Sample records for ache active site

  1. Identification of new allosteric sites and modulators of AChE through computational and experimental tools.

    PubMed

    Roca, Carlos; Requena, Carlos; Sebastián-Pérez, Víctor; Malhotra, Sony; Radoux, Chris; Pérez, Concepción; Martinez, Ana; Antonio Páez, Juan; Blundell, Tom L; Campillo, Nuria E

    2018-12-01

    Allosteric sites on proteins are targeted for designing more selective inhibitors of enzyme activity and to discover new functions. Acetylcholinesterase (AChE), which is most widely known for the hydrolysis of the neurotransmitter acetylcholine, has a peripheral allosteric subsite responsible for amyloidosis in Alzheimer's disease through interaction with amyloid β-peptide. However, AChE plays other non-hydrolytic functions. Here, we identify and characterise using computational tools two new allosteric sites in AChE, which have allowed us to identify allosteric inhibitors by virtual screening guided by structure-based and fragment hotspot strategies. The identified compounds were also screened for in vitro inhibition of AChE and three were observed to be active. Further experimental (kinetic) and computational (molecular dynamics) studies have been performed to verify the allosteric activity. These new compounds may be valuable pharmacological tools in the study of non-cholinergic functions of AChE.

  2. Anti-Alzheimers activity and molecular mechanism of albumin-derived peptides against AChE and BChE.

    PubMed

    Yu, Zhipeng; Wu, Sijia; Zhao, Wenzhu; Ding, Long; Fan, Yue; Shiuan, David; Liu, Jingbo; Chen, Feng

    2018-02-21

    Alzheimer's disease (AD) is a global health issue affecting millions of elderly people worldwide. The aim of the present study was to identify novel anti-AD peptides isolated from albumin. Anti-AD activities of the peptides were evaluated via inhibitory activities on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Furthermore, the potential molecular mechanisms of the KLPGF/AChE were investigated by CDOCKER of Discovery studio 2017. The results revealed that peptide KLPGF could effectively inhibit AChE with an inhibition rate of 61.23% at a concentration of 50 μg mL -1 . In addition, the peptide KLPGF came in contact with acylation sites and peripheral anion sites of AChE. The present study demonstrates that the peptide KLPGF could become a potential functional food intervention in AD.

  3. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Wei; NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032; Li, Juan

    The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC{sub 50} values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC{sub 50} values of 49.1 μM (for ZLA) and 55.3more » μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.« less

  4. A selective molecularly imprinted polymer for immobilization of acetylcholinesterase (AChE): an active enzyme targeted and efficient method.

    PubMed

    Demirci, Gökhan; Doğaç, Yasemin İspirli; Teke, Mustafa

    2015-11-01

    In the present study, we immobilized acetylcholinesterase (AChE) enzyme onto acetylcholine removed imprinted polymer and acetylcholine containing polymer. First, the polymers were produced with acetylcholine, substrate of AChE, by dispersion polymerization. Then, the enzyme was immobilized onto the polymers by using two different methods: In the first method (method A), acetylcholine was removed from the polymer, and then AChE was immobilized onto this polymer (acetylcholine removed imprinted polymer). In the second method (method B), AChE was immobilized onto acetylcholine containing polymer by affinity. In method A, enzyme-specific species (binding sites) occurred by removing acetylcholine from the polymer. The immobilized AChE reached 240% relative specific activity comparison with free AChE because the active enzyme molecules bounded onto the polymer. Transmission electron microscopy results were taken before and after immobilization of AChE for the assessment of morphological structure of polymer. Also, the experiments, which include optimum temperature (25-65 °C), optimum pH (3-10), thermal stability (4-70 °C), kinetic parameters, operational stability and reusability, were performed to determine the characteristic of the immobilized AChE. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Understanding the conformational flexibility and electrostatic properties of curcumin in the active site of rhAChE via molecular docking, molecular dynamics, and charge density analysis.

    PubMed

    Saravanan, Kandasamy; Kalaiarasi, Chinnasamy; Kumaradhas, Poomani

    2017-12-01

    Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer's disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.

  6. Design, evaluation and structure-activity relationship studies of the AChE reactivators against organophosphorus pesticides.

    PubMed

    Musilek, Kamil; Dolezal, Martin; Gunn-Moore, Frank; Kuca, Kamil

    2011-07-01

    Organophosphate pesticides (OPPs; e.g. chlorpyrifos, diazinon, paraoxon) are a wide and heterogeneous group of organophosphorus compounds. Their biological activity of inhibiting acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) ranks them as life endangering agents. The necessary treatment after OPP exposure involves the use of parasympatolytics (e.g. atropine), oxime reactivators (e.g. obidoxime), and anticonvulsive drugs (e.g. diazepam). Therefore, the reactivators of AChE are essential compounds in the treatment of OPP intoxications. Commercial AChE reactivators (e.g. pralidoxime, HI-6, obidoxime, trimedoxime, methoxime) were originally developed for other members of the organophosphate family, such as nerve agents (e.g. sarin, soman, tabun, VX). Pralidoxime, HI-6, and methoxime were found to be weak reactivators of OPP-inhibited AChE. Obidoxime and trimedoxime showed satisfactory reactivation against various OPPs with minor toxicity issues. During the last two decades, the treatment of OPP exposure has become more widely discussed because of growing agricultural production, industrialization, and harmful social issues (e.g. suicides). In this review is the summarized design, evaluation, and structure-activity relationship studies of recently produced AChE reactivators. Since pralidoxime, over 300 oximes have been produced or tested against OPP poisoning, and several novel compounds show very promising abilities as comparable (or higher) to commercial oximes. Some of these are highlighted for their further testing of OPP exposure and, additionally, the main structure-activity relationship of AChE reactivators against OPP is discussed. © 2009 Wiley Periodicals, Inc.

  7. Design, synthesis and evaluation of some N-methylenebenzenamine derivatives as selective acetylcholinesterase (AChE) inhibitor and antioxidant to enhance learning and memory.

    PubMed

    Shrivastava, Sushant K; Srivastava, Pavan; Upendra, T V R; Tripathi, Prabhash Nath; Sinha, Saurabh K

    2017-02-15

    Series of some 3,5-dimethoxy-N-methylenebenzenamine and 4-(methyleneamino)benzoic acid derivatives comprising of N-methylenebenzenamine nucleus were designed, synthesized, characterized, and assessed for their acetylcholinesterase (AChE), butyrylcholinesterase (BChE) inhibitory, and antioxidant activity thereby improving learning and memory in rats. The IC 50 values of all the compound along with standard were determined on AChE and BChE enzyme. The free radical scavenging activity was also assessed by in vitro DPPH (2,2-diphenyl-1-picryl-hydrazyl) and hydrogen peroxide radical scavenging assay. The selective inhibitions of all compounds were observed against AChE in comparison with standard donepezil. The enzyme kinetic study of the most active compound 4 indicated uncompetitive AChE inhibition. The docking studies of compound 4 exhibited the worthy interaction on active-site gorge residues Phe330 and Trp279 responsible for its high affinity towards AChE, whereas lacking of the BChE inhibition was observed due to a wider gorge binding site and absence of important aromatic amino acids interactions. The ex vivo study confirmed AChE inhibition abilities of compound 4 at brain site. Further, a considerable decrease in escape latency period of the compound was observed in comparison with standard donepezil through in vivo Spatial Reference Memory (SRM) and Spatial Working Memory (SWM) models which showed the cognition-enhancing potential of compound 4. The in vivo reduced glutathione (GSH) estimation on rat brain tissue homogenate was also performed to evaluate free radical scavenging activity substantiated the antioxidant activity in learning and memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Tertiary amine derivatives of chlorochalcone as acetylcholinesterase (AChE) and buthylcholinesterase (BuChE) inhibitors: the influence of chlorine, alkyl amine side chain and α,β-unsaturated ketone group.

    PubMed

    Gao, Xiao-Hui; Zhou, Chao; Liu, Hao-Ran; Liu, Lin-Bo; Tang, Jing-Jing; Xia, Xin-Hua

    2017-12-01

    A new series of tertiary amine derivatives of chlorochalcone (4a∼4l) were designed, synthesized and evaluated for the effect on acetylcholinesterase (AChE) and buthylcholinesterase (BuChE). The results indicated that all compounds revealed moderate or potent inhibitory activity against AChE, and some possessed high selectivity for AChE over BuChE. The structure-activity investigation showed that the substituted position of chlorine significantly influenced the activity and selectivity. The alteration of tertiary amine group also leads to obvious change in bioactivity. Among them, IC 50 of compound 4l against AChE was 0.17 ± 0.06 µmol/L, and the selectivity was 667.2 fold for AChE over BuChE. Molecular docking and enzyme kinetic study on compound 4l suggested that it simultaneously binds to the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. Further study showed that the pyrazoline derivatives synthesized from chlorochalcones had weaker activity and lower selectivity in inhibiting AChE compared to that of chlorochalcone derivatives.

  9. Discovery of potent and selective acetylcholinesterase (AChE) inhibitors: acacetin 7-O-methyl ether Mannich base derivatives synthesised from easy access natural product naringin.

    PubMed

    Liu, Hao-Ran; Men, Xue; Gao, Xiao-Hui; Liu, Lin-Bo; Fan, Hao-Qun; Xia, Xin-Hua; Wang, Qiu-An

    2018-03-01

    Naringin, as a component universal existing in the peel of some fruits or medicinal plants, was usually selected as the material to synthesise bioactive derivates since it was easy to gain with low cost. In present investigation, eight new acacetin-7-O-methyl ether Mannich base derivatives (1-8) were synthesised from naringin. The bioactivity evaluation revealed that most of them exhibited moderate or potent acetylcholinesterase (AChE) inhibitory activity. Among them, compound 7 (IC 50 for AChE = 0.82 ± 0.08 μmol•L -1 , IC 50 for BuChE = 46.30 ± 3.26 μmol•L -1 ) showed a potent activity and high selectivity compared with the positive control Rivastigmine (IC 50 for AChE = 10.54 ± 0.86 μmol•L -1 , IC 50 for BuChE = 0.26 ± 0.08 μmol•L -1 ). The kinetic study suggested that compound 7 bind to AChE with mix-type inhibitory profile. Molecular docking study revealed that compound 7 could combine both catalytic active site (CAS) and peripheral active site (PAS) of AChE with four points (Trp84, Trp279, Tyr70 and Phe330), while it could bind with BuChE via only His 20.

  10. The role of the peripheral anionic site and cation-pi interactions in the ligand penetration of the human AChE gorge.

    PubMed

    Branduardi, Davide; Gervasio, Francesco Luigi; Cavalli, Andrea; Recanatini, Maurizio; Parrinello, Michele

    2005-06-29

    We study the ligand (tetramethylammonium) recognition by the peripheral anionic site and its penetration of the human AChE gorge by using atomistic molecular dynamics simulations and our recently developed metadynamics method. The role of both the peripheral anionic site and the formation of cation-pi interactions in the ligand entrance are clearly shown. In particular, a simulation with the W286A mutant shows the fundamental role of this residue in anchoring the ligand at the peripheral anionic site of the enzyme and in positioning it prior to the gorge entrance. Once the ligand is properly oriented, the formation of specific and synchronized cation-pi interactions with W86, F295, and Y341 enables the gorge penetration. Eventually, the ligand is stabilized in a free energy basin by means of cation-pi interactions with W86.

  11. Downregulated expression of microRNA-124 in pediatric intestinal failure patients modulates macrophages activation by inhibiting STAT3 and AChE

    PubMed Central

    Xiao, Yong-Tao; Wang, Jun; Lu, Wei; Cao, Yi; Cai, Wei

    2016-01-01

    Intestinal inflammation plays a critical role in the pathogenesis of intestinal failure (IF). The macrophages are essential to maintain the intestinal homeostasis. However, the underlying mechanisms of intestinal macrophages activation remain poorly understood. Since microRNAs (miRNAs) have pivotal roles in regulation of immune responses, here we aimed to investigate the role of miR-124 in the activation of intestinal macrophages. In this study, we showed that the intestinal macrophages increased in pediatric IF patients and resulted in the induction of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The miRNA fluorescence in situ hybridization analysis showed that the expression of miR-124 significantly reduced in intestinal macrophages in IF patients. Overexpression of miR-124 was sufficient to inhibit intestinal macrophages activation by attenuating production of IL-6 and TNF-α. Further studies showed that miR-124 could directly target the 3′-untranslated region of both signal transducer and activator of transcription 3 (STAT3) and acetylcholinesterase (AChE) mRNAs, and suppress their protein expressions. The AChE potentially negates the cholinergic anti-inflammatory signal by hydrolyzing the acetylcholine. We here showed that intestinal macrophages increasingly expressed the AChE and STAT3 in IF patients when compared with controls. The inhibitors against to STAT3 and AChE significantly suppressed the lipopolysaccharides-induced IL-6 and TNF-α production in macrophages. Taken together, these findings highlight an important role for miR-124 in the regulation of intestinal macrophages activation, and suggest a potential application of miR-124 in pediatric IF treatment regarding as suppressing intestinal inflammation. PMID:27977009

  12. Chlorpyrifos and malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity.

    PubMed

    Richendrfer, Holly; Creton, Robbert

    2015-07-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Chlorpyrifos and Malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity

    PubMed Central

    Richendrfer, Holly; Creton, Robbert

    2015-01-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. PMID:25983063

  14. Sesquiterpenes and a monoterpenoid with acetylcholinesterase (AchE) inhibitory activity from Valeriana officinalis var. latiofolia in vitro and in vivo.

    PubMed

    Chen, Heng-Wen; He, Xuan-Hui; Yuan, Rong; Wei, Ben-Jun; Chen, Zhong; Dong, Jun-Xing; Wang, Jie

    2016-04-01

    Acetylcholinesterase Inhibitor (AchEI) is the most extensive in all anti-dementia drugs. The extracts and isolated compounds from the Valeriana genus have shown anti-dementia bioactivity. Four new sesquiterpenoids (1-4) and a new monoterpenoid (5) were isolated from the root of Valeriana officinalis var. latiofolia. The acetylcholinesterase (AchE) inhibitory activity of isolates was evaluated by modified Ellman method in vitro. Learning and memory ability of compound 4 on mice was evaluated by the Morris water maze. The contents of acetylcholine (Ach), acetylcholine transferase (ChAT) and AchE in mice brains were determined by colorimetry. The results showed IC50 of compound 4 was 0.161 μM in vitro. Compared with the normal group, the learning and memory ability of mice and the contents of Ach and ChAT decreased in model group mice (P<0.01), while the AchE increased (P<0.01). Compared with the model group, Ach and ChAT in the positive control group, the high-dose group and the medium-dose group increased (P<0.01), while the AchE decreased (P<0.01). Compound 4 can improve the learning and memory abilities of APPswe/PSΔE9 double-transgenic mice, and the mechanism may be related to the regulation of the relative enzyme in the cholinergic system. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Photolabeling a Nicotinic Acetylcholine Receptor (nAChR) with an (α4)3(β2)2 nAChR-Selective Positive Allosteric Modulator

    PubMed Central

    Deba, Farah; Wang, Ze-Jun; Cohen, Jonathan B.

    2016-01-01

    Positive allosteric modulators (PAMs) of nicotinic acetylcholine (ACh) receptors (nAChRs) have potential clinical applications in the treatment of nicotine dependence and many neuropsychiatric conditions associated with decreased brain cholinergic activity, and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI) has been identified as a PAM selective for neuronal nAChRs containing the α4 subunit. In this report, we compare CMPI interactions with low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs, and with muscle-type nAChRs. In addition, we use the intrinsic reactivity of [3H]CMPI upon photolysis at 312 nm to identify its binding sites in Torpedo nAChRs. Recording from Xenopus oocytes, we found that CMPI potentiated maximally the responses of (α4)3(β2)2 nAChR to 10 μM ACh (EC10) by 400% and with an EC50 of ∼1 µM. CMPI produced a left shift of the ACh concentration-response curve without altering ACh efficacy. In contrast, CMPI inhibited (∼35% at 10 µM) ACh responses of (α4)2(β2)3 nAChRs and fully inhibited human muscle and Torpedo nAChRs with IC50 values of ∼0.5 µM. Upon irradiation at 312 nm, [3H]CMPI photoincorporated into each Torpedo [(α1)2β1γδ] nAChR subunit. Sequencing of peptide fragments isolated from [3H]CMPI-photolabeled nAChR subunits established photolabeling of amino acids contributing to the ACh binding sites (αTyr190, αTyr198, γTrp55, γTyr111, γTyr117, δTrp57) that was fully inhibitable by agonist and lower-efficiency, state-dependent [3H]CMPI photolabeling within the ion channel. Our results establish that CMPI is a potent potentiator of nAChRs containing an α4:α4 subunit interface, and that its intrinsic photoreactivy makes it of potential use to identify its binding sites in the (α4)3(β2)2 nAChR. PMID:26976945

  16. Effects of hexamethonium, phenothiazines, propranolol and ephedrine on acetylcholinesterase carbamylation by physostigmine, aldicarb and carbaryl: interaction between the active site and the functionally distinct peripheral sites in acetylcholinesterase.

    PubMed

    Singh, A K; Spassova, D

    1998-01-01

    Physostigmine, aldicarb and carbaryl were potent inhibitors of acetylcholinesterase (AChE). The physostigmine-inhibited AChE fluoresced at 300 nm excitation and 500 nm emission wavelengths, but the aldicarb and carbaryl inhibited enzyme did not. This suggests that the carbamylated active center is not the fluorescing site in AChE. The fluorescence intensity of physostigmine-inhibited AChE decreased with increasing the substrate (acetylthiocholine) concentration, thus indicating that physostigmine binding to the active site is essential for the development of fluorescence. Thus, the physostigmine-inhibited AChE fluoresces due to the binding of trimethylpyrrolo[2,3-b]indol (TMPI) moiety, formed by the hydrolysis of physostigmine, to a peripheral site in AChE. The fluorescence intensity of the physostigmine-inhibited enzyme decreased when the inhibited-enzyme was dialyzed for either 30 min that poorly reactivated the enzyme or 180 min that fully reactivated the enzyme. This suggests that dialysis dissociates the AChE-TMPI complex much faster than it reactivates the carbamylated AChE. Ephedrine, propranolol and phenothiazines including trifluoparazine (TPZ) caused non-competitive inhibition, while hexamethonium caused an uncompetitive inhibition of AChE activity. TPZ, upon binding with AChE, formed a fluorescent TPZ-enzyme complex. The fluorescence intensity of TPZ-AChE complex was effectively decreased by ephedrine, but not by propranolol or hexamethonium. This indicates that TPZ and ephedrine bind to the same site in AChE which is different from the site/or sites to which propranolol or hexamethonium bind. Hexamethonium protected AChE from inhibition by carbamates and decreased the fluorescence intensity of the physostigmine-inhibited AChE. Phenothiazines and ephedrine did not modulate the enzyme inhibition or the fluorescence intensity of the physostigmine-inhibited AChE. Propranolol and TPZ potentiated the enzyme inhibition and increased the fluorescence intensity

  17. An in vitro AChE inhibition assay combined with UF-HPLC-ESI-Q-TOF/MS approach for screening and characterizing of AChE inhibitors from roots of Coptis chinensis Franch.

    PubMed

    Zhao, Hengqiang; Zhou, Siduo; Zhang, Minmin; Feng, Jinhong; Wang, Shanshan; Wang, Daijie; Geng, Yanling; Wang, Xiao

    2016-02-20

    In this study, an in vitro acetylcholinesterase (AChE) inhibition assay based on microplate reader combined with ultrafiltration high performance liquid chromatography-electrospray quadrupole time of flight mass (UF-HPLC-ESI-Q-TOF/MS) was developed for the rapid screening and identification of acetylcholinesterase inhibitors (AChEI) from roots of Coptis chinensis Franch. Incubation conditions such as enzyme concentration, incubation time, incubation temperature and co-solvent was optimized so as to get better screening results. Five alkaloids including columbamine, jatrorrhizine, coptisine, palmatine and berberine were found with AChE inhibition activity in the 80% ethanol extract of C. chinensis Franch. The screened compounds were identified by HPLC-DAD-ESI-Q-TOF/MS compared with the reference stands and literatures. The screened results were verified by in vitro AChE inhibition assays, palmatine showed the best AChE inhibitory activities with IC50 values of 36.6μM among the five compounds. Results of the present study indicated that the combinative method using in vitro AChE inhibition assay and UF-HPLC-ESI-Q-TOF/MS could be widely applied for rapid screening and identification of AChEI from complex TCM extract. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A facile stereoselective synthesis of dispiro-indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids and evaluation of their antimycobacterial, anticancer and AchE inhibitory activities.

    PubMed

    Bharkavi, Chelliah; Vivek Kumar, Sundaravel; Ashraf Ali, Mohamed; Osman, Hasnah; Muthusubramanian, Shanmugam; Perumal, Subbu

    2016-11-15

    A facile stereoselective synthesis of novel dispiro indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids has been achieved by 1,3-dipolar cycloaddition of azomethine ylides, generated in situ from ninhydrin and sarcosine/thiaproline, on a series of 3-benzylidenethiochroman-4-ones. The synthesised compounds were screened for their antimycobacterial, anticancer and AchE inhibition activities. Compound 4l (IC 50 1.07μM) has been found to exhibit the most potent antimycobacterial activity compared to cycloserine (12 times), pyrimethamine (37 times) and ethambutol (IC 50 <1.56μM) and 6l (IC 50 =2.87μM) is more active than both cycloserine (4 times) and pyrimethamine (12 times). Three compounds, 4a, 6b and 6i, display good anticancer activity against CCRF-CEM cell lines. Compounds 6g and 4g display maximum AchE inhibitory activity with IC 50 values of 1.10 and 1.16μmol/L respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    PubMed

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate

  20. Unbinding of fluorinated oxime drug from the AChE gorge in polarizable water: a well-tempered metadynamics study.

    PubMed

    Pathak, Arup Kumar; Bandyopadhyay, Tusar

    2017-02-15

    Despite the fact that fluorination makes a drug more lipophilic, the molecular level understanding of protein-fluorinated drug interactions is very poor. Due to their enhanced ability to penetrate the blood brain barrier, they are suitable for reactivation of organophosphorus inactivated acetylcholinesterase (AChE) in the central nervous system. We systematically studied the unbinding of fluorinated obidoxime (FOBI) and non-fluorinated obidoxime (OBI) from the active site gorge of the serine hydrolase AChE in mean field polarizable water by employing all atom molecular dynamics simulations. It is observed that the unbinding process is strongly influenced by cation-π, hydrogen bond (HB) and water bridge interactions. The FOBI drug interacts more strongly with the protein residues than OBI and this is also verified from quantum mechanical calculations. Distinct unbinding pathways for FOBI and OBI are observed as evident from the 1D and 2D potential of mean force of the unbinding profiles. The present study suggests that the FOBI drug is held more firmly in the gorge of AChE in comparison to OBI and may lead to higher reactivation efficiency of the inactivated enzyme.

  1. Analysis of the activation of acetylcholinesterase by carbon nanoparticles using a monolithic immobilized enzyme microreactor: role of the water molecules in the active site gorge.

    PubMed

    Ibrahim, Firas; Andre, Claire; Iutzeler, Anne; Guillaume, Yves Claude

    2013-10-01

    A biochromatographic system was used to study the direct effect of carbon nanoparticles (CNPs) on the acetylcholinesterase (AChE) activity. The AChE enzyme was covalently immobilized on a monolithic CIM-disk via its NH2 residues. Our results showed an increase in the AChE activity in presence of CNPs. The catalytic constant (k(cat)) was increased while the Michaelis constant (K(m)) was slightly decreased. This indicated an increase in the enzyme efficiency with increase of the substrate affinity to the active site. The thermodynamic data of the activation mechanism of the enzyme, i.e. ΔH* and ΔS*, showed no change in the substrate interaction mechanism with the anionic binding site. The increase of the enthalpy (ΔH*) and the entropy (ΔS*) with decrease in the free energy of activation (Ea) was related to structural conformation change in the active site gorge. This affected the stability of water molecules in the active site gorge and facilitated water displacement by substrate for entering to the active site of the enzyme.

  2. Computer simulation of the active site of human serum cholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kefang Jiao; Song Li; Zhengzheng Lu

    1996-12-31

    The first 3D-structure of acetylchelinesterase from Torpedo California electric organ (T.AChE) was published by JL. Sussman in 1991. We have simulated 3D-structure of human serum cholinesterase (H.BuChE) and the active site of H.BuChE. It is discovered by experiment that the residue of H.BuChE is still active site after a part of H.BuChE is cut. For example, the part of 21KD + 20KD is active site of H.BuChE. The 20KD as it is. Studies on these peptides by Hemelogy indicate that two active peptides have same negative electrostatic potential maps diagram. These negative electrostatic areas attached by acetyl choline with positivemore » electrostatic potency. We predict that 147...236 peptide of AChE could be active site because it was as 20KD as with negative electrostatic potential maps. We look forward to proving from other ones.« less

  3. Reciprocal activation of α5-nAChR and STAT3 in nicotine-induced human lung cancer cell proliferation.

    PubMed

    Zhang, Yao; Jia, Yanfei; Li, Ping; Li, Huanjie; Xiao, Dongjie; Wang, Yunshan; Ma, Xiaoli

    2017-07-20

    Cigarette smoking is the top environmental risk factor for lung cancer. Nicotine, the addictive component of cigarettes, induces lung cancer cell proliferation, invasion and migration via the activation of nicotinic acetylcholine receptors (nAChRs). Genome-wide association studies (GWAS) show that CHRNA5 gene encoding α5-nAChR is especially relevant to lung cancer. However, the mechanism of this subunit in lung cancer is not clear. In the present study, we demonstrate that the expression of α5-nAChR is correlated with phosphorylated STAT3 (pSTAT3) expression, smoking history and lower survival of non-small cell lung cancer (NSCLC) samples. Nicotine increased the levels of α5-nAChR mRNA and protein in NSCLC cell lines and activated the JAK2/STAT3 signaling cascade. Nicotine-induced activation of JAK2/STAT3 signaling was inhibited by the silencing of α5-nAChR. Characterization of the CHRNA5 promoter revealed four STAT3-response elements. ChIP assays confirmed that the CHRNA5 promoter contains STAT3 binding sites. By silencing STAT3 expression, nicotine-induced upregulation of α5-nAChR was suppressed. Downregulation of α5-nAChR and/or STAT3 expression inhibited nicotine-induced lung cancer cell proliferation. These results suggest that there is a feedback loop between α5-nAChR and STAT3 that contributes to the nicotine-induced tumor cell proliferation, which indicates that α5-nAChR is an important therapeutic target involved in tobacco-associated lung carcinogenesis. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  4. Comparative study on short- and long-term behavioral consequences of organophosphate exposure: relationship to AChE mRNA expression.

    PubMed

    López-Granero, Caridad; Cardona, Diana; Giménez, Estela; Lozano, Rafael; Barril, José; Aschner, Michael; Sánchez-Santed, Fernando; Cañadas, Fernando

    2014-01-01

    Organophosphates (OPs) affect behavior by inhibiting acetylcholinesterase (AChE). While the cognitive short-term effects may be directly attributed to this inhibition, the mechanisms that underlie OP's long-term cognitive effects remain controversial and poorly understood. Accordingly, two experiments were designed to assess the effects of OPs on cognition, and to ascertain whether both the short- and long-term effects of are AChE-dependent. A single subcutaneous dose of 250 mg/kg chlorpyrifos (CPF), 1.5mg/kg diisopropylphosphorofluoridate (DFP) or 15 mg/kg parathion (PTN) was administered to male Wistar rats. Spatial learning was evaluated 72 h or 23 weeks after exposure, and impulsive choice was tested at 10 and 30 weeks following OPs administration (experiment 1 and 2, respectively). Brain soluble and membrane-bound AChE activity, synaptic AChE-S mRNA, read-through AChE-R mRNA and brain acylpeptide hydrolase (APH) activity (as alternative non-cholinergic target) were analyzed upon completion of the behavioral testing (17 and 37 weeks after OPs exposure). Both short- and long-term CPF treatment caused statistically significant effects on spatial learning, while PTN treatment led only to statistically significant short-term effects. Neither CPF, DFP nor PTN affected the long-term impulsivity response. Long-term exposure to CPF and DFP significantly decreased AChE-S and AChE-R mRNA, while in the PTN treated group only AChE-S mRNA levels were decreased. However, after long-term OP exposure, soluble and membrane-bound AChE activity was indistinguishable from controls. Finally, no changes were noted in brain APH activity in response to OP treatment. Taken together, this study demonstrates long-term effects of OPs on AChE-S and AChE-R mRNA in the absence of changes in AChE soluble and membrane-bound activity. Thus, changes in AChE mRNA expression imply non-catalytic properties of the AChE enzyme. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Association of health symptoms with low-level exposure to organophosphates, DNA damage, AChE activity, and occupational knowledge and practice among rice, corn, and double-crop farmers

    PubMed Central

    Hongsibsong, Surat; Sittitoon, Nalin; Sapbamrer, Ratana

    2017-01-01

    Objectives: This study aims to determine (1) total dialkylphosphate (ΣDAP) levels, occupational knowledge and practice, DNA damage, AChE activity, and health symptoms in rice, corn, and double-crop farmers; (2) the association of health symptoms with ΣDAP levels, occupational knowledge and practice, DNA damage, and AChE activity in farmers; and (3) the prevalence of health symptoms between farmers and non-farmers. Methods: A cross-sectional study was conducted by interviewing as well as analyzing urine and blood samples during July to August 2014. Results: There were no differences in ΣDAP levels, AChE activity, and occupational knowledge and practice scores among all farmer groups. In terms of health symptoms related to ΣDAP, AChE activity, DNA damage, and occupational knowledge and practice, pesticide-related symptoms were determined, including breathlessness, chest pain, dry throat, numbness, muscle weakness, cramp, headache, dizziness, eye irritation, white/red rash, and white/red pimple, which were classified as respiratory, muscle, nervous, and epithelial symptoms. A remarkable finding was that farmers had a significantly higher prevalence of muscle weakness (odds ratio (OR)=3.79) and numbness (OR=3.45) as compared with non-farmers. Conclusion: Our findings, therefore, suggest that a long-term low-level exposure to organophosphates (OPs) may be associated with an increasing prevalence of muscle symptoms. However, a further cohort study incorporating sensitive health outcomes and measurement of multiple pesticides monitoring on a larger scale is warranted. PMID:28077823

  6. Association of health symptoms with low-level exposure to organophosphates, DNA damage, AChE activity, and occupational knowledge and practice among rice, corn, and double-crop farmers.

    PubMed

    Hongsibsong, Surat; Sittitoon, Nalin; Sapbamrer, Ratana

    2017-03-28

    This study aims to determine (1) total dialkylphosphate (ΣDAP) levels, occupational knowledge and practice, DNA damage, AChE activity, and health symptoms in rice, corn, and double-crop farmers; (2) the association of health symptoms with ΣDAP levels, occupational knowledge and practice, DNA damage, and AChE activity in farmers; and (3) the prevalence of health symptoms between farmers and non-farmers. A cross-sectional study was conducted by interviewing as well as analyzing urine and blood samples during July to August 2014. There were no differences in ΣDAP levels, AChE activity, and occupational knowledge and practice scores among all farmer groups. In terms of health symptoms related to ΣDAP, AChE activity, DNA damage, and occupational knowledge and practice, pesticide-related symptoms were determined, including breathlessness, chest pain, dry throat, numbness, muscle weakness, cramp, headache, dizziness, eye irritation, white/red rash, and white/red pimple, which were classified as respiratory, muscle, nervous, and epithelial symptoms. A remarkable finding was that farmers had a significantly higher prevalence of muscle weakness (odds ratio (OR)=3.79) and numbness (OR=3.45) as compared with non-farmers. Our findings, therefore, suggest that a long-term low-level exposure to organophosphates (OPs) may be associated with an increasing prevalence of muscle symptoms. However, a further cohort study incorporating sensitive health outcomes and measurement of multiple pesticides monitoring on a larger scale is warranted.

  7. The structure-AChE inhibitory activity relationships study in a series of pyridazine analogues.

    PubMed

    Saracoglu, M; Kandemirli, F

    2009-07-01

    The structure-activity relationships (SAR) are investigated by means of the Electronic-Topological Method (ETM) followed by the Neural Networks application (ETM-NN) for a class of anti-cholinesterase inhibitors (AChE, 53 molecules) being pyridazine derivatives. AChE activities of the series were measured in IC(50) units, and relative to the activity levels, the series was partitioned into classes of active and inactive compounds. Based on pharmacophores and antipharmacophores calculated by the ETM-software as sub-matrices containing important spatial and electronic characteristics, a system for the activity prognostication is developed. Input data for the ETM were taken as the results of conformational and quantum-mechanics calculations. To predict the activity, we used one of the most well known neural networks, namely, the feed-forward neural networks (FFNNs) trained with the back propagation algorithm. The supervised learning was performed using a variant of FFNN known as the Associative Neural Networks (ASNN). The result of the testing revealed that the high ETM's ability of predicting both activity and inactivity of potential AChE inhibitors. Analysis of HOMOs for the compounds containing Ph1 and APh1 has shown that atoms with the highest values of the atomic orbital coefficients are mainly those atoms that enter into the pharmacophores. Thus, the set of pharmacophores and antipharmacophores found as the result of this study forms a basis for a system of the anti-cholinesterase activity prediction.

  8. Agonist activation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site

    PubMed Central

    Gill, JasKiran K.; Savolainen, Mari; Young, Gareth T.; Zwart, Ruud; Sher, Emanuele; Millar, Neil S.

    2011-01-01

    Conventional nicotinic acetylcholine receptor (nAChR) agonists, such as acetylcholine, act at an extracellular “orthosteric” binding site located at the interface between two adjacent subunits. Here, we present evidence of potent activation of α7 nAChRs via an allosteric transmembrane site. Previous studies have identified a series of nAChR-positive allosteric modulators (PAMs) that lack agonist activity but are able to potentiate responses to orthosteric agonists, such as acetylcholine. It has been shown, for example, that TQS acts as a conventional α7 nAChR PAM. In contrast, we have found that a compound with close chemical similarity to TQS (4BP-TQS) is a potent allosteric agonist of α7 nAChRs. Whereas the α7 nAChR antagonist metyllycaconitine acts competitively with conventional nicotinic agonists, metyllycaconitine is a noncompetitive antagonist of 4BP-TQS. Mutation of an amino acid (M253L), located in a transmembrane cavity that has been proposed as being the binding site for PAMs, completely blocks agonist activation by 4BP-TQS. In contrast, this mutation had no significant effect on agonist activation by acetylcholine. Conversely, mutation of an amino acid located within the known orthosteric binding site (W148F) has a profound effect on agonist potency of acetylcholine (resulting in a shift of ∼200-fold in the acetylcholine dose-response curve), but had little effect on the agonist dose-response curve for 4BP-TQS. Computer docking studies with an α7 homology model provides evidence that both TQS and 4BP-TQS bind within an intrasubunit transmembrane cavity. Taken together, these findings provide evidence that agonist activation of nAChRs can occur via an allosteric transmembrane site. PMID:21436053

  9. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    PubMed

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction

  10. Assessing the reactivation efficacy of hydroxylamine anion towards VX-inhibited AChE: a computational study.

    PubMed

    Khan, Md Abdul Shafeeuulla; Ganguly, Bishwajit

    2012-05-01

    Oximate anions are used as potential reactivating agents for OP-inhibited AChE because of they possess enhanced nucleophilic reactivity due to the α-effect. We have demonstrated the process of reactivating the VX-AChE adduct with formoximate and hydroxylamine anions by applying the DFT approach at the B3LYP/6-311 G(d,p) level of theory. The calculated results suggest that the hydroxylamine anion is more efficient than the formoximate anion at reactivating VX-inhibited AChE. The reaction of formoximate anion and the VX-AChE adduct is a three-step process, while the reaction of hydroxylamine anion with the VX-AChE adduct seems to be a two-step process. The rate-determining step in the process is the initial attack on the VX of the VX-AChE adduct by the nucleophile. The subsequent steps are exergonic in nature. The potential energy surface (PES) for the reaction of the VX-AChE adduct with hydroxylamine anion reveals that the reactivation process is facilitated by the lower free energy of activation (by a factor of 1.7 kcal mol(-1)) than that of the formoximate anion at the B3LYP/6-311 G(d,p) level of theory. The higher free energy of activation for the reverse reactivation reaction between hydroxylamine anion and the VX-serine adduct further suggests that the hydroxylamine anion is a very good antidote agent for the reactivation process. The activation barriers calculated in solvent using the polarizable continuum model (PCM) for the reactivation of the VX-AChE adduct with hydroxylamine anion were also found to be low. The calculated results suggest that V-series compounds can be more toxic than G-series compounds, which is in accord with earlier experimental observations.

  11. The lignicolous fungus Trametes versicolor (L.) Lloyd (1920): a promising natural source of antiradical and AChE inhibitory agents.

    PubMed

    Janjušević, Ljiljana; Karaman, Maja; Šibul, Filip; Tommonaro, Giuseppina; Iodice, Carmine; Jakovljević, Dragica; Pejin, Boris

    2017-12-01

    This study aimed to determine antiradical (DPPH • and • OH) and acetylcholinesterase (AChE) inhibitory activities along with chemical composition of autochtonous fungal species Trametes versicolor (Serbia). A total of 38 phenolic compounds with notable presence of phenolic acids were identified using HPLC/MS-MS. Its water extract exhibited the highest antiradical activity against • OH (3.21 μg/mL), among the rest due to the presence of gallic, p-coumaric and caffeic acids. At the concentration of 100 μg/mL, the same extract displayed a profound AChE inhibitory activity (60.53%) in liquid, compared to donepezil (89.05%), a drug in clinical practice used as positive control. The flavonoids baicalein and quercetin may be responsible compounds for the AChE inhibitory activity observed. These findings have demonstrated considerable potential of T. versicolor water extract as a natural source of antioxidant(s) and/or AChE inhibitor(s) to be eventually used as drug-like compounds or food supplements in the treatment of Alzheimer's disease.

  12. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy

    PubMed Central

    Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria

    2013-01-01

    As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer’s disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer’s disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition. PMID:24381530

  13. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies.

    PubMed

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH 2 -CH=CH-CH 2 -) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than ~1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  14. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies

    NASA Astrophysics Data System (ADS)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH2-CH=CH-CH2-) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than 1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  15. PKCε phosphorylates α4β2 nicotinic ACh receptors and promotes recovery from desensitization

    PubMed Central

    Lee, A M; Wu, D-F; Dadgar, J; Wang, D; McMahon, T; Messing, R O

    2015-01-01

    Background and Purpose Nicotinic (ACh) receptor recovery from desensitization is modulated by PKC, but the PKC isozymes and the phosphorylation sites involved have not been identified. We investigated whether PKCε phosphorylation of α4β2 nAChRs regulates receptor recovery from desensitization. Experimental Approach Receptor recovery from desensitization was investigated by electrophysiological characterization of human α4β2 nAChRs. Phosphorylation of the α4 nAChR subunit was assessed by immunoblotting of mouse synaptosomes. Hypothermia induced by sazetidine-A and nicotine was measured in Prkce−/− and wild-type mice. Key Results Inhibiting PKCε impaired the magnitude of α4β2 nAChR recovery from desensitization. We identified five putative PKCε phosphorylation sites in the large intracellular loop of the α4 subunit, and mutating four sites to alanines also impaired recovery from desensitization. α4 nAChR subunit phosphorylation was reduced in synaptosomes from Prkce−/− mice. Sazetidine-A-induced hypothermia, which is mediated by α4β2 nAChR desensitization, was more severe and prolonged in Prkce−/− than in wild-type mice. Conclusions and Implications PKCε phosphorylates the α4 nAChR subunit and regulates recovery from receptor desensitization. This study illustrates the importance of phosphorylation in regulating α4β2 receptor function, and suggests that reducing phosphorylation prolongs receptor desensitization and decreases the number of receptors available for activation. PMID:26103136

  16. NMR resolved multiple anesthetic binding sites in the TM domains of the α4β2 nAChR

    PubMed Central

    Bondarenko, Vasyl; Mowrey, David; Liu, Lu Tian; Xu, Yan; Tang, Pei

    2012-01-01

    The α4β2 nicotinic acetylcholine receptor (nAChR) has significant roles in nervous system function and disease. It is also a molecular target of general anesthetics. Anesthetics inhibit the α4β2 nAChR at clinically relevant concentrations, but their binding sites in α4β2 remain unclear. The recently determined NMR structures of the α4β2 nAChR transmembrane (TM) domains provide valuable frameworks for identifying the binding sites. In this study, we performed solution NMR experiments on the α4β2 TM domains in the absence and presence of halothane and ketamine. Both anesthetics were found in an intra-subunit cavity near the extracellular end of the 2 transmembrane helices, homologous to a common anesthetic binding site observed in X-ray structures of anesthetic-bound GLIC (Nury, et. al. 2011). Halothane, but not ketamine, was also found in cavities adjacent to the common anesthetic site at the interface of α4 and β2. In addition, both anesthetics bound to cavities near the ion selectivity filter at the intracellular end of the TM domains. Anesthetic binding induced profound changes in protein conformational exchanges. A number of residues, close to or remote from the binding sites, showed resonance signal splitting from single to double peaks, signifying that anesthetics decreased conformation exchange rates. It was also evident that anesthetics shifted population of two conformations. Altogether, the study comprehensively resolved anesthetic binding sites in the α4β2 nAChR. Furthermore, the study provided compelling experimental evidence of anesthetic-induced changes in protein dynamics, especially near regions of the hydrophobic gate and ion selectivity filter that directly regulate channel functions. PMID:23000369

  17. NMR resolved multiple anesthetic binding sites in the TM domains of the α4β2 nAChR.

    PubMed

    Bondarenko, Vasyl; Mowrey, David; Liu, Lu Tian; Xu, Yan; Tang, Pei

    2013-02-01

    The α4β2 nicotinic acetylcholine receptor (nAChR) has significant roles in nervous system function and disease. It is also a molecular target of general anesthetics. Anesthetics inhibit the α4β2 nAChR at clinically relevant concentrations, but their binding sites in α4β2 remain unclear. The recently determined NMR structures of the α4β2 nAChR transmembrane (TM) domains provide valuable frameworks for identifying the binding sites. In this study, we performed solution NMR experiments on the α4β2 TM domains in the absence and presence of halothane and ketamine. Both anesthetics were found in an intra-subunit cavity near the extracellular end of the β2 transmembrane helices, homologous to a common anesthetic binding site observed in X-ray structures of anesthetic-bound GLIC (Nury et al., [32]). Halothane, but not ketamine, was also found in cavities adjacent to the common anesthetic site at the interface of α4 and β2. In addition, both anesthetics bound to cavities near the ion selectivity filter at the intracellular end of the TM domains. Anesthetic binding induced profound changes in protein conformational exchanges. A number of residues, close to or remote from the binding sites, showed resonance signal splitting from single to double peaks, signifying that anesthetics decreased conformation exchange rates. It was also evident that anesthetics shifted population of two conformations. Altogether, the study comprehensively resolved anesthetic binding sites in the α4β2 nAChR. Furthermore, the study provided compelling experimental evidence of anesthetic-induced changes in protein dynamics, especially near regions of the hydrophobic gate and ion selectivity filter that directly regulate channel functions. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Continuous flow immobilized enzyme reactor-tandem mass spectrometry for screening of AChE inhibitors in complex mixtures.

    PubMed

    Forsberg, Erica M; Green, James R A; Brennan, John D

    2011-07-01

    A method is described for identifying bioactive compounds in complex mixtures based on the use of capillary-scale monolithic enzyme-reactor columns for rapid screening of enzyme activity. A two-channel nanoLC system was used to continuously infuse substrate coupled with automated injections of substrate/small molecule mixtures, optionally containing the chromogenic Ellman reagent, through sol-gel derived acetylcholinesterase (AChE) doped monolithic columns. This is the first report of AChE encapsulated in monolithic silica for use as an immobilized enzyme reactor (IMER), and the first use of such IMERs for mixture screening. AChE IMER columns were optimized to allow rapid functional screening of compound mixtures based on changes in the product absorbance or the ratio of mass spectrometric peaks for product and substrate ions in the eluent. The assay had robust performance and produced a Z' factor of 0.77 in the presence of 2% (v/v) DMSO. A series of 52 mixtures consisting of 1040 compounds from the Canadian Compound Collection of bioactives was screened and two known inhibitors, physostigmine and 9-aminoacridine, were identified from active mixtures by manual deconvolution. The activity of the compounds was confirmed using the enzyme reactor format, which allowed determination of both IC(50) and K(I) values. Screening results were found to correlate well with a recently published fluorescence-based microarray screening assay for AChE inhibitors.

  19. The binding sites of inhibitory monoclonal antibodies on acetylcholinesterase. Identification of a novel regulatory site at the putative "back door".

    PubMed

    Simon, S; Le Goff, A; Frobert, Y; Grassi, J; Massoulié, J

    1999-09-24

    We investigated the target sites of three inhibitory monoclonal antibodies on Electrophorus acetylcholinesterase (AChE). Previous studies showed that Elec-403 and Elec-410 are directed to overlapping but distinct epitopes in the peripheral site, at the entrance of the catalytic gorge, whereas Elec-408 binds to a different region. Using Electrophorus/rat AChE chimeras, we identified surface residues that differed between sensitive and insensitive AChEs: the replacement of a single Electrophorus residue by its rat homolog was able to abolish binding and inhibition, for each antibody. Reciprocally, binding and inhibition by Elec-403 and by Elec-410 could be conferred to rat AChE by the reverse mutation. Elec-410 appears to bind to one side of the active gorge, whereas Elec-403 covers its opening, explaining why the AChE-Elec-410 complex reacts faster than the AChE-Elec-403 or AChE-fasciculin complexes with two active site inhibitors, m-(N,N, N-trimethyltammonio)trifluoro-acetophenone and echothiophate. Elec-408 binds to the region of the putative "back door," distant from the peripheral site, and does not interfere with the access of inhibitors to the active site. The binding of an antibody to this novel regulatory site may inhibit the enzyme by blocking the back door or by inducing a conformational distortion within the active site.

  20. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Benítez-Cardoza, Claudia G; Mera-Jiménez, Elvia; Rosales-Hernández, Martha Cecilia

    2014-01-01

    Despite great efforts to develop new therapeutic strategies against Alzheimer's disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-β (Aβ) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of Aβ, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, β-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the Aβ monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 μM) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit Aβ oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models.

  1. Competitive Inhibition Mechanism of Acetylcholinesterase without Catalytic Active Site Interaction: Study on Functionalized C60 Nanoparticles via in Vitro and in Silico Assays.

    PubMed

    Liu, Yanyan; Yan, Bing; Winkler, David A; Fu, Jianjie; Zhang, Aiqian

    2017-06-07

    Acetylcholinesterase (AChE) activity regulation by chemical agents or, potentially, nanomaterials is important for both toxicology and pharmacology. Competitive inhibition via direct catalytic active sites (CAS) binding or noncompetitive inhibition through interference with substrate and product entering and exiting has been recognized previously as an AChE-inhibition mechanism for bespoke nanomaterials. The competitive inhibition by peripheral anionic site (PAS) interaction without CAS binding remains unexplored. Here, we proposed and verified the occurrence of a presumed competitive inhibition of AChE without CAS binding for hydrophobically functionalized C 60 nanoparticles (NPs) by employing both experimental and computational methods. The kinetic inhibition analysis distinguished six competitive inhibitors, probably targeting the PAS, from the pristine and hydrophilically modified C 60 NPs. A simple quantitative nanostructure-activity relationship (QNAR) model relating the pocket accessible length of substituent to inhibition capacity was then established to reveal how the geometry of the surface group decides the NP difference in AChE inhibition. Molecular docking identified the PAS as the potential binding site interacting with the NPs via a T-shaped plug-in mode. Specifically, the fullerene core covered the enzyme gorge as a lid through π-π stacking with Tyr72 and Trp286 in the PAS, while the hydrophobic ligands on the fullerene surface inserted into the AChE active site to provide further stability for the complexes. The modeling predicted that inhibition would be severely compromised by Tyr72 and Trp286 deletions, and the subsequent site-directed mutagenesis experiments proved this prediction. Our results demonstrate AChE competitive inhibition of NPs without CAS participation to gain further understanding of both the neurotoxicity and the curative effect of NPs.

  2. One-pot microwave assisted stereoselective synthesis of novel dihydro-2'H-spiro[indene-2,1'-pyrrolo-[3,4-c]pyrrole]-tetraones and evaluation of their antimycobacterial activity and inhibition of AChE.

    PubMed

    Bharkavi, Chelliah; Vivek Kumar, Sundaravel; Ashraf Ali, Mohamed; Osman, Hasnah; Muthusubramanian, Shanmugam; Perumal, Subbu

    2017-07-15

    An efficient one-pot microwave assisted stereoselective synthesis of novel dihydro-2'H-spiro[indene-2,1'-pyrrolo[3,4-c]pyrrole]-tetraone derivatives through three-component 1,3-dipolar cycloaddition of azomethine ylides generated in situ from ninhydrin and sarcosine with a series of 1-aryl-1H-pyrrole-2,5-diones is described. The synthesised compounds were screened for their antimycobacterial and AChE inhibition activities. Compound 4b (IC 50 1.30µM) has been found to display twelve fold antimycobacterial activity compared to cycloserine and it is thirty seven times more active than pyrimethamine. Compound 4h displays maximum AchE inhibitory activity with IC 50 value of 0.78±0.01µmol/L. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Phytochemical and ethnomedicinal study of Huperzia species used in the traditional medicine of Saraguros in Southern Ecuador; AChE and MAO inhibitory activity.

    PubMed

    Armijos, Chabaco; Gilardoni, Gianluca; Amay, Luis; Lozano, Antonio; Bracco, Francesco; Ramirez, Jorge; Bec, Nicole; Larroque, Christian; Finzi, Paola Vita; Vidari, Giovanni

    2016-12-04

    This study concerns seven Huperzia species (Lycopodiaceae), namely H. brevifolia, H. columnaris, H. compacta, H. crassa, H. espinosana, H. tetragona, H. weberbaueri, which are considered sacred plants by the Saraguro community, living in the Southern Andes of Ecuador; these plants are widely used in traditional medicine and ritual ceremonies. The plants were selected on the basis of written interviews with 10 visionary healers (yachak) (2 women, 8 men), indicated as the most credible by the Saraguro Healers Council. The Informant Consensus Factor (F ic ) was determined. The first phytochemical study of the plants was performed by standard procedures, while the AChE and MAO-A inhibition by fractions enriched in high MW alkaloids, was measured in vitro. i) to investigate the uses of some Huperzia plants in healing and magical-religious practices of Saraguros; ii) to identify the main components of plant hydromethanolic extracts; iiì) to test the effects of alkaloidal fractions on the activity of two enzymes linked to mental health. All the interviewed Saraguro yachak showed a high consensus about the uses of the seven Huperzia plants as purgatives and against supernatural diseases, such as the "espanto" (startle). In admixtures with other plants, some species also induce a state of trance or hallucinations in participants in magical-religious rituals. GC-MS of the volatile alkaloid fractions allowed the identification of some lycodine-type and lycopodine-type alkaloids (1-5) in H. compacta, H. columnaris, and H. tetragona. The flavones selgin) (6) and tricin (7) were isolated from H. brevifolia and H. espinosana. Tricin (7) was also detected in the other five species. The rare serratene triterpenes serratenediol (8) serratenediol-3-O-acetate (9), 21-episerratenediol (10), and 21-episerratenediol-3-O-acetate (11) were isolated from H. crassa. In addition, the presence of an unprecedented group of high molecular weight alkaloids has been determined. Alkaloid fractions

  5. Effects of EGCG and Chlorpyrifos on the Mortality, AChE and GSH of Adult Zebrafish: Independent and Combination

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Zhang, Jian; Gao, Qian; Guo, Nichun

    2018-01-01

    Chlorpyrifos is a neurotoxic agent and also causes oxidative stress in the body. EGCG is a typical strong antioxidant and has been reported to be neuroprotective. Our study investigated the mortality, the activity of acetylcholinesterase (AChE) in the brain and glutathione (GSH) in the liver of the adult Zebrafish in present of Chlorpyrifos and EGCG independent and combination. The results indicated that after the addition of EGCG, the mortality of zebrafish induced by Chlorpyrifos was reduced and the activity of AChE and glutathione (GSH) inhibited by Chlorpyrifos in zebrafish was significantly increased, which demonstrated that EGCG inhibited the toxicity Chlorpyrifos to zebrafish. The inhibition was dependent on the concentration of EGCG and Chlorpyrifos, which was not shown a gradual change trend but a complex situation.

  6. Novel potent pyridoxine-based inhibitors of AChE and BChE, structural analogs of pyridostigmine, with improved in vivo safety profile.

    PubMed

    Strelnik, Alexey D; Petukhov, Alexey S; Zueva, Irina V; Zobov, Vladimir V; Petrov, Konstantin A; Nikolsky, Evgeny E; Balakin, Konstantin V; Bachurin, Sergey O; Shtyrlin, Yurii G

    2016-08-15

    We report a novel class of carbamate-type ChE inhibitors, structural analogs of pyridostigmine. A small library of congeneric pyridoxine-based compounds was designed, synthesized and evaluated for AChE and BChE enzymes inhibition in vitro. The most active compounds have potent enzyme inhibiting activity with IC50 values in the range of 0.46-2.1μM (for AChE) and 0.59-8.1μM (for BChE), with moderate selectivity for AChE comparable with that of pyridostigmine and neostigmine. Acute toxicity studies using mice models demonstrated excellent safety profile of the obtained compounds with LD50 in the range of 22-326mg/kg, while pyridostigmine and neostigmine are much more toxic (LD50 3.3 and 0.51mg/kg, respectively). The obtained results pave the way to design of novel potent and safe cholinesterase inhibitors for symptomatic treatment of neuromuscular disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Toxicological and biochemical characterizations of AChE in phosalone-susceptible and resistant populations of the common pistachio psyllid, Agonoscena pistaciae

    PubMed Central

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    Abstract The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity ( KM ) and hydrolyzing efficiency ( Vmax ) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed

  8. α‐Conotoxin M1 (CTx) blocks αδ binding sites of adult nicotinic receptors while ACh binding at αε sites elicits only small and short quantal synaptic currents

    PubMed Central

    Dudel, Josef

    2014-01-01

    Abstract In ‘embryonic’ nicotinic receptors, low CTx concentrations are known to block only the αδ binding site, whereas binding of ACh at the αγ‐site elicits short single channel openings and short bursts. In adult muscles the αγ‐ is replaced by the αε‐site. Quantal EPSCs (qEPSCs) were elicited in adult muscles by depolarization pulses and recorded through a perfused macropatch electrode. One to 200 nmol L−1 CTx reduced amplitudes and decay time constants of qEPSCs, but increased their rise times. CTx block at the αδ binding sites was incomplete: The qEPSCs still contained long bursts from not yet blocked receptors, whereas their average decay time constants were reduced by a short burst component generated by ACh binding to the αε‐site. Two nanomolar CTx applied for 3 h reduced the amplitudes of qEPSCs to less than half with a constant slope. The equilibrium concentration of the block is below 1 nmol L−1 and lower than that of embryonic receptors. CTx‐block increased in proportion to CTx concentrations (average rate 2 × 104 s−1·mol−1 L). Thus, the reactions of ‘embryonic’ and of adult nicotinic receptors to block by CTx are qualitatively the same. – The study of the effects of higher CTx concentrations or of longer periods of application of CTx was limited by presynaptic effects of CTx. Even low CTx concentrations severely reduced the release of quanta by activating presynaptic M2 receptors at a maximal rate of 6 × 105 s−1·mol−1 L. When this dominant inhibition was prevented by blocking the M2 receptors with methoctramine, activation of M1 receptors was unmasked and facilitated release. PMID:25501436

  9. Concomitant alpha7 and beta2 nicotinic AChR subunit deficiency leads to impaired energy homeostasis and increased physical activity in mice.

    PubMed

    Somm, Emmanuel; Guérardel, Audrey; Maouche, Kamel; Toulotte, Audrey; Veyrat-Durebex, Christelle; Rohner-Jeanrenaud, Françoise; Maskos, Uwe; Hüppi, Petra S; Schwitzgebel, Valérie M

    2014-05-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated cation channels well characterized in neuronal signal transmission. Moreover, recent studies have revealed nAChR expression in nonneuronal cell types throughout the body, including tissues involved in metabolism. In the present study, we screen gene expression of nAChR subunits in pancreatic islets and adipose tissues. Mice pancreatic islets present predominant expression of α7 and β2 nAChR subunits but at a lower level than in central structures. Characterization of glucose and energy homeostasis in α7β2nAChR(-/-) mice revealed no major defect in insulin secretion and sensitivity but decreased glycemia apparently unrelated to gluconeogenesis or glycogenolysis. α7β2nAChR(-/-) mice presented an increase in lean and bone body mass and a decrease in fat storage with normal body weight. These observations were associated with elevated spontaneous physical activity in α7β2nAChR(-/-) mice, mainly due to elevation in fine vertical (rearing) activity while their horizontal (ambulatory) activity remained unchanged. In contrast to α7nAChR(-/-) mice presenting glucose intolerance and insulin resistance associated to excessive inflammation of adipose tissue, the present metabolic phenotyping of α7β2nAChR(-/-) mice revealed a metabolic improvement possibly linked to the increase in spontaneous physical activity related to central β2nAChR deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Acetylcholinesterase (AChE) and heat shock proteins (Hsp70) of gypsy moth (Lymantria dispar L.) larvae in response to long-term fluoranthene exposure.

    PubMed

    Mrdaković, Marija; Ilijin, Larisa; Vlahović, Milena; Matić, Dragana; Gavrilović, Anja; Mrkonja, Aleksandra; Perić-Mataruga, Vesna

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) may affect biochemical and physiological processes in living organisms, thus impairing fitness related traits and influencing their populations. This imposes the need for providing early-warning signals of pollution. Our study aimed to examine changes in the activity of acetylcholinesterase (AChE) and the concentration of heat shock proteins (Hsp70) in homogenates of brain tissues of fifth instar gypsy moth (Lymantria dispar L.) larvae, exposed to the ubiquitous PAH, fluoranthene, supplemented to the rearing diet. Significantly increased activity of AChE in larvae fed on the diets with high fluoranthene concentrations suggests the necessity for elucidation of the role of AChE in these insects when exposed to PAH pollution. Significant induction of Hsp70 in gypsy moth larvae reared on the diets containing low fluoranthene concentrations, indicate that changes in the level of Hsp70 might be useful as an indicator of pollution in this widespread forest species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Gas Chromatography, GC/Mass Analysis and Bioactivity of Essential Oil from Aerial Parts of Ferulago trifida: Antimicrobial, Antioxidant, AChE Inhibitory, General Toxicity, MTT Assay and Larvicidal Activities.

    PubMed

    Tavakoli, Saeed; Vatandoost, Hassan; Zeidabadinezhad, Reza; Hajiaghaee, Reza; Hadjiakhoondi, Abbas; Abai, Mohammad Reza; Yassa, Narguess

    2017-09-01

    We aimed to investigate different biological properties of aerial parts essential oil of Ferulago trifida Boiss and larvicidal activity of its volatile oils from all parts of plant. Essential oil was prepared by steam distillation and analyzed by Gas chromatography and GC/Mass. Antioxidant, antimicrobial, cytotoxic effects and AChE inhibitory of the oil were investigated using DPPH, disk diffusion method, MTT assay and Ellman methods. Larvicidal activity of F. trifida essential oil against malaria vector Anopheles stephensi was carried out according to the method described by WHO. In GC and GC/MS analysis, 58 compounds were identified in the aerial parts essential oil, of which E-verbenol (9.66%), isobutyl acetate (25.73%) and E-β-caryophyllene (8.68%) were main compounds. The oil showed (IC 50 = 111.2μg/ml) in DPPH and IC 50 = 21.5 mg/ml in the investigation of AChE inhibitory. Furthermore, the oil demonstrated toxicity with (LD 50 = 1.1μg/ml) in brine shrimp lethality test and with (IC 50 = 22.0, 25.0 and 42.55 μg/ml) on three cancerous cell lines (MCF-7, A-549 and HT-29) respectively. LC 50 of stem, root, aerial parts, fruits, and flowers essential oils against larvae of An. stephensi were equal with 10.46, 22.27, 20.50, 31.93 and 79.87ppm respectively. In antimicrobial activities, essential oil was effective on all specimens except Escherichia coli , Aspergillus niger and Candida albicans. The essential oil showed moderate antioxidant activity, strong antimicrobial properties and good toxic effect in brine shrimp test and MTT assay on three cancerous cell lines.

  12. Gas Chromatography, GC/Mass Analysis and Bioactivity of Essential Oil from Aerial Parts of Ferulago trifida: Antimicrobial, Antioxidant, AChE Inhibitory, General Toxicity, MTT Assay and Larvicidal Activities

    PubMed Central

    Tavakoli, Saeed; Vatandoost, Hassan; Zeidabadinezhad, Reza; Hajiaghaee, Reza; Hadjiakhoondi, Abbas; Abai, Mohammad Reza; Yassa, Narguess

    2017-01-01

    Background: We aimed to investigate different biological properties of aerial parts essential oil of Ferulago trifida Boiss and larvicidal activity of its volatile oils from all parts of plant. Methods: Essential oil was prepared by steam distillation and analyzed by Gas chromatography and GC/Mass. Antioxidant, antimicrobial, cytotoxic effects and AChE inhibitory of the oil were investigated using DPPH, disk diffusion method, MTT assay and Ellman methods. Larvicidal activity of F. trifida essential oil against malaria vector Anopheles stephensi was carried out according to the method described by WHO. Results: In GC and GC/MS analysis, 58 compounds were identified in the aerial parts essential oil, of which E-verbenol (9.66%), isobutyl acetate (25.73%) and E-β-caryophyllene (8.68%) were main compounds. The oil showed (IC50= 111.2μg/ml) in DPPH and IC50= 21.5 mg/ml in the investigation of AChE inhibitory. Furthermore, the oil demonstrated toxicity with (LD50= 1.1μg/ml) in brine shrimp lethality test and with (IC50= 22.0, 25.0 and 42.55 μg/ml) on three cancerous cell lines (MCF-7, A-549 and HT-29) respectively. LC50 of stem, root, aerial parts, fruits, and flowers essential oils against larvae of An. stephensi were equal with 10.46, 22.27, 20.50, 31.93 and 79.87ppm respectively. In antimicrobial activities, essential oil was effective on all specimens except Escherichia coli, Aspergillus niger and Candida albicans. Conclusion: The essential oil showed moderate antioxidant activity, strong antimicrobial properties and good toxic effect in brine shrimp test and MTT assay on three cancerous cell lines. PMID:29322058

  13. Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE?

    PubMed

    Fossati, Sara Maria; Candiani, Simona; Nödl, Marie-Therese; Maragliano, Luca; Pennuto, Maria; Domingues, Pedro; Benfenati, Fabio; Pestarino, Mario; Zullo, Letizia

    2015-08-01

    Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis.

  14. Design, synthesis and evaluation of rivastigmine and curcumin hybrids as site-activated multitarget-directed ligands for Alzheimer's disease therapy.

    PubMed

    Li, Yujie; Peng, Peng; Tang, Li; Hu, Yunzhen; Hu, Yongzhou; Sheng, Rong

    2014-09-01

    A series of novel 2-methoxy-phenyl dimethyl-carbamate derivatives were designed, synthesized and evaluated as site-activated MTDLs based on rivastigmine and curcumin. Most of them exhibited good to excellent AChE and BuChE inhibitory activities with sub-micromolar IC50 values. Among all the compounds, 6a demonstrated the most potent AChE inhibition with IC50 value of 0.097μM, which is about 20-fold than that of rivastigmine. In addition, the three selected compounds 5a, 6a and 6e demonstrated inhibitory activity against Aβ self-aggregation similar to cucurmin in TEM assay, which is obviously different from the weak activity of rivastigmine. Moreover, the hydrolysate of 6a (compound 7) also showed potent ABTS(+) scavenging and moderate copper ion chelating activity in vitro. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Regulation of ACh release from guinea pig bladder urothelial cells: potential role in bladder filling sensations.

    PubMed

    McLatchie, L M; Young, J S; Fry, C H

    2014-07-01

    The aim of this study was to quantify and characterize the mechanism of non-neuronal ACh release from bladder urothelial cells and to determine if urothelial cells could be a site of action of anti-muscarinic drugs. A novel technique was developed whereby ACh could be measured from freshly isolated guinea pig urothelial cells in suspension following mechanical stimulation. Various agents were used to manipulate possible ACh release pathways in turn and to study the effects of muscarinic receptor activation and inhibition on urothelial ATP release. Minimal mechanical stimulus achieved full ACh release, indicating a small dynamic range and possible all-or-none signal. ACh release involved a mechanism dependent on the anion channel CFTR and intracellular calcium concentration, but was independent of extracellular calcium, vesicular trafficking, connexins or pannexins, organic cation transporters and was not affected by botulinum-A toxin. Stimulating ACh receptors increased ATP production and antagonizing them reduced ATP release, suggesting a link between ACh and ATP release. These results suggest that release of non-neuronal ACh from the urothelium is large enough and well located to act as a modulator of ATP release. It is hypothesized that this pathway may contribute to the actions of anti-muscarinic drugs in reducing the symptoms of lower urinary tract syndromes. Additionally the involvement of CFTR in ACh release suggests an exciting new direction for the treatment of these conditions. © 2014 The British Pharmacological Society.

  16. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A

    2016-03-09

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. Copyright © 2016 the authors 0270-6474/16/362957-18$15.00/0.

  17. Synthesis, biological evaluation, and computational studies of Tri- and tetracyclic nitrogen-bridgehead compounds as potent dual-acting AChE inhibitors and hH3 receptor antagonists.

    PubMed

    Darras, Fouad H; Pockes, Steffen; Huang, Guozheng; Wehle, Sarah; Strasser, Andrea; Wittmann, Hans-Joachim; Nimczick, Martin; Sotriffer, Christoph A; Decker, Michael

    2014-03-19

    Combination of AChE inhibiting and histamine H3 receptor antagonizing properties in a single molecule might show synergistic effects to improve cognitive deficits in Alzheimer's disease, since both pharmacological actions are able to enhance cholinergic neurotransmission in the cortex. However, whereas AChE inhibitors prevent hydrolysis of acetylcholine also peripherally, histamine H3 antagonists will raise acetylcholine levels mostly in the brain due to predominant occurrence of the receptor in the central nervous system. In this work, we designed and synthesized two novel classes of tri- and tetracyclic nitrogen-bridgehead compounds acting as dual AChE inhibitors and histamine H3 antagonists by combining the nitrogen-bridgehead moiety of novel AChE inhibitors with a second N-basic fragment based on the piperidinylpropoxy pharmacophore with different spacer lengths. Intensive structure-activity relationships (SARs) with regard to both biological targets led to compound 41 which showed balanced affinities as hAChE inhibitor with IC50 = 33.9 nM, and hH3R antagonism with Ki = 76.2 nM with greater than 200-fold selectivity over the other histamine receptor subtypes. Molecular docking studies were performed to explain the potent AChE inhibition of the target compounds and molecular dynamics studies to explain high affinity at the hH3R.

  18. Exploration of the susceptibility of AChE from the poultry red mite Dermanyssus gallinae (Acari: Mesostigmata) to organophosphates in field isolates from France.

    PubMed

    Roy, Lise; Chauve, Claude; Delaporte, Jean; Inizan, Gilbert; Buronfosse, Thierry

    2009-06-01

    The red fowl mite Dermanyssus gallinae (De Geer, 1778) is a hematophagous mite species, which is very commonly found in layer facilities in Europe. The economic and animal health impact of this parasite is quite important. In laying hen houses, organophosphates are almost the only legally usable chemicals. Detecting a target resistance can be useful in order to limit the emergence of resistant populations. The acetylcholinesterase (AChE) activity and the enzyme sensitivity to paraoxon was investigated in 39 field samples and compared to a susceptible reference strain (SSK). Insensitivity factor values (expressed as IC50 ratio) obtained from field isolates compared to SSK revealed some polymorphism but not exceeding a 6-fold difference. The kinetic characteristics of AChE from some field samples showed some difference in KM values for acetylthiocholine and inhibition kinetics performed with diethyl paraoxon exhibited a 5.5-fold difference in the bimolecular rate constant in one field isolate. Taken together, these data suggested that differences in AChE susceptibility to organophosphates may exist in D. gallinae but no resistant population was found.

  19. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward

    PubMed Central

    Henderson, Brandon J.; Wall, Teagan R.; Henley, Beverley M.; Kim, Charlene H.; Nichols, Weston A.; Moaddel, Ruin; Xiao, Cheng

    2016-01-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. SIGNIFICANCE STATEMENT Menthol, the most popular flavorant for tobacco products, has been considered simply a benign flavor additive. However, as we show here

  20. Cholinesterase Inhibitory Activity of Some semi-Rigid Spiro Heterocycles: POM Analyses and Crystalline Structure of Pharmacophore Site.

    PubMed

    Hadda, Taibi Ben; Talhi, Oualid; Silva, Artur S M; Senol, Fatma Sezer; Orhan, Ilkay Erdogan; Rauf, Abdur; Mabkhot, Yahia N; Bachari, Khaldoun; Warad, Ismail; Farghaly, Thoraya A; Althagafi, Ismail I; Mubarak, Mohammad S

    2018-01-01

    Cholinesterase family consists of two sister enzymes; acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) which hydrolyze acetylcholine. Since deficit of acetylcholine has been evidenced in patients of Alzheimer's disease (AD), cholinesterase inhibitors are currently the most prescribed drugs for the treatment of AD. our aim in this article was to investigate the inhibitory potential of five known compounds (2-6) with spiro skeleton against AChE and BChE using ELISA microplate assays. In addition to their ChE inhibitory effect, their physico-chemical properties were also calculated. Moreover, the present work aims at investigating the charge/geometrical effect of a hypothetical pharmacophore or bidentate site in a bioactive group, on the inhibition efficiency of spiro compounds 2-6 by using Petra/Osiris/ molinspiration (POM) and X-ray analyses. In the present study, five compounds (2-6) with spiro skeleton have been synthesized and tested in vitro for their inhibitory potential against AChE and BChE using ELISA microtiter plate assays at 25 µg/mL. Results revealed that three of the spiro compounds tested exert more than 50% inhibition against one of cholinesterases. Compound 5 displayed 68.73 ± 4.73% of inhibition toward AChE, whereas compound 6 showed 56.17 ± 0.83% of inhibition toward BChE; these two previously synthesized compounds have been the most active hits. Our data obtained from screening of compounds 2-6 against the two cholinesterases indicate that three of these show good potential to selectively inhibit AChE or BChE. Spiro compounds 2, 5, and 6 exhibited the most potent activity of the series against AChE or BChE with inhibition values in the range 55-70%. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms

    PubMed Central

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G.

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787

  2. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms.

    PubMed

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein.

  3. ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells.

    PubMed

    Poppi, Lauren A; Tabatabaee, Hessam; Drury, Hannah R; Jobling, Phillip; Callister, Robert J; Migliaccio, Americo A; Jordan, Paivi M; Holt, Joseph C; Rabbitt, Richard D; Lim, Rebecca; Brichta, Alan M

    2018-01-01

    In the mammalian vestibular periphery, electrical activation of the efferent vestibular system (EVS) has two effects on afferent activity: 1) it increases background afferent discharge and 2) decreases afferent sensitivity to rotational stimuli. Although the cellular mechanisms underlying these two contrasting afferent responses remain obscure, we postulated that the reduction in afferent sensitivity was attributed, in part, to the activation of α9- containing nicotinic acetylcholine (ACh) receptors (α9*nAChRs) and small-conductance potassium channels (SK) in vestibular type II hair cells, as demonstrated in the peripheral vestibular system of other vertebrates. To test this hypothesis, we examined the effects of the predominant EVS neurotransmitter ACh on vestibular type II hair cells from wild-type (wt) and α9-subunit nAChR knockout (α9 -/- ) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of α9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the α9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from α9 -/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of α9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of α9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted

  4. Development of M1 mAChR allosteric and bitopic ligands: prospective therapeutics for the treatment of cognitive deficits.

    PubMed

    Davie, Briana J; Christopoulos, Arthur; Scammells, Peter J

    2013-07-17

    Since the cholinergic hypothesis of memory dysfunction was first reported, extensive research efforts have focused on elucidating the mechanisms by which this intricate system contributes to the regulation of processes such as learning, memory, and higher executive function. Several cholinergic therapeutic targets for the treatment of cognitive deficits, psychotic symptoms, and the underlying pathophysiology of neurodegenerative disorders, such as Alzheimer's disease and schizophrenia, have since emerged. Clinically approved drugs now exist for some of these targets; however, they all may be considered suboptimal therapeutics in that they produce undesirable off-target activity leading to side effects, fail to address the wide variety of symptoms and underlying pathophysiology that characterize these disorders, and/or afford little to no therapeutic effect in subsets of patient populations. A promising target for which there are presently no approved therapies is the M1 muscarinic acetylcholine receptor (M1 mAChR). Despite avid investigation, development of agents that selectively activate this receptor via the orthosteric site has been hampered by the high sequence homology of the binding site between the five muscarinic receptor subtypes and the wide distribution of this receptor family in both the central nervous system (CNS) and the periphery. Hence, a plethora of ligands targeting less structurally conserved allosteric sites of the M1 mAChR have been investigated. This Review aims to explain the rationale behind allosterically targeting the M1 mAChR, comprehensively summarize and critically evaluate the M1 mAChR allosteric ligand literature to date, highlight the challenges inherent in allosteric ligand investigation that are impeding their clinical advancement, and discuss potential methods for resolving these issues.

  5. The binding properties of cycloxaprid on insect native nAChRs partially explain the low cross-resistance with imidacloprid in Nilaparvata lugens.

    PubMed

    Zhang, Yixi; Xu, Xiaoyong; Bao, Haibo; Shao, Xusheng; Li, Zhong; Liu, Zewen

    2018-06-06

    Neonicotinoids, such as imidacloprid, are selective agonists of insect nicotinic acetylcholine receptors (nAChRs) to control Nilaparvata lugens, a major rice insect pest. High imidacloprid resistance has been reported in N. lugens in laboratory and in fields. Cycloxaprid, an oxabridged cis-nitromethylene neonicotinoid, showed high insecticidal activity against N. lugens and low cross-resistance in the imidacloprid resistant strains and field populations. Binding studies have demonstrated that imidacloprid had two binding sites with different affinities (Kd = 3.18 ± 0.43 pM and 1.78 ± 0.19 nM) in N. lugens nAChRs. Cycloxaprid was poor at displacing [ 3 H]imidacloprid at its high-affinity binding site (Ki = 159.38±20.43 nM), but quite efficient at the low-affinity binding site (Ki = 1.27±0.35 nM). These data showed that cycloxaprid had overlapping binding sites with imidacloprid only at its low-affinity binding site. Therefore, the low displacement ability of cycloxaprid against imidacloprid binding at its high affinity site could partially explain the low cross-resistance of cycloxaprid in the imidacloprid resistant populations. The high insecticidal activity, low cross-resistance and different binding properties on insect nAChRs of cycloxaprid demonstrating it a potential insecticide to control N. lugens and related insect pests, especially the ones with high resistance to neonicotinoids. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Design, synthesis and biological activity of novel donepezil derivatives bearing N-benzyl pyridinium moiety as potent and dual binding site acetylcholinesterase inhibitors.

    PubMed

    Lan, Jin-Shuai; Zhang, Tong; Liu, Yun; Yang, Jing; Xie, Sai-Sai; Liu, Jing; Miao, Ze-Yang; Ding, Yue

    2017-06-16

    A series of new donepezil derivatives were designed synthesized and evaluated as multifunctional cholinesterase inhibitors against Alzheimer's disease (AD). In vitro studies showed that most of them exhibited significant potency to inhibit acetylcholinesterase and self-induced β-amyloid (Aβ) aggregation, and moderate antioxidant activity. Especially, compound 5b presented the greatest ability to inhibit cholinesterase (IC 50 , 1.9 nM for eeAChE and 0.8 nM for hAChE), good inhibition of Aβ aggregation (53.7% at 20 μM) and good antioxidant activity (0.54 trolox equivalents). Kinetic and molecular modeling studies indicated that compound 5b was a mixed-type inhibitor, binding simultaneously to the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, compound 5b could reduce PC12 cells death induced by oxidative stress and Aβ (1-42). Moreover, in vivo experiments showed that compound 5b was nontoxic and tolerated at doses up to 2000 mg/kg. These results suggested that compound 5b might be an excellent multifunctional agent for AD treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Understanding the molecular mechanism of aryl acylamidase activity of acetylcholinesterase - An in silico study.

    PubMed

    Chinnadurai, Raj Kumar; Saravanaraman, Ponne; Boopathy, Rathanam

    2015-08-15

    Acetylcholinesterase (AChE) exhibits two different activities, namely esterase and aryl acylamidase (AAA). Unlike esterase, AAA activity of AChE is inhibited by the active site inhibitors while remaining unaffected by the peripheral anionic site inhibitors. This differential inhibitory pattern of active and peripheral anionic site inhibitors on the AAA activity remains unanswered. To answer this, we investigated the mechanism of binding and trafficking of AAA substrates using in silico tools. Molecular docking of serotonin and AAA substrates (o-nitroacetanilide, and o-nitrotrifluoroacetanilide,) onto AChE shows that these compounds bind at the side door of AChE. Thus, we conceived that the AAA substrates prefer the side door to reach the active site for their catalysis. Further, steered molecular dynamics simulations show that the force required for binding and trafficking of the AAA substrate through the side door is comparatively lesser than their dissociation (900kJ/mol/nm). Among the two substrates, o-nitrotrifluoroacetanilide required lesser force (380kJ/mol/nm) than o-nitroacetanilide the (550kJ/mol/nm) for its binding, thus validating o-nitrotrifluoroacetanilide as a better substrate. With these observations, we resolve that the AAA activity of AChE is mediated through its side door. Therefore, binding of PAS inhibitors at the main door of AChE remain ineffective against AAA activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Differential effects of lysophosphatidylcholine and ACh on muscarinic K(+),non-selective cation and Ca(2+) currents in guinea-pig atrial cells.

    PubMed

    Li, Libing; Matsuoka, Isao; Sakamoto, Kazuho; Kimura, Junko

    2016-06-08

    We compared the effects of lysophosphatidylcholine (LPC) and acetylcholine (ACh) on IK(ACh), ICa and a non-selective cation current (INSC) in guinea-pig atrial myocytes to clarify whether LPC and ACh activate similar Gi/o-coupled effector systems. IK(ACh), ICa and INSC were analyzed in single atrial myocytes by the whole cell patch-clamp. LPC induced INSC in a concentration-dependent manner in atrial cells. ACh activated IK(ACh), but failed to evoke INSC. LPC also activated IK(ACh) but with significantly less potency than ACh. The effects of both ligands on IK(ACh) were inhibited by intracellular loading of pre-activated PTX. This treatment also inhibited LPC-induced INSC, indicating that IK(ACh) and INSC induced by LPC are both mediated by Gi/o. LPC and ACh had similar potencies in inhibiting ICa, which was pre-augmented by forskolin, indicating that LPC and ACh activate similar amounts of α-subunits of Gi/o. The different effects of LPC and ACh on IK(ACh) and INSC may suggest that LPC and ACh activate Gi/o having different types of βγ subunits, and that LPC-induced INSC may be mediated by βγ subunits of Gi/o, which are less effective in inducing IK(ACh).

  9. Molecular modeling and structural analysis of nAChR variants uncovers the mechanism of resistance to snake toxins.

    PubMed

    Gunasekaran, D; Sridhar, J; Suryanarayanan, V; Manimaran, N C; Singh, Sanjeev Kumar

    2017-06-01

    Nicotinic acetylcholine receptors (nAChRs) are neuromuscular proteins responsible for muscle contraction upon binding with chemical stimulant acetylcholine (ACh). The α-neurotoxins of snake mimic the structure of ACh and attacks nAChRs, which block the flow of ACh and leads to numbness and paralysis. The toxin-binding site of alpha subunit in the nAChRs is highly conserved throughout chordate lineages with few exceptions in resistance organisms. In this study, we have analyzed the sequence and structures of toxin-binding/resistant nAChRs and their interaction stability with toxins through molecular docking and molecular dynamics simulation (MDS). We have reported the potential glycosylation residues within the toxin-binding cleft adding sugar moieties through N-linked glycosylation in resistant organisms. Residue variations at key positions alter the secondary structure of binding cleft, which might interfere with toxin binding and it could be one of the possible explanations for the resistance to snake venoms. Analysis of nAChR-α-neurotoxin complexes has confirmed the key interacting residues. In addition, drastic variation in the binding stability of Mongoose nAChR-α-Bungarotoxin (α-BTX) and human nAChR-α-BTX complexes were found at specific phase of MDS. Our findings suggest that specific mutations in the binding site of toxin are potentially preventing the formation of stable complex of receptor-toxin, which might lead to mechanism of resistance. This in silico study on the binding cleft of nAChR and the findings of interacting residues will assist in designing potential inhibitors as therapeutic targets.

  10. Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity.

    PubMed

    Miller, K W; Schamber, R; Osmanagaoglu, O; Ray, B

    1998-06-01

    A collection of pediocin AcH amino acid substitution mutants was generated by PCR random mutagenesis of DNA encoding the bacteriocin. Mutants were isolated by cloning mutagenized DNA into an Escherichia coli malE plasmid that directs the secretion of maltose binding protein-pediocin AcH chimeric proteins and by screening transformant colonies for bactericidal activity against Lactobacillus plantarum NCDO955 (K. W. Miller, R. Schamber, Y. Chen, and B. Ray, 1998. Appl. Environ. Microbiol. 64:14-20, 1998). In all, 17 substitution mutants were isolated at 14 of the 44 amino acids of pediocin AcH. Seven mutants (N5K, C9R, C14S, C14Y, G37E, G37R, and C44W) were completely inactive against the pediocin AcH-sensitive strains L. plantarum NCDO955, Listeria innocua Lin11, Enterococcus faecalis M1, Pediococcus acidilactici LB42, and Leuconostoc mesenteroides Ly. A C24S substitution mutant constructed by other means also was inactive against these bacteria. Nine other mutants (K1N, W18R, I26T, M31T, A34D, N41K, H42L, K43N, and K43E) retained from <1% to approximately 60% of wild-type activity when assayed against L. innocua Lin11. One mutant, K11E, displayed approximately 2. 8-fold-higher activity against this indicator. About one half of the mutations mapped to amino acids that are conserved in the pediocin-like family of bacteriocins. All four cysteines were found to be required for activity, although only C9 and C14 are conserved among pediocin-like bacteriocins. Several basic amino acids as well as nonpolar amino acids located within the hydrophobic C-terminal region also were found to be important. The mutations are discussed in the context of structural models that have been proposed for the bacteriocin.

  11. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  12. Multiple binding sites involved in the effect of choline esters on decarbamoylation of monomethylcarbamoyl- or dimethylcarbamoly-acetylcholinesterase.

    PubMed Central

    Sok, D E; Kim, Y B; Choi, S J; Jung, C H; Cha, S H

    1994-01-01

    Multiple binding sites for inhibitory choline esters in spontaneous decarbamoylation of dimethylcarbamoyl-acetylcholinesterase (AChE) were suggested from a wide range of IC50 values, in contrast with a limited range of AC50 values (concentration giving 50% of maximal activation) at a peripheral activatory site. Association of choline esters containing a long acyl chain (C7-C12) with the hydrophobic zone in the active site could be deduced from a linear relationship between the size of the acyl group and the inhibitory potency in either spontaneous decarbamoylation or acetylthiocholine hydrolysis. Direct support for laurylcholine binding to the active site might come from the competitive inhibition (Ki 33 microM) of choline-catalysed decarbamoylation by laurylcholine. Moreover, its inhibitory action was greater for monomethylcarbamoyl-AChE than for dimethylcarbamoyl-AChE, where there is a greater steric hindrance at the active centre. In further support, the inhibition of pentanoylthiocholine-induced decarbamoylation by laurylcholine was suggested to be due to laurylcholine binding to a central site rather than a peripheral site, similar to the inhibition of spontaneous decarbamoylation by laurylcholine. Supportive data for acetylcholine binding to the active site are provided by the results that acetylcholine is a competitive inhibitor (Ki 7.6 mM) of choline-catalysed decarbamoylation, and its inhibitory action was greater for monomethylcarbamoyl-AChE than for dimethylcarbamoyl-AChE. Meanwhile, choline esters with an acyl group of an intermediate size (C4-C6), more subject to steric exclusion at the active centre, and less associable with the hydrophobic zone, appear to bind preferentially to a peripheral activity site. Thus the multiple effects of choline esters may be governed by hydrophobicity and/or a steric effect exerted by the acyl moiety at the binding sites. PMID:8053896

  13. Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore

    PubMed Central

    Talley, Todd T.; Harel, Michal; Hibbs, Ryan E.; Radić, Zoran; Tomizawa, Motohiro; Casida, John E.; Taylor, Palmer

    2008-01-01

    Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 Å in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids. PMID:18477694

  14. Synthesis and anticholinesterase activity of coumarin-3-carboxamides bearing tryptamine moiety.

    PubMed

    Ghanei-Nasab, Samaneh; Khoobi, Mehdi; Hadizadeh, Farzin; Marjani, Azam; Moradi, Alireza; Nadri, Hamid; Emami, Saeed; Foroumadi, Alireza; Shafiee, Abbas

    2016-10-04

    A number of N-(2-(1H-indol-3-yl)ethyl)-2-oxo-2H-chromene-3-carboxamides were synthesized and tested against AChE and BuChE. The in vitro assessment of the synthesized compounds 4a-o revealed that most of them had significant activity toward AChE. The SAR study demonstrated that the introduction of benzyloxy moiety on the 7-position of coumarin scaffold can improve the anti-AChE activity. The best result was obtained with 7-(4-fluorobenzyl)oxy moiety in the case of compound 4o, displaying IC50 value of 0.16 μM. Based on the docking study of AChE, the prototype compound 4o was laid across the active site and occupied both peripheral anionic site (PAS) and catalytic anionic site (CAS). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Studies on the interaction of BDE-47 and BDE-209 with acetylcholinesterase (AChE) based on the neurotoxicity through fluorescence, UV-vis spectra, and molecular docking.

    PubMed

    Wang, Shutao; Wu, Chuan; Liu, Zhisheng; You, Hong

    2018-05-01

    The neurotoxicity of polybrominated diphenyl ethers (PBDEs) has been of concern. Acetylcholinesterase (AChE) is a critical enzyme in the central and peripheral nervous system related to neurotoxicity. The interaction between BDE-47, BDE-209, and AChE was investigated through fluorescence and UV-vis spectra combined with molecular docking. Both BDE-47 and BDE-209 bound with AChE and changed the microenvironment of some amino acid residues, resulting in a change of AChE conformation. Hydrophobic interaction is the main binding force between BDE-47, BDE-209, and AChE, and electrostatic interaction exists according to the thermodynamic parameters of the interaction between them. A hydrophobic interaction of BDE-47-AChE and BDE-209-AChE has been confirmed through molecular docking to dominate the binding force. The binding constants of BDE-47-AChE and BDE-209-AChE were 4.2 × 10 4 and 4.1 × 10 4  L/mol, respectively, and the lowest binding energies of BDE-47-AChE and BDE-209-AChE were -7.8 and -5.9 kJ/mol, respectively. BDE-47 is more likely to bind with AChE than BED-209. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Structure—activity relationships for insecticidal carbamates*

    PubMed Central

    Metcalf, Robert L.

    1971-01-01

    Carbamate insecticides are biologically active because of their structural complementarity to the active site of acetylcholinesterase (AChE) and their consequent action as substrates with very low turnover numbers. Carbamates behave as synthetic neurohormones that produce their toxic action by interrupting the normal action of AChE so that acetylcholine accumulates at synaptic junctions. The necessary properties for a suitable insecticidal carbamate are lipid solubility, suitable structural complementarity to AChE, and sufficient stability to multifunction-oxidase detoxification. The relationships between the structure and the activity of a large number of synthetic carbamates are analysed in detail, with particular attention to the second of these properties. PMID:5315358

  17. α7nAchR/NMDAR coupling affects NMDAR function and object recognition.

    PubMed

    Li, Shupeng; Nai, Qiang; Lipina, Tatiana V; Roder, John C; Liu, Fang

    2013-12-20

    The α7 nicotinic acetylcholine receptor (nAchR) and NMDA glutamate receptor (NMDAR) are both ligand-gated ion channels permeable to Ca2+ and Na+. Previous studies have demonstrated functional modulation of NMDARs by nAchRs, although the molecular mechanism remains largely unknown. We have previously reported that α7nAchR forms a protein complex with the NMDAR through a protein-protein interaction. We also developed an interfering peptide that is able to disrupt the α7nAchR-NMDAR complex and blocks cue-induced reinstatement of nicotine-seeking in rat models of relapse. In the present study, we investigated whether the α7nAchR-NMDAR interaction is responsible for the functional modulation of NMDAR by α7nAchR using both electrophysiological and behavioral tests. We have found that activation of α7nAchR upregulates NMDAR-mediated whole cell currents and LTP of mEPSC in cultured hippocampal neurons, which can be abolished by the interfering peptide that disrupts the α7nAchR-NMDAR interaction. Moreover, administration of the interfering peptide in mice impairs novel object recognition but not Morris water maze performance. Our results suggest that α7nAchR/NMDAR coupling may selectively affect some aspects of learning and memory.

  18. Acetylcholinesterases of Rhipicephalus (Boophilus) microplus – Multiple gene expression presents an opportune model system for elucidation of multiple functions of AChEs.

    USDA-ARS?s Scientific Manuscript database

    Acetylcholinesterase (AChE) is a key neural enzyme of both vertebrates and invertebrates, and is the biochemical target of organophosphate and carbamate pesticides for invertebrates, as well as vertebrate nerve agents, e.g., soman, tabun, VX, and others. AChE inhibitors are also key drugs among thos...

  19. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila.

    PubMed

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I; Angel, Cristian; Campusano, Jorge M

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila.

  20. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  1. Acetylcholine ameliorates endoplasmic reticulum stress in endothelial cells after hypoxia/reoxygenation via M3 AChR-AMPK signaling.

    PubMed

    Bi, Xueyuan; He, Xi; Xu, Man; Zhao, Ming; Yu, Xiaojiang; Lu, Xingzhu; Zang, Weijin

    2015-08-03

    Endoplasmic reticulum (ER) stress is associated with various cardiovascular diseases. However, its pathophysiological relevance and the underlying mechanisms in the context of hypoxia/reoxygenation (H/R) in endothelial cells are not fully understood. Previous findings have suggested that acetylcholine (ACh), the major vagal nerve neurotransmitter, protected against cardiomyocyte injury by activating AMP-activated protein kinase (AMPK). This study investigated the role of ER stress in endothelial cells during H/R and explored the beneficial effects of ACh. Our results showed that H/R triggered ER stress and apoptosis in endothelial cells, evidenced by the elevation of glucose-regulated protein 78, cleaved caspase-12 and C/EBP homologous protein expression. ACh significantly decreased ER stress and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling positive cells and restored ER ultrastructural changes induced by H/R, possibly via protein kinase-like ER kinase and inositol-requiring kinase 1 pathways. Additionally, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3 AChR) inhibitor, abolished ACh-mediated increase in AMPK phosphorylation during H/R. Furthermore, M3 AChR or AMPK siRNA abrogated the ACh-elicited the attenuation of ER stress in endothelial cells, indicating that the salutary effects of ACh were likely mediated by M3 AChR-AMPK signaling. Overall, ACh activated AMPK through M3 AChR, thereby inhibited H/R-induced ER stress and apoptosis in endothelial cells. We have suggested for the first time that AMPK may function as an essential intermediate step between M3 AChR stimulation and inhibition of ER stress-associated apoptotic pathway during H/R, which may help to develop novel therapeutic approaches targeting ER stress to prevent or alleviate ischemia/reperfusion injury.

  2. Molecular Characterization of Monoclonal Antibodies that Inhibit Acetylcholinesterase by Targeting the Peripheral Site and Backdoor Region

    PubMed Central

    Essono, Sosthène; Mondielli, Grégoire; Lamourette, Patricia; Boquet, Didier; Grassi, Jacques; Marchot, Pascale

    2013-01-01

    The inhibition properties and target sites of monoclonal antibodies (mAbs) Elec403, Elec408 and Elec410, generated against Electrophorus electricus acetylcholinesterase (AChE), have been defined previously using biochemical and mutagenesis approaches. Elec403 and Elec410, which bind competitively with each other and with the peptidic toxin inhibitor fasciculin, are directed toward distinctive albeit overlapping epitopes located at the AChE peripheral anionic site, which surrounds the entrance of the active site gorge. Elec408, which is not competitive with the other two mAbs nor fasciculin, targets a second epitope located in the backdoor region, distant from the gorge entrance. To characterize the molecular determinants dictating their binding site specificity, we cloned and sequenced the mAbs; generated antigen-binding fragments (Fab) retaining the parental inhibition properties; and explored their structure-function relationships using complementary x-ray crystallography, homology modeling and flexible docking approaches. Hypermutation of one Elec403 complementarity-determining region suggests occurrence of antigen-driven selection towards recognition of the AChE peripheral site. Comparative analysis of the 1.9Å-resolution structure of Fab408 and of theoretical models of its Fab403 and Fab410 congeners evidences distinctive surface topographies and anisotropic repartitions of charges, consistent with their respective target sites and inhibition properties. Finally, a validated, data-driven docking model of the Fab403-AChE complex suggests a mode of binding at the PAS that fully correlates with the functional data. This comprehensive study documents the molecular peculiarities of Fab403 and Fab410, as the largest peptidic inhibitors directed towards the peripheral site, and those of Fab408, as the first inhibitor directed toward the backdoor region of an AChE and a unique template for the design of new, specific modulators of AChE catalysis. PMID:24146971

  3. Muscle-specific kinase (MuSK) autoantibodies suppress the MuSK pathway and ACh receptor retention at the mouse neuromuscular junction

    PubMed Central

    Ghazanfari, Nazanin; Morsch, Marco; Reddel, Stephen W; Liang, Simon X; Phillips, William D

    2014-01-01

    Muscle-specific kinase (MuSK) autoantibodies from myasthenia gravis patients can block the activation of MuSK in vitro and/or reduce the postsynaptic localization of MuSK. Here we use a mouse model to examine the effects of MuSK autoantibodies upon some key components of the postsynaptic MuSK pathway and upon the regulation of junctional ACh receptor (AChR) numbers. Mice became weak after 14 daily injections of anti-MuSK-positive patient IgG. The intensity and area of AChR staining at the motor endplate was markedly reduced. Pulse-labelling of AChRs revealed an accelerated loss of pre-existing AChRs from postsynaptic AChR clusters without a compensatory increase in incorporation of (newly synthesized) replacement AChRs. Large, postsynaptic AChR clusters were replaced by a constellation of tiny AChR microaggregates. Puncta of AChR staining also appeared in the cytoplasm beneath the endplate. Endplate staining for MuSK, activated Src, rapsyn and AChR were all reduced in intensity. In the tibialis anterior muscle there was also evidence that phosphorylation of the AChR β-subunit-Y390 was reduced at endplates. In contrast, endplate staining for β-dystroglycan (through which rapsyn couples AChR to the synaptic basement membrane) remained intense. The results suggest that anti-MuSK IgG suppresses the endplate density of MuSK, thereby down-regulating MuSK signalling activity and the retention of junctional AChRs locally within the postsynaptic membrane scaffold. PMID:24860174

  4. Muscle-specific kinase (MuSK) autoantibodies suppress the MuSK pathway and ACh receptor retention at the mouse neuromuscular junction.

    PubMed

    Ghazanfari, Nazanin; Morsch, Marco; Reddel, Stephen W; Liang, Simon X; Phillips, William D

    2014-07-01

    Muscle-specific kinase (MuSK) autoantibodies from myasthenia gravis patients can block the activation of MuSK in vitro and/or reduce the postsynaptic localization of MuSK. Here we use a mouse model to examine the effects of MuSK autoantibodies upon some key components of the postsynaptic MuSK pathway and upon the regulation of junctional ACh receptor (AChR) numbers. Mice became weak after 14 daily injections of anti-MuSK-positive patient IgG. The intensity and area of AChR staining at the motor endplate was markedly reduced. Pulse-labelling of AChRs revealed an accelerated loss of pre-existing AChRs from postsynaptic AChR clusters without a compensatory increase in incorporation of (newly synthesized) replacement AChRs. Large, postsynaptic AChR clusters were replaced by a constellation of tiny AChR microaggregates. Puncta of AChR staining also appeared in the cytoplasm beneath the endplate. Endplate staining for MuSK, activated Src, rapsyn and AChR were all reduced in intensity. In the tibialis anterior muscle there was also evidence that phosphorylation of the AChR β-subunit-Y390 was reduced at endplates. In contrast, endplate staining for β-dystroglycan (through which rapsyn couples AChR to the synaptic basement membrane) remained intense. The results suggest that anti-MuSK IgG suppresses the endplate density of MuSK, thereby down-regulating MuSK signalling activity and the retention of junctional AChRs locally within the postsynaptic membrane scaffold. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  5. Monoterpenoids (thymol, carvacrol and S-(+)-linalool) with anesthetic activity in silver catfish (Rhamdia quelen): evaluation of acetylcholinesterase and GABAergic activity

    PubMed Central

    Bianchini, A.E.; Garlet, Q.I.; da Cunha, J.A.; Bandeira, G.; Brusque, I.C.M.; Salbego, J.; Heinzmann, B.M.; Baldisserotto, B.

    2017-01-01

    This study evaluated the anesthetic potential of thymol and carvacrol, and their influence on acetylcholinesterase (AChE) activity in the muscle and brain of silver catfish (Rhamdia quelen). The AChE activity of S-(+)-linalool was also evaluated. We subsequently assessed the effects of thymol and S-(+)-linalool on the GABAergic system. Fish were exposed to thymol and carvacrol (25, 50, 75, and 100 mg/L) to evaluate time for anesthesia and recovery. Both compounds induced sedation at 25 mg/L and anesthesia with 50–100 mg/L. However, fish exposed to carvacrol presented strong muscle contractions and mortality. AChE activity was increased in the brain of fish at 50 mg/L carvacrol and 100 mg/L thymol, and decreased in the muscle at 100 mg/L carvacrol. S-(+)-linalool did not alter AChE activity. Anesthesia with thymol was reversed by exposure to picrotoxin (GABAA antagonist), similar to the positive control propofol, but was not reversed by flumazenil (antagonist of benzodiazepine binding site), as observed for the positive control diazepam. Picrotoxin did not reverse the effect of S-(+)-linalool. Thymol exposure at 50 mg/L is more suitable than carvacrol for anesthesia in silver catfish, because this concentration did not cause any mortality or interference with AChE activity. Thymol interacted with GABAA receptors, but not with the GABAA/benzodiazepine site. In contrast, S-(+)-linalool did not act in GABAA receptors in silver catfish. PMID:29069225

  6. Monoterpenoids (thymol, carvacrol and S-(+)-linalool) with anesthetic activity in silver catfish (Rhamdia quelen): evaluation of acetylcholinesterase and GABAergic activity.

    PubMed

    Bianchini, A E; Garlet, Q I; da Cunha, J A; Bandeira, G; Brusque, I C M; Salbego, J; Heinzmann, B M; Baldisserotto, B

    2017-10-19

    This study evaluated the anesthetic potential of thymol and carvacrol, and their influence on acetylcholinesterase (AChE) activity in the muscle and brain of silver catfish (Rhamdia quelen). The AChE activity of S-(+)-linalool was also evaluated. We subsequently assessed the effects of thymol and S-(+)-linalool on the GABAergic system. Fish were exposed to thymol and carvacrol (25, 50, 75, and 100 mg/L) to evaluate time for anesthesia and recovery. Both compounds induced sedation at 25 mg/L and anesthesia with 50-100 mg/L. However, fish exposed to carvacrol presented strong muscle contractions and mortality. AChE activity was increased in the brain of fish at 50 mg/L carvacrol and 100 mg/L thymol, and decreased in the muscle at 100 mg/L carvacrol. S-(+)-linalool did not alter AChE activity. Anesthesia with thymol was reversed by exposure to picrotoxin (GABAA antagonist), similar to the positive control propofol, but was not reversed by flumazenil (antagonist of benzodiazepine binding site), as observed for the positive control diazepam. Picrotoxin did not reverse the effect of S-(+)-linalool. Thymol exposure at 50 mg/L is more suitable than carvacrol for anesthesia in silver catfish, because this concentration did not cause any mortality or interference with AChE activity. Thymol interacted with GABAA receptors, but not with the GABAA/benzodiazepine site. In contrast, S-(+)-linalool did not act in GABAA receptors in silver catfish.

  7. Correlation of cholinergic drug induced quenching of acetylcholinesterase bound thioflavin-T fluorescence with their inhibition activity

    NASA Astrophysics Data System (ADS)

    Islam, Mullah Muhaiminul; Rohman, Mostofa Ataur; Gurung, Arun Bahadur; Bhattacharjee, Atanu; Aguan, Kripamoy; Mitra, Sivaprasad

    2018-01-01

    The development of new acetylcholinesterase inhibitors (AChEIs) and subsequent assay of their inhibition efficiency is considered to be a key step for AD treatment. The fluorescence intensity of thioflavin-T (ThT) bound in the active site of acetylcholinesterase (AChE) quenches substantially in presence of standard AChEI drugs due to the dynamic replacement of the fluorophore from the AChE active site as confirmed from steady state emission as well as time-resolved fluorescence anisotropy measurement and molecular dynamics simulation in conjunction with docking calculation. The parametrized % quenching data for individual system shows excellent correlation with enzyme inhibition activity measured independently by standard Ellman AChE assay method in a high throughput plate reader system. The results are encouraging towards design of a fluorescence intensity based AChE inhibition assay method and may provide a better toolset to rapidly evaluate as well as develop newer AChE-inhibitors for AD treatment.

  8. Voltage sensitivity of M2 muscarinic receptors underlies the delayed rectifier-like activation of ACh-gated K(+) current by choline in feline atrial myocytes.

    PubMed

    Navarro-Polanco, Ricardo A; Aréchiga-Figueroa, Iván A; Salazar-Fajardo, Pedro D; Benavides-Haro, Dora E; Rodríguez-Elías, Julio C; Sachse, Frank B; Tristani-Firouzi, Martin; Sánchez-Chapula, José A; Moreno-Galindo, Eloy G

    2013-09-01

    Choline (Ch) is a precursor and metabolite of the neurotransmitter acetylcholine (ACh). In canine and guinea pig atrial myocytes, Ch was shown to activate an outward K(+) current in a delayed rectifier fashion. This current has been suggested to modulate cardiac electrical activity and to play a role in atrial fibrillation pathophysiology. However, the exact nature and identity of this current has not been convincingly established. We recently described the unique ligand- and voltage-dependent properties of muscarinic activation of ACh-activated K(+) current (IKACh) and showed that, in contrast to ACh, pilocarpine induces a current with delayed rectifier-like properties with membrane depolarization. Here, we tested the hypothesis that Ch activates IKACh in feline atrial myocytes in a voltage-dependent manner similar to pilocarpine. Single-channel recordings, biophysical profiles, specific pharmacological inhibition and computational data indicate that the current activated by Ch is IKACh. Moreover, we show that membrane depolarization increases the potency and efficacy of IKACh activation by Ch and thus gives the appearance of a delayed rectifier activating K(+) current at depolarized potentials. Our findings support the emerging concept that IKACh modulation is both voltage- and ligand-specific and reinforce the importance of these properties in understanding cardiac physiology.

  9. Design, synthesis and preliminary structure-activity relationship investigation of nitrogen-containing chalcone derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors: a further study based on Flavokawain B Mannich base derivatives.

    PubMed

    Liu, Haoran; Fan, Haoqun; Gao, Xiaohui; Huang, Xueqing; Liu, Xianjun; Liu, Linbo; Zhou, Chao; Tang, Jingjing; Wang, Qiuan; Liu, Wukun

    2016-08-01

    In order to study the structure-activity relationship of Flavokawain B Mannich-based derivatives as acetylcholinesterase (AChE) inhibitors in our recent investigation, 20 new nitrogen-containing chalcone derivatives (4 a-8d) were designed, synthesized, and evaluated for AChE inhibitory activity in vitro. The results suggested that amino alkyl side chain of chalcone dramatically influenced the inhibitory activity against AChE. Among them, compound 6c revealed the strongest AChE inhibitory activity (IC50 value: 0.85 μmol/L) and the highest selectivity against AChE over BuChE (ratio: 35.79). Enzyme kinetic study showed that the inhibition mechanism of compound 6c against AChE was a mixed-type inhibition. The molecular docking assay showed that this compound can both bind with the catalytic site and the peripheral site of AChE.

  10. Myasthenia Gravis and the Tops and Bottoms of AChRs Antigenic Structure of the MIR and Specific Immunosuppression of EAMG Using AChR Cytoplasmic Domains

    PubMed Central

    Lindstrom, Jon; Luo, Jie; Kuryatov, Alexander

    2009-01-01

    The main immunogenic region (MIR), against which half or more of the autoantibodies to acetylcholine receptors (AChRs) in myasthenia gravis (MG) or experimental autoimmune MG (EAMG) are directed, is located at the extracellular end of α1 subunits. Rat monoclonal antibodies (mAbs) to the MIR efficiently compete with MG patient autoantibodies for binding to human muscle AChRs. Antibodies bound to the MIR do not interfere with cholinergic ligand binding or AChR function, but target complement and trigger antigenic modulation. Rat mAbs to the MIR also bind to human ganglionic AChR α3 subunits, but MG patient antibodies do not. By making chimeras of α1 subunits with α7 subunits or ACh binding protein, the structure of the MIR and its functional effects are being investigated. Many mAbs to the MIR bind only to the native conformation of α1 subunits because they bind to sequences that are adjacent only in the native structure. The MIR epitopes recognized by these mAbs are not recognized by most patient antibodies whose epitopes must be nearby. The presence of the MIR epitopes in α1/α7 chimeras greatly promotes AChR expression and sensitivity to activation. EAMG can be suppressed by treatment with denatured, bacterially expressed mixtures of extracellular and cytoplasmic domains of human α1, β1, γ, δ, and ε subunits. A mixture of only the cytoplasmic domains not only avoids the potential liability of provoking formation antibodies to pathologically significant epitopes on the extracellular surface, but also potently suppresses the development of EAMG. PMID:18567851

  11. The acetylcholinesterase inhibitor BW284c51 is a potent blocker of Torpedo nicotinic AchRs incorporated into the Xenopus oocyte membrane

    PubMed Central

    Olivera-Bravo, Silvia; Ivorra, Isabel; Morales, Andrés

    2004-01-01

    This work was aimed to determine if 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284c51), the most selective acetylcholinesterase inhibitor (AchEI), affects the nicotinic acetylcholine (Ach) receptor (AchR) function. Purified Torpedo nicotinic AchRs were injected into Xenopus laevis oocytes and BW284c51 effects on Ach- and carbamylcholine (Cch)-elicited currents were assessed using the voltage-clamp technique. BW284c51 (up to 1 mM) did not evoke any change in the oocyte membrane conductance. When BW284c51 (10 pM–100 μM) and Ach were coapplied, Ach-evoked currents (IAch) were reversibly inhibited in a concentration-dependent manner (Hill coefficient, 1; IC50, 0.2–0.5 μM for 0.1–1000 μM Ach). Cch-elicited currents showed a similar inhibition by BW284c51. IAch blockade by BW284c51 showed a strong voltage dependence, being only apparent at hyperpolarising potentials. BW284c51 also enhanced IAch desensitisation. BW284c51 changed the Ach concentration-dependence curve of Torpedo AchR response from two-site to single-site kinetics, without noticeably affecting the EC50 value. The BW284c51 blocking effect was highly selective for nicotinic over muscarinic receptors. BW284c51 inhibition potency was stronger than that of tacrine, and similar to that of d-tubocurarine (d-TC). Coapplication of BW284c51 with either tacrine or d-TC revealed synergistic inhibitory effects. Our results indicate that BW284c51 antagonises nicotinic AchRs in a noncompetitive way by blocking the receptor channel, and possibly by other, yet unknown, mechanisms. Therefore, besides acting as a selective AchEI, BW284c51 constitutes a powerful and reversible blocker of nicotinic AchRs that might be used as a valuable tool for understanding their function. PMID:15644872

  12. Tacrine-based dual binding site acetylcholinesterase inhibitors as potential disease-modifying anti-Alzheimer drug candidates.

    PubMed

    Camps, Pelayo; Formosa, Xavier; Galdeano, Carles; Gómez, Tània; Muñoz-Torrero, Diego; Ramírez, Lorena; Viayna, Elisabet; Gómez, Elena; Isambert, Nicolás; Lavilla, Rodolfo; Badia, Albert; Clos, M Victòria; Bartolini, Manuela; Mancini, Francesca; Andrisano, Vincenza; Bidon-Chanal, Axel; Huertas, Oscar; Dafni, Thomai; Luque, F Javier

    2010-09-06

    Two novel families of dual binding site acetylcholinesterase (AChE) inhibitors have been developed, consisting of a tacrine or 6-chlorotacrine unit as the active site interacting moiety, either the 5,6-dimethoxy-2-[(4-piperidinyl)methyl]-1-indanone fragment of donepezil (or the indane derivative thereof) or a 5-phenylpyrano[3,2-c]quinoline system, reminiscent to the tryciclic core of propidium, as the peripheral site interacting unit, and a linker of suitable length as to allow the simultaneous binding at both sites. These hybrid compounds are all potent and selective inhibitors of human AChE, and more interestingly, are able to interfere in vitro both formation and aggregation of the beta-amyloid peptide, the latter effects endowing these compounds with the potential to modify Alzheimer's disease progression. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Novel Triazole-Quinoline Derivatives as Selective Dual Binding Site Acetylcholinesterase Inhibitors.

    PubMed

    Mantoani, Susimaire P; Chierrito, Talita P C; Vilela, Adriana F L; Cardoso, Carmen L; Martínez, Ana; Carvalho, Ivone

    2016-02-05

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide. Currently, the only strategy for palliative treatment of AD is to inhibit acetylcholinesterase (AChE) in order to increase the concentration of acetylcholine in the synaptic cleft. Evidence indicates that AChE also interacts with the β-amyloid (Aβ) protein, acting as a chaperone and increasing the number and neurotoxicity of Aβ fibrils. It is known that AChE has two binding sites: the peripheral site, responsible for the interactions with Aβ, and the catalytic site, related with acetylcholine hydrolysis. In this work, we reported the synthesis and biological evaluation of a library of new tacrine-donepezil hybrids, as a potential dual binding site AChE inhibitor, containing a triazole-quinoline system. The synthesis of hybrids was performed in four steps using the click chemistry strategy. These compounds were evaluated as hAChE and hBChE inhibitors, and some derivatives showed IC50 values in the micro-molar range and were remarkably selective towards hAChE. Kinetic assays and molecular modeling studies confirm that these compounds block both catalytic and peripheral AChE sites. These results are quite interesting since the triazole-quinoline system is a new structural scaffold for AChE inhibitors. Furthermore, the synthetic approach is very efficient for the preparation of target compounds, allowing a further fruitful new chemical library optimization.

  14. Design, synthesis and structure-activity relationships of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer's disease.

    PubMed

    Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio; Kogen, Hiroshi

    2003-05-01

    We have designed and synthesized a dual inhibitor of acetylcholinesterase (AChE) and serotonin transporter (SERT) as a novel class of treatment drugs for Alzheimer's disease on the basis of a hypothetical model of the AChE active site. Dual inhibitions of AChE and SERT would bring about greater therapeutic effects than AChE inhibition alone and avoid adverse peripheral effects caused by excessive AChE inhibition. Compound (S)-6j exhibited potent inhibitory activities against AChE (IC(50)=101 nM) and SERT (IC(50)=42 nM). Furthermore, (S)-6j showed inhibitory activities of both AChE and SERT in mice brain following oral administration.

  15. Oximes: Inhibitors of Human Recombinant Acetylcholinesterase. A Structure-Activity Relationship (SAR) Study

    PubMed Central

    Sepsova, Vendula; Karasova, Jana Zdarova; Korabecny, Jan; Dolezal, Rafael; Zemek, Filip; Bennion, Brian J.; Kuca, Kamil

    2013-01-01

    Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate intoxication. Standard care involves the use of anticonvulsants (e.g., diazepam), parasympatolytics (e.g., atropine) and oximes that restore AChE activity. However, oximes also bind to the active site of AChE, simultaneously acting as reversible inhibitors. The goal of the present study is to determine how oxime structure influences the inhibition of human recombinant AChE (hrAChE). Therefore, 24 structurally different oximes were tested and the results compared to the previous eel AChE (EeAChE) experiments. Structural factors that were tested included the number of pyridinium rings, the length and structural features of the linker, and the number and position of the oxime group on the pyridinium ring. PMID:23959117

  16. Cigarette toxin 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces experimental pancreatitis through α7 nicotinic acetylcholine receptors (nAChRs) in mice

    PubMed Central

    Alahmari, A. A.; Sreekumar, B.; Patel, V.; Ashat, M.; Alexandre, M.; Uduman, A. K.; Akinbiyi, E. O.; Ceplenski, A.; Shugrue, C. A.; Kolodecik, T. R.; Messenger, S. W.; Groblewski, G. E.; Gorelick, F. S.

    2018-01-01

    Clinical studies have shown that cigarette smoking is a dose-dependent and independent risk factor for acute pancreatitis. Cigarette smoke contains nicotine which can be converted to the potent receptor ligand and toxin, NNK [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone]. Previously, we have shown that NNK induces premature activation of pancreatic zymogens in rats, an initiating event in pancreatitis, and this activation is prevented by pharmacologic inhibition of nicotinic acetylcholine receptors (nAChR). In this study, we determined whether NNK mediates pancreatitis through the α7 isoform of nAChR using α7nAChR knockout mice. PCR analysis confirmed expression of non-neuronal α7nAChR in C57BL/6 (WT) mouse and human acinar cells. NNK treatment stimulated trypsinogen activation in acini from WT but not α7nAChR-/- mice. NNK also stimulated trypsinogen activation in human acini. To further confirm these findings, WT and α7nAChR-/- mice were treated with NNK in vivo and markers of pancreatitis were measured. As observed in acini NNK treatment induced trypsinogen activation in WT but not α7nAChR-/- mice. NNK also induced other markers of pancreatitis including pancreatic edema, vacuolization and pyknotic nuclei in WT but not α7nAChR-/- animals. NNK treatment led to increased neutrophil infiltration, a marker of inflammation, in WT mice and to a significantly lesser extent in α7nAChR-/- mice. We also examined downstream targets of α7nAChR activation and found that calcium and PKC activation are involved down stream of NNK stimulation of α7nAChR. In this study we used genetic deletion of the α7nAChR to confirm our previous inhibitor studies that demonstrated NNK stimulates pancreatitis by activating this receptor. Lastly, we demonstrate that NNK can also stimulate zymogen activation in human acinar cells and thus may play a role in human disease. PMID:29870540

  17. Neurotoxicity fingerprinting of venoms using on-line microfluidic AChBP profiling.

    PubMed

    Slagboom, Julien; Otvos, Reka A; Cardoso, Fernanda C; Iyer, Janaki; Visser, Jeroen C; van Doodewaerd, Bjorn R; McCleary, Ryan J R; Niessen, Wilfried M A; Somsen, Govert W; Lewis, Richard J; Kini, R Manjunatha; Smit, August B; Casewell, Nicholas R; Kool, Jeroen

    2018-06-15

    Venoms from snakes are rich sources of highly active proteins with potent affinity towards a variety of enzymes and receptors. Of the many distinct toxicities caused by envenomation, neurotoxicity plays an important role in the paralysis of prey by snakes as well as by venomous sea snails and insects. In order to improve the analytical discovery component of venom toxicity profiling, this paper describes the implementation of microfluidic high-resolution screening (HRS) to obtain neurotoxicity fingerprints from venoms that facilitates identification of the neurotoxic components of envenomation. To demonstrate this workflow, 47 snake venoms were profiled using the acetylcholine binding protein (AChBP) to mimic the target of neurotoxic proteins, in particular nicotinic acetylcholine receptors (nAChRs). In the microfluidic HRS system, nanoliquid chromatographic (nanoLC) separations were on-line connected to both AChBP profiling and parallel mass spectrometry (MS). For virtually all neurotoxic elapid snake venoms tested, we obtained bioactivity fingerprints showing major and minor bioactive zones containing masses consistent with three-finger toxins (3FTxs), whereas, viperid and colubrid venoms showed little or no detectable bioactivity. Our findings demonstrate that venom interactions with AChBP correlate with the severity of neurotoxicity observed following human envenoming by different snake species. We further, as proof of principle, characterized bioactive venom peptides from a viperid (Daboia russelli) and an elapid (Aspidelaps scutatus scutatus) snake by nanoLC-MS/MS, revealing that different toxin classes interact with the AChBP, and that this binding correlates with the inhibition of α7-nAChR in calcium-flux cell-based assays. The on-line post-column binding assay and subsequent toxin characterization methodologies described here provide a new in vitro analytic platform for rapidly investigating neurotoxic snake venom proteins. Copyright © 2018 The Author

  18. Blockade of Neuronal α7-nAChR by α-Conotoxin ImI Explained by Computational Scanning and Energy Calculations

    PubMed Central

    Yu, Rilei; Craik, David J.; Kaas, Quentin

    2011-01-01

    α-Conotoxins potently inhibit isoforms of nicotinic acetylcholine receptors (nAChRs), which are essential for neuronal and neuromuscular transmission. They are also used as neurochemical tools to study nAChR physiology and are being evaluated as drug leads to treat various neuronal disorders. A number of experimental studies have been performed to investigate the structure-activity relationships of conotoxin/nAChR complexes. However, the structural determinants of their binding interactions are still ambiguous in the absence of experimental structures of conotoxin-receptor complexes. In this study, the binding modes of α-conotoxin ImI to the α7-nAChR, currently the best-studied system experimentally, were investigated using comparative modeling and molecular dynamics simulations. The structures of more than 30 single point mutants of either the conotoxin or the receptor were modeled and analyzed. The models were used to explain qualitatively the change of affinities measured experimentally, including some nAChR positions located outside the binding site. Mutational energies were calculated using different methods that combine a conformational refinement procedure (minimization with a distance dependent dielectric constant or explicit water, or molecular dynamics using five restraint strategies) and a binding energy function (MM-GB/SA or MM-PB/SA). The protocol using explicit water energy minimization and MM-GB/SA gave the best correlations with experimental binding affinities, with an R2 value of 0.74. The van der Waals and non-polar desolvation components were found to be the main driving force for binding of the conotoxin to the nAChR. The electrostatic component was responsible for the selectivity of the various ImI mutants. Overall, this study provides novel insights into the binding mechanism of α-conotoxins to nAChRs and the methodological developments reported here open avenues for computational scanning studies of a rapidly expanding range of wild

  19. Potential anti-cholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory activities of cornuside and gallotannins from Cornus officinalis fruits.

    PubMed

    Bhakta, Himanshu Kumar; Park, Chan Hum; Yokozawa, Takako; Tanaka, Takashi; Jung, Hyun Ah; Choi, Jae Sue

    2017-07-01

    Cholinesterase (ChE) and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors are promising agents for the treatment of Alzheimer's disease (AD). In the present study, we examined the inhibitory activity of seven compounds isolated from the fruits of Cornus officinalis, cornuside, polymeric proanthocyanidins, 1,2,3-tri-O-galloyl-β-D-glucose, 1,2,3,6-tetra-O-galloyl-β-D-glucose, tellimagrandin I, tellimagrandin II, and isoterchebin, against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE1. All of the compounds displayed concentration-dependent in vitro inhibitory activity toward the ChEs and BACE1. Among them, tellimagrandin II exhibited the best inhibitory activity toward ChEs, whereas the best BACE1 inhibitor was 1,2,3,6-tetra-O-galloyl-β-D-glucose. Isoterchebin and polymeric proanthocyanidins were also significant ChE inhibitors. The kinetic and docking studies demonstrated that all compounds interacted with both the catalytic active sites and the peripheral anionic sites of the ChEs and BACE1. Tellimagrandin II, isoterchebin, and the polymeric proanthocyanidins exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. In conclusion, we identified significant ChE and BACE1 inhibitors from Corni Fructus that could have value as new multi-targeted compounds for anti-AD agents.

  20. Investigations into the development of catalytic activity in anti-acetylcholinesterase idiotypic and anti-idiotypic antibodies.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2009-01-01

    We have previously described anti-acetylcholinesterase antibodies that display acetylcholinesterase-like catalytic activity. No evidence of contaminating enzymes was found, and the antibodies are kinetically and apparently structurally distinct from both acetylcholinesterase (AChE) and butyrylcholinesterase. We have also mimicked the antibody catalytic sites in anti-anti-idiotypic (Ab3) antibodies. Independently from us, similar acetylcholinesterase-like antibodies have been raised as anti-idiotypic (Ab2) antibodies against a non-catalytic anti-acetylcholinesterase antibody, AE-2. In this paper, we describe an epitope analysis, using synthetic peptides in ELISA and competition ELISA, and a peptide array, of five catalytic anti-acetylcholinesterase antibodies (Ab1s), three catalytic Ab3s, as well as antibody AE-2 and a non-catalytic Ab2. The catalytic Ab1s and Ab3s recognized three Pro- and Gly-containing sequences ((40)PPMGPRRFL, (78)PGFEGTE, and (258)PPGGTGGNDTELVAC) on the AChE surface. As these sequences do not adjoin in the AChE structure, recognition would appear to be due to cross-reaction. This was confirmed by the observation that the sequences superimpose structurally. The non-catalytic antibodies, AE-2 and the Ab2, recognized AChE's peripheral anionic site (PAS), in particular, the sequence (70)YQYVD, which contains two of the site's residues. The crystal structure of the AChE tetramer (Bourne et al., 1999) shows direct interaction and high complementarity between the (257)CPPGGTGGNDTELVAC sequence and the PAS. Antibodies recognizing the sequence and the PAS may, in turn, be complementary; this may account for the apparent paradox of catalytic development in both Ab1s and Ab2s. The PAS binds, but does not hydrolyze, substrate. The catalytic Ab1s, therefore, recognize a site that may function as a substrate analog, and this, together with the presence of an Arg-Glu salt bridge in the epitope, suggests mechanisms whereby catalytic activity may have

  1. Syntheses of coumarin-tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase.

    PubMed

    Sun, Qi; Peng, Da-Yong; Yang, Sheng-Gang; Zhu, Xiao-Lei; Yang, Wen-Chao; Yang, Guang-Fu

    2014-09-01

    Exploring small-molecule acetylcholinesterase (AChE) inhibitors to slow the breakdown of acetylcholine (Ach) represents the mainstream direction for Alzheimer's disease (AD) therapy. As the first acetylcholinesterase inhibitor approved for the clinical treatment of AD, tacrine has been widely used as a pharmacophore to design hybrid compounds in order to combine its potent AChE inhibition with other multi-target profiles. In present study, a series of novel tacrine-coumarin hybrids were designed, synthesized and evaluated as potent dual-site AChE inhibitors. Moreover, compound 1g was identified as the most potent candidate with about 2-fold higher potency (Ki=16.7nM) against human AChE and about 2-fold lower potency (Ki=16.1nM) against BChE than tacrine (Ki=35.7nM for AChE, Ki=8.7nM for BChE), respectively. In addition, some of the tacrine-coumarin hybrids showed simultaneous inhibitory effects against both Aβ aggregation and β-secretase. We therefore conclude that tacrine-coumarin hybrid is an interesting multifunctional lead for the AD drug discovery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Endogenous purines modulate K+ -evoked ACh secretion at the mouse neuromuscular junction.

    PubMed

    Guarracino, Juan F; Cinalli, Alejandro R; Veggetti, Mariela I; Losavio, Adriana S

    2018-06-01

    At the mouse neuromuscular junction, adenosine triphosphate (ATP) is co-released with the neurotransmitter acetylcholine (ACh), and once in the synaptic cleft, it is hydrolyzed to adenosine. Both ATP/adenosine diphosphate (ADP) and adenosine modulate ACh secretion by activating presynaptic P2Y 13 and A 1 , A 2A , and A 3 receptors, respectively. To elucidate the action of endogenous purines on K + -dependent ACh release, we studied the effect of purinergic receptor antagonists on miniature end-plate potential (MEPP) frequency in phrenic diaphragm preparations. At 10 mM K + , the P2Y 13 antagonist N-[2-(methylthio)ethyl]-2-[3,3,3-trifluoropropyl]thio-5'-adenylic acid, monoanhydride with (dichloromethylene)bis[phosphonic acid], tetrasodium salt (AR-C69931MX) increased asynchronous ACh secretion while the A 1 , A 3 , and A 2A antagonists 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), (3-Ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1, 4-(±)-dihydropyridine-3,5-, dicarboxylate (MRS-1191), and 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH-58261) did not modify neurosecretion. The inhibition of equilibrative adenosine transporters by S-(p-nitrobenzyl)-6-thioinosine provoked a reduction of 10 mM K + -evoked ACh release, suggesting that the adenosine generated from ATP is being removed from the synaptic space by the transporters. At 15 and 20 mM K + , endogenous ATP/ADP and adenosine bind to inhibitory P2Y 13 and A 1 and A 3 receptors since AR-C69931MX, DPCPX, and MRS-1191 increased MEPP frequency. Similar results were obtained when the generation of adenosine was prevented by using the ecto-5'-nucleotidase inhibitor α,β-methyleneadenosine 5'-diphosphate sodium salt. SCH-58261 only reduced neurosecretion at 20 mM K + , suggesting that more adenosine is needed to activate excitatory A 2A receptors. At high K + concentration, the equilibrative transporters appear to be saturated allowing the accumulation of

  3. Inhibition of neutral endopeptidase increases airway responsiveness to ACh in nonsensitized normal rats.

    PubMed

    Chiba, Y; Misawa, M

    1995-02-01

    The effects of sensory neuropeptides on the airway responsiveness to acetylcholine (ACh) were investigated in normal nonsensitized rats. The airway responsiveness to inhaled ACh was significantly increased after treatment with neurokinin A (NKA; 0.001%) or substance P (SP; 0.01%) aerosol in the presence of the neutral endopeptidase (NEP) inhibitor. NKA had a more potent effect than SP. Interestingly, the intravenous treatment with NEP inhibitor alone also induced airway hyperresponsiveness (AHR) to inhaled ACh. This AHR was significantly attenuated by pretreatment with a nonselective NK-receptor antagonist, [D-Pro2,D-Trp7,9]SP, systemic capsaicin, or bilateral cervical vagotomy, indicating that decreased NEP activity results in accumulation of endogenous sensory neuropeptide(s) and enhancement of vagal reflex to cause AHR. The airway responsiveness to ACh of isolated left main bronchus was also increased after treatment with 10(-6) M NKA, but not SP, together with 10(-6) M phosphoramidon. This in vitro AHR to ACh induced by phosphoramidon plus NKA was significantly attenuated by pretreatment with 10(-6) M tetrodotoxin. These findings suggest that overaccumulated sensory neuropeptides, especially NKA, may enhance the probability of transmitter release, probably via NK2 receptors, and that the enhanced transmitter release might be involved in AHR in rats.

  4. Synthesis, spectroscopic, computational (DFT/B3LYP), AChE inhibition and antioxidant studies of imidazole derivative

    NASA Astrophysics Data System (ADS)

    Ahmad, Faheem; Alam, Mohammad Jane; Alam, Mahboob; Azaz, Shaista; Parveen, Mehtab; Park, Soonheum; Ahmad, Shabbir

    2018-01-01

    The present study reports the synthesis and evaluation of biological properties of 3a,8a-dihydroxy-8-oxo-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazol-2(1H)-iminium chloride (3). The structure was confirmed by the FTIR, NMR, MS, CHN microanalysis and X-ray crystallographic analysis. Quantum chemical calculations have been performed at B3LYP-D3/6-311++G(d,p) level of theory to study the molecular geometry, IR, (1H and 13C) NMR, UV/Vis spectra and other molecular parameters of the asymmetric unit of crystal of imidazole compound (3). An empirical dispersion correction to hybrid functional (B3LYP-D3) has been incorporated in the present calculations due to presence of non-covalent interaction, Cl⋯H-O, in the present compound. The remarkable agreement has been observed between theoretical data and those measured experimentally. Moreover, the Hirshfeld analysis was carried out to ascertain the secondary interactions and associated 2D fingerprint plots. The synthesized imidazole derivative showed promising antioxidant property and inhibitory activity against acetylcholinesterase (AChE). Molecular docking was also performed in order to explain in silico antioxidant studies and to ascertain the probable binding mode of compound with the amino acid residues of protein.

  5. Nicotinic ACh Receptors as Therapeutic Targets in CNS Disorders

    PubMed Central

    Dineley, Kelly T.; Pandya, Anshul A.; Yakel, Jerrel L.

    2015-01-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor channels (nAChRs). These receptors are widely distributed throughout the central nervous system, being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in the mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer’s disease), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. PMID:25639674

  6. Nicotinic ACh receptors as therapeutic targets in CNS disorders.

    PubMed

    Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L

    2015-02-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. Published by Elsevier Ltd.

  7. Searching for putative binding sites of the bispyridinium compound MB327 in the nicotinic acetylcholine receptor.

    PubMed

    Wein, Thomas; Höfner, Georg; Rappenglück, Sebastian; Sichler, Sonja; Niessen, Karin V; Seeger, Thomas; Worek, Franz; Thiermann, Horst; Wanner, Klaus T

    2018-09-01

    Irreversible inhibition of the acetylcholine esterase upon intoxication with organophosphorus compounds leads to an accumulation of acetylcholine in the synaptic cleft and a subsequent desensitization of nicotinic acetylcholine receptors which may ultimately result in respiratory failure. The bispyridinium compound MB327 has been found to restore functional activity of nAChR thus representing a promising starting point for the development of new drugs for the treatment of organophosphate poisoning. In order to optimize the resensitizing effect of MB327 on nAChR, it would be very helpful to know the MB327 specific binding site to apply structure based molecular modeling. The binding site for MB327 at the nAChR is not known and so far goal of speculations, but it has been shown that MB327 does not bind to the orthosteric acetylcholine binding site. We have used docking calculations to screen the surface of nAChR for possible binding sites of MB327. The results indicate that at least two potential binding sites for MB327 at nAChR are present inside the channel pore. In these binding sites, MB327 intercalates between the γ-α and β-δ subunits of nAChR, respectively. Both putative MB327 binding sites show an unsymmetrical distribution of surrounding hydrophilic and lipophilic amino acids. This suggests that substitution of MB327-related bispyridinium compounds on one of the two pyridinium rings with polar substituents should have a favorable effect on the pharmacological function. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Structure-activity relationship investigation of tertiary amine derivatives of cinnamic acid as acetylcholinesterase and butyrylcholinesterase inhibitors: compared with that of phenylpropionic acid, sorbic acid and hexanoic acid.

    PubMed

    Gao, Xiaohui; Tang, Jingjing; Liu, Haoran; Liu, Linbo; Kang, Lu; Chen, Wen

    2018-12-01

    In the present investigation, 48 new tertiary amine derivatives of cinnamic acid, phenylpropionic acid, sorbic acid and hexanoic acid (4d-6g, 10d-12g, 16d-18g and 22d-24g) were designed, synthesized and evaluated for the effect on AChE and BChE in vitro. The results revealed that the alteration of aminoalkyl types and substituted positions markedly influences the effects in inhibiting AChE. Almost of all cinnamic acid derivatives had the most potent inhibitory activity than that of other acid derivatives with the same aminoalkyl side chain. Unsaturated bond and benzene ring in cinnamic acid scaffold seems important for the inhibitory activity against AChE. Among them, compound 6g revealed the most potent AChE inhibitory activity (IC 50 value: 3.64 µmol/L) and highest selectivity over BChE (ratio: 28.6). Enzyme kinetic study showed that it present a mixed-type inhibition against AChE. The molecular docking study suggested that it can bind with the catalytic site and peripheral site of AChE.

  9. Immune responses to HTLV-I(ACH) during acute infection of pig-tailed macaques.

    PubMed

    McGinn, Therese M; Wei, Qing; Stallworth, Jackie; Fultz, Patricia N

    2004-04-01

    Human T cell lymphotropic virus type 1 (HTLV-I) is causally linked to adult T cell leukemia/lymphoma (ATL) and a chronic progressive neurological disease, HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). A nonhuman primate model that reproduces disease symptoms seen in HTLV-I-infected humans might facilitate identification of initial immune responses to the virus and an understanding of pathogenic mechanisms in HTLV-I-related disease. Previously, we showed that infection of pig-tailed macaques with HTLV-I(ACH) is associated with multiple signs of disease characteristic of both HAM/TSP and ATL. We report here that within the first few weeks after HTLV-I(ACH) infection of pig-tailed macaques, serum concentrations of interferon (IFN)-alpha increased and interleukin-12 decreased transiently, levels of nitric oxide were elevated, and activation of CD4(+) and CD8(+) lymphocytes and CD16(+) natural killer cells in peripheral blood were observed. HTLV-I(ACH) infection elicited virus-specific antibodies in all four animals within 4 to 6 weeks; however, Tax-specific lymphoproliferative responses were not detected until 25-29 weeks after infection in all four macaques. IFN-gamma production by peripheral blood cells stimulated with a Tax or Gag peptide was detected to varying degrees in all four animals by ELISPOT assay. Peripheral blood lymphocytes from one animal that developed only a marginal antigen-specific cellular response were unresponsive to mitogen stimulation during the last few weeks preceding its death from a rapidly progressive disease syndrome associated with HTLV-I(ACH) infection of pig-tailed macaques. The results show that during the first few months after HTLV-I(ACH) infection, activation of both innate and adaptive immunity, limited virus-specific cellular responses, sustained immune system activation, and, in some cases, immunodeficiency were evident. Thus, this animal model might be valuable for understanding early stages of infection

  10. Diverse inhibitory actions of quaternary ammonium cholinesterase inhibitors on Torpedo nicotinic ACh receptors transplanted to Xenopus oocytes

    PubMed Central

    Olivera-Bravo, Silvia; Ivorra, Isabel; Morales, Andrés

    2007-01-01

    Background and purpose: This work was aimed at comparing and analysing the effects and mechanisms of action of the quaternary ammonium cholinesterase inhibitors (QChEIs) BW284c51, decamethonium and edrophonium, on nicotinic ACh receptor (nAChR) function. Experimental approach: nAChRs purified from Torpedo electroplax were transplanted to oocytes and currents elicited by ACh (IACh) either alone or in presence of these QChEIs were recorded. Key results: None of the QChEIs, by itself, elicited changes in membrane conductance; however, when co-applied with ACh, all of them decreased IACh in a concentration-dependent way. The mechanisms of nAChR inhibition were different for these QChEIs. BW284c51 blockade was non-competitive and voltage-dependent, although it also affected the nH of the dose-response curve. By contrast, decamethonium and edrophonium inhibition, at –60 mV, was apparently competitive and did not modify either desensitisation or nH. Decamethonium effects were voltage-independent and washed out slowly after its removal; by contrast, edrophonium blockade had strong voltage dependence and its effects disappeared quickly after its withdrawal. Analysis of the voltage-dependent blockade indicated that BW284c51 bound to a shallow site into the channel pore, whereas edrophonium bound to a deeper locus. Accordingly, additive inhibitory effects on IACh were found among any pairs of these QChEIs. Conclusions and implications: The tested QChEIs bound to the nAChR at several and different loci, which might account for their complex inhibitory behaviour, acting both as allosteric effectors and, in the case of BW284c51 and edrophonium, as open channel blockers. PMID:17572698

  11. AChR-specific immunosuppressive therapy of myasthenia gravis.

    PubMed

    Luo, Jie; Lindstrom, Jon

    2015-10-15

    Myasthenia gravis (MG) is an organ-specific autoimmune disease characterized by muscle fatigability. In most cases, it is mediated by autoantibodies targeting muscle nicotinic acetylcholine receptors (AChRs) at the neuromuscular junction. Experimental autoimmune myasthenia gravis (EAMG) is an animal model for MG, which is usually induced by immunization with AChR purified from fish electric organ. Pathological autoantibodies to AChRs are directed at the extracellular surface, especially the main immunogenic region (MIR). Current treatments for MG can help many but not all patients. Antigen-specific immunosuppressive therapy for MG that specifically suppresses the autoimmune response without affecting the entire immune system and avoids side effects of general immunosuppression is currently unavailable. Early attempts at antigen-specific immunosuppression for EAMG using AChR extracellular domain sequences that form epitopes for pathological autoantibodies risked provoking autoimmunity rather than suppressing it. We discovered a novel approach to specific immunosuppression of EAMG with a therapeutic vaccine consisting of bacterially-expressed human AChR cytoplasmic domains, which has the potential to specifically suppress MG without danger of causing exacerbation. This approach prevents development of chronic EAMG when initiated immediately after the acute phase of EAMG, and rapidly reverses established chronic EAMG when started during the chronic phase of EAMG. Successfully treated rats exhibited long-term resistance to re-induction of EAMG. In this review we also discuss the current understanding of the mechanisms by which the therapy works. Vaccination with AChR cytoplasmic domains in adjuvant is promising as a safe, antigen-specific, potent, effective, rapidly acting, and long lasting approach to therapy of MG. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Design, synthesis and evaluation of novel 7-aminoalkyl-substituted flavonoid derivatives with improved cholinesterase inhibitory activities.

    PubMed

    Luo, Wen; Chen, Ying; Wang, Ting; Hong, Chen; Chang, Li-Ping; Chang, Cong-Cong; Yang, Ya-Cheng; Xie, Song-Qiang; Wang, Chao-Jie

    2016-02-15

    A novel series of 7-aminoalkyl-substituted flavonoid derivatives 5a-5r were designed, synthesized and evaluated as potential cholinesterase inhibitors. The results showed that most of the synthesized compounds exhibited potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities at the micromolar range. Compound 2-(naphthalen-1-yl)-7-(8-(pyrrolidin-1-yl)octyloxy)-4H-chromen-4-one (5q) showed the best inhibitory activity (IC50, 0.64μM for AChE and 0.42μM for BChE) which were better than our previously reported compounds and the commercially available cholinergic agent Rivastigmine. The results from a Lineweaver-Burk plot indicated a mixed-type inhibition for compound 5q with AChE and BChE. Furthermore, molecular modeling study showed that 5q targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, these compounds (5a-5r) did not affect PC12 and HepG2 cell viability at the concentration of 10μM. Consequently, these flavonoid derivatives should be further investigated as multipotent agents for the treatment of Alzheimer's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Functional Human α7 Nicotinic Acetylcholine Receptor (nAChR) Generated from Escherichia coli.

    PubMed

    Tillman, Tommy S; Alvarez, Frances J D; Reinert, Nathan J; Liu, Chuang; Wang, Dawei; Xu, Yan; Xiao, Kunhong; Zhang, Peijun; Tang, Pei

    2016-08-26

    Human Cys-loop receptors are important therapeutic targets. High-resolution structures are essential for rational drug design, but only a few are available due to difficulties in obtaining sufficient quantities of protein suitable for structural studies. Although expression of proteins in E. coli offers advantages of high yield, low cost, and fast turnover, this approach has not been thoroughly explored for full-length human Cys-loop receptors because of the conventional wisdom that E. coli lacks the specific chaperones and post-translational modifications potentially required for expression of human Cys-loop receptors. Here we report the successful production of full-length wild type human α7nAChR from E. coli Chemically induced chaperones promote high expression levels of well-folded proteins. The choice of detergents, lipids, and ligands during purification determines the final protein quality. The purified α7nAChR not only forms pentamers as imaged by negative-stain electron microscopy, but also retains pharmacological characteristics of native α7nAChR, including binding to bungarotoxin and positive allosteric modulators specific to α7nAChR. Moreover, the purified α7nAChR injected into Xenopus oocytes can be activated by acetylcholine, choline, and nicotine, inhibited by the channel blockers QX-222 and phencyclidine, and potentiated by the α7nAChR specific modulators PNU-120596 and TQS. The successful generation of functional human α7nAChR from E. coli opens a new avenue for producing mammalian Cys-loop receptors to facilitate structure-based rational drug design. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Effects of Anticholinesterases on Catalysis and Induced Conformational Change of the Peripheral Anionic Site of Murine Acetylcholinesterase

    PubMed Central

    Tong, Fan; Islam, Rafique M.; Carlier, Paul R.; Ma, Ming; Ekström, Fredrik; Bloomquist, Jeffrey R.

    2013-01-01

    Conventional insecticides targeting acetylcholinesterase (AChE) typically show high mammalian toxicities and because there is resistance to these compounds in many insect species, alternatives to established AChE inhibitors used for pest control are needed. Here we used a fluorescence method to monitor interactions between various AChE inhibitors and the AChE peripheral anionic site, which is a novel target for new insecticides acting on this enzyme. The assay uses thioflavin-T as a probe, which binds to the peripheral anionic site of AChE and yields an increase in fluorescent signal. Three types of AChE inhibitors were studied: catalytic site inhibitors (carbamate insecticides, edrophonium, and benzylpiperidine), peripheral site inhibitors (tubocurarine, ethidium bromide, and propidium iodide), and bivalent inhibitors (donepezil, BW284C51, and a series of bis(n)-tacrines). All were screened on murine AChE to compare and contrast changes of peripheral site conformation in the TFT assay with catalytic inhibition. All the inhibitors reduced thioflavin-T fluorescence in a concentration-dependent manner with potencies (IC50) ranging from 8 nM for bis(6)-tacrine to 159 μM for benzylpiperidine. Potencies in the fluorescence assay were correlated well with their potencies for enzyme inhibition (R2 = 0.884). Efficacies for reducing thioflavin-T fluorescence ranged from 23–36% for catalytic site inhibitors and tubocurarine to near 100% for ethidium bromide and propidium iodide. Maximal efficacies could be reconciled with known mechanisms of interaction of the inhibitors with AChE. When extended to pest species, we anticipate these findings will assist in the discovery and development of novel, selective bivalent insecticides acting on AChE. PMID:24003261

  15. Distinct Effect of Benzalkonium Chloride on the Esterase and Aryl Acylamidase Activities of Butyrylcholinesterase.

    PubMed

    Jaganathan; Boopathy

    2000-08-01

    Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) from vertebrates, other than their predominant acylcholine hydrolase (esterase) activity, display a genuine aryl acylamidase activity (AAA) capable of hydrolyzing the synthetic substrate o-nitroacetanilide to o-nitroaniline. This AAA activity is strongly inhibited by classical cholinesterase (ChE) inhibitors. In the present study, benzalkonium chloride (BAC), a cationic detergent widely used as a preservative in pharmaceutical preparations, has been shown to distinctly modulate the esterase and AAA activities of BChEs. The detergent BAC was able to inhibit the esterase activity of human serum and horse serum BChEs and AChEs from electric eel and human erythrocyte. The remarkable property of BAC was its ability to profoundly activate the AAA activity of human serum and horse serum BChEs but not the AAA activity of AChEs. Thus BAC seem to preferentially activate the AAA activity of BChEs alone. Results of the study using the ChE active site-specific inhibitor diisopropyl phosphorofluoridate indicated that BAC binds to the active site of ChEs. Furthermore, studies using a structural homolog of BAC indicated that the alkyl group of BAC is essential not only for its interaction with ChEs but also for its distinct effect on the esterase and AAA activities of BChEs. This is the first report of a compound that inhibits the esterase activity, while simultaneously activating the AAA activity, of BChEs. Copyright 2000 Academic Press.

  16. Monoamine uptake inhibitors block alpha7-nAChR-mediated cerebral nitrergic neurogenic vasodilation.

    PubMed

    Long, Cheng; Chen, Mei-Fang; Sarwinski, Susan J; Chen, Po-Yi; Si, Minliang; Hoffer, Barry J; Evans, M Steven; Lee, Tony J F

    2006-07-01

    We have proposed that activation of cerebral perivascular sympathetic alpha7-nicotinic acetylcholine receptors (alpha7-nAChRs) by nicotinic agonists releases norepinephrine, which then acts on parasympathetic nitrergic nerves, resulting in release of nitric oxide and vasodilation. Using patch-clamp electrophysiology, immunohistochemistry, and in vitro tissue bath myography, we tested this axo-axonal interaction hypothesis further by examining whether blocking norepinephrine reuptake enhanced alpha7-nAChR-mediated cerebral nitrergic neurogenic vasodilation. The results indicated that choline- and nicotine-induced alpha7-nAChR-mediated nitrergic neurogenic relaxation in endothelium-denuded isolated porcine basilar artery rings was enhanced by desipramine and imipramine at lower concentrations (0.03-0.1 microM) but inhibited at higher concentrations (0.3-10 microM). In cultured superior cervical ganglion (SCG) neurons of the pig and rat, choline (0.1-30 mM)-evoked inward currents were reversibly blocked by 1-30 microM mecamylamine, 1-30 microM methyllycaconitine, 10-300 nM alpha-bungarotoxin, and 0.1-10 microM desipramine and imipramine, providing electrophysiological evidence for the presence of similar functional alpha7-nAChRs in cerebral perivascular sympathetic neurons of pigs and rats. In alpha7-nAChR-expressing Xenopus oocytes, choline-elicited inward currents were attenuated by alpha-bungarotoxin, imipramine, and desipramine. These monoamine uptake inhibitors appeared to directly block the alpha7-nAChR, resulting in diminished nicotinic agonist-induced cerebral nitrergic vasodilation. The enhanced nitrergic vasodilation by lower concentrations of monoamine uptake inhibitors is likely due to a greater effect on monoamine uptake than on alpha7-nAChR blockade. These results further support the hypothesis of axo-axonal interaction in nitrergic regulation of cerebral vascular tone.

  17. Unorthodox Acetylcholine Binding Sites Formed by α5 and β3 Accessory Subunits in α4β2* Nicotinic Acetylcholine Receptors.

    PubMed

    Jain, Akansha; Kuryatov, Alexander; Wang, Jingyi; Kamenecka, Theodore M; Lindstrom, Jon

    2016-11-04

    All nicotinic acetylcholine receptors (nAChRs) evolved from homomeric nAChRs in which all five subunits are involved in forming acetylcholine (ACh) binding sites at their interfaces. Heteromeric α4β2* nAChRs typically have two ACh binding sites at α4/β2 interfaces and a fifth accessory subunit surrounding the central cation channel. β2 accessory subunits do not form ACh binding sites, but α4 accessory subunits do at the α4/α4 interface in (α4β2) 2 α4 nAChRs. α5 and β3 are closely related subunits that had been thought to act only as accessory subunits and not take part in forming ACh binding sites. The effect of agonists at various subunit interfaces was determined by blocking homologous sites at these interfaces using the thioreactive agent 2-((trimethylammonium)ethyl) methanethiosulfonate (MTSET). We found that α5/α4 and β3/α4 interfaces formed ACh binding sites in (α4β2) 2 α5 and (α4β2) 2 β3 nAChRs. The α4/α5 interface in (β2α4) 2 α5 nAChRs also formed an ACh binding site. Blocking of these sites with MTSET reduced the maximal ACh evoked responses of these nAChRs by 30-50%. However, site-selective agonists NS9283 (for the α4/α4 site) and sazetidine-A (for the α4/β2 site) did not act on the ACh sites formed by the α5/α4 or β3/α4 interfaces. This suggests that unorthodox sites formed by α5 and β3 subunits have unique ligand selectivity. Agonists or antagonists for these unorthodox sites might be selective and effective drugs for modulating nAChR function to treat nicotine addiction and other disorders. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. RgIA4 Potently Blocks Mouse α9α10 nAChRs and Provides Long Lasting Protection against Oxaliplatin-Induced Cold Allodynia.

    PubMed

    Christensen, Sean B; Hone, Arik J; Roux, Isabelle; Kniazeff, Julie; Pin, Jean-Philippe; Upert, Grégory; Servent, Denis; Glowatzki, Elisabeth; McIntosh, J Michael

    2017-01-01

    Transcripts for α9 and α10 nicotinic acetylcholine receptor (nAChR) subunits are found in diverse tissues. The function of α9α10 nAChRs is best known in mechanosensory cochlear hair cells, but elsewhere their roles are less well-understood. α9α10 nAChRs have been implicated as analgesic targets and α-conotoxins that block α9α10 nAChRs produce analgesia. However, some of these peptides show large potency differences between species. Additionally several studies have indicated that these conotoxins may also activate GABA B receptors (GABA B Rs). To further address these issues, we cloned the cDNAs of mouse α9 and α10 nAChR subunits. When heterologously expressed in Xenopus oocytes, the resulting α9α10 nAChRs had the expected pharmacology of being activated by acetylcholine and choline but not by nicotine. A conotoxin analog, RgIA4, potently, and selectively blocked mouse α9α10 nAChRs with low nanomolar affinity indicating that RgIA4 may be effectively used to study murine α9α10 nAChR function. Previous reports indicated that RgIA4 attenuates chemotherapy-induced cold allodynia. Here we demonstrate that RgIA4 analgesic effects following oxaliplatin treatment are sustained for 21 days after last RgIA4 administration indicating that RgIA4 may provide enduring protection against nerve damage. RgIA4 lacks activity at GABA B receptors; a bioluminescence resonance energy transfer assay was used to demonstrate that two other analgesic α-conotoxins, Vc1.1 and AuIB, also do not activate GABA B Rs expressed in HEK cells. Together these findings further support the targeting of α9α10 nAChRs in the treatment of pain.

  19. Novel Tacrine-Based Pyrano[3',4':5,6]pyrano[2,3-b]quinolinones: Synthesis and Cholinesterase Inhibitory Activity.

    PubMed

    Hariri, Roshanak; Afshar, Zahra; Mahdavi, Mohammad; Safavi, Maliheh; Saeedi, Mina; Najafi, Zahra; Sabourian, Reyhaneh; Karimpour-Razkenari, Elahe; Edraki, Najmeh; Moghadam, Farshad Homayouni; Shafiee, Abbas; Khanavi, Mahnaz; Akbarzadeh, Tahmineh

    2016-12-01

    In order to develop effective anti-cholinesterase compounds, a novel series of pyrano[3',4':5,6]pyrano[2,3-b]quinolinones were designed, synthesized, and evaluated in vitro against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). All derivatives showed very good AChE inhibitory (AChEI) activity (IC 50  = 0.37-5.62 μM) compared with rivastigmine (IC 50  = 11.07 μM). Among them, 11-amino-12-(2,3-dichlorophenyl)-3-methyl-7,8,9,10-tetrahydropyrano[3',4':5,6]pyrano[2,3-b]quinolin-1(12H)-one (6f) displayed the best inhibitory activity. However, most of the synthesized compounds showed no anti-BChE activity and compounds 6b and 6f were found to be only moderate inhibitors. The most potent anti-AChE compound 6f had low and moderate inhibitory activity and neuroprotective effects against beta-secretase (BACE1) and oxidative stress-induced cell death, respectively. Also, kinetic and molecular docking studies of binding interactions elucidated that compound 6f bound to both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of AChE. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. PhKv a toxin isolated from the spider venom induces antinociception by inhibition of cholinesterase activating cholinergic system.

    PubMed

    Rigo, Flavia Karine; Rossato, Mateus Fortes; Trevisan, Gabriela; De Prá, Samira Dal-Toé; Ineu, Rafael Porto; Duarte, Mariane Bernardo; de Castro Junior, Célio José; Ferreira, Juliano; Gomez, Marcus Vinicius

    2017-10-01

    Cholinergic agents cause antinociception by mimicking the release of acetylcholine (ACh) from spinal cholinergic nerves. PhKv is a peptide isolated from the venom of the armed spider Phoneutria nigriventer. It has an antiarrythmogenic activity that involves the enhanced release of acetylcholine. The aim of this study was to investigate whether PhKv had an antinociceptive action in mice. Male albino Swiss mice (25-35g) were used in this study. The PhKv toxin was purified from a PhTx3 fraction of the Phoneutria nigriventer spider's venom. Because of its peptide nature, PhKv is not orally available and it was delivered directly into the central nervous system by an intrathecal (i.t.) route. PhKV on the thermal and mechanical sensitivity was evaluated using plantar test apparatus and the up-and-down method. The analgesic effects of PhKv were studied in neuropathic pain (CCI) and in the peripheral capsicin test. In order to test whether PhKv interfered with the cholinergic system, the mice were pre-treated with atropine (5mg/kg, i.p.) or mecamylamine (0.001mg/kg, i.p.) and the PhKv toxin (30pmol/site i.t.) or neostigmine (100pmol/site) were applied 15min before the intraplantar capsaicin (1nmol/paw) administrations. To investigate PhKv action on the AChE activities, was performed in vitro and ex vivo assay for AChE. For the in vitro experiments, mice spinal cord supernatants of tissue homogenates (1mg/ml) were used as source of AChE activity. The AChE assay was monitored at 37°C for 10min in a FlexStation 3 Multi-Mode Microplate Reader (Molecular Devices) at 405nm. PhKv (30 and 100pmol/site, i.t.) had no effect on the thermal or mechanical sensitivity thresholds. However, in a chronic constriction injury model of pain, PhKv (10pmol/site, i.t.) caused a robust reduction in mechanical withdrawal with an antinociceptive effect that lasted 4h. A pretreatment in mice with PhKv (30pmol/site, i.t.) or neostigmine (100pmol/site, i.t.) 15min before an intraplantar injection of

  1. Inhibitory activities of major anthraquinones and other constituents from Cassia obtusifolia against β-secretase and cholinesterases.

    PubMed

    Jung, Hyun Ah; Ali, Md Yousof; Jung, Hee Jin; Jeong, Hyong Oh; Chung, Hae Young; Choi, Jae Sue

    2016-09-15

    Semen Cassiae has been traditionally used as an herbal remedy for liver, eye, and acute inflammatory diseases. Recent pharmacological reports have indicated that Cassiae semen has neuroprotective effects, attributable to its anti-inflammatory actions, in ischemic stroke and Alzheimer's disease (AD) models. The basic goal of this study was to evaluate the anti-AD activities of C. obtusifolia and its major constituents. Previously, the extract of C. obtusifolia seeds, was reported to have memory enhancing properties and anti-AD activity to ameliorate amyloid β-induced synaptic dysfunction. However, the responsible components of C. obtusifolia seeds in an AD are currently still unknown. In this study, we investigated the inhibitory effects of C. obtusifolia and its constituents against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) enzyme activity. In vitro cholinesterase enzyme assays by using AChE, BChE, and BACE1 were performed. We also scrutinized the potentials of Cassiae semen active component as BACE1 inhibitors via enzyme kinetics and molecular docking simulation. In vitro enzyme assays demonstrated that C. obtusifolia and its major constituents have promising inhibitory potential against AChE, BChE, and BACE1. All Cassiae semen constituents exhibited potent inhibitory activities against AChE and BACE1 with IC50 values of 6.29-109µg/mL and 0.94-190µg/mL, whereas alaternin, questin, and toralactone gentiobioside exhibited significant inhibitory activities against BChE with IC50 values of 113.10-137.74µg/mL. Kinetic study revealed that alaternin noncompetitively inhibited, whereas cassiaside and emodin showed mixed-type inhibition against BACE1. Furthermore, molecular docking simulation results demonstrated that hydroxyl group of alaternin and emodin tightly interacted with the active site residues of BACE1 and their relevant binding energies (-6.62 and -6.89kcal

  2. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies

    NASA Astrophysics Data System (ADS)

    Pang, Yuan-Ping; Kozikowski, Alan P.

    1994-12-01

    We have performed docking studies with the SYSDOC program on acetylcholinesterase (AChE) to predict the binding sites in AChE of huperzine A (HA), which is a potent and selective, reversible inhibitor of AChE. The unique aspects of our docking studies include the following: (i) Molecular flexibility of the guest and the host is taken into account, which permits both to change their conformations upon binding. (ii) The binding energy is evaluated by a sum of energies of steric, electrostatic and hydrogen bonding interactions. In the energy calculation no grid approximation is used, and all hydrogen atoms of the system are treated explicitly. (iii) The energy of cation-π interactions between the guest and the host, which is important in the binding of AChE, is included in the calculated binding energy. (iv) Docking is performed in all regions of the host's binding cavity. Based on our docking studies and the pharmacological results reported for HA and its analogs, we predict that HA binds to the bottom of the binding cavity of AChE (the gorge) with its ammonium group interacting with Trp84, Phe330, Glu199 and Asp72 (catalytic site). At the the opening of the gorge with its ammonium group partially interacting with Trp279 (peripheral site). At the catalytic site, three partially overlapping subsites of HA were identified which might provide a dynamic view of binding of HA to the catalytic site.

  3. Are linear AChR epitopes the real culprit in ocular myasthenia gravis?

    PubMed

    Wu, Xiaorong; Tüzün, Erdem

    2017-02-01

    Extraocular muscle weakness occurs in most of the myasthenia gravis (MG) patients and it is often the initial complaint. Approximately 10-20% of MG patients with extraocular muscle weakness display only ocular symptoms and rest of the patients subsequently develop generalized muscle weakness. It is not entirely clear why some MG patients develop only ocular symptoms and why extraocular muscle weakness almost always precedes generalized muscle weakness. These facts are often explained by increased susceptibility of extraocular muscles due to their reduced endplate safety factor and lower complement inhibitor expression. Findings of a recently developed animal model of ocular MG suggest that additional factors might be in play. While immunization of HLA transgenic and wild-type (WT) mice with the native acetylcholine receptor (AChR) pentamer carrying conformational epitopes generates severe generalized muscle weakness, immunization of the same mouse strains with recombinant unfolded AChR subunits containing linear epitopes induces ptosis with or without mild generalized muscle weakness. Notably, immunization of mice with deficient T helper cell-mediated antigen presentation with recombinant AChR subunits or whole native AChR pentamer also induces ocular symptoms, AChR-reactive B cells and AChR antibodies. Based on these findings, we hypothesize that ocular symptoms observed in the earlier stages of MG might be triggered by linear and non-conformational AChR epitopes expressed by thymic cells or invading microorganisms. This initial AChR autoimmunity might be managed by T cell-independent and B cell mediated mechanisms yielding low affinity AChR antibodies. These antibodies are putatively capable of inducing muscle weakness only in extraocular muscles which have increased vulnerability due to their inherent biological properties. After this initial attack, as AChR bearing immune complexes form and the immune system gains access to the native AChR expressed by muscle

  4. ACh-induced endothelial NO synthase translocation, NO release and vasodilatation in the hamster microcirculation in vivo

    PubMed Central

    Figueroa, Xavier F; González, Daniel R; Martínez, Agustín D; Durán, Walter N; Boric, Mauricio P

    2002-01-01

    Studies in cultured cells show that activation of endothelial nitric oxide (NO) synthase (eNOS) requires the dissociation of this enzyme from its inhibitory association with caveolin-1 (Cav-1), and perhaps its translocation from plasma membrane caveolae to other cellular compartments. We investigated the hypothesis that in vivo NO-dependent vasodilatation is associated with the translocation of eNOS from the cell membrane. To this end, we applied ACh topically (10-100 μm for 10 min) to the hamster cheek pouch microcirculation and measured NO production, blood flow and vessel diameter, and assessed subcellular eNOS distribution by Western blotting. Baseline NO production was 54.4 ± 5.2 pmol min−1 (n = 16). ACh increased NO release, caused arteriolar and venular dilatation and elevated microvascular flow. These responses were inhibited by NG-nitro-L-arginine (30 μm). The maximal increase in NO production induced by 10 μm and 100 μm ACh was 45 ± 20 % and 111 ± 33 %, respectively; the corresponding blood flow increases were 50 ± 10 % and 130 ± 24 %, respectively (n = 4-6). Both responses followed a similar time course, although increases in NO preceded flow changes. In non-stimulated tissues, eNOS was distributed mainly in the microsomal fraction. ACh-induced vasodilatation was associated with eNOS translocation to the cytosolic and Golgi-enriched fractions. After 1.5, 3.0 or 6.0 min of application, 10 μm ACh decreased the level of membrane-bound eNOS by -13 ± 4 %, -60 ± 4 % and -19 ± 17 %, respectively; at the same time points, 100 μm ACh reduced microsomal eNOS content by -38 ± 9 %, -61 ± 16 % and -40 ± 18 %, respectively (n = 4-5). In all cases, microsomal Cav-1 content did not change. The close ACh concentration dependence and the concomitance between eNOS subcellular redistribution and NO release support the concept that eNOS translocation from the plasma membrane is part of an activation mechanism that induces NO-dependent vasodilatation in

  5. Anti-Alzheimer's disease activity of compounds from the root bark of Morus alba L.

    PubMed

    Kuk, Eun Bi; Jo, A Ra; Oh, Seo In; Sohn, Hee Sook; Seong, Su Hui; Roy, Anupom; Choi, Jae Sue; Jung, Hyun Ah

    2017-03-01

    The inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) plays important roles in prevention and treatment of Alzheimer's disease (AD). Among the individual parts of Morus alba L. including root bark, branches, leaves, and fruits, the root bark showed the most potent enzyme inhibitory activities. Therefore, the aim of this study was to evaluate the anti-AD activity of the M. alba root bark and its isolate compounds, including mulberrofuran G (1), albanol B (2), and kuwanon G (3) via inhibition of AChE, BChE, and BACE1. Compounds 1 and 2 showed strong AChE- and BChE-inhibitory activities; 1-3 showed significant BACE1 inhibitory activity. Based on the kinetic study with AChE and BChE, 2 and 3 showed noncompetitive-type inhibition; 1 showed mixed-type inhibition. Moreover, 1-3 showed mixed-type inhibition against BACE1. The molecular docking simulations of 1-3 demonstrated negative binding energies, indicating a high affinity to AChE and BACE1. The hydroxyl group of 1-3 formed hydrogen bond with the amino acid residues located at AChE and BACE1. Consequently, these results indicate that the root bark of M. alba and its active compounds might be promising candidates for preventive and therapeutic agents for AD.

  6. The allosteric site regulates the voltage sensitivity of muscarinic receptors.

    PubMed

    Hoppe, Anika; Marti-Solano, Maria; Drabek, Matthäus; Bünemann, Moritz; Kolb, Peter; Rinne, Andreas

    2018-01-01

    Muscarinic receptors (M-Rs) for acetylcholine (ACh) belong to the class A of G protein-coupled receptors. M-Rs are activated by orthosteric agonists that bind to a specific site buried in the M-R transmembrane helix bundle. In the active conformation, receptor function can be modulated either by allosteric modulators, which bind to the extracellular receptor surface or by the membrane potential via an unknown mechanism. Here, we compared the modulation of M 1 -Rs and M 3 -Rs induced by changes in voltage to their allosteric modulation by chemical compounds. We quantified changes in receptor signaling in single HEK 293 cells with a FRET biosensor for the G q protein cycle. In the presence of ACh, M 1 -R signaling was potentiated by voltage, similarly to positive allosteric modulation by benzyl quinolone carboxylic acid. Conversely, signaling of M 3 -R was attenuated by voltage or the negative allosteric modulator gallamine. Because the orthosteric site is highly conserved among M-Rs, but allosteric sites vary, we constructed "allosteric site" M 3 /M 1 -R chimeras and analyzed their voltage dependencies. Exchanging the entire allosteric sites eliminated the voltage sensitivity of ACh responses for both receptors, but did not affect their modulation by allosteric compounds. Furthermore, a point mutation in M 3 -Rs caused functional uncoupling of the allosteric and orthosteric sites and abolished voltage dependence. Molecular dynamics simulations of the receptor variants indicated a subtype-specific crosstalk between both sites, involving the conserved tyrosine lid structure of the orthosteric site. This molecular crosstalk leads to receptor subtype-specific voltage effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Roles of uptake, biotransformation, and target site sensitivity in determining the differential toxicity of chlorpyrifos to second to fourth instar Chironomous riparius (Meigen)

    USGS Publications Warehouse

    Buchwalter, D.B.; Sandahl, J.F.; Jenkins, J.J.; Curtis, L.R.

    2004-01-01

    Early life stages of aquatic organisms tend to be more sensitive to various chemical contaminants than later life stages. This research attempted to identify the key biological factors that determined sensitivity differences among life stages of the aquatic insect Chironomous riparius. Specifically, second to fourth instar larvae were exposed in vivo to both low and high waterborne concentrations of chlorpyrifos to examine differences in accumulation rates, chlorpyrifos biotransformation, and overall sensitivity among instars. In vitro acetylcholinesterase (AChE) assays were performed with chlorpyrifos and the metabolite, chlorpyrifos-oxon, to investigate potential target site sensitivity differences among instars. Earlier instars accumulated chlorpyrifos more rapidly than later instars. There were no major differences among instars in the biotransformation rates of chlorpyrifos to the more polar metabolites, chlorpyrifos-oxon, and chlorpyridinol (TCP). Homogenate AChE activities from second to fourth instar larvae were refractory to chlorpyrifos, even at high concentrations. In contrast, homogenate AChE activities were responsive in a dose-dependent manner to chlorpyrifos-oxon. In general, it appeared that chlorpyrifos sensitivity differences among second to fourth instar C. riparius were largely determined by differences in uptake rates. In terms of AChE depression, fourth instar homogenates were more sensitive to chlorpyrifos and chlorpyrifos-oxon than earlier instars. However, basal AChE activity in fourth instar larvae was significantly higher than basal AChE activity in second to third instar larvae, which could potentially offset the apparent increased sensitivity to the oxon. ?? 2003 Elsevier B.V. All rights reserved.

  8. Calcium Influx and Release Cooperatively Regulate AChR Patterning and Motor Axon Outgrowth during Neuromuscular Junction Formation.

    PubMed

    Kaplan, Mehmet Mahsum; Sultana, Nasreen; Benedetti, Ariane; Obermair, Gerald J; Linde, Nina F; Papadopoulos, Symeon; Dayal, Anamika; Grabner, Manfred; Flucher, Bernhard E

    2018-06-26

    Formation of synapses between motor neurons and muscles is initiated by clustering of acetylcholine receptors (AChRs) in the center of muscle fibers prior to nerve arrival. This AChR patterning is considered to be critically dependent on calcium influx through L-type channels (Ca V 1.1). Using a genetic approach in mice, we demonstrate here that either the L-type calcium currents (LTCCs) or sarcoplasmic reticulum (SR) calcium release is necessary and sufficient to regulate AChR clustering at the onset of neuromuscular junction (NMJ) development. The combined lack of both calcium signals results in loss of AChR patterning and excessive nerve branching. In the absence of SR calcium release, the severity of synapse formation defects inversely correlates with the magnitude of LTCCs. These findings highlight the importance of activity-dependent calcium signaling in early neuromuscular junction formation and indicate that both LTCC and SR calcium release individually support proper innervation of muscle by regulating AChR patterning and motor axon outgrowth. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Comparative functional expression of nAChR subtypes in rodent DRG neurons.

    PubMed

    Smith, Nathan J; Hone, Arik J; Memon, Tosifa; Bossi, Simon; Smith, Thomas E; McIntosh, J Michael; Olivera, Baldomero M; Teichert, Russell W

    2013-01-01

    We investigated the functional expression of nicotinic acetylcholine receptors (nAChRs) in heterogeneous populations of dissociated rat and mouse lumbar dorsal root ganglion (DRG) neurons by calcium imaging. By this experimental approach, it is possible to investigate the functional expression of multiple receptor and ion-channel subtypes across more than 100 neuronal and glial cells simultaneously. Based on nAChR expression, DRG neurons could be divided into four subclasses: (1) neurons that express predominantly α3β4 and α6β4 nAChRs; (2) neurons that express predominantly α7 nAChRs; (3) neurons that express a combination of α3β4/α6β4 and α7 nAChRs; and (4) neurons that do not express nAChRs. In this comparative study, the same four neuronal subclasses were observed in mouse and rat DRG. However, the expression frequency differed between species: substantially more rat DRG neurons were in the first three subclasses than mouse DRG neurons, at all developmental time points tested in our study. Approximately 70-80% of rat DRG neurons expressed functional nAChRs, in contrast to only ~15-30% of mouse DRG neurons. Our study also demonstrated functional coupling between nAChRs, voltage-gated calcium channels, and mitochondrial Ca(2) (+) transport in discrete subsets of DRG neurons. In contrast to the expression of nAChRs in DRG neurons, we demonstrated that a subset of non-neuronal DRG cells expressed muscarinic acetylcholine receptors and not nAChRs. The general approach to comparative cellular neurobiology outlined in this paper has the potential to better integrate molecular and systems neuroscience by uncovering the spectrum of neuronal subclasses present in a given cell population and the functionally integrated signaling components expressed in each subclass.

  10. A positive allosteric modulator of α7 nAChRs augments neuroprotective effects of endogenous nicotinic agonists in cerebral ischaemia

    PubMed Central

    Kalappa, Bopanna I; Sun, Fen; Johnson, Stephen R; Jin, Kunlin; Uteshev, Victor V

    2013-01-01

    Background and Purpose Activation of α7 nicotinic acetylcholine receptors (nAChRs) can be neuroprotective. However, endogenous choline and ACh have not been regarded as potent neuroprotective agents because physiological levels of choline/ACh do not produce neuroprotective levels of α7 activation. This limitation may be overcome by the use of type-II positive allosteric modulators (PAMs-II) of α7 nAChRs, such as 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea (PNU-120596). This proof-of-concept study presents a novel neuroprotective paradigm that converts endogenous choline/ACh into potent neuroprotective agents in cerebral ischaemia by inhibiting α7 nAChR desensitization using PNU-120596. Experimental Approach An electrophysiological ex vivo cell injury assay (to quantify the susceptibility of hippocampal neurons to acute injury by complete oxygen and glucose deprivation; COGD) and an in vivo middle cerebral artery occlusion model of ischaemia were used in rats. Key Results Choline (20–200 μM) in the presence, but not absence of 1 μM PNU-120596 significantly delayed anoxic depolarization/injury of hippocampal CA1 pyramidal neurons, but not CA1 stratum radiatum interneurons, subjected to COGD in acute hippocampal slices and these effects were blocked by 20 nM methyllycaconitine, a selective α7 antagonist, thus, activation of α7 nAChRs was required. PNU-120596 alone was ineffective ex vivo. In in vivo experiments, both pre- and post-ischaemia treatments with PNU-120596 (30 mg·kg−1, s.c. and 1 mg·kg−1, i.v., respectively) significantly reduced the cortical/subcortical infarct volume caused by transient focal cerebral ischaemia. PNU-120596 (1 mg·kg−1, i.v., 30 min post-ischaemia) remained neuroprotective in rats subjected to a choline-deficient diet for 14 days prior to experiments. Conclusions and Implications PNU-120596 and possibly other PAMs-II significantly improved neuronal survival in cerebral ischaemia by augmenting

  11. Roles for N-terminal Extracellular Domains of Nicotinic Acetylcholine Receptor (nAChR) β3 Subunits in Enhanced Functional Expression of Mouse α6β2β3- and α6β4β3-nAChRs*

    PubMed Central

    Dash, Bhagirathi; Li, Ming D.; Lukas, Ronald J.

    2014-01-01

    Functional heterologous expression of naturally expressed mouse α6*-nicotinic acetylcholine receptors (mα6*-nAChRs; where “*” indicates the presence of additional subunits) has been difficult. Here we expressed and characterized wild-type (WT), gain-of-function, chimeric, or gain-of-function chimeric nAChR subunits, sometimes as hybrid nAChRs containing both human (h) and mouse (m) subunits, in Xenopus oocytes. Hybrid mα6mβ4hβ3- (∼5–8-fold) or WT mα6mβ4mβ3-nAChRs (∼2-fold) yielded higher function than mα6mβ4-nAChRs. Function was not detected when mα6 and mβ2 subunits were expressed together or in the additional presence of hβ3 or mβ3 subunits. However, function emerged upon expression of mα6mβ2mβ3V9′S-nAChRs containing β3 subunits having gain-of-function V9′S (valine to serine at the 9′-position) mutations in transmembrane domain II and was further elevated 9-fold when hβ3V9′S subunits were substituted for mβ3V9′S subunits. Studies involving WT or gain-of-function chimeric mouse/human β3 subunits narrowed the search for domains that influence functional expression of mα6*-nAChRs. Using hβ3 subunits as templates for site-directed mutagenesis studies, substitution with mβ3 subunit residues in extracellular N-terminal domain loops “C” (Glu221 and Phe223), “E” (Ser144 and Ser148), and “β2-β3” (Gln94 and Glu101) increased function of mα6mβ2*- (∼2–3-fold) or mα6mβ4* (∼2–4-fold)-nAChRs. EC50 values for nicotine acting at mα6mβ4*-nAChR were unaffected by β3 subunit residue substitutions in loop C or E. Thus, amino acid residues located in primary (loop C) or complementary (loops β2-β3 and E) interfaces of β3 subunits are some of the molecular impediments for functional expression of mα6mβ2β3- or mα6mβ4β3-nAChRs. PMID:25028511

  12. Congo red modulates ACh-induced Ca2+ oscillations in single pancreatic acinar cells of mice

    PubMed Central

    Huang, Ze-bing; Wang, Hai-yan; Sun, Na-na; Wang, Jing-ke; Zhao, Meng-qin; Shen, Jian-xin; Gao, Ming; Hammer, Ronald P; Fan, Xue-gong; Wu, Jie

    2014-01-01

    Aim: Congo red, a secondary diazo dye, is usually used as an indicator for the presence of amyloid fibrils. Recent studies show that congo red exerts neuroprotective effects in a variety of models of neurodegenerative diseases. However, its pharmacological profile remains unknown. In this study, we investigated the effects of congo red on ACh-induced Ca2+ oscillations in mouse pancreatic acinar cells in vitro. Methods: Acutely dissociated pancreatic acinar cells of mice were prepared. A U-tube drug application system was used to deliver drugs into the bath. Intracellular Ca2+ oscillations were monitored by whole-cell recording of Ca2+-activated Cl− currents and by using confocal Ca2+ imaging. For intracellular drug application, the drug was added in pipette solution and diffused into cell after the whole-cell configuration was established. Results: Bath application of ACh (10 nmol/L) induced typical Ca2+ oscillations in dissociated pancreatic acinar cells. Addition of congo red (1, 10, 100 μmol/L) dose-dependently enhanced Ach-induced Ca2+ oscillations, but congo red alone did not induce any detectable response. Furthermore, this enhancement depended on the concentrations of ACh: congo red markedly enhanced the Ca2+ oscillations induced by ACh (10–30 nmol/L), but did not alter the Ca2+ oscillations induced by ACh (100–10000 nmol/L). Congo red also enhanced the Ca2+ oscillations induced by bath application of IP3 (30 μmol/L). Intracellular application of congo red failed to alter ACh-induced Ca2+ oscillations. Conclusion: Congo red significantly modulates intracellular Ca2+ signaling in pancreatic acinar cells, and this pharmacological effect should be fully considered when developing congo red as a novel therapeutic drug. PMID:25345744

  13. New Indole Alkaloids from the Bark of Rauvolfia Reflexa and their Cholinesterase Inhibitory Activity.

    PubMed

    Fadaeinasab, Mehran; Basiri, Alireza; Kia, Yalda; Karimian, Hamed; Ali, Hapipah Mohd; Murugaiyah, Vikneswaran

    2015-01-01

    Rauvolfia reflexa is a member of the Apocynaceae family. Plants from the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders Methods and Results: Two new indole alkaloids, rauvolfine C (1) and 3-methyl-10,11-dimethoxy-6-methoxycarbonyl-β-carboline (2), along with five known, macusine B (3), vinorine (4), undulifoline (5), isoresrpiline (6) and rescinnamine (7) were isolated from the bark of Rauvolfia reflexa. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 µM. Compound 7 was found to be the most potent inhibitor of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Compounds 1, 2, 5 and 6 were found to be selective towards BChE, while compounds 3, 4 and 7 were dual inhibitors, having almost equal inhibitory activity on both AChE and BChE. Molecular docking revealed that compounds 6 and 7 interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. In AChE, the indole moiety of both compounds interacted with the residues lining the peripheral anionic site, whereas in BChE, their methoxy groups are primarily responsible for the strong inhibitory activity via interactions with residues at the active site of the enzyme. Two new and five known indole alkaloids were isolated from R. reflexa. Among the compounds, 7 and 6 showed the most potent and promising cholinesterase inhibitory activity, worthy for further investigations. © 2015 S. Karger AG, Basel.

  14. Inhibitory effects of psychotropic drugs on the acetylcholine receptor-operated potassium current (IK.ACh) in guinea-pig atrial myocytes.

    PubMed

    Okada, Muneyoshi; Watanabe, Shinya; Matada, Takashi; Asao, Yoko; Hamatani, Ramu; Yamawaki, Hideyuki; Hara, Yukio

    2013-01-01

    Influences of psychotropic drugs, six antipsychotics and three antidepressants, on acetylcholine receptor-operated potassium current (IK.ACh) were examined by a whole-cell patch clamp method in freshly isolated guinea-pig atrial myocyte. IK.ACh was induced by a superfusion of carbachol (CCh) or by an intracellular application of guanosine 5'-[thio] triphosphate (GTPγS). To elucidate mechanism for anticholinergic action, IC50 ratio, the ratio of IC50 for GTPγS-activated IK.ACh to CCh-induced IK.ACh, was calculated. Antipsychotics and antidepressants inhibited CCh-induced IK.ACh in a concentration-dependent manner. The IC50 values were as follows; chlorpromazine 0.53 μM, clozapine 0.06 μM, fluphenazine 2.69 μM, haloperidol 2.66 μM, sulpiride 42.3 μM, thioridazine 0.07 μM, amitriptyline 0.03 μM, imipramine 0.22 μM and maprotiline 1.81 μM. The drugs, except for sulpiride, inhibited GTPγS-activated IK.ACh with following IC50 values; chlorpromazine 1.71 μM, clozapine 14.9 μM, fluphenazine 3.55 μM, haloperidol 2.73 μM, thioridazine 1.90 μM, amitriptyline 7.55 μM, imipramine 7.09 μM and maprotiline 5.93 μM. The IC50 ratio for fluphenazine and haloperidol was close to unity. The IC50 ratio for chlorpromazine, clozapine, thioridazine, amitriptyline, imipramine and maprotiline was much higher than unity. The present findings suggest that the psychotropics studied suppress IK.ACh. Chlorpromazine, clozapine, thioridazine, amitriptyline, imipramine, maprotiline and sulpiride are preferentially acting on muscarinic receptor. Fluphenazine and haloperidol may act on G protein and/or potassium channel.

  15. Selectivity of coronaridine congeners at nicotinic acetylcholine receptors and inhibitory activity on mouse medial habenula.

    PubMed

    Arias, Hugo R; Jin, Xiaotao; Feuerbach, Dominik; Drenan, Ryan M

    2017-11-01

    The inhibitory activity of coronaridine congeners on human (h) α4β2 and α7 nicotinic acetylcholine receptors (AChRs) is determined by Ca 2+ influx assays, whereas their effects on neurons in the ventral inferior (VI) aspect of the mouse medial habenula (MHb) are determined by patch-clamp recordings. The Ca 2+ influx results clearly establish that coronaridine congeners inhibit hα3β4 AChRs with higher selectivity compared to hα4β2 and hα7 subtypes, and with the following potency sequence, for hα4β2: (±)-18-methoxycoronaridine [(±)-18-MC]>(+)-catharanthine>(±)-18-methylaminocoronaridine [(±)-18-MAC] ∼ (±)-18-hydroxycoronaridine [(±)-18-HC]; and for hα7: (+)-catharanthine>(±)-18-MC>(±)-18-HC>(±)-18-MAC. Interestingly, the inhibitory potency of (+)-catharanthine (27±4μM) and (±)-18-MC (28±6μM) on MHb (VI) neurons was lower than that observed on hα3β4 AChRs, suggesting that these compounds inhibit a variety of endogenous α3β4* AChRs. In addition, the interaction of bupropion with (-)-ibogaine sites on hα3β4 AChRs is tested by [ 3 H]ibogaine competition binding experiments. The results indicate that bupropion binds to ibogaine sites at desensitized hα3β4 AChRs with 2-fold higher affinity than at resting receptors, suggesting that these compounds share the same binding sites. In conclusion, coronaridine congeners inhibit hα3β4 AChRs with higher selectivity compared to other AChRs, by interacting with the bupropion (luminal) site. Coronaridine congeners also inhibit α3β4*AChRs expressed in MHb (VI) neurons, supporting the notion that these receptors are important endogenous targets for their anti-addictive activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Selectivity of coronaridine congeners at nicotinic acetylcholine receptors and inhibitory activity on mouse medial habenula

    PubMed Central

    Arias, Hugo R.; Jin, Xiaotao; Feuerbach, Dominik; Drenan, Ryan M.

    2018-01-01

    The inhibitory activity of coronaridine congeners on human (h) α4β2 and α7 nicotinic acetylcholine receptors (AChRs) is determined by Ca2+ influx assays, whereas their effects on neurons in the ventral inferior (VI) aspect of the mouse medial habenula (MHb) are determined by patch-clamp recordings. The Ca2+ influx results clearly establish that coronaridine congeners inhibit hα3β4 AChRs with higher selectivity compared to hα4β2 and hα7 subtypes, and with the following potency sequence, for hα4β2: (±)-18-methoxycoronaridine [(±)-18-MC] > (+)-catharanthine > (±)-18-methylaminocoronaridine [(±)-18-MAC] ∼ (±)-18-hydroxycoronaridine [(±)-18-HC]; and for hα7: (+)-catharanthine > (±)-18-MC > (±)-18-HC > (±)-18-MAC. Interestingly, the inhibitory potency of (+)-catharanthine (27 ± 4 μM) and (±)-18-MC (28 ± 6 μM) on MHb (VI) neurons was lower than that observed on hα3β4 AChRs, suggesting that these compounds inhibit a variety of endogenous α3β4* AChRs. In addition, the interaction of bupropion with (−)-ibogaine sites on hα3β4 AChRs is tested by [3H]ibogaine competition binding experiments. The results indicate that bupropion binds to ibogaine sites at desensitized hα3β4 AChRs with 2-fold higher affinity than at resting receptors, suggesting that these compounds share the same binding sites. In conclusion, coronaridine congeners inhibit hα3β4 AChRs with higher selectivity compared to other AChRs, by interacting with the bupropion (luminal) site. Coronaridine congeners also inhibit α3β4*AChRs expressed in MHb (VI) neurons, supporting the notion that these receptors are important endogenous targets for their anti-addictive activities. PMID:29042244

  17. Generation of Recombinant Human AChE OP-Scavengers with Extended Circulatory Longevity

    DTIC Science & Technology

    2006-11-01

    PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Avigdor Shafferman Ph.D. 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: avigdor...glycans of rHuAChE, and in particular the distal termini of these glycan 8 projections , constitute a major factor in determining the circulatory...experiments funded by sources other than the USAMRMC contract, since they may have a major impact on the present project . Section III focuses on the

  18. Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders.

    PubMed

    Kalkman, Hans O; Feuerbach, Dominik

    2016-07-01

    The clinical development of selective alpha-7 nicotinic acetylcholine receptor (α7 nAChR) agonists has hitherto been focused on disorders characterized by cognitive deficits (e.g., Alzheimer's disease, schizophrenia). However, α7 nAChRs are also widely expressed by cells of the immune system and by cells with a secondary role in pathogen defense. Activation of α7 nAChRs leads to an anti-inflammatory effect. Since sterile inflammation is a frequently observed phenomenon in both psychiatric disorders (e.g., schizophrenia, melancholic and bipolar depression) and neurological disorders (e.g., Alzheimer's disease, Parkinson's disease, and multiple sclerosis), α7 nAChR agonists might show beneficial effects in these central nervous system disorders. In the current review, we summarize information on receptor expression, the intracellular signaling pathways they modulate and reasons for receptor dysfunction. Information from tobacco smoking, vagus nerve stimulation, and cholinesterase inhibition is used to evaluate the therapeutic potential of selective α7 nAChR agonists in these inflammation-related disorders.

  19. Evidence for a role for α6* nAChRs in L-dopa-induced dyskinesias using parkinsonian α6* nAChR gain-of-function mice

    PubMed Central

    Bordia, Tanuja; McGregor, Matthew; McIntosh, J.M.; Drenan, Ryan M.; Quik, Maryka

    2015-01-01

    L-Dopa-induced dyskinesias (LIDs) are a serious side effect of dopamine replacement therapy for Parkinson's disease. The mechanisms that underlie LIDs are currently unclear. However, preclinical studies indicate that nicotinic acetylcholine receptors (nAChRs) play a role, suggesting that drugs targeting these receptors may be of therapeutic benefit. To further understand the involvement of α6β2* nAChRs in LIDs, we used gain-of-function α6* nAChR (α6L9S) mice that exhibit a 20-fold enhanced sensitivity to nAChR agonists. Wildtype (WT) and α6L9S mice were lesioned by unilateral injection of 6-hydroxydopamine (6-OHDA, 3 μg/ml) into the medial forebrain bundle. Three to 4 wk later, they were administered L-dopa (3 mg/kg) plus benserazide (15 mg/kg) until stably dyskinetic. L-dopa-induced abnormal involuntary movements (AIMs) were similar in α6L9S and WT mice. WT mice were then given nicotine in the drinking water in gradually increasing doses to a final 300 μg/ml, which resulted in a 40% decline AIMs. By contrast, there was no decrease in AIMs in α6L9S mice at a maximally tolerated nicotine dose of 20 μg/ml. However, the nAChR antagonist mecamylamine (1 mg/kg ip 30 min before L-dopa) reduced L-dopa-induced AIMs in both α6L9S and WT mice. Thus, both a nAChR agonist and antagonist decreased AIMs in WT mice, but only the antagonist was effective in α6L9S mice. Since nicotine appears to reduce LIDs via desensitization, hypersensitive α6β2* nAChRs may desensitize less readily. The present data show that α6β2* nAChRs are key regulators of LIDs, and may be useful therapeutic targets for their management in Parkinson's disease. PMID:25813704

  20. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  1. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  2. Calcium-activated butyrylcholinesterase in human skin protects acetylcholinesterase against suicide inhibition by neurotoxic organophosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schallreuter, Karin U.; Institute for Pigmentary Disorders in Association with EM Arndt University of Greifswald; University of Bradford

    The human epidermis holds an autocrine acetylcholine production and degradation including functioning membrane integrated and cytosolic butyrylcholinesterase (BuchE). Here we show that BuchE activities increase 9-fold in the presence of calcium (0.5 x 10{sup -3}M) via a specific EF-hand calcium binding site, whereas acetylcholinesterase (AchE) is not affected. {sup 45}Calcium labelling and computer simulation confirmed the presence of one EF-hand binding site per subunit which is disrupted by H{sub 2}O{sub 2}-mediated oxidation. Moreover, we confirmed the faster hydrolysis by calcium-activated BuchE using the neurotoxic organophosphate O-ethyl-O-(4-nitrophenyl)-phenylphosphonothioate (EPN). Considering the large size of the human skin with 1.8 m{sup 2} surfacemore » area with its calcium gradient in the 10{sup -3}M range, our results implicate calcium-activated BuchE as a major protective mechanism against suicide inhibition of AchE by organophosphates in this non-neuronal tissue.« less

  3. New multipotent tetracyclic tacrines with neuroprotective activity.

    PubMed

    Marco-Contelles, José; León, Rafael; de los Ríos, Cristóbal; García, Antonio G; López, Manuela G; Villarroya, Mercedes

    2006-12-15

    The synthesis and the biological evaluation (neuroprotection, voltage dependent calcium channel blockade, AChE/BuChE inhibitory activity and propidium binding) of new multipotent tetracyclic tacrine analogues (5-13) are described. Compounds 7, 8 and 11 showed a significant neuroprotective effect on neuroblastoma cells subjected to Ca(2+) overload or free radical induced toxicity. These compounds are modest AChE inhibitors [the best inhibitor (11) is 50-fold less potent than tacrine], but proved to be very selective, as for most of them no BuChE inhibition was observed. In addition, the propidium displacement experiments showed that these compounds bind AChE to the peripheral anionic site (PAS) of AChE and, consequently, are potential agents that can prevent the aggregation of beta-amyloid. Overall, compound 8 is a modest and selective AChE inhibitor, but an efficient neuroprotective agent against 70mM K(+) and 60microM H(2)O(2). Based on these results, some of these molecules can be considered as lead candidates for the further development of anti-Alzheimer drugs.

  4. Combined in Vitro and in Silico Studies for the Anticholinesterase Activity and Pharmacokinetics of Coumarinyl Thiazoles and Oxadiazoles

    PubMed Central

    Ibrar, Aliya; Khan, Ajmal; Ali, Majid; Sarwar, Rizwana; Mehsud, Saifullah; Farooq, Umar; Halimi, Syed M. A.; Khan, Imtiaz; Al-Harrasi, Ahmed

    2018-01-01

    In a continuation of our previous work for the exploration of novel enzyme inhibitors, two new coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids have been designed and synthesized. All the compounds were characterized by 1H- and 13C-NMR spectroscopy and elemental analysis. New hybrid analogs were evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in order to know their potential for the prevention of Alzheimer's disease (AD). In coumarinyl thiazole series, compound 6b was found as the most active member against AChE having IC50 value of 0.87 ± 0.09 μM, while the compound 6j revealed the same efficacy against BuChE with an IC50 value of 11.01 ± 3.37 μM. In case of coumarinyl oxadiazole series, 11a was turned out to be the lead candidate against AChE with an IC50 value of 6.07 ± 0.23 μM, whereas compound 11e was found significantly active against BuChE with an IC50 value of 0.15 ± 0.09 μM. To realize the binding interaction of these compounds with AChE and BuChE, the molecular docking studies were performed. Compounds from coumarinyl thiazole series with potent AChE activity (6b, 6h, 6i, and 6k) were found to interact with AChE in the active site with MOE score of −10.19, −9.97, −9.68, and −11.03 Kcal.mol−1, respectively. The major interactions include hydrogen bonding, π-π stacking with aromatic residues, and interaction through water bridging. The docking studies of coumarinyl oxadiazole derivatives 11(a–h) suggested that the compounds with high anti-butyrylcholinesterase activity (11e, 11a, and 11b) provided MOE score of −9.9, −7.4, and −8.2 Kcal.mol−1, respectively, with the active site of BuChE building π-π stacking with Trp82 and water bridged interaction. PMID:29632858

  5. Combined in vitro and in silico studies for the anticholinesterase activity and pharmacokinetics of coumarinyl thiazoles and oxadiazoles

    NASA Astrophysics Data System (ADS)

    Ibrar, Aliya; Khan, Ajmal; Ali, Majid; Sarwar, Rizwana; Mehsud, Saifullah; Farooq, Umar; Halimi, Syed M. A.; Khan, Imtiaz; Al-Harrasi, Ahmed

    2018-03-01

    In a continuation of our previous work for the exploration of novel enzyme inhibitors, two new coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids have been designed and synthesized. All the compounds were characterized by 1H- and 13C-NMR spectroscopy and elemental analysis. New hybrid analogues were evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in order to know their potential for the prevention of Alzheimer’s disease (AD). In coumarinyl thiazole series, compound 6b was found as the most active member against AChE having IC50 value of 0.87 ± 0.09 µM, while the compound 6j revealed the same efficacy against BuChE with an IC50 value of 11.01 ± 3.37 µM. In case of coumarinyl oxadiazole series, 11a was turned out to be the lead candidate against AChE with an IC50 value of 6.07 ± 0.23 µM, whereas compound 11e was found significantly active against BuChE with an IC50 value of 0.15 ± 0.09 µM. To realize the binding interaction of these compounds with AChE and BuChE, the molecular docking studies were performed. Compounds from coumarinyl thiazole series with potent AChE activity (6b, 6h, 6i and 6k) were found to interact with AChE in the active site with MOE score of ‒10.19, ‒9.97, ‒9.68, and ‒11.03 Kcal.mol‒1, respectively. The major interactions include hydrogen bonding, π-π stacking with aromatic residues, and interaction through water bridging. The docking studies of coumarinyl oxadiazole derivatives 11(a-h) suggested that the compounds with high anti-butyrylcholinesterase activity (11e, 11a and 11b) provided MOE score of ‒9.9, ‒7.4 and ‒8.2 Kcal.mol‒1 respectively, with the active site of BuChE building π-π stacking with Trp82 and water bridged interaction.

  6. Glutamine 57 at the complementary binding site face is a key determinant of morantel selectivity for {alpha}7 nicotinic receptors.

    PubMed

    Bartos, Mariana; Price, Kerry L; Lummis, Sarah C R; Bouzat, Cecilia

    2009-08-07

    Nicotinic receptors (AChRs) play key roles in synaptic transmission. We explored activation of neuronal alpha7 and mammalian muscle AChRs by morantel and oxantel. Our results revealed a novel action of morantel as a high efficacy and more potent agonist than ACh of alpha7 receptors. The EC(50) for activation by morantel of both alpha7 and alpha7-5HT(3A) receptors is 7-fold lower than that determined for ACh. The minimum morantel concentration required to activate alpha7-5HT(3A) channels is 6-fold lower than that of ACh, and activation episodes are more prolonged than in the presence of ACh. By contrast, oxantel is a weak agonist of alpha7 and alpha7-5HT(3A), and both drugs are very low efficacy agonists of muscle AChRs. The replacement of Gln(57) in alpha7 by glycine, which is found in the equivalent position of the muscle AChR, decreases the efficacy for activation and turns morantel into a partial agonist. The reverse mutation in the muscle AChR (epsilonG57Q) increases 7-fold the efficacy of morantel. The mutations do not affect activation by ACh or oxantel, indicating that this position is selective for morantel. In silico studies show that the tetrahydropyrimidinyl group, common to both drugs, is close to Trp(149) of the principal face of the binding site, whereas the other cyclic group is proximal to Gln(57) of the complementary face in morantel but not in oxantel. Thus, position 57 at the complementary face is a key determinant of the high selectivity of morantel for alpha7. These results provide new information for further progress in drug design.

  7. Activation of muscle nicotinic acetylcholine receptor channels by nicotinic and muscarinic agonists

    PubMed Central

    Akk, Gustav; Auerbach, Anthony

    1999-01-01

    The dose-response parameters of recombinant mouse adult neuromuscular acetylcholine receptor channels (nAChR) activated by carbamylcholine, nicotine, muscarine and oxotremorine were measured. Rate constants for agonist association and dissociation, and channel opening and closing, were estimated from single-channel kinetic analysis.The dissociation equilibrium constants were (mM): ACh (0.16)ACh (45)>carbamylcholine (5.1)>oxotremorine M (0.6)>nicotine (0.5)>muscarine (0.15).Rat neuronal α4β2 nAChR can be activated by all of the agonists. However, detailed kinetic analysis was impossible because the recordings lacked clusters representing the activity of a single receptor complex. Thus, the number of channels in the patch was unknown and the activation rate constants could not be determined.Considering both receptor affinity and agonist efficacy, muscarine and oxotremorine are significant agonists of muscle-type nAChR. The results are discussed in terms of structure-function relationships at the nAChR transmitter binding site. PMID:10602325

  8. α7-nAChR Knockout Mice Decreases Biliary Hyperplasia and Liver Fibrosis in Cholestatic Bile-Duct Ligated Mice.

    PubMed

    Ehrlich, Laurent; O'Brien, April; Hall, Chad; White, Tori; Chen, Lixian; Wu, Nan; Venter, Julie; Scrushy, Marinda; Mubarak, Muhammad; Meng, Fanyin; Dostal, David; Wu, Chaodong; Lairmore, Terry C; Alpini, Gianfranco; Glaser, Shannon

    2018-03-26

    α7-nAChR is a nicotinic acetylcholine receptor (specifically expressed on hepatic stellate cells, Kupffer cells, and cholangiocytes) that regulates inflammation and apoptosis in the liver. Thus, targeting α7-nAChR may be therapeutic in biliary diseases. Bile-duct ligation (BDL) was performed on wild-type (WT) and α7-nAChR-/- mice. We first evaluated the expression of α7-nAChR by immunohistochemistry (IHC) in liver sections. IHC was also performed to assess intrahepatic bile-duct mass (IBDM), and Sirius Red staining was performed to quantify the amount of collagen deposition. Immunofluorescence was performed to assess co-localization of α7-nAChR with bile ducts (co-stained with CK-19) and hepatic stellate cells (HSCs) (co-stained with desmin). The mRNA expression of α7-nAChR, Ki67/PCNA (proliferation), fibrosis genes (TGF-β1, Fibronectin-1, Col1α1, and α-SMA), and inflammatory markers (IL-6, IL-1β, and TNFα) was measured by real-time PCR. Biliary TGF-β1 and hepatic CD68 (Kupffer cell marker) expression was assessed using IHC. α7-nAChR immunoreactivity was observed in both bile ducts and HSCs and increased following BDL. α7-nAChR-/- BDL mice exhibited decreased: (i) bile duct mass, liver fibrosis, and inflammation; and (ii) immunoreactivity of TGF-1 as well as expression of fibrosis genes compared to WT BDL mice. α7-nAChR activation triggers biliary proliferation and liver fibrosis and may be a therapeutic target in managing extra-hepatic biliary obstruction.

  9. Site-directed decapsulation of bolaamphiphilic vesicles with enzymatic cleavable surface groups.

    PubMed

    Popov, Mary; Grinberg, Sarina; Linder, Charles; Waner, Tal; Levi-Hevroni, Bosmat; Deckelbaum, Richard J; Heldman, Eliahu

    2012-06-10

    Stable nano-sized vesicles with a monolayer encapsulating membrane were prepared from novel bolaamphiphiles with choline ester head groups. The head groups were covalently bound to the alkyl chain of the bolaamphiphiles either via the nitrogen atom of the choline moiety, or via the choline ester's methyl group. Both types of bolaamphiphiles competed with acetylthiocholine for binding to acetylcholine esterase (AChE), yet, only the choline ester head groups bound to the alkyl chain via the nitrogen atom of the choline moiety were hydrolyzed by the enzyme. Likewise, only vesicles composed of bolaamphiphiles with head groups that were hydrolyzed by AChE released their encapsulated material upon exposure to the enzyme. Injection of carboxyfluorescein (CF)-loaded vesicles with cleavable choline ester head groups into mice resulted in the accumulation of CF in tissues that express high AChE activity, including the brain. By comparison, when vesicles with choline ester head groups that are not hydrolyzed by AChE were injected into mice, there was no accumulation of CF in tissues that highly express the enzyme. These results imply that bolaamphiphilic vesicles with surface groups that are substrates to enzymes which are highly expressed in target organs may potentially be used as a drug delivery system with controlled site-directed drug release. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Patient autoantibodies deplete postsynaptic muscle-specific kinase leading to disassembly of the ACh receptor scaffold and myasthenia gravis in mice

    PubMed Central

    Cole, R N; Ghazanfari, N; Ngo, S T; Gervásio, O L; Reddel, S W; Phillips, W D

    2010-01-01

    The postsynaptic muscle-specific kinase (MuSK) coordinates formation of the neuromuscular junction (NMJ) during embryonic development. Here we have studied the effects of MuSK autoantibodies upon the NMJ in adult mice. Daily injections of IgG from four MuSK autoantibody-positive myasthenia gravis patients (MuSK IgG; 45 mg day−1i.p. for 14 days) caused reductions in postsynaptic ACh receptor (AChR) packing as assessed by fluorescence resonance energy transfer (FRET). IgG from the patients with the highest titres of MuSK autoantibodies caused large (51–73%) reductions in postsynaptic MuSK staining (cf. control mice; P < 0.01) and muscle weakness. Among mice injected for 14 days with control and MuSK patient IgGs, the residual level of MuSK correlated with the degree of impairment of postsynaptic AChR packing. However, the loss of postsynaptic MuSK preceded this impairment of postsynaptic AChR. When added to cultured C2 muscle cells the MuSK autoantibodies caused tyrosine phosphorylation of MuSK and the AChR β-subunit, and internalization of MuSK from the plasma membrane. The results suggest a pathogenic mechanism in which MuSK autoantibodies rapidly deplete MuSK from the postsynaptic membrane leading to progressive dispersal of postsynaptic AChRs. Moreover, maintenance of postsynaptic AChR packing at the adult NMJ would appear to depend upon physical engagement of MuSK with the AChR scaffold, notwithstanding activation of the MuSK-rapsyn system of AChR clustering. PMID:20603331

  11. Assessment of the expression and role of the α1-nAChR subunit in efferent cholinergic function during the development of the mammalian cochlea.

    PubMed

    Roux, Isabelle; Wu, Jingjing Sherry; McIntosh, J Michael; Glowatzki, Elisabeth

    2016-08-01

    Hair cell (HC) activity in the mammalian cochlea is modulated by cholinergic efferent inputs from the brainstem. These inhibitory inputs are mediated by calcium-permeable nicotinic acetylcholine receptors (nAChRs) containing α9- and α10-subunits and by subsequent activation of calcium-dependent potassium channels. Intriguingly, mRNAs of α1- and γ-nAChRs, subunits of the "muscle-type" nAChR have also been found in developing HCs (Cai T, Jen HI, Kang H, Klisch TJ, Zoghbi HY, Groves AK. J Neurosci 35: 5870-5883, 2015; Scheffer D, Sage C, Plazas PV, Huang M, Wedemeyer C, Zhang DS, Chen ZY, Elgoyhen AB, Corey DP, Pingault V. J Neurochem 103: 2651-2664, 2007; Sinkkonen ST, Chai R, Jan TA, Hartman BH, Laske RD, Gahlen F, Sinkkonen W, Cheng AG, Oshima K, Heller S. Sci Rep 1: 26, 2011) prompting proposals that another type of nAChR is present and may be critical during early synaptic development. Mouse genetics, histochemistry, pharmacology, and whole cell recording approaches were combined to test the role of α1-nAChR subunit in HC efferent synapse formation and cholinergic function. The onset of α1-mRNA expression in mouse HCs was found to coincide with the onset of the ACh response and efferent synaptic function. However, in mouse inner hair cells (IHCs) no response to the muscle-type nAChR agonists (±)-anatoxin A, (±)-epibatidine, (-)-nicotine, or 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) was detected, arguing against the presence of an independent functional α1-containing muscle-type nAChR in IHCs. In α1-deficient mice, no obvious change of IHC efferent innervation was detected at embryonic day 18, contrary to the hyperinnervation observed at the neuromuscular junction. Additionally, ACh response and efferent synaptic activity were detectable in α1-deficient IHCs, suggesting that α1 is not necessary for assembly and membrane targeting of nAChRs or for efferent synapse formation in IHCs.

  12. Assessment of the expression and role of the α1-nAChR subunit in efferent cholinergic function during the development of the mammalian cochlea

    PubMed Central

    Wu (武靜靜), Jingjing Sherry; McIntosh, J. Michael; Glowatzki, Elisabeth

    2016-01-01

    Hair cell (HC) activity in the mammalian cochlea is modulated by cholinergic efferent inputs from the brainstem. These inhibitory inputs are mediated by calcium-permeable nicotinic acetylcholine receptors (nAChRs) containing α9- and α10-subunits and by subsequent activation of calcium-dependent potassium channels. Intriguingly, mRNAs of α1- and γ-nAChRs, subunits of the “muscle-type” nAChR have also been found in developing HCs (Cai T, Jen HI, Kang H, Klisch TJ, Zoghbi HY, Groves AK. J Neurosci 35: 5870–5883, 2015; Scheffer D, Sage C, Plazas PV, Huang M, Wedemeyer C, Zhang DS, Chen ZY, Elgoyhen AB, Corey DP, Pingault V. J Neurochem 103: 2651–2664, 2007; Sinkkonen ST, Chai R, Jan TA, Hartman BH, Laske RD, Gahlen F, Sinkkonen W, Cheng AG, Oshima K, Heller S. Sci Rep 1: 26, 2011) prompting proposals that another type of nAChR is present and may be critical during early synaptic development. Mouse genetics, histochemistry, pharmacology, and whole cell recording approaches were combined to test the role of α1-nAChR subunit in HC efferent synapse formation and cholinergic function. The onset of α1-mRNA expression in mouse HCs was found to coincide with the onset of the ACh response and efferent synaptic function. However, in mouse inner hair cells (IHCs) no response to the muscle-type nAChR agonists (±)-anatoxin A, (±)-epibatidine, (−)-nicotine, or 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) was detected, arguing against the presence of an independent functional α1-containing muscle-type nAChR in IHCs. In α1-deficient mice, no obvious change of IHC efferent innervation was detected at embryonic day 18, contrary to the hyperinnervation observed at the neuromuscular junction. Additionally, ACh response and efferent synaptic activity were detectable in α1-deficient IHCs, suggesting that α1 is not necessary for assembly and membrane targeting of nAChRs or for efferent synapse formation in IHCs. PMID:27098031

  13. Activation of the α7 nicotinic ACh receptor induces anxiogenic effects in rats which is blocked by a 5-HT1a receptor antagonist

    PubMed Central

    Pandya, Anshul A.; Yakel, Jerrel L.

    2013-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is highly expressed in different regions of the brain and is associated with cognitive function as well as anxiety. Agonists and positive allosteric modulators (PAMs) of the α7 subtype of nAChRs have been shown to improve cognition. Previously nicotine, which activates both α7 and non-α7 subtypes of nAChRs, has been shown to have an anxiogenic effect in behavioral tests. In this study, we compared the effects of the α7-selective agonist (PNU-282987) and PAM (PNU-120596) in a variety of behavioral tests in Sprague Dawley rats to look at their effects on learning and memory as well as anxiety. We found that neither PNU-282987 nor PNU-120596 improved spatial-learning or episodic memory by themselves. However when cognitive impairment was induced in the rats with scopolamine (1 mg/kg), both PNU-120596 and PNU-282987 were able to reverse this memory impairment and restore it back to normal levels. While PNU-120596 reversed the scopolamine-induced cognitive impairment, it did not have any adverse effect on anxiety. PNU-282987 on the other hand displayed an increase in anxiety-like behavior at a higher dose (10 mg/kg) that was significantly reduced by the serotonin 5-HT1a receptor antagonist WAY-100135. However the α7 receptor antagonist methyllycaconitine was unable to reverse these anxiety-like effects seen with PNU-282987. These results suggest that α7 nAChR PAMs are pharmacologically advantageous over agonists, and should be considered for further development as therapeutic drugs targeting the α7 receptors. PMID:23321689

  14. Desformylflustrabromine (dFBr) and [3H]dFBr-Labeled Binding Sites in a Nicotinic Acetylcholine Receptor

    PubMed Central

    Hamouda, Ayman K.; Wang, Ze-Jun; Stewart, Deirdre S.; Jain, Atul D.; Glennon, Richard A.

    2015-01-01

    Desformylflustrabromine (dFBr) is a positive allosteric modulator (PAM) of α4β2 and α2β2 nAChRs that, at concentrations >1 µM, also inhibits these receptors and α7 nAChRs. However, its interactions with muscle-type nAChRs have not been characterized, and the locations of its binding site(s) in any nAChR are not known. We report here that dFBr inhibits human muscle (αβεδ) and Torpedo (αβγδ) nAChR expressed in Xenopus oocytes with IC50 values of ∼1 μM. dFBr also inhibited the equilibrium binding of ion channel blockers to Torpedo nAChRs with higher affinity in the nAChR desensitized state ([3H]phencyclidine; IC50 = 4 μM) than in the resting state ([3H]tetracaine; IC50 = 60 μM), whereas it bound with only very low affinity to the ACh binding sites ([3H]ACh, IC50 = 1 mM). Upon irradiation at 312 nm, [3H]dFBr photoincorporated into amino acids within the Torpedo nAChR ion channel with the efficiency of photoincorporation enhanced in the presence of agonist and the agonist-enhanced photolabeling inhibitable by phencyclidine. In the presence of agonist, [3H]dFBr also photolabeled amino acids in the nAChR extracellular domain within binding pockets identified previously for the nonselective nAChR PAMs galantamine and physostigmine at the canonical α-γ interface containing the transmitter binding sites and at the noncanonical δ-β subunit interface. These results establish that dFBr inhibits muscle-type nAChR by binding in the ion channel and that [3H]dFBr is a photoaffinity probe with broad amino acid side chain reactivity. PMID:25870334

  15. Rosuvastatin ameliorates cognitive impairment in rats fed with high-salt and cholesterol diet via inhibiting acetylcholinesterase activity and amyloid beta peptide aggregation.

    PubMed

    Husain, I; Akhtar, M; Abdin, M Zainul; Islamuddin, M; Shaharyar, M; Najmi, A K

    2018-04-01

    Amyloid beta (Aβ) peptide aggregation and cholinergic neurodegeneration are involved in the development of cognitive impairment. Therefore, in this article, we examined rosuvastatin (RSV), an oral hypolipidemic drug, to determine its potential as a dual inhibitor of acetylcholinesterase (AChE) and Aβ peptide aggregation for the treatment of cognitive impairment. Molecular docking study was done to examine the affinity of RSV with Aβ 1-42 and AChE in silico. We also employed neurobehavioral activity tests, biochemical estimation, and histopathology to study the anti-Aβ 1-42 aggregation capability of RSV in vivo. Molecular docking study provided evidence that RSV has the best binding conformer at its receptor site or active site of an enzyme. The cognitive impairment in female Wistar rats was induced by high-salt and cholesterol diet (HSCD) ad libitum for 8 weeks. RSV ameliorated serum cholesterol level, AChE activity, and Aβ 1-42 peptide aggregations in HSCD induced cognitive impairment. In addition, RSV-treated rats showed greater scores in the open field (locomotor activity) test. Moreover, the histopathological studies in the hippocampus and cortex of rat brain also supported that RSV markedly reduced the cognitive impairment and preserved the normal histoarchitectural pattern of the hippocampus and cortex. Taken together, these data indicate that RSV may act as a dual inhibitor of AChE and Aβ 1-42 peptide aggregation, therefore suggesting a therapeutic strategy for cognitive impairment treatment.

  16. [Women's approach to childhood toothache, abdominal ache and earache].

    PubMed

    Efe, Emine; Öncel, Selma; Yilmaz, Mualla

    2012-01-01

    This study was conducted to determine women's about attitudes child's teeth, abdomen and ear ache. Those who had lived in Antalya that 6 number primary health care center between March-May 2004 were enrolled in the study. As data collecting tools. A questionnaire prepared by the authors. This study was determined that 29.2 % of the mothers carried out mixture who had prepared at home to child's abdomen and foot base; 30.3 % were to put breast milk childs' ear; 38.9 % were placed aspirin, salt and salts of lemon to childs' teeth ache. The majority of the women make a wrong practices child that teeth, abdomen and ear ache. This traditional practice effecting factors were the women's educational status and age. The results of the study that education about child care, common health problems and incorrect applications shoud be given to women by nurse.

  17. An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory.

    PubMed

    Butcher, Adrian J; Bradley, Sophie J; Prihandoko, Rudi; Brooke, Simon M; Mogg, Adrian; Bourgognon, Julie-Myrtille; Macedo-Hatch, Timothy; Edwards, Jennifer M; Bottrill, Andrew R; Challiss, R A John; Broad, Lisa M; Felder, Christian C; Tobin, Andrew B

    2016-04-22

    Establishing the in vivo activation status of G protein-coupled receptors would not only indicate physiological roles of G protein-coupled receptors but would also aid drug discovery by establishing drug/receptor engagement. Here, we develop a phospho-specific antibody-based biosensor to detect activation of the M1 muscarinic acetylcholine receptor (M1 mAChR) in vitro and in vivo Mass spectrometry phosphoproteomics identified 14 sites of phosphorylation on the M1 mAChR. Phospho-specific antibodies to four of these sites established that serine at position 228 (Ser(228)) on the M1 mAChR showed extremely low levels of basal phosphorylation that were significantly up-regulated by orthosteric agonist stimulation. In addition, the M1 mAChR-positive allosteric modulator, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, enhanced acetylcholine-mediated phosphorylation at Ser(228) These data supported the hypothesis that phosphorylation at Ser(228) was an indicator of M1 mAChR activation. This was further supported in vivo by the identification of phosphorylated Ser(228) on the M1 mAChR in the hippocampus of mice following administration of the muscarinic ligands xanomeline and 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid. Finally, Ser(228) phosphorylation was seen to increase in the CA1 region of the hippocampus following memory acquisition, a response that correlated closely with up-regulation of CA1 neuronal activity. Thus, determining the phosphorylation status of the M1 mAChR at Ser(228) not only provides a means of establishing receptor activation following drug treatment both in vitro and in vivo but also allows for the mapping of the activation status of the M1 mAChR in the hippocampus following memory acquisition thereby establishing a link between M1 mAChR activation and hippocampus-based memory and learning. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Muscarinic binding sites in cultured bovine pulmonary arterial endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronstam, R.S.; Catravas, J.D.; Ryan, U.S.

    The authors have previously reported a) the presence of muscarinic binding sites on cultured bovine pulmonary arterial endothelial cells (BPAE; 2,000 sites/cell) and b) that acetylcholine inhibits the release of thromboxane B/sub 2/ fro BPAE. Since the authors findings could reflect muscarinic receptors (mAChR) on BPAE, they have further investigated the nature of BPAE muscarinic binding sites and contrast them to those of known functional mAChR. Muscarinic binding sites on BPAE resembled mAChR in that a) the binding of 3 nM /sup 3/H QNB was inhibited by muscarinic agonists and antagonists; b) /sup 3/H QNB binding was 30 times moremore » sensitive to R(-)- than to S(+)-QNB; c) carbamylcholine binding was resolved into high and low affinity components (IC50's = 0.04 and 2 ..mu..M; d) 5'-guanylylimidodiphosphate (100 ..mu..M) shifted agonist binding curves to the right by a factor of 3; 4) the atropine-sensitive binding of /sup 3/H oxotremorine-M (/sup 3/H-OXO-M) was depressed by the guanine nucleotide (IC50 + 60 ..mu..M). However, although gallamine allosterically regulates mAChR binding in other tissues, it did not affect the rates of dissociation of /sup 3/H QNB, /sup 3/H methylscopolamine or /sup 3/H OXO-M from BPAE binding sites. Thus, BPAE muscarinic binding sites posses many but not all of the properties associated with functional mAChR.« less

  19. An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory*♦

    PubMed Central

    Butcher, Adrian J.; Bradley, Sophie J.; Prihandoko, Rudi; Brooke, Simon M.; Mogg, Adrian; Bourgognon, Julie-Myrtille; Macedo-Hatch, Timothy; Edwards, Jennifer M.; Bottrill, Andrew R.; Challiss, R. A. John; Broad, Lisa M.; Felder, Christian C.; Tobin, Andrew B.

    2016-01-01

    Establishing the in vivo activation status of G protein-coupled receptors would not only indicate physiological roles of G protein-coupled receptors but would also aid drug discovery by establishing drug/receptor engagement. Here, we develop a phospho-specific antibody-based biosensor to detect activation of the M1 muscarinic acetylcholine receptor (M1 mAChR) in vitro and in vivo. Mass spectrometry phosphoproteomics identified 14 sites of phosphorylation on the M1 mAChR. Phospho-specific antibodies to four of these sites established that serine at position 228 (Ser228) on the M1 mAChR showed extremely low levels of basal phosphorylation that were significantly up-regulated by orthosteric agonist stimulation. In addition, the M1 mAChR-positive allosteric modulator, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, enhanced acetylcholine-mediated phosphorylation at Ser228. These data supported the hypothesis that phosphorylation at Ser228 was an indicator of M1 mAChR activation. This was further supported in vivo by the identification of phosphorylated Ser228 on the M1 mAChR in the hippocampus of mice following administration of the muscarinic ligands xanomeline and 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid. Finally, Ser228 phosphorylation was seen to increase in the CA1 region of the hippocampus following memory acquisition, a response that correlated closely with up-regulation of CA1 neuronal activity. Thus, determining the phosphorylation status of the M1 mAChR at Ser228 not only provides a means of establishing receptor activation following drug treatment both in vitro and in vivo but also allows for the mapping of the activation status of the M1 mAChR in the hippocampus following memory acquisition thereby establishing a link between M1 mAChR activation and hippocampus-based memory and learning. PMID:26826123

  20. 3D MI-DRAGON: new model for the reconstruction of US FDA drug- target network and theoretical-experimental studies of inhibitors of rasagiline derivatives for AChE.

    PubMed

    Prado-Prado, Francisco; García-Mera, Xerardo; Escobar, Manuel; Alonso, Nerea; Caamaño, Olga; Yañez, Matilde; González-Díaz, Humberto

    2012-01-01

    The number of neurodegenerative diseases has been increasing in recent years. Many of the drug candidates to be used in the treatment of neurodegenerative diseases present specific 3D structural features. An important protein in this sense is the acetylcholinesterase (AChE), which is the target of many Alzheimer's dementia drugs. Consequently, the prediction of Drug-Protein Interactions (DPIs/nDPIs) between new drug candidates and specific 3D structure and targets is of major importance. To this end, we can use Quantitative Structure-Activity Relationships (QSAR) models to carry out a rational DPIs prediction. Unfortunately, many previous QSAR models developed to predict DPIs take into consideration only 2D structural information and codify the activity against only one target. To solve this problem we can develop some 3D multi-target QSAR (3D mt-QSAR) models. In this study, using the 3D MI-DRAGON technique, we have introduced a new predictor for DPIs based on two different well-known software. We have used the MARCH-INSIDE (MI) and DRAGON software to calculate 3D structural parameters for drugs and targets respectively. Both classes of 3D parameters were used as input to train Artificial Neuronal Network (ANN) algorithms using as benchmark dataset the complex network (CN) made up of all DPIs between US FDA approved drugs and their targets. The entire dataset was downloaded from the DrugBank database. The best 3D mt-QSAR predictor found was an ANN of Multi-Layer Perceptron-type (MLP) with profile MLP 37:37-24-1:1. This MLP classifies correctly 274 out of 321 DPIs (Sensitivity = 85.35%) and 1041 out of 1190 nDPIs (Specificity = 87.48%), corresponding to training Accuracy = 87.03%. We have validated the model with external predicting series with Sensitivity = 84.16% (542/644 DPIs; Specificity = 87.51% (2039/2330 nDPIs) and Accuracy = 86.78%. The new CNs of DPIs reconstructed from US FDA can be used to explore large DPI databases in order to discover both new drugs

  1. Pyridostigmine but not 3,4-diaminopyridine exacerbates ACh receptor loss and myasthenia induced in mice by muscle-specific kinase autoantibody.

    PubMed

    Morsch, Marco; Reddel, Stephen W; Ghazanfari, Nazanin; Toyka, Klaus V; Phillips, William D

    2013-05-15

    In myasthenia gravis, the neuromuscular junction is impaired by the antibody-mediated loss of postsynaptic acetylcholine receptors (AChRs). Muscle weakness can be improved upon treatment with pyridostigmine, a cholinesterase inhibitor, or with 3,4-diaminopyridine, which increases the release of ACh quanta. The clinical efficacy of pyridostigmine is in doubt for certain forms of myasthenia. Here we formally examined the effects of these compounds in the antibody-induced mouse model of anti-muscle-specific kinase (MuSK) myasthenia gravis. Mice received 14 daily injections of IgG from patients with anti-MuSK myasthenia gravis. This caused reductions in postsynaptic AChR densities and in endplate potential amplitudes. Systemic delivery of pyridostigmine at therapeutically relevant levels from days 7 to 14 exacerbated the anti-MuSK-induced structural alterations and functional impairment at motor endplates in the diaphragm muscle. No such effect of pyridostigmine was found in mice receiving control human IgG. Mice receiving smaller amounts of MuSK autoantibodies did not display overt weakness, but 9 days of pyridostigmine treatment precipitated generalised muscle weakness. In contrast, one week of treatment with 3,4-diaminopyridine enhanced neuromuscular transmission in the diaphragm muscle. Both pyridostigmine and 3,4-diaminopyridine increase ACh in the synaptic cleft yet only pyridostigmine potentiated the anti-MuSK-induced decline in endplate ACh receptor density. These results thus suggest that ongoing pyridostigmine treatment potentiates anti-MuSK-induced AChR loss by prolonging the activity of ACh in the synaptic cleft.

  2. Electrical coupling and release of K+ from endothelial cells co-mediate ACh-induced smooth muscle hyperpolarization in guinea-pig inner ear artery

    PubMed Central

    Jiang, Zhi-Gen; Nuttall, Alfred L; Zhao, Hui; Dai, Chun-Fu; Guan, Bing-Cai; Si, Jun-Qiang; Yang, Yu-Qin

    2005-01-01

    The physiological basis of ACh-elicited hyperpolarization in guinea-pig in vitro cochlear spiral modiolar artery (SMA) was investigated by intracellular recording combined with dye labelling of recorded cells and immunocytochemistry. We found the following. (1) The ACh-hyperpolarization was prominent only in cells that had a low resting potential (less negative than −60 mV). ACh-hyperpolarization was reversibly blocked by 4-DAMP, charybdotoxin or BAPTA-AM, but not by Nω-nitro-l-arginine methyl ester, glipizide, indomethacin or 17-octadecynoic acid. (2) Ba2+ (100 μm) and ouabain (1 μm) each attenuated ACh-hyperpolarization by ∼ 30% in smooth muscle cells (SMCs) but had only slight or no inhibition in endothelial cells (ECs). A combination of Ba2+ and 18β-glycyrrhetinic acid near completely blocked the ACh-hyperpolarization in SMCs. (3) High K+ (10 mm) induced a smaller hyperpolarization in ECs than in SMCs, with an amplitude ratio of 0.49: 1. Ba2+ blocked the K+-induced hyperpolarization by ∼ 85% in both cell types, whereas ouabain inhibited K+-hyperpolarization differently in SMCs (19%) and ECs (35%) and increased input resistance. 18β-Glycyrrhetinic acid blocked the high K+-hyperpolarization in ECs only. (4) Weak myoendothelial dye coupling was detected by confocal microscopy in cells recorded with a propidium iodide-containing electrode for longer than 30 min. A sparse plexus of choline acetyltransferase-immunoreactive (ChAT) fibres was observed around the SMA and its up-stream arteries. (5) Evoked excitatory junction potentials (EJP) were partially blocked by 4-DAMP in half of the cells tested. We conclude that ACh-induced hyperpolarization originates from ECs via activation of Ca2+-activated potassium channels, and is independent of the release of NO, cyclo-oxygenase or cytochrome P450 products. ACh-induced hyperpolarization in smooth muscle cells involves two mechanisms: (a) electrical spread of the hyperpolarization from the endothelium, and (b

  3. Electrical coupling and release of K+ from endothelial cells co-mediate ACh-induced smooth muscle hyperpolarization in guinea-pig inner ear artery.

    PubMed

    Jiang, Zhi-Gen; Nuttall, Alfred L; Zhao, Hui; Dai, Chun-Fu; Guan, Bing-Cai; Si, Jun-Qiang; Yang, Yu-Qin

    2005-04-15

    The physiological basis of ACh-elicited hyperpolarization in guinea-pig in vitro cochlear spiral modiolar artery (SMA) was investigated by intracellular recording combined with dye labelling of recorded cells and immunocytochemistry. We found the following. (1) The ACh-hyperpolarization was prominent only in cells that had a low resting potential (less negative than -60 mV). ACh-hyperpolarization was reversibly blocked by 4-DAMP, charybdotoxin or BAPTA-AM, but not by N(omega)-nitro-L-arginine methyl ester, glipizide, indomethacin or 17-octadecynoic acid. (2) Ba(2)(+) (100 microm) and ouabain (1 microm) each attenuated ACh-hyperpolarization by approximately 30% in smooth muscle cells (SMCs) but had only slight or no inhibition in endothelial cells (ECs). A combination of Ba(2)(+) and 18beta-glycyrrhetinic acid near completely blocked the ACh-hyperpolarization in SMCs. (3) High K(+) (10 mm) induced a smaller hyperpolarization in ECs than in SMCs, with an amplitude ratio of 0.49 : 1. Ba(2)(+) blocked the K(+)-induced hyperpolarization by approximately 85% in both cell types, whereas ouabain inhibited K(+)-hyperpolarization differently in SMCs (19%) and ECs (35%) and increased input resistance. 18beta-Glycyrrhetinic acid blocked the high K(+)-hyperpolarization in ECs only. (4) Weak myoendothelial dye coupling was detected by confocal microscopy in cells recorded with a propidium iodide-containing electrode for longer than 30 min. A sparse plexus of choline acetyltransferase-immunoreactive (ChAT) fibres was observed around the SMA and its up-stream arteries. (5) Evoked excitatory junction potentials (EJP) were partially blocked by 4-DAMP in half of the cells tested. We conclude that ACh-induced hyperpolarization originates from ECs via activation of Ca(2)(+)-activated potassium channels, and is independent of the release of NO, cyclo-oxygenase or cytochrome P450 products. ACh-induced hyperpolarization in smooth muscle cells involves two mechanisms: (a) electrical spread

  4. 31 CFR 363.38 - What happens if my financial institution returns an ACH debit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TreasuryDirect § 363.38 What happens if my financial institution returns an ACH debit? If your designated financial institution returns an ACH debit, we reserve the right to reinitiate the debit at our option. We.... We are not responsible for any fees your financial institution may charge relating to returned ACH...

  5. Enhancement of Attentional Performance by Selective Stimulation of α4β2* nAChRs: Underlying Cholinergic Mechanisms

    PubMed Central

    Howe, William M; Ji, Jinzhao; Parikh, Vinay; Williams, Sarah; Mocaër, Elisabeth; Trocmé-Thibierge, Caryn; Sarter, Martin

    2010-01-01

    Impairments in attention are a major component of the cognitive symptoms of neuropsychiatric and neurodegenerative disorders. Using an operant sustained attention task (SAT), including a distractor condition (dSAT), we assessed the putative pro-attentional effects of the selective α4β2* nicotinic acetylcholine receptor (nAChR) agonist S 38232 in comparison with the non-selective agonist nicotine. Neither drug benefited SAT performance. However, in interaction with the increased task demands implemented by distractor presentation, the selective agonist, but not nicotine, enhanced the detection of signals during the post-distractor recovery period. This effect is consistent with the hypothesis that second-long increases in cholinergic activity (‘transients') mediate the detection of cues and that nAChR agonists augment such transients. Electrochemical recordings of prefrontal cholinergic transients evoked by S 38232 and nicotine indicated that the α4β2* nAChR agonist evoked cholinergic transients that were characterized by a faster rise time and more rapid decay than those evoked by nicotine. Blockade of the α7 nAChR ‘sharpens' nicotine-evoked transients; therefore, we determined the effects of co-administration of nicotine and the α7 nAChR antagonist methyllycaconitine on dSAT performance. Compared with vehicle and nicotine alone, this combined treatment significantly enhanced the detection of signals. These results indicate that compared with nicotine, α4β2* nAChR agonists significantly enhance attentional performance and that the dSAT represents a useful behavioral screening tool. The combined behavioral and electrochemical evidence supports the hypothesis that nAChR agonist-evoked cholinergic transients, which are characterized by rapid rise time and fast decay, predict robust drug-induced enhancement of attentional performance. PMID:20147893

  6. Diverse Actions and Target-Site Selectivity of Neonicotinoids: Structural Insights

    PubMed Central

    Matsuda, Kazuhiko; Kanaoka, Satoshi; Akamatsu, Miki; Sattelle, David B.

    2009-01-01

    The nicotinic acetylcholine receptors (nAChRs) are targets for human and veterinary medicines as well as insecticides. Subtype-selectivity among the diverse nAChR family members is important for medicines targeting particular disorders, and pest-insect selectivity is essential for the development of safer, environmentally acceptable insecticides. Neonicotinoid insecticides selectively targeting insect nAChRs have important applications in crop protection and animal health. Members of this class exhibit strikingly diverse actions on their nAChR targets. Here we review the chemistry and diverse actions of neonicotinoids on insect and mammalian nAChRs. Electrophysiological studies on native nAChRs and on wild-type and mutagenized recombinant nAChRs have shown that basic residues particular to loop D of insect nAChRs are likely to interact electrostatically with the nitro group of neonicotinoids. In 2008, the crystal structures were published showing neonicotinoids docking into the acetylcholine binding site of molluscan acetylcholine binding proteins with homology to the ligand binding domain (LBD) of nAChRs. The crystal structures showed that 1) glutamine in loop D, corresponding to the basic residues of insect nAChRs, hydrogen bonds with the NO2 group of imidacloprid and 2) neonicotinoid-unique stacking and CH-π bonds at the LBD. A neonicotinoid-resistant strain obtained by laboratory-screening has been found to result from target site mutations, and possible reasons for this are also suggested by the crystal structures. The prospects of designing neonicotinoids that are safe not only for mammals but also for beneficial insects such as honey bees (Apis mellifera) are discussed in terms of interactions with non-α nAChR subunits. PMID:19321668

  7. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin

    PubMed Central

    Ihara, Makoto; Okajima, Toshihide; Yamashita, Atsuko; Oda, Takuma; Hirata, Koichi; Nishiwaki, Hisashi; Morimoto, Takako; Akamatsu, Miki; Ashikawa, Yuji; Kuroda, Shun’ichi; Mega, Ryosuke; Kuramitsu, Seiki; Sattelle, David B.

    2008-01-01

    Neonicotinoid insecticides, which act on nicotinic acetylcholine receptors (nAChRs) in a variety of ways, have extremely low mammalian toxicity, yet the molecular basis of such actions is poorly understood. To elucidate the molecular basis for nAChR–neonicotinoid interactions, a surrogate protein, acetylcholine binding protein from Lymnaea stagnalis (Ls-AChBP) was crystallized in complex with neonicotinoid insecticides imidacloprid (IMI) or clothianidin (CTD). The crystal structures suggested that the guanidine moiety of IMI and CTD stacks with Tyr185, while the nitro group of IMI but not of CTD makes a hydrogen bond with Gln55. IMI showed higher binding affinity for Ls-AChBP than that of CTD, consistent with weaker CH–π interactions in the Ls-AChBP–CTD complex than in the Ls-AChBP–IMI complex and the lack of the nitro group-Gln55 hydrogen bond in CTD. Yet, the NH at position 1 of CTD makes a hydrogen bond with the backbone carbonyl of Trp143, offering an explanation for the diverse actions of neonicotinoids on nAChRs. PMID:18338186

  8. Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the α7 nicotinic acetylcholine receptor

    PubMed Central

    Spurny, Radovan; Debaveye, Sarah; Farinha, Ana; Veys, Ken; Vos, Ann M.; Gossas, Thomas; Atack, John; Bertrand, Sonia; Bertrand, Daniel; Danielson, U. Helena; Tresadern, Gary; Ulens, Chris

    2015-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) belongs to the family of pentameric ligand-gated ion channels and is involved in fast synaptic signaling. In this study, we take advantage of a recently identified chimera of the extracellular domain of the native α7 nicotinic acetylcholine receptor and acetylcholine binding protein, termed α7-AChBP. This chimeric receptor was used to conduct an innovative fragment-library screening in combination with X-ray crystallography to identify allosteric binding sites. One allosteric site is surface-exposed and is located near the N-terminal α-helix of the extracellular domain. Ligand binding at this site causes a conformational change of the α-helix as the fragment wedges between the α-helix and a loop homologous to the main immunogenic region of the muscle α1 subunit. A second site is located in the vestibule of the receptor, in a preexisting intrasubunit pocket opposite the agonist binding site and corresponds to a previously identified site involved in positive allosteric modulation of the bacterial homolog ELIC. A third site is located at a pocket right below the agonist binding site. Using electrophysiological recordings on the human α7 nAChR we demonstrate that the identified fragments, which bind at these sites, can modulate receptor activation. This work presents a structural framework for different allosteric binding sites in the α7 nAChR and paves the way for future development of novel allosteric modulators with therapeutic potential. PMID:25918415

  9. A benzothiazole/piperazine derivative with acetylcholinesterase inhibitory activity: Improvement in streptozotocin-induced cognitive deficits in rats.

    PubMed

    Demir Özkay, Ümide; Can, Özgür Devrim; Sağlık, Begüm Nurpelin; Turan, Nazlı

    2017-12-01

    Acetylcholinesterase (AChE) inhibitors are frequently prescribed to mitigate the cognitive decline in Alzheimer's disease. Thus, we investigated the possible efficacy of the AChE inhibitor 2-[(6-Nitro-2-benzothiazolyl)amino]-2-oxoethyl4-[2-(N,N-dimethylamino)ethyl] piperazine-1 carbodithioate (BPCT) in a streptozotocin (STZ)-induced Alzheimer's disease model (SADM). First, we analyzed the molecular interaction of BPCT with AChE via a docking study. Then, the cognitive effects of BPCT (10 and 20mg/kg) were evaluated in intracerebroventricular STZ- and vehicle-administered rats with the elevated plus maze (EPM), Morris water maze (MWM), and active avoidance (AA) tests. Locomotor activity was also assessed. Docking analysis indicated significant binding of BPCT to the AChE active site. In behavioral tests, STZ administration impaired cognitive performance in SADM rats versus control rats. Treatment with donepezil or BPCT significantly decreased the prolonged 2nd retention transfer latency and 2nd retention latency time values of the SADM group in the EPM and MWM tests, respectively. Further, prolonged latency times were decreased and reduced frequency of avoidance events were increased in the AA test. Locomotor activity between groups was not different. BPCT appears to function as a central AChE inhibitor, and its improvement of deficits in SADM rats suggests that it has therapeutic potential in Alzheimer's disease. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. LCR 5' hypersensitive site specificity for globin gene activation within the active chromatin hub.

    PubMed

    Peterson, Kenneth R; Fedosyuk, Halyna; Harju-Baker, Susanna

    2012-12-01

    The DNaseI hypersensitive sites (HSs) of the human β-globin locus control region (LCR) may function as part of an LCR holocomplex within a larger active chromatin hub (ACH). Differential activation of the globin genes during development may be controlled in part by preferential interaction of each gene with specific individual HSs during globin gene switching, a change in conformation of the LCR holocomplex, or both. To distinguish between these possibilities, human β-globin locus yeast artificial chromosome (β-YAC) lines were produced in which the ε-globin gene was replaced with a second marked β-globin gene (β(m)), coupled to an intact LCR, a 5'HS3 complete deletion (5'ΔHS3) or a 5'HS3 core deletion (5'ΔHS3c). The 5'ΔHS3c mice expressed β(m)-globin throughout development; γ-globin was co-expressed in the embryonic yolk sac, but not in the fetal liver; and wild-type β-globin was co-expressed in adult mice. Although the 5'HS3 core was not required for β(m)-globin expression, previous work showed that the 5'HS3 core is necessary for ε-globin expression during embryonic erythropoiesis. A similar phenotype was observed in 5'HS complete deletion mice, except β(m)-globin expression was higher during primitive erythropoiesis and γ-globin expression continued into fetal definitive erythropoiesis. These data support a site specificity model of LCR HS-globin gene interaction.

  11. Pyridostigmine but not 3,4-diaminopyridine exacerbates ACh receptor loss and myasthenia induced in mice by muscle-specific kinase autoantibody

    PubMed Central

    Morsch, Marco; Reddel, Stephen W; Ghazanfari, Nazanin; Toyka, Klaus V; Phillips, William D

    2013-01-01

    In myasthenia gravis, the neuromuscular junction is impaired by the antibody-mediated loss of postsynaptic acetylcholine receptors (AChRs). Muscle weakness can be improved upon treatment with pyridostigmine, a cholinesterase inhibitor, or with 3,4-diaminopyridine, which increases the release of ACh quanta. The clinical efficacy of pyridostigmine is in doubt for certain forms of myasthenia. Here we formally examined the effects of these compounds in the antibody-induced mouse model of anti-muscle-specific kinase (MuSK) myasthenia gravis. Mice received 14 daily injections of IgG from patients with anti-MuSK myasthenia gravis. This caused reductions in postsynaptic AChR densities and in endplate potential amplitudes. Systemic delivery of pyridostigmine at therapeutically relevant levels from days 7 to 14 exacerbated the anti-MuSK-induced structural alterations and functional impairment at motor endplates in the diaphragm muscle. No such effect of pyridostigmine was found in mice receiving control human IgG. Mice receiving smaller amounts of MuSK autoantibodies did not display overt weakness, but 9 days of pyridostigmine treatment precipitated generalised muscle weakness. In contrast, one week of treatment with 3,4-diaminopyridine enhanced neuromuscular transmission in the diaphragm muscle. Both pyridostigmine and 3,4-diaminopyridine increase ACh in the synaptic cleft yet only pyridostigmine potentiated the anti-MuSK-induced decline in endplate ACh receptor density. These results thus suggest that ongoing pyridostigmine treatment potentiates anti-MuSK-induced AChR loss by prolonging the activity of ACh in the synaptic cleft. PMID:23440963

  12. The in vitro comparative study of the effect of BPA, BPS, BPF and BPAF on human erythrocyte membrane; perturbations in membrane fluidity, alterations in conformational state and damage to proteins, changes in ATP level and Na+/K+ ATPase and AChE activities.

    PubMed

    Maćczak, Aneta; Duchnowicz, Piotr; Sicińska, Paulina; Koter-Michalak, Maria; Bukowska, Bożena; Michałowicz, Jaromir

    2017-12-01

    Bisphenols are massively used in the industry, and thus the exposure of biota including humans to these substances has been noted. In this study we have assessed the effect of BPA and its selected analogs, i.e. BPS, BPF and BPAF on membrane of human red blood cells, which is the first barrier that must be overcome by xenobiotics penetrating the cell, and is commonly utilized as a model in the investigation of the effect of different xenobiotics on various cell types. Red blood cells were incubated with BPA and its analogs in the concentrations ranging from 0.1 to 250 μg/ml for 4 h and 24 h. We have noted that the compounds studied altered membrane fluidity at its hydrophobic region, increased internal viscosity and osmotic fragility of the erythrocytes and altered conformational state of membrane proteins. Moreover, bisphenols examined increased thiol groups level, caused oxidative damage to membrane proteins, decreased ATP level, depleted the activity of Na+/K + ATPase and changed the activity of AChE in human red blood cells. It has been shown that the strongest changes were noted in cells treated with BPAF, while BPS caused the weakest (or none) alterations in the parameters studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Modulation of hippocampal ACh release by chronic nicergoline treatment in freely moving young and aged rats.

    PubMed

    Carfagna, N; Di Clemente, A; Cavanus, S; Damiani, D; Gerna, M; Salmoiraghi, P; Cattaneo, B; Post, C

    1995-09-15

    The effects of nicergoline on basal and K(+)-stimulated release of ACh in the hippocampus of 3- and 19-month old rats has been studied by microdialysis. A significant decrease of basal ACh release (59%) was found in aged vehicle treated rats in comparison to young rats. High-K+ (100 mM) in the perfusate strongly increased the release of ACh by up to 6-fold over the baseline of both young and aged rats. Chronic oral administration of nicergoline to aged rats (5 mg/kg b.i.d. for 6 weeks) significantly reversed (93%) the age-related decrease of basal release of ACh, leaving the increase due to K+ depolarization unchanged. In young animals, nicergoline did not affect the basal output of ACh, but enhanced the K(+)-evoked release of ACh by 39%. Results from this study demonstrate that nicergoline treatment increases the ability of hippocampal cholinergic terminals to release ACh, and suggest that this drug can reset the cholinergic impairement associated with aging.

  14. Pharmacological and immunochemical characterization of α2* nicotinic acetylcholine receptors (nAChRs) in mouse brain

    PubMed Central

    Whiteaker, Paul; Wilking, Jennifer A; Brown, Robert WB; Brennan, Robert J; Collins, Allan C; Lindstrom, Jon M; Boulter, Jim

    2009-01-01

    Aim: α2 nAChR subunit mRNA expression in mice is most intense in the olfactory bulbs and interpeduncular nucleus. We aimed to investigate the properties of α2* nAChRs in these mouse brain regions. Methods: α2 nAChR subunit-null mutant mice were engineered. Pharmacological and immunoprecipitation studies were used to determine the composition of α2 subunit-containing (α2*) nAChRs in these two regions. Results: [125I]Epibatidine (200 pmol/L) autoradiography and saturation binding demonstrated that α2 deletion reduces nAChR expression in both olfactory bulbs and interpeduncular nucleus (by 4.8±1.7 and 92±26 fmol̇mg-1 protein, respectively). Pharmacological characterization using the β2-selective drug A85380 to inhibit [125I]epibatidine binding proved inconclusive, so immunoprecipitation methods were used to further characterize α2* nAChRs. Protocols were established to immunoprecipitate β2 and β4 nAChRs. Immunoprecipitation specificity was ascertained using tissue from β2- and β4-null mutant mice, and efficacy was good (>90% of β2* and >80% of β4* nAChRs were routinely recovered). Conclusion: Immunoprecipitation experiments indicated that interpeduncular nucleus α2* nAChRs predominantly contain β2 subunits, while those in olfactory bulbs contain mainly β4 subunits. In addition, the immunoprecipitation evidence indicated that both nuclei, but especially the interpeduncular nucleus, express nAChR complexes containing both β2 and β4 subunits. PMID:19498420

  15. Design and prediction of new acetylcholinesterase inhibitor via quantitative structure activity relationship of huprines derivatives.

    PubMed

    Zhang, Shuqun; Hou, Bo; Yang, Huaiyu; Zuo, Zhili

    2016-05-01

    Acetylcholinesterase (AChE) is an important enzyme in the pathogenesis of Alzheimer's disease (AD). Comparative quantitative structure-activity relationship (QSAR) analyses on some huprines inhibitors against AChE were carried out using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR) methods. Three highly predictive QSAR models were constructed successfully based on the training set. The CoMFA, CoMSIA, and HQSAR models have values of r (2) = 0.988, q (2) = 0.757, ONC = 6; r (2) = 0.966, q (2) = 0.645, ONC = 5; and r (2) = 0.957, q (2) = 0.736, ONC = 6. The predictabilities were validated using an external test sets, and the predictive r (2) values obtained by the three models were 0.984, 0.973, and 0.783, respectively. The analysis was performed by combining the CoMFA and CoMSIA field distributions with the active sites of the AChE to further understand the vital interactions between huprines and the protease. On the basis of the QSAR study, 14 new potent molecules have been designed and six of them are predicted to be more active than the best active compound 24 described in the literature. The final QSAR models could be helpful in design and development of novel active AChE inhibitors.

  16. Inhibition and Larvicidal Activity of Phenylpropanoids from Piper sarmentosum on Acetylcholinesterase against Mosquito Vectors and Their Binding Mode of Interaction.

    PubMed

    Hematpoor, Arshia; Liew, Sook Yee; Chong, Wei Lim; Azirun, Mohd Sofian; Lee, Vannajan Sanghiran; Awang, Khalijah

    2016-01-01

    Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of dengue fever and West Nile virus diseases. This study was conducted to determine the toxicity, mechanism of action and the binding interaction of three active phenylpropanoids from Piper sarmentosum (Piperaceae) toward late 3rd or early 4th larvae of above vectors. A bioassay guided-fractionation on the hexane extract from the roots of Piper sarmentosum led to the isolation and identification of three active phenylpropanoids; asaricin 1, isoasarone 2 and trans-asarone 3. The current study involved evaluation of the toxicity and acetylcholinesterase (AChE) inhibition of these compounds against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae. Asaricin 1 and isoasarone 2 were highly potent against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae causing up to 100% mortality at ≤ 15 μg/mL concentration. The ovicidal activity of asaricin 1, isoasarone 2 and trans-asarone 3 were evaluated through egg hatching. Asaricin 1 and isoasarone 2 showed potent ovicidal activity. Ovicidal activity for both compounds was up to 95% at 25μg/mL. Asaricin 1 and isoasarone 2 showed strong inhibition on acetylcholinesterase with relative IC50 values of 0.73 to 1.87 μg/mL respectively. These findings coupled with the high AChE inhibition may suggest that asaricin 1 and isoasarone 2 are neuron toxic compounds toward Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Further computational docking with Autodock Vina elaborates the possible interaction of asaricin 1 and isoasarone 2 with three possible binding sites of AChE which includes catalytic triads (CAS: S238, E367, H480), the peripheral sites (PAS: E72, W271) and anionic binding site (W83). The binding affinity of asaricin 1 and isoasarone 2 were relatively strong with asaricin 1 showed a higher binding affinity in the anionic pocket.

  17. In vivo pharmacological interactions between a type II positive allosteric modulator of α7 nicotinic ACh receptors and nicotinic agonists in a murine tonic pain model

    PubMed Central

    Freitas, K; Negus, SS; Carroll, FI; Damaj, MI

    2013-01-01

    Background and Purpose The α7 nicotinic ACh receptor subtype is abundantly expressed in the CNS and in the periphery. Recent evidence suggests that α7 nicotinic ACh receptor (nAChR) subtypes, which can be activated by an endogenous cholinergic tone comprising ACh and the α7 agonist choline, play an important role in chronic pain and inflammation. In this study, we evaluated whether type II α7 positive allosteric modulator PNU-120596 induces antinociception on its own and in combination with choline in the formalin pain model. Experimental Approach We assessed the effects of PNU-120596 and choline and the nature of their interactions in the formalin test using an isobolographic analysis. In addition, we evaluated the interaction of PNU-120596 with PHA-54613, an exogenous selective α7 nAChR agonist, in the formalin test. Finally, we assessed the interaction between PNU-120596 and nicotine using acute thermal pain, locomotor activity, body temperature and convulsing activity tests in mice. Key Results We found that PNU-120596 dose-dependently attenuated nociceptive behaviour in the formalin test after systemic administration in mice. In addition, mixtures of PNU-120596 and choline synergistically reduced formalin-induced pain. PNU-120596 enhanced the effects of nicotine and α7 agonist PHA-543613 in the same test. In contrast, PNU-120596 failed to enhance nicotine-induced convulsions, hypomotility and antinociception in acute pain models. Surprisingly, it enhanced nicotine-induced hypothermia via activation of α7 nAChRs. Conclusions and Implications Our results demonstrate that type II α7 positive allosteric modulators produce antinociceptive effects in the formalin test through a synergistic interaction with the endogenous α7 agonist choline. PMID:23004024

  18. Extracellular cyclic ADP-ribose potentiates ACh-induced contraction in bovine tracheal smooth muscle.

    PubMed

    Franco, L; Bruzzone, S; Song, P; Guida, L; Zocchi, E; Walseth, T F; Crimi, E; Usai, C; De Flora, A; Brusasco, V

    2001-01-01

    Cyclic ADP-ribose (cADPR), a universal calcium releaser, is generated from NAD(+) by an ADP-ribosyl cyclase and is degraded to ADP-ribose by a cADPR hydrolase. In mammals, both activities are expressed as ectoenzymes by the transmembrane glycoprotein CD38. CD38 was identified in both epithelial cells and smooth myocytes isolated from bovine trachea. Intact tracheal smooth myocytes (TSMs) responded to extracellular cADPR (100 microM) with an increase in intracellular calcium concentration ([Ca(2+)](i)) both at baseline and after acetylcholine (ACh) stimulation. The nonhydrolyzable analog 3-deaza-cADPR (10 nM) elicited the same effects as cADPR, whereas the cADPR antagonist 8-NH(2)-cADPR (10 microM) inhibited both basal and ACh-stimulated [Ca(2+)](i) levels. Extracellular cADPR or 3-deaza-cADPR caused a significant increase of ACh-induced contraction in tracheal smooth muscle strips, whereas 8-NH(2)-cADPR decreased it. Tracheal mucosa strips, by releasing NAD(+), enhanced [Ca(2+)](i) in isolated TSMs, and this increase was abrogated by either NAD(+)-ase or 8-NH(2)-cADPR. These data suggest the existence of a paracrine mechanism whereby mucosa-released extracellular NAD(+) plays a hormonelike function and cADPR behaves as second messenger regulating calcium-related contractility in TSMs.

  19. Differential α4(+)/(−)β2 Agonist-binding Site Contributions to α4β2 Nicotinic Acetylcholine Receptor Function within and between Isoforms*

    PubMed Central

    Lucero, Linda M.; Weltzin, Maegan M.; Eaton, J. Brek; Cooper, John F.; Lindstrom, Jon M.; Lukas, Ronald J.; Whiteaker, Paul

    2016-01-01

    Two α4β2 nicotinic acetylcholine receptor (α4β2-nAChR) isoforms exist with (α4)2(β2)3 and (α4)3(β2)2 subunit stoichiometries and high versus low agonist sensitivities (HS and LS), respectively. Both isoforms contain a pair of α4(+)/(−)β2 agonist-binding sites. The LS isoform also contains a unique α4(+)/(−)α4 site with lower agonist affinity than the α4(+)/(−)β2 sites. However, the relative roles of the conserved α4(+)/(−)β2 agonist-binding sites in and between the isoforms have not been studied. We used a fully linked subunit concatemeric nAChR approach to express pure populations of HS or LS isoform α4β2*-nAChR. This approach also allowed us to mutate individual subunit interfaces, or combinations thereof, on each isoform background. We used this approach to systematically mutate a triplet of β2 subunit (−)-face E-loop residues to their non-conserved α4 subunit counterparts or vice versa (β2HQT and α4VFL, respectively). Mutant-nAChR constructs (and unmodified controls) were expressed in Xenopus oocytes. Acetylcholine concentration-response curves and maximum function were measured using two-electrode voltage clamp electrophysiology. Surface expression was measured with 125I-mAb 295 binding and was used to define function/nAChR. If the α4(+)/(−)β2 sites contribute equally to function, making identical β2HQT substitutions at either site should produce similar functional outcomes. Instead, highly differential outcomes within the HS isoform, and between the two isoforms, were observed. In contrast, α4VFL mutation effects were very similar in all positions of both isoforms. Our results indicate that the identity of subunits neighboring the otherwise equivalent α4(+)/(−)β2 agonist sites modifies their contributions to nAChR activation and that E-loop residues are an important contributor to this neighbor effect. PMID:26644472

  20. Sympathetic α₃β₂-nAChRs mediate cerebral neurogenic nitrergic vasodilation in the swine.

    PubMed

    Lee, Reggie Hui-Chao; Liu, Yi-Qing; Chen, Po-Yi; Liu, Chin-Hung; Chen, Mei-Fang; Lin, Hung-Wen; Kuo, Jon-Son; Premkumar, Louis S; Lee, Tony Jer-Fu

    2011-08-01

    The α(7)-nicotinic ACh receptor (α(7)-nAChR) on sympathetic neurons innervating basilar arteries of pigs crossed bred between Landrace and Yorkshire (LY) is known to mediate nicotine-induced, β-amyloid (Aβ)-sensitive nitrergic neurogenic vasodilation. Preliminary studies, however, demonstrated that nicotine-induced cerebral vasodilation in pigs crossbred among Landrace, Yorkshire, and Duroc (LYD) was insensitive to Aβ and α-bungarotoxin (α-BGTX). We investigated nAChR subtype on sympathetic neurons innervating LYD basilar arteries. Nicotine-induced relaxation of porcine isolated basilar arteries was examined by tissue bath myography, inward currents on nAChR-expressing oocytes by two-electrode voltage recording, and mRNA and protein expression in the superior cervical ganglion (SCG) and middle cervical ganglion (MCG) by reverse transcription PCR and Western blotting. Nicotine-induced basilar arterial relaxation was not affected by Aβ, α-BGTX, and α-conotoxin IMI (α(7)-nAChR antagonists), or α-conotoxin AuIB (α(3)β(4)-nAChR antagonist) but was inhibited by tropinone and tropane (α(3)-containing nAChR antagonists) and α-conotoxin MII (selective α(3)β(2)-nAChR antagonist). Nicotine-induced inward currents in α(3)β(2)-nAChR-expressing oocytes were inhibited by α-conotoxin MII but not by α-BGTX, Aβ, or α-conotoxin AuIB. mRNAs of α(3)-, α(7)-, β(2)-, and β(4)-subunits were expressed in both SCGs and MCGs with significantly higher mRNAs of α(3)-, β(2)-, and β(4)-subunits than that of α(7)-subunit. The Aβ-insensitive sympathetic α(3)β(2)-nAChR mediates nicotine-induced cerebral nitrergic neurogenic vasodilation in LYD pigs. The different finding from Aβ-sensitive α(7)-nAChR in basilar arteries of LY pigs may offer a partial explanation for different sensitivities of individuals to Aβ in causing diminished cerebral nitrergic vasodilation in diseases involving Aβ.

  1. The inhibition, reactivation and mechanism of VX-, sarin-, fluoro-VX and fluoro-sarin surrogates following their interaction with HuAChE and HuBuChE.

    PubMed

    Chao, Chih-Kai; Balasubramanian, Narayanaganesh; Gerdes, John M; Thompson, Charles M

    2018-06-16

    In this study, the mechanisms of HuAChE and HuBChE inhibition by Me-P(O) (OPNP) (OR) [PNP = p-nitrophenyl; R = CH 2 CH 3 , CH 2 CH 2 F, OCH(CH 3 ) 2 , OCH(CH 3 ) (CH 2 F)] representing surrogates and fluoro-surrogates of VX and sarin were studied by in vitro kinetics and mass spectrometry. The in vitro measures showed that the VX- and fluoro-VX surrogates were relatively strong inhibitors of HuAChE and HuBChE (k i  ∼ 10 5 -10 6  M -1 min -1 ) and underwent spontaneous and 2-PAM-mediated reactivation within 30 min. The sarin surrogates were weaker inhibitors of HuAChE and HuBChE (k i  ∼ 10 4 -10 5  M -1 min -1 ), and in general did not undergo spontaneous reactivation, although HuAChE adducts were partially reactivatable at 18 h using 2-PAM. The mechanism of HuAChE and HuBChE inhibition by the surrogates was determined by Q-TOF and MALDI-TOF mass spectral analyses. The surrogate-adducted proteins were trypsin digested and the active site-containing peptide bearing the OP-modified serine identified by Q-TOF as triply- and quadruply-charged ions representing the respective increase in mass of the attached OP moiety. Correspondingly, monoisotopic ions of the tryptic peptides representing the mass increase of the OP-adducted peptide was identified by MALDI-TOF. The mass spectrometry analyses validated the identity of the OP moiety attached to HuAChE or HuBChE as MeP(O) (OR)-O-serine peptides (loss of the PNP leaving group) via mechanisms consistent with those found with chemical warfare agents. MALDI-TOF MS analyses of the VX-modified peptides versus time showed a steady reduction in adduct versus parent peptide (reactivation), whereas the sarin-surrogate-modified peptides remained largely intact over the course of the experiment (24 h). Overall, the presence of a fluorine atom on the surrogate modestly altered the rate constants of inhibition and reactivation, however, the mechanism of inhibition (ejection of PNP group) did not change

  2. APS8, a Polymeric Alkylpyridinium Salt Blocks α7 nAChR and Induces Apoptosis in Non-Small Cell Lung Carcinoma

    PubMed Central

    Zovko, Ana; Viktorsson, Kristina; Lewensohn, Rolf; Kološa, Katja; Filipič, Metka; Xing, Hong; Kem, William R.; Paleari, Laura; Turk, Tom

    2013-01-01

    Naturally occurring 3-alkylpyridinium polymers (poly-APS) from the marine sponge Reniera sarai, consisting of monomers containing polar pyridinium and nonpolar alkyl chain moieties, have been demonstrated to exert a wide range of biological activities, including a selective cytotoxicity against non-small cell lung cancer (NSCLC) cells. APS8, an analog of poly-APS with defined alkyl chain length and molecular size, non-competitively inhibits α7 nicotinic acetylcholine receptors (nAChRs) at nanomolar concentrations that are too low to be acetylcholinesterase (AChE) inhibitory or generally cytotoxic. In the present study we show that APS8 inhibits NSCLC tumor cell growth and activates apoptotic pathways. APS8 was not toxic for normal lung fibroblasts. Furthermore, in NSCLC cells, APS8 reduced the adverse anti-apoptotic, proliferative effects of nicotine. Our results suggest that APS8 or similar compounds might be considered as lead compounds to develop antitumor therapeutic agents for at least certain types of lung cancer. PMID:23880932

  3. New cholinesterase inhibitors for Alzheimer's disease: Structure Activity Studies (SARs) and molecular docking of isoquinolone and azepanone derivatives.

    PubMed

    Bacalhau, Patrícia; San Juan, Amor A; Marques, Carolina S; Peixoto, Daniela; Goth, Albertino; Guarda, Cátia; Silva, Mara; Arantes, Sílvia; Caldeira, A Teresa; Martins, Rosário; Burke, Anthony J

    2016-08-01

    A library of isoquinolinone and azepanone derivatives were screened for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity. The strategy adopted included (a) in vitro biological assays, against eel AChE (EeAChE) and equine serum BuChE (EqBuChE) in order to determine the compounds IC50 and their dose-response activity, consolidated by (b) molecular docking studies to evaluate the docking poses and interatomic interactions in the case of the hit compounds, validated by STD-NMR studies. Compound (1f) was identified as one of these hits with an IC50 of 89.5μM for EeAChE and 153.8μM for EqBuChE, (2a) was identified as a second hit with an IC50 of 108.4μM (EeAChE) and 277.8μM (EqBuChE). In order to gain insights into the binding mode and principle active site interactions of these molecules, (R)-(1f) along with 3 other analogues (also as the R-enantiomer) were docked into both RhAChE and hBuChE models. Galantamine was used as the benchmark. The docking study was validated by performing an STD-NMR study of (1f) with EeAChE using galantamine as the benchmark. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. H2 formation via the UV photo-processing of a-C:H nano-particles

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Habart, E.

    2015-09-01

    Context. The photolysis of hydrogenated amorphous carbon, a-C(:H), dust by UV photon-irradiation in the laboratory leads to the release of H2 as well as other molecules and radicals. This same process is also likely to be important in the interstellar medium. Aims: We investigate molecule formation arising from the photo-dissociatively-driven, regenerative processing of a-C(:H) dust. Methods: We explore the mechanism of a-C(:H) grain photolysis leading to the formation of H2 and other molecules/radicals. Results: The rate constant for the photon-driven formation of H2 from a-C(:H) grains is estimated to be 2 × 10-17 cm3 s-1. In intense radiation fields photon-driven grain decomposition will lead to fragmentation into daughter species rather than H2 formation. Conclusions: The cyclic re-structuring of arophatic a-C(:H) nano-particles appears to be a viable route to formation of H2 for low to moderate radiation field intensities (1 ≲ G0 ≲ 102), even when the dust is warm (T ~ 50-100 K).

  5. Protection by pyridostigmine bromide of marmoset hemi-diaphragm acetylcholinesterase activity after soman exposure.

    PubMed

    Haigh, Julian R; Adler, Michael; Apland, James P; Deshpande, Sharad S; Barham, Charles B; Desmond, Patrick; Koplovitz, Irwin; Lenz, David E; Gordon, Richard K

    2010-09-06

    Pyridostigmine bromide (PB) was approved by the U.S. Food and Drug Administration (FDA) in 2003 as a pretreatment in humans against the lethal effects of the irreversible nerve agent soman (GD). Organophosphate (OP) chemical warfare agents such as GD exert their toxic effects by inhibiting acetylcholinesterase (AChE) from terminating the action of acetylcholine at postsynaptic sites in cholinergic nerve terminals (including crucial peripheral muscle such as diaphragm). As part of the post-marketing approval of PB, the FDA required (under 21CFR314, the "two animal rule") the study of a non-human primate model (the common marmoset Callithrix jacchus jacchus) to demonstrate increased survival against lethal GD poisoning, and protection of physiological hemi-diaphragm function after PB pretreatment and subsequent GD exposure. Marmosets (male and female) were placed in the following experimental groups: (i) control (saline pretreatment only), (ii) low dose PB (12.5 microg/kg), or (iii) high dose (39.5 microg/kg) PB. Thirty minutes after the PB dose, animals were challenged with either saline (control) or soman (GD, 45 microg/kg), followed 1 min later by atropine (2mg/kg) and 2-PAM (25mg/kg). After a further 16 min, animals were euthanized and the complete diaphragm removed; the right hemi-diaphragm was frozen immediately at -80 degrees C, and the left hemi-diaphragm was placed in a tissue bath for 4h (to allow for decarbamylation to occur), then frozen. AChE activities were determined using the automated WRAIR cholinesterase assay. Blood samples were collected for AChE activities prior to PB, before GD challenge, and after sacrifice. RBC-AChE was inhibited by approximately 18% and 50% at the low and high doses of PB, respectively, compared to control (baseline) activity. In the absence of PB pretreatment, the inhibition of RBC-AChE by GD was 98%. The recovery of hemi-diaphragm AChE activity after the 4h wash period (decarbamylation) was approximately 8% and 17%, at the

  6. Microdomains of muscarinic acetylcholine and Ins(1,4,5)P3 receptors create ‘Ins(1,4,5)P3 junctions’ and sites of Ca2+ wave initiation in smooth muscle

    PubMed Central

    Olson, Marnie L.; Sandison, Mairi E.; Chalmers, Susan; McCarron, John G.

    2012-01-01

    Summary Increases in cytosolic Ca2+ concentration ([Ca2+]c) mediated by inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3, hereafter InsP3] regulate activities that include division, contraction and cell death. InsP3-evoked Ca2+ release often begins at a single site, then regeneratively propagates through the cell as a Ca2+ wave. The Ca2+ wave consistently begins at the same site on successive activations. Here, we address the mechanisms that determine the Ca2+ wave initiation site in intestinal smooth muscle cells. Neither an increased sensitivity of InsP3 receptors (InsP3R) to InsP3 nor regional clustering of muscarinic receptors (mAChR3) or InsP3R1 explained the selection of an initiation site. However, examination of the overlap of mAChR3 and InsP3R1 localisation, by centre of mass analysis, revealed that there was a small percentage (∼10%) of sites that showed colocalisation. Indeed, the extent of colocalisation was greatest at the Ca2+ wave initiation site. The initiation site might arise from a selective delivery of InsP3 from mAChR3 activity to particular InsP3Rs to generate faster local [Ca2+]c increases at sites of colocalisation. In support of this hypothesis, a localised subthreshold ‘priming’ InsP3 concentration applied rapidly, but at regions distant from the initiation site, shifted the wave to the site of the priming. Conversely, when the Ca2+ rise at the initiation site was rapidly and selectively attenuated, the Ca2+ wave again shifted and initiated at a new site. These results indicate that Ca2+ waves initiate where there is a structural and functional coupling of mAChR3 and InsP3R1, which generates junctions in which InsP3 acts as a highly localised signal by being rapidly and selectively delivered to InsP3R1. PMID:22946060

  7. α5 nAChR modulation of the prefrontal cortex makes attention resilient.

    PubMed

    Howe, William M; Brooks, Julie L; Tierney, Patrick L; Pang, Jincheng; Rossi, Amie; Young, Damon; Dlugolenski, Keith; Guillmette, Ed; Roy, Marc; Hales, Katherine; Kozak, Rouba

    2018-03-01

    A loss-of-function polymorphism in the α5 nicotinic acetylcholine receptor (nAChR) subunit gene has been linked to both drug abuse and schizophrenia. The α5 nAChR subunit is strategically positioned in the prefrontal cortex (PFC), where a loss-of-function in this subunit may contribute to cognitive disruptions in both disorders. However, the specific contribution of α5 to PFC-dependent cognitive functions has yet to be illustrated. In the present studies, we used RNA interference to knockdown the α5 nAChR subunit in the PFC of adult rats. We provide evidence that through its contribution to cholinergic modulation of cholinergic modulation of neurons in the PFC, the α5 nAChR plays a specific role in the recovery of attention task performance following distraction. Our combined data reveal the potent ability of this subunit to modulate the PFC and cognitive functions controlled by this brain region that are impaired in disease.

  8. Single channel properties of human α3 AChRs: impact of β2, β4 and α5 subunits

    PubMed Central

    Nelson, Mark E; Lindstrom, Jon

    1999-01-01

    We performed single channel analysis on human α3 acetylcholine receptors (AChRs) in Xenopus oocytes and native AChRs from the human neuroblastoma cell line IMR-32. α3 AChRs exhibit channel properties that reflect subunit composition.α3β2 AChR open times were 0.71 ± 0.14 and 3.5 ± 0.4 ms with a predominant conductance of 26 pS. α3β4 AChRs had open times of 1.4 ± 0.2 and 6.5 ± 0.8 ms and a predominant conductance of 31 pS. Burst times were 0.82 ± 0.12 and 5.3 ± 0.7 ms for α3β2 and 1.7 ± 0.1 and 16 ± 1 ms for α3β4. Desensitization was faster for AChRs with the β2 subunit than for those with the β4 subunit.One open time for α3α5β2 AChRs (5.5 ± 0.3 ms) was different from those of α3β2 AChRs. For α3α5β4 AChRs, an additional conductance, open time and burst time (36 pS, 22 ± 3 ms and 43 ± 4 ms, respectively) were different from those for α3β4 AChRs.α3 AChRs were inhibited by hexamethonium or mecamylamine. The rate constants for block of α3β4 by hexamethonium and of α3β2 by mecamylamine were 1.2 × 107 and 4.6 × 107 M−1 s−1, respectively.AChRs from IMR-32 cells had a predominant conductance of 32 pS and open times of 1.5 ± 0.3 and 9.6 ± 1.2 ms. These properties were most similar to those of α3β4 AChRs expressed in oocytes. Antibodies revealed that 5 ± 2% of IMR-32 α3 AChRs contained α5 subunits and 6 ± 2% contained β2 subunits. IMR-32 α3 AChRs are primarily α3β4 AChRs. PMID:10200416

  9. Nicotine suppresses the neurotoxicity by MPP+/MPTP through activating α7nAChR/PI3K/Trx-1 and suppressing ER stress.

    PubMed

    Cai, Yanxue; Zhang, Xianwen; Zhou, Xiaoshuang; Wu, Xiaoli; Li, Yanhui; Yao, Jianhua; Bai, Jie

    2017-03-01

    Parkinson's disease (PD) is a neurodegenerative disease. Nicotine has been reported to have the role in preventing Parkinson's disease. However, its mechanism is still unclear. In present study we found that nicotine suppressed 1-methyl-4-phenylpyridinium ion(MPP + ) toxicity in PC12 cells by MTT assay. The expression of thioredoxin-1(Trx-1) was decreased by MPP + , which was restored by nicotine. The nicotine suppressed expressions of Glucose-regulated protein 78(GRP78/Bip) and C/EBP homologous protein (CHOP) induced by MPP + . The methyllycaconitine (MLA), the inhibitor of α7nAChR and LY294002, the inhibitor of phosphatidylinositol 3-kinase (PI3K) blocked the suppressions of above molecules, respectively. Consistently, pretreatment with nicotine ameliorated the motor ability, restored the declines of Trx-1 and tyrosine hydroxylase (TH), and suppressed the expressions of Bip and CHOP induced by 1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Our results suggest that nicotine plays role in resisting MPP + /MPTP neurotoxicity through activating the α7nAChR/PI3K/Trx-1 pathway and suppressing ER stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Identification of Propofol Binding Sites in a Nicotinic Acetylcholine Receptor with a Photoreactive Propofol Analog*

    PubMed Central

    Jayakar, Selwyn S.; Dailey, William P.; Eckenhoff, Roderic G.; Cohen, Jonathan B.

    2013-01-01

    Propofol, a widely used intravenous general anesthetic, acts at anesthetic concentrations as a positive allosteric modulator of γ-aminobutyric acid type A receptors and at higher concentration as an inhibitor of nicotinic acetylcholine receptors (nAChRs). Here, we characterize propofol binding sites in a muscle-type nAChR by use of a photoreactive analog of propofol, 2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol (AziPm). Based upon radioligand binding assays, AziPm stabilized the Torpedo nAChR in the resting state, whereas propofol stabilized the desensitized state. nAChR-rich membranes were photolabeled with [3H]AziPm, and labeled amino acids were identified by Edman degradation. [3H]AziPm binds at three sites within the nAChR transmembrane domain: (i) an intrasubunit site in the δ subunit helix bundle, photolabeling in the nAChR desensitized state (+agonist) δM2-18′ and two residues in δM1 (δPhe-232 and δCys-236); (ii) in the ion channel, photolabeling in the nAChR resting, closed channel state (−agonist) amino acids in the M2 helices (αM2-6′, βM2-6′ and -13′, and δM2-13′) that line the channel lumen (with photolabeling reduced by >90% in the desensitized state); and (iii) at the γ-α interface, photolabeling αM2-10′. Propofol enhanced [3H]AziPm photolabeling at αM2-10′. Propofol inhibited [3H]AziPm photolabeling within the δ subunit helix bundle at lower concentrations (IC50 = 40 μm) than it inhibited ion channel photolabeling (IC50 = 125 μm). These results identify for the first time a single intrasubunit propofol binding site in the nAChR transmembrane domain and suggest that this is the functionally relevant inhibitory binding site. PMID:23300078

  11. Prediction of the binding site of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine in acetylcholinesterase by docking studies with the SYSDOC program

    NASA Astrophysics Data System (ADS)

    Pang, Yuan-Ping; Kozikowski, Alan P.

    1994-12-01

    In the preceding paper we reported on a docking study with the SYSDOC program for predicting the binding sites of huperzine A in acetylcholinesterase (AChE) [Pang, Y.-P. and Kozikowski, A.P., J. Comput.-Aided Mol. Design, 8 (1994) 669]. Here we present a prediction of the binding sites of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine (E2020) in AChE by the same method. E2020 is one of the most potent and selective reversible inhibitors of AChE, and this molecule has puzzled researchers, partly due to its flexible structure, in understanding how it binds to AChE. Based on the results of docking 1320 different conformers of E2020 into 69 different conformers of AChE and on the pharmacological data reported for E2020 and its analogs, we predict that both the R- and the S-isomer of E2020 span the whole binding cavity of AChE, with the ammonium group interacting mainly with Trp84, Phe330 and Asp72, the phenyl group interacting mainly with Trp84 and Phe330, and the indanone moiety interacting mainly with Tyr70 and Trp279. The topography of the calculated E2020 binding sites provides insights into understanding the high potency of E2020 in the inhibition of AChE and provides hints as to possible structural modifications for identifying improved AChE inhibitors as potential therapeutics for the palliative treatment of Alzheimer's disease.

  12. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs.

    PubMed

    Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R; McIntosh, J Michael; Brunzell, Darlene H; Cannon, Jason R; Drenan, Ryan M

    2014-04-01

    α6β2* nicotinic acetylcholine receptors (nAChRs)s in the ventral tegmental area to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9'S mice) that are hypersensitive to nicotine and endogenous acetylcholine. Evoked extracellular dopamine (DA) levels were enhanced in α6L9'S NAc slices compared to control, non-transgenic (non-Tg) slices. Extracellular DA levels in both non-Tg and α6L9'S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by acetylcholine plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9'S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9'S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid, and homovanillic acid compared to non-Tg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid, and norepinephrine (NE) were unchanged in α6L9'S compared to non-Tg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9'S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels. © 2013 International Society for Neurochemistry.

  13. LCR 5′ hypersensitive site specificity for globin gene activation within the active chromatin hub

    PubMed Central

    Peterson, Kenneth R.; Fedosyuk, Halyna; Harju-Baker, Susanna

    2012-01-01

    The DNaseI hypersensitive sites (HSs) of the human β-globin locus control region (LCR) may function as part of an LCR holocomplex within a larger active chromatin hub (ACH). Differential activation of the globin genes during development may be controlled in part by preferential interaction of each gene with specific individual HSs during globin gene switching, a change in conformation of the LCR holocomplex, or both. To distinguish between these possibilities, human β-globin locus yeast artificial chromosome (β-YAC) lines were produced in which the ε-globin gene was replaced with a second marked β-globin gene (βm), coupled to an intact LCR, a 5′HS3 complete deletion (5′ΔHS3) or a 5′HS3 core deletion (5′ΔHS3c). The 5′ΔHS3c mice expressed βm-globin throughout development; γ-globin was co-expressed in the embryonic yolk sac, but not in the fetal liver; and wild-type β-globin was co-expressed in adult mice. Although the 5′HS3 core was not required for βm-globin expression, previous work showed that the 5′HS3 core is necessary for ε-globin expression during embryonic erythropoiesis. A similar phenotype was observed in 5′HS complete deletion mice, except βm-globin expression was higher during primitive erythropoiesis and γ-globin expression continued into fetal definitive erythropoiesis. These data support a site specificity model of LCR HS-globin gene interaction. PMID:23042246

  14. Novel approaches to study the involvement of α7-nAChR in human diseases.

    PubMed

    Palma, Eleonora; Conti, Luca; Roseti, Cristina; Limatola, Cristina

    2012-05-01

    The alpha7 nicotinic acetylcholine receptor (α7 nAChR) is widely distributed in the human brain and has been implicated in a number of human central nervous system (CNS) diseases, including Alzheimer's and Parkinson's disease, schizophrenia and autism. Recently, new roles for α7 nAChRs in lung cancer and heart disease have been elucidated. Despite the importance of this receptor in human pathology, many technical difficulties are still encountered when investigating the role of α7 nAChRs. Electrophysiological analysis of the receptor upon heterologous expression or in human tissues was limited by the fast desensitization of α7-mediated nicotinic currents and by tissue availability. In addition, animal models for the human diseases related to α7 nAChRs have long been unavailable. The recent development of new imaging and analysis approaches such as PET and receptor microtransplantation have rendered the study of α7 nAChRs increasingly feasible, paving new roads to the design of therapeutic drugs. This review summarizes the current knowledge and recent findings obtained by these novel approaches.

  15. Acetylcholinesterases from Elapidae snake venoms: biochemical, immunological and enzymatic characterization.

    PubMed

    Frobert, Y; Créminon, C; Cousin, X; Rémy, M H; Chatel, J M; Bon, S; Bon, C; Grassi, J

    1997-05-23

    We analyzed 45 batches of venom from 20 different species belonging to 11 genera from the 3 main families of venomous snakes (Elapidae, Viperidae and Crotalidae). We found high acetylcholinesterase (AChE) activity in all venoms from Elapidae, except in those from the Dendroaspis genus. AChE was particularly abundant in Bungarus venoms which contain up to 8 mg of enzyme per gram of dried venom. We could not detect acetylcholinesterase activity in any batch of venom from Viperidae or Crotalidae. Titration of active sites with an organophosphorous agent (MPT) revealed that the AChE of all venoms have similar turnovers (6000 to 8000 s(-1)) which are clearly higher than those of Torpedo and mammalian enzymes but lower than that of Electrophorus. AChEs from the venom of elapid snakes of the Bungarus, Naja, Ophiophagus and Haemacatus genera were purified by affinity chromatography. SDS-PAGE analysis and sucrose gradient centrifugation demonstrated that AChE is exclusively present as a nonamphiphilic monomer. These enzymes are true AChEs, hydrolyzing acetylthiocholine faster than propionylthiocholine and butyrylthiocholine and exhibiting excess substrate inhibition. Twenty-seven different monoclonal antibodies directed against AChE from Bungarus fasciatus venom were raised in mice. Half of them recognized exclusively the Bungarus enzyme while the others cross-reacted with AChEs from other venoms. Polyspecific mAbs were used to demonstrate that venoms from Dendroaspis, which contain the AChE inhibitor fasciculin but lack AChE activity, were also devoid of immunoreactive AChE protein. AChE inhibitors acting at the active site (edrophonium, tacrine) and at the peripheral site (propidium, fasciculin), as well as bis-quaternary ligands (BW284C51, decamethonium), were tested against the venom AChEs from 11 different species. All enzymes had a very similar pattern of reactivity with regard to the different inhibitors, with the exception of fasciculin. AChEs from Naja and

  16. Plasma B-esterase activities in European raptors.

    PubMed

    Roy, Claudie; Grolleau, Gérard; Chamoulaud, Serge; Rivière, Jean-Louis

    2005-01-01

    B-esterases are serine hydrolases composed of cholinesterases, including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and carboxylesterase (CbE). These esterases, found in blood plasma, are inhibited by organophosphorus (OP) and carbamate (CB) insecticides and can be used as nondestructive biomarkers of exposure to anticholinesterase insecticides. Furthermore, B-esterases are involved in detoxification of these insecticides. In order to establish the level of these enzymes and to have reference values for their normal activities, total plasma cholinesterase (ChE), AChE and BChE activities, and plasma CbE activity were determined in 729 European raptors representing 20 species, four families, and two orders. The diurnal families of the Falconiforme order were represented by Accipitridae and Falconidae and the nocturnal families of the Strigiforme order by Tytonidae and Strigidae. Intraspecies differences in cholinesterase activities according to sex and/or age were investigated in buzzards (Buteo buteo), sparrowhawks (Accipiter nisus), kestrels (Falco tinnunculus), barn owls (Tyto alba), and tawny owls (Strix aluco). Sex-related differences affecting ChE and AChE activities were observed in young kestrels (2-3-mo-old) and age-related differences in kestrels (ChE and AChE), sparrowhawks (AChE), and tawny owls (ChE, AChE, and BChE). The interspecies analysis yielded a negative correlation between ChE activity and body mass taking into account the relative contribution of AChE and BChE to ChE activity, with the exception of the honey buzzard (Pernis apivorus). The lowest ChE activities were found in the two largest species, Bonelli's eagle (Hieraaetus fasciatus) and Egyptian vulture (Neophron percnopterus) belonging to the Accipitridae family. The highest ChE activities were found in the relatively small species belonging to the Tytonidae and Strigidae families and in honey buzzard of the Accipitridae family. Species of the Accipitridae, Tytonidae, and

  17. Brain acetycholinesterase activity in botulism-intoxicated mallards

    USGS Publications Warehouse

    Rocke, T.E.; Samuel, M.D.

    1991-01-01

    Brain acetylcholinesterase (AChE) activity in captive-reared mallards (Anas platyrhynchos) that died of botulism was compared with euthanized controls. AChE levels for both groups were within the range reported for normal mallards, and there was no significant difference in mean AChE activity between birds that ingested botulism toxin and died and those that did not.

  18. Denervation does not alter the number of neuronal bungarotoxin binding sites on autonomic neurons in the frog cardiac ganglion.

    PubMed

    Sargent, P B; Bryan, G K; Streichert, L C; Garrett, E N

    1991-11-01

    The binding of neuronal bungarotoxin (n-BuTX; also known as bungarotoxin 3.1, kappa-bungarotoxin, and toxin F) was analyzed in normal and denervated parasympathetic cardiac ganglia of the frog Rana pipiens, n-BuTX blocks both EPSPs and ACh potentials at 5-20 nM, as determined by intracellular recording techniques. Scatchard analysis on homogenates indicates that cardiac ganglia have two classes of binding sites for 125I-n-BuTX: a high-affinity site with an apparent dissociation constant (Kd,app) of 1.7 nM and a Bmax (number of binding sites) of 3.8 fmol/ganglion and a low-affinity site with a Kd,app of 12 microM and a Bmax of 14 pmol/ganglion. alpha-Bungarotoxin does not appear to interfere with the binding of 125I-n-BuTX to either site. The high-affinity binding site is likely to be the functional nicotinic ACh receptor (AChR), given the similarity between its affinity for 125I-n-BuTX and the concentration of n-BuTX required to block AChR function. Light microscopic autoradiographic analysis of 125I-n-BuTX binding to the ganglion cell surface reveals that toxin binding is concentrated at synaptic sites, which were identified using a synaptic vesicle-specific antibody. Scatchard analysis of autoradiographic data reveals that 125I-n-BuTX binding to the neuronal surface is saturable and has a Kd,app similar to that of the high-affinity binding site characterized in homogenates. Surface binding of 125I-n-BuTX is blocked by nicotine, carbachol, and d-tubocurarine (IC50 less than 20 microM), but not by atropine (IC50 greater than 10 mM). Denervation of the heart increases the ACh sensitivity of cardiac ganglion cells but has no effect upon the number of high-affinity binding sites for 125I-n-BuTX in tissue homogenates. Moreover, autoradiographic analysis indicates that denervation does not alter the number of 125I-n-BuTX binding sites on the ganglion cell surface. n-BuTX is as effective in reducing ganglion cell responses to ACh in denervated ganglia as it is in

  19. The Unique α4(+)/(−)α4 Agonist Binding Site in (α4)3(β2)2 Subtype Nicotinic Acetylcholine Receptors Permits Differential Agonist Desensitization Pharmacology versus the (α4)2(β2)3 Subtype

    PubMed Central

    Eaton, J. Brek; Lucero, Linda M.; Stratton, Harrison; Chang, Yongchang; Cooper, John F.; Lindstrom, Jon M.; Lukas, Ronald J.

    2014-01-01

    Selected nicotinic agonists were used to activate and desensitize high-sensitivity (HS) (α4)2(β2)3) or low-sensitivity (LS) (α4)3(β2)2) isoforms of human α4β2-nicotinic acetylcholine receptors (nAChRs). Function was assessed using 86Rb+ efflux in a stably transfected SH-EP1-hα4β2 human epithelial cell line, and two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes expressing concatenated pentameric HS or LS α4β2-nAChR constructs (HSP and LSP). Unlike previously studied agonists, desensitization by the highly selective agonists A-85380 [3-(2(S)-azetidinylmethoxy)pyridine] and sazetidine-A (Saz-A) preferentially reduced α4β2-nAChR HS-phase versus LS-phase responses. The concatenated-nAChR experiments confirmed that approximately 20% of LS-isoform acetylcholine-induced function occurs in an HS-like phase, which is abolished by Saz-A preincubation. Six mutant LSPs were generated, each targeting a conserved agonist binding residue within the LS-isoform-only α4(+)/(−)α4 interface agonist binding site. Every mutation reduced the percentage of LS-phase function, demonstrating that this site underpins LS-phase function. Oocyte-surface expression of the HSP and each of the LSP constructs was statistically indistinguishable, as measured using β2-subunit–specific [125I]mAb295 labeling. However, maximum function is approximately five times greater on a “per-receptor” basis for unmodified LSP versus HSP α4β2-nAChRs. Thus, recruitment of the α4(+)/(−)α4 site at higher agonist concentrations appears to augment otherwise-similar function mediated by the pair of α4(+)/(−)β2 sites shared by both isoforms. These studies elucidate the receptor-level differences underlying the differential pharmacology of the two α4β2-nAChR isoforms, and demonstrate that HS versus LS α4β2-nAChR activity can be selectively manipulated using pharmacological approaches. Since α4β2 nAChRs are the predominant neuronal subtype, these discoveries likely

  20. Identification and Characterization of Novel Catalytic Bioscavengers of Organophosphorus Nerve Agents

    DTIC Science & Technology

    2013-01-01

    hydrolase activity . These strains are Ammoniphilus oxalaticus, Haloarcula sp., and Micromonospora aurantiaca. Lysates from A. oxalaticus had...warfare agents [1–3]. OP nerve agents readily bind covalently to the active site serine in acetylcho- linesterase (AChE), thereby inhibiting the ability...muscarinic receptors, whereas 2-pralidoxime chloride, an oxime nucleophile, reactivates AChE by displacing the phospho- nyl group left on the active site

  1. Effect of allyl isothiocyanate on ultra-structure and the activities of four enzymes in adult Sitophilus zeamais.

    PubMed

    Wu, Hua; Liu, Xue-ru; Yu, Dong-dong; Zhang, Xing; Feng, Jun-tao

    2014-02-01

    Rarefaction and vacuolization of the mitochondrial matrix of AITC-treated (allyl isothiocyanate-treated) adult Sitophilus zeamais were evident according to the ultra-structural by TEM. Four important enzymes in adult S. zeamais were further studied after fumigation treatment with allyl isothiocyanate (AITC) extracted from Armoracia rusticana roots and shoots. The enzymes were glutathione S-transferase (GST), catalase (CAT), cytochrome c oxidase, and acetylcholinesterase (AChE). The results indicated that the activities of the four enzymes were strongly time and dose depended. With prolonged exposure time, treatment with 0.74μg/mL AITC inhibited the activities of cytochrome c oxidase, AChE, and CAT, but induced the activity of GST. The activities of cytochrome c oxidase, AChE, and CAT were remarkably induced at a low AITC dosage (0.25μg/mL), but were restrained with increased AITC dosage. The activity of GST was inhibited at a low AITC dosage (0.5μg/mL), but was induced at a high AITC dosage (1.5μg/mL). According to the results of TEM, toxic symptoms and enzymes activities, it suggested that mitochondrial maybe the one site of action of AITC against the adult S. zeamais and it also suggested that cytochrome c oxidase maybe one target protein of AITC against the adult S. zeamais, which need to further confirmed by protein function tested. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Stoichiometry for activation of neuronal α7 nicotinic receptors

    PubMed Central

    Andersen, Natalia; Corradi, Jeremías; Sine, Steven M.; Bouzat, Cecilia

    2013-01-01

    Neuronal α7 nicotinic receptors elicit rapid cation influx in response to acetylcholine (ACh) or its hydrolysis product choline. They contribute to cognition, synaptic plasticity, and neuroprotection and have been implicated in neurodegenerative and neuropsychiatric disorders. α7, however, often localizes distal to sites of nerve-released ACh and binds ACh with low affinity, and thus elicits its biological response with low agonist occupancy. To assess the function of α7 when ACh occupies fewer than five of its identical binding sites, we measured the open-channel lifetime of individual receptors in which four of the five ACh binding sites were disabled. To improve the time resolution of the inherently brief α7 channel openings, background mutations or a potentiator was used to increase open duration. We find that, in receptors with only one intact binding site, the open-channel lifetime is indistinguishable from receptors with five intact binding sites, counter to expectations from prototypical neurotransmitter-gated ion channels where the open-channel lifetime increases with the number of binding sites occupied by agonist. Replacing the membrane-embedded domain of α7 by that of the related 5-HT3A receptor increases the number of sites that need to be occupied to achieve the maximal open-channel lifetime, thus revealing a unique interdependence between the detector and actuator domains of these receptors. The distinctive ability of a single occupancy to elicit a full biological response adapts α7 to volume transmission, a prevalent mechanism of ACh-mediated signaling in the nervous system and nonneuronal cells. PMID:24297903

  3. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors.

    PubMed

    Wang, Jingyi; Lindstrom, Jon

    2018-06-01

    Heteromeric nicotinic ACh receptors (nAChRs) were thought to have two orthodox agonist-binding sites at two α/β subunit interfaces. Highly selective ligands are hard to develop by targeting orthodox agonist sites because of high sequence similarity of this binding pocket among different subunits. Recently, unorthodox ACh-binding sites have been discovered at some α/α and β/α subunit interfaces, such as α4/α4, α5/α4 and β3/α4. Targeting unorthodox sites may yield subtype-selective ligands, such as those for (α4β2) 2 α5, (α4β2) 2 β3 and (α6β2) 2 β3 nAChRs. The unorthodox sites have unique pharmacology. Agonist binding at one unorthodox site is not sufficient to activate nAChRs, but it increases activation from the orthodox sites. NS9283, a selective agonist for the unorthodox α4/α4 site, was initially thought to be a positive allosteric modulator (PAM). NS9283 activates nAChRs with three engineered α4/α4 sites. PAMs, on the other hand, act at allosteric sites where ACh cannot bind. Known PAM sites include the ACh-homologous non-canonical site (e.g. morantel at β/α), the C-terminus (e.g. Br-PBTC and 17β-estradiol), a transmembrane domain (e.g. LY2087101) or extracellular and transmembrane domain interfaces (e.g. NS206). Some of these PAMs, such as Br-PBTC and 17β-estradiol, require only one subunit to potentiate activation of nAChRs. In this review, we will discuss differences between activation from orthosteric and allosteric sites, their selective ligands and clinical implications. These studies have advanced understanding of the structure, assembly and pharmacology of heteromeric neuronal nAChRs. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.

  4. AT–1001: a high-affinity α3β4 nAChR ligand with novel nicotine-suppressive pharmacology

    PubMed Central

    Cippitelli, Andrea; Wu, Jinhua; Gaiolini, Kelly A; Mercatelli, Daniela; Schoch, Jennifer; Gorman, Michelle; Ramirez, Alejandra; Ciccocioppo, Roberto; Khroyan, Taline V; Yasuda, Dennis; Zaveri, Nurulain T; Pascual, Conrado; Xie, Xinmin (Simon); Toll, Lawrence

    2015-01-01

    Background and Purpose The α3β4 subtype of nicotinic acetylcholine receptors (nAChRs) has been implicated in mediating nicotine reinforcement processes. AT-1001 has been recently described as a high-affinity and selective α3β4 nAChR antagonist that blocks nicotine self-administration in rats. The aim of this study was to investigate the mechanism of action underlying the nicotine-suppressive effects of AT-1001. Experimental Approach Effects of AT-1001 were determined using in vitro assays and rat models of nicotine addiction, and compared with varenicline. Key Results AT-1001 and its analogue AT-1012 were functionally selective as antagonists for α3β4 over α4β2 nAChRs, but not to the same extent as the binding selectivity, and had partial agonist activity at α3β4 nAChRs. In contrast, varenicline was a partial agonist at α4β2, a weak agonist at α3β4 and inhibited α4β2 at a much lower concentration than it inhibited α3β4 nAChRs. AT-1001 and varenicline also had very different in vivo properties. Firstly, AT-1001 did not exhibit reinforcing properties per se while varenicline was self-administered. Secondly, systemic treatment with AT-1001 did not induce reinstatement of nicotine seeking but rather attenuated reinstatement induced by varenicline, as well as nicotine. Finally, unlike varenicline, AT-1001 selectively blocked nicotine self-administration without altering alcohol lever pressing as assessed in an operant co-administration paradigm. Conclusions and Implications These findings describe a more complex AT-1001 in vitro profile than previously appreciated and provide further support for the potential of AT-1001 and congeners as clinically useful compounds for smoking cessation, with a mechanism of action distinct from currently available medications. PMID:25440006

  5. Design and synthesis of dual inhibitors of acetylcholinesterase and serotonin transporter targeting potential agents for Alzheimer's disease.

    PubMed

    Kogen, Hiroshi; Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio

    2002-10-03

    Highly efficient acetylcholinesterase (AChE) and serotonin transporter (SERT) dual inhibitors, (S)-4 and (R)-13 were designed and synthesized on the basis of the hypothetical model of AChE active site. Both compounds showed potent inhibitory activities against AChE and SERT. [structure: see text

  6. Synthesis of novel chromenones linked to 1,2,3-triazole ring system: Investigation of biological activities against Alzheimer's disease.

    PubMed

    Saeedi, Mina; Safavi, Maliheh; Karimpour-Razkenari, Elahe; Mahdavi, Mohammad; Edraki, Najmeh; Moghadam, Farshad Homayouni; Khanavi, Mahnaz; Akbarzadeh, Tahmineh

    2017-02-01

    In this work, novel chromenones linked to 1,2,3-triazole ring system were synthesized and evaluated for their anti-ChE activity. Among them, N-((1-(2-chlorobenzyl)-1H-1,2,3-triazol-5-yl)methyl)-8-methoxy-2-oxo-2H-chromene-3-carboxamide (6m) showed good anti-acetylcholinesterase activity (IC 50 =15.42μM). Also, compound 6m demonstrated neuroprotective effect against H 2 O 2 -induced cell death in PC12 neurons, however, it showed no beta-secretase (BACE1) inhibitory activity. Docking and kinetic studies separately confirmed dual binding activity of compound 6m since it targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. HI-6 assisted Catalytic Scavenging of VX by Acetylcholinesterase Choline Binding Site Mutants

    PubMed Central

    Hrvat, Nikolina Maček; Žunec, Suzana; Taylor, Palmer; Radić, Zoran; Kovarik, Zrinka

    2016-01-01

    The high toxicity of organophosphorus compounds originates from covalent inhibition of acetylcholinesterase (AChE), an essential enzyme in cholinergic neurotransmission. Poisonings that lead to life-threatening toxic manifestations require immediate treatment that combines administration of anticholinergic drugs and an aldoxime as a reactivator of AChE. An alternative approach to reduce the in vivo toxicity of OPs focuses on the use of bioscavengers against the parent organophosphate. Our previous research showed that AChE mutagenesis can enable aldoximes to substantially accelerate the reactivation of OP-enzyme conjugates, while dramatically slowing down rates of OP-conjugate dealkylation (aging). Herein, we demonstrate an efficient HI-6-assisted VX detoxification, both ex vivo in human blood and in vivo in mice by hAChE mutants modified at the choline binding site (Y337A and Y337A/F338A). The catalytic scavenging of VX in mice improved therapeutic outcomes preventing lethality and resulted in a delayed onset of toxicity symptoms. PMID:27083141

  8. An integrated catch-and-hold mechanism activates nicotinic acetylcholine receptors.

    PubMed

    Jadey, Snehal; Auerbach, Anthony

    2012-07-01

    In neuromuscular acetylcholine (ACh) receptor channels (AChRs), agonist molecules bind with a low affinity (LA) to two sites that can switch to high affinity (HA) and increase the probability of channel opening. We measured (by using single-channel kinetic analysis) the rate and equilibrium constants for LA binding and channel gating for several different agonists of adult-type mouse AChRs. Almost all of the variation in the equilibrium constants for LA binding was from differences in the association rate constants. These were consistently below the limit set by diffusion and were substantially different even though the agonists had similar sizes and the same charge. This suggests that binding to resting receptors is not by diffusion alone and, hence, that each binding site can undergo two conformational changes ("catch" and "hold") that connect three different structures (apo-, LA-bound, and HA-bound). Analyses of ACh-binding protein structures suggest that this binding site, too, may adopt three discrete structures having different degrees of loop C displacement ("capping"). For the agonists we tested, the logarithms of the equilibrium constants for LA binding and LA↔HA gating were correlated. Although agonist binding and channel gating have long been considered to be separate processes in the activation of ligand-gated ion channels, this correlation implies that the catch-and-hold conformational changes are energetically linked and together comprise an integrated process having a common structural basis. We propose that loop C capping mainly reflects agonist binding, with its two stages corresponding to the formation of the LA and HA complexes. The catch-and-hold reaction coordinate is discussed in terms of preopening states and thermodynamic cycles of activation.

  9. [125I]Iodo-ASEM, a specific in vivo radioligand for α7-nAChR

    PubMed Central

    Gao, Yongjun; Mease, Ronnie C.; Olson, Thao T.; Kellar, Kenneth J.; Dannals, Robert F.; Pomper, Martin G.; Horti, Andrew G.

    2014-01-01

    [125I]Iodo-ASEM, a new radioligand with high affinity and selectivity for α7-nAChRs (Ki = 0.5 nM; α7/α4β2 = 3,414), has been synthesized in radiochemical yield of 33 ± 6% from the corresponding di-butyltriazene derivative and at high specific radioactivity (1,600 Ci/mmol; 59.2 MBq/μmol). [125I]Iodo-ASEM readily entered the brains of normal CD-1 mice and specifically and selectively labeled cerebral α7-nAChRs. [125I]iodo-ASEM is a new useful tool for studying α7-nAChR. PMID:25687449

  10. Inactivation of JAK2/STAT3 Signaling Axis and Downregulation of M1 mAChR Cause Cognitive Impairment in klotho Mutant Mice, a Genetic Model of Aging

    PubMed Central

    Park, Seok-Joo; Shin, Eun-Joo; Min, Sun Seek; An, Jihua; Li, Zhengyi; Hee Chung, Yoon; Hoon Jeong, Ji; Bach, Jae-Hyung; Nah, Seung-Yeol; Kim, Won-Ki; Jang, Choon-Gon; Kim, Yong-Sun; Nabeshima, Yo-ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2013-01-01

    We previously reported cognitive dysfunction in klotho mutant mice. In the present study, we further examined novel mechanisms involved in cognitive impairment in these mice. Significantly decreased janus kinase 2 (JAK2) and signal transducer and activator of transcription3 (STAT3) phosphorylation were observed in the hippocampus of klotho mutant mice. A selective decrease in protein expression and binding density of the M1 muscarinic cholinergic receptor (M1 mAChR) was observed in these mice. Cholinergic parameters (ie, acetylcholine (ACh), choline acetyltransferase (ChAT), and acetylcholinesterase (AChE)) and NMDAR-dependent long-term potentiation (LTP) were significantly impaired in klotho mutant mice. McN-A-343 (McN), an M1 mAChR agonist, significantly attenuated these impairments. AG490 (AG), a JAK2 inhibitor, counteracted the attenuating effects of McN, although AG did not significantly alter the McN-induced effect on AChE. Furthermore, AG significantly inhibited the attenuating effects of McN on decreased NMDAR-dependent LTP, protein kinase C βII, p-ERK, p-CREB, BDNF, and p-JAK2/p-STAT3-expression in klotho mutant mice. In addition, k252a, a BDNF receptor tyrosine kinase B (TrkB) inhibitor, significantly counteracted McN effects on decreased ChAT, ACh, and M1 mAChR and p-JAK2/p-STAT3 expression. McN-induced effects on cognitive impairment in klotho mutant mice were consistently counteracted by either AG or k252a. Our results suggest that inactivation of the JAK2/STAT3 signaling axis and M1 mAChR downregulation play a critical role in cognitive impairment observed in klotho mutant mice. PMID:23389690

  11. The α3β4* nicotinic ACh receptor subtype mediates physical dependence to morphine: mouse and human studies.

    PubMed

    Muldoon, P P; Jackson, K J; Perez, E; Harenza, J L; Molas, S; Rais, B; Anwar, H; Zaveri, N T; Maldonado, R; Maskos, U; McIntosh, J M; Dierssen, M; Miles, M F; Chen, X; De Biasi, M; Damaj, M I

    2014-08-01

    Recent data have indicated that α3β4* neuronal nicotinic (n) ACh receptors may play a role in morphine dependence. Here we investigated if nACh receptors modulate morphine physical withdrawal. To assess the role of α3β4* nACh receptors in morphine withdrawal, we used a genetic correlation approach using publically available datasets within the GeneNetwork web resource, genetic knockout and pharmacological tools. Male and female European-American (n = 2772) and African-American (n = 1309) subjects from the Study of Addiction: Genetics and Environment dataset were assessed for possible associations of polymorphisms in the 15q25 gene cluster and opioid dependence. BXD recombinant mouse lines demonstrated an increased expression of α3, β4 and α5 nACh receptor mRNA in the forebrain and midbrain, which significantly correlated with increased defecation in mice undergoing morphine withdrawal. Mice overexpressing the gene cluster CHRNA5/A3/B4 exhibited increased somatic signs of withdrawal. Furthermore, α5 and β4 nACh receptor knockout mice expressed decreased somatic withdrawal signs compared with their wild-type counterparts. Moreover, selective α3β4* nACh receptor antagonists, α-conotoxin AuIB and AT-1001, attenuated somatic signs of morphine withdrawal in a dose-related manner. In addition, two human datasets revealed a protective role for variants in the CHRNA3 gene, which codes for the α3 nACh receptor subunit, in opioid dependence and withdrawal. In contrast, we found that the α4β2* nACh receptor subtype is not involved in morphine somatic withdrawal signs. Overall, our findings suggest an important role for the α3β4* nACh receptor subtype in morphine physical dependence. © 2014 The British Pharmacological Society.

  12. The α3β4* nicotinic ACh receptor subtype mediates physical dependence to morphine: mouse and human studies

    PubMed Central

    Muldoon, P P; Jackson, K J; Perez, E; Harenza, J L; Molas, S; Rais, B; Anwar, H; Zaveri, N T; Maldonado, R; Maskos, U; McIntosh, J M; Dierssen, M; Miles, M F; Chen, X; De Biasi, M; Damaj, M I

    2014-01-01

    BACKGROUND AND PURPOSE Recent data have indicated that α3β4* neuronal nicotinic (n) ACh receptors may play a role in morphine dependence. Here we investigated if nACh receptors modulate morphine physical withdrawal. EXPERIMENTAL APPROACHES To assess the role of α3β4* nACh receptors in morphine withdrawal, we used a genetic correlation approach using publically available datasets within the GeneNetwork web resource, genetic knockout and pharmacological tools. Male and female European-American (n = 2772) and African-American (n = 1309) subjects from the Study of Addiction: Genetics and Environment dataset were assessed for possible associations of polymorphisms in the 15q25 gene cluster and opioid dependence. KEY RESULTS BXD recombinant mouse lines demonstrated an increased expression of α3, β4 and α5 nACh receptor mRNA in the forebrain and midbrain, which significantly correlated with increased defecation in mice undergoing morphine withdrawal. Mice overexpressing the gene cluster CHRNA5/A3/B4 exhibited increased somatic signs of withdrawal. Furthermore, α5 and β4 nACh receptor knockout mice expressed decreased somatic withdrawal signs compared with their wild-type counterparts. Moreover, selective α3β4* nACh receptor antagonists, α-conotoxin AuIB and AT-1001, attenuated somatic signs of morphine withdrawal in a dose-related manner. In addition, two human datasets revealed a protective role for variants in the CHRNA3 gene, which codes for the α3 nACh receptor subunit, in opioid dependence and withdrawal. In contrast, we found that the α4β2* nACh receptor subtype is not involved in morphine somatic withdrawal signs. CONCLUSION AND IMPLICATIONS Overall, our findings suggest an important role for the α3β4* nACh receptor subtype in morphine physical dependence. PMID:24750073

  13. HIV integration sites in latently infected cell lines: evidence of ongoing replication.

    PubMed

    Symons, Jori; Chopra, Abha; Malatinkova, Eva; De Spiegelaere, Ward; Leary, Shay; Cooper, Don; Abana, Chike O; Rhodes, Ajantha; Rezaei, Simin D; Vandekerckhove, Linos; Mallal, Simon; Lewin, Sharon R; Cameron, Paul U

    2017-01-13

    Assessing the location and frequency of HIV integration sites in latently infected cells can potentially inform our understanding of how HIV persists during combination antiretroviral therapy. We developed a novel high throughput sequencing method to evaluate HIV integration sites in latently infected cell lines to determine whether there was virus replication or clonal expansion in these cell lines observed as multiple integration events at the same position. We modified a previously reported method using random DNA shearing and PCR to allow for high throughput robotic processing to identify the site and frequency of HIV integration in latently infected cell lines. Latently infected cell lines infected with intact virus demonstrated multiple distinct HIV integration sites (28 different sites in U1, 110 in ACH-2 and 117 in J1.1 per 150,000 cells). In contrast, cell lines infected with replication-incompetent viruses (J-Lat cells) demonstrated single integration sites. Following in vitro passaging of the ACH-2 cell line, we observed a significant increase in the frequency of unique HIV integration sites and there were multiple mutations and large deletions in the proviral DNA. When the ACH-2 cell line was cultured with the integrase inhibitor raltegravir, there was a significant decrease in the number of unique HIV integration sites and a transient increase in the frequency of 2-LTR circles consistent with virus replication in these cells. Cell lines latently infected with intact HIV demonstrated multiple unique HIV integration sites indicating that these cell lines are not clonal and in the ACH-2 cell line there was evidence of low level virus replication. These findings have implications for the use of latently infected cell lines as models of HIV latency and for the use of these cells as standards.

  14. α7 nAChR mediated Fas demethylation contributes to prenatal nicotine exposure-induced programmed thymocyte apoptosis in mice.

    PubMed

    Liu, Han-Xiao; Liu, Sha; Qu, Wen; Yan, Hui-Yi; Wen, Xiao; Chen, Ting; Hou, Li-Fang; Ping, Jie

    2017-11-07

    This study aimed to investigate the effects of prenatal nicotine exposure (PNE) on thymocyte apoptosis and postnatal immune impairments in vivo and further explore the epigenetic mechanisms of the pro-apoptotic effect of nicotine in vitro . The results showed that PNE caused immune impairments in offspring on postnatal day 49, manifested as increased IL-4 production and an increased IgG1/IgG2a ratio in serum. Enhanced apoptosis of total and CD4+SP thymocytes was observed both in fetus and in offspring. Further, by exposing thymocytes to 0-100 μM of nicotine in vitro for 48 h, we found that nicotine increased α7 nicotinic acetylcholine receptor (nAChR) expression, activated the Fas apoptotic pathway, and promoted thymocyte apoptosis in concentration-dependent manners. In addition, nicotine could induce Tet methylcytosine dioxygenase (TET) 2 expression and Fas promoter demethylation, which can be abolished by TET2 siRNA transfection. Moreover, the α7 nAChR specific antagonist α-bungarotoxin can abrogate nicotine-induced TET2 increase, and the following Fas demethylation and Fas-mediated apoptosis. In conclusion, our findings showed, for the first time, that α7 nAChR activation could induce TET2-mediated Fas demethylation in thymocytes and results in the upregulation of Fas apoptotic pathway, which provide evidence for elucidating the PNE-induced programmed thymocyte apoptosis.

  15. Anesthetic sites and allosteric mechanisms of action on Cys-loop ligand-gated ion channels.

    PubMed

    Forman, Stuart A; Miller, Keith W

    2011-02-01

    The Cys-loop ligand-gated ion channel superfamily is a major group of neurotransmitter-activated receptors in the central and peripheral nervous system. The superfamily includes inhibitory receptors stimulated by γ-aminobutyric acid (GABA) and glycine and excitatory receptors stimulated by acetylcholine and serotonin. The first part of this review presents current evidence on the location of the anesthetic binding sites on these channels and the mechanism by which binding to these sites alters their function. The second part of the review addresses the basis for this selectivity, and the third part describes the predictive power of a quantitative allosteric model showing the actions of etomidate on γ-aminobutyric acid type A receptors (GABA(A)Rs). General anesthetics at clinical concentrations inhibit the excitatory receptors and enhance the inhibitory receptors. The location of general anesthetic binding sites on these receptors is being defined by photoactivable analogues of general anesthetics. The receptor studied most extensively is the muscle-type nicotinic acetylcholine receptor (nAChR), and progress is now being made with GABA(A)Rs. There are three categories of sites that are all in the transmembrane domain: 1) within a single subunit's four-helix bundle (intrasubunit site; halothane and etomidate on the δ subunit of AChRs); 2) between five subunits in the transmembrane conduction pore (channel lumen sites; etomidate and alcohols on nAChR); and 3) between two subunits (subunit interface sites; etomidate between the α1 and β2/3 subunits of the GABA(A)R). These binding sites function allosterically. Certain conformations of a receptor bind the anesthetic with greater affinity than others. Time-resolved photolabelling of some sites occurs within milliseconds of channel opening on the nAChR but not before. In GABA(A)Rs, electrophysiological data fit an allosteric model in which etomidate binds to and stabilizes the open state, increasing both the fraction

  16. Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins.

    PubMed

    Kaczanowska, Katarzyna; Camacho Hernandez, Gisela Andrea; Bendiks, Larissa; Kohs, Larissa; Cornejo-Bravo, Jose Manuel; Harel, Michal; Finn, M G; Taylor, Palmer

    2017-03-15

    Through studies with ligand binding to the acetylcholine binding protein (AChBP), we previously identified a series of 4,6-substituted 2-aminopyrimidines that associate with this soluble surrogate of the nicotinic acetylcholine receptor (nAChR) in a cooperative fashion, not seen for classical nicotinic agonists and antagonists. To examine receptor interactions of this structural family on ligand-gated ion channels, we employed HEK cells transfected with cDNAs encoding three requisite receptor subtypes: α7-nAChR, α4β2-nAChR, and a serotonin receptor (5-HT 3A R), along with a fluorescent reporter. Initial screening of a series of over 50 newly characterized 2-aminopyrimidines with affinity for AChBP showed only two to be agonists on the α7-nAChR below 10 μM concentration. Their unique structural features were incorporated into design of a second subset of 2-aminopyrimidines yielding several congeners that elicited α7 activation with EC 50 values of 70 nM and K d values for AChBP in a similar range. Several compounds within this series exhibit specificity for the α7-nAChR, showing no activation or antagonism of α4β2-nAChR or 5-HT3AR at concentrations up to 10 μM, while others were weaker antagonists (or partial agonists) on these receptors. Analysis following cocrystallization of four ligand complexes with AChBP show binding at the subunit interface, but with an orientation or binding pose that differs from classical nicotinic agonists and antagonists and from the previously analyzed set of 2-aminopyrimidines that displayed distinct cooperative interactions with AChBP. Orientations of aromatic side chains of these complexes are distinctive, suggesting new modes of binding at the agonist-antagonist site and perhaps an allosteric action for heteromeric nAChRs.

  17. Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity.

    PubMed

    Markowicz-Piasecka, Magdalena; Sikora, Joanna; Mateusiak, Łukasz; Mikiciuk-Olasik, Elżbieta; Huttunen, Kristiina M

    2017-01-01

    The results of epidemiological and pathophysiological studies suggest that type 2 diabetes mellitus (T2DM) may predispose to Alzheimer's disease (AD). The two conditions present similar glucose levels, insulin resistance, and biochemical etiologies such as inflammation and oxidative stress. The diabetic state also contributes to increased acetylcholinesterase (AChE) activity, which is one of the factors leading to neurodegeneration in AD. The aim of this study was to assess in vitro the effects of metformin, phenformin, and metformin sulfenamide prodrugs on the activity of human AChE and butyrylcholinesterase (BuChE) and establish the type of inhibition. Metformin inhibited 50% of the AChE activity at micromolar concentrations (2.35  μ mol/mL, mixed type of inhibition) and seemed to be selective towards AChE since it presented low anti-BuChE activity. The tested metformin prodrugs inhibited cholinesterases (ChE) at nanomolar range and thus were more active than metformin or phenformin. The cyclohexyl sulfenamide prodrug demonstrated the highest activity towards both AChE (IC 50  = 890 nmol/mL, noncompetitive inhibition) and BuChE (IC 50  = 28 nmol/mL, mixed type inhibition), while the octyl sulfenamide prodrug did not present anti-AChE activity, but exhibited mixed inhibition towards BuChE (IC 50  = 184 nmol/mL). Therefore, these two bulkier prodrugs were concluded to be the most selective compounds for BuChE over AChE. In conclusion, it was demonstrated that biguanides present a novel class of inhibitors for AChE and BuChE and encourages further studies of these compounds for developing both selective and nonselective inhibitors of ChEs in the future.

  18. The rs662 polymorphism of paraoxonase 1 affects the difference in the inhibition of butyrylcholinesterase activity by organophosphorus pesticides in human blood.

    PubMed

    Nam, Dae Cheol; Ha, Yu Mi; Park, Min Kyu; Cho, Sung Kweon

    2016-08-01

    Organophosphorus pesticides (OPs) are a human health hazard. OPs inhibit acetylcholinesterase (AChE) at nerve endings and accumulate acetylcholine (ACh) at these sites. High levels of ACh and long exposure promote cholinergic crisis. The hydrolysis of OPs by serum paraoxonase 1 (PON1) plays a role in cholinergic crisis in humans. Human serum PON1 can break down organophosphate before binding to ChE. We investigated the effect of PON1 polymorphisms on AChE activity after OP treatment. 50 healthy volunteers were randomly recruited with informed consent. We investigated butyrylcholinesterase (BuChE) activity changes in plasma as a biomarker of AChE after OP treatment in human blood samples immediately following blood sampling. After the standardization of BuChE activity in human blood, we correlated changes in BuChE activity with changes in blood pH. We analyzed the PON1 polymorphisms (rs854560 and rs662) of 50 participants to retrospectively investigate the interindividual variability of changes in BuChE activity. Changes in BuChE activity are strongly correlated with pH changes after OP treatment (R2 = 0.913). We used changes in pH as a surrogate marker for BuChE inhibition after OP treatment. OP treatment significantly decreased BuChE activity by 56.4 ± 5.1% (p < 0.001). The degree of BuChE inhibition was significantly different in the PON1 rs662 genotype (56.10 ± 4.74% vs. 57.96 ± 5.67% vs. 52.34 ± 1.51%; GG vs. GA vs. AA, respectively). Changes in pH can be used as a surrogate marker for the detection of BuChE inhibition after OP exposure. The rs662 polymorphism of PON1 may explain the inter-individual variability in BuChE inhibition.

  19. Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation.

    PubMed

    Camps, Pelayo; Formosa, Xavier; Galdeano, Carles; Gómez, Tània; Muñoz-Torrero, Diego; Scarpellini, Michele; Viayna, Elisabet; Badia, Albert; Clos, M Victòria; Camins, Antoni; Pallàs, Mercè; Bartolini, Manuela; Mancini, Francesca; Andrisano, Vincenza; Estelrich, Joan; Lizondo, Mònica; Bidon-Chanal, Axel; Luque, F Javier

    2008-06-26

    A novel series of donepezil-tacrine hybrids designed to simultaneously interact with the active, peripheral and midgorge binding sites of acetylcholinesterase (AChE) have been synthesized and tested for their ability to inhibit AChE, butyrylcholinesterase (BChE), and AChE-induced A beta aggregation. These compounds consist of a unit of tacrine or 6-chlorotacrine, which occupies the same position as tacrine at the AChE active site, and the 5,6-dimethoxy-2-[(4-piperidinyl)methyl]-1-indanone moiety of donepezil (or the indane derivative thereof), whose position along the enzyme gorge and the peripheral site can be modulated by a suitable tether that connects tacrine and donepezil fragments. All of the new compounds are highly potent inhibitors of bovine and human AChE and BChE, exhibiting IC50 values in the subnanomolar or low nanomolar range in most cases. Moreover, six out of the eight hybrids of the series, particularly those bearing an indane moiety, exhibit a significant A beta antiaggregating activity, which makes them promising anti-Alzheimer drug candidates.

  20. Na+/K+ ATPase regulates the expression and localization of acetylcholine receptors in a pump activity-independent manner

    PubMed Central

    Doi, Motomichi; Iwasaki, Kouichi

    2008-01-01

    Na+/K+ ATPase is a plasma membrane-localized sodium pump that maintains the ion gradients between the extracellular and intracellular environments, which in turn controls the cellular resting membrane potential. Recent evidence suggests that the pump is also localized at synapses and regulates synaptic efficacy. However, its precise function at the synapse is unknown. Here we show that two mutations in the α subunit of the eat-6 Na+/K+ ATPase in Caenorhabditis elegans dramatically increase the sensitivity to acetylcholine (Ach) agonists and alter the localization of nicotinic Ach receptors at the neuromuscular junction (NMJ). These defects can be rescued by mutated EAT-6 proteins which lack its pump activity, suggesting the presence of a novel function for Ach signaling. The Na+/K+ ATPase accumulates at postsynaptic sites and appears to surround Ach receptors to maintain rigid clusters at the NMJ. Our findings suggest a critical pump activity-independent, allele –specific role for Na+/K+ ATPase on postsynaptic organization and synaptic efficacy. PMID:18599311

  1. Study of acetylcholinesterase activity and apoptosis in SH-SY5Y cells and mice exposed to ethanol.

    PubMed

    Sun, Wenjun; Chen, Liangjing; Zheng, Wei; Wei, Xiaoan; Wu, Wenqi; Duysen, Ellen G; Jiang, Wei

    2017-06-01

    Ethanol is one of the most commonly abused psychotropic substances with deleterious effects on the central nervous system. Ethanol exposure during development results in the loss of neurons in brain regions and when exposed to ethanol cultured cells undergo apoptosis. To date no information is available on whether abnormally high AChE activity is characteristic of apoptosis in animals exposed to ethanol. The aims of the present study were to determine whether induction of AChE activity is associated with ethanol-induced apoptosis and to explore the mechanism of enhanced AChE activity induced by ethanol. For this purpose, in vitro and in vivo experiments were performed. AChE activity was quantified by spectrophotometry and apoptosis by flow cytometer in SH-SY5Y cells exposed to ethanol. The results showed that cells treated with 500mM ethanol for 24h had a 9-fold increase in apoptotic cells and a 6-fold increase in AChE activity compared with controls. Mice exposed acutely to 200μl of 20% ethanol daily on days 1-4 had elevated AChE activity in plasma on days 3-7. On day 4, plasma AChE activity was 2.4-fold higher than pretreatment activity. More apoptotic cells were found in the brains of treated mice compared to controls. Cells in brain sections that were positive in the TUNEL assay stained for AChE activity. In conclusion, AChE activity and apoptosis were induced in SH-SY5Y cells and mice treated with ethanol, which may indicate that increased AChE may related to apoptosis induced by ethanol. Unusually high AChE activity may be an effect marker of exposure to ethanol. The relationship between AChE and apoptosis might represent a novel mechanism of ethanol-associated neuronal injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. HI-6 assisted catalytic scavenging of VX by acetylcholinesterase choline binding site mutants.

    PubMed

    Maček Hrvat, Nikolina; Žunec, Suzana; Taylor, Palmer; Radić, Zoran; Kovarik, Zrinka

    2016-11-25

    The high toxicity of organophosphorus compounds originates from covalent inhibition of acetylcholinesterase (AChE), an essential enzyme in cholinergic neurotransmission. Poisonings that lead to life-threatening toxic manifestations require immediate treatment that combines administration of anticholinergic drugs and an aldoxime as a reactivator of AChE. An alternative approach to reduce the in vivo toxicity of OPs focuses on the use of bioscavengers against the parent organophosphate. Our previous research showed that AChE mutagenesis can enable aldoximes to substantially accelerate the reactivation of OP-enzyme conjugates, while dramatically slowing down rates of OP-conjugate dealkylation (aging). Herein, we demonstrate an efficient HI-6-assisted VX detoxification, both ex vivo in human blood and in vivo in mice by hAChE mutants modified at the choline binding site (Y337A and Y337A/F338A). The catalytic scavenging of VX in mice improved therapeutic outcomes preventing lethality and resulted in a delayed onset of toxicity symptoms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. A mutation in the extracellular domain of the α7 nAChR reduces calcium permeability.

    PubMed

    Colón-Sáez, José O; Yakel, Jerrel L

    2014-08-01

    The α7 neuronal nicotinic acetylcholine receptor (nAChR) displays the highest calcium permeability among the different subtypes of nAChRs expressed in the mammalian brain and can impact cellular events including neurotransmitter release, second messenger cascades, cell survival, and apoptosis. The selectivity for cations in nAChRs is thought to be achieved in part by anionic residues which are located on either side of the channel mouth and increase relative cationic concentration. Mutagenesis studies have improved our understanding of the role of the second transmembrane domain and the intracellular loop of the channel in ion selectivity. However, little is known about the influence that the extracellular domain (ECD) plays in ion permeation. In the α7 nAChR, it has been found that the ECD contains a ring of ten aspartates (two per subunit) that is believed to face the lumen of the pore and could attract cations for permeation. Using mutagenesis and a combination of electrophysiology and imaging techniques, we tested the possible involvement of these aspartate residues in the calcium permeability of the rat α7 nAChR. We found that one of these residues (the aspartate at position 44) appears to be essential since mutating it to alanine resulted in a decrease in amplitude for both whole cell and single-channel responses and in the complete disappearance of detectable calcium changes in most cells, which indicates that the ECD of the α7 nAChR plays a key role in calcium permeation.

  4. A mutation in the extracellular domain of the α7 nAChR reduces calcium permeability

    PubMed Central

    Colón-Sáez, José O.

    2013-01-01

    The α7 neuronal nicotinic acetylcholine receptor (nAChR) displays the highest calcium permeability among the different subtypes of nAChRs expressed in the mammalian brain and can impact cellular events including neurotransmitter release, second messenger cascades, cell survival, and apoptosis. The selectivity for cations in nAChRs is thought to be achieved in part by anionic residues which are located on either side of the channel mouth and increase relative cationic concentration. Mutagenesis studies have improved our understanding of the role of the second transmembrane domain and the intracellular loop of the channel in ion selectivity. However, little is known about the influence that the extracellular domain (ECD) plays in ion permeation. In the α7 nAChR, it has been found that the ECD contains a ring of ten aspartates (two per subunit) that is believed to face the lumen of the pore and could attract cations for permeation. Using mutagenesis and a combination of electrophysiology and imaging techniques, we tested the possible involvement of these aspartate residues in the calcium permeability of the rat α7 nAChR. We found that one of these residues (the aspartate at position 44) appears to be essential since mutating it to alanine resulted in a decrease in amplitude for both whole cell and single-channel responses and in the complete disappearance of detectable calcium changes in most cells, which indicates that the ECD of the α7 nAChR plays a key role in calcium permeation. PMID:24177919

  5. Acetylcholinesterase complexed with bivalent ligands related to huperzine a: experimental evidence for species-dependent protein-ligand complementarity.

    PubMed

    Wong, Dawn M; Greenblatt, Harry M; Dvir, Hay; Carlier, Paul R; Han, Yi-Fan; Pang, Yuan-Ping; Silman, Israel; Sussman, Joel L

    2003-01-15

    Acetylcholinesterase (AChE) inhibitors improve the cognitive abilities of Alzheimer patients. (-)-Huperzine A [(-)-HupA], an alkaloid isolated from the club moss, Huperzia serrata, is one such inhibitor, but the search for more potent and selective drugs continues. Recently, alkylene-linked dimers of 5-amino-5,6,7,8-tetrahydroquinolinone (hupyridone, 1a), a fragment of HupA, were shown to serve as more potent inhibitors of AChE than (-)-HupA and monomeric 1a. We soaked two such dimers, (S,S)-(-)-bis(10)-hupyridone [(S,S)-(-)-2a] and (S,S)-(-)-bis(12)-hupyridone [(S,S)-(-)-2b] containing, respectively, 10 and 12 methylenes in the spacer, into trigonal TcAChE crystals, and solved the X-ray structures of the resulting complexes using the difference Fourier technique, both to 2.15 A resolution. The structures revealed one HupA-like 1a unit bound to the "anionic" subsite of the active-site, near the bottom of the active-site gorge, adjacent to Trp84, as seen for the TcAChE/(-)-HupA complex, and the second 1a unit near Trp279 in the "peripheral" anionic site at the top of the gorge, both bivalent molecules thus spanning the active-site gorge. The results confirm that the increased affinity of the dimeric HupA analogues for AChE is conferred by binding to the two "anionic" sites of the enzyme. Inhibition data show that (-)-2a binds to TcAChE approximately 6-7- and > 170-fold more tightly than (-)-2b and (-)-HupA, respectively. In contrast, previous data for rat AChE show that (-)-2b binds approximately 3- and approximately 2-fold more tightly than (-)-2a and (-)-HupA, respectively. Structural comparison of TcAChE with rat AChE, as represented by the closely related mouse AChE structure (1maa.pdb), reveals a narrower gorge for rat AChE, a perpendicular alignment of the Tyr337 ring to the gorge axis, and its conformational rigidity, as a result of hydrogen bonding between its hydroxyl group and that of Tyr341, relative to TcAChE Phe330. These structural differences in the

  6. An integrated catch-and-hold mechanism activates nicotinic acetylcholine receptors

    PubMed Central

    Jadey, Snehal

    2012-01-01

    In neuromuscular acetylcholine (ACh) receptor channels (AChRs), agonist molecules bind with a low affinity (LA) to two sites that can switch to high affinity (HA) and increase the probability of channel opening. We measured (by using single-channel kinetic analysis) the rate and equilibrium constants for LA binding and channel gating for several different agonists of adult-type mouse AChRs. Almost all of the variation in the equilibrium constants for LA binding was from differences in the association rate constants. These were consistently below the limit set by diffusion and were substantially different even though the agonists had similar sizes and the same charge. This suggests that binding to resting receptors is not by diffusion alone and, hence, that each binding site can undergo two conformational changes (“catch” and “hold”) that connect three different structures (apo-, LA-bound, and HA-bound). Analyses of ACh-binding protein structures suggest that this binding site, too, may adopt three discrete structures having different degrees of loop C displacement (“capping”). For the agonists we tested, the logarithms of the equilibrium constants for LA binding and LA↔HA gating were correlated. Although agonist binding and channel gating have long been considered to be separate processes in the activation of ligand-gated ion channels, this correlation implies that the catch-and-hold conformational changes are energetically linked and together comprise an integrated process having a common structural basis. We propose that loop C capping mainly reflects agonist binding, with its two stages corresponding to the formation of the LA and HA complexes. The catch-and-hold reaction coordinate is discussed in terms of preopening states and thermodynamic cycles of activation. PMID:22732309

  7. Cooperativeness of the higher chromatin structure of the beta-globin locus revealed by the deletion mutations of DNase I hypersensitive site 3 of the LCR.

    PubMed

    Fang, Xiangdong; Xiang, Ping; Yin, Wenxuan; Stamatoyannopoulos, George; Li, Qiliang

    2007-01-05

    High-level transcription of the globin genes requires the enhancement by a distant element, the locus control region (LCR). Such long-range regulation in vivo involves spatial interaction between transcriptional elements, with intervening chromatin looping out. It has been proposed that the clustering of the HS sites of the LCR, the active globin genes, as well as the remote 5' hypersensitive sites (HSs) (HS-60/-62 in mouse, HS-110 in human) and 3'HS1 forms a specific spatial chromatin structure, termed active chromatin hub (ACH). Here we report the effects of the HS3 deletions of the LCR on the spatial chromatin structure of the beta-globin locus as revealed by the chromatin conformation capture (3C) technology. The small HS3 core deletion (0.23 kb), but not the large HS3 deletion (2.3 kb), disrupted the spatial interactions among all the HS sites of the LCR, the beta-globin gene and 3'HS1. We have previously demonstrated that the large HS3 deletion barely impairs the structure of the LCR holocomplex, while the structure is significantly disrupted by the HS3 core deletion. Taken together, these results suggest that the formation of the ACH is dependent on a largely intact LCR structure. We propose that the ACH indeed is an extension of the LCR holocomplex.

  8. Menthol Enhances Nicotine Reward-Related Behavior by Potentiating Nicotine-Induced Changes in nAChR Function, nAChR Upregulation, and DA Neuron Excitability.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; McKinney, Sheri; Lester, Henry A

    2017-11-01

    Understanding why the quit rate among smokers of menthol cigarettes is lower than non-menthol smokers requires identifying the neurons that are altered by nicotine, menthol, and acetylcholine. Dopaminergic (DA) neurons in the ventral tegmental area (VTA) mediate the positive reinforcing effects of nicotine. Using mouse models, we show that menthol enhances nicotine-induced changes in nicotinic acetylcholine receptors (nAChRs) expressed on midbrain DA neurons. Menthol plus nicotine upregulates nAChR number and function on midbrain DA neurons more than nicotine alone. Menthol also enhances nicotine-induced changes in DA neuron excitability. In a conditioned place preference (CPP) assay, we observed that menthol plus nicotine produces greater reward-related behavior than nicotine alone. Our results connect changes in midbrain DA neurons to menthol-induced enhancements of nicotine reward-related behavior and may help explain how smokers of menthol cigarettes exhibit reduced cessation rates.

  9. Menthol Enhances Nicotine Reward-Related Behavior by Potentiating Nicotine-Induced Changes in nAChR Function, nAChR Upregulation, and DA Neuron Excitability

    PubMed Central

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; McKinney, Sheri; Lester, Henry A

    2017-01-01

    Understanding why the quit rate among smokers of menthol cigarettes is lower than non-menthol smokers requires identifying the neurons that are altered by nicotine, menthol, and acetylcholine. Dopaminergic (DA) neurons in the ventral tegmental area (VTA) mediate the positive reinforcing effects of nicotine. Using mouse models, we show that menthol enhances nicotine-induced changes in nicotinic acetylcholine receptors (nAChRs) expressed on midbrain DA neurons. Menthol plus nicotine upregulates nAChR number and function on midbrain DA neurons more than nicotine alone. Menthol also enhances nicotine-induced changes in DA neuron excitability. In a conditioned place preference (CPP) assay, we observed that menthol plus nicotine produces greater reward-related behavior than nicotine alone. Our results connect changes in midbrain DA neurons to menthol-induced enhancements of nicotine reward-related behavior and may help explain how smokers of menthol cigarettes exhibit reduced cessation rates. PMID:28401925

  10. Site-activated chelators derived from anti-Parkinson drug rasagiline as a potential safer and more effective approach to the treatment of Alzheimer's disease.

    PubMed

    Zheng, Hailin; Fridkin, Mati; Youdim, Moussa B H

    2010-12-01

    chelators can modulate β-amyloid accumulation, protect against tau hyperphosphorylation, and block metal-related oxidative stress, and thereby hold considerable promise as effective anti-AD drugs. At present, a growing interest is focusing on increasing the efficacy and targeting of chelators through drug design. To this end, we have developed a new class of multifunctional prochelators from three FDA- approved drugs rasagiline, rivastigmine, and donepezil or tacrine. HLA20 A was designed by merging the important pharmacophores of rasagiline, rivastigmine, and donepezil into our newly developed multifunctional chelator HLA20. M30D was constructed using the key pharmacophoric moieties from rasagiline, rivastigmine, and tacrine. Experiments showed that both compounds possess potent anti-acetylcholinesterase (AChE) activity in vitro with weak inhibition of butyrylcholinesterase (BuChE), and without significant metal-binding activity. M30D was found also to be a highly potent MAO A inhibitor with moderate inhibition of MAO B in vitro. Both HLA20 and M30D can be activated by inhibition of AChE to release active chelators HLA20 and M30, respectively. HLA20 and M30 have been shown to be able to modulate amyloid precursor protein regulation and beta-amyloid reduction, suppress oxidative stress, and passivate excess metal ions (Fe, Cu, and Zn). Compared with the activated chelator HLA20 or M30, both HLA20A and M30D exhibited lower cytotoxicity in SH-SY5Y neuroblastoma cells, substantiating the prochelator strategy for minimizing toxicity associated with poor targeted chelators.

  11. Mapping of a binding site for ATP within the extracellular region of the Torpedo nicotinic acetylcholine receptor beta-subunit.

    PubMed

    Schrattenholz, A; Roth, U; Godovac-Zimmermann, J; Maelicke, A

    1997-10-28

    Using 2,8,5'-[3H]ATP as a direct photoaffinity label for membrane-bound nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata, we have identified a binding site for ATP in the extracellular region of the beta-subunit of the receptor. Photolabeling was completely inhibited in the presence of saturating concentrations of nonradioactive ATP, whereas neither the purinoreceptor antagonists suramin, theophyllin, and caffeine nor the nAChR antagonists alpha-bungarotoxin and d-tubocurarine affected the labeling reaction. Competitive and noncompetitive nicotinic agonists and Ca2+ increased the yield of the photoreaction by up to 50%, suggesting that the respective binding sites are allosterically linked with the ATP site. The dissociation constant KD of binding of ATP to the identified site on the nAChR was of the order of 10(-4) M. Sites of labeling were found in the sequence regions Leu11-Pro17 and Asp152-His163 of the nAChR beta-subunit. These regions may represent parts of a single binding site for ATP, which is discontinuously distributed within the primary structure of the N-terminal extracellular domain. The existence of an extracellular binding site for ATP confirms, on the molecular level, that this nucleotide can directly act on nicotinic receptors, as has been suggested from previous electrophysiological and biochemical studies.

  12. Cholinesterase inhibitors modify the activity of intrinsic cardiac neurons.

    PubMed

    Darvesh, Sultan; Arora, Rakesh C; Martin, Earl; Magee, David; Hopkins, David A; Armour, J Andrew

    2004-08-01

    Cholinesterase inhibitors used to treat the symptoms of Alzheimer's disease (AD) inhibit both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), albeit to different degrees. Because central and peripheral neurons, including intrinsic cardiac neurons located on the surface of the mammalian heart, express both BuChE and AChE, we studied spontaneously active intrinsic cardiac neurons in the pig as a model to assess the effects of inhibition of AChE compared to BuChE. Neuroanatomical experiments showed that some porcine intrinsic cardiac neurons expressed AChE and/or BuChE. Enzyme kinetic experiments with cholinesterase inhibitors, namely, donepezil, galantamine, (+/-) huperzine A, metrifonate, rivastigmine, and tetrahydroaminoacridine, demonstrated that these compounds differentially inhibited porcine AChE and BuChE. Donepezil and (+/-) huperzine A were better reversible inhibitors of AChE, and galantamine equally inhibited both the enzymes. Tetrahydroaminoacridine was a better reversible inhibitor of BuChE. Rivastigmine caused more rapid inactivation of BuChE as compared to AChE. Neurophysiological studies showed that acetylcholine and butyrylcholine increase or decrease the spontaneous activity of the intrinsic cardiac neurons. Donepezil, galantamine, (+/-) huperzine A, and tetrahydroaminoacridine changed spontaneous neuronal activity by about 30-35 impulses per minute, while rivastigmine changed it by approximately 100 impulses per minute. It is concluded that (i) inhibition of AChE and BuChE directly affects the porcine intrinsic cardiac nervous system, (ii) the intrinsic cardiac nervous system represents a suitable model for examining the effects of cholinesterase inhibitors on mammalian neurons in vivo, and (iii) the activity of intrinsic cardiac neurons may be affected by pharmacological agents that inhibit cholinesterases.

  13. The α7-nACh nicotinic receptor and its role in memory and selected diseases of the central nervous system.

    PubMed

    Baranowska, Urszula; Wiśniewska, Róża Julia

    2017-07-30

    α7-nACh is one of the major nicotinic cholinergic receptor subtypes found in the brain. It is broadly expressed in the hippocampal and cortical neurons, the regions which play a key role in memory formation. Although α7-nACh receptors may serve as postsynaptic receptors mediating classical neurotransmission, they usually function as presynaptic modulators responsible for the release of other neurotransmitters, such as glutamate, γ-aminobutyric acid, dopamine, and norepinephrine. They can, therefore, affect a wide array of neurobiological functions. In recent years, research has found that a large number of agonists and positive allosteric modulators of α7-nAChR induce beneficial effects on learning and memory. Consistently, mice deficient in chrna7 (the gene encoding α7-nAChR protein), are characterized by memory deficits. In addition, decreased expression and function of α7-nAChR is associated agoniwith many neurological diseases including schizophrenia, bipolar disorder, learning disability, attention deficit hyperactivity disorder, Alzheimer disease, autism, and epilepsy. In the recent years many animal experiments and clinical trials using α7-nAChR ligands were conducted. The results of these studies strongly indicate that agonists and positive allosteric modulators of α7-nAChR are promising therapeutic agents for diseases associated with cognitive deficits.

  14. Molecular recognition of thiaclopride by Aplysia californica AChBP: new insights from a computational investigation

    NASA Astrophysics Data System (ADS)

    Alamiddine, Zakaria; Selvam, Balaji; Cerón-Carrasco, José P.; Mathé-Allainmat, Monique; Lebreton, Jacques; Thany, Steeve H.; Laurent, Adèle D.; Graton, Jérôme; Le Questel, Jean-Yves

    2015-12-01

    The binding of thiaclopride (THI), a neonicotinoid insecticide, with Aplysia californica acetylcholine binding protein ( Ac-AChBP), the surrogate of the extracellular domain of insects nicotinic acetylcholine receptors, has been studied with a QM/QM' hybrid methodology using the ONIOM approach (M06-2X/6-311G(d):PM6). The contributions of Ac-AChBP key residues for THI binding are accurately quantified from a structural and energetic point of view. The importance of water mediated hydrogen-bond (H-bond) interactions involving two water molecules and Tyr55 and Ser189 residues in the vicinity of the THI nitrile group, is specially highlighted. A larger stabilization energy is obtained with the THI- Ac-AChBP complex compared to imidacloprid (IMI), the forerunner of neonicotinoid insecticides. Pairwise interaction energy calculations rationalize this result with, in particular, a significantly more important contribution of the pivotal aromatic residues Trp147 and Tyr188 with THI through CH···π/CH···O and π-π stacking interactions, respectively. These trends are confirmed through a complementary non-covalent interaction (NCI) analysis of selected THI- Ac-AChBP amino acid pairs.

  15. Hydrolysis of acetylthiocoline, o-nitroacetanilide and o-nitrotrifluoroacetanilide by fetal bovine serum acetylcholinesterase.

    PubMed

    Montenegro, María F; Moral-Naranjo, María T; Muñoz-Delgado, Encarnación; Campoy, Francisco J; Vidal, Cecilio J

    2009-04-01

    Besides esterase activity, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) hydrolyze o-nitroacetanilides through aryl acylamidase activity. We have reported that BuChE tetramers and monomers of human blood plasma differ in o-nitroacetanilide (ONA) hydrolysis. The homology in quaternary structure and folding of subunits in the prevalent BuChE species (G4(H)) of human plasma and AChE forms of fetal bovine serum prompted us to study the esterase and amidase activities of fetal bovine serum AChE. The k(cat)/K(m) values for acetylthiocholine (ATCh), ONA and its trifluoro derivative N-(2-nitrophenyl)-trifluoroacetamide (F-ONA) were 398 x 10(6) M(-1) min(-1), 0.8 x 10(6) M(-1) min(-1), and 17.5 x 10(6) M(-1) min(-1), respectively. The lack of inhibition of amidase activity at high F-ONA concentrations makes it unlikely that there is a role for the peripheral anionic site (PAS) in F-ONA degradation, but the inhibition of ATCh, ONA and F-ONA hydrolysis by the PAS ligand fasciculin-2 points to the transit of o-nitroacetalinides near the PAS on their way to the active site. Sedimentation analysis confirmed substrate hydrolysis by tetrameric 10.9S AChE. As compared with esterase activity, amidase activity was less sensitive to guanidine hydrochloride. This reagent led to the formation of 9.3S tetramers with partially unfolded subunits. Their capacity to hydrolyze ATCh and F-ONA revealed that, despite the conformational change, the active site architecture and functionality of AChE were partially retained.

  16. Effect of novel negative allosteric modulators of neuronal nicotinic receptors on cells expressing native and recombinant nicotinic receptors: implications for drug discovery.

    PubMed

    González-Cestari, Tatiana F; Henderson, Brandon J; Pavlovicz, Ryan E; McKay, Susan B; El-Hajj, Raed A; Pulipaka, Aravinda B; Orac, Crina M; Reed, Damon D; Boyd, R Thomas; Zhu, Michael X; Li, Chenglong; Bergmeier, Stephen C; McKay, Dennis B

    2009-02-01

    Allosteric modulation of nAChRs is considered to be one of the most promising approaches for drug design targeting nicotinic acetylcholine receptors (nAChRs). We have reported previously on the pharmacological activity of several compounds that seem to act noncompetitively to inhibit the activation of alpha3beta4(*) nAChRs. In this study, the effects of 51 structurally similar molecules on native and recombinant alpha3beta4 nAChRs are characterized. These 51 molecules inhibited adrenal neurosecretion activated via stimulation of native alpha3beta4(*) nAChR, with IC(50) values ranging from 0.4 to 13.0 microM. Using cells expressing recombinant alpha3beta4 nAChRs, these molecules inhibited calcium accumulation (a more direct assay to establish nAChR activity), with IC(50) values ranging from 0.7 to 38.2 microM. Radiolabeled nAChR binding studies to orthosteric sites showed no inhibitory activity on either native or recombinant nAChRs. Correlation analyses of the data from both functional assays suggested additional, non-nAChR activity of the molecules. To test this hypothesis, the effects of the drugs on neurosecretion stimulated through non-nAChR mechanisms were investigated; inhibitory effects ranged from no inhibition to 95% inhibition at concentrations of 10 microM. Correlation analyses of the functional data confirmed this hypothesis. Several of the molecules (24/51) increased agonist binding to native nAChRs, supporting allosteric interactions with nAChRs. Computational modeling and blind docking identified a binding site for our negative allosteric modulators near the orthosteric binding site of the receptor. In summary, this study identified several molecules for potential development as negative allosteric modulators and documented the importance of multiple screening assays for nAChR drug discovery.

  17. Effect of Novel Negative Allosteric Modulators of Neuronal Nicotinic Receptors on Cells Expressing Native and Recombinant Nicotinic Receptors: Implications for Drug Discovery

    PubMed Central

    González-Cestari, Tatiana F.; Henderson, Brandon J.; Pavlovicz, Ryan E.; McKay, Susan B.; El-Hajj, Raed A.; Pulipaka, Aravinda B.; Orac, Crina M.; Reed, Damon D.; Boyd, R. Thomas; Zhu, Michael X.; Li, Chenglong; Bergmeier, Stephen C.; McKay, Dennis B.

    2009-01-01

    Allosteric modulation of nAChRs is considered to be one of the most promising approaches for drug design targeting nicotinic acetylcholine receptors (nAChRs). We have reported previously on the pharmacological activity of several compounds that seem to act noncompetitively to inhibit the activation of α3β4* nAChRs. In this study, the effects of 51 structurally similar molecules on native and recombinant α3β4 nAChRs are characterized. These 51 molecules inhibited adrenal neurosecretion activated via stimulation of native α3β4* nAChR, with IC50 values ranging from 0.4 to 13.0 μM. Using cells expressing recombinant α3β4 nAChRs, these molecules inhibited calcium accumulation (a more direct assay to establish nAChR activity), with IC50 values ranging from 0.7 to 38.2 μM. Radiolabeled nAChR binding studies to orthosteric sites showed no inhibitory activity on either native or recombinant nAChRs. Correlation analyses of the data from both functional assays suggested additional, non-nAChR activity of the molecules. To test this hypothesis, the effects of the drugs on neurosecretion stimulated through non-nAChR mechanisms were investigated; inhibitory effects ranged from no inhibition to 95% inhibition at concentrations of 10 μM. Correlation analyses of the functional data confirmed this hypothesis. Several of the molecules (24/51) increased agonist binding to native nAChRs, supporting allosteric interactions with nAChRs. Computational modeling and blind docking identified a binding site for our negative allosteric modulators near the orthosteric binding site of the receptor. In summary, this study identified several molecules for potential development as negative allosteric modulators and documented the importance of multiple screening assays for nAChR drug discovery. PMID:18984653

  18. High aryl acylamidase activity associated with cobra venom acetylcholinesterase: biological significance.

    PubMed

    Rajesh, Ramanna V; Layer, Paul G; Boopathy, Rathanam

    2009-01-01

    Investigation of the non-classical functions of cholinesterases (ChEs) has been the subject of interest in the past three decades. One of which is aryl acylamidase (AAA) activity associated with ChEs, but characterized in in vitro, as an enzyme, splitting the artificial substrate o-nitroacetanilide with unknown physiological function. In the present study, we have compared levels of AAA activity of AChE from different sources like goat brain, electric eel organ and from venoms of different snakes. Remarkably cobra venom showed the highest AAA activity and also high AAA/AChE ratio. Both serotonergenic and cholinergic inhibitors inhibited the cobra venom AAA activity in a concentration dependent manner, which also underlines the association of AAA with AChE of cobra venom. The study becomes interesting because of i) the cobra venom AChE exists in monomeric globular forms; ii) in Alzheimer's disease too the most abundant forms of cholinesterases are monomeric globular forms, thought to be involved in the pathogenesis of Alzheimer's disease; iii) the effect of Alzheimer's disease drugs on the AAA activity of cobra venom, indicated that AAA activity of cobra venom was more sensitive than AChE and iv) Huperzine and Tacrine showed more pronounced effect on AAA. Thus, this study elucidates the high AAA associated with cobra venom AChE may serve as one of the prominent activity to test the pharmacological effect of AD drugs, as other sources were found to have lower activity.

  19. Design, synthesis, and pharmacological evaluation of 2-amino-5-nitrothiazole derived semicarbazones as dual inhibitors of monoamine oxidase and cholinesterase: effect of the size of aryl binding site.

    PubMed

    Tripathi, Rati K P; M Sasi, Vishnu; Gupta, Sukesh K; Krishnamurthy, Sairam; Ayyannan, Senthil R

    2018-12-01

    A series of 2-amino-5-nitrothiazole derived semicarbazones were designed, synthesised and investigated for MAO and ChE inhibition properties. Most of the compounds showed preferential inhibition towards MAO-B. Compound 4, (1-(1-(4-Bromophenyl)ethylidene)-4-(5-nitrothiazol-2-yl)semicarbazide) emerged as lead candidate (IC 50  = 0.212 µM, SI = 331.04) against MAO-B; whereas compounds 21 1-(5-Bromo-2-oxoindolin-3-ylidene)-4-(5-nitrothiazol-2-yl)semicarbazide (IC 50  = 0.264 µM) and 17 1-((4-Chlorophenyl) (phenyl)methylene)-4-(5-nitrothiazol-2-yl)semicarbazide (IC 50  = 0.024 µM) emerged as lead AChE and BuChE inhibitors respectively; with activity of compound 21 almost equivalent to tacrine. Kinetic studies indicated that compound 4 exhibited competitive and reversible MAO-B inhibition while compounds 21 and 17 showed mixed-type of AChE and BuChE inhibition respectively. Docking studies revealed that these compounds were well-accommodated within MAO-B and ChE active sites through stable hydrogen bonding and/or hydrophobic interactions. This study revealed the requirement of small heteroaryl ring at amino terminal of semicarbazone template for preferential inhibition and selectivity towards MAO-B. Our results suggest that 5-nitrothiazole derived semicarbazones could be further exploited for its multi-targeted role in development of anti-neurodegenerative agents. [Formula: see text] A library of 2-amino-5-nitrothiazole derived semicarbazones (4-21) was designed, synthesised and evaluated for in vitro MAO and ChE inhibitory activity. Compounds 4, 21 and 17 (shown) have emerged as lead MAO-B (IC 50 :0.212 µM, competitive and reversible), AChE (IC 50 :0.264 µM, mixed and reversible) and BuChE (IC 50 :0.024 µM, mixed and reversible) inhibitor respectively. SAR studies disclosed several structural aspects significant for potency and selectivity and indicated the role of size of aryl binding site in potency and selectivity towards MAO

  20. Rat nicotinic ACh receptor α7 and β2 subunits co-assemble to form functional heteromeric nicotinic receptor channels

    PubMed Central

    Khiroug, Serguei S; Harkness, Patricia C; Lamb, Patricia W; Sudweeks, Sterling N; Khiroug, Leonard; Millar, Neil S; Yakel, Jerrel L

    2002-01-01

    Rat hippocampal interneurons express diverse subtypes of functional nicotinic acetylcholine receptors (nAChRs), including α7-containing receptors that have properties unlike those expected for homomeric α7 nAChRs. We previously reported a strong correlation between expression of the α7 and of the β2 subunits in individual neurons. To explore whether co-assembly of the α7 and β2 subunits might occur, these subunits were co-expressed in Xenopus oocytes and the functional properties of heterologously expressed nAChRs were characterized by two-electrode voltage clamp. Co-expression of the β2 subunit, both wild-type and mutant forms, with the α7 subunit significantly slowed the rate of nAChR desensitization and altered the pharmacological properties. Whereas ACh, carbachol and choline were full or near-full agonists for homomeric α7 receptor channels, both carbachol and choline were only partial agonists in oocytes expressing both α7 and β2 subunits. In addition the EC50 values for all three agonists significantly increased when the β2 subunit was co-expressed with the α7 subunit. Co-expression with the β2 subunit did not result in any significant change in the current-voltage curve. Biochemical evidence for the co-assembly of the α7 and β2 subunits was obtained by co-immunoprecipitation of these subunits from transiently transfected human embryonic kidney (TSA201) cells. These data provide direct biophysical and molecular evidence that the nAChR α7 and β2 subunits co-assemble to form a functional heteromeric nAChR with functional and pharmacological properties different from those of homomeric α7 channels. This co-assembly may help to explain nAChR channel diversity in rat hippocampal interneurons, and perhaps in other areas of the nervous system. PMID:11956333

  1. Identification of AQP5 in lipid rafts and its translocation to apical membranes by activation of M3 mAChRs in interlobular ducts of rat parotid gland.

    PubMed

    Ishikawa, Yasuko; Yuan, Zhenfang; Inoue, Noriko; Skowronski, Mariusz T; Nakae, Yoshiko; Shono, Masayuki; Cho, Gota; Yasui, Masato; Agre, Peter; Nielsen, Søren

    2005-11-01

    Aquaporin-5 (AQP5), an apical plasma membrane (APM) water channel in salivary glands, lacrimal glands, and airway epithelium, has an important role in fluid secretion. M(3) muscarinic acetylcholine receptor (mAChR)-induced changes in AQP5 localization in rat parotid glands were investigated with immunofluorescence or immunoelectron microscopy, detergent solubility, and gradient density floatation assays. Confocal microscopy revealed AQP5 localization in intracellular vesicles of interlobular duct cells in rat parotid glands and AQP5 trafficking to the APM 10 min after injection of the mAChR agonist cevimeline. Conversely, 60 min after injection, there was a diffuse pattern of AQP5 staining in the cell cytoplasm. The calcium ionophore A-23187 mimicked the effects of cevimeline. Immunoelectron microscopic studies confirmed that cevimeline induced AQP5 trafficking from intracellular structures to APMs in the interlobular duct cells of rat parotid glands. Lipid raft markers flotillin-2 and GM1 colocalized with AQP5 and moved with AQP5 in response to cevimeline. Under control conditions, the majority of AQP5 localized in the Triton X-100-insoluble fraction and floated to the light-density fraction on discontinuous density gradients. After 10-min incubation of parotid tissue slices with cevimeline or A-23187, AQP5 levels decreased in the Triton X-100-insoluble fraction and increased in the Triton X-100-soluble fraction. Thus AQP5 localizes in the intracellular lipid rafts, and M(3) mAChR activation induces AQP5 trafficking to the APM with lipid rafts via intracellular Ca(2+) signaling and induces AQP5 dissociation from lipid rafts to nonrafts on the APM in the interlobular duct cells of rat parotid glands.

  2. Memantine Inhibits α3β2-nAChRs-Mediated Nitrergic Neurogenic Vasodilation in Porcine Basilar Arteries

    PubMed Central

    Wu, Celeste Yin-Chieh; Chen, Po-Yi; Chen, Mei-Fang; Kuo, Jon-Son; Lee, Tony Jer-Fu

    2012-01-01

    Memantine, an NMDA receptor antagonist used for treatment of Alzheimer’s disease (AD), is known to block the nicotinic acetylcholine receptors (nAChRs) in the central nervous system (CNS). In the present study, we examined by wire myography if memantine inhibited α3β2-nAChRs located on cerebral perivascular sympathetic nerve terminals originating in the superior cervical ganglion (SCG), thus, leading to inhibition of nicotine-induced nitrergic neurogenic dilation of isolated porcine basilar arteries. Memantine concentration-dependently blocked nicotine-induced neurogenic dilation of endothelium-denuded basilar arteries without affecting that induced by transmural nerve stimulation, sodium nitroprusside, or isoproterenol. Furthermore, memantine significantly inhibited nicotine-elicited inward currents in Xenopous oocytes expressing α3β2-, α7- or α4β2-nAChR, and nicotine-induced calcium influx in cultured rat SCG neurons. These results suggest that memantine is a non-specific antagonist for nAChR. By directly inhibiting α3β2-nAChRs located on the sympathetic nerve terminals, memantine blocks nicotine-induced neurogenic vasodilation of the porcine basilar arteries. This effect of memantine is expected to reduce the blood supply to the brain stem and possibly other brain regions, thus, decreasing its clinical efficacy in the treatment of Alzheimer’s disease. PMID:22792283

  3. Mechanisms of flow and ACh-induced dilation in rat soleus arterioles are altered by hindlimb unweighting

    NASA Technical Reports Server (NTRS)

    Schrage, William G.; Woodman, Christopher R.; Laughlin, M. Harold

    2002-01-01

    The purpose of this study was to test the hypothesis that endothelium-dependent dilation (flow-induced dilation and ACh-induced dilation) in rat soleus muscle arterioles is impaired by hindlimb unweighting (HLU). Male Sprague-Dawley rats (approximately 300 g) were exposed to HLU or weight-bearing control (Con) conditions for 14 days. Soleus first-order (1A) and second-order (2A) arterioles were isolated, cannulated, and exposed to step increases in luminal flow at constant pressure. Flow-induced dilation was not impaired by HLU in 1A or 2A arterioles. The cyclooxygenase inhibitor indomethacin (Indo; 50 microM) did not alter flow-induced dilation in 1As or 2As. Inhibition of nitric oxide synthase (NOS) with N(omega)-nitro-L-arginine (L-NNA; 300 microM) reduced flow-induced dilation by 65-70% in Con and HLU 1As. In contrast, L-NNA abolished flow-induced dilation in 2As from Con rats but had no effect in HLU 2As. Combined treatment with L-NNA + Indo reduced tone in 1As and 2As from Con rats, but flow-induced dilation in the presence of L-NNA + Indo was not different from responses without inhibitors in either Con or HLU 1As or 2As. HLU also did not impair ACh-induced dilation (10(-9)-10(-4) M) in soleus 2As. L-NNA reduced ACh-induced dilation by approximately 40% in Con 2As but abolished dilation in HLU 2As. Indo did not alter ACh-induced dilation in Con or HLU 2As, whereas combined treatment with L-NNA + Indo abolished ACh-induced dilation in 2As from both groups. We conclude that flow-induced dilation (1As and 2As) was preserved after 2 wk HLU, but HLU decreased the contribution of NOS in mediating flow-induced dilation and increased the contribution of a NOS- and cyclooxygenase-independent mechanism (possibly endothelium-derived hyperpolarizing factor). In soleus 2As, ACh-induced dilation was preserved after 2-wk HLU but the contribution of NOS in mediating ACh-induced dilation was increased.

  4. Spacetime Non-Commutativity Corrections to the Cardy-Verlinde Formula of Achúcarro-Ortiz Black Hole

    NASA Astrophysics Data System (ADS)

    Setare, M. R.

    2007-02-01

    In this letter we compute the corrections to the Cardy-Verlinde formula of Achúcarro-Ortiz black hole, which is the most general two-dimensional black hole derived from the three-dimensional rotating Banados-Teitelboim-Zanelli black hole. These corrections stem from the space non-commutativity. We show that in non-commutative case, non-rotating Achúcarro-Ortiz black hole in contrast with commutative case has two horizons.

  5. Assessment of erythrocyte acetylcholine esterase activities in painters.

    PubMed

    Khan, Mohd Imran; Mahdi, Abbas Ali; Islam, Najmul; Rastogi, Subodh Kumar; Negi, M P S

    2009-04-01

    Thirty-five male painters in the age group of 20-50 years occupationally engaged in domestic and commercial painting for 5-12 years having blood lead levels (BLL) AChE) levels both in plasma and red blood cell (RBC) lysate. BLL were determined using a graphite furnace atomic absorption spectrometer. The results showed that BLL were 7.7 times higher in the painters as compared with that of the control group. Significant decreases in RBC and plasma AChE were observed in the exposed group in comparison with controls. RBC and plasma AChE showed a decrease of 18.4% and 18%, respectively, in the exposed group. The findings also indicated a significant negative correlation of both RBC and plasma AChE activities with BLL. The marked reduction observed in both RBC and plasma AChE activity may account for disruption of cholinergic function and result in neurotoxicity among the painters.

  6. Improved resolution of single channel dwell times reveals mechanisms of binding, priming, and gating in muscle AChR

    PubMed Central

    Mukhtasimova, Nuriya; daCosta, Corrie J.B.

    2016-01-01

    The acetylcholine receptor (AChR) from vertebrate skeletal muscle initiates voluntary movement, and its kinetics of activation are crucial for maintaining the safety margin for neuromuscular transmission. Furthermore, the kinetic mechanism of the muscle AChR serves as an archetype for understanding activation mechanisms of related receptors from the Cys-loop superfamily. Here we record currents through single muscle AChR channels with improved temporal resolution approaching half an order of magnitude over our previous best. A range of concentrations of full and partial agonists are used to elicit currents from human wild-type and gain-of-function mutant AChRs. For each agonist–receptor combination, rate constants are estimated from maximum likelihood analysis using a kinetic scheme comprised of agonist binding, priming, and channel gating steps. The kinetic scheme and rate constants are tested by stochastic simulation, followed by incorporation of the experimental step response, sampling rate, background noise, and filter bandwidth. Analyses of the simulated data confirm all rate constants except those for channel gating, which are overestimated because of the established effect of noise on the briefest dwell times. Estimates of the gating rate constants were obtained through iterative simulation followed by kinetic fitting. The results reveal that the agonist association rate constants are independent of agonist occupancy but depend on receptor state, whereas those for agonist dissociation depend on occupancy but not on state. The priming rate and equilibrium constants increase with successive agonist occupancy, and for a full agonist, the forward rate constant increases more than the equilibrium constant; for a partial agonist, the forward rate and equilibrium constants increase equally. The gating rate and equilibrium constants also increase with successive agonist occupancy, but unlike priming, the equilibrium constants increase more than the forward rate

  7. Nicotine/cigarette smoke promotes metastasis of pancreatic cancer through α7nAChR-mediated MUC4 upregulation.

    PubMed

    Momi, N; Ponnusamy, M P; Kaur, S; Rachagani, S; Kunigal, S S; Chellappan, S; Ouellette, M M; Batra, S K

    2013-03-14

    Despite evidence that long-term smoking is the leading risk factor for pancreatic malignancies, the underlying mechanism(s) for cigarette-smoke (CS)-induced pancreatic cancer (PC) pathogenesis has not been well established. Our previous studies revealed an aberrant expression of the MUC4 mucin in PC as compared with the normal pancreas, and its association with cancer progression and metastasis. Interestingly, here we explore a potential link between MUC4 expression and smoking-mediated PC pathogenesis and report that both cigarette smoke extract and nicotine, which is the major component of CS, significantly upregulates MUC4 in PC cells. This nicotine-mediated MUC4 overexpression was via the α7 subunit of nicotinic acetylcholine receptor (nAChR) stimulation and subsequent activation of the JAK2/STAT3 downstream signaling cascade in cooperation with the MEK/ERK1/2 pathway; this effect was blocked by the α7nAChR antagonists, α-bungarotoxin and mecamylamine, and by specific siRNA-mediated STAT3 inhibition. In addition, we demonstrated that nicotine-mediated MUC4 upregulation promotes the PC cell migration through the activation of the downstream effectors, such as HER2, c-Src and FAK; this effect was attenuated by shRNA-mediated MUC4 abrogation, further implying that these nicotine-mediated pathological effects on PC cells are MUC4 dependent. Furthermore, the in vivo studies showed a marked increase in the mean pancreatic tumor weight (low dose (100 mg/m(3) total suspended particulate (TSP)), P=0.014; high dose (247 mg/m(3) TSP), P=0.02) and significant tumor metastasis to various distant organs in the CS-exposed mice, orthotopically implanted with luciferase-transfected PC cells, as compared with the sham controls. Moreover, the CS-exposed mice had elevated levels of serum cotinine (low dose, 155.88±35.96 ng/ml; high dose, 216.25±29.95 ng/ml) and increased MUC4, α7nAChR and pSTAT3 expression in the pancreatic tumor tissues. Altogether, our findings

  8. AHERA CLEARANCE AT TWENTY ABATEMENT SITES

    EPA Science Inventory

    A study was conducted during the summer of 1988 to document Asbestos Hazard Emergency Response Act (AHERA) clearance air sampling practices and clearance concentrations of airborne asbestos at 20 asbestos-abatement sites in New Jersey. ach abatement took place in a school buildin...

  9. Acetylcholinesterase Activity and Neurodevelopment in Boys and Girls

    PubMed Central

    Himes, John H.; Jacobs, David R.; Alexander, Bruce H.; Gunnar, Megan R.

    2013-01-01

    BACKGROUND: Organophosphate exposures can affect children’s neurodevelopment, possibly due to neurotoxicity induced by acetylcholinesterase (AChE) inhibition, and may affect boys more than girls. We tested the hypothesis that lower AChE activity is associated with lower neurobehavioral development among children living in Ecuadorian floricultural communities. METHODS: In 2008, we examined 307 children (age: 4–9 years; 52% male) and quantified AChE activity and neurodevelopment in 5 domains: attention/executive functioning, language, memory/learning, visuospatial processing, and sensorimotor (NEPSY-II test). Associations were adjusted for demographic and socioeconomic characteristics and height-for-age, flower worker cohabitation, and hemoglobin concentration. RESULTS: Mean ± standard deviation AChE activity was 3.14 ± 0.49 U/mL (similar for both genders). The range of scores among neurodevelopment subtests was 5.9 to 10.7 U (standard deviation: 2.6–4.9 U). Girls had a greater mean attention/executive functioning domain score than boys. In boys only, there were increased odds ratios of low (<9th percentile) neurodevelopment among those in the lowest tertile versus the highest tertile of AChE activity (odds ratios: total neurodevelopment: 5.14 [95% confidence interval (CI): 0.84 to 31.48]; attention/executive functioning domain: 4.55 [95% CI: 1.19 to 17.38], memory/learning domain: 6.03 [95% CI: 1.17 to 31.05]) after adjustment for socioeconomic and demographic factors, height-for-age, and hemoglobin. Within these domains, attention, inhibition and long-term memory subtests were most affected. CONCLUSIONS: Low AChE activity was associated with deficits in neurodevelopment, particularly in attention, inhibition, and memory in boys but not in girls. These critical cognitive skills affect learning and academic performance. Added precautions regarding secondary occupational pesticide exposure would be prudent. PMID:24249815

  10. Going up in Smoke? A Review of nAChRs-based Treatment Strategies for Improving Cognition in Schizophrenia

    PubMed Central

    Boggs, Douglas L.; Carlson, Jon; Cortes-Briones, Jose; Krystal, John H.; D’Souza, D. Cyril

    2015-01-01

    Cognitive impairment is known to be a core deficit in schizophrenia. Existing treatments for schizophrenia have limited efficacy against cognitive impairment. The ubiquitous use of nicotine in this population is thought to reflect an attempt by patients to self-medicate certain symptoms associated with the illness. Concurrently there is evidence that nicotinic receptors that have lower affinity for nicotine are more important in cognition. Therefore, a number of medications that target nicotinic acetylcholine receptors (nAChRs) have been tested or are in development. In this article we summarize the clinical evidence of nAChRs dysfunction in schizophrenia and review clinical studies testing either nicotine or nicotinic medications for the treatment of cognitive impairment in schizophrenia. Some evidence suggests beneficial effects of nAChRs based treatments for the attentional deficits associated with schizophrenia. Standardized cognitive test batteries have failed to capture consistent improvements from drugs acting at nAChRs. However, more proximal measures of brain function, such as ERPs relevant to information processing impairments in schizophrenia, have shown some benefit. Further work is necessary to conclude that nAChRs based treatments are of clinical utility in the treatment of cognitive deficits of schizophrenia. PMID:24345265

  11. Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells.

    PubMed

    Qian, Jie; Mummalaneni, Shobha K; Alkahtani, Reem M; Mahavadi, Sunila; Murthy, Karnam S; Grider, John R; Lyall, Vijay

    2016-01-01

    In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells.

  12. Acetylcholine receptor (AChR) clustering is regulated both by glycogen synthase kinase 3β (GSK3β)-dependent phosphorylation and the level of CLIP-associated protein 2 (CLASP2) mediating the capture of microtubule plus-ends.

    PubMed

    Basu, Sreya; Sladecek, Stefan; Pemble, Hayley; Wittmann, Torsten; Slotman, Johan A; van Cappellen, Wiggert; Brenner, Hans-Rudolf; Galjart, Niels

    2014-10-31

    The postsynaptic apparatus of the neuromuscular junction (NMJ) traps and anchors acetylcholine receptors (AChRs) at high density at the synapse. We have previously shown that microtubule (MT) capture by CLASP2, a MT plus-end-tracking protein (+TIP), increases the size and receptor density of AChR clusters at the NMJ through the delivery of AChRs and that this is regulated by a pathway involving neuronal agrin and several postsynaptic kinases, including GSK3. Phosphorylation by GSK3 has been shown to cause CLASP2 dissociation from MT ends, and nine potential phosphorylation sites for GSK3 have been mapped on CLASP2. How CLASP2 phosphorylation regulates MT capture at the NMJ and how this controls the size of AChR clusters are not yet understood. To examine this, we used myotubes cultured on agrin patches that induce AChR clustering in a two-dimensional manner. We show that expression of a CLASP2 mutant, in which the nine GSK3 target serines are mutated to alanine (CLASP2-9XS/9XA) and are resistant to GSK3β-dependent phosphorylation, promotes MT capture at clusters and increases AChR cluster size, compared with myotubes that express similar levels of wild type CLASP2 or that are noninfected. Conversely, myotubes expressing a phosphomimetic form of CLASP2 (CLASP2-8XS/D) show enrichment of immobile mutant CLASP2 in clusters, but MT capture and AChR cluster size are reduced. Taken together, our data suggest that both GSK3β-dependent phosphorylation and the level of CLASP2 play a role in the maintenance of AChR cluster size through the regulated capture and release of MT plus-ends. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Wnt3a induces the expression of acetylcholinesterase during osteoblast differentiation via the Runx2 transcription factor.

    PubMed

    Xu, Miranda L; Bi, Cathy W C; Liu, Etta Y L; Dong, Tina T X; Tsim, Karl W K

    2017-07-28

    Acetylcholinesterase (AChE) hydrolyzes acetylcholine to terminate cholinergic transmission in neurons. Apart from this AChE activity, emerging evidence suggests that AChE could also function in other, non-neuronal cells. For instance, in bone, AChE exists as a proline-rich membrane anchor (PRiMA)-linked globular form in osteoblasts, in which it is proposed to play a noncholinergic role in differentiation. However, this hypothesis is untested. Here, we found that in cultured rat osteoblasts, AChE expression was increased in parallel with osteoblastic differentiation. Because several lines of evidence indicate that AChE activity in osteoblast could be triggered by Wnt/β-catenin signaling, we added recombinant human Wnt3a to cultured osteoblasts and found that this addition induced expression of the ACHE gene and protein product. This Wnt3a-induced AChE expression was blocked by the Wnt-signaling inhibitor Dickkopf protein-1 (DKK-1). We hypothesized that the Runt-related transcription factor 2 (Runx2), a downstream transcription factor in Wnt/β-catenin signaling, is involved in AChE regulation in osteoblasts, confirmed by the identification of a Runx2-binding site in the ACHE gene promoter, further corroborated by ChIP. Of note, Runx2 overexpression in osteoblasts induced AChE expression and activity of the ACHE promoter tagged with the luciferase gene. Moreover, deletion of the Runx2-binding site in the ACHE promoter reduced its activity during osteoblastic differentiation, and addition of 5-azacytidine and trichostatin A to differentiating osteoblasts affected AChE expression, suggesting epigenetic regulation of the ACHE gene. We conclude that AChE plays a role in osteoblastic differentiation and is regulated by both Wnt3a and Runx2. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Impacts of oxidative stress on acetylcholinesterase transcription, and activity in embryos of zebrafish (Danio rerio) following Chlorpyrifos exposure.

    PubMed

    Rodríguez-Fuentes, Gabriela; Rubio-Escalante, Fernando J; Noreña-Barroso, Elsa; Escalante-Herrera, Karla S; Schlenk, Daniel

    2015-01-01

    Organophosphate pesticides cause irreversible inhibition of AChE which leads to neuronal overstimulation and death. Thus, dogma indicates that the target of OP pesticides is AChE, but many authors postulate that these compounds also disturb cellular redox processes, and change the activities of antioxidant enzymes. Interestingly, it has also been reported that oxidative stress plays also a role in the regulation and activity of AChE. The aims of this study were to determine the effects of the antioxidant, vitamin C (VC), the oxidant, t-butyl hydroperoxide (tBOOH) and the organophosphate Chlorpyrifos (CPF), on AChE gene transcription and activity in zebrafish embryos after 72h exposure. In addition, oxidative stress was evaluated by measuring antioxidant enzymes activities and transcription, and quantification of total glutathione. Apical effects on the development of zebrafish embryos were also measured. With the exception of AChE inhibition and enhanced gene expression, limited effects of CPF on oxidative stress and apical endpoints were found at this developmental stage. Addition of VC had little effect on oxidative stress or AChE, but increased pericardial area and heartbeat rate through an unknown mechanism. TBOOH diminished AChE gene expression and activity, and caused oxidative stress when administered alone. However, in combination with CPF, only reductions in AChE activity were observed with no significant changes in oxidative stress suggesting the adverse apical endpoints in the embryos may have been due to AChE inhibition by CPF rather than oxidative stress. These results give additional evidence to support the role of prooxidants in AChE activity and expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Chitooligosaccharides suppress the level of protein expression and acetylcholinesterase activity induced by Abeta25-35 in PC12 cells.

    PubMed

    Lee, Sang-Hoon; Park, Jin-Sook; Kim, Se-Kwon; Ahn, Chang-Bum; Je, Jae-Young

    2009-02-01

    Clinical applications of acetylcholinesterase (AChE) inhibitors are widespread in Alzheimer's sufferers in order to activate central cholinergic system and alleviate cognitive deficits by inhibiting the hydrolysis of acetylcholine. In this study, six kinds of chitooligosaccharides (COSs) with different molecular weight and degree of deacetylation were examined for their inhibitory effects against AChE. The 90-COSs exhibited potent AChE inhibitory activities compared to 50-COSs, while 90-MMWCOS (1000-5000 Da) in the 90-COSs showed the highest activity. Cell culture experiment revealed that 90-MMWCOS suppressed the level of AChE protein expression and AChE activity induced by Abeta(25-35) in PC12 cell lines.

  16. [Effects of cornel iridoid glycoside on activity of cholinesterases in vitro].

    PubMed

    Chu, Si-Juan; Zhang, Lan; Liu, Gang; Zhou, Wen-Xia; Li, Lin

    2013-05-01

    The purpose of the present study was to investigate the effects of cornel iridoid glycoside (CIG) on the activity of cholinesterases in vitro, and to investigate the mechanism of CIG's treating Alzheimer's disease (AD). The sources of cholinesterases were prepared from human blood cells, rat brain homogenate and human blood plasma, respectively. The biochemical methods were used to detect the activity of acetylcholine esterase (AChE) and butyryl cholinesterase (BuChE) to investigate the influence of CIG on cholinesterases. The results showed that CIG inhibited the activity of AChE of human blood cells and rat brain homogenate, with the 50% inhibition rate (IC50) of 1.6 g . L-1 and 3.3 g . L-1, respectively; and the inhibition of AChE of CIG is reversible. CIG also inhibited the activity of BuChE of human blood plasma, with the IC50 of 2.9 g . L-1. In conclusion, CIG can inhibit the activity of AChE and BuChE in vitro, which may be one of the mechanisms of CIG to treat AD.

  17. Characterization of monoclonal antibodies that strongly inhibit Electrophorus electricus acetylcholinesterase.

    PubMed

    Remy, M H; Frobert, Y; Grassi, J

    1995-08-01

    In this study, we describe three different monoclonal antibodies (mAbs Elec-403, Elec-408, and Elec-410) directed against Electrophorus electricus acetylcholinesterase (AChE) which were selected as inhibitors for this enzyme. Two of these antibodies (Elec-403 and Elec-410), recognized overlapping but different epitopes, competed with snake venom toxin fasciculin for binding to the enzyme, and thus apparently recognized the peripheral site of AChE. In addition, the binding of Elec-403 was antagonized by 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284C51) and propidium, indicating that the corresponding epitope encompassed the anionic site involved in the binding of these low-molecular-mass inhibitors. The third mAb (Elec-408), was clearly bound to another site on the AChE molecule, and its inhibitory effect was cumulative with those of Elec-403, Elec-410, and fasciculin. All mAbs bound AChE with high affinity and were as strong inhibitors with an apparent Ki values less than 0.1 nM. Elec-403 was particularly efficient with an inhibitory activity similar to that of fasciculin. Inhibition was observed with both charged (acetylthiocholine) and neutral substrates (o-nitrophenyl acetate) and had the characteristics of a non-competitive process. Elec-403 and Elec-410 probably exert their effect by triggering allosteric transitions from the peripheral site to the active site. The epitope recognized by mAb Elec-408 has not been localized, but it may correspond to a new regulatory site on AChE.

  18. The lymphocytic cholinergic system and its contribution to the regulation of immune activity.

    PubMed

    Kawashima, Koichiro; Fujii, Takeshi

    2003-12-26

    Lymphocytes express most of the cholinergic components found in the nervous system, including acetylcholine (ACh), choline acetyltransferase (ChAT), high affinity choline transporter, muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively), and acetylcholinesterase. Stimulation of T and B cells with ACh or another mAChR agonist elicits intracellular Ca2+ signaling, up-regulation of c-fos expression, increased nitric oxide synthesis and IL-2-induced signal transduction, probably via M3 and M5 mAChR-mediated pathways. Acute stimulation of nAChRs with ACh or nicotine causes rapid and transient Ca2+ signaling in T and B cells, probably via alpha7 nAChR subunit-mediated pathways. Chronic nicotine stimulation, by contrast, down-regulates nAChR expression and suppresses T cell activity. Activation of T cells with phytohemagglutinin or antibodies against cell surface molecules enhances lymphocytic cholinergic transmission by activating expression of ChAT and M5 mAChR, which is suggestive of local cholinergic regulation of immune system activity. This idea is supported by the facts that lymphocytic cholinergic activity reflects well the changes in immune system function seen in animal models of immune deficiency and immune acceleration. Collectively, these data provide a compelling picture in which lymphocytes constitute a cholinergic system that is independent of cholinergic nerves, and which is involved in the regulation of immune function.

  19. Auger electron spectroscopy, secondary ion mass spectroscopy and optical characterization of a-C-H and BN films

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.

    1986-01-01

    The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 dicharges were determined.

  20. Biocontrol of blue mold on apple fruits by Aureobasidium pullulans (strain Ach 1-1): in vitro and in situ evidence for the possible involvement of competition for nutrients.

    PubMed

    Bencheqroun, S Krimi; Bajji, M; Massart, S; Bentata, F; Labhilili, M; Achbani, H; El Jaafari, S; Jijakli, M H

    2006-01-01

    Aureobasidium pullulans strain Ach1-1 was recently isolated for its biocontrol effectiveness against Penicillium expansum, the causal agent of blue mold on harvested apples. In the present study, strain Ach1-1 was found to be very effective in controlling P. expansum on apple wounds. For in vitro tests, strain Ach1-1 and P. expansum were cocultured in the presence of apple juice (0 - 5%) using a system preventing direct contact between both agents. The presence of the antagonist greatly reduced germination of conidia at low (0.1, 0.5 and 1%) but not at high (5%) juice concentrations. Germination of previously inhibited conidia at 0.5% apple juice was partially restored in the presence of the antagonist when fresh juice was added at a final concentration of 5%, and completely recovered at both 0.5 and 5% juice concentrations in the absence of the antagonist. These data show that P. expansum conidia are able to germinate when cocultered with strain Ach1-1 in conditions of sufficient rather than limited nutrient availability and that the antagonist does not affect the viability of these conidia, indicating that the inhibitory effect of strain Ach1-1 on conidia germination may be due to a competition for nutrients. Such observation was confirmed in situ since the application of high amounts of exogenous amino acids, vitamins or sugars on apple wounds significantly reduced the protective level of strain Ach1-1 against P. expansum, the most important effect was obtained with amino acids followed by vitamins and then by sugars. The present work provides both in vitro and in situ evidence that the biocontrol activity of strain Ach1-1 against P. expansum essentially relies on competition for apple fruit nutrients, especially amino acids.

  1. Nicotine/Cigarette-smoke Promotes Metastasis of Pancreatic Cancer Through α7nAChR-mediated MUC4 Up-regulation

    PubMed Central

    Momi, Navneet; Ponnusamy, Moorthy P.; Kaur, Sukhwinder; Rachagani, Satyanarayana; Kunigal, Sateesh S; Chellappan, Srikumar; Ouellette, Michel M; Batra, Surinder K

    2012-01-01

    Despite evidence that long-term smoking is the leading risk factor for pancreatic malignancies, the underlying mechanism(s) for cigarette-smoke (CS)-induced pancreatic cancer (PC) pathogenesis has not been well-established. Our previous studies revealed an aberrant expression of the MUC4 mucin in PC as compared to the normal pancreas and its association with cancer progression and metastasis. Interestingly, here we explore a potential link between MUC4 expression and smoking-mediated PC pathogenesis and report that both cigarette-smoke-extract (CSE) and nicotine, which is the major component of CS, significantly up-regulates MUC4 in PC cells. This nicotine-mediated MUC4 overexpression was via α7 subunit of nicotinic acetylcholine receptor (nAChR) stimulation and subsequent activation of the JAK2/STAT3 downstream signaling cascade in cooperation with the MEK/ERK1/2 pathway; this effect was blocked by the α7nAChR antagonists, α-bungarotoxin and mecamylamine, and by specific siRNA-mediated STAT3 inhibition. Additionally, we demonstrated that nicotine-mediated MUC4 up-regulation promotes the PC cell migration through the activation of the downstream effectors such as HER2, c-Src and FAK; this effect was attenuated by shRNA-mediated MUC4 abrogation, further implying that these nicotine-mediated pathological effects on PC cells are MUC4 dependent. Furthermore, the in-vivo studies demonstrated a dramatic increase in the mean pancreatic tumor weight [low-dose (100 mg/m3 TSP), p=0.014; high-dose (247 mg/m3 TSP), p=0.02] and significant tumor metastasis to various distant organs in the CS-exposed-mice, orthotopically implanted with luciferase-transfected PC cells, as compared to the sham-controls. Moreover, the CS-exposed mice had elevated levels of serum cotinine [low-dose, 155.88±35.96 ng/ml; high-dose, 216.25±29.95 ng/ml] and increased MUC4, α7nAChR and pSTAT3 expression in the pancreatic tumor tissues. Altogether, our findings revealed for the first time that CS up

  2. Antioxidant, Acetylcholinesterase, Butyrylcholinesterase, and α-glucosidase Inhibitory Activities of Corchorus depressus

    PubMed Central

    Afzal, Samina; Chaudhry, Bashir Ahmad; Ahmad, Ashfaq; Uzair, Muhammad; Afzal, Khurram

    2017-01-01

    Background: Corchorus depressus (Cd) commonly known as Boa-phalee belonging to the family Tiliaceae having 50 genera and 450 species. Cd is not among the studied medicinal agent despite its potential in ethnopharmacology. Objectives: The present study investigated antioxidant, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glucosidase inhibitory activities of Cd. The dichloromethane and methanolic extracts of the Cd were evaluated for biological activities such as antioxidant and enzyme inhibitory activities of AChE, BChE, and α-glucosidase. Materials and Methods: Antioxidant activity was evaluated by measuring free radical scavenging potential of Cd using 1,1-diphenyl-2-picrylhydrazyl. Enzyme inhibition activities were done by measuring optical density. Results: The methanol extract of roots of Cd showed potential free radical scavenging activity 99% at concentration 16.1 μg/ml. AChE was inhibited by aerial part of dichloromethane fraction by 46.07% ± 0.45% while dichloromethane extracts of roots of Cd possessed significant activity against BChE with 86% inhibition compared with standard drug Eserine at concentration 0.5 mg/ml. The dichloromethane extract of roots of Cd showed 79% inhibition against α-glucosidase enzyme activity with IC50 62.8 ± 1.5 μg/ml. Conclusion: These findings suggest Cd as useful therapeutic option as antioxidant and inhibition of AChE, BChE, and α-glucosidase activities. SUMMARY The aerial parts and roots of Corchorus depressus (Cd) were extracted in dichloromethane and methanolThe extract of roots of Cd showed free radical scavenging activity 99% at concentration 16.1 mg/ml, Ach inhibition by aerial parts of dichloromethane fraction by 46.07%, and 79% inhibition against a-glucosidase enzyme activity with IC50 62.8 ± 1.5 mg/mlThe dichloromethane and methanolic extracts of Cd exhibited antioxidant inhibition of acetyl cholinesterase, butyrylcholinesterase, and a-glucosidase activities. Abbreviations used: DPPH: 1

  3. Acetylcholinesterase inhibition and gill lesions in Rasbora caverii, an indigenous fish inhabiting rice field associated waterbodies in Sri Lanka.

    PubMed

    Wijeyaratne, W M D N; Pathiratne, Asoka

    2006-10-01

    The present study was aimed at applying condition factor (CF), brain acetylcholinesterase (AChE) and gill histology as biomarkers for detecting possible exposure/effect induced by pesticides in fish residing rice field associated waterbodies in Sri Lanka. Biomarkers of an indigenous fish, Rasbora caverii collected from five sampling sites including canals near rice fields, a river and a reservoir (the reference site) were evaluated at four sampling stages covering pesticide application periods during rice cultivation season in 2004. Results indicated that CF of the fish did not show significant alterations regardless of the sampling sites or sampling stages. Site specific differences in AChE activities of the fish were not evident either prior to application of pesticides or at 7 days after Paraquat application to the rice fields. Two days after the application of a mixture of Fenthion and Phenthoate to the rice fields, AChE activity of the fish collected from canals near rice fields was significantly depressed (65-75%) compared to the fish in the reference site. The activities remain depressed to 50-56% even at 65 days after the insecticides application. Laboratory studies showed that prior exposure of R. caverii to Paraquat (2 microg l(-1), 7 days) enhanced the extent of inhibition of brain AChE activity induced by Fenthion (3 microg l(-1)) or a mixture of Fenthion (3 microg l(-1)) and Phenthoate (5 microg l(-1)). Gills of fish collected from canals near rice fields exhibited abnormal multiple divisions at the tips of some secondary lamellae in addition to hyperplasia, hypertrophy and club shaped deformities. Results indicate that application of pesticides in rice culture could manifest a threat to native fish populations residing rice field associated waterbodies. The response of brain AChE and histological changes in the gills of R. caverii allowed differentiating sampling sites after insecticide applications to the rice fields. Hence, R. caverii may be

  4. Biallelic mutation of UNC50, encoding a protein involved in AChR trafficking, is responsible for arthrogryposis.

    PubMed

    Abiusi, Emanuela; D'Alessandro, Manuela; Dieterich, Klaus; Quevarec, Loic; Turczynski, Sandrina; Valfort, Aurore-Cecile; Mezin, Paulette; Jouk, Pierre Simon; Gut, Marta; Gut, Ivo; Bessereau, Jean Louis; Melki, Judith

    2017-10-15

    Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Homozygosity mapping of disease loci combined with whole exome sequencing in a consanguineous family presenting with lethal AMC allowed the identification of a homozygous frameshift deletion in UNC50 gene (c.750_751del:p.Cys251Phefs*4) in the index case. To assess the effect of the mutation, an equivalent mutation in the Caenorhabditis elegans orthologous gene was created using CRISPR/Cas9. We demonstrated that unc-50(kr331) modification caused the loss of acetylcholine receptor (AChR) expression in C. elegans muscle. unc-50(kr331) animals were as resistant to the cholinergic agonist levamisole as unc-50 null mutants suggesting that AChRs were no longer expressed in this animal model. This was confirmed by using a knock-in strain in which a red fluorescent protein was inserted into the AChR locus: no signal was detected in unc-50(kr331) background, suggesting that UNC-50, a protein known to be involved in AChR trafficking, was no longer functional. These data indicate that biallelic mutation in the UNC50 gene underlies AMC through a probable loss of AChR expression at the neuromuscular junction which is essential for the cholinergic transmission during human muscle development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The Ache: Genocide Continues in Paraguay. IWGIA Document No. 17.

    ERIC Educational Resources Information Center

    Munzel, Mark

    In 1972, the Paraguayan Roman Catholic Church protested against the massacre of Indians in Paraguay. This was followed by further protests from Paraguayan intellectuals. These protests led to the removal of Jesus de Pereira, one of the executors of the official Ache policy. Thus, the critics were appeased. Since the beginning of 1973, new protests…

  6. Mutations Causing Slow-Channel Myasthenia Reveal That a Valine Ring in the Channel Pore of Muscle AChR is Optimized for Stabilizing Channel Gating.

    PubMed

    Shen, Xin-Ming; Okuno, Tatsuya; Milone, Margherita; Otsuka, Kenji; Takahashi, Koji; Komaki, Hirofumi; Giles, Elizabeth; Ohno, Kinji; Engel, Andrew G

    2016-10-01

    We identify two novel mutations in acetylcholine receptor (AChR) causing a slow-channel congenital myasthenia syndrome (CMS) in three unrelated patients (Pts). Pt 1 harbors a heterozygous βV266A mutation (p.Val289Ala) in the second transmembrane domain (M2) of the AChR β subunit (CHRNB1). Pts 2 and 3 carry the same mutation at an equivalent site in the ε subunit (CHRNE), εV265A (p.Val285Ala). The mutant residues are conserved across all AChR subunits of all species and are components of a valine ring in the channel pore, which is positioned four residues above the leucine ring. Both βV266A and εV265A reduce the amino acid size and lengthen the channel opening bursts by fourfold by enhancing gating efficiency by approximately 30-fold. Substitution of alanine for valine at the corresponding position in the δ and α subunit prolongs the burst duration four- and eightfold, respectively. Replacing valine at ε codon 265 either by a still smaller glycine or by a larger leucine also lengthens the burst duration. Our analysis reveals that each valine in the valine ring contributes to channel kinetics equally, and the valine ring has been optimized in the course of evolution to govern channel gating. © 2016 WILEY PERIODICALS, INC.

  7. Mutations causing slow-channel myasthenia reveal that a valine ring in the channel pore of muscle AChR is optimized for stabilizing channel gating

    PubMed Central

    Shen, Xin-Ming; Okuno, Tatsuya; Milone, Margherita; Otsuka, Kenji; Takahashi, Koji; Komaki, Hirofumi; Giles, Elizabeth; Ohno, Kinji; Engel, Andrew G.

    2016-01-01

    We identify two novel mutations in acetylcholine receptor (AChR) causing a slow-channel congenital myasthenia syndrome (CMS) in three unrelated patients (Pts). Pt 1 harbors a heterozygous βV266A mutation (p.Val289Ala) in the second transmembrane domain (M2) of the AChR β subunit (CHRNB1). Pts 2 and 3 carry the same mutation at an equivalent site in the ε subunit (CHRNE), εV265A (p.Val285Ala). The mutant residues are conserved across all AChR subunits of all species and are components of a valine ring in the channel pore which is positioned four residues above the leucine ring. Both βV266A and εV265A reduce the amino acid size and lengthen the channel opening bursts by 4.0-fold by enhancing gating efficiency by approximately 30-fold. Substitution of alanine for valine at the corresponding position in the δ and α subunit prolongs the burst duration 4- and 8-fold, respectively. Replacing valine at ε codon 265 either by a still smaller glycine or by a larger leucine also lengthens the burst duration. Our analysis reveals that each valine in the valine ring contributes to channel kinetics equally, and the valine ring has been optimized in the course of evolution to govern channel gating. PMID:27375219

  8. Screening for antimalarial and acetylcholinesterase inhibitory activities of some Iranian seaweeds

    PubMed Central

    Ghannadi, A; Plubrukarn, A; Zandi, K; Sartavi, K; Yegdaneh, A

    2013-01-01

    Alcoholic extracts of 8 different types of seaweeds from Iran’s Persian Gulf were tested for their antimalarial and acetylcholinesterase enzyme (AChE) inhibitory activities for the first time. A modified Ellman and Ingkaninan method was used for measuring AChE inhibitory activity in which galanthamine was used as the reference. The antimalarial assay was performed using microculture radioisotope technique. Mefloquine and dihydroartemisinin were uased as the standards. The extract of Sargassum boveanum (Sargasseae family) showed the highest AChE inhibitory activity (IC50 equals to 1 mg ml-1) while Cystoseira indica (Cystoseiraceae family) exhibited the least activity (IC50 of 11 mg ml-1). The species from Rhodophyta (Gracilaria corticata and Gracilaria salicornia) also showed moderate activities (IC509.5, 8.7 mg ml-1, respectively). All extracts were inactive in antimalarial assay. PMID:24019820

  9. Existence of muscarinic acetylcholine receptor (mAChR) and fibroblast growth factor receptor (FGFR) heteroreceptor complexes and their enhancement of neurite outgrowth in neural hippocampal cultures.

    PubMed

    Di Liberto, V; Borroto-Escuela, D O; Frinchi, M; Verdi, V; Fuxe, K; Belluardo, N; Mudò, G

    2017-02-01

    Recently, it was demonstrated that G-protein-coupled receptors (GPCRs) can transactivate tyrosine kinase receptors in absence of their ligands. In this work, driven by the observation that mAChRs and fibroblast growth factor receptors (FGFRs) share signalling pathways and regulation of brain functions, it was decided to explore whether mAChRs activation may transactivate FGFRs and, if so, to characterize the related trophic effects in cultured hippocampal neurons. Oxotremorine-M transactivation of FGFRs and related trophic effects were tested in primary hippocampal neurons. Western blotting and in situ proximity ligation assay (PLA) were used to detect FGFR phosphorylation (pFGFR) levels and M 1 R-FGFR1 heteroreceptor complexes, respectively. Oxotremorine-M, a non-selective mAChRs agonist, was able to transactivate FGFR and this transactivation was blocked by Src inhibitors. Oxotremorine-M treatment produced a significant increase in the primary neurite outgrowth that was blocked by pre-treatment with the pFGFR inhibitor SU5402 and Src inhibitors. This trophic effect was almost similar to that induced by fibroblast growth factor-2 (FGF-2). By using atropine as nonselective mAChRs or pirenzepine as selective antagonist for M 1 receptor (M 1 R) we could show that mAChRs are involved in modulating the pFGFRs. Using PLA, M 1 R-FGFR1 heteroreceptor complexes were identified in the hippocampus and cerebral cortex. The current findings, by showing functional mAChR-FGFR interactions, will contribute to advance the understanding of the mechanisms involved in the actions of cholinergic drugs on neuronal plasticity. Data may help to develop novel therapeutic strategies not only for neurodegenerative diseases but also for depression-induced atrophy of hippocampal neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. [Effect of acetylcholine and acetylcholinesterase on the activity of contractile vacuole of Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2011-01-01

    Acetylcholine (ACh, 1 microM) stimulates activity of the contractile vacuole of proteus. The effect of ACh is not mimicked by its analogs which are not hydrolyzed by acetylcholinesterase (AChE), i. e., carbacholine and 5-methylfurmethide. The effect of ACh is not sensitive to the blocking action of M-cholinolytics, atropine and mytolone, but is suppressed by N-cholinolytic, tubocurarine. The inhibitors of AChE, eserine (0.01 microM) and armine (0.1 microM), suppress the effect of ACh on amoeba contractile vacuole. ACh does not affect activation of contractile vacuole induced by arginine-vasopressin (1 microM), but it blocks such effect of opiate receptors agonist, dynorphin A1-13 (0.01 microM). This effect of ACh is also suppressed by the inhibitors of AChE. These results suggest that, in the above-described effects of ACh, AChE acts not as an antagonist, but rather as a synergist.

  11. M1/M2 muscarinic receptor selectivity using potassium (K/sup +/)-stimulated release of (/sup 3/H)-dopamine (DA) and (/sup 14/C)-acetyl-choline (ACH) in striatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeHaven, D.L.; Steranka, L.R.

    Raiteri et al have suggested that muscarinic receptor subtypes can be differentiated in striatal synaptosomes by the release of DA (M1) or ACh (M2). The authors attempted to replicate this finding and to characterize responses of selective and non-selective cholinergic agonists and antagonists using K+-stimulated release of transmitters from rat striatal slices. The non-selective agonists ACh, carbachol and oxotremorine stimulated release of (/sup 3/H)-DA and inhibited release of (/sup 14/C)-ACh with EC50 values of 10.6, 9.2 and 4.2 ..mu..M (DA) and 1.2, 0.77 and 0.43 ..mu..M (ACh), respectively. The M1 agonist McN-A-343-11 selectively inhibited release of DA with an EC50more » value of 4.8 ..mu..M. Pilocarpine was ineffective in this system. The M1 antagonist pirenzepine reversed the effects of 10/sup -4/ M carbachol on release with an eight-fold selectivity for release of (/sup 3/H)-DA (IC50 = 0.77 ..mu..M) vs (/sup 14/C)-ACh (IC50 = 6.3 ..mu..M). These results suggest that although this system can determine relative subtype selectivities, the results obtained in this assay do not always correlate with those obtained from phosphatidyl inositol turnover or adenylate cyclase activity.« less

  12. Low Dose Sarin Leads To Murine Cardiac Dysfunction

    DTIC Science & Technology

    2010-03-01

    work directly supported a grant held by Wright State University, grant # GW060050, from the United States Army Medical Research Acquisition Activity ...GB), acts as an irreversible AChE inhibitor. Sarin reacts with the serine hydroxyl residue in the active site of AChE to form a phosphate or...United States Air Force has become increasingly engaged with terrorist groups and other elusive enemies. As these activities increase, the potential for

  13. Anti-listeria activity of poly(lactic acid)/sawdust particle biocomposite film impregnated with pediocin PA-1/AcH and its use in raw sliced pork.

    PubMed

    Woraprayote, Weerapong; Kingcha, Yutthana; Amonphanpokin, Pannawit; Kruenate, Jittiporn; Zendo, Takeshi; Sonomoto, Kenji; Benjakul, Soottawat; Visessanguan, Wonnop

    2013-10-15

    A novel poly(lactic acid) (PLA)/sawdust particle (SP) biocomposite film with anti-listeria activity was developed by incorporation of pediocin PA-1/AcH (Ped) using diffusion coating method. Sawdust particle played an important role in embedding pediocin into the hydrophobic PLA film. The anti-listeria activity of the PLA/SP biocomposite film incorporated with Ped (PLA/SP+Ped) was detected, while no activity against the tested pathogen was observed for the control PLA films (without SP and/or Ped). Dry-heat treatment of film before coating with Ped resulted in the highest Ped adsorption (11.63 ± 3.07 μg protein/cm(2)) and the highest anti-listeria activity. A model study of PLA/SP+Ped as a food-contact antimicrobial packaging on raw sliced pork suggests a potential inhibition of Listeria monocytogenes (99% of total listerial population) on raw sliced pork during the chilled storage. This study supports the feasibility of using PLA/SP+Ped film to reduce the initial load of L. monocytogenes on the surface of raw pork. © 2013.

  14. α7 Nicotinic Acetylcholine Receptor (α7nAChR) Expression in Bone Marrow–Derived Non–T Cells Is Required for the Inflammatory Reflex

    PubMed Central

    Olofsson, Peder S; Katz, David A; Rosas-Ballina, Mauricio; Levine, Yaakov A; Ochani, Mahendar; Valdés-Ferrer, Sergio I; Pavlov, Valentin A; Tracey, Kevin J; Chavan, Sangeeta S

    2012-01-01

    The immune response to infection or injury coordinates host defense and tissue repair, but also has the capacity to damage host tissues. Recent advances in understanding protective mechanisms have found neural circuits that suppress release of damaging cytokines. Stimulation of the vagus nerve protects from excessive cytokine production and ameliorates experimental inflammatory disease. This mechanism, the inflammatory reflex, requires the α7 nicotinic acetylcholine receptor (α7nAChR), a ligand-gated ion channel expressed on macrophages, lymphocytes, neurons and other cells. To investigate cell-specific function of α7nAChR in the inflammatory reflex, we created chimeric mice by cross-transferring bone marrow between wild-type (WT) and α7nAChR-deficient mice. Deficiency of α7nAChR in bone marrow–derived cells significantly impaired vagus nerve–mediated regulation of tumor necrosis factor (TNF), whereas α7nAChR deficiency in neurons and other cells had no significant effect. In agreement with recent work, the inflammatory reflex was not functional in nude mice, because functional T cells are required for the integrity of the pathway. To investigate the role of T-cell α7nAChR, we adoptively transferred α7nAChR-deficient or WT T cells to nude mice. Transfer of WT and α7nAChR-deficient T cells restored function, indicating that α7nAChR expression on T cells is not necessary for this pathway. Together, these results indicate that α7nAChR expression in bone marrow–derived non–T cells is required for the integrity of the inflammatory reflex. PMID:22183893

  15. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos

    PubMed Central

    Wheelock, Craig E.; Eder, Kai J.; Werner, Inge; Huang, Huazhang; Jones, Paul D.; Brammell, Benjamin F.; Elskus, Adria A.; Hammock, Bruce D.

    2006-01-01

    Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 μg/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 μg/l), but not a low dose (1.2 μg/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ∼30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was

  16. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos

    USGS Publications Warehouse

    Wheelock, C.E.; Eder, K.J.; Werner, I.; Huang, H.; Jones, P.D.; Brammell, B.F.; Elskus, A.A.; Hammock, B.D.

    2005-01-01

    Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 ??g/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 ??g/l), but not a low dose (1.2 ??g/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ???30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was

  17. Highly Sensitive and Selective Immuno-capture/Electrochemical Assay of Acetylcholinesterase Activity in Red Blood Cells: A Biomarker of Exposure to Organophosphorus Pesticides and Nerve Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Aiqiong; Du, Dan; Lin, Yuehe

    Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold nanocomposites (MWCNTs-Au) modified screen printed carbon electrode (SPCE). Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detectionmore » of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentration of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to its concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in-vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposures to OPs.« less

  18. Electrophysiological investigation of the effect of structurally different bispyridinium non-oxime compounds on human α7-nicotinic acetylcholine receptor activity-An in vitro structure-activity analysis.

    PubMed

    Scheffel, Corinna; Niessen, Karin V; Rappenglück, Sebastian; Wanner, Klaus T; Thiermann, Horst; Worek, Franz; Seeger, Thomas

    2018-09-01

    Organophosphorus compounds, including nerve agents and pesticides, exert their toxicity through irreversible inhibition of acetylcholinesterase (AChE) resulting in an accumulation of acetylcholine and functional impairment of muscarinic and nicotinic acetylcholine receptors. Current therapy comprises oximes to reactivate AChE and atropine to antagonize effects induced by muscarinic acetylcholine receptors. Nicotinic malfunction leading to depression of the central and peripheral respiratory system is not directly treated calling for alternative therapeutic interventions. In the present study, we investigated the electrophysiological properties of the human nAChR subtype α7 (hα7-nAChR) and the functional effect of the 4-tert-butyl bispyridinium (BP) compound MB327 and of a series of novel substituted bispyridinium compounds on the receptors by an automated patch clamp technique. Activation of hα7-nAChRs was induced by nicotine and acetylcholine demonstrating rapid cationic influx up to 100μM. Agonist-induced currents decayed within a few milliseconds revealing fast desensitization of the receptors. Application of higher agonist concentrations led to a decline of current amplitudes which seemed to be due to increasing receptor desensitization. When 100μM of agonist was coapplied with low concentrations of the well characterized α7-specific positive allosteric modulator PNU-120596 (1μM-10μM), the maximum response and duration of nAChR activation were markedly augmented indicating an elongated mean open-time of receptors and prevention of receptor desensitization. However, co-application of increasing PNU-120596 concentrations (>10μM) with agonist induced a decline of potentiated current responses. Although less pronounced than PNU-120596, six of the twenty tested substituted BP compounds, in particular those with a substituent at 3-position and 4-position at the pyridinium moieties, were found to potentiate current responses of hα7-nAChRs, most pronounced MB

  19. In-silico identification of the binding mode of synthesized adamantyl derivatives inside cholinesterase enzymes

    PubMed Central

    Al-Aboudi, Amal; Al-Qawasmeh, Raed A; Shahwan, Alaa; Mahmood, Uzma; Khalid, Asaad; Ul-Haq, Zaheer

    2015-01-01

    Aim: To investigate the binding mode of synthesized adamantly derivatives inside of cholinesterase enzymes using molecular docking simulations. Methods: A series of hybrid compounds containing adamantane and hydrazide moieties was designed and synthesized. Their inhibitory activities against acetylcholinesterase (AChE) and (butyrylcholinesterase) BChE were assessed in vitro. The binding mode of the compounds inside cholinesterase enzymes was investigated using Surflex-Dock package of Sybyl7.3 software. Results: A total of 26 adamantyl derivatives were synthesized. Among them, adamantane-1-carboxylic acid hydrazide had an almost equal inhibitory activity towards both enzymes, whereas 10 other compounds exhibited moderate inhibitory activity against BChE. The molecular docking studies demonstrated that hydrophobic interactions between the compounds and their surrounding residues in the active site played predominant roles, while hydrophilic interactions were also found. When the compounds were docked inside each enzyme, they exhibited stronger interactions with BChE over AChE, possibly due to the larger active site of BChE. The binding affinities of the compounds for BChE and AChE estimated were in agreement with the experimental data. Conclusion: The new adamantly derivatives selectively inhibit BChE with respect to AChE, thus making them good candidates for testing the hypothesis that BChE inhibitors would be more efficient and better tolerated than AChE inhibitors in the treatment of Alzheimer's disease. PMID:25937631

  20. Exploration of the Energy Landscape of Acetylcholinesterase by Molecular Dynamics Simulation.

    NASA Astrophysics Data System (ADS)

    McCammon, J. Andrew

    2002-03-01

    Proteins have rough energy landscapes. Often more states than just the ground state are occupied and have biological functions. It is essential to study these conformational substates and the dynamical transitions among them. Acetylcholinesterase (AChE) is an important enzyme that has biological functions including the termination of synaptic transmission signals. X-ray structures show that it has an active site that is accessible only via a long and narrow channel from its surface. Therefore the fact that acetylcholine and larger ligands can reach the active site is believed to reflect the protein's structural fluctuation. We carried out long molecular dynamics simulations to investigate the dynamics of AChE and its relation to biological function, and compared our results with experiments. The results reveal several "doors" that open intermittantly between the active site and the surface. Instead of having simple exponential decay correlation functions, the time series of these channels reveal complex, fractal gating between conformations. We also compared the AChE dynamics data with those from an AchE-fasciculin complex. (Fasciculin is a small protein that is a natural inhibitor of AChE.) The results show remarkable effects of the protein-protein interaction, including allosteric and dynamical inhibition by fasciculin besides direct steric blocking. More information and images can be found at http://mccammon.ucsd.edu

  1. Geissoschizine methyl ether, a corynanthean-type indole alkaloid from Uncaria rhynchophylla as a potential acetylcholinesterase inhibitor.

    PubMed

    Yang, Zhong-Duo; Duan, Dong-Zhu; Du, Juan; Yang, Ming-Jun; Li, Shuo; Yao, Xiao-Jun

    2012-01-01

    Geissoschizine methyl ether (1), a newly discovered strong acetylcholinesterase (AChE) inhibitor, along with six weakly active alkaloids, vallesiachotamine (2), hisuteine (3), hirsutine (4), isorhynchophylline (5), cisocorynoxeine (6) and corynoxeine (7) have been isolated from Uncaria rhynchophylla. Geissoschizine methyl ether (1) inhibited 50% of AChE activity at concentrations of 3.7 ± 0.3 µg mL(-1) while the IC(50) value of physostigmine as a standard was 0.013 ± 0.002 µg mL(-1). The mode of AChE inhibition by 1 was reversible and non-competitive. In addition, molecular modelling was performed to explore the binding mode of inhibitor 1 at the active site of AChE.

  2. Antioxidant and cholinesterase inhibitory activity of a new peptide from Ziziphus jujuba fruits.

    PubMed

    Zare-Zardini, Hadi; Tolueinia, Behnaz; Hashemi, Azam; Ebrahimi, Leila; Fesahat, Farzaneh

    2013-11-01

    Antioxidant agents and cholinesterase inhibitors are the foremost drugs for the treatment of Alzheimer's disease (AD). In this study, a new peptide from Ziziphus jujuba fruits was investigated for its inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes as well as antioxidant activity. This peptide was introduced as a new peptide and named Snakin-Z. The Snakin-Z displayed considerable cholinesterase inhibition against AChE and BChE. The half maximal inhibitory concentration (IC50) values of Snakin-Z against AChE and BChE are 0.58 ± 0.08 and 0.72 ± 0.085 mg/mL, respectively. This peptide has 80% enzyme inhibitory activity on AChE and BChE at 1.5 mg/mL. The Snakin-Z also had the high antioxidant activity (IC50 = 0.75 ± 0.09 mg/mL). Thus, it is suggested that Snakin-Z may be beneficial in the treatment of AD. However, more detailed researches are still required as in vivo testing its anticholinesterase and antioxidant activities.

  3. Inhibitory effect of ebselen on cerebral acetylcholinesterase activity in vitro: kinetics and reversibility of inhibition.

    PubMed

    Martini, Franciele; Bruning, César Augusto; Soares, Suelen Mendonca; Nogueira, Cristina Wayne; Zeni, Gilson

    2015-01-01

    Ebselen is a synthetic organoselenium compound that has been considered a potential pharmacological agent with low toxicity, showing antioxidant, anti-inflammatory and neuroprotective effects. It is bioavailable, blood-brain barrier permeant and safe based on cellular toxicity and Phase I-III clinical trials. There is evidence that ebselen inhibits acetylcholinesterase (AChE) activity, an enzyme that plays a key role in the cholinergic system by hydrolyzing acetylcholine (ACh), in vitro and ex vivo. This system has a well-known relationship with cognitive process, and AChE inhibitors, such as donepezil and galantamine, have been used to treat cognitive deficits, mainly in the Alzheimer's Disease (AD). However, these drugs have poor bioavailability and a number of side effects, including gastrointestinal upsets and hepatotoxicity. In this way, this study aimed to evaluate the effect of ebselen on cerebral AChE activity in vitro and to determine the kinetic profile and the reversibility of inhibition by dialysis. Ebselen inhibited the cerebral AChE activity with an IC50 of 29 µM, similar to IC50 found with pure AChE from electric eel, demonstrating a mixed and reversible inhibition of AChE, since it increased Km and decreased Vmax. The AChE activity was recovered within 60 min of dialysis. Therefore, the use of ebselen as a therapeutic agent for treatment of AD should be considered, although memory behavior tasks are needed to support such hypothesis.

  4. Cracking the Betel Nut: Cholinergic Activity of Areca Alkaloids and Related Compounds.

    PubMed

    Horenstein, Nicole A; Quadri, Marta; Stokes, Clare; Shoaib, Mohammed; Papke, Roger L

    2017-10-03

    The use of betel quid is the most understudied major addiction in the world. The neuropsychological activity of betel quid has been attributed to alkaloids of Areca catechu. With the goal of developing novel addiction treatments, we evaluate the muscarinic and nicotinic activity of the four major Areca alkaloids: arecoline, arecaidine, guvacoline, and guvacine and four structurally related compounds. Acetylcholine receptors were expressed in Xenopus oocytes and studied with two-electrode voltage clamp. Both arecoline- and guvacoline-activated muscarinic acetylcholine receptors (mAChR), while only arecoline produced significant activation of nicotinic AChR (nAChR). We characterized four additional arecoline-related compounds, seeking an analog that would retain selective activity for a α4* nAChR, with diminished effects on mAChR and not be a desensitizer of α7 nAChR. We show that this profile is largely met by isoarecolone. Three additional arecoline analogs were characterized. While the quaternary dimethyl analog had a broad range of activities, including activation of mAChR and muscle-type nAChR, the methyl analog only activated a range of α4* nAChR, albeit with low potency. The ethyl analog had no detectable cholinergic activity. Evidence indicates that α4* nAChR are at the root of nicotine addiction, and this may also be the case for betel addiction. Our characterization of isoarecolone and 1-(4-methylpiperazin-1-yl) ethanone as truly selective α4*nAChR selective partial agonists with low muscarinic activity may point toward a promising new direction for the development of drugs to treat both nicotine and betel addiction. Nearly 600 million people use Areca nut, often with tobacco. Two of the Areca alkaloids are muscarinic acetylcholine receptor agonists, and one, arecoline, is a partial agonist for the α4* nicotinic acetylcholine receptors (nAChR) associated with tobacco addiction. The profile of arecoline activity suggested its potential to be used as a

  5. The activity of detoxifying enzymes in the infective juveniles of Heterorhabditis bacteriophora strains: Purification and characterization of two acetylcholinesterases.

    PubMed

    Mohamed, Magda A; Mahdy, El-Sayed M E; Ghazy, Abd-El-Hady M; Ibrahim, Nihal M; El-Mezayen, Hatem A; Ghanem, Manal M E

    2016-02-01

    The infectivity and detoxifying enzyme activities including glutathione-S-transferase (GST), acetylcholinesterase (AChE) and carboxylesterase (CaE) are investigated in the infective juveniles (IJs) of six different strains of Heterorhabditis bacteriophora as a biocontrol agent against insect pests. The specific activities ranged from 10.8-29.8 and 50-220units/mg protein for GST and AChE, respectively; and from 24.7-129 and 22.6-77.3units/mg protein for CaE as estimated by P-nitrophenyl and α-naphthyl acetates, respectively. H. bacteriophora EM2 strain has the highest infectivity and the highest enzymatic activities as well. AChE is the predominant detoxifying enzyme that might imply its major role in the detoxification of insecticide(s). The isoenzyme pattern demonstrated two major slow-moving isoforms in all EPN strains examined. Purification of two AChE isoforms, AChEAII and AChEBI, from H. bacteriophora EM2 strain is performed by ammonium sulfate precipitation, gel filtration on Sephacryl S-200 and chromatography on DEAE-Sepharose. AChEAII and AChEBII have specific activities of 1207 and 1560unit/mg protein, native molecular weights of 180 and 68kDa, and are found in dimeric and monomeric forms, respectively. Both isoforms showed optimum activity at pH8.5 and 35°C. AChEBI exhibited higher thermal stability and higher activation energy than AChEAII. The enzymatic activities of purified AChEs are completely inhibited by Hg(+2) and Ni(+2) and greatly enhanced by Mn(+2). The substrate specificity, the relative efficiency of substrates hydrolysis, substrate inhibition and inhibition by BW284C51, but not by iso-OMPA, clearly indicated that they are true AChEs; their properties are compared with those recorded for insects as target hosts for H. bacteriophora EM2. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Synthesis of some new 3-coumaranone and coumarin derivatives as dual inhibitors of acetyl- and butyrylcholinesterase.

    PubMed

    Alipour, Masoumeh; Khoobi, Mehdi; Nadri, Hamid; Sakhteman, Amirhossein; Moradi, Alireza; Ghandi, Mehdi; Foroumadi, Alireza; Shafiee, Abbas

    2013-08-01

    A novel series of coumarin and 3-coumaranone derivatives encompassing the phenacyl pyridinium moiety were synthesized and evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity using Ellman's method. All compounds presented inhibitory activity against both AChE and BuChE in the micromolar range. The molecular docking simulations revealed that all compounds were dual binding site inhibitors of AChE. A kinetic study was performed and the mechanism of enzyme inhibition was proved to be of mixed type. All compounds were tested for their antioxidant activity and no significant activity was observed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Is fast fiber innervation responsible for increased acetylcholinesterase activity in reinnervating soleus muscles?

    NASA Technical Reports Server (NTRS)

    Misulis, K. E.; Dettbarn, W. D.

    1985-01-01

    An investigation was conducted as to whether the predominantly slow SOL, which is low in AChE activity, is initially reinnervated by axons that originally innervated fast muscle fibers with high AChE activity, such as those of the EDL. Local denervation of the SOL in the guinea pig was performed because this muscle is composed solely of slow (type I) fibers; thereby virtually eliminating the possibility of homologous muscle fast fiber innervation. The overshoot in this preparation was qualitatively similar to that seen with distal denervation in the guinea pig and local and distal denervation in the rat. Thus, initial fast fiber innvervation is not responsible for the patterns of change in AChE activity seen with reinnervation in the SOL. It is concluded that the neural control of AChe is different in these two muscles and may reflect specific differences in the characteristics of AChE regulation in fast and slow muscle.

  8. Effect of diet on carboxylesterase activity of tadpoles (Rhinella arenarum) exposed to chlorpyrifos.

    PubMed

    Attademo, A M; Sanchez-Hernandez, J C; Lajmanovich, R C; Peltzer, P M; Junges, C

    2017-01-01

    An outdoor microcosm was performed with tadpoles (Rhinella arenarum) exposed to 125μgL -1 chlorpyrifos and fed two types of food, i.e., lettuce (Lactuca sativa) and a formulated commercial pellet. Acetylcholinesterase (AChE) and carboxylesterase (CbE) activities were measured in liver and intestine after 10 days of pesticide exposure. Non-exposed tadpoles fed lettuce had an intestinal AChE activity almost two-fold higher than that of pellet-fed tadpoles. No significant differences were observed, however, in liver AChE activity between diets. Likewise, intestinal CbE activity - measured using two substrates, i.e. 1-naphthyl acetate (1-NA) and 4-nitrophenyl valerate (4-NPV) - was higher in tadpoles fed lettuce than in those fed pellets. However, the diet-dependent response of liver CbE activity was opposite to that in the intestine. Chlorpyrifos caused a significant inhibition of both esterase activities, which was tissue- and diet-specific. The highest inhibition degree was found in the intestinal AChE and CbE activities of lettuce-fed tadpoles (42-78% of controls) compared with pellet-fed tadpoles (<60%). Although chlorpyrifos significantly inhibited liver CbE activity of the group fed lettuce, this effect was not observed in the group fed pellets. In general, intestinal CbE activity was more sensitive to chlorpyrifos inhibition than AChE activity. This finding, together with the high levels of basal CbE activity found in the intestine, may be understood as a detoxification system able to reduce intestinal OP uptake. Moreover, the results of this study suggest that diet is a determinant factor in toxicity testing with tadpoles to assess OP toxicity, because it modulates levels of this potential detoxifying enzyme activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Chlorpyrifos pollution: its effect on brain acetylcholinesterase activity in rat and treatment of polluted soil by indigenous Pseudomonas sp.

    PubMed

    Sharma, Shelly; Singh, Partap Bir; Chadha, Pooja; Saini, Harvinder Singh

    2017-01-01

    The study was aimed to evaluate the levels of chlorpyrifos (CPF) pollution in agricultural soil of Punjab, India, its detrimental effects on acetylcholinesterase (AChE) activity in rat brain and bioremediation of soils polluted with CPF using indigenous and adapted bacterial lab isolate. The analysis revealed that soil samples of Bathinda and Amritsar regions are highly contaminated with chlorpyrifos showing 19 to 175 mg/kg concentrations of CPF. The non-targeted animals may get poisoned with CPF by its indirect dermal absorption, inhalation of toxic fumes and regular consumption of soiled food grains. The study indicated that even the lowermost concentrations of CPF, 19 and 76 mg/kg of soil found in the Amritsar and Bathinda regions respectively can significantly inhibit the AChE activity in rat brain within 24 h of its treatment. This represents the antagonistic effect of CPF on AChE which is a prime neurotransmitter present in all living beings including humans. In light of this, an attempt was made to remediate the polluted soil, a major reservoir of CPF, using Pseudomonas sp. (ChlD), an indigenous bacterial isolate. The culture efficiently degraded 10 to 100 mg/kg chlorpyrifos supplemented in the soil and utilized it as sole source of carbon and energy for its growth. Thus, this study provides a detailed insight regarding the level of CPF pollution in Punjab, its detrimental effects on mammals and bio-based solution to remediate the sites polluted with CPF.

  10. [Design, synthesis and evaluation of bis-nicotine derivatives as inhibitors of cholinesterases and beta-amyloid aggregation].

    PubMed

    Luo, Wen; Zhao, Yong-mei; Tian, Run-guo; Su, Ya-bin; Hong, Chen

    2013-11-01

    A novel series of bis-nicotine derivatives (3a-3i) were designed, synthesized and evaluated as bivalent anti-Alzheimer's disease agents. The pharmacological results indicated that compounds 3e-3i inhibited both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in the micromolar range (IC50, 2.28-117.86 micromol x L(-1) for AChE and 1.67-125 micromol x L(-1) for BChE), which was at the same potency as rivastigmine. A Lineweaver-Burk plot and molecular modeling study showed that these derivatives targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, these compounds could significantly inhibit the self-induced Abeta aggregation with inhibition activity (11.85%-62.14%) at the concentration of 20 micromol x L(-1).

  11. Midwifery students attribute different quantitative meanings to hurt, ache and pain: a cross-sectional survey.

    PubMed

    Bergh, Ingrid H E; Ek, Kristina; Mårtensson, Lena B

    2013-06-01

    Assessment of women's labor pain is seldom acknowledged in clinical practice or research. The words "aching" and "hurting" are frequently used by women to describe childbirth pain. The aim of this study was to determine the quantitative meanings midwifery students attribute to the terms "hurt", "ache" and "pain". Data was collected by self-administered questionnaire from students at seven Swedish midwifery programs. A total of 230 filled out and returned a completed questionnaire requesting them to rate, on a visual analog scale, the intensity of "hurt", "ache" or "pain" in the back, as reported by a fictitious parturient. The midwifery students attributed, with substantial individual variation, different quantitative meanings to the studied pain descriptors. To be able to communicate about pain with a woman in labor, it is essential that the midwife be familiar with the value of different words and what they mean to her as this may affect her assessment when the woman describes her pain. Copyright © 2012 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  12. Mono-oxime bisquaternary acetylcholinesterase reactivators with prop-1,3-diyl linkage-Preparation, in vitro screening and molecular docking.

    PubMed

    Musilek, Kamil; Komloova, Marketa; Holas, Ondrej; Horova, Anna; Pohanka, Miroslav; Gunn-Moore, Frank; Dohnal, Vlastimil; Dolezal, Martin; Kuca, Kamil

    2011-01-15

    The treatment of organophosphorus (OP) poisoning consists of the administration of a parasympatholytic agent (e.g., atropine), an anticonvulsant (e.g., diazepam) and an acetylcholinesterase (AChE) reactivator (e.g., obidoxime). The AChE reactivator is the causal treatment of OP exposure, because it cleaves the OP moiety covalently bound to the AChE active site. In this paper, fourteen novel AChE reactivators are described. Their design originated from a former promising compound K027. These compounds were synthesized, evaluated in vitro on human AChE (hAChE) inhibited by tabun, paraoxon, methylparaoxon and DFP and then compared to commercial hAChE reactivators (pralidoxime, HI-6, trimedoxime, obidoxime, methoxime) or previously prepared compounds (K027, K203). Three of these novel compounds showed a promising ability to reactivate hAChE comparable or better than the used standards. Consequently, a molecular docking study was performed for three of these promising novel compounds. The docking results confirmed the apparent influence of π-π or cation-π interactions and hydrogen bonding for reactivator binding within the hAChE active site cleft. The SAR features concerning the non-oxime part of the reactivator molecule are also discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Effect of carbaryl (carbamate insecticide) on acetylcholinesterase activity of two strains of Daphnia magna (Crustacea, Cladocera).

    PubMed

    Toumi, Hela; Bejaoui, Mustapha; Touaylia, Samir; Burga Perez, Karen F; Ferard, Jean François

    2016-11-01

    The present study was designed to investigate the effect of carbaryl (carbamate insecticide) on the acetylcholinesterase activity in two strains (same clone A) of the crustacean cladoceran Daphnia magna. Four carbaryl concentrations (0.4, 0.9, 1.8 and 3.7 µg L(-1)) were compared against control AChE activity. Our results showed that after 48 h of carbaryl exposure, all treatments induced a significant decrease of AChE activities whatever the two considered strains. However, different responses were registered in terms of lowest observed effect concentrations (LOEC: 0.4 µg L(-1) for strain 1 and 0.9 µg L(-1) for strains 2) revealing differences in sensitivity among the two tested strains of D. magna. These results suggest that after carbaryl exposure, the AChE activity responses can be also used as a biomarker of susceptibility. Moreover, our results show that strain1 is less sensitive than strain 2 in terms of IC50-48 h of AChE activity. Comparing the EC50-48 h of standard ecotoxicity test and IC50-48 h of AChE inhibition, there is the same order of sensitivity with both strains.

  14. Anticholinesterase and Antityrosinase Activities of Ten Piper Species from Malaysia

    PubMed Central

    Salleh, Wan Mohd Nuzul Hakimi Wan; Hashim, Nur Athirah; Ahmad, Farediah; Heng Yen, Khong

    2014-01-01

    Purpose: The aim of this study was to investigate acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and antityrosinase activities of extracts from ten Piper species namely; P. caninum, P. lanatum, P. abbreviatum, P. aborescens, P. porphyrophyllum, P. erecticaule, P. ribesioides, P. miniatum, P. stylosum, and P. majusculum. Methods: Anticholinesterase and antityrosinase activities were evaluated against in vitro Ellman spectroscopy method and mushroom tyrosinase, respectively. Results: The EtOAc extract of P. erecticaule showed the highest AChE and BChE inhibitory with 22.9% and 70.9% inhibition, respectively. In antityrosinase activity, all extracts of P. porphyrophyllum showed the highest inhibitory effects against mushroom tyrosinase, compared to standard, kojic acid. Conclusion: This study showed that P. erecticaule and P. porphyrophyllum have potential AChE/BChE and tyrosinase inhibition activities. The respective extracts can be explored further for the development of novel lead as AChE/BChE and tyrosinase inhibitors in therapeutic management of Alzheimer’s disease. PMID:25671185

  15. Screening for acetylcholinesterase inhibition and antioxidant activity of selected plants from Croatia.

    PubMed

    Jukic, Mila; Burcul, Franko; Carev, Ivana; Politeo, Olivera; Milos, Mladen

    2012-01-01

    The methanol, ethyl acetate and chloroform extracts of selected Croatian plants were tested for their acetylcholinesterase (AChE) inhibition and antioxidant activity. Assessment of AChE inhibition was carried out using microplate reader at 1 mg mL⁻¹. Antioxidant capacities were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging test and ferric reducing/antioxidant power assay (FRAP). Total phenol content (TPC) of extracts were determined using Folin-Ciocalteu colorimetric method. Out of 48 extracts, only methanolic extract of the Salix alba L. cortex exerted modest activity towards AChE, reaching 50.80% inhibition at concentration of 1 mg mL⁻¹. All the other samples tested had activity below 20%. The same extract performed the best antioxidative activity using DPPH and FRAP method, too. In essence, among all extracts used in the screening, methanolic extracts showed the best antioxidative activity as well as highest TPC.

  16. Synthesis and discovery of highly functionalized mono- and bis-spiro-pyrrolidines as potent cholinesterase enzyme inhibitors.

    PubMed

    Kia, Yalda; Osman, Hasnah; Suresh Kumar, Raju; Basiri, Alireza; Murugaiyah, Vikneswaran

    2014-04-01

    Novel mono and bis spiropyrrolidine derivatives were synthesized via an efficient ionic liquid mediated, 1,3-dipolar cycloaddition methodology and evaluated in vitro for their AChE and BChE inhibitory activities in search for potent cholinesterase enzyme inhibitors. Most of the synthesized compounds displayed remarkable AChE inhibitory activities with IC50 values ranging from 1.68 to 21.85 μM, wherein compounds 8d and 8j were found to be most active inhibitors against AChE and BChE with IC50 values of 1.68 and 2.75 μM, respectively. Molecular modeling simulation on Torpedo californica AChE and human BChE receptors, showed good correlation between IC50 values and binding interaction template of the most active inhibitors docked into the active site of their relevant enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The level of aryl acylamidase activity displayed by human butyrylcholinesterase depends on its molecular distribution.

    PubMed

    Montenegro, M F; Moral-Naranjo, M T; Páez de la Cadena, M; Campoy, F J; Muñoz-Delgado, E; Vidal, C J

    2008-09-25

    Butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) display both esterase and aryl acylamidase (AAA) activities. Their AAA activity can be measured using o-nitroacetanilide (ONA). In human samples depleted of acetylcholinesterase, we noticed that the ratio of amidase to esterase activities varied depending on the source, despite both activities being due to BuChE. Searching for an explanation, we compared the activities of BuChE molecular forms in samples of human colon, kidney and serum, and observed that BuChE monomers (G(1)) hydrolyzed o-nitroacetanilide much faster than tetramers (G(4)). This fact suggested that association might cause differences in the AAA site between single and polymerized subunits. This and other post-translational modifications in BuChE subunits probably determine their level of AAA activity. The higher amidase activity of monomers could justify the presence of single BuChE subunits in cells as a way to preserve the AAA activity of BuChE, which could be lost by oligomerization.

  18. A first principle study on the interaction between acetylcholinesterase and acetylcholine, and also rivastigmine in alzheimer's disease case

    NASA Astrophysics Data System (ADS)

    Khoirunisa, V.; Rusydi, F.; Kasai, H.; Gandaryus, A. G.; Dipojono, H. K.

    2016-08-01

    The catalytic activity of acetylcholinesterase enzyme (AChE) relates to the symptom progress in Alzheimer's disease. Interaction of AChE with rivastigmine (from the medicine) can reduce its catalytic activity toward acetylcholine to decelerate the progression of Alzheimer's disease. This research attempts to study the interaction between AChE and rivastigmine, and also acetylcholine (without the presence of rivastigmine) using density functional theory by simplifying the reaction occurs in the active site, which is assumed to be C2H5OH, C3N2H3(Ch3), and CH3COO-. The results suggest that AChE interacts easier with acetylcholine than with rivastigmine, which implies that the medicine does not effectively reduce the catalytic activity of AChE. At this stage, no experimental data is available to be compared with the calculation results. Nonetheless, this study has shown a good prospect to understand the AChE-substrate interaction using a first-principles calculation.

  19. Effect of local acetylcholinesterase inhibition on sweat rate in humans

    NASA Technical Reports Server (NTRS)

    Shibasaki, M.; Crandall, C. G.

    2001-01-01

    ACh is the neurotransmitter responsible for increasing sweat rate (SR) in humans. Because ACh is rapidly hydrolyzed by acetylcholinesterase (AChE), it is possible that AChE contributes to the modulation of SR. Thus the primary purpose of this project was to identify whether AChE around human sweat glands is capable of modulating SR during local application of various concentrations of ACh in vivo, as well as during a heat stress. In seven subjects, two microdialysis probes were placed in the intradermal space of the forearm. One probe was perfused with the AChE inhibitor neostigmine (10 microM); the adjacent membrane was perfused with the vehicle (Ringer solution). SR over both membranes was monitored via capacitance hygrometry during microdialysis administration of various concentrations of ACh (1 x 10(-7)-2 M) and during whole body heating. SR was significantly greater at the neostigmine-treated site than at the control site during administration of lower concentrations of ACh (1 x 10(-7)-1 x 10(-3) M, P < 0.05), but not during administration of higher concentrations of ACh (1 x 10(-2)-2 M, P > 0.05). Moreover, the core temperature threshold for the onset of sweating at the neostigmine-treated site was significantly reduced relative to that at the control site. However, no differences in SR were observed between sites after 35 min of whole body heating. These results suggest that AChE is capable of modulating SR when ACh concentrations are low to moderate (i.e., when sudomotor activity is low) but is less effective in governing SR after SR has increased substantially.

  20. In-vivo measurements of regional acetylcholine esterase activity in degenerative dementia: comparison with blood flow and glucose metabolism.

    PubMed

    Herholz, K; Bauer, B; Wienhard, K; Kracht, L; Mielke, R; Lenz, M O; Strotmann, T; Heiss, W D

    2000-01-01

    Memory and attention are cognitive functions that depend heavily on the cholinergic system. Local activity of acetylcholine esterase (AChE) is an indicator of its integrity. Using a recently developed tracer for positron emission tomography (PET), C-11-labeled N-methyl-4-piperidyl-acetate (C11-MP4A), we measured regional AChE activity in 4 non-demented subjects, 4 patients with dementia of Alzheimer type (DAT) and 1 patient with senile dementia of Lewy body type (SDLT), and compared the findings with measurements of blood flow (CBF) and glucose metabolism (CMRGlc). Initial tracer extraction was closely related to CBF. AChE activity was reduced significantly in all brain regions in demented subjects, whereas reduction of CMRGlc and CBF was more limited to temporo-parietal association areas. AChE activity in SDLT was in the lower range of values in DAT. Our results indicate that, compared to non-demented controls, there is a global reduction of cortical AChE activity in dementia. Dementia, cholinergic system, acetylcholine esterase, positron emission tomography, cerebral blood flow, cerebral glucose metabolism.

  1. nAChRs-ERK1/2-Egr-1 signaling participates in the developmental toxicity of nicotine by epigenetically down-regulating placental 11β-HSD2.

    PubMed

    Zhou, Jin; Liu, Fulin; Yu, Luting; Xu, Dan; Li, Bin; Zhang, Guohui; Huang, Wen; Li, Lu; Zhang, Yuanzhen; Zhang, Wei; Wang, Hui

    2018-04-01

    Impaired placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) activity which inactivates maternal glucocorticoids is associated with poor fetal growth and a higher risk of chronic diseases in adulthood. This study aimed to elucidate the epigenetically regulatory mechanism of nicotine on placental 11β-HSD2 expression. Pregnant Wistar rats were administered 1.0 mg/kg nicotine subcutaneously twice a day from gestational day 9 to 20. The results showed that prenatal nicotine exposure increased corticosterone levels in the placenta and fetal serum, disrupted placental morphology and endocrine function, and reduced fetal bodyweight. Meanwhile, histone modification abnormalities (decreased acetylation and increased di-methylation of histone 3 Lysine 9) on the HSD11B2 promoter and lower-expression of 11β-HSD2 were observed. Furthermore, the expression of nicotinic acetylcholine receptor (nAChR) α4/β2, the phosphorylation of extracellular regulated kinase 1/2 (ERK1/2) and Ets-like protein-1 (Elk-1), and the expression of early growth response-1 (Egr-1) were increased in the nicotine groups. In human BeWo cells, nicotine decreased 11β-HSD2 expression, increased nAChRα9 expression, and activated ERK1/2/Elk-1/Egr-1 signaling in the concentration (0.1-10 μM)-dependent manner. Antagonism of nAChRs, inhibition of ERK1/2 and Egr-1 knockdown by siRNA were able to block/abrogate the effects of nicotine on histone modification and expression of 11β-HSD2. Taken together, nicotine can impair placental structure and function, and induce fetal developmental toxicity. The underlying mechanism involves histone modifications and down-regulation of 11β-HSD2 through nAChRs/ERK1/2/Elk-1/Egr-1 signaling, which increases active glucocorticoids levels in the placenta and fetus, and eventually inhibits the fetal development. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents.

    PubMed

    Bonesi, Marco; Menichini, Federica; Tundis, Rosa; Loizzo, Monica R; Conforti, Filomena; Passalacqua, Nicodemo G; Statti, Giancarlo A; Menichini, Francesco

    2010-10-01

    This study aimed to investigate the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity of the essential oils from Pinus nigra subsp. nigra, P. nigra var. calabrica, and P. heldreichii subsp. leucodermis. This activity is relevant to the treatment of Alzheimer's disease (AD), since cholinesterase drugs are currently the only drugs available to treat AD. P. heldreichii subsp. leucodermis exhibited the most promising activity, with IC(50) values of 51.1 and 80.6 microg/mL against AChE and BChE, respectively. An interesting activity against AChE was also observed with P. nigra subsp. nigra essential oil, with an IC(50) value of 94.4 microg/mL. Essential oils were analyzed by GC and GC-MS with the purpose of investigating their relationships with the observed activities. Among the identified constituents, terpinolene, beta-phellandrene, linalyl acetate, trans-caryophyllene, and terpinen-4-ol were tested. trans-Caryophyllene and terpinen-4-ol inhibited BChE with IC(50) values of 78.6 and 107.6 microg/mL, respectively. beta-Phellandrene was selective against AChE (IC(50) value of 120.2 microg/mL).

  3. The novel protein kinase C epsilon isoform at the adult neuromuscular synapse: location, regulation by synaptic activity-dependent muscle contraction through TrkB signaling and coupling to ACh release.

    PubMed

    Obis, Teresa; Besalduch, Núria; Hurtado, Erica; Nadal, Laura; Santafe, Manel M; Garcia, Neus; Tomàs, Marta; Priego, Mercedes; Lanuza, Maria A; Tomàs, Josep

    2015-02-10

    Protein kinase C (PKC) regulates a variety of neural functions, including neurotransmitter release. Although various PKC isoforms can be expressed at the synaptic sites and specific cell distribution may contribute to their functional diversity, little is known about the isoform-specific functions of PKCs in neuromuscular synapse. The present study is designed to examine the location of the novel isoform nPKCε at the neuromuscular junction (NMJ), their synaptic activity-related expression changes, its regulation by muscle contraction, and their possible involvement in acetylcholine release. We use immunohistochemistry and confocal microscopy to demonstrate that the novel isoform nPKCε is exclusively located in the motor nerve terminals of the adult rat NMJ. We also report that electrical stimulation of synaptic inputs to the skeletal muscle significantly increased the amount of nPKCε isoform as well as its phosphorylated form in the synaptic membrane, and muscle contraction is necessary for these nPKCε expression changes. The results also demonstrate that synaptic activity-induced muscle contraction promotes changes in presynaptic nPKCε through the brain-derived neurotrophic factor (BDNF)-mediated tyrosine kinase receptor B (TrkB) signaling. Moreover, nPKCε activity results in phosphorylation of the substrate MARCKS involved in actin cytoskeleton remodeling and related with neurotransmission. Finally, blocking nPKCε with a nPKCε-specific translocation inhibitor peptide (εV1-2) strongly reduces phorbol ester-induced ACh release potentiation, which further indicates that nPKCε is involved in neurotransmission. Together, these results provide a mechanistic insight into how synaptic activity-induced muscle contraction could regulate the presynaptic action of the nPKCε isoform and suggest that muscle contraction is an important regulatory step in TrkB signaling at the NMJ.

  4. Purification and Characterization of Functional Human Paraoxonase-1 Expressed in Trichoplusia ni Larvae

    DTIC Science & Technology

    2010-01-01

    purified from Trichoplusia ni (T. ni) larvae infected with an orally active form of bac- ulovirus. SDS-PAGE and anti-HuPON1 Western blot analyses yielded...Organophosphorus (OP) nerve agents readily bind covalently o acetylcholinesterase (AChE) at the active site serine and inhibit he ability of AChE to terminate...The results demon- trate that T. ni larvae are capable of producing high quantities of unctionally active recombinant HuPON1, and larvae expressing

  5. How does huperzine A enter and leave the binding gorge of acetylcholinesterase? Steered molecular dynamics simulations.

    PubMed

    Xu, Yechun; Shen, Jianhua; Luo, Xiaomin; Silman, Israel; Sussman, Joel L; Chen, Kaixian; Jiang, Hualiang

    2003-09-17

    The entering and leaving processes of Huperzine A (HupA) binding with the long active-site gorge of Torpedo californica acetylcholinesterase (TcAChE) have been investigated by using steered molecular dynamics simulations. The analysis of the force required along the pathway shows that it is easier for HupA to bind to the active site of AChE than to disassociate from it, which for the first time interprets at the atomic level the previous experimental result that unbinding process of HupA is much slower than its binding process to AChE. The direct hydrogen bonds, water bridges, and hydrophobic interactions were analyzed during two steered molecular dynamics (SMD) simulations. Break of the direct hydrogen bond needs a great pulling force. The steric hindrance of bottleneck might be the most important factor to produce the maximal rupture force for HupA to leave the binding site but it has a little effect on the binding process of HupA with AChE. Residue Asp72 forms a lot of water bridges with HupA leaving and entering the AChE binding gorge, acting as a clamp to take out HupA from or put HupA into the active site. The flip of the peptide bond between Gly117 and Gly118 has been detected during both the conventional MD and SMD simulations. The simulation results indicate that this flip phenomenon could be an intrinsic property of AChE and the Gly117-Gly118 peptide bond in both HupA bound and unbound AChE structures tends to adopt the native enzyme structure. At last, in a vacuum the rupture force is increased up to 1500 pN while in water solution the greatest rupture force is about 800 pN, which means water molecules in the binding gorge act as lubricant to facilitate HupA entering or leaving the binding gorge.

  6. Protein-mimicking nanowire-inspired electro-catalytic biosensor for probing acetylcholinesterase activity and its inhibitors.

    PubMed

    Zhang, Qingqing; Hu, Yufang; Wu, Di; Ma, Shaohua; Wang, Jiao; Rao, Jiajia; Xu, Lihua; Xu, Huan; Shao, Huili; Guo, Zhiyong; Wang, Sui

    2018-06-01

    A highly sensitive electrochemical biosensor based on the synthetized L-Cysteine-Ag(I) coordination polymer (L-Cys-Ag(I) CP), which looks like a protein-mimicking nanowire, was constructed to detect acetylcholinesterase (AChE) activity and screen its inhibitors. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce hydrogen peroxide (H 2 O 2 ), thus L-Cys-Ag(I) CP possesses the electro-catalytic property to H 2 O 2 reduction. Herein, the protein-mimicking nanowire-based platform was capable of investigating successive of H 2 O 2 effectively by amperometric i-t (current-time) response, and was further applied for the turn-on electrochemical detection of AChE activity. The proposed sensor is highly sensitive (limit of detection is 0.0006 U/L) and is feasible for screening inhibitors of AChE. The model for AChE inhibition was further established and two traditional AChE inhibitors (donepezil and tacrine) were employed to verify the feasibility of the system. The IC 5 0 of donepezil and tacrine were estimated to be 1.4 nM and 3.5 nM, respectively. The developed protocol provides a new and promising platform for probing AChE activity and screening its inhibitors with low cost, high sensitivity and selectivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Nicotine withdrawal-induced inattention is absent in alpha7 nAChR knockout mice

    PubMed Central

    Higa, K. K.; Grim, A.; Kamenski, M. E.; van Enkhuizen, J.; Zhou, X.; Li, K.; Naviaux, J. C.; Wang, L.; Naviaux, R. K.; Geyer, M. A.; Markou, A.; Young, J. W.

    2017-01-01

    Rationale Smoking is the leading cause of preventable death in the U.S., but quit attempts result in withdrawal-induced cognitive dysfunction and predicts relapse. Greater understanding of the neural mechanism(s) underlying these cognitive deficits is required to develop targeted treatments to aid quit attempts. Objectives We examined nicotine withdrawal-induced inattention in mice lacking the α7 nicotinic acetylcholine receptor (nAChR) using the 5-choice continuous performance test (5C-CPT). Methods Mice were trained in the 5C-CPT prior to osmotic minipump implantation containing saline or nicotine. Experiment 1 used 40 mg/kg/day nicotine treatment and tested C57BL/6 mice 4, 28, and 52 h after pump removal. Experiment 2 used 14 and 40 mg/kg/day nicotine treatment in α7 nAChR knockout (KO) and wildtype (WT) littermates tested 4 h after pump removal. Subsets of WT mice were sacrificed before and after pump removal to assess changes in receptor expression associated with nicotine administration and withdrawal. Results Nicotine withdrawal impaired attention in the 5C-CPT, driven by response inhibition and target detection deficits. The overall attentional deficit was absent in α7 nAChR KO mice despite response disinhibition in these mice. Synaptosomal glutamate mGluR5 and dopamine D4 receptor expression were reduced during chronic nicotine but increased during withdrawal, potentially contributing to cognitive deficits. Conclusions The α7 nAChR may underlie nicotine withdrawal-induced deficits in target detection but is not required for response disinhibition deficits. Alterations to the glutamatergic and dopaminergic pathways may also contribute to withdrawal-induced attentional deficits, providing novel targets to alleviate the cognitive symptoms of withdrawal during quit attempts. PMID:28243714

  8. Anticholinesterase inhibitory activity of quaternary alkaloids from Tinospora crispa.

    PubMed

    Yusoff, Mashitah; Hamid, Hazrulrizawati; Houghton, Peter

    2014-01-20

    Quaternary alkaloids are the major alkaloids isolated from Tinospora species. A previous study pointed to the necessary presence of quaternary nitrogens for strong acetylcholinesterase (AChE) inhibitory activity in such alkaloids. Repeated column chromatography of the vine of Tinospora crispa extract led to the isolation of one new protoberberine alkaloid, 4,13-dihydroxy-2,8,9-trimethoxydibenzo[a,g]quinolizinium (1), along with six known alkaloids-dihydrodiscretamine (2), columbamine (3), magnoflorine (4), N-formylannonaine (5), N-formylnornuciferine (6), and N-trans-feruloyltyramine (7). The seven compounds were isolated and structurally elucidated by spectroscopic analysis. Two known alkaloids, namely, dihydrodiscretamine and columbamine are reported for the first time for this plant. The compounds were tested for AChE inhibitory activity using Ellman's method. In the AChE inhibition assay, only columbamine (3) showed strong activity with IC50 48.1 µM. The structure-activity relationships derived from these results suggest that the quaternary nitrogen in the skeleton has some effect, but that a high degree of methoxylation is more important for acetylcholinesterase inhibition.

  9. Normal Modes Expose Active Sites in Enzymes.

    PubMed

    Glantz-Gashai, Yitav; Meirson, Tomer; Samson, Abraham O

    2016-12-01

    Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes.

  10. Normal Modes Expose Active Sites in Enzymes

    PubMed Central

    Glantz-Gashai, Yitav; Samson, Abraham O.

    2016-01-01

    Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes. PMID:28002427

  11. Synthesis and cholinesterase inhibition of cativic acid derivatives.

    PubMed

    Alza, Natalia P; Richmond, Victoria; Baier, Carlos J; Freire, Eleonora; Baggio, Ricardo; Murray, Ana Paula

    2014-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. In a preliminary study, significant AChE inhibition was observed for the ethanolic extract of Grindelia ventanensis (IC₅₀=0.79 mg/mL). This result prompted us to isolate the active constituent, a normal labdane diterpenoid identified as 17-hydroxycativic acid (1), through a bioassay guided fractionation. Taking into account that 1 showed moderate inhibition of AChE (IC₅₀=21.1 μM), selectivity over butyrylcholinesterase (BChE) (IC₅₀=171.1 μM) and that it was easily obtained from the plant extract in a very good yield (0.15% w/w), we decided to prepare semisynthetic derivatives of this natural diterpenoid through simple structural modifications. A set of twenty new cativic acid derivatives (3-6) was prepared from 1 through transformations on the carboxylic group at C-15, introducing a C2-C6 linker and a tertiary amine group. They were tested for their inhibitory activity against AChE and BChE and some structure-activity relationships were outlined. The most active derivative was compound 3c, with an IC₅₀ value of 3.2 μM for AChE. Enzyme kinetic studies and docking modeling revealed that this inhibitor targeted both the catalytic active site and the peripheral anionic site of this enzyme. Furthermore, 3c showed significant inhibition of AChE activity in SH-SY5Y human neuroblastoma cells, and was non-cytotoxic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Thiamethoxam acts as a target-site synergist of spinosad in resistant strains of Frankliniella occidentalis.

    PubMed

    Guillén, Juan; Bielza, Pablo

    2013-02-01

    Previous studies have suggested that the resistance mechanism towards spinosad in Frankliniella occidentalis (Pergande) is an altered target site. Like the neonicotinoids, the spinosyns act on nicotinic acetylcholine receptors (nAChRs) in insects, but at a distinct site. The changes in nAChRs related to spinosad resistance in thrips might involve interaction with neonicotinoids. In this study, the efficacy of spinosad and neonicotinoids, alone and in combination, was evaluated in susceptible and spinosad-resistant thrips strains. The neonicotinoids tested were imidacloprid, thiacloprid, acetamiprid, thiamethoxam and clothianidin. No cross-resistance was shown between spinosad and any of the neonicotinoids. However, an increased toxicity was observed when a mixture of spinosad with thiamethoxam or clothianidin was tested. No synergism was found in the susceptible strains. The more spinosad-resistant the thrips strain, the stronger was the synergism. Data suggest that spinosad and thiamethoxam may interact at the nAChRs in spinosad-resistant thrips, facilitating enhanced insecticidal action. Copyright © 2012 Society of Chemical Industry.

  13. Kinetics and Molecular Docking Studies of 6-Formyl Umbelliferone Isolated from Angelica decursiva as an Inhibitor of Cholinesterase and BACE1.

    PubMed

    Ali, Md Yousof; Seong, Su Hui; Reddy, Machireddy Rajeshkumar; Seo, Sung Yong; Choi, Jae Sue; Jung, Hyun Ah

    2017-09-24

    Coumarins, which have low toxicity, are present in some natural foods, and are used in various herbal remedies, have attracted interest in recent years because of their potential medicinal properties. In this study, we report the isolation of two natural coumarins, namely umbelliferone ( 1 ) and 6-formyl umbelliferone ( 2 ), from Angelica decursiva , and the synthesis of 8-formyl umbelliferone ( 3 ) from 1 . We investigated the anti-Alzheimer disease (anti-AD) potential of these coumarins by assessing their ability to inhibit acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1). Among these coumarins, 2 exhibited poor inhibitory activity against AChE and BChE, and modest activity against BACE1. Structure-activity relationship analysis showed that 2 has an aldehyde group at the C-6 position, and exhibited strong anti-AD activity, whereas the presence or absence of an aldehyde group at the C-8 position reduced the anti-AD activity of 3 and 1 , respectively. In addition, 2 exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. A kinetic study revealed that 2 and 3 non-competitively inhibited BACE1. To confirm enzyme inhibition, we predicted the 3D structures of AChE and BACE1, and used AutoDock 4.2 to simulate binding of coumarins to these enzymes. The blind docking studies demonstrated that these molecules could interact with both the catalytic active sites and peripheral anionic sites of AChE and BACE1. Together, our results indicate that 2 has an interesting inhibitory activity in vitro, and can be used in further studies to develop therapeutic modalities for the treatment of AD.

  14. Muscarinic Acetylcholine Receptor Localization and Activation Effects on Ganglion Response Properties

    PubMed Central

    Renna, Jordan M.; Amthor, Franklin R.; Keyser, Kent T.

    2010-01-01

    Purpose. The activation and blockade of muscarinic acetylcholine receptors (mAChRs) affects retinal ganglion cell light responses and firing rates. This study was undertaken to identify the full complement of mAChRs expressed in the rabbit retina and to assess mAChR distribution and the functional effects of mAChR activation and blockade on retinal response properties. Methods. RT-PCR, Western blot analysis, and immunohistochemistry were used to identify the complement and distribution of mAChRs in the rabbit retina. Extracellular electrophysiology was used to determine the effects of the activation or blockade of mAChRs on ganglion cell response properties. Results. RT-PCR of whole neural retina resulted in the amplification of mRNA transcripts for the m1 to m5 mAChR subtypes. Western blot and immunohistochemical analyses confirmed that all five mAChR subtypes were expressed by subpopulations of bipolar, amacrine, and ganglion cells in the rabbit retina, including subsets of cells in cholinergic and glycinergic circuits. Nonspecific muscarinic activation and blockade resulted in the class-specific modulation of maintained ganglion cell firing rates and light responses. Conclusions. The expression of mAChR subtypes on subsets of bipolar, amacrine, and ganglion cells provides a substrate for both enhancement and suppression of retinal responses via activation by cholinergic agents. Thus, the muscarinic cholinergic system in the retina may contribute to the modulation of complex stimuli. Understanding the distribution and function of mAChRs in the retina has the potential to provide important insights into the visual changes that are caused by decreased ACh in the retinas of Alzheimer's patients and the potential visual effects of anticholinergic treatments for ocular diseases. PMID:20042645

  15. Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8

    PubMed Central

    Ye, Jun; Ren, Chong; Shan, Xiexie

    2016-01-01

    Halomonas axialensis ACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism. PMID:27081145

  16. Dynamic Mechanism of a Fluorinated Oxime Reactivator Unbinding from AChE Gorge in Polarizable Water.

    PubMed

    Pathak, Arup K; Bandyopadhyay, Tusar

    2018-04-12

    A well-tempered metadynamics simulation is performed to study the unbinding process of a fluorinated oxime (FHI-6) drug from the active-site gorge of acetylcholinesterase enzyme in a polarizable water medium. Cation-π interactions and water bridge and hydrogen bridge formations between the protein and the drug molecule are found to strongly influence the unbinding process, forming basins and barriers along the gorge pathway. Distinct unbinding pathways are found when FHI-6 was compared with its recently reported nonfluorinated analogue, HI-6. For example, because of permanent positive charges on both the pyridinium rings of HI-6, it exhibits the minimum in the potential of mean force of the unbinding process in the gorge mouth (where the peripheral anion site, PAS, of the enzyme is located), which is largely caused by cation-π interactions. However, the same interaction, both in the catalytic active-site (CAS) and PAS regions, is found to be greatly enhanced in its lipophilic fluorinated analogue, FHI-6, causing a deep potential energy minimum in the bound state. This may render FHI-6 to be held more firmly in the CAS region of the gorge, as is also evidenced from the microkinetics of unbinding transitions, measured through a combination of metadynamics and hyperdynamics simulations.

  17. Development of radiohalogenated muscarinic ligands for the in vivo imaging of m-AChR by nuclear medicine techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPherson, D.W.; Luo, H.; Knapp, F.F. Jr.

    1994-06-01

    Alterations in the density of acetylcholinergic muscarinic receptors (m-AChR) have been observed in various dementias. This has spurred interest in the development of radiohalogenated ligands which can be used for the non-invasive in vivo detection of m-AChR by nuclear medicine techniques. We have developed a new ligand 1-azabicyclo[2.2.2]oct-3-yl ({alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP,12) which demonstrates high affinity for the muscarinic receptor. When labeled with radioiodine it has been shown to be selective and specific for m-ACHR. Initial studies on the separation and in vivo evaluation of the various isomers of IQNP have shown that the stereochemistry of the chiral centers and the configurationmore » around the double bond play an important role in m-AChR subtype specificity. In vivo evaluation of these stereoisomers demonstrate that E-(R,R)-IQNP has a high affinity for the M{sub 1} muscarinic subtype while Z-(R,R)-IQNP demonstrate a high affinity for M{sub 1} and M{sub 2} receptor subtypes. These data demonstrate IQNP (12) has potential for use in the non-evasive in vivo detection of m-AChR by single photon emission computed tomography (SPECT). A brominated analogue, ``BrQNP,`` in which the iodine has been replaced by a bromine atom, has also been prepared and was shown to block the in vivo uptake of IQNP in the brain and heart and therefore has potential for positron emission tomographic (PET) studies of m-AChR.« less

  18. Does Your Patient's Urine Turns Dark? Alkaptonuria and Low Back Ache: A Literature Review.

    PubMed

    Kanniyan, Kalaivanan; Pathak, Aditya C; Dhammi, Ish Kumar; Jain, Anil Kumar

    2014-01-01

    Alkaptonuria is a very rare inborn error of amino acid metabolism due to deficient homogentisic acid (HGA) oxidase enzyme leading to accumulation of HGA in plasma, cartilage, other tissues of human body and its excretion in urine. It has both systemic and peripheral signs and symptoms. Though low back is a common symptom of alkaptonuria but, in the absence of ochronosis it is rare. Alkaptonuria itself is very rare occurrence with no specific treatment option available to reverse the effect as yet. A 38-year-old male, embroidery worker presented with chronic low back ache with history of staining of clothes in infancy. Later on laboratory and the radiological investigation patient was diagnosed to have alkaptonuria without ochronosis. No other systemic manifestation was present. Patient was treated conservatively and responded well. Though alkaptonuria is a very rare disease, and the occurrence of low back-ache in absence of ochronosis is much rarer. One must be aware of this inborn error of metabolism. Early diagnosis though being "diagnosis of exclusion" for low back-ache, high index of suspicion is advantageous as symptomatic treatment of the alkaptonuria can be initiated and evaluation of other systemic organs can be done in early stages itself.

  19. Analogs of methyllycaconitine as novel noncompetitive inhibitors of nicotinic receptors: pharmacological characterization, computational modeling, and pharmacophore development.

    PubMed

    McKay, Dennis B; Chang, Cheng; González-Cestari, Tatiana F; McKay, Susan B; El-Hajj, Raed A; Bryant, Darrell L; Zhu, Michael X; Swaan, Peter W; Arason, Kristjan M; Pulipaka, Aravinda B; Orac, Crina M; Bergmeier, Stephen C

    2007-05-01

    As a novel approach to drug discovery involving neuronal nicotinic acetylcholine receptors (nAChRs), our laboratory targeted nonagonist binding sites (i.e., noncompetitive binding sites, negative allosteric binding sites) located on nAChRs. Cultured bovine adrenal cells were used as neuronal models to investigate interactions of 67 analogs of methyllycaconitine (MLA) on native alpha3beta4* nAChRs. The availability of large numbers of structurally related molecules presents a unique opportunity for the development of pharmacophore models for noncompetitive binding sites. Our MLA analogs inhibited nicotine-mediated functional activation of both native and recombinant alpha3beta4* nAChRs with a wide range of IC(50) values (0.9-115 microM). These analogs had little or no inhibitory effects on agonist binding to native or recombinant nAChRs, supporting noncompetitive inhibitory activity. Based on these data, two highly predictive 3D quantitative structure-activity relationship (comparative molecular field analysis and comparative molecular similarity index analysis) models were generated. These computational models were successfully validated and provided insights into the molecular interactions of MLA analogs with nAChRs. In addition, a pharmacophore model was constructed to analyze and visualize the binding requirements to the analog binding site. The pharmacophore model was subsequently applied to search structurally diverse molecular databases to prospectively identify novel inhibitors. The rapid identification of eight molecules from database mining and our successful demonstration of in vitro inhibitory activity support the utility of these computational models as novel tools for the efficient retrieval of inhibitors. These results demonstrate the effectiveness of computational modeling and pharmacophore development, which may lead to the identification of new therapeutic drugs that target novel sites on nAChRs.

  20. Influence of water temperature on acetylcholinesterase activity in the pacific tree frog (Hyla regilla)

    USGS Publications Warehouse

    Johnson, Catherine S.; Schwarzbach, Steven E.; Henderson, John D.; Wilson, Barry W.; Tjeerdema, Ronald S.

    2005-01-01

    This investigation evaluated whether acetylcholinesterase (AChE) in Pacific tree frogs (Hyla regilla) from different geographical locations was influenced by different temperatures during early aquatic life stages, independent of pesticide exposure. Tadpoles were collected from both a California coastal pond and a Sierra Nevada mountain range pond, USA. Groups of frogs from each location were raised in temperatures representative of either the Sierra Nevada (8°C) or the coastal (19°C) location. Metamorphs from both locations raised as tadpoles at 19°C had AChE activities of 42.3 and 38.7 nm/min/mg protein, while those raised as tadpoles at 8°C had activities of 26.9 and 28.2 nm/min/mg protein. A two-way analysis of variance revealed temperature to be the significant factor in determining AChE activity (F = 22.3, p < 0.001), although origin was not important (F = 0.09, p = 0.75). Interpretations regarding the influence of pesticides upon AChE activity in Pacific tree frogs must consider the influence of environmental temperature to enable cross-population comparisons.

  1. Ionic liquid mediated synthesis and molecular docking study of novel aromatic embedded Schiff bases as potent cholinesterase inhibitors.

    PubMed

    Abd Razik, Basma M; Osman, Hasnah; Basiri, Alireza; Salhin, Abdussalam; Kia, Yalda; Ezzat, Mohammed Oday; Murugaiyah, Vikneswaran

    2014-12-01

    Novel aromatic embedded Schiff bases have been synthesized in ionic liquid [bmim]Br and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activities. Among the newly synthesized compounds, 5f, 5h and 7j displayed higher AChE enzyme inhibitory activities than standard drug, galanthamine, with IC50 values of 1.88, 2.05 and 2.03μM, respectively. Interestingly, all the compounds except for compound 5c displayed higher BChE inhibitories than standard with IC50 values ranging from 3.49 to 19.86μM. Molecular docking analysis for 5f and 7j possessing the most potent AChE and BChE inhibitory activities, disclosed their binding interaction templates to the active site of AChE and BChE enzymes, respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Synthesis and biological evaluation of ranitidine analogs as multiple-target-directed cognitive enhancers for the treatment of Alzheimer's disease.

    PubMed

    Gao, Jie; Midde, Narasimha; Zhu, Jun; Terry, Alvin V; McInnes, Campbell; Chapman, James M

    2016-11-15

    Using molecular modeling and rationally designed structural modifications, the multi-target structure-activity relationship for a series of ranitidine analogs has been investigated. Incorporation of a variety of isosteric groups indicated that appropriate aromatic moieties provide optimal interactions with the hydrophobic and π-π interactions with the peripheral anionic site of the AChE active site. The SAR of a series of cyclic imides demonstrated that AChE inhibition is increased by additional aromatic rings, where 1,8-naphthalimide derivatives were the most potent analogs and other key determinants were revealed. In addition to improving AChE activity and chemical stability, structural modifications allowed determination of binding affinities and selectivities for M1-M4 receptors and butyrylcholinesterase (BuChE). These results as a whole indicate that the 4-nitropyridazine moiety of the JWS-USC-75IX parent ranitidine compound (JWS) can be replaced with other chemotypes while retaining effective AChE inhibition. These studies allowed investigation into multitargeted binding to key receptors and warrant further investigation into 1,8-naphthalimide ranitidine derivatives for the treatment of Alzheimer's disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Lead finding for acetyl cholinesterase inhibitors from natural origin: structure activity relationship and scope.

    PubMed

    Mukherjee, P K; Satheeshkumar, N; Venkatesh, P; Venkatesh, M

    2011-03-01

    Acetylcholinesterase (AChE) inhibitors are considered as promising therapeutic agents for the treatment of several neurological disorders such as Alzheimer's disease (AD), senile dementia, ataxia and myasthenia gravis. There are only few synthetic medicines with adverse effects, available for treatment of cognitive dysfunction and memory loss associated with these diseases. A variety of plants has been reported to possess AChE inhibitory activity and so may be relevant to the treatment of neurodegenerative disorders such as AD. Hence, developing potential AChE inhibitors from botanicals is the need of the day. This review will cover some of the promising acetylcholinesterase inhibitors isolated from plants with proven in vitro and in vivo activities with concern to their structure activity relationship.

  4. Effect of methylmercury on acetylcholinestrase and serum cholinesterase activity in monkeys, Macaca fascicularis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petruccioli, L.; Turillazzi, P.G.

    1991-05-01

    The consumption of fish and fish-derived products is the main pathway of human exposure to methylmercury (MeHg). Methylmercury levels vary widely in fish, depending on age, size, the position of the species in the food chain, and most of all, on pollution levels. MeHg affects the Acetylcholinesterase activity (AChE) and the serum Cholinesterase activity (BChE). Histoenzymatic studies showed that 100mg Methyoxyethylmercury chloride administered for 6 days to rats caused a reduction of AChE activity in the thalamus and an increase in different parts of the nervous central system. The present study aims at verifying whether the dose permitted by F.A.O.more » and doses 10 and 100 fold higher affect the Cholinesterase activity in primates, and whether there is a correlation between AChE and BChE.« less

  5. Fucoxanthin, a Marine Carotenoid, Reverses Scopolamine-Induced Cognitive Impairments in Mice and Inhibits Acetylcholinesterase in Vitro

    PubMed Central

    Lin, Jiajia; Huang, Ling; Yu, Jie; Xiang, Siying; Wang, Jialing; Zhang, Jinrong; Yan, Xiaojun; Cui, Wei; He, Shan; Wang, Qinwen

    2016-01-01

    Fucoxanthin, a natural carotenoid abundant in edible brown seaweeds, has been shown to possess anti-cancer, anti-oxidant, anti-obesity and anti-diabetic effects. In this study, we report for the first time that fucoxanthin effectively protects against scopolamine-induced cognitive impairments in mice. In addition, fucoxanthin significantly reversed the scopolamine-induced increase of acetylcholinesterase (AChE) activity and decreased both choline acetyltransferase activity and brain-derived neurotrophic factor (BDNF) expression. Using an in vitro AChE activity assay, we discovered that fucoxanthin directly inhibits AChE with an IC50 value of 81.2 μM. Molecular docking analysis suggests that fucoxanthin likely interacts with the peripheral anionic site within AChE, which is in accordance with enzymatic activity results showing that fucoxanthin inhibits AChE in a non-competitive manner. Based on our current findings, we anticipate that fucoxanthin might exhibit great therapeutic efficacy for the treatment of Alzheimer’s disease by acting on multiple targets, including inhibiting AChE and increasing BDNF expression. PMID:27023569

  6. Inhibition effect of graphene oxide on the catalytic activity of acetylcholinesterase enzyme.

    PubMed

    Wang, Yong; Gu, Yao; Ni, Yongnian; Kokot, Serge

    2015-11-01

    Variations in the enzyme activity of acetylcholinesterase (AChE) in the presence of the nano-material, graphene oxide (GO), were investigated with the use of molecular spectroscopy UV-visible and fluorescence methods. From these studies, important kinetic parameters of the enzyme were extracted; these were the maximum reaction rate, Vm , and the Michaelis constant, Km . A comparison of these parameters indicated that GO inhibited the catalytic activity of the AChE because of the presence of the AChE-GO complex. The formation of this complex was confirmed with the use of fluorescence data, which was resolved with the use of the MCR-ALS chemometrics method. Furthermore, it was found that the resonance light-scattering (RLS) intensity of AChE changed in the presence of GO. On this basis, it was demonstrated that the relationship between AChE and GO was linear and such models were used for quantitative analyses of GO. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes.

    PubMed

    Inoue, Tsuyoshi; Abe, Chikara; Sung, Sun-Sang J; Moscalu, Stefan; Jankowski, Jakub; Huang, Liping; Ye, Hong; Rosin, Diane L; Guyenet, Patrice G; Okusa, Mark D

    2016-05-02

    The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes.

  8. Design, synthesis and evaluation of 4-dimethylamine flavonoid derivatives as potential multifunctional anti-Alzheimer agents.

    PubMed

    Luo, Wen; Wang, Ting; Hong, Chen; Yang, Ya-Chen; Chen, Ying; Cen, Juan; Xie, Song-Qiang; Wang, Chao-Jie

    2016-10-21

    A new series of 4-dimethylamine flavonoid derivatives were designed and synthesized as potential multifunctional anti-Alzheimer agents. The inhibition of cholinesterase activity, self-induced β-amyloid (Aβ) aggregation, and antioxidant activity by these derivatives was investigated. Most of the compounds exhibited potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. A Lineweaver-Burk plot and molecular modeling study showed that these compounds targeted both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. The derivatives showed potent self-induced Aβ aggregation inhibition and peroxyl radical absorbance activity. Moreover, compound 6d significantly protected PC12 neurons against H2O2-induced cell death at low concentrations. Thus, these compounds could become multifunctional agents for further development for the treatment of AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Attenuated nicotine-like effects of varenicline but not other nicotinic ACh receptor agonists in monkeys receiving nicotine daily.

    PubMed

    Cunningham, Colin S; Moerke, Megan J; Javors, Martin A; Carroll, F Ivy; McMahon, Lance R

    2016-12-01

    Chronic treatment can differentially impact the effects of pharmacologically related drugs that differ in receptor selectivity and efficacy. The impact of daily nicotine treatment on the effects of nicotinic ACh receptor (nAChR) agonists was examined in two groups of rhesus monkeys discriminating nicotine (1.78 mg·kg -1 base weight) from saline. One group received additional nicotine treatment post-session (1.78 mg·kg -1 administered five times daily, each dose 2 h apart; i.e. Daily group), and the second group did not (Intermittent group). Daily repeated nicotine treatment produced a time-related increase in saliva cotinine. There was no significant difference in the ED 50 values of the nicotine discriminative stimulus between the Daily and Intermittent group. Mecamylamine antagonized the effects of nicotine, whereas dihydro-β-erythroidine did not. Midazolam produced 0% nicotine-lever responding. The nAChR agonists epibatidine, RTI-36, cytisine and varenicline produced >96% nicotine-lever responding in the Intermittent group. The respective maximum effects in the Daily group were 100, 72, 59 and 28%, which shows that the ability of varenicline to produce nicotine-like responding was selectively decreased in the Daily as compared with the Intermittent group. When combined with nicotine, both varenicline and cytisine increased the potency of nicotine to produce discriminative stimulus effects. Nicotine treatment has a greater impact on the sensitivity to the effects of varenicline as compared with some other nAChR agonists. Collectively, these results strongly suggest that varenicline differs from nicotine in its selectivity for multiple nAChR subtypes. © 2016 The British Pharmacological Society.

  10. Attenuated nicotine‐like effects of varenicline but not other nicotinic ACh receptor agonists in monkeys receiving nicotine daily

    PubMed Central

    Cunningham, Colin S; Moerke, Megan J; Javors, Martin A; Carroll, F Ivy

    2016-01-01

    Background and Purpose Chronic treatment can differentially impact the effects of pharmacologically related drugs that differ in receptor selectivity and efficacy. Experimental Approach The impact of daily nicotine treatment on the effects of nicotinic ACh receptor (nAChR) agonists was examined in two groups of rhesus monkeys discriminating nicotine (1.78 mg·kg−1 base weight) from saline. One group received additional nicotine treatment post‐session (1.78 mg·kg−1 administered five times daily, each dose 2 h apart; i.e. Daily group), and the second group did not (Intermittent group). Key Results Daily repeated nicotine treatment produced a time‐related increase in saliva cotinine. There was no significant difference in the ED50 values of the nicotine discriminative stimulus between the Daily and Intermittent group. Mecamylamine antagonized the effects of nicotine, whereas dihydro‐β‐erythroidine did not. Midazolam produced 0% nicotine‐lever responding. The nAChR agonists epibatidine, RTI‐36, cytisine and varenicline produced >96% nicotine‐lever responding in the Intermittent group. The respective maximum effects in the Daily group were 100, 72, 59 and 28%, which shows that the ability of varenicline to produce nicotine‐like responding was selectively decreased in the Daily as compared with the Intermittent group. When combined with nicotine, both varenicline and cytisine increased the potency of nicotine to produce discriminative stimulus effects. Conclusion and Implications Nicotine treatment has a greater impact on the sensitivity to the effects of varenicline as compared with some other nAChR agonists. Collectively, these results strongly suggest that varenicline differs from nicotine in its selectivity for multiple nAChR subtypes. PMID:27667659

  11. nAChR dysfunction as a common substrate for schizophrenia and comorbid nicotine addiction: current trends and perspectives

    PubMed Central

    Parikh, Vinay; Kutlu, Munir Gunes; Gould, Thomas J.

    2016-01-01

    Introduction The prevalence of tobacco use in the population with schizophrenia is enormously high. Moreover, nicotine dependence is found to be associated with symptom severity and poor outcome in patients with schizophrenia. The neurobiological mechanisms that explain schizophrenia-nicotine dependence comorbidity are not known. This study systematically reviews the evidence highlighting the contribution of nicotinic acetylcholine receptors (nAChRs) to nicotine abuse in schizophrenia. Methods Electronic data bases (Medline, Google Scholar, and Web of Science) were searched using the selected key words that match the aims set forth for this review. A total of 275 articles were used for the qualitative synthesis of this review. Results Substantial evidence from preclinical and clinical studies indicated that dysregulation of α7 and β2-subunit containing nAChRs account for the cognitive and affective symptoms of schizophrenia and nicotine use may represent a strategy to remediate these symptoms. Additionally, recent meta-analyses proposed that early tobacco use may itself increase the risk of developing schizophrenia. Genetic studies demonstrating that nAChR dysfunction that may act as a shared vulnerability factor for comorbid tobacco dependence and schizophrenia were found to support this view. The development of nAChR modulators was considered an effective therapeutic strategy to ameliorate psychiatric symptoms and to promote smoking cessation in schizophrenia patients. Conclusions The relationship between schizophrenia and smoking is complex. While the debate for the self-medication versus addiction vulnerability hypothesis continues, it is widely accepted that a dysfunction in the central nAChRs represent a common substrate for various symptoms of schizophrenia and comorbid nicotine dependence. PMID:26803692

  12. Effect of thermal stress and water deprivation on the acetylcholinesterase activity of the pig brain and hypophyses

    NASA Astrophysics Data System (ADS)

    Adejumo, D. O.; Egbunike, G. N.

    1988-06-01

    The effects of direct exposure of boars to thermal stress for 1 h daily for 5 days and to acute water deprivation for 24 or 48 h were studied on the acetylcholinesterase (AChE) activity of porcine brain and hypophysial regions. Mean ambient temperatures, respiratory rates and rectal temperatures in the open were significantly higher than inside the pen. Heat stress induced a rise in AChE activities in the pons, cerebellum, amygdala, hippocampus, hypothalamus, mid-brain and medulla oblongata. However, no significant changes were observed in the cerebral cortex, adenohypophysis and neurohypophysis. Water deprivation significantly ( P<0.05) depressed AChE activity to varying extents depending on the duration of water restriction. Thus AChE activity in the amygdala was depressed by water deprivation for 24 h but partially restored at 48 h. The pons and medulla oblongata were comparable to the amygdala in this respect. The adenohypophysis and neurohypophysis were relatively unaffected.

  13. 77 FR 40148 - Proposed Collection of Information: ACH Vendor/Miscellaneous Payment Enrollment Form

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    .../Miscellaneous Payment Enrollment Form AGENCY: Financial Management Service, Fiscal Service, Treasury. ACTION: Notice and request for comments. SUMMARY: The Financial Management Service, as part of its continuing... Financial