefeh; Willby, Melisa J.; Green, Keith D.

    A two-drug combination therapy where one drug targets an offending cell and the other targets a resistance mechanism to the first drug is a time-tested, yet underexploited approach to combat or prevent drug resistance. By high-throughput screening, we identified a sulfonamide scaffold that served as a pharmacophore to generate inhibitors of Mycobacterium tuberculosis acetyltransferase Eis, whose upregulation causes resistance to the aminoglycoside (AG) antibiotic kanamycin A (KAN) in Mycobacterium tuberculosis. Rational systematic derivatization of this scaffold to maximize Eis inhibition and abolish the Eis-mediated KAN resistance of M. tuberculosis yielded several highly potent agents. A crystal structure of Eis inmore » complex with one of the most potent inhibitors revealed that the inhibitor bound Eis in the AG-binding pocket held by a conformationally malleable region of Eis (residues 28–37) bearing key hydrophobic residues. These Eis inhibitors are promising leads for preclinical development of innovative AG combination therapies against resistant TB.« less

  20. Nucleosome Recognition by the Piccolo NuA4 Histone Acetyltransferase Complex†

    PubMed Central

    Berndsen, Christopher E.; Selleck, William; McBryant, Steven J.; Hansen, Jeffrey C.; Tan, Song; Demi, John M.

    2007-01-01

    The mechanisms by which multisubunit histone acetyltransferase (HAT) complexes recognize and perform efficient acetylation on nucleosome substrates are largely unknown. Here, we use a variety of biochemical approaches and compare histone-based substrates of increasing complexity to determine the critical components of nucleosome recognition by the MOZ, Ybf2/Sas3, Sas2, Tip60 family HAT complex, Piccolo NuA4 (picNuA4). We find the histone tails to be dispensable for binding to both nucleosomes and free histones and that the H2A, H3, and H2B tails do not influence the ability of picNuA4 to tetra-acetylate the H4 tail within the nucleosome. Most notably, we discovered that the histone-fold domain (HFD) regions of histones, particularly residues 21–52 of H4, are critical for tight binding and efficient tail acetylation. Presented evidence suggests that picNuA4 recognizes the open surface of the nucleosome on which the HFD of H4 is located. This binding mechanism serves to direct substrate access to the tails of H4 and H2A and allows the enzyme to be “tethered”, thereby increasing the effective concentration of the histone tail and permitting successive cycles of H4 tail acetylation. PMID:17274630

  1. N-Acetyltransferase Polymorphism and Risk of Colorectal Adenoma and Cancer: A Pooled Analysis of Variations from 59 Studies

    PubMed Central

    Wang, Xiaoxue; Chen, Yizhi; Li, Rong; Zhang, Ying; Luo, Rongcheng

    2012-01-01

    Background There have been an increasing number of studies with evidence suggesting that the N-acetyltransferase 1 (NAT1) and N-acetyltransferase 2 (NAT2) genotypes may be implicated in the development of colorectal cancer (CRC) and colorectal adenoma (CRA). So far the published data on this association has remained controversial, however. We performed a meta-analysis of case-cohort and case-control studies using a subset of the published data, with an aim to derive a better understanding of the underlying relationship. Methods/Principal Findings A literature search was performed using Medline database for relevant studies published through October 31, 2011. A total of 39 publications were selected for this meta-analysis, including 11,724 cases and 16,215 controls for CRC, and 3,701 cases and 5,149 controls for CRA. In our pooled analysis of all these studies, the results of our meta-analysis suggested that the NAT1 genotype was not significantly associated with an elevated CRC risk (OR 0.99, 95% CI 0.91–1.07). We also found that individuals with the rapid NAT2 genotype did have an elevated risk of CRC (OR 1.07, 95% CI 1.01–1.13). There was no evidence for an association between the NAT1 and 2 rapid genotype and an elevated CRA risk (NAT1: OR 1.14, 95% CI 0.99–1.29; NAT2: OR 0.94, 95% CI 0.86–1.03). Conclusion This meta-analysis suggests that individuals with NAT2 genotype had an elevated risk of CRC. There was no evidence for the association between NAT1 and 2 rapid genotype and CRA risk. PMID:22905173

  2. Choline acetyltransferase and organic cation transporters are responsible for synthesis and propionate-induced release of acetylcholine in colon epithelium.

    PubMed

    Bader, Sandra; Klein, Jochen; Diener, Martin

    2014-06-15

    Acetylcholine is not only a neurotransmitter, but is found in a variety of non-neuronal cells. For example, the enzyme choline acetyltransferase (ChAT), catalyzing acetylcholine synthesis, is expressed by the colonic epithelium of different species. These cells release acetylcholine across the basolateral membrane after luminal exposure to propionate, a short-chain fatty acid. The functional consequence is the induction of chloride secretion, measurable as increase in short-circuit current (Isc) in Ussing chamber experiments. It is unclear how acetylcholine is produced and released by colonic epithelium. Therefore, the aim of the present study was the identification (on mRNA and protein level) and functional characterization (in Ussing chamber experiments combined with HPLC detection of acetylcholine) of transporters/enzymes in the cholinergic system of rat colonic epithelium. Immunohistochemical staining as well as RT-PCR revealed the expression of high-affinity choline transporter, ChAT, carnitine acetyltransferase (CarAT), vesicular acetylcholine transporter (VAChT), and organic cation transporters (OCT 1, 2, 3) in colonic epithelium. In contrast to blockade of ChAT with bromoacetylcholine, inhibition of CarAT with mildronate did not inhibit the propionate-induced increase in Isc, suggesting a predominant synthesis of epithelial acetylcholine by ChAT. Although being expressed, blockade of VAChT with vesamicol was ineffective, whereas inhibition of OCTs with omeprazole and corticosterone inhibited propionate-induced Isc and the release of acetylcholine into the basolateral compartment. In summary, OCTs seem to be involved in regulated acetylcholine release by colonic epithelium, which is assumed to be involved in chemosensing of luminal short-chain fatty acids by the intestinal epithelium. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A direct, ratiometric, and quantitative MALDI–MS assay for protein methyltransferases and acetyltransferases

    PubMed Central

    Richardson, Stacie L.; Hanjra, Pahul; Zhang, Gang; Mackie, Brianna D.; Peterson, Darrell L.; Huang, Rong

    2016-01-01

    Protein methylation and acetylation play important roles in biological processes, and misregulation of these modifications is involved in various diseases. Therefore, it is critical to understand the activities of the enzymes responsible for these modifications. Herein we describe a sensitive method for ratiometric quantification of methylated and acetylated peptides via MALDI-MS by direct spotting of enzymatic methylation and acetylation reaction mixtures without tedious purification procedures. The quantifiable detection limit for peptides with our method is approximately 10 fmol. This is achieved by increasing the signal-to-noise ratio through the addition of NH4H2PO4 to the matrix solution and reduction of the matrix α-cyanohydroxycinnamic acid concentration to 2 mg/ml. We have demonstrated the application of this method in enzyme kinetic analysis and inhibition studies. The unique feature of this method is the simultaneous quantification of multiple peptide species for investigation of processivity mechanisms. Its wide buffer compatibility makes it possible to be adapted to investigate the activity of any protein methyltransferase or acetyltransferase. PMID:25778392

  4. [Construction and function identification of luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR].

    PubMed

    Yang, Shuo; Li, Jia-li; Bi, Hui-chang; Zhou, Shou-ning; Liu, Xiao-man; Zeng, Hang; Hu, Bing-fang; Huang, Min

    2016-01-01

    This study aims to investigate the function of two SNPs (rs8904C > T and rs696G >A) in 3' untranslated region (3'UTR) of NFKBIA gene by constructing luciferase reporter gene. A patient's genomic DNA with rs8904 CC and rs696 GA genotype was used as the PCR template. Full-length 3'UTR of NFKBIA gene was amplified by different primers. After sequencing validation, these fragments were inserted to the luciferase reporter vector, pGL3-promoter to construct recombinant plasmids containing four kinds of haplotypes, pGL3-rs8904C/rs696G, pGL3-rs8904C/rs696A, pGL3-rs8904T/rs696G and pGL3-rs8904T/rs696A. Then these plasmids were transfected into LS174T cells and the luciferase activity was detected. Compared with pGL3-vector transfected cells (negative control), the luciferase activity of the four kinds of recombinant plasmids was significantly decreased (P < 0.001). For rs696G > A, the luciferase activity of the recombinant plasmids containing A allele (pGL3-rs8904C/rs696A and pGL3-rs8904T/rs696A) was about 45.1% (P < 0.05) and 56.1% (P < 0.001) lower than those containing G allele (pGL3-rs8904C/rs696G and pGL3-rs8904T/rs696G), respectively. For rs8904C > T, there were no significant differences in the luciferase activity between the recombinant plasmids containing T allele and those with C allele. Together, the luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR were constructed successfully and rs696G > A could decrease the luciferase activity while rs8904C >T didn't have much effect on the luciferase activity.

  5. Dual reporter transgene driven by 2.3Col1a1 promoter is active in differentiated osteoblasts

    NASA Technical Reports Server (NTRS)

    Marijanovic, Inga; Jiang, Xi; Kronenberg, Mark S.; Stover, Mary Louise; Erceg, Ivana; Lichtler, Alexander C.; Rowe, David W.

    2003-01-01

    AIM: As quantitative and spatial analyses of promoter reporter constructs are not easily performed in intact bone, we designed a reporter gene specific to bone, which could be analyzed both visually and quantitatively by using chloramphenicol acetyltransferase (CAT) and a cyan version of green fluorescent protein (GFPcyan), driven by a 2.3-kb fragment of the rat collagen promoter (Col2.3). METHODS: The construct Col2.3CATiresGFPcyan was used for generating transgenic mice. Quantitative measurement of promoter activity was performed by CAT analysis of different tissues derived from transgenic animals; localization was performed by visualized GFP in frozen bone sections. To assess transgene expression during in vitro differentiation, marrow stromal cell and neonatal calvarial osteoblast cultures were analyzed for CAT and GFP activity. RESULTS: In mice, CAT activity was detected in the calvaria, long bone, teeth, and tendon, whereas histology showed that GFP expression was limited to osteoblasts and osteocytes. In cell culture, increased activity of CAT correlated with increased differentiation, and GFP activity was restricted to mineralized nodules. CONCLUSION: The concept of a dual reporter allows a simultaneous visual and quantitative analysis of transgene activity in bone.

  6. Acetylation of hMOF Modulates H4K16ac to Regulate DNA Repair Genes in Response to Oxidative Stress.

    PubMed

    Zhong, Jianing; Ji, Liying; Chen, Huiqian; Li, Xianfeng; Zhang, Jian'an; Wang, Xingxing; Wu, Weilin; Xu, Ying; Huang, Fei; Cai, Wanshi; Sun, Zhong Sheng

    2017-01-01

    Oxidative stress is considered to be a key risk state for a variety of human diseases. In response to oxidative stress, the regulation of transcriptional expression of DNA repair genes would be important to DNA repair and genomic stability. However, the overall pattern of transcriptional expression of DNA repair genes and the underlying molecular response mechanism to oxidative stress remain unclear. Here, by employing colorectal cancer cell lines following exposure to hydrogen peroxide, we generated expression profiles of DNA repair genes via RNA-seq and identified gene subsets that are induced or repressed following oxidative stress exposure. RRBS-seq analyses further indicated that transcriptional regulation of most of the DNA repair genes that were induced or repressed is independent of their DNA methylation status. Our analyses also indicate that hydrogen peroxide induces deacetylase SIRT1 which decreases chromatin affinity and the activity of histone acetyltransferase hMOF toward H4K16ac and results in decreased transcriptional expression of DNA repair genes. Taken together, our findings provide a potential mechanism by which oxidative stress suppresses DNA repair genes which is independent of the DNA methylation status of their promoters.

  7. Distribution and co-localization of choline acetyltransferase and p75 neurotrophin receptors in the sheep basal forebrain: implications for the use of a specific cholinergic immunotoxin.

    PubMed

    Ferreira, G; Meurisse, M; Tillet, Y; Lévy, F

    2001-01-01

    The basal forebrain cholinergic system is involved in different forms of memory. To study its role in social memory in sheep, an immunotoxin, ME20.4 immunoglobulin G (IgG)-saporin, was developed that is specific to basal forebrain cholinergic neurons bearing the p75 neurotrophin receptor. The distribution of sheep cholinergic neurons was mapped with an antibody against choline acetyltransferase. To assess the localization of the p75 receptor on basal forebrain cholinergic neurons, the distribution of p75 receptor-immunoreactive neurons with ME20.4 IgG was examined, and a double-labeling study with antibodies against choline acetyltransferase and p75 receptor was undertaken. The loss of basal forebrain cholinergic neurons and acetylcholinesterase fibers in basal forebrain projection areas was assessed in ewes that had received intracerebroventricular injections of the immunotoxin (50, 100 or 150 microg) alone, as well as, in some of the ewes treated with the highest dose, with bilateral immunotoxin injections in the nucleus basalis (11 microg/side). Results indicated that choline acetyltransferase- and p75 receptor-immunoreactive cells had similar distributions in the medial septum, the vertical and horizontal limbs of the band of Broca, and the nucleus basalis. The double-labeling procedure revealed that 100% of the cholinergic neurons are also p75 receptor positive in the medial septum and in the vertical and horizontal limbs of the band of Broca, and 82% in the nucleus basalis. Moreover, 100% of the p75 receptor-immunoreactive cells of these four nuclei were cholinergic. Combined immunotoxin injections into ventricles and the nucleus basalis produced a near complete loss (80-95%) of basal forebrain cholinergic neurons and acetylcholinesterase-positive fibers in the hippocampus, olfactory bulb and entorhinal cortex. This study provides the first anatomical data concerning the basal forebrain cholinergic system in ungulates. The availability of a selective

  8. Acute murine colitis reduces colonic 5-aminosalicylic acid metabolism by regulation of N-acetyltransferase-2

    PubMed Central

    Ramírez-Alcántara, Verónica

    2014-01-01

    Pharmacotherapy based on 5-aminosalicylic acid (5-ASA) is a preferred treatment for ulcerative colitis, but variable patient response to this therapy is observed. Inflammation can affect therapeutic outcomes by regulating the expression and activity of drug-metabolizing enzymes; its effect on 5-ASA metabolism by the colonic arylamine N-acetyltransferase (NAT) enzyme isoforms is not firmly established. We examined if inflammation affects the capacity for colonic 5-ASA metabolism and NAT enzyme expression. 5-ASA metabolism by colonic mucosal homogenates was directly measured with a novel fluorimetric rate assay. 5-ASA metabolism reported by the assay was dependent on Ac-CoA, inhibited by alternative NAT substrates (isoniazid, p-aminobenzoylglutamate), and saturable with Km (5-ASA) = 5.8 μM. A mouse model of acute dextran sulfate sodium (DSS) colitis caused pronounced inflammation in central and distal colon, and modest inflammation of proximal colon, defined by myeloperoxidase activity and histology. DSS colitis reduced capacity for 5-ASA metabolism in central and distal colon segments by 52 and 51%, respectively. Use of selective substrates of NAT isoforms to inhibit 5-ASA metabolism suggested that mNAT2 mediated 5-ASA metabolism in normal and colitis conditions. Western blot and real-time RT-PCR identified that proximal and distal mucosa had a decreased mNAT2 protein-to-mRNA ratio after DSS. In conclusion, an acute colonic inflammation impairs the expression and function of mNAT2 enzyme, thereby diminishing the capacity for 5-ASA metabolism by colonic mucosa. PMID:24742986

  9. Deficiency of N-acetyltransferase increases the interactions of isoniazid with endobiotics in mouse liver.

    PubMed

    Wang, Pengcheng; Shehu, Amina I; Lu, Jie; Joshi, Rujuta H; Venkataramanan, Raman; Sugamori, Kim S; Grant, Denis M; Zhong, Xiao-Bo; Ma, Xiaochao

    2017-12-01

    Acetylation is the major metabolic pathway of isoniazid (INH) mediated by N-acetyltransferases (NATs). Previous reports suggest that slow acetylators have higher risks of INH hepatotoxicity than rapid acetylators, but the detailed mechanisms remain elusive. The current study used Nat1/2(-/-) mice to mimic NAT slow metabolizers and to investigate INH metabolism in the liver. We found that INH acetylation is abolished in the liver of Nat1/2(-/-) mice, suggesting that INH acetylation is fully dependent on NAT1/2. In addition to the acetylation pathway, INH can be hydrolyzed to form hydrazine (Hz) and isonicotinic acid (INA). We found that INA level was not altered in the liver of Nat1/2(-/-) mice, indicating that deficiency of NAT1/2 has no effect on INH hydrolysis. Because INH acetylation was abolished and INH hydrolysis was not altered in Nat1/2(-/-) mice, we expected an extremely high level of INH in the liver. However, we only observed a modest accumulation of INH in the liver of Nat1/2(-/-) mice, suggesting that there are alternative pathways in INH metabolism in NAT1/2 deficient condition. Our further studies revealed that the conjugated metabolites of INH with endobiotics, including fatty acids and vitamin B6, were significantly increased in the liver of Nat1/2(-/-) mice. In summary, this study illustrated that deficiency of NAT1/2 decreases INH acetylation, but increases the interactions of INH with endobiotics in the liver. These findings can be used to guide future studies on the mechanisms of INH hepatotoxicity in NAT slow metabolizers. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The human oxytocin gene promoter is regulated by estrogens.

    PubMed

    Richard, S; Zingg, H H

    1990-04-15

    Gonadal steroids affect brain function primarily by altering the expression of specific genes, yet the specific mechanisms by which neuronal target genes undergo such regulation are unknown. Recent evidence suggests that the expression of the neuropeptide gene for oxytocin (OT) is modulated by estrogens. We therefore examined the possibility that this regulation occurred via a direct interaction of the estrogen-receptor complex with cis-acting elements flanking the OT gene. DNA-mediated gene transfer experiments were performed using Neuro-2a neuroblastoma cells and chimeric plasmids containing portions of the human OT gene 5'-glanking region linked to the chloramphenicol acetyltransferase gene. We identified a 19-base pair region located at -164 to -146 upstream of the transcription start site which is capable of conferring estrogen responsiveness to the homologous as well as to a heterologous promoter. The hormonal response is strictly dependent on the presence of intracellular estrogen receptors, since estrogen induced stimulation occurred only in Neuro-2a cells co-transfected with an expression vector for the human estrogen receptor. The identified region contains a novel imperfect palindrome (GGTGACCTTGACC) with sequence similarity to other estrogen response elements (EREs). To define cis-acting elements that function in synergism with the ERE, sequences 3' to the ERE were deleted, including the CCAAT box, two additional motifs corresponding to the right half of the ERE palindrome (TGACC), as well as a CTGCTAA heptamer similar to the "elegans box" found in Caenorhabditis elegans. Interestingly, optimal function of the identified ERE was fully independent of these elements and only required a short promoter region (-49 to +36). Our studies define a molecular mechanism by which estrogens can directly modulate OT gene expression. However, only a subset of OT neurons are capable of binding estrogens, therefore, direct action of estrogens on the OT gene may be

  11. Structure-activity relationships and colorimetric properties of specific probes for the putative cancer biomarker human arylamine N-acetyltransferase 1.

    PubMed

    Egleton, James E; Thinnes, Cyrille C; Seden, Peter T; Laurieri, Nicola; Lee, Siu Po; Hadavizadeh, Kate S; Measures, Angelina R; Jones, Alan M; Thompson, Sam; Varney, Amy; Wynne, Graham M; Ryan, Ali; Sim, Edith; Russell, Angela J

    2014-06-01

    A naphthoquinone inhibitor of human arylamine N-acetyltransferase 1 (hNAT1), a potential cancer biomarker and therapeutic target, has been reported which undergoes a distinctive concomitant color change from red to blue upon binding to the enzyme. Here we describe the use of in silico modeling alongside structure-activity relationship studies to advance the hit compound towards a potential probe to quantify hNAT1 levels in tissues. Derivatives with both a fifty-fold higher potency against hNAT1 and a two-fold greater absorption coefficient compared to the initial hit have been synthesized; these compounds retain specificity for hNAT1 and its murine homologue mNat2 over the isoenzyme hNAT2. A relationship between pKa, inhibitor potency and colorimetric properties has also been uncovered. The high potency of representative examples against hNAT1 in ZR-75-1 cell extracts also paves the way for the development of inhibitors with improved intrinsic sensitivity which could enable detection of hNAT1 in tissue samples and potentially act as tools for elucidating the unknown role hNAT1 plays in ER+ breast cancer; this could in turn lead to a therapeutic use for such inhibitors. Copyright © 2014. Published by Elsevier Ltd.

  12. Anacardic acid, a histone acetyltransferase inhibitor, modulates LPS-induced IL-8 expression in a human alveolar epithelial cell line A549

    PubMed Central

    Takizawa, Hajime

    2013-01-01

    Objective and design: The histone acetylation processes, which are believed to play a critical role in the regulation of many inflammatory genes, are reversible and regulated by histone acetyltransferases (HATs), which promote acetylation, and histone deacetylases (HDACs), which promote deacetylation. We studied the effects of lipopolysaccharide (LPS) on histone acetylation and its role in the regulation of interleukin (IL)-8 expression.  Material: A human alveolar epithelial cell line A549 was used in vitro. Methods: Histone H4 acetylation at the IL-8 promoter region was assessed by a chromatin immunoprecipitation (ChIP) assay. The expression and production of IL-8 were evaluated by quantitative polymerase chain reaction and specific immunoassay. Effects of a HDAC inhibitor, trichostatin A (TSA), and a HAT inhibitor, anacardic acid, were assessed.  Results: Escherichia coli-derived LPS showed a dose- and time-dependent stimulatory effect on IL-8 protein production and mRNA expression in A549 cells in vitro. LPS showed a significant stimulatory effect on histone H4 acetylation at the IL-8 promoter region by ChIP assay. Pretreatment with TSA showed a dose-dependent stimulatory effect on IL-8 release from A549 cells as compared to LPS alone. Conversely, pretreatment with anacardic acid inhibited IL-8 production and expression in A549 cells.  Conclusion: These data suggest that LPS-mediated proinflammatory responses in the lungs might be modulated via changing chromatin remodeling by HAT inhibition. PMID:24627774

  13. Evaluating Reported Candidate Gene Associations with Polycystic Ovary Syndrome

    PubMed Central

    Pau, Cindy; Saxena, Richa; Welt, Corrine Kolka

    2013-01-01

    Objective To replicate variants in candidate genes associated with PCOS in a population of European PCOS and control subjects. Design Case-control association analysis and meta-analysis. Setting Major academic hospital Patients Women of European ancestry with PCOS (n=525) and controls (n=472), aged 18 to 45 years. Intervention Variants previously associated with PCOS in candidate gene studies were genotyped (n=39). Metabolic, reproductive and anthropomorphic parameters were examined as a function of the candidate variants. All genetic association analyses were adjusted for age, BMI and ancestry and were reported after correction for multiple testing. Main Outcome Measure Association of candidate gene variants with PCOS. Results Three variants, rs3797179 (SRD5A1), rs12473543 (POMC), and rs1501299 (ADIPOQ), were nominally associated with PCOS. However, they did not remain significant after correction for multiple testing and none of the variants replicated in a sufficiently powered meta-analysis. Variants in the FBN3 gene (rs17202517 and rs73503752) were associated with smaller waist circumferences and variant rs727428 in the SHBG gene was associated with lower SHBG levels. Conclusion Previously identified variants in candidate genes do not appear to be associated with PCOS risk. PMID:23375202

  14. Klüver–Bucy syndrome associated with a recessive variant in HGSNAT in two siblings with Mucopolysaccharidosis type IIIC (Sanfilippo C)

    PubMed Central

    Hu, Hao; Hübner, Christoph; Lukacs, Zoltan; Musante, Luciana; Gill, Esther; Wienker, Thomas F; Ropers, Hans-Hilger; Knierim, Ellen; Schuelke, Markus

    2017-01-01

    Klüver–Bucy syndrome (KBS) comprises a set of neurobehavioral symptoms with psychic blindness, hypersexuality, disinhibition, hyperorality, and hypermetamorphosis that were originally observed after bilateral lobectomy in Rhesus monkeys. We investigated two siblings with KBS from a consanguineous family by whole-exome sequencing and autozygosity mapping. We detected a homozygous variant in the heparan-α-glucosaminidase-N-acetyltransferase gene (HGSNAT; c.518G>A, p.(G173D), NCBI ClinVar RCV000239404.1), which segregated with the phenotype. Disease-causing variants in this gene are known to be associated with autosomal recessive Mucopolysaccharidosis type IIIC (MPSIIIC, Sanfilippo C). This lysosomal storage disease is due to deficiency of the acetyl-CoA:α-glucosaminidase-N-acetyltransferase, which was shown to be reduced in patient fibroblasts. Our report extends the phenotype associated with MPSIIIC. Besides MPSIIIA and MPSIIIB, due to variants in SGSH and NAGLU, this is the third subtype of Sanfilippo disease to be associated with KBS. MPSIII should be included in the differential diagnosis of young patients with KBS. PMID:27827379

  15. Klüver-Bucy syndrome associated with a recessive variant in HGSNAT in two siblings with Mucopolysaccharidosis type IIIC (Sanfilippo C).

    PubMed

    Hu, Hao; Hübner, Christoph; Lukacs, Zoltan; Musante, Luciana; Gill, Esther; Wienker, Thomas F; Ropers, Hans-Hilger; Knierim, Ellen; Schuelke, Markus

    2017-02-01

    Klüver-Bucy syndrome (KBS) comprises a set of neurobehavioral symptoms with psychic blindness, hypersexuality, disinhibition, hyperorality, and hypermetamorphosis that were originally observed after bilateral lobectomy in Rhesus monkeys. We investigated two siblings with KBS from a consanguineous family by whole-exome sequencing and autozygosity mapping. We detected a homozygous variant in the heparan-α-glucosaminidase-N-acetyltransferase gene (HGSNAT; c.518G>A, p.(G173D), NCBI ClinVar RCV000239404.1), which segregated with the phenotype. Disease-causing variants in this gene are known to be associated with autosomal recessive Mucopolysaccharidosis type IIIC (MPSIIIC, Sanfilippo C). This lysosomal storage disease is due to deficiency of the acetyl-CoA:α-glucosaminidase-N-acetyltransferase, which was shown to be reduced in patient fibroblasts. Our report extends the phenotype associated with MPSIIIC. Besides MPSIIIA and MPSIIIB, due to variants in SGSH and NAGLU, this is the third subtype of Sanfilippo disease to be associated with KBS. MPSIII should be included in the differential diagnosis of young patients with KBS.

  16. A Dual-Color Reporter Assay of Cohesin-Mediated Gene Regulation in Budding Yeast Meiosis.

    PubMed

    Fan, Jinbo; Jin, Hui; Yu, Hong-Guo

    2017-01-01

    In this chapter, we describe a quantitative fluorescence-based assay of gene expression using the ratio of the reporter green fluorescence protein (GFP) to the internal red fluorescence protein (RFP) control. With this dual-color heterologous reporter assay, we have revealed cohesin-regulated genes and discovered a cis-acting DNA element, the Ty1-LTR, which interacts with cohesin and regulates gene expression during yeast meiosis. The method described here provides an effective cytological approach for quantitative analysis of global gene expression in budding yeast meiosis.

  17. Bone Metastasis in Advanced Breast Cancer: Analysis of Gene Expression Microarray.

    PubMed

    Cosphiadi, Irawan; Atmakusumah, Tubagus D; Siregar, Nurjati C; Muthalib, Abdul; Harahap, Alida; Mansyur, Muchtarruddin

    2018-03-08

    Approximately 30% to 40% of breast cancer recurrences involve bone metastasis (BM). Certain genes have been linked to BM; however, none have been able to predict bone involvement. In this study, we analyzed gene expression profiles in advanced breast cancer patients to elucidate genes that can be used to predict BM. A total of 92 advanced breast cancer patients, including 46 patients with BM and 46 patients without BM, were identified for this study. Immunohistochemistry and gene expression analysis was performed on 81 formalin-fixed paraffin-embedded samples. Data were collected through medical records, and gene expression of 200 selected genes compiled from 6 previous studies was performed using NanoString nCounter. Genetic expression profiles showed that 22 genes were significantly differentially expressed between breast cancer patients with metastasis in bone and other organs (BM+) and non-BM, whereas subjects with only BM showed 17 significantly differentially expressed genes. The following genes were associated with an increasing incidence of BM in the BM+ group: estrogen receptor 1 (ESR1), GATA binding protein 3 (GATA3), and melanophilin with an area under the curve (AUC) of 0.804. In the BM group, the following genes were associated with an increasing incidence of BM: ESR1, progesterone receptor, B-cell lymphoma 2, Rab escort protein, N-acetyltransferase 1, GATA3, annexin A9, and chromosome 9 open reading frame 116. ESR1 and GATA3 showed an increased strength of association with an AUC of 0.928. A combination of the identified 3 genes in BM+ and 8 genes in BM showed better prediction than did each individual gene, and this combination can be used as a training set. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    PubMed

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-07-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression.

  19. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    PubMed Central

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-01-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression. PMID:10861232

  20. Identification of cancer chemopreventive isothiocyanates as direct inhibitors of the arylamine N-acetyltransferase-dependent acetylation and bioactivation of aromatic amine carcinogens.

    PubMed

    Duval, Romain; Xu, Ximing; Bui, Linh-Chi; Mathieu, Cécile; Petit, Emile; Cariou, Kevin; Dodd, Robert H; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-02-23

    Aromatic amines (AAs) are chemicals of industrial, pharmacological and environmental relevance. Certain AAs, such as 4-aminobiphenyl (4-ABP), are human carcinogens that require enzymatic metabolic activation to reactive chemicals to form genotoxic DNA adducts. Arylamine N-acetyltransferases (NAT) are xenobiotic metabolizing enzymes (XME) that play a major role in this carcinogenic bioactivation process. Isothiocyanates (ITCs), including benzyl-ITC (BITC) and phenethyl-ITC (PEITC), are phytochemicals known to have chemopreventive activity against several aromatic carcinogens. In particular, ITCs have been shown to modify the bioactivation and subsequent mutagenicity of carcinogenic AA chemicals such as 4-ABP. However, the molecular and biochemical mechanisms by which these phytochemicals may modulate AA carcinogens bioactivation and AA-DNA damage remains poorly understood. This manuscript provides evidence indicating that ITCs can decrease the metabolic activation of carcinogenic AAs via the irreversible inhibition of NAT enzymes and subsequent alteration of the acetylation of AAs. We demonstrate that BITC and PEITC react with NAT1 and inhibit readily its acetyltransferase activity (k(i) = 200 M(-1).s(-1) and 66 M(-1).s(-1) for BITC and PEITC, respectively). Chemical labeling, docking approaches and substrate protection assays indicated that inhibition of the acetylation of AAs by NAT1 was due to the chemical modification of the enzyme active site cysteine. Moreover, analyses of AAs acetylation and DNA adducts in cells showed that BITC was able to modulate the endogenous acetylation and bioactivation of 4-ABP. In conclusion, we show that direct inhibition of NAT enzymes may be an important mechanism by which ITCs exert their chemopreventive activity towards AA chemicals.

  1. Interaction between cysteine synthase and serine O-acetyltransferase proteins and their stage specific expression in Leishmania donovani.

    PubMed

    Singh, Kuljit; Singh, Krishn Pratap; Equbal, Asif; Suman, Shashi S; Zaidi, Amir; Garg, Gaurav; Pandey, Krishna; Das, Pradeep; Ali, Vahab

    2016-12-01

    Leishmania possess a unique trypanothione redox metabolism with undebated roles in protection from oxidative damage and drug resistance. The biosynthesis of trypanothione depends on l-cysteine bioavailability which is regulated by cysteine biosynthesis pathway. The de novo cysteine biosynthesis pathway is comprised of serine O-acetyltransferase (SAT) and cysteine synthase (CS) enzymes which sequentially mediate two consecutive steps of cysteine biosynthesis, and is absent in mammalian host. However, despite the apparent dependency of redox metabolism on cysteine biosynthesis pathway, the role of SAT and CS in redox homeostasis has been unexplored in Leishmania parasites. Herein, we have characterized CS and SAT to investigate their interaction and relative abundance of these proteins in promastigote vs. amastigote growth stages of L. donovani. CS and SAT genes of L. donovani (LdCS and LdSAT) were cloned, expressed, and fusion proteins purified to homogeneity with affinity column chromatography. Purified LdCS contains PLP as cofactor and showed optimum enzymatic activity at pH 7.5. Enzyme kinetics showed that LdCS catalyses the synthesis of cysteine using O-acetylserine and sulfide with a K m of 15.86 mM and 0.17 mM, respectively. Digitonin fractionation and indirect immunofluorescence microscopy showed that LdCS and LdSAT are localized in the cytoplasm of promastigotes. Size exclusion chromatography, co-purification, pull down and immuno-precipitation assays demonstrated a stable complex formation between LdCS and LdSAT proteins. Furthermore, LdCS and LdSAT proteins expression/activity was upregulated in amastigote growth stage of the parasite. Thus, the stage specific differential expression of LdCS and LdSAT suggests that it may have a role in the redox homeostasis of Leishmania. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. [Sequencing and analysis of the resistome of Streptomyces fradiae ATCC19609 in order to develop a test system for screening of new antimicrobial agents].

    PubMed

    Vatlin, A A; Bekker, O B; Lysenkova, L N; Korolev, A M; Shchekotikhin, A E; Danilenko, V N

    2016-06-01

    The paper provides the annotation and data on sequencing the antibiotic resistance genes in Streptomyces fradiae strain ATCC19609, highly sensitive to different antibiotics. Genome analysis revealed four groups of genes that determined the resistome of the tested strain. These included classical antibiotic resistance genes (nine aminoglycoside phosphotransferase genes, two beta-lactamase genes, and the genes of puromycin N-acetyltransferase, phosphinothricin N-acetyltransferase, and aminoglycoside acetyltransferase); the genes of ATP-dependent ABC transporters, involved in the efflux of antibiotics from the cell (MacB-2, BcrA, two-subunit MDR1); the genes of positive and negative regulation of transcription (whiB and padR families); and the genes of post-translational modification (serine-threonine protein kinases). A comparative characteristic of aminoglycoside phosphotransferase genes in S. fradiae ATCC19609, S. lividans TK24, and S. albus J1074, the causative agent of actinomycosis, is provided. The possibility of using the S. fradiae strain ATCC19609 as the test system for selection of the macrolide antibiotic oligomycin A derivatives with different levels of activity is demonstrated. Analysis of more than 20 semisynthetic oligomycin A derivatives made it possible to divide them into three groups according to the level of activity: inactive (>1 nmol/disk), 10 substances; with medium activity level (0.05–1 nmol/disk), 12 substances; and more active (0.01–0.05 nmol/disk), 2 substances. Important for the activity of semisynthetic derivatives is the change in the position of the 33rd carbon atom in the oligomycin A molecule.

  3. The first human report of mobile colistin resistance gene, mcr-1, in Finland.

    PubMed

    Gröndahl-Yli-Hannuksela, Kirsi; Lönnqvist, Emilia; Kallonen, Teemu; Lindholm, Laura; Jalava, Jari; Rantakokko-Jalava, Kaisu; Vuopio, Jaana

    2018-05-01

    Colistin resistance mediated by mobile mcr-1 gene has raised concern during the last years. After steep increase in mcr-1 reports, other mcr-gene variants (mcr-2 to mcr-5) have been revealed as well. In 2016, a clinical study was conducted on asymptomatic stool carriage of extended spectrum beta-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae among Finnish adults. All suspected ESBL producing bacterial isolates were first tested by phenotypic ESBL-confirmation methods, and then further analyzed with whole genome sequencing to identify the resistance genes. We found one study subject carrying a colistin resistant E. coli with a transferrable mcr-1 gene. This multi-drug resistant isolate, although initially suspected to be an ESBL producer, did not carry any ESBL genes, but was proven to carry several other resistance genes by using whole genome sequencing. Sequence type was ST93. The mcr-1 gene was connected to IncX4 plasmid which suggests that the colistin resistance gene locates in the respective plasmid. Here, we report the finding of a mcr-1 harboring human E. coli isolate from Finland. Clinical antimicrobial resistance (AMR) rates are low in Finland, and mobile colistin resistance has not been reported previously. This highlights the importance of AMR surveillance also in populations with low levels of resistance. © 2018 The Authors. APMIS published by John Wiley & Sons Ltd on behalf of Scandinavian Societies for Medical Microbiology and Pathology.

  4. In Bacillus subtilis, the SatA (Formerly YyaR) Acetyltransferase Detoxifies Streptothricin via Lysine Acetylation.

    PubMed

    Burckhardt, Rachel M; Escalante-Semerena, Jorge C

    2017-11-01

    Soil is a complex niche, where survival of microorganisms is at risk due to the presence of antimicrobial agents. Many microbes chemically modify cytotoxic compounds to block their deleterious effects. Streptothricin is a broad-spectrum antibiotic produced by streptomycetes that affects Gram-positive and Gram-negative bacteria alike. Here we identify the SatA (for s treptothricin a ce t yltransferase A , formerly YyaR) enzyme of Bacillus subtilis as the mechanism used by this soil bacterium to detoxify streptothricin. B. subtilis strains lacking satA were susceptible to streptothricin. Ectopic expression of satA + restored streptothricin resistance to B. subtilis satA ( Bs SatA) strains. Purified Bs SatA acetylated streptothricin in vitro at the expense of acetyl-coenzyme A (acetyl-CoA). A single acetyl moiety transferred onto streptothricin by SatA blocked the toxic effects of the antibiotic. SatA bound streptothricin with high affinity ( K d [dissociation constant] = 1 μM), and did not bind acetyl-CoA in the absence of streptothricin. Expression of B. subtilis satA + in Salmonella enterica conferred streptothricin resistance, indicating that SatA was necessary and sufficient to detoxify streptothricin. Using this heterologous system, we showed that the SatA homologue from Bacillus anthracis also had streptothricin acetyltransferase activity. Our data highlight the physiological relevance of lysine acetylation for the survival of B. subtilis in the soil. IMPORTANCE Experimental support is provided for the functional assignment of gene products of the soil-dwelling bacilli Bacillus subtilis and Bacillus anthracis This study focuses on one enzyme that is necessary and sufficient to block the cytotoxic effects of a common soil antibiotic. The enzyme alluded to is a member of a family of proteins that are broadly distributed in all domains of life but poorly studied in B. subtilis and B. anthracis The initial characterization of the enzyme provides insights into its

  5. Arylamine N-Acetyltransferase 2 (NAT2) Genetic Diversity and Traditional Subsistence: A Worldwide Population Survey

    PubMed Central

    Sabbagh, Audrey; Darlu, Pierre; Crouau-Roy, Brigitte; Poloni, Estella S.

    2011-01-01

    Arylamine N-acetyltransferase 2 (NAT2) is involved in human physiological responses to a variety of xenobiotic compounds, including common therapeutic drugs and exogenous chemicals present in the diet and the environment. Many questions remain about the evolutionary mechanisms that have led to the high prevalence of slow acetylators in the human species. Evidence from recent surveys of NAT2 gene variation suggests that NAT2 slow-causing variants might have become targets of positive selection as a consequence of the shift in modes of subsistence and lifestyle in human populations in the last 10,000 years. We aimed to test more extensively the hypothesis that slow acetylation prevalence in humans is related to the subsistence strategy adopted by the past populations. To this end, published frequency data on the most relevant genetic variants of NAT2 were collected from 128 population samples (14,679 individuals) representing different subsistence modes and dietary habits, allowing a thorough analysis at both a worldwide and continent scale. A significantly higher prevalence of the slow acetylation phenotype was observed in populations practicing farming (45.4%) and herding (48.2%) as compared to populations mostly relying on hunting and gathering (22.4%) (P = 0.0007). This was closely mirrored by the frequency of the slow 590A variant that was found to occur at a three-fold higher frequency in food producers (25%) as compared to hunter-gatherers (8%). These findings are consistent with the hypothesis that the Neolithic transition to subsistence economies based on agricultural and pastoral resources modified the selective regime affecting the NAT2 acetylation pathway. Furthermore, the vast amount of data collected enabled us to provide a comprehensive and up-to-date description of NAT2 worldwide genetic diversity, thus building up a useful resource of frequency data for further studies interested in epidemiological or anthropological research questions involving

  6. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa.

    PubMed

    Yokoyama, Keiko; Doi, Yohei; Yamane, Kunikazu; Kurokawa, Hiroshi; Shibata, Naohiro; Shibayama, Keigo; Yagi, Tetsuya; Kato, Haru; Arakawa, Yoshichika

    2003-12-06

    Bacteria develop resistance to aminoglycosides by producing aminoglycoside-modifying enzymes such as acetyltransferase, phosphorylase, and adenyltransferase. These enzymes, however, cannot confer consistent resistance to various aminoglycosides because of their substrate specificity. Notwithstanding, a Pseudomonas aeruginosa strain AR-2 showing high-level resistance (minimum inhibitory concentration >1024 mg/L) to various aminoglycosides was isolated clinically. We aimed to clone and characterise the genetic determinant of this resistance. We used conventional methods for DNA manipulation, susceptibility testing, and gene analyses to clone and characterise the genetic determinant of the resistance seen. PCR detection of the gene was also done on a stock of P aeruginosa strains that were isolated clinically since 1997. An aminoglycoside-resistance gene, designated rmtA, was identified in P aeruginosa AR-2. The Escherichia coli transformant and transconjugant harbouring the rmtA gene showed very high-level resistance to various aminoglycosides, including amikacin, tobramycin, isepamicin, arbekacin, kanamycin, and gentamicin. The 756-bp nucleotide rmtA gene encoded a protein, RmtA. This protein showed considerable similarity to the 16S rRNA methylases of aminoglycoside-producing actinomycetes, which protect bacterial 16S rRNA from intrinsic aminoglycosides by methylation. Incorporation of radiolabelled methyl groups into the 30S ribosome was detected in the presence of RmtA. Of 1113 clinically isolated P aeruginosa strains, nine carried the rmtA gene, as shown by PCR analyses. Our findings strongly suggest intergeneric lateral gene transfer of 16S rRNA methylase gene from some aminoglycoside-producing microorganisms to P aeruginosa. Further dissemination of the rmtA gene in nosocomial bacteria could be a matter of concern in the future.

  7. Modulation of hepatocyte growth factor gene expression by estrogen in mouse ovary.

    PubMed

    Liu, Y; Lin, L; Zarnegar, R

    1994-09-01

    Hepatocyte growth factor (HGF) is expressed in a variety of tissues and cell types under normal conditions and in response to various stimuli such as tissue injury. In the present study, we demonstrate that the transcription of the HGF gene is stimulated by estrogen in mouse ovary. A single injection of 17 beta-estradiol results in a dramatic and transient elevation of the levels of mouse HGF mRNA. Sequence analysis has found that two putative estrogen responsive elements (ERE) reside at -872 in the 5'-flanking region and at +511 in the first intron, respectively, of the mouse HGF gene. To test whether these ERE elements are responsible for estrogen induction of HGF gene expression, chimeric plasmids containing variable regions of the 5'-flanking sequence of HGF gene and the coding region for chloramphenicol acetyltransferase (CAT) gene were transiently transfected into both human endometrial carcinoma RL 95-2 cells and mouse fibroblast NIH 3T3 cells to assess hormone responsiveness. Transfection results indicate that the ERE elements of the mouse HGF gene can confer estrogen action to either homologous or heterologous promoters. Nuclear protein extracts either from RL95-2 cells transfected with the estrogen receptor expression vector or from mouse liver bound in vitro to ERE elements specifically, as shown by band shift assay. Therefore, our results demonstrate that the HGF gene is transcriptionally regulated by estrogen in mouse ovary; and such regulation is mediated via a direct interaction of the estrogen receptor complex with cis-acting ERE elements identified in the mouse HGF gene.

  8. Breast cancer, heterocyclic aromatic amines from meat and N-acetyltransferase 2 genotype.

    PubMed

    Delfino, R J; Sinha, R; Smith, C; West, J; White, E; Lin, H J; Liao, S Y; Gim, J S; Ma, H L; Butler, J; Anton-Culver, H

    2000-04-01

    Breast cancer risk has been hypothesized to increase with exposure to heterocyclic aromatic amines (HAAs) formed from cooking meat at high temperature. HAAs require enzymatic activation to bind to DNA and initiate carcinogenesis. N-acetyltransferase 2 (NAT2) enzyme activity may play a role, its rate determined by a polymorphic gene. We examined the effect of NAT2 genetic polymorphisms on breast cancer risk from exposure to meat by cooking method, doneness and estimated HAA [2-amino-1-methyl-6-phenylimidazole[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx)] intake. Women were recruited with suspicious breast masses and questionnaire data were collected prior to biopsy to blind subjects and interviewers to diagnoses. For 114 cases with breast cancer and 280 controls with benign breast disease, NAT2 genotype was determined using allele-specific PCR amplification to detect slow acetylator mutations. HAAs were estimated from interview data on meat type, cooking method and doneness, combined with a quantitative HAA database. Logistic regression models controlled for known risk factors, first including all controls, then 108 with no or low risk (normal breast or no hyperplasia) and finally 149 with high risk (hyperplasia, atypical hyperplasia, complex fibroadenomas). Meat effects were examined within NAT2 strata to assess interactions. We found no association between NAT2 and breast cancer. These Californian women ate more white than red meat (control median 46 versus 8 g/day). There were no significant associations of breast cancer with red meat for any doneness. White meat was significantly protective (>67 versus <26 g/day, OR 0.46, 95% CI 0.23-0.94, P for trend = 0.02), as was chicken, including well done, pan fried and barbecued chicken. MeIQx and DiMeIQx were not associated with breast cancer. A protective effect of PhIP was confounded after controlling for well done chicken

  9. Choline acetyltransferase expression during a putative developmental waiting period.

    PubMed

    Simmons, D D; Bertolotto, C; Kim, J; Raji-Kubba, J; Mansdorf, N

    1998-07-27

    The relationship between the cholinergic expression, morphological development, and target cell innervation of olivocochlear (OC) efferent neurons was investigated in the postnatal hamster. Similar to what was found in previous studies, tracer injections into the contralateral cochlea labeled cells bodies retrogradely in periolivary regions and labeled cell bodies only rarely in the lateral superior olive (LSO). Few morphological differences were found among cell bodies labeled between postnatal day 1 (P1) and P30. Tracer injections into the crossed OC bundles within the brainstem anterogradely labeled terminals below the inner hair cells of the cochlea prior to P5 and labeled terminals below outer hair cells after P5, consistent with a period of transient innervation, as hypothesized previously. Within the superior olive, choline acetyltransferase (ChAT) was expressed differentially. In periolivary regions, ChAT was expressed as early as P0. ChAT-immunoreactive cell bodies in periolivary regions were similar morphologically to retrogradely labeled OC neurons. In contrast, within the LSO, ChAT was not expressed until after P2. Consistent with a medical OC projection to the cochlea at early postnatal ages, ChAT immunoreactivity was detected below inner hair cells as early as P2 but was not detected below outer hair cells until after P6. Our results suggest that medial OC neurons not only provide transient connections to inner hair cells but also may express ChAT when they are below inner hair cells. Furthermore, these results raise the possibility that OC neurons may be capable of acetylcholine synthesis and release prior to or simultaneous with their innervation of the cochlea.

  10. FOXP2 gene deletion and infant feeding difficulties: a case report.

    PubMed

    Zimmerman, Emily; Maron, Jill L

    2016-01-01

    Forkhead box protein P2 (FOXP2) is a well-studied gene known to play an essential role in normal speech development. Deletions in the gene have been shown to result in developmental speech disorders and regulatory disruption of downstream gene targets associated with common forms of language impairments. Despite similarities in motor planning and execution between speech development and oral feeding competence, there have been no reports to date linking deletions within the FOXP2 gene to oral feeding impairments in the newborn. The patient was a nondysmorphic, appropriately and symmetrically grown male infant born at 35-wk gestational age. He had a prolonged neonatal intensive care unit stay because of persistent oral feeding incoordination requiring gastrostomy tube placement. Cardiac and neurological imagings were within normal limits. A microarray analysis found an ∼9-kb loss within chromosome band 7q3.1 that contains exon 2 of FOXP2, demonstrating a single copy of this region instead of the normal two copies per diploid gene. This case study expands our current understanding of the role FOXP2 exerts on motor planning and coordination necessary for both oral feeding success and speech-language development. This case report has important consequences for future diagnosis and treatment for infants with FOXP2 deletions, mutations, and varying levels of gene expression.

  11. Monitoring of Leuconostoc mesenteroides DRC starter in fermented vegetable by random integration of chloramphenicol acetyltransferase gene.

    PubMed

    Eom, Hyun-Ju; Park, Joong Min; Seo, Min Jae; Kim, Myoung-Dong; Han, Nam Soo

    2008-09-01

    In 2004, Leuconostoc mesenteroides DRC was first used as a starter culture for achieving higher organoleptic effects in Korean kimchi manufacture. For a better understanding of starter growth in a mixed culture system, and for predicting starter predominance in kimchi, a monitoring system for the starter was established. The chloramphenicol resistance marker gene (cat) was randomly integrated into chromosomal DNA of L. mesenteroides DRC using a viral transposon and transposase. The DRC mutant, tDRC2, had a similar growth pattern to the host strain, with no major alteration in phenotypic characteristics. The mutant strain was inoculated into real kimchi, and monitoring of the starter population was successfully achieved. The overall predominance of Leuconostoc in kimchi inoculated with DRC followed the general growth pattern of this genus during kimchi fermentation. Our results also demonstrate the competitive ability of the DRC starter against Leuconostoc from natural flora, maintaining its predominance above 88% during the whole fermentation period. Based on this experiment, the random gene integration method using a transposon was shown to be of utility in transferring any commercial starter into a selectable and monitorable strain for simulation purposes.

  12. GPS-PAIL: prediction of lysine acetyltransferase-specific modification sites from protein sequences.

    PubMed

    Deng, Wankun; Wang, Chenwei; Zhang, Ying; Xu, Yang; Zhang, Shuang; Liu, Zexian; Xue, Yu

    2016-12-22

    Protein acetylation catalyzed by specific histone acetyltransferases (HATs) is an essential post-translational modification (PTM) and involved in the regulation a broad spectrum of biological processes in eukaryotes. Although several ten thousands of acetylation sites have been experimentally identified, the upstream HATs for most of the sites are unclear. Thus, the identification of HAT-specific acetylation sites is fundamental for understanding the regulatory mechanisms of protein acetylation. In this work, we first collected 702 known HAT-specific acetylation sites of 205 proteins from the literature and public data resources, and a motif-based analysis demonstrated that different types of HATs exhibit similar but considerably distinct sequence preferences for substrate recognition. Using 544 human HAT-specific sites for training, we constructed a highly useful tool of GPS-PAIL for the prediction of HAT-specific sites for up to seven HATs, including CREBBP, EP300, HAT1, KAT2A, KAT2B, KAT5 and KAT8. The prediction accuracy of GPS-PAIL was critically evaluated, with a satisfying performance. Using GPS-PAIL, we also performed a large-scale prediction of potential HATs for known acetylation sites identified from high-throughput experiments in nine eukaryotes. Both online service and local packages were implemented, and GPS-PAIL is freely available at: http://pail.biocuckoo.org.

  13. GPS-PAIL: prediction of lysine acetyltransferase-specific modification sites from protein sequences

    PubMed Central

    Deng, Wankun; Wang, Chenwei; Zhang, Ying; Xu, Yang; Zhang, Shuang; Liu, Zexian; Xue, Yu

    2016-01-01

    Protein acetylation catalyzed by specific histone acetyltransferases (HATs) is an essential post-translational modification (PTM) and involved in the regulation a broad spectrum of biological processes in eukaryotes. Although several ten thousands of acetylation sites have been experimentally identified, the upstream HATs for most of the sites are unclear. Thus, the identification of HAT-specific acetylation sites is fundamental for understanding the regulatory mechanisms of protein acetylation. In this work, we first collected 702 known HAT-specific acetylation sites of 205 proteins from the literature and public data resources, and a motif-based analysis demonstrated that different types of HATs exhibit similar but considerably distinct sequence preferences for substrate recognition. Using 544 human HAT-specific sites for training, we constructed a highly useful tool of GPS-PAIL for the prediction of HAT-specific sites for up to seven HATs, including CREBBP, EP300, HAT1, KAT2A, KAT2B, KAT5 and KAT8. The prediction accuracy of GPS-PAIL was critically evaluated, with a satisfying performance. Using GPS-PAIL, we also performed a large-scale prediction of potential HATs for known acetylation sites identified from high-throughput experiments in nine eukaryotes. Both online service and local packages were implemented, and GPS-PAIL is freely available at: http://pail.biocuckoo.org. PMID:28004786

  14. YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity

    PubMed Central

    2016-01-01

    SUMMARY Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted “effector” proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed. PMID:27784797

  15. YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity.

    PubMed

    Ma, Ka-Wai; Ma, Wenbo

    2016-12-01

    Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted "effector" proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Distinct localization of peripheral and central types of choline acetyltransferase in the rat cochlea.

    PubMed

    Kitanishi, Tsuyoshi; Aimi, Yoshinari; Kitano, Hiroya; Suzuki, Mikio; Kimura, Hiroshi; Saito, Atsushi; Shimizu, Takeshi; Tooyama, Ikuo

    2013-10-30

    We previously discovered a splice variant of choline acetyltransferase (ChAT) mRNA, and designated the variant protein pChAT because of its preferential expression in peripheral neuronal structures. In this study, we examined the immunohistochemical localization of pChAT in rat cochlea and compared the distribution pattern to those of common ChAT (cChAT) and acetylcholinesterase. Some neuronal cell bodies and fibers in the spiral ganglia showed immunoreactivity for pChAT, predominantly the small spiral ganglion cells, indicating outer hair cell type II neurons. In contrast, cChAT- and acetylcholinesterase-positive structures were localized to fibers and not apparent in ganglion cells. After ablation of the cochlear nuclei, many pChAT-positive cochlear nerve fibers became clearly visible, whereas fibers immunopositive for cChAT and acetylcholine esterase disappeared. These results suggested that pChAT and cChAT are localized in different systems of the rat cochlea; pChAT in the afferent and cChAT in the efferent structures.

  17. Distinct Localization of Peripheral and Central Types of Choline Acetyltransferase in the Rat Cochlea

    PubMed Central

    Kitanishi, Tsuyoshi; Aimi, Yoshinari; Kitano, Hiroya; Suzuki, Mikio; Kimura, Hiroshi; Saito, Atsushi; Shimizu, Takeshi; Tooyama, Ikuo

    2013-01-01

    We previously discovered a splice variant of choline acetyltransferase (ChAT) mRNA, and designated the variant protein pChAT because of its preferential expression in peripheral neuronal structures. In this study, we examined the immunohistochemical localization of pChAT in rat cochlea and compared the distribution pattern to those of common ChAT (cChAT) and acetylcholinesterase. Some neuronal cell bodies and fibers in the spiral ganglia showed immunoreactivity for pChAT, predominantly the small spiral ganglion cells, indicating outer hair cell type II neurons. In contrast, cChAT- and acetylcholinesterase-positive structures were localized to fibers and not apparent in ganglion cells. After ablation of the cochlear nuclei, many pChAT-positive cochlear nerve fibers became clearly visible, whereas fibers immunopositive for cChAT and acetylcholine esterase disappeared. These results suggested that pChAT and cChAT are localized in different systems of the rat cochlea; pChAT in the afferent and cChAT in the efferent structures. PMID:24194628

  18. A silk peptide fraction restores cognitive function in AF64A-induced Alzheimer disease model rats by increasing expression of choline acetyltransferase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Yeseul

    This study investigated the effects of a silk peptide fraction obtained by incubating silk proteins with Protease N and Neutrase (SP-NN) on cognitive dysfunction of Alzheimer disease model rats. In order to elucidate underlying mechanisms, the effect of SP-NN on the expression of choline acetyltransferase (ChAT) mRNA was assessed in F3.ChAT neural stem cells and Neuro2a neuroblastoma cells; active amino acid sequence was identified using HPLC-MS. The expression of ChAT mRNA in F3.ChAT cells increased by 3.79-fold of the control level by treatment with SP-NN fraction. The active peptide in SP-NN was identified as tyrosine-glycine with 238.1 of molecular weight.more » Male rats were orally administered with SP-NN (50 or 300 mg/kg) and challenged with a cholinotoxin AF64A. As a result of brain injury and decreased brain acetylcholine level, AF64A induced astrocytic activation, resulting in impairment of learning and memory function. Treatment with SP-NN exerted recovering activities on acetylcholine depletion and brain injury, as well as cognitive deficit induced by AF64A. The results indicate that, in addition to a neuroprotective activity, the SP-NN preparation restores cognitive function of Alzheimer disease model rats by increasing the release of acetylcholine. - Highlights: • Cognition-enhancing effects of SP-NN, a silk peptide preparation, were investigated. • SP-NN enhanced ChAT mRNA expression in F3.ChAT neural stem cells and Neuro-2a neuroblastoma cells. • Active molecule was identified as a dipeptide composed of tyrosine-glycine. • SP-NN reversed cognitive dysfunction elicited by AF64A. • Neuroprotection followed by increased acetylcholine level was achieved with SP-NN.« less

  19. Potential usefulness of D2R reporter gene imaging by IBF as gene therapy monitoring for cerebellar neurodegenerative diseases.

    PubMed

    Shiba, Kazuhiro; Torashima, Takashi; Hirai, Hirokazu; Ogawa, Kazuma; Akhter, Nasima; Nakajima, Kenichi; Kinuya, Seigo; Mori, Hirofumi

    2009-02-01

    We investigated a gene expression imaging method to examine the level of therapeutic gene expression in the cerebellum. Using a human immunodeficiency virus derived lentivial vector, we expressed the dopamine D(2) receptor (D(2)R) as a reporter protein to mouse cerebellar Purkinje cells. Biodistribution and ex vivo autoradiography studies were performed by giving [(125)I]5-iodo-7-N-[(1-ethyl-2-pyrrolidinyl)methyl]carboxamide-2,3-dihydrobenzofuran ([(125)I]IBF) (1.85 MBq), as a radioactive D(2)R ligand, to model mice expressing the D(2)R with an HA tag (HA-D(2)R) in the cerebellum. In this study, [(125)I]IBF was bound to the D(2)R expressed in the cerebellum of the model mice selectively. Immunostaining was performed to confirm the HA-D(2)R expression in the cerebellum of the model mice. A significant correlation (r=0.900, P<0.001) between areas that expressed HA-D(2)R by immunostaining and areas in which [(125)I]IBF accumulated by the ex vivo autoradiograms was found. These results indicated that radioiodinated IBF is useful as a reporter probe to detect D(2)R reporter gene expression, which can be used for monitoring therapeutic gene expression in the cerebellum.

  20. Oncogenic deregulation of NKL homeobox gene MSX1 in mantle cell lymphoma.

    PubMed

    Nagel, Stefan; Ehrentraut, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; MacLeod, Roderick A F

    2014-08-01

    NKL homeobox gene MSX1 is physiologically expressed during embryonic hematopoiesis. Here, we detected MSX1 overexpression in three examples of mantle cell lymphoma (MCL) and one of acute myeloid leukemia (AML) by screening 96 leukemia/lymphoma cell lines via microarray profiling. Moreover, in silico analysis identified significant overexpression of MSX1 in 3% each of patients with MCL and AML, confirming aberrant activity in subsets of both types of malignancies. Comparative expression profiling analysis and subsequent functional studies demonstrated overexpression of histone acetyltransferase PHF16 together with transcription factors FOXC1 and HLXB9 as activators of MSX1 transcription. Additionally, we identified regulation of cyclin D1/CCND1 by MSX1 and its repressive cofactor histone H1C. Fluorescence in situ hybridization in MCL cells showed that t(11;14)(q13;q32) results in detachment of CCND1 from its corresponding repressive MSX1 binding site. Taken together, we uncovered regulators and targets of homeobox gene MSX1 in leukemia/lymphoma cells, supporting the view of a recurrent genetic network that is reactivated in malignant transformation.

  1. Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data.

    PubMed

    Kannan, Soumya; Sams, Thomas; Maury, Jérôme; Workman, Christopher T

    2018-03-16

    Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds, for example. However, the dynamic nature of these processes poses challenges for estimating promoter activity. Most experimental approaches utilize reporter gene expression to estimate promoter activity. Typically the reporter gene encodes a fluorescent protein that is used to infer a constant promoter activity despite the fact that the observed output may be dynamic and is a number of steps away from the transcription process. In fact, some promoters that are often thought of as constitutive can show changes in activity when growth conditions change. For these reasons, we have developed a system of ordinary differential equations for estimating dynamic promoter activity for promoters that change their activity in response to the environment that is robust to noise and changes in growth rate. Our approach, inference of dynamic promoter activity (PromAct), improves on existing methods by more accurately inferring known promoter activity profiles. This method is also capable of estimating the correct scale of promoter activity and can be applied to quantitative data sets to estimate quantitative rates.

  2. The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally.

    PubMed

    García-Molinero, Varinia; García-Martínez, José; Reja, Rohit; Furió-Tarí, Pedro; Antúnez, Oreto; Vinayachandran, Vinesh; Conesa, Ana; Pugh, B Franklin; Pérez-Ortín, José E; Rodríguez-Navarro, Susana

    2018-03-29

    Eukaryotic transcription is regulated through two complexes, the general transcription factor IID (TFIID) and the coactivator Spt-Ada-Gcn5 acetyltransferase (SAGA). Recent findings confirm that both TFIID and SAGA contribute to the synthesis of nearly all transcripts and are recruited genome-wide in yeast. However, how this broad recruitment confers selectivity under specific conditions remains an open question. Here we find that the SAGA/TREX-2 subunit Sus1 associates with upstream regulatory regions of many yeast genes and that heat shock drastically changes Sus1 binding. While Sus1 binding to TFIID-dominated genes is not affected by temperature, its recruitment to SAGA-dominated genes and RP genes is significantly disturbed under heat shock, with Sus1 relocated to environmental stress-responsive genes in these conditions. Moreover, in contrast to recent results showing that SAGA deubiquitinating enzyme Ubp8 is dispensable for RNA synthesis, genomic run-on experiments demonstrate that Sus1 contributes to synthesis and stability of a wide range of transcripts. Our study provides support for a model in which SAGA/TREX-2 factor Sus1 acts as a global transcriptional regulator in yeast but has differential activity at yeast genes as a function of their transcription rate or during stress conditions.

  3. Long Term Non-Invasive Imaging of Embryonic Stem Cells Using Reporter Genes

    PubMed Central

    Sun, Ning; Lee, Andrew; Wu, Joseph C.

    2013-01-01

    Development of non-invasive and accurate methods to track cell fate following delivery will greatly expedite transition of embryonic stem (ES) cell therapy to the clinic. Here we describe a protocol for the in vivo monitoring of stem cell survival, proliferation, and migration using reporter genes. We established stable ES cell lines constitutively expressing double fusion (DF; enhanced green fluorescent protein and firefly luciferase) or triple fusion (TF; monomeric red fluorescent protein, firefly luciferase, and herpes simplex virus thymidine kinase) reporter genes using lentiviral transduction. We used fluorescence activated cell sorting to purify these populations in vitro, bioluminescence imaging and positron emission tomography imaging to track them in vivo, and fluorescence immunostaining to confirm the results ex vivo. Unlike other methods of cell tracking such as iron particle and radionuclide labeling, reporter genes are inherited genetically and can be used to monitor cell proliferation and survival for the lifetime of transplanted cells and their progeny. PMID:19617890

  4. Histone acetyltransferase general control non-repressed protein 5 (GCN5) affects the fatty acid composition of Arabidopsis thaliana seeds by acetylating fatty acid desaturase3 (FAD3).

    PubMed

    Wang, Tianya; Xing, Jiewen; Liu, Xinye; Liu, Zhenshan; Yao, Yingyin; Hu, Zhaorong; Peng, Huiru; Xin, Mingming; Zhou, Dao-Xiu; Zhang, Yirong; Ni, Zhongfu

    2016-12-01

    Seed oils are important natural resources used in the processing and preparation of food. Histone modifications represent key epigenetic mechanisms that regulate gene expression, plant growth and development. However, histone modification events during fatty acid (FA) biosynthesis are not well understood. Here, we demonstrate that a mutation of the histone acetyltransferase GCN5 can decrease the ratio of α-linolenic acid (ALA) to linoleic acid (LA) in seed oil. Using RNA-Seq and ChIP assays, we identified FAD3, LACS2, LPP3 and PLAIIIβ as the targets of GCN5. Notably, the GCN5-dependent H3K9/14 acetylation of FAD3 determined the expression levels of FAD3 in Arabidopsis thaliana seeds, and the ratio of ALA/LA in the gcn5 mutant was rescued to the wild-type levels through the overexpression of FAD3. The results of this study indicated that GCN5 modulated FA biosynthesis by affecting the acetylation levels of FAD3. We provide evidence that histone acetylation is involved in FA biosynthesis in Arabidopsis seeds and might contribute to the optimization of the nutritional structure of edible oils through epigenetic engineering. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  5. Eight hours of nocturnal 915 MHz radiofrequency identification (RFID) exposure reduces urinary levels of melatonin and its metabolite via pineal arylalkylamine N-acetyltransferase activity in male rats.

    PubMed

    Kim, Hye Sun; Paik, Man-Jeong; Lee, Yu Hee; Lee, Yun-Sil; Choi, Hyung Do; Pack, Jeong-Ki; Kim, Nam; Ahn, Young Hwan

    2015-01-01

    We investigated the effects of whole-body exposure to the 915 MHz radiofrequency identification (RFID) on melatonin biosynthesis and the activity of rat pineal arylalkylamine N-acetyltransferase (AANAT). Rats were exposed to RFID (whole-body specific absorption rate, 4 W/kg) for 8 h/day, 5 days/week, for weeks during the nighttime. Total volume of urine excreted during a 24-h period was collected after RFID exposure. Urinary melatonin and 6-hydroxymelatonin sulfate (6-OHMS) was measured by gas chromatography-mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA), respectively. AANAT enzyme activity was measured using liquid biphasic dif-13 fusion assay. Protein levels and mRNA expression of AANAT was 14 measured by Western blot and reverse transcription polymerase 15 chain reaction (RT-PCR) analysis, respectively. Eight hours of nocturnal RFID exposure caused a significant reduction in both urinary melatonin (p = 0. 003) and 6-OHMS (p = 0. 026). Activity, protein levels, and mRNA expression of AANAT were suppressed by exposure to RFID (p < 0. 05). Our results suggest that nocturnal RFID exposure can cause reductions in the levels of both urinary melatonin and 6-OHMS, possibly due to decreased melatonin biosynthesis via suppression of Aanat gene transcription in the rat pineal gland.

  6. [Regulation of heat shock gene expression in response to stress].

    PubMed

    Garbuz, D G

    2017-01-01

    Heat shock (HS) genes, or stress genes, code for a number of proteins that collectively form the most ancient and universal stress defense system. The system determines the cell capability of adaptation to various adverse factors and performs a variety of auxiliary functions in normal physiological conditions. Common stress factors, such as higher temperatures, hypoxia, heavy metals, and others, suppress transcription and translation for the majority of genes, while HS genes are upregulated. Transcription of HS genes is controlled by transcription factors of the HS factor (HSF) family. Certain HSFs are activated on exposure to higher temperatures or other adverse factors to ensure stress-induced HS gene expression, while other HSFs are specifically activated at particular developmental stages. The regulation of the main mammalian stress-inducible factor HSF1 and Drosophila melanogaster HSF includes many components, such as a variety of early warning signals indicative of abnormal cell activity (e.g., increases in intracellular ceramide, cytosolic calcium ions, or partly denatured proteins); protein kinases, which phosphorylate HSFs at various Ser residues; acetyltransferases; and regulatory proteins, such as SUMO and HSBP1. Transcription factors other than HSFs are also involved in activating HS gene transcription; the set includes D. melanogaster GAF, mammalian Sp1 and NF-Y, and other factors. Transcription of several stress genes coding for molecular chaperones of the glucose-regulated protein (GRP) family is predominantly regulated by another stress-detecting system, which is known as the unfolded protein response (UPR) system and is activated in response to massive protein misfolding in the endoplasmic reticulum and mitochondrial matrix. A translational fine tuning of HS protein expression occurs via changing the phosphorylation status of several proteins involved in translation initiation. In addition, specific signal sequences in the 5'-UTRs of some HS

  7. The presence of both negative and positive elements in the 5'-flanking sequence of the rat Na,K-ATPase alpha 3 subunit gene are required for brain expression in transgenic mice.

    PubMed Central

    Pathak, B G; Neumann, J C; Croyle, M L; Lingrel, J B

    1994-01-01

    The Na,K-ATPase is an integral plasma membrane protein consisting of alpha and beta subunits, each of which has discrete isoforms expressed in a tissue-specific manner. Of the three functional alpha isoform genes, the one encoding the alpha 3 isoform is the most tissue-restricted in its expression, being found primarily in the brain. To identify regions of the alpha 3 isoform gene that are involved in directing expression in the brain, a 1.6 kb 5'-flanking sequence was attached to a reporter gene, chloramphenicol acetyltransferase (CAT). The alpha 3-CAT chimeric gene construct was microinjected into fertilized mouse eggs, and transgenic mice were produced. Analysis of adult transgenic mice from different lines revealed that the transgene is expressed primarily in the brain. To further delineate regions that are needed for conferring expression in this tissue, systematic deletions of the 5'-flanking sequence of the alpha 3-CAT fusion constructs were made and analyzed, again using transgenic mice. The results from these analyses indicate that DNA sequences required for mediating brain-specific expression of the alpha 3 isoform gene are present within 210 bp upstream of the transcription initiation site. alpha 3-CAT promoter constructs containing scanning mutations in this region were also assayed in transgenic mice. These studies have identified both a functional neural-restrictive silencer element as well as a positively acting cis element. Images PMID:7984427

  8. Astrocyte Elevated Gene 1 Interacts with Acetyltransferase p300 and c-Jun To Promote Tumor Aggressiveness

    PubMed Central

    Liu, Liping; Guan, Hongyu; Li, Yun; Ying, Zhe; Wu, Jueheng; Zhu, Xun; Song, Libing

    2016-01-01

    ABSTRACT Astrocyte elevated gene 1 (AEG-1) is an oncoprotein that strongly promotes the development and progression of cancers. However, the detailed underlying mechanisms through which AEG-1 enhances tumor development and progression remain to be determined. In this study, we identified c-Jun and p300 to be novel interacting partners of AEG-1 in gliomas. AEG-1 promoted c-Jun transcriptional activity by interacting with the c-Jun/p300 complex and inducing c-Jun acetylation. Furthermore, the AEG-1/c-Jun/p300 complex was found to bind the promoter of c-Jun downstream targeted genes, consequently establishing an acetylated chromatin state that favors transcriptional activation. Importantly, AEG-1/p300-mediated c-Jun acetylation resulted in the development of a more aggressive malignant phenotype in gliomas through a drastic increase in glioma cell proliferation and angiogenesis in vitro and in vivo. Consistently, the AEG-1 expression levels in clinical glioma specimens correlated with the status of c-Jun activation. Taken together, our results suggest that AEG-1 mediates a novel epigenetic mechanism that enhances c-Jun transcriptional activity to induce glioma progression and that AEG-1 might be a novel, potential target for the treatment of gliomas. PMID:27956703

  9. Ratiometric Gas Reporting: A Nondisruptive Approach To Monitor Gene Expression in Soils.

    PubMed

    Cheng, Hsiao-Ying; Masiello, Caroline A; Del Valle, Ilenne; Gao, Xiaodong; Bennett, George N; Silberg, Jonathan J

    2018-03-16

    Fluorescent proteins are ubiquitous tools that are used to monitor the dynamic functions of natural and synthetic genetic circuits. However, these visual reporters can only be used in transparent settings, a limitation that complicates nondisruptive measurements of gene expression within many matrices, such as soils and sediments. We describe a new ratiometric gas reporting method for nondisruptively monitoring gene expression within hard-to-image environmental matrices. With this approach, C 2 H 4 is continuously synthesized by ethylene forming enzyme to provide information on viable cell number, and CH 3 Br is conditionally synthesized by placing a methyl halide transferase gene under the control of a conditional promoter. We show that ratiometric gas reporting enables the creation of Escherichia coli biosensors that report on acylhomoserine lactone (AHL) autoinducers used for quorum sensing by Gram-negative bacteria. Using these biosensors, we find that an agricultural soil decreases the bioavailable concentration of a long-chain AHL up to 100-fold. We also demonstrate that these biosensors can be used in soil to nondisruptively monitor AHLs synthesized by Rhizobium leguminosarum and degraded by Bacillus thuringiensis. Finally, we show that this new reporting approach can be used in Shewanella oneidensis, a bacterium that lives in sediments.

  10. Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes.

    PubMed

    Uchiyama, Taku; Miyazaki, Kentaro

    2010-11-01

    A reporter assay-based screening method for enzymes, which we named product-induced gene expression (PIGEX), was developed and used to screen a metagenomic library for amidases. A benzoate-responsive transcriptional activator, BenR, was placed upstream of the gene encoding green fluorescent protein and used as a sensor. Escherichia coli sensor cells carrying the benR-gfp gene cassette fluoresced in response to benzoate concentrations as low as 10 μM but were completely unresponsive to the substrate benzamide. An E. coli metagenomic library consisting of 96,000 clones was grown in 96-well format in LB medium containing benzamide. The library cells were then cocultivated with sensor cells. Eleven amidase genes were recovered from 143 fluorescent wells; eight of these genes were homologous to known bacterial amidase genes while three were novel genes. In addition to their activity toward benzamide, the enzymes were active toward various substrates, including d- and l-amino acid amides, and displayed enantioselectivity. Thus, we demonstrated that PIGEX is an effective approach for screening novel enzymes based on product detection.

  11. Detection of anabolic androgenic steroid abuse in doping control using mammalian reporter gene bioassays.

    PubMed

    Houtman, Corine J; Sterk, Saskia S; van de Heijning, Monique P M; Brouwer, Abraham; Stephany, Rainer W; van der Burg, Bart; Sonneveld, Edwin

    2009-04-01

    Anabolic androgenic steroids (AAS) are a class of steroid hormones related to the male hormone testosterone. They are frequently detected as drugs in sport doping control. Being similar to or derived from natural male hormones, AAS share the activation of the androgen receptor (AR) as common mechanism of action. The mammalian androgen responsive reporter gene assay (AR CALUX bioassay), measuring compounds interacting with the AR can be used for the analysis of AAS without the necessity of knowing their chemical structure beforehand, whereas current chemical-analytical approaches may have difficulty in detecting compounds with unknown structures, such as designer steroids. This study demonstrated that AAS prohibited in sports and potential designer AAS can be detected with this AR reporter gene assay, but that also additional steroid activities of AAS could be found using additional mammalian bioassays for other types of steroid hormones. Mixtures of AAS were found to behave additively in the AR reporter gene assay showing that it is possible to use this method for complex mixtures as are found in doping control samples, including mixtures that are a result of multi drug use. To test if mammalian reporter gene assays could be used for the detection of AAS in urine samples, background steroidal activities were measured. AAS-spiked urine samples, mimicking doping positive samples, showed significantly higher androgenic activities than unspiked samples. GC-MS analysis of endogenous androgens and AR reporter gene assay analysis of urine samples showed how a combined chemical-analytical and bioassay approach can be used to identify samples containing AAS. The results indicate that the AR reporter gene assay, in addition to chemical-analytical methods, can be a valuable tool for the analysis of AAS for doping control purposes.

  12. Identification of a novel prophage-like gene cluster actively expressed in both virulent and avirulent strains of Leptospira interrogans serovar Lai.

    PubMed

    Qin, Jin-Hong; Zhang, Qing; Zhang, Zhi-Ming; Zhong, Yi; Yang, Yang; Hu, Bao-Yu; Zhao, Guo-Ping; Guo, Xiao-Kui

    2008-06-01

    DNA microarray analysis was used to compare the differential gene expression profiles between Leptospira interrogans serovar Lai type strain 56601 and its corresponding attenuated strain IPAV. A 22-kb genomic island covering a cluster of 34 genes (i.e., genes LA0186 to LA0219) was actively expressed in both strains but concomitantly upregulated in strain 56601 in contrast to that of IPAV. Reverse transcription-PCR assays proved that the gene cluster comprised five transcripts. Gene annotation of this cluster revealed characteristics of a putative prophage-like remnant with at least 8 of 34 sequences encoding prophage-like proteins, of which the LA0195 protein is probably a putative prophage CI-like regulator. The transcription initiation activities of putative promoter-regulatory sequences of transcripts I, II, and III, all proximal to the LA0195 gene, were further analyzed in the Escherichia coli promoter probe vector pKK232-8 by assaying the reporter chloramphenicol acetyltransferase (CAT) activities. The strong promoter activities of both transcripts I and II indicated by the E. coli CAT assay were well correlated with the in vitro sequence-specific binding of the recombinant LA0195 protein to the corresponding promoter probes detected by the electrophoresis mobility shift assay. On the other hand, the promoter activity of transcript III was very low in E. coli and failed to show active binding to the LA0195 protein in vitro. These results suggested that the LA0195 protein is likely involved in the transcription of transcripts I and II. However, the identical complete DNA sequences of this prophage remnant from these two strains strongly suggests that possible regulatory factors or signal transduction systems residing outside of this region within the genome may be responsible for the differential expression profiling in these two strains.

  13. Effect of external and internal factors on the expression of reporter genes driven by the N resistance gene promoter.

    PubMed

    Kathiria, Palak; Sidler, Corinne; Woycicki, Rafal; Yao, Youli; Kovalchuk, Igor

    2013-07-01

    The role of resistance (R) genes in plant pathogen interaction has been studied extensively due to its economical impact on agriculture. Interaction between tobacco mosaic virus (TMV) and the N protein from tobacco is one of the most widely used models to understand various aspects of pathogen resistance. The transcription activity governed by N gene promoter is one of the least understood elements of the model. In this study, the N gene promoter was cloned and fused with two different reporter genes, one encoding β-glucuronidase (N::GUS) and another, luciferase (N::LUC). Tobacco plants transformed with the N::GUS or N::LUC reporter constructs were screened for homozygosity and stable expression. Histochemical analysis of N::GUS tobacco plants revealed that the expression is organ specific and developmentally regulated. Whereas two week old plants expressed GUS in midveins only, 6-wk-old plants also expressed GUS in leaf lamella. Roots did not show GUS expression at any time during development. Experiments to address effects of external stress were performed using N::LUC tobacco plants. These experiments showed that N gene promoter expression was suppressed when plants were exposed to high but not low temperatures. Expression was also upregulated in response to TMV, but no changes were observed in plants treated with SA.

  14. A multiplex degenerate PCR analytical approach targeting to eight genes for screening GMOs.

    PubMed

    Guo, Jinchao; Chen, Lili; Liu, Xin; Gao, Ying; Zhang, Dabing; Yang, Litao

    2012-06-01

    Currently, the detection methods with lower cost and higher throughput are the major trend in screening genetically modified (GM) food or feed before specific identification. In this study, we developed a quadruplex degenerate PCR screening approach for more than 90 approved GMO events. This assay is consisted of four PCR systems targeting on nine DNA sequences from eight trait genes widely introduced into GMOs, such as CP4-EPSPS derived from Acetobacterium tumefaciens sp. strain CP4, phosphinothricin acetyltransferase gene derived from Streptomyceshygroscopicus (bar) and Streptomyces viridochromogenes (pat), and Cry1Ab, Cry1Ac, Cry1A(b/c), mCry3A, and Cry3Bb1 derived from Bacillus thuringiensis. The quadruplex degenerate PCR assay offers high specificity and sensitivity with the absolute limit of detection (LOD) of approximate 80targetcopies. Furthermore, the applicability of the quadruplex PCR assay was confirmed by screening either several artificially prepared samples or samples of Grain Inspection, Packers and Stockyards Administration (GIPSA) proficiency program. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations.

    PubMed

    Neuwald, Andrew F; Altschul, Stephen F

    2016-12-01

    Over evolutionary time, members of a superfamily of homologous proteins sharing a common structural core diverge into subgroups filling various functional niches. At the sequence level, such divergence appears as correlations that arise from residue patterns distinct to each subgroup. Such a superfamily may be viewed as a population of sequences corresponding to a complex, high-dimensional probability distribution. Here we model this distribution as hierarchical interrelated hidden Markov models (hiHMMs), which describe these sequence correlations implicitly. By characterizing such correlations one may hope to obtain information regarding functionally-relevant properties that have thus far evaded detection. To do so, we infer a hiHMM distribution from sequence data using Bayes' theorem and Markov chain Monte Carlo (MCMC) sampling, which is widely recognized as the most effective approach for characterizing a complex, high dimensional distribution. Other routines then map correlated residue patterns to available structures with a view to hypothesis generation. When applied to N-acetyltransferases, this reveals sequence and structural features indicative of functionally important, yet generally unknown biochemical properties. Even for sets of proteins for which nothing is known beyond unannotated sequences and structures, this can lead to helpful insights. We describe, for example, a putative coenzyme-A-induced-fit substrate binding mechanism mediated by arginine residue switching between salt bridge and π-π stacking interactions. A suite of programs implementing this approach is available (psed.igs.umaryland.edu).

  16. Visualisation of chicken macrophages using transgenic reporter genes: insights into the development of the avian macrophage lineage.

    PubMed

    Balic, Adam; Garcia-Morales, Carla; Vervelde, Lonneke; Gilhooley, Hazel; Sherman, Adrian; Garceau, Valerie; Gutowska, Maria W; Burt, David W; Kaiser, Pete; Hume, David A; Sang, Helen M

    2014-08-01

    We have generated the first transgenic chickens in which reporter genes are expressed in a specific immune cell lineage, based upon control elements of the colony stimulating factor 1 receptor (CSF1R) locus. The Fms intronic regulatory element (FIRE) within CSF1R is shown to be highly conserved in amniotes and absolutely required for myeloid-restricted expression of fluorescent reporter genes. As in mammals, CSF1R-reporter genes were specifically expressed at high levels in cells of the macrophage lineage and at a much lower level in granulocytes. The cell lineage specificity of reporter gene expression was confirmed by demonstration of coincident expression with the endogenous CSF1R protein. In transgenic birds, expression of the reporter gene provided a defined marker for macrophage-lineage cells, identifying the earliest stages in the yolk sac, throughout embryonic development and in all adult tissues. The reporter genes permit detailed and dynamic visualisation of embryonic chicken macrophages. Chicken embryonic macrophages are not recruited to incisional wounds, but are able to recognise and phagocytose microbial antigens. © 2014. Published by The Company of Biologists Ltd.

  17. Aromatic amine metabolism: immunochemical relationships of N-acetyltransferase and N,O-acyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, S.; Allaben, W.T.; King, C.M.

    1986-05-01

    Mutagenic and carcinogenic aromatic amines are acetylated in most organisms. Acetyl CoA and arylhydroxamic acids can serve as acetyl donors for N-Acetylation of amines to yield stable amides, or by O-acetylation of hydroxylamine derivatives to produce reactive metabolites that can react covalently with nucleic acid. Polyclonal antibodies against rat arylhydroxamic acid, N,O-acyltransferase (AHAT) have been compared for their abilities to react with this enzyme and the acetyl CoA-dependent N-acetyltransferase (NAT) of the rat, rabbit, hamster, mouse and human. Liver cytosols were treated with increasing quantities of antibodies from immune or control rabbits. Immune complexes were removed by treatment with proteinmore » A-Sepharose before assay of nucleic acid adduct formation by AHAT activation of N-hydroxy-2-acetylaminofluorene and the acetylation of 2-aminofluorene by NAT. Both rat activities, the AHAT of the hamster and the NAT of the mouse and human were removed by this treatment. No decrease in NAT activity of hamster, or of either rabbit cytosol activity was observed. Neither mouse nor human liver has appreciable AHAT activity. These data support the idea that AHAT and NAT of rat, AHAT of hamster and NAT of mouse and human liver are immunochemically related, but that NAT of the hamster is an immunochemically distinct peptide.« less

  18. Novel association between the nonsynonymous A803G polymorphism of the N-acetyltransferase 2 gene and impaired glucose homeostasis in obese children and adolescents.

    PubMed

    Marzuillo, Pierluigi; Di Sessa, Anna; Umano, Giuseppina Rosaria; Nunziata, Luigia; Cirillo, Grazia; Perrone, Laura; Miraglia Del Giudice, Emanuele; Grandone, Anna

    2017-09-01

    The N-acetyltransferase 2 ( NAT2 ) A803G polymorphism has been associated with decreased insulin sensitivity in a large adult population with the A allele associated with insulin-resistance-related traits. Evaluate the association of this polymorphism with anthropometric and metabolic parameters in obese children and adolescents. A total of 748 obese children and adolescents were enrolled. Anthropometric and laboratory data were collected. During oral glucose tolerance test, the presence of a possible exaggerated plasma glucose excursion at 1 h (1HPG) or impaired glucose tolerance (IGT) was considered. Homeostasis model assessment, oral disposition index (oDI) and insulinogenic index (IDI) were calculated. Patients were genotyped for the NAT2 A803G polymorphism. The prevalence of both IGT and elevated-1HPG was higher in children carrying the A803 allele (P = .02 and P = .03). Moreover, this allele was associated with both oDI and IGI reduction (P = .01). No differences among the NAT2 A803G genotypes for the other parameters were shown. Children homozygous for the A allele presented an odds ratio (OR), to show IGT of 4.9 (P = .01). Children both homozygous and heterozygous for the A allele had higher risk to show elevated-1HPG (OR of 2.7, P = .005; and OR = 2.3, P = .005) compared with patients homozygous for the NAT2 803G allele. NAT2 A803 allele seems to play a role in worsening the destiny of obese children carrying it, predisposing them to elevated-1HPG and IGT and then to a possible future type 2 diabetes mellitus throughout an impairment of pancreatic β-cellular insulin secretion as suggested by oDI and IGI reduction. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Development and evaluation of an efficient heterologous gene knock-in reporter system in Lactococcus lactis.

    PubMed

    Lu, Yifei; Yan, Hongxiang; Deng, Jiezhong; Huang, Zhigang; Jin, Xurui; Yu, Yanlan; Hu, Qiwen; Hu, Fuquan; Wang, Jing

    2017-09-18

    Lactococcus lactis is a food grade probiotics and widely used to express heterologous proteins. Generally, target genes are knocked into the L. lactis genome through double-crossover recombination to express heterologous proteins stably. However, creating marker-less heterologous genes knocked-in clones is laborious. In this study, an efficient heterologous gene knock-in reporter system was developed in L. lactis NZ9000. Our knock-in reporter system consists of a temperature-sensitive plasmid pJW and a recombinant L. lactis strain named NZB. The pJW contains homologous arms, and was constructed to knock-in heterologous genes at a fixed locus of NZ9000 genome. lacZ (β-galactosidase) gene was knocked into the chromosome of NZ9000 as a counter-selective marker through the plasmid pJW to generate NZB. The engineered NZB strain formed blue colonies on X-Gal plate. The desired double-crossover mutants formed white colonies distinctive from the predominantly blue colonies (parental and plasmid-integrated clones) when the embedded lacZ was replaced with the target heterologous genes carried by pJW in NZB. By using the system, the heterologous gene knocked-in clones are screened by colony phenotype change rather than by checking colonies individually. Our new knock-in reporter system provides an efficient method to create heterologous genes knocked-in clones.

  20. Non-neuronal expression of choline acetyltransferase in the rat kidney.

    PubMed

    Maeda, Seishi; Jun, Jin Gon; Kuwahara-Otani, Sachi; Tanaka, Koichi; Hayakawa, Tetsu; Seki, Makoto

    2011-09-12

    Acetylcholine (ACh) has been shown to increase ion and water excretion in the kidneys, resulting in hypotension. However, no evidence of renal parasympathetic innervation has been shown, and the source of ACh acting on nephrons is still unknown. The aim of the present study was to identify ACh-producing cells in the rat kidney, by examining the expression of cholinergic agents and localization of an ACh-synthesizing enzyme, choline acetyltransferase (ChAT), in the kidney. Adult mail Sprague-Dawley rats were used in this study. Expression of mRNA of cholinergic agents, ChAT, vesicular ACh transporter (VAChT), and high-affinity choline transporter (CHT-1), in the kidney was examined by RT-PCR. Localization of ChAT mRNA and protein was examined by in situ hybridization and tyramide-enhanced immunohistochemistry, respectively. RT-PCR showed the expression of ChAT, VAChT, and CHT-1. In situ hybridization demonstrated that ChAT mRNA is localized to the renal cortical collecting ducts (CCD). Immunohistochemistry showed that the ChAT-positive cells were principal cells, and that they were unevenly distributed in the tubules, and constituted approximately 15.2% of CCD in the cortex, and 3.6% and 1.5% in the outer and inner medulla, respectively. ChAT-positive immunoreactivity was localized to the apical side of principal cells, suggesting that ACh synthesis may occur in the apical compartment of these cells. These results suggest that the cholinergic effects in the nephron may be mediated at least in part by ACh originating from CCD principal cells and its expression may be locally regulated in the rat kidney. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Optical imaging of Renilla luciferase, synthetic Renilla luciferase, and firefly luciferase reporter gene expression in living mice.

    PubMed

    Bhaumik, S; Lewis, X Z; Gambhir, S S

    2004-01-01

    We have recently demonstrated that Renilla luciferase (Rluc) is a promising bioluminescence reporter gene that can be used for noninvasive optical imaging of reporter gene expression in living mice, with the aid of a cooled charged couple device (CCD) camera. In the current study, we explore the expression of a novel synthetic Renilla luciferase reporter gene (hRluc) in living mice, which has previously been reported to be a more sensitive reporter than native Rluc in mammalian cells. We explore the strategies of simultaneous imaging of both Renilla luciferase enzyme (RL) and synthetic Renilla luciferase enzyme (hRL):coelenterazine (substrate for RL/hRL) in the same living mouse. We also demonstrate that hRL:coelenterazine can yield a higher signal when compared to Firefly luciferase enzyme (FL): D-Luciferin, both in cell culture studies and when imaged from cells at the surface and from lungs of living mice. These studies demonstrate that hRluc should be a useful primary reporter gene with high sensitivity when used alone or in conjunction with other bioluminescence reporter genes for imaging in living rodents. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  2. High-resolution mapping of the S-locus in Turnera leads to the discovery of three genes tightly associated with the S-alleles.

    PubMed

    Labonne, Jonathan J D; Goultiaeva, Alina; Shore, Joel S

    2009-06-01

    While the breeding system known as distyly has been used as a model system in genetics, and evolutionary biology for over a century, the genes determining this system remain unknown. To positionally clone genes determining distyly, a high-resolution map of the S-locus region of Turnera has been constructed using segregation data from 2,013 backcross progeny. We discovered three putative genes tightly linked with the S-locus. An N-acetyltransferase (TkNACE) flanks the S-locus at 0.35 cM while a sulfotransferase (TkST1) and a non-LTR retroelement (TsRETRO) show complete linkage to the S-locus. An assay of population samples of six species revealed that TsRETRO, initially discovered in diploid Turnera subulata, is also associated with the S-allele in tetraploid T. subulata and diploid Turnera scabra. The sulfotransferase gene shows some level of differential expression in long versus short styles, indicating it might be involved in some aspect of distyly. The complete linkage of TkST1 and TsRETRO to the S-locus suggests that both genes may reside within, or in the immediate vicinity of the S-locus. Chromosome walking has been initiated using one of the genes discovered in the present study to identify the genes determining distyly.

  3. Differential effects of simple repeating DNA sequences on gene expression from the SV40 early promoter.

    PubMed

    Amirhaeri, S; Wohlrab, F; Wells, R D

    1995-02-17

    The influence of simple repeat sequences, cloned into different positions relative to the SV40 early promoter/enhancer, on the transient expression of the chloramphenicol acetyltransferase (CAT) gene was investigated. Insertion of (G)29.(C)29 in either orientation into the 5'-untranslated region of the CAT gene reduced expression in CV-1 cells 50-100 fold when compared with controls with random sequence inserts. Analysis of CAT-specific mRNA levels demonstrated that the effect was due to a reduction of CAT mRNA production rather than to posttranscriptional events. In contrast, insertion of the same insert in either orientation upstream of the promoter-enhancer or downstream of the gene stimulated gene expression 2-3-fold. These effects could be reversed by cotransfection of a competitor plasmid carrying (G)25.(C)25 sequences. The results suggest that a G.C-binding transcription factor modulates gene expression in this system and that promoter strength can be regulated by providing protein-binding sites in trans. Although constructs containing longer tracts of alternating (C-G), (T-G), or (A-T) sequences inhibited CAT expression when inserted in the 5'-untranslated region of the CAT gene, the amount of CAT mRNA was unaffected. Hence, these inhibitions must be due to posttranscriptional events, presumably at the level of translation. These effects of microsatellite sequences on gene expression are discussed with respect to recent data on related simple repeat sequences which cause several human genetic diseases.

  4. Moco biosynthesis and the ATAC acetyltransferase engage translation initiation by inhibiting latent PKR activity.

    PubMed

    Suganuma, Tamaki; Swanson, Selene K; Florens, Laurence; Washburn, Michael P; Workman, Jerry L

    2016-02-01

    Molybdenum cofactor (Moco) biosynthesis is linked to c-Jun N-terminal kinase (JNK) signaling in Drosophila through MoaE, a molybdopterin (MPT) synthase subunit that is also a component of the Ada Two A containing (ATAC) acetyltransferase complex. Here, we show that human MPT synthase and ATAC inhibited PKR, a double-stranded RNA-dependent protein kinase, to facilitate translation initiation of iron-responsive mRNA. MPT synthase and ATAC directly interacted with PKR and suppressed latent autophosphorylation of PKR and its downstream phosphorylation of JNK and eukaryotic initiation factor 2α (eIF2α). The suppression of eIF2α phosphorylation via MPT synthase and ATAC prevented sequestration of the guanine nucleotide exchange factor eIF2B, which recycles eIF2-GDP to eIF2-GTP, resulting in the promotion of translation initiation. Indeed, translation of the iron storage protein, ferritin, was reduced in the absence of MPT synthase or ATAC subunits. Thus, MPT synthase and ATAC regulate latent PKR signaling and link transcription and translation initiation. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  5. Carnitine acetyltransferase (CRAT) expression in macrophages is dispensable for nutrient stress sensing and inflammation.

    PubMed

    Goldberg, Emily L; Dixit, Vishwa Deep

    2017-02-01

    Fatty acid oxidation in macrophages is thought to regulate inflammatory status and insulin-sensitivity. An important unanswered question in this field is whether carnitine acetyl-transferase (CrAT) that regulates fatty acid oxidation and mitochondrial acetyl-CoA balance is required to integrate nutrient stress sensing to inflammatory response in macrophages. Mice with myeloid lineage-specific Crat deletion were subjected to several metabolic stressors, including high-fat diet-induced obesity, fasting, and LPS-induced endotoxemia. Their metabolic homeostasis was compared to that of Crat-sufficient littermate controls. Inflammatory potential of Crat-deficient and Crat-sufficient macrophages were measured both in vitro and in vivo . Our studies revealed that ablation of CrAT in myeloid lineage cells did not impact glucose homeostasis, insulin-action, adipose tissue leukocytosis, and inflammation when animals were confronted with a variety of metabolic stressors, including high-fat diet, fasting, or LPS-induced acute endotoxemia. These findings demonstrate that unlike muscle cells, substrate switch mechanisms that control macrophage energy metabolism and mitochondrial short-chain acyl-CoA pools during nutrient stress are controlled by pathways that are not solely reliant on CrAT.

  6. Effects of intense tone exposure on choline acetyltransferase activity in the hamster cochlear nucleus.

    PubMed

    Jin, Yong-Ming; Godfrey, Donald A; Wang, Jie; Kaltenbach, James A

    2006-01-01

    Choline acetyltransferase (ChAT) activity has been mapped in the cochlear nucleus (CN) of control hamsters and hamsters that had been exposed to an intense tone. ChAT activity in most CN regions of hamsters was only a third or less of the activity in rat CN, but in granular regions ChAT activity was similar in both species. Eight days after intense tone exposure, average ChAT activity increased on the tone-exposed side as compared to the opposite side, by 74% in the anteroventral CN (AVCN), by 55% in the granular region dorsolateral to it, and by 74% in the deep layer of the dorsal CN (DCN). In addition, average ChAT activity in the exposed-side AVCN and fusiform soma layer of DCN was higher than in controls, by 152% and 67%, respectively. Two months after exposure, average ChAT activity was still 53% higher in the exposed-side deep layer of DCN as compared to the opposite side. Increased ChAT activity after intense tone exposure may indicate that this exposure leads to plasticity of descending cholinergic innervation to the CN, which might affect spontaneous activity in the DCN that has been associated with tinnitus.

  7. The cell adhesion molecule L1 regulates the expression of choline acetyltransferase and the development of septal cholinergic neurons

    PubMed Central

    Cui, Xuezhi; Weng, Ying-Qi; Frappé, Isabelle; Burgess, Alison; Girão da Cruz, M Teresa; Schachner, Melitta; Aubert, Isabelle

    2011-01-01

    Mutations in the L1 gene cause severe brain malformations and mental retardation. We investigated the potential roles of L1 in the regulation of choline acetyltransferase (ChAT) and in the development of septal cholinergic neurons, which are known to project to the hippocampus and play key roles in cognitive functions. Using stereological approaches, we detected significantly fewer ChAT-positive cholinergic neurons in the medial septum and vertical limb of the diagonal band of Broca (MS/VDB) of 2-week-old L1-deficient mice compared to wild-type littermates (1644 ± 137 vs. 2051 ± 165, P = 0.038). ChAT protein levels in the septum were 53% lower in 2-week-old L1-deficient mice compared to wild-type littermates. ChAT activity in the septum was significantly reduced in L1-deficient mice compared to wild-type littermates at 1 (34%) and 2 (40%) weeks of age. In vitro, increasing doses of L1-Fc induced ChAT activity in septal neurons with a significant linear trend (*P = 0.0065). At 4 weeks of age in the septum and at all time points investigated in the caudate-putamen (CPu), the number of ChAT-positive neurons and the levels of ChAT activity were not statistically different between L1-deficient mice and wild-type littermates. The total number of cells positive for the neuronal nuclear antigen (NeuN) in the MS/VDB and CPu was not statistically different in L1-deficient mice compared to wild-type littermates, and comparable expression of the cell cycle marker Ki67 was observed. Our results indicate that L1 is required for the timely maturation of septal cholinergic neurons and that L1 promotes the expression and activity of ChAT in septal neurons. PMID:22399087

  8. The Molecular Mechanisms Affecting N-Acetylaspartate Homeostasis Following Experimental Graded Traumatic Brain Injury

    PubMed Central

    Di Pietro, Valentina; Amorini, Angela Maria; Tavazzi, Barbara; Vagnozzi, Roberto; Logan, Ann; Lazzarino, Giacomo; Signoretti, Stefano; Lazzarino, Giuseppe; Belli, Antonio

    2014-01-01

    To characterize the molecular mechanisms of N-acetylaspartate (NAA) metabolism following traumatic brain injury (TBI), we measured the NAA, adenosine triphosphate (ATP) and adenosine diphosphate (ADP) concentrations and calculated the ATP/ADP ratio at different times from impact, concomitantly evaluating the gene and protein expressions controlling NAA homeostasis (the NAA synthesizing and degrading enzymes N-acetyltransferase 8-like and aspartoacylase, respectively) in rats receiving either mild or severe TBI. The reversible changes in NAA induced by mild TBI were due to a combination of transient mitochondrial malfunctioning with energy crisis (decrease in ATP and in the ATP/ADP ratio) and modulation in the gene and protein levels of N-acetyltransferase 8-like and increase of aspartoacylase levels. The irreversible decrease in NAA following severe TBI, was instead characterized by profound mitochondrial malfunctioning (constant 65% decrease of the ATP/ADP indicating permanent impairment of the mitochondrial phosphorylating capacity), dramatic repression of the N-acetyltransferase 8-like gene and concomitant remarkable increase in the aspartoacylase gene and protein levels. The mechanisms underlying changes in NAA homeostasis following graded TBI might be of note for possible new therapeutic approaches and will help in understanding the effects of repeat concussions occurring during particular periods of the complex NAA recovery process, coincident with the so called window of brain vulnerability. PMID:24515258

  9. Transduction of skeletal muscles with common reporter genes can promote muscle fiber degeneration and inflammation.

    PubMed

    Winbanks, Catherine E; Beyer, Claudia; Qian, Hongwei; Gregorevic, Paul

    2012-01-01

    Recombinant adeno-associated viral vectors (rAAV vectors) are promising tools for delivering transgenes to skeletal muscle, in order to study the mechanisms that control the muscle phenotype, and to ameliorate diseases that perturb muscle homeostasis. Many studies have employed rAAV vectors carrying reporter genes encoding for β-galactosidase (β-gal), human placental alkaline phosphatase (hPLAP), and green fluorescent protein (GFP) as experimental controls when studying the effects of manipulating other genes. However, it is not clear to what extent these reporter genes can influence signaling and gene expression signatures in skeletal muscle, which may confound the interpretation of results obtained in experimentally manipulated muscles. Herein, we report a strong pro-inflammatory effect of expressing reporter genes in skeletal muscle. Specifically, we show that the administration of rAAV6:hPLAP vectors to the hind limb muscles of mice is associated with dose- and time-dependent macrophage recruitment, and skeletal muscle damage. Dose-dependent expression of hPLAP also led to marked activity of established pro-inflammatory IL-6/Stat3, TNFα, IKKβ and JNK signaling in lysates obtained from homogenized muscles. These effects were independent of promoter type, as expression cassettes featuring hPLAP under the control of constitutive CMV and muscle-specific CK6 promoters both drove cellular responses when matched for vector dose. Importantly, the administration of rAAV6:GFP vectors did not induce muscle damage or inflammation except at the highest doses we examined, and administration of a transgene-null vector (rAAV6:MCS) did not cause damage or inflammation at any of the doses tested, demonstrating that GFP-expressing, or transgene-null vectors may be more suitable as experimental controls. The studies highlight the importance of considering the potential effects of reporter genes when designing experiments that examine gene manipulation in vivo.

  10. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambhir, Sanjiv; Pritha, Ray

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  11. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOEpatents

    Gambhir, Sanjiv; Pritha, Ray

    2015-07-14

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  12. Priming affects the activity of a specific region of the promoter of the human beta interferon gene.

    PubMed Central

    Dron, M; Lacasa, M; Tovey, M G

    1990-01-01

    Treatment of Daudi or HeLa cells with human interferon (IFN) alpha 8 before induction with either poly(I)-poly(C) or Sendai virus resulted in an 8- to 100-fold increase in IFN production. The extent of priming in Daudi cells paralleled the increase in the intracellular content of IFN-beta mRNA. IFN-alpha mRNA remained undetectable in poly(I)-poly(C)-treated Daudi cells either before or after priming. An IFN-resistant clone of Daudi cells was found to produce 4- to 20-fold more IFN after priming, indicating that priming was unrelated to the phenotype of IFN sensitivity. IFN treatment of either Daudi or HeLa cells transfected with the human IFN-beta promoter (-282 to -37) linked to the chloramphenicol acetyltransferase (CAT) gene resulted in an increase in CAT activity after induction with poly(I)-poly(C) or Sendai virus. A synthetic double-stranded oligonucleotide corresponding to an authentic 30-base-pair (bp) region of the human IFN-beta promoter between positions -91 and -62 was found to confer virus inducibility upon the reporter CAT gene in HeLa cells. IFN treatment of HeLa cells transfected with this 30-bp region of the IFN-beta promoter in either the correct or reversed orientation also increased CAT activity upon subsequent induction. IFN treatment alone had no detectable effect on the activity of either the 30-bp region or the complete human IFN promoter. Images PMID:2153928

  13. Stat5-mediated regulation of the human type II 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene: activation by prolactin.

    PubMed

    Feltus, F A; Groner, B; Melner, M H

    1999-07-01

    Altered PRL levels are associated with infertility in women. Molecular targets at which PRL elicits these effects have yet to be determined. These studies demonstrate transcriptional regulation by PRL of the gene encoding the final enzymatic step in progesterone biosynthesis: 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase (3beta-HSD). A 9/9 match with the consensus Stat5 response element was identified at -110 to -118 in the human Type II 3beta-HSD promoter. 3beta-HSD chloramphenicol acetyltransferase (CAT) reporter constructs containing either an intact or mutated Stat5 element were tested for PRL activation. Expression vectors for Stat5 and the PRL receptor were cotransfected with a -300 --> +45 3beta-HSD CAT reporter construct into HeLa cells, which resulted in a 21-fold increase in reporter activity in the presence of PRL. Promoter activity showed an increased response with a stepwise elevation of transfected Stat5 expression or by treatment with increasing concentrations of PRL (max, 250 ng/ml). This effect was dramatically reduced when the putative Stat5 response element was removed by 5'-deletion of the promoter or by the introduction of a 3-bp mutation into critical nucleotides in the element. Furthermore, 32P-labeled promoter fragments containing the Stat5 element were shifted in electrophoretic mobility shift assay experiments using nuclear extracts from cells treated with PRL, and this complex was supershifted with antibodies to Stat5. These results demonstrate that PRL has the ability to regulate expression of a key human enzyme gene (type II 3beta-HSD) in the progesterone biosynthetic pathway, which is essential for maintaining pregnancy.

  14. CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene.

    PubMed

    Uchida, Shusaku; Teubner, Brett J W; Hevi, Charles; Hara, Kumiko; Kobayashi, Ayumi; Dave, Rutu M; Shintaku, Tatsushi; Jaikhan, Pattaporn; Yamagata, Hirotaka; Suzuki, Takayoshi; Watanabe, Yoshifumi; Zakharenko, Stanislav S; Shumyatsky, Gleb P

    2017-01-10

    Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Up-regulation of miR-325-3p suppresses pineal aralkylamine N-acetyltransferase (Aanat) after neonatal hypoxia-ischemia brain injury in rats.

    PubMed

    Yang, Yuanyuan; Sun, Bin; Huang, Jian; Xu, Lixiao; Pan, Jian; Fang, Chen; Li, Mei; Li, Gen; Tao, Yanfang; Yang, Xiaofeng; Wu, Ying; Miao, Po; Wang, Ying; Li, Hong; Ren, Jing; Zhan, Meiqin; Fang, Yiping; Feng, Xing; Ding, Xin

    2017-08-01

    Survivors of hypoxic-ischemic brain damage (HIBD), besides impairment of psychomotor development, often develop circadian rhythm disorders, although the underlying mechanisms are largely unknown. Here, we first verified that mRNA and protein expression of pineal aralkylamine N-acetyltransferase (Aanat), a key regulator for melatonin (MT) synthesis, along with MT, were severely impaired after HIBD. In addition, we demonstrated that neonatal HIBD disrupted the circadian rhythmicity of locomotor activities in juvenile rats. Based on bioinformatics analysis of a high throughput screening of miRNA expression changes after HIBD (Ding et al., 2015), we identified one microRNA, miR-325-3p, as a potential candidate responsible for the down regulation of Aanat after HIBD. Luciferase reporter assays demonstrated a specific interaction between miR-325-3p and Aanat mRNA 3'-UTR. miR-325-3p blocked norepinephrine (NE) induced Aanat activation in cultured pinealocytes. In addition, miR-325-3p inhibition partially rescued Aanat induction by NE, which was significantly reduced under oxygen glucose deprivation. By elucidating the role of pineal miR-325-3p on Aanat expression upon injury, our study provides new insights into the pathophysiological mechanisms of circadian dysfunction and potential therapeutic targets after HIBD. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Stem cell gene therapy for fanconi anemia: report from the 1st international Fanconi anemia gene therapy working group meeting.

    PubMed

    Tolar, Jakub; Adair, Jennifer E; Antoniou, Michael; Bartholomae, Cynthia C; Becker, Pamela S; Blazar, Bruce R; Bueren, Juan; Carroll, Thomas; Cavazzana-Calvo, Marina; Clapp, D Wade; Dalgleish, Robert; Galy, Anne; Gaspar, H Bobby; Hanenberg, Helmut; Von Kalle, Christof; Kiem, Hans-Peter; Lindeman, Dirk; Naldini, Luigi; Navarro, Susana; Renella, Raffaele; Rio, Paula; Sevilla, Julián; Schmidt, Manfred; Verhoeyen, Els; Wagner, John E; Williams, David A; Thrasher, Adrian J

    2011-07-01

    Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA.

  17. Stem Cell Gene Therapy for Fanconi Anemia: Report from the 1st International Fanconi Anemia Gene Therapy Working Group Meeting

    PubMed Central

    Tolar, Jakub; Adair, Jennifer E; Antoniou, Michael; Bartholomae, Cynthia C; Becker, Pamela S; Blazar, Bruce R; Bueren, Juan; Carroll, Thomas; Cavazzana-Calvo, Marina; Clapp, D Wade; Dalgleish, Robert; Galy, Anne; Gaspar, H Bobby; Hanenberg, Helmut; Von Kalle, Christof; Kiem, Hans-Peter; Lindeman, Dirk; Naldini, Luigi; Navarro, Susana; Renella, Raffaele; Rio, Paula; Sevilla, Julián; Schmidt, Manfred; Verhoeyen, Els; Wagner, John E; Williams, David A; Thrasher, Adrian J

    2011-01-01

    Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA. PMID:21540837

  18. In Vivo MR Imaging of Dual MRI Reporter Genes and Deltex-1 Gene-modified Human Mesenchymal Stem Cells in the Treatment of Closed Penile Fracture.

    PubMed

    Guo, Ruomi; Li, Qingling; Yang, Fei; Hu, Xiaojun; Jiao, Ju; Guo, Yu; Wang, Jin; Zhang, Yong

    2018-06-01

    The purpose of this study was to investigate the feasibility of dual magnetic resonance imaging (MRI) reporter genes, including ferritin heavy subunit (Fth) and transferrin receptor (TfR), which provide sufficient MRI contrast for in vivo MRI tracking, and the Deltex-1 (DTX1) gene, which promotes human mesenchymal stem cell (hMSC) differentiation to smooth muscle cells (SMCs), to treat closed penile fracture (CPF). Multi-gene co-expressing hMSCs were generated. The expression of mRNA and proteins was assessed, and the original biological properties of hMSCs were determined and compared. The intracellular uptake of iron was evaluated, and the ability to differentiate into SMCs was detected. Fifty rabbits with CPF were randomly transplanted with PBS, hMSCs, Fth-TfR-hMSCs, DTX1-hMSCs, and Fth-TfR-DTX1-hMSCs. In vivo MRI was performed to detect the distribution and migration of the grafted cells and healing progress of CPF, and the results were correlated with histology. The mRNA and proteins of the multi-gene were highly expressed. The transgenes could not influence the original biological properties of hMSCs. The dual MRI reporter genes increased the iron accumulation capacity, and the DTX1 gene promoted hMSC differentiation into SMCs. The distribution and migration of the dual MRI reporter gene-modified hMSCs, and the healing state of CPF could be obviously detected by MRI and confirmed by histology. The dual MRI reporter genes could provide sufficient MRI contrast, and the distribution and migration of MSCs could be detected in vivo. The DTX1 gene can promote MSC differentiation into SMCs for the treatment of CPF and effectively inhibit granulation tissue formation.

  19. Effects of Epigenetic Modulation on Reporter Gene Expression: Implications for Stem Cell Imaging

    PubMed Central

    Krishnan, Manickam; Park, Jinha M.; Cao, Feng; Wang, Dongxu; Paulmurugan, Ramasay; Tseng, Jeffrey R.; Gonzalgo, Mark L.; Gambhir, Sanjiv S.; Wu, Joseph C.

    2013-01-01

    Tracking stem cell localization, survival, differentiation, and proliferation following transplantation in living subjects is essential for understanding stem cell biology and physiology. In this study, we investigated the long-term stability of reporter gene expression in an embryonic rat cardiomyoblast cell line and the role of epigenetic modulation on reversing reporter gene silencing. Cells were stably transfected with plasmids carrying cytomegalovirus promoter driving firefly luciferase reporter gene (CMV-Fluc) and passaged repeatedly for 3–8 months. Within the highest expressor clone, the firefly luciferase activity decreased progressively from passage-1 (843±28) to passage-20 (250±10) to passage-40 (44±3) to passage-60 (3±1 RLU/µg) (P<0.05 vs. passage-1). Firefly luciferase activity was maximally rescued by treatment with 5-azacytidine (DNA methyltransferase inhibitor) compared to trichostatin A (histone deacetylase inhibitor) and retinoic acid (transcriptional activator) (P<0.05). Increasing dosages of 5-azacytidine treatment led to higher levels of firefly luciferase mRNA (RT-PCR) and protein (Western blots) and inversely lower levels of methylation in the CMV promoter (DNA nucleotide sequence). These in vitro results were extended to in vivo bioluminescence imaging (BLI) of cell transplant in living animals. Cells treated with 5-azacytidine were monitored for 2 weeks compared to 1 week for untreated cells (P<0.05). These findings should have important implications for reporter gene-based imaging of stem cell transplantation. PMID:16246867

  20. Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos

    PubMed Central

    Ochiai, Hiroshi; Sakamoto, Naoaki; Fujita, Kazumasa; Nishikawa, Masatoshi; Suzuki, Ken-ichi; Matsuura, Shinya; Miyamoto, Tatsuo; Sakuma, Tetsushi; Shibata, Tatsuo; Yamamoto, Takashi

    2012-01-01

    To understand complex biological systems, such as the development of multicellular organisms, it is important to characterize the gene expression dynamics. However, there is currently no universal technique for targeted insertion of reporter genes and quantitative imaging in multicellular model systems. Recently, genome editing using zinc-finger nucleases (ZFNs) has been reported in several models. ZFNs consist of a zinc-finger DNA-binding array with the nuclease domain of the restriction enzyme FokI and facilitate targeted transgene insertion. In this study, we successfully inserted a GFP reporter cassette into the HpEts1 gene locus of the sea urchin, Hemicentrotus pulcherrimus. We achieved this insertion by injecting eggs with a pair of ZFNs for HpEts1 with a targeting donor construct that contained ∼1-kb homology arms and a 2A-histone H2B–GFP cassette. We increased the efficiency of the ZFN-mediated targeted transgene insertion by in situ linearization of the targeting donor construct and cointroduction of an mRNA for a dominant-negative form of HpLig4, which encodes the H. pulcherrimus homolog of DNA ligase IV required for error-prone nonhomologous end joining. We measured the fluorescence intensity of GFP at the single-cell level in living embryos during development and found that there was variation in HpEts1 expression among the primary mesenchyme cells. These findings demonstrate the feasibility of ZFN-mediated targeted transgene insertion to enable quantification of the expression levels of endogenous genes during development in living sea urchin embryos. PMID:22711830

  1. A Role for Histone Deacetylases in the Cellular and Behavioral Mechanisms Underlying Learning and Memory

    ERIC Educational Resources Information Center

    Mahgoub, Melissa; Monteggia, Lisa M.

    2014-01-01

    Histone deacetylases (HDACs) are a family of chromatin remodeling enzymes that restrict access of transcription factors to the DNA, thereby repressing gene expression. In contrast, histone acetyltransferases (HATs) relax the chromatin structure allowing for an active chromatin state and promoting gene transcription. Accumulating data have…

  2. Identification of an enhancer element of class Pi glutathione S-transferase gene required for expression by a co-planar polychlorinated biphenyl.

    PubMed Central

    Matsumoto, M; Imagawa, M; Aoki, Y

    1999-01-01

    3,3',4,4',5-Pentachlorobiphenyl (PenCB), one of the most toxic co-planar polychlorinated biphenyl congeners, specifically induces class Pi glutathione S-transferase (GSTP1) as well as cytochrome P-450 1A1 in primary cultured rat liver parenchymal cells [Aoki, Matsumoto and Suzuki (1993) FEBS Lett. 333, 114-118]. However, the 5'-flanking sequence of the GSTP1 gene does not contain a xenobiotic responsive element, to which arylhydrocarbon receptor binds. Using a chloramphenicol acetyltransferase assay we demonstrate here that the enhancer termed GSTP1 enhancer I (GPEI) is necessary for the stimulation by PenCB of GSTP1 gene expression in primary cultured rat liver parenchymal cells. GPEI is already known to contain a dyad of PMA responsive element-like elements oriented palindromically. It is suggested that a novel signal transduction pathway activated by PenCB contributes to the stimulation of GSTP1 expression. PMID:10051428

  3. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    PubMed

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-03-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation.

  4. Evaluation of a GFP Report Gene Construct for Environmental Arsenic Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, F.F.; Barnes, J.M.; Bruhn, D.F.

    Detection of arsenic and other heavy metal contaminants in the environment is critical to ensuring safe drinking water and effective cleanup of historic activities that have led to widespread contamination of soil and groundwater. Biosensors have the potential to significantly reduce the costs associated with site characterization and long term environmental monitoring. By exploiting the highly selective and sensitive natural mechanisms by which bacteria and other living organisms respond to heavy metals, and fusing transcriptionally active components of these mechanisms to reporter genes, such as B-galactosidase, bacterial luciferase (lux), or green fluorescent protein (GFP) from marine jellyfish, it is possiblemore » to produce inexpensive, yet effective biosensors. This article describes the response to submicrogram quantities of arsenite and arsenate of a whole cell arsenic biosensor utilizing a GFP reporter gene.« less

  5. Negative and positive regulation by a short segment in the 5'-flanking region of the human cytomegalovirus major immediate-early gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, J.A.; Reynolds-Kohler, C.; Smith, B.A.

    1987-11-01

    To analyze the significance of inducible DNase I-hypersensitive sites occurring in the 5'-flanking sequence of the major immediate-early gene of human cytomegalovirus (HCMV), various deleted portions of the HCMV immediate-early promoter regulatory region were attached to the chloramphenicol acetyltransferase (CAT) gene and assayed for activity in transiently transfected undifferentiated and differentiated human teratocarcinoma cells, Tera-2. Assays of progressive deletions in the promoter regulatory region indicated that removal of a 395-base-pair portion of this element (nucleotides -750 to -1145) containing two inducible DNase I sites which correlate with gene expression resulted in a 7.5-fold increase in CAT activity in undifferentiated cells.more » However, in permissive differentiated Tera-2, human foreskin fibroblast, and HeLa cells, removal of this regulatory region resulted in decreased activity. In addition, attachment of this HCMV upstream element to a homologous or heterologous promoter increased activity three-to fivefold in permissive cells. Therefore, a cis regulatory element exists 5' to the enhancer of the major immediate-early gene of HCMV. This element negatively modulates expression in nonpermissive cells but positively influences expression in permissive cells.« less

  6. Rational Design of a Triple Reporter Gene for Multimodality Molecular Imaging

    PubMed Central

    Hsieh, Ya-Ju; Ke, Chien-Chih; Yeh, Skye Hsin-Hsien; Lin, Chien-Feng; Chen, Fu-Du; Lin, Kang-Ping; Chen, Ran-Chou; Liu, Ren-Shyan

    2014-01-01

    Multimodality imaging using noncytotoxic triple fusion (TF) reporter genes is an important application for cell-based tracking, drug screening, and therapy. The firefly luciferase (fl), monomeric red fluorescence protein (mrfp), and truncated herpes simplex virus type 1 thymidine kinase SR39 mutant (ttksr39) were fused together to create TF reporter gene constructs with different order. The enzymatic activities of TF protein in vitro and in vivo were determined by luciferase reporter assay, H-FEAU cellular uptake experiment, bioluminescence imaging, and micropositron emission tomography (microPET). The TF construct expressed in H1299 cells possesses luciferase activity and red fluorescence. The tTKSR39 activity is preserved in TF protein and mediates high levels of H-FEAU accumulation and significant cell death from ganciclovir (GCV) prodrug activation. In living animals, the luciferase and tTKSR39 activities of TF protein have also been successfully validated by multimodality imaging systems. The red fluorescence signal is relatively weak for in vivo imaging but may expedite FACS-based selection of TF reporter expressing cells. We have developed an optimized triple fusion reporter construct DsRedm-fl-ttksr39 for more effective and sensitive in vivo animal imaging using fluorescence, bioluminescence, and PET imaging modalities, which may facilitate different fields of biomedical research and applications. PMID:24809057

  7. The Acetylase/Deacetylase Couple CREB-binding Protein/Sirtuin 1 Controls Hypoxia-inducible Factor 2 Signaling*

    PubMed Central

    Chen, Rui; Xu, Min; Hogg, Richard T.; Li, Jiwen; Little, Bertis; Gerard, Robert D.; Garcia, Joseph A.

    2012-01-01

    Hypoxia-inducible factors (HIFs) are oxygen-sensitive transcription factors. HIF-1α plays a prominent role in hypoxic gene induction. HIF-2α target genes are more restricted but include erythropoietin (Epo), one of the most highly hypoxia-inducible genes in mammals. We previously reported that HIF-2α is acetylated during hypoxia but is rapidly deacetylated by the stress-responsive deacetylase Sirtuin 1. We now demonstrate that the lysine acetyltransferases cAMP-response element-binding protein-binding protein (CBP) and p300 are required for efficient Epo induction during hypoxia. However, despite close structural similarity, the roles of CBP and p300 differ in HIF signaling. CBP acetylates HIF-2α, is a major coactivator for HIF-2-mediated Epo induction, and is required for Sirt1 augmentation of HIF-2 signaling during hypoxia in Hep3B cells. In comparison, p300 is a major contributor for HIF-1 signaling as indicated by induction of Pgk1. Whereas CBP can bind with HIF-2α independent of the HIF-2α C-terminal activation domain via enzyme/substrate interactions, p300 only complexes with HIF-2α through the C-terminal activation domain. Maximal CBP/HIF-2 signaling requires intact CBP acetyltransferase activity in both Hep3B cells as well as in mice. PMID:22807441

  8. Role for human arylamine N-acetyltransferase 1 in the methionine salvage pathway.

    PubMed

    Witham, Katey L; Minchin, Rodney F; Butcher, Neville J

    2017-02-01

    The Phase II drug metabolizing enzyme arylamine N-acetyltransferase 1 (NAT1) has been implicated in the growth and survival of cancer cells, although the mechanisms that underlies these effects are unknown. Here, a focused metabolomics approach was used to identify changes in folate catabolism as well as the S-adenosylmethionine (SAM) cycle following NAT1 knockdown with shRNA. Although acetylation of the folate catabolite p-aminobenzoylglutamate (pABG) was significantly decreased, there were no changes in intracellular pABG or the various components of the SAM cycle. By contrast, the flux of homocysteine in the medium was different following NAT1 knockdown after the methionine content was exhausted suggesting a need for this metabolite in methionine synthesis. Analysis of the growth of various cancer cells in methylthioadenosine-supplemented medium showed that NAT1 knockdown inhibited the methionine salvage pathway in HT-29 cells but not in HeLa or MDA-MB-436 cells. The cause of this was a low level of expression of the isomerase MRI-1 in the HT-29 cells. Knocking down both NAT1 and MRI-1 in HeLa cells with siRNA further demonstrated a redundancy between these 2 enzymes, although direct isomerase activity by NAT1 could not be demonstrated. The present study has identified a novel endogenous role for human NAT1 that might explain some of its effects in cancer cell growth and survival. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods.

    PubMed

    Hiragaki, Susumu; Suzuki, Takeshi; Mohamed, Ahmed A M; Takeda, Makio

    2015-01-01

    The evolution of N-acetyltransfeases (NATs) seems complex. Vertebrate arylalkylamine N-acetyltransferase (aaNAT) has been extensively studied since it leads to the synthesis of melatonin, a multifunctional neurohormone prevalent in photoreceptor cells, and is known as a chemical token of the night. Melatonin also serves as a scavenger for reactive oxygen species. This is also true with invertebrates. NAT therefore has distinct functional implications in circadian function, as timezymes (aaNAT), and also xenobiotic reactions (arylamine NAT or simply NAT). NATs belong to a broader enzyme group, the GCN5-related N-acetyltransferase superfamily. Due to low sequence homology and a seemingly fast rate of structural differentiation, the nomenclature for NATs can be confusing. The advent of bioinformatics, however, has helped to classify this group of enzymes; vertebrates have two distinct subgroups, the timezyme type and the xenobiotic type, which has a wider substrate range including imidazolamine, pharmacological drugs, environmental toxicants and even histone. Insect aaNAT (iaaNAT) form their own clade in the phylogeny, distinct from vertebrate aaNATs. Arthropods are unique, since the phylum has exoskeleton in which quinones derived from N-acetylated monoamines function in coupling chitin and arthropodins. Monoamine oxidase (MAO) activity is limited in insects, but NAT-mediated degradation prevails. However, unexpectedly iaaNAT occurs not only among arthropods but also among basal deuterostomia, and is therefore more apomorphic. Our analyses illustrate that iaaNATs has unique physiological roles but at the same time it plays a role in a timezyme function, at least in photoperiodism. Photoperiodism has been considered as a function of circadian system but the detailed molecular mechanism is not well understood. We propose a molecular hypothesis for photoperiodism in Antheraea pernyi based on the transcription regulation of NAT interlocked by the circadian system

  10. Volatile Gas Production by Methyl Halide Transferase: An In Situ Reporter Of Microbial Gene Expression In Soil.

    PubMed

    Cheng, Hsiao-Ying; Masiello, Caroline A; Bennett, George N; Silberg, Jonathan J

    2016-08-16

    Traditional visual reporters of gene expression have only very limited use in soils because their outputs are challenging to detect through the soil matrix. This severely restricts our ability to study time-dependent microbial gene expression in one of the Earth's largest, most complex habitats. Here we describe an approach to report on dynamic gene expression within a microbial population in a soil under natural water levels (at and below water holding capacity) via production of methyl halides using a methyl halide transferase. As a proof-of-concept application, we couple the expression of this gas reporter to the conjugative transfer of a bacterial plasmid in a soil matrix and show that gas released from the matrix displays a strong correlation with the number of transconjugant bacteria that formed. Gas reporting of gene expression will make possible dynamic studies of natural and engineered microbes within many hard-to-image environmental matrices (soils, sediments, sludge, and biomass) at sample scales exceeding those used for traditional visual reporting.

  11. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins.

    PubMed

    Davies, Michael N; Kjalarsdottir, Lilja; Thompson, J Will; Dubois, Laura G; Stevens, Robert D; Ilkayeva, Olga R; Brosnan, M Julia; Rolph, Timothy P; Grimsrud, Paul A; Muoio, Deborah M

    2016-01-12

    Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-induced Lysine Acetylation of Mitochondrial Proteins

    PubMed Central

    Davies, Michael N.; Kjalarsdottir, Lilja; Thompson, J. Will; Dubois, Laura G.; Stevens, Robert D.; Ilkayeva, Olga R.; Brosnan, M. Julia; Rolph, Timothy P.; Grimsrud, Paul A.; Muoio, Deborah M.

    2016-01-01

    Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK. PMID:26748706

  13. Reduced 4-Aminobiphenyl-Induced Liver Tumorigenicity but not DNA Damage in Arylamine N-Acetyltransferase Null Mice

    PubMed Central

    Sugamori, Kim S.; Brenneman, Debbie; Sanchez, Otto; Doll, Mark A.; Hein, David W.; Pierce, William M.; Grant, Denis M.

    2012-01-01

    The aromatic amine 4-aminobiphenyl (ABP) is a liver procarcinogen in mice, requiring enzymatic bioactivation to exert its tumorigenic effect. To assess the role of arylamine N-acetyltransferase (NAT)-dependent acetylation capacity in the risk for ABP-induced liver tumors, we compared 1-year liver tumor incidence following the postnatal exposure of wild-type and NAT-deficient Nat1/2(−/−) mice to ABP. At an ABP exposure of 1200 nmoles, male Nat1/2(−/−) mice had a liver tumor incidence of 36% compared to 69% in wild-type males, and at 600 nmoles there was a complete absence of tumors compared to 60% in wild-type mice. Only one female wild-type mouse had a tumor using this exposure protocol. However, levels of N-deoxyguanosin-8-yl-ABP-DNA adducts did not correlate with either the strain or sex differences in tumor incidence. These results suggest that female sex and NAT deficiency reduce risk for ABP-induced liver tumors, but by mechanisms unrelated to differences in DNA-damaging events. PMID:22193722

  14. Anatomical mapping of choline acetyltransferase (ChAT)-like and glutamate decarboxylase (GAD)-like immunoreactivity in outer hair cell efferents in adult rats.

    PubMed

    Dannhof, B J; Roth, B; Bruns, V

    1991-10-01

    The distribution of choline acetyltransferase (ChAT)-like and glutamate decarboxylase (GAD)-like immunoreactivity in the cochleae of 15 adult Wistar white rats was investigated using the peroxidase-antiperoxidase (PAP) technique. A monoclonal antibody to ChAT and a polyclonal antiserum to GAD were used. Immunoreaction was investigated quantitatively, in the electron microscope, on tangential sections of the tunnel of Corti and the rows of outer hair cells. ChAT-like and GAD-like immunoreactivity was found in all efferent nerve fibres in the tunnel of Corti and in all efferent synapses on the outer hair cells. A coexistence of ChAT and GAD in the efferent system to the outer hair cells of the rat is therefore assumed.

  15. A method to rapidly and accurately compare relative efficacies of non-invasive imaging reporter genes in a mouse model, and its application to luciferase reporters

    PubMed Central

    Gil, Jose S.; Machado, Hidevaldo B.; Herschman, Harvey R.

    2013-01-01

    Purpose Our goal is to develop a simple, quantitative, robust method to compare the efficacy of imaging reporter genes in culture and in vivo. We describe an adenoviral vector-liver transduction procedure, and compare the luciferase reporter efficacies. Procedures Alternative reporter genes are expressed in a common adenoviral vector. Vector amounts used in vivo are based on cell culture titrations, ensuring the same transduction efficacy is used for each vector. After imaging, in vivo and in vitro values are normalized to hepatic vector transduction using quantitative real-time PCR. Results We assayed standard firefly luciferase (FLuc), enhanced firefly luciferase (EFLuc), luciferase 2 (Luc2), humanized Renilla luciferase (hRLuc), Renilla luciferase 8.6-535 (RLuc8.6), and a membrane-bound Gaussia luciferase variant (extGLuc) in cell culture and in vivo. We observed a greater that 100-fold increase in bioluminescent signal for both EFLuc and Luc2 when compared to FLuc, and a greater than 106-fold increase for RLuc8.6 when compared to hRLuc. ExtGLuc was not detectable in liver. Conclusions Our findings contrast, in some cases, with conclusions drawn in prior comparisons of these reporter genes, and demonstrate the need for a standardized method to evaluate alternative reporter genes in vivo. Our procedure can be adapted for reporter genes that utilize alternative imaging modalities (fluorescence, bioluminescence, MRI, SPECT, PET). PMID:21850545

  16. Flavonoids inhibit both rice and sheep serotonin N-acetyltransferases and reduce melatonin levels in plants.

    PubMed

    Lee, Kyungjin; Hwang, Ok Jin; Reiter, Russel J; Back, Kyoungwhan

    2018-05-31

    The plant melatonin biosynthetic pathway has been well characterized, but inhibitors of melatonin synthesis have not been well studied. Here, we found that flavonoids potently inhibited plant melatonin synthesis. For example, flavonoids including morin and myricetin significantly inhibited purified, recombinant sheep serotonin N-acetyltransferase (SNAT). Flavonoids also dose-dependently and potently inhibited purified rice SNAT1 and SNAT2. Thus, myricetin (100 μmol/L) reduced rice SNAT1 and SNAT2 activity 7- and 10-fold, respectively, and also strongly inhibited the N-acetylserotonin methyltransferase activity of purified, recombinant rice caffeic acid O-methyltransferase. To explore the in vivo effects, rice leaves were treated with flavonoids and then cadmium. Flavonoid-treated leaves had lower melatonin levels than the untreated control. To explore the direct roles of flavonoids in melatonin biosynthesis, we first functionally characterized a putative rice flavonol synthase (FLS) in vitro and generated flavonoid-rich transgenic rice plants that overexpressed FLS. Such plants produced more flavonoids but less melatonin than the wild-type, which suggests that flavonoids indeed inhibit plant melatonin biosynthesis. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Splicing defect in FKBP10 gene causes autosomal recessive osteogenesis imperfecta disease: a case report.

    PubMed

    Maghami, Fatemeh; Tabei, Seyed Mohammad Bagher; Moravej, Hossein; Dastsooz, Hassan; Modarresi, Farzaneh; Silawi, Mohammad; Faghihi, Mohammad Ali

    2018-05-25

    Osteogenesis imperfecta (OI) is a group of connective tissue disorder caused by mutations of genes involved in the production of collagen and its supporting proteins. Although the majority of reported OI variants are in COL1A1 and COL1A2 genes, recent reports have shown problems in other non-collagenous genes involved in the post translational modifications, folding and transport, transcription and proliferation of osteoblasts, bone mineralization, and cell signaling. Up to now, 17 types of OI have been reported in which types I to IV are the most frequent cases with autosomal dominant pattern of inheritance. Here we report an 8- year- old boy with OI who has had multiple fractures since birth and now he is wheelchair-dependent. To identify genetic cause of OI in our patient, whole exome sequencing (WES) was carried out and it revealed a novel deleterious homozygote splice acceptor site mutation (c.1257-2A > G, IVS7-2A > G) in FKBP10 gene in the patient. Then, the identified mutation was confirmed using Sanger sequencing in the proband as homozygous and in his parents as heterozygous, indicating its autosomal recessive pattern of inheritance. In addition, we performed RT-PCR on RNA transcripts originated from skin fibroblast of the proband to analyze the functional effect of the mutation on splicing pattern of FKBP10 gene and it showed skipping of the exon 8 of this gene. Moreover, Real-Time PCR was carried out to quantify the expression level of FKBP10 in the proband and his family members in which it revealed nearly the full decrease in the level of FKBP10 expression in the proband and around 75% decrease in its level in the carriers of the mutation, strongly suggesting the pathogenicity of the mutation. Our study identified, for the first time, a private pathogenic splice site mutation in FKBP10 gene and further prove the involvement of this gene in the rare cases of autosomal recessive OI type XI with distinguished clinical manifestations.

  18. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    PubMed Central

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-01-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation. PMID:9062372

  19. Comparative metabolic pathway analysis with special reference to nucleotide metabolism-related genes in chicken primordial germ cells.

    PubMed

    Rengaraj, Deivendran; Lee, Bo Ram; Jang, Hyun-Jun; Kim, Young Min; Han, Jae Yong

    2013-01-01

    Metabolism provides energy and nutrients required for the cellular growth, maintenance, and reproduction. When compared with genomics and proteomics, metabolism studies provide novel findings in terms of cellular functions. In this study, we examined significant and differentially expressed genes in primordial germ cells (PGCs), gonadal stromal cells, and chicken embryonic fibroblasts compared with blastoderms using microarray. All upregulated genes (1001, 1118, and 974, respectively) and downregulated genes (504, 627, and 1317, respectively) in three test samples were categorized into functional groups according to gene ontology. Then all selected genes were tested to examine their involvement in metabolic pathways through Kyoto Encyclopedia of Genes and Genomes pathway database using overrepresentation analysis. In our results, most of the upregulated and downregulated genes were involved in at least one subcategory of seven major metabolic pathways. The main objective of this study is to compare the PGC expressed genes and their metabolic pathways with blastoderms, gonadal stromal cells, and chicken embryonic fibroblasts. Among the genes involved in metabolic pathways, a higher number of PGC upregulated genes were identified in retinol metabolism, and a higher number of PGC downregulated genes were identified in sphingolipid metabolism. In terms of the fold change, acyl-CoA synthetase medium-chain family member 3 (ACSM3), which is involved in butanoate metabolism, and N-acetyltransferase, pineal gland isozyme NAT-10 (PNAT10), which is involved in energy metabolism, showed higher expression in PGCs. To validate these gene changes, the expression of 12 nucleotide metabolism-related genes in chicken PGCs was examined by real-time polymerase chain reaction. The results of this study provide new information on the expression of genes associated with metabolism function of PGCs and will facilitate more basic research on animal PGC differentiation and function

  20. Replication-Competent Influenza A Viruses Expressing Reporter Genes.

    PubMed

    Breen, Michael; Nogales, Aitor; Baker, Steven F; Martínez-Sobrido, Luis

    2016-06-23

    Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo.

  1. Replication-Competent Influenza A Viruses Expressing Reporter Genes

    PubMed Central

    Breen, Michael; Nogales, Aitor; Baker, Steven F.; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo. PMID:27347991

  2. Gene expression profiling in multiple myeloma--reporting of entities, risk, and targets in clinical routine.

    PubMed

    Meissner, Tobias; Seckinger, Anja; Rème, Thierry; Hielscher, Thomas; Möhler, Thomas; Neben, Kai; Goldschmidt, Hartmut; Klein, Bernard; Hose, Dirk

    2011-12-01

    Multiple myeloma is an incurable malignant plasma cell disease characterized by survival ranging from several months to more than 15 years. Assessment of risk and underlying molecular heterogeneity can be excellently done by gene expression profiling (GEP), but its way into clinical routine is hampered by the lack of an appropriate reporting tool and the integration with other prognostic factors into a single "meta" risk stratification. The GEP-report (GEP-R) was built as an open-source software developed in R for gene expression reporting in clinical practice using Affymetrix microarrays. GEP-R processes new samples by applying a documentation-by-value strategy to the raw data to be able to assign thresholds and grouping algorithms defined on a reference cohort of 262 patients with multiple myeloma. Furthermore, we integrated expression-based and conventional prognostic factors within one risk stratification (HM-metascore). The GEP-R comprises (i) quality control, (ii) sample identity control, (iii) biologic classification, (iv) risk stratification, and (v) assessment of target genes. The resulting HM-metascore is defined as the sum over the weighted factors gene expression-based risk-assessment (UAMS-, IFM-score), proliferation, International Staging System (ISS) stage, t(4;14), and expression of prognostic target genes (AURKA, IGF1R) for which clinical grade inhibitors exist. The HM-score delineates three significantly different groups of 13.1%, 72.1%, and 14.7% of patients with a 6-year survival rate of 89.3%, 60.6%, and 18.6%, respectively. GEP reporting allows prospective assessment of risk and target gene expression and integration of current prognostic factors in clinical routine, being customizable about novel parameters or other cancer entities. ©2011 AACR.

  3. ERK2-mediated C-terminal serine phosphorylation of p300 is vital to the regulation of epidermal growth factor-induced keratin 16 gene expression.

    PubMed

    Chen, Yun-Ju; Wang, Ying-Nai; Chang, Wen-Chang

    2007-09-14

    We previously reported that the epidermal growth factor (EGF) regulates the gene expression of keratin 16 by activating the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling which in turn enhances the recruitment of p300 to the keratin 16 promoter. The recruited p300 functionally cooperates with Sp1 and c-Jun to regulate the gene expression of keratin 16. This study investigated in detail the molecular events incurred upon p300 whereby EGF caused an enhanced interaction between p300 and Sp1. EGF apparently induced time- and dose-dependent phosphorylation of p300, both in vitro and in vivo, through the activation of ERK2. The six potential ERK2 phosphorylation sites, including three threonine and three serine residues as revealed by sequential analysis, were first identified in vitro. Confirmation of these six sites in vivo indicated that these three serine residues (Ser-2279, Ser-2315, and Ser-2366) on the C terminus of p300 were the major signaling targets of EGF. Furthermore, the C-terminal serine phosphorylation of p300 stimulated its histone acetyltransferase activity and enhanced its interaction with Sp1. These serine phosphorylation sites on p300 controlled the p300 recruitment to the keratin 16 promoter. When all three serine residues on p300 were replaced by alanine, EGF could no longer induce the gene expression of keratin 16. Taken together, these results strongly suggested that the ERK2-mediated C-terminal serine phosphorylation of p300 was a key event in the regulation of EGF-induced keratin 16 expression. These results also constituted the first report identifying the unique p300 phosphorylation sites induced by ERK2 in vivo.

  4. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-L-glutamate synthase/kinase with and without a His tag bound to N-acetyl-L-glutamate.

    PubMed

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, β=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.

  5. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors.

    PubMed

    Brutesco, Catherine; Prévéral, Sandra; Escoffier, Camille; Descamps, Elodie C T; Prudent, Elsa; Cayron, Julien; Dumas, Louis; Ricquebourg, Manon; Adryanczyk-Perrier, Géraldine; de Groot, Arjan; Garcia, Daniel; Rodrigue, Agnès; Pignol, David; Ginet, Nicolas

    2017-01-01

    Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible P ars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.

  6. Quiescent and Proliferative Fibroblasts Exhibit Differential p300 HAT Activation through Control of 5-Methoxytryptophan Production

    PubMed Central

    Chu, Ling-yun; Chang, Tzu-Ching; Kuo, Cheng-Chin; Wu, Kenneth K.

    2014-01-01

    Quiescent fibroblasts possess unique genetic program and exhibit high metabolic activity distinct from proliferative fibroblasts. In response to inflammatory stimulation, quiescent fibroblasts are more active in expressing cyclooxygenase-2 and other proinflammatory genes than proliferative fibroblasts. The underlying transcriptional mechanism is unclear. Here we show that phorbol 12-myristate 13-acetate (PMA) and cytokines increased p300 histone acetyltransferase activity to a higher magnitude (> 2 fold) in quiescent fibroblasts than in proliferative fibroblasts. Binding of p300 to cyclooxygenase-2 promoter was reduced in proliferative fibroblasts. By ultrahigh-performance liquid chromatography coupled with a quadrupole time of flight mass spectrometer and enzyme-immunoassay, we found that production of 5-methoxytryptophan was 2–3 folds higher in proliferative fibroblasts than that in quiescent fibroblasts. Addition of 5-methoxytryptophan and its metabolic precursor, 5-hydroxytryptophan, to quiescent fibroblasts suppressed PMA-induced p300 histone acetyltransferase activity and cyclooxygenase-2 expression to the level of proliferative fibroblasts. Silencing of tryptophan hydroxylase-1 or hydroxyindole O-methyltransferase in proliferative fibroblasts with siRNA resulted in elevation of PMA-induced p300 histone acetyltransferase activity to the level of that in quiescent fibroblasts, which was rescued by addition of 5-hydroxytryptophan or 5-methoxytryptophan. Our findings indicate that robust inflammatory gene expression in quiescent fibroblasts vs. proliferative fibroblasts is attributed to uncontrolled p300 histone acetyltransferase activation due to deficiency of 5-methoxytryptophan production. 5-methoxytryptophan thus is a potential valuable lead compound for new anti-inflammatory drug development. PMID:24523905

  7. Noninvasive imaging of cationic lipid-mediated delivery of optical and PET reporter genes in living mice.

    PubMed

    Iyer, Meera; Berenji, Manijeh; Templeton, Nancy S; Gambhir, Sanjiv S

    2002-10-01

    Gene therapy involves the safe and effective delivery of one or more genes of interest to target cells in vivo. The advantages of using nonviral delivery systems include ease of preparation, low toxicity, and weak immunogenicity. Nonviral delivery methods, when combined with a noninvasive, clinically applicable imaging assay, will greatly aid in the optimization of gene therapy approaches for cancer. We demonstrate cationic lipid-mediated noninvasive monitoring of reporter gene expression of firefly (Photinus pyralis) luciferase (fl) and a mutant herpes simplex virus type I thymidine kinase (HSV1-sr39tk, tk) in living mice using a cooled charge coupled device (CCD) camera and positron emission tomography (PET), respectively. We observe a high level of fl and tk reporter gene expression predominantly in the lungs after a single injection of the extruded DOTAP:cholesterol DNA liposome complexes by way of the tail vein, seen to be time- and dose-dependent. We observe a good correlation between the in vivo bioluminescent signal and the ex vivo firefly luciferase enzyme (FL) activity in different organs. We further demonstrate the feasibility of noninvasively imaging both optical and PET reporter gene expression in the same animal using the CCD camera and microPET, respectively.

  8. Histone H3 Lysine 36 Methyltransferase Whsc1 Promotes the Association of Runx2 and p300 in the Activation of Bone-Related Genes

    PubMed Central

    Lee, Yu Fei; Nimura, Keisuke; Lo, Wan Ning; Saga, Kotaro; Kaneda, Yasufumi

    2014-01-01

    The orchestration of histone modifiers is required to establish the epigenomic status that regulates gene expression during development. Whsc1 (Wolf-Hirschhorn Syndrome candidate 1), a histone H3 lysine 36 (H3K36) trimethyltransferase, is one of the major genes associated with Wolf-Hirshhorn syndrome, which is characterized by skeletal abnormalities. However, the role of Whsc1 in skeletal development remains unclear. Here, we show that Whsc1 regulates gene expression through Runt-related transcription factor (Runx) 2, a transcription factor central to bone development, and p300, a histone acetyltransferase, to promote bone differentiation. Whsc1 −/− embryos exhibited defects in ossification in the occipital bone and sternum. Whsc1 knockdown in pre-osteoblast cells perturbed histone modification patterns in bone-related genes and led to defects in bone differentiation. Whsc1 increased the association of p300 with Runx2, activating the bone-related genes Osteopontin (Opn) and Collagen type Ia (Col1a1), and Whsc1 suppressed the overactivation of these genes via H3K36 trimethylation. Our results suggest that Whsc1 fine-tunes the expression of bone-related genes by acting as a modulator in balancing H3K36 trimethylation and histone acetylation. Our results provide novel insight into the mechanisms by which this histone methyltransferase regulates gene expression. PMID:25188294

  9. Active cigarette smoking and the risk of breast cancer at the level of N-acetyltransferase 2 (NAT2) gene polymorphisms.

    PubMed

    Kasajova, Petra; Holubekova, Veronika; Mendelova, Andrea; Lasabova, Zora; Zubor, Pavol; Kudela, Erik; Biskupska-Bodova, Kristina; Danko, Jan

    2016-06-01

    The aim of our study was to assess the correlation between the tobacco exposure and NAT2 gene (rs1041983 C/T, rs1801280 T/C, rs1799930 G/A) polymorphisms in association with breast cancer development. We wanted to determine the prognostic clinical importance of these polymorphisms in association with smoking and breast cancer. For the detection of possible association between smoking, NAT2 gene polymorphisms, and the risk of breast cancer, we designed a case-controlled study with 198 patients enrolled, 98 breast cancer patients and 100 healthy controls. Ten milliliters of peripheral blood from the cubital vein was withdrawn from every patient. The HRM (high resolution melting) analysis was used for the detection of three abovementioned NAT2 gene polymorphisms. When comparing a group of women smoking more than 5 cigarettes a day with the patients smoking fewer than 5 cigarettes a day, we found out that if women were the carriers of aberrant AA genotype for rs1799930, the first group of women had higher risk of breast carcinoma than the second group. If patients were the carriers of aberrant TT genotype for rs1041983, for rs1801280CC genotype, and rs1799930AA genotype and they smoked more than 5 cigarettes a day, they had higher risk of malignant breast disease than never-smoking women. Our results confirm the hypothesis that NAT2 gene polymorphisms (rs1041983 C/T, rs1801280 T/C, and rs1799930 G/A) in association with long-period active smoking could be the possible individual risk-predicting factors for breast cancer development in the population of Slovak women.

  10. High-Throughput Screening of a Luciferase Reporter of Gene Silencing on the Inactive X Chromosome.

    PubMed

    Keegan, Alissa; Plath, Kathrin; Damoiseaux, Robert

    2018-01-01

    Assays of luciferase gene activity are a sensitive and quantitative reporter system suited to high-throughput screening. We adapted a luciferase assay to a screening strategy for identifying factors that reactivate epigenetically silenced genes. This epigenetic luciferase reporter is subject to endogenous gene silencing mechanisms on the inactive X chromosome (Xi) in primary mouse cells and thus captures the multilayered nature of chromatin silencing in development. Here, we describe the optimization of an Xi-linked luciferase reactivation assay in 384-well format and adaptation of the assay for high-throughput siRNA and chemical screening. Xi-luciferase reactivation screening has applications in stem cell biology and cancer therapy. We have used the approach described here to identify chromatin-modifying proteins and to identify drug combinations that enhance the gene reactivation activity of the DNA demethylating drug 5-aza-2'-deoxycytidine.

  11. The in vitro maintenance of clock genes expression within the rat pineal gland under standard and norepinephrine-synchronized stimulation.

    PubMed

    Andrade-Silva, Jéssica; Cipolla-Neto, José; Peliciari-Garcia, Rodrigo A

    2014-01-01

    Although the norepinephrine (NE) synchronization protocol was proved to be an important procedure for further modulating in vitro pineal melatonin synthesis, the maintenance of clock genes under the same conditions remained to be investigated. The aim of this study was to investigate the maintenance of the clock genes expression in pineal gland cultures under standard and NE-synchronized stimulation. The glands were separated into three experimental groups: Control, Standard (acute NE-stimulation), and NE-synchronized. The expression of Bmal1, Per2, Cry2, Rev-erbα, the clock controlled gene Dbp and Arylalkylamine-N-acetyltransferase were investigated, as well as melatonin content. No oscillations were observed in the expression of the investigated genes from the control group. Under Standard NE stimulation, the clock genes did not exhibit a rhythmic pattern of expression. However, in the NE-synchronized condition, a rhythmic expression pattern was observed in all cases. An enhancement in pineal gland responsiveness to NE stimulation, reflected in an advanced synthesis of melatonin was also observed. Our results reinforce our previous hypothesis that NE synchronization of pineal gland culture mimics the natural rhythmic release of NE in the gland, increasing melatonin synthesis and keeping the pineal circadian clock synchronized, ensuring the fine adjustments that are relied in the clockwork machinery. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  12. Genetic variation in aryl N-acetyltransferase results in significant differences in the pharmacokinetic and safety profiles of amifampridine (3,4-diaminopyridine) phosphate.

    PubMed

    Haroldsen, Peter E; Garovoy, Marvin R; Musson, Donald G; Zhou, Huiyu; Tsuruda, Laurie; Hanson, Boyd; O'Neill, Charles A

    2015-02-01

    The clinical use of amifampridine phosphate for neuromuscular junction disorders is increasing. The metabolism of amifampridine occurs via polymorphic aryl N-acetyltransferase (NAT), yet its pharmacokinetic (PK) and safety profiles, as influenced by this enzyme system, have not been investigated. The objective of this study was to assess the effect of NAT phenotype and genotype on the PK and safety profiles of amifampridine in healthy volunteers (N = 26). A caffeine challenge test and NAT2 genotyping were used to delineate subjects into slow and fast acetylators for PK and tolerability assessment of single, escalating doses of amifampridine (up to 30 mg) and in multiple daily doses (20 mg QID) of amifampridine. The results showed that fast acetylator phenotypes displayed significantly lower C max, AUC, and shorter t 1/2 for amifampridine than slow acetylators. Plasma concentrations of the N-acetyl metabolite were approximately twofold higher in fast acetylators. Gender differences were not observed. Single doses of amifampridine demonstrated dose linear PKs. Amifampridine achieved steady state plasma levels within 1 day of dosing four times daily. No accumulation or time-dependent changes in amifampridine PK parameters occurred. Overall, slow acetylators reported 73 drug-related treatment-emergent adverse events versus 6 in fast acetylators. Variations in polymorphic NAT corresponding with fast and slow acetylator phenotypes significantly affects the PK and safety profiles of amifampridine.

  13. A single secreted luciferase-based gene reporter assay.

    PubMed

    Barriscale, Kathy A; O'Sullivan, Sharon A; McCarthy, Tommie V

    2014-05-15

    Promoter analysis typically employs a reporter gene fused to a test promoter combined with a second reporter fused to a control promoter that is used for normalization purposes. However, this approach is not valid when experimental conditions affect the control promoter. We have developed and validated a single secreted luciferase reporter (SSLR) assay for promoter analysis that avoids the use of a control reporter. The approach uses an early level of expression of a secreted luciferase linked to a test promoter as an internal normalization control for subsequent analysis of the same promoter. Comparison of the SSLR assay with the dual luciferase reporter (DLR) assay using HMGCR (3-hydroxy-3-methylglutaryl-coenzyme A reductase) and LDLR (low-density lipoprotein receptor) promoter constructs, which are down-regulated by 25-hydroxycholesterol, show that both assays yield similar results. Comparison of the response of the HMGCR promoter in SSLR transient assays compared very favorably with the response of the same promoter in the stable cell line. Overall, the SSLR assay proved to be a valid alternative to the DLR assay for certain applications and had significant advantages in that measurement of only one luciferase is required and monitoring can be continuous because cell lysis is not necessary. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Nanoparticle abraxane possesses impaired proliferation in A549 cells due to the underexpression of glucosamine 6-phosphate N-acetyltransferase 1 (GNPNAT1/GNA1).

    PubMed

    Zhao, Minzhi; Li, Haiyun; Ma, Yan; Gong, He; Yang, Shu; Fang, Qiaojun; Hu, Zhiyuan

    2017-01-01

    Abraxane (Abr), a US Food and Drug Administration-approved albumin-bound nanoparticle applied for the treatment of non-small-cell lung cancer, has been reported to be more effective than paclitaxel (PTX). To further understand the molecular mechanisms that produce this superior drug efficacy of Abr, a quantitative proteomic approach has been applied to investigate the global protein expression profiles of lung cancer cell A549 treated with Abr and PTX. Only one protein, namely, glucosamine 6-phosphate N-acetyltransferase 1 (GNA1), showed significant differential expression ( P <0.05) in the cutoff of 2.0 fold, suggesting that Abr can be used safely as a substitute for PTX. GNA1 is a key enzyme in the biosynthesis of uridine diphosphate-N-acetylglucosamine, which is an important donor substrate for N-linked glycosylation and has several important functions such as embryonic development and growth. Albumin plays a major role in the regulation of this protein. In summary, this study first shows that the superior drug effect of Abr is mainly due to the downregulation of GNA1, which causes proliferative delay and cell adhesion defect. It is also noteworthy that the deficiency of GNA1 might reduce insulin secretion which correlates with type 2 diabetes.

  15. Studies on N-Acetyltransferase (NAT2) Genotype Relationships in Emiratis: Confirmation of the Existence of Phenotype Variation among Slow Acetylators.

    PubMed

    Al-Ahmad, Mohammad M; Amir, Naheed; Dhanasekaran, Subramanian; John, Anne; Abdulrazzaq, Yousef M; Ali, Bassam R; Bastaki, Salim

    2017-09-01

    Individuals with slow N-acetylation phenotype often experience toxicity from drugs such as isoniazid, sulfonamides, procainamide, and hydralazine, whereas rapid acetylators may not respond to these medications. The highly polymorphic N-acetyltransferase 2 enzyme encoded by the NAT2 gene is one of the N-acetylators in humans with a clear impact on the metabolism of a significant number of important drugs. However, there are limited studies on N-acetylation phenotypes and NAT2 genotypes among Emiratis, and thus this study was carried out to fill this gap. Five hundred seventy-six Emirati subjects were asked to consume a soft drink containing caffeine (a nontoxic and reliable probe for predicting the acetylation phenotype) and then provide a buccal swab along with a spot urine sample. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine the genotype of each individual. Phenotyping was carried out by analyzing the caffeine metabolites using high-performance liquid chromatography (HPLC) analysis. We found that 78.5%, 19.1%, and 2.4% of the Emirati subjects were slow, intermediate, and rapid acetylators, respectively. In addition, we found that 77.4% of the subjects were homozygous or heterozygous for two nonreference alleles, whereas 18.4% and 4.2% were heterozygous or homozygous for the reference allele (NAT2*4), respectively. The most common genotypes found were NAT2*5B/*7B, NAT2*5B/*6A, NAT2*7B/*14B, and NAT2*4/*5B, with frequencies of 0.255, 0.135, 0.105, and 0.09, respectively. The degree of phenotype/genotype concordance was 96.2%. The NAT2*6A/*6A, NAT2*6A/*7B, NAT2*7B/*7B, and NAT2*5A/*5B genotypes were found to be associated with the lowest 5-acetylamino-6-formylamino-3-methyluracil/1-methylxanthine (AFMU/1X) ratios. There is a high percentage of slow acetylators among Emiratis, which correlates with the presence of nonreference alleles for the NAT2 gene. Individuals who carried NAT2*6A/*6A, NAT2*6A/*7B, NAT2*7B/*7B

  16. A temperature-tolerant multiplex elements and genes screening system for genetically modified organisms based on dual priming oligonucleotide primers and capillary electrophoresis.

    PubMed

    Fu, Wei; Wei, Shuang; Wang, Chenguang; Du, Zhixin; Zhu, Pengyu; Wu, Xiyang; Wu, Gang; Zhu, Shuifang

    2017-08-15

    High throughput screening systems are the preferred solution to meet the urgent requirement of increasing number of genetically modified organisms (GMOs). In this study, we have successfully developed a multiplex GMO element screening system with dual priming oligonucleotide (DPO) primers. This system can detect the cauliflower mosaic virus 35S (CaMV 35S), terminator of nopaline synthase gene (NOS), figwort mosaic virus 35S (FMV 35S) promoter, neomycin phosphotransferaseII (NPTII), Bt Cry 1Ab, phosphinothricin acetyltransferase genes (bar) and Streptomyces viridochromogenes (pat) simultaneously, which covers more than 90% of all authorized GMO species worldwide. This system exhibits a high tolerance to annealing temperatures, high specificity and a limit of detection equal to conventional PCR. A total of 214 samples from markets, national entry-exit agencies, the Institute for Reference Materials and Measurement (IRMM) and the American Oil Chemists' Society (AOCS) were also tested for applicability. This screening system is therefore suitable for GMO screening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The first report of the vanC₁ gene in Enterococcus faecium isolated from a human clinical specimen.

    PubMed

    Sun, Mingyue; Wang, Yue; Chen, Zhongju; Zhu, Xuhui; Tian, Lei; Sun, Ziyong

    2014-09-01

    The vanC₁ gene, which is chromosomally located, confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Enterococcus faecium TJ4031 was isolated from a blood culture and harbours the vanC₁gene. Polymerase chain reaction (PCR) assays were performed to detect vanXYc and vanTc genes. Only the vanXYc gene was found in the E. faecium TJ4031 isolate. The minimum inhibitory concentrations of vancomycin and teicoplanin were 2 µg/mL and 1 µg/mL, respectively. Real-time reverse transcription-PCR results revealed that the vanC₁ and vanXYc genes were not expressed. Pulsed-field gel electrophoresis and southern hybridisation results showed that the vanC₁ gene was encoded in the chromosome. E. faecalis isolated from animals has been reported to harbour vanC₁gene. However, this study is the first to report the presence of the vanC₁gene in E. faecium of human origin. Additionally, our research showed the vanC₁gene cannot serve as a species-specific gene of E. gallinarum and that it is able to be transferred between bacteria. Although the resistance marker is not expressed in the strain, our results showed that E. faecium could acquire the vanC₁gene from different species.

  18. Importance of the Evaluation of N-Acetyltransferase Enzyme Activity Prior to 5-Aminosalicylic Acid Medication for Ulcerative Colitis.

    PubMed

    Matthis, Andrea L; Zhang, Bin; Denson, Lee A; Yacyshyn, Bruce R; Aihara, Eitaro; Montrose, Marshall H

    2016-08-01

    5-aminosalicylic acid (5-ASA) is a classic anti-inflammatory drug for the treatment of ulcerative colitis. N-acetyltransferase (NAT) enzymes convert 5-ASA to its metabolite N-acetyl-5-ASA, and it is unresolved whether 5-ASA or N-acetyl-5-ASA is the effective therapeutic molecule. We previously demonstrated that colonic production of N-acetyl-5-ASA (NAT activity) is decreased in dextran sulfate sodium-induced colitis. Our hypothesis is that 5-ASA is the therapeutic molecule to improve colitis, with the corollary that altered NAT activity affects drug efficacy. Since varying clinical effectiveness of 5-ASA has been reported, we also ask if NAT activity varies with inflammation in pediatric or adult patients. Acute colonic inflammation was induced in C57BL/6 NAT wild-type (WT) or knockout mice, using 3.5% dextran sulfate sodium (w/v) concurrent with 5-ASA treatment. Adult and pediatric rectosigmoid biopsies were collected from control or patients with ulcerative colitis. Tissue was analyzed for NAT and myeloperoxidase activity. Dextran sulfate sodium-induced colitis was of similar severity in both NAT WT and knockout mice, and NAT activity was significantly decreased in NAT WT mice. In the setting of colitis, 5-ASA significantly restored colon length and decreased myeloperoxidase activity in NAT knockout but not in WT mice. Myeloperoxidase activity negatively correlated with NAT activity in pediatric patients, but correlation was not observed in adult patients. Inflammation decreases NAT activity in the colon of mice and human pediatric patients. Decreased NAT activity enhances the therapeutic effect of 5-ASA in mice. A NAT activity assay could be useful to help predict the efficacy of 5-ASA therapy.

  19. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma.

    PubMed

    Keu, Khun Visith; Witney, Timothy H; Yaghoubi, Shahriar; Rosenberg, Jarrett; Kurien, Anita; Magnusson, Rachel; Williams, John; Habte, Frezghi; Wagner, Jamie R; Forman, Stephen; Brown, Christine; Allen-Auerbach, Martin; Czernin, Johannes; Tang, Winson; Jensen, Michael C; Badie, Behnam; Gambhir, Sanjiv S

    2017-01-18

    High-grade gliomas are aggressive cancers that often become rapidly fatal. Immunotherapy using CD8 + cytotoxic T lymphocytes (CTLs), engineered to express both herpes simplex virus type 1 thymidine kinase (HSV1-TK) and interleukin-13 (IL-13) zetakine chimeric antigen receptor (CAR), is a treatment strategy with considerable potential. To optimize this and related immunotherapies, it would be helpful to monitor CTL viability and trafficking to glioma cells. We show that noninvasive positron emission tomography (PET) imaging with 9-[4-[ 18 F]fluoro-3-(hydroxymethyl)butyl]guanine ([ 18 F]FHBG) can track HSV1-tk reporter gene expression present in CAR-engineered CTLs. [ 18 F]FHBG imaging was safe and enabled the longitudinal imaging of T cells stably transfected with a PET reporter gene in patients. Further optimization of this imaging approach for monitoring in vivo cell trafficking should greatly benefit various cell-based therapies for cancer. Copyright © 2017, American Association for the Advancement of Science.

  20. Effects of the tat and nef gene products of human immunodeficiency virus type 1 (HIV-1) on transcription controlled by the HIV-1 long terminal repeat and on cell growth in macrophages.

    PubMed Central

    Murphy, K M; Sweet, M J; Ross, I L; Hume, D A

    1993-01-01

    The RAW264 murine macrophage cell line was used as a model to examine the role of the tat and nef gene products in the transcription regulation of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) in macrophages. Contrary to claims that the activity of the HIV-1 LTR responds poorly in rodent cells to trans activation by the viral tat gene product, cotransfection of RAW264 cells with a tat expression plasmid in transient transfection assays caused a > 20-fold increase in reporter gene expression that was inhibited by mutations in the TAR region. RAW264 cells stably transfected with the tat plasmid displayed similarly elevated HIV-1 LTR-driven reporter gene activity. By contrast to previous reports indicating a negative role for nef in HIV transcription, cotransfection of RAW264 cells with a nef expression plasmid trans activated the HIV-1 LTR driving either a chloramphenicol acetyltransferase or a luciferase reporter gene. The action of nef was specific to the LTR, as expression of nef had no effect on the activity of the simian virus 40, c-fms, urokinase plasminogen activator, or type 5 acid phosphatase promoter. trans-activating activity was also manifested by a frameshift mutant expressing only the first 35 amino acids of the protein. The effects of nef were multiplicative with those of tat gene product and occurred even in the presence of bacterial lipopolysaccharide, which itself activated LTR-directed transcription. Examination of the effects of selected mutations in the LTR revealed that neither the kappa B sites in the direct repeat enhancer nor the TAR region was required as a cis-acting element in nef action. The action of nef was not species restricted; it was able to trans activate in the human monocyte-like cell line Mono Mac 6. The presence of a nef expression cassette in a neomycin phosphotransferase gene expression plasmid greatly reduced the number of G418-resistant colonies generated in stable transfection of RAW264 cells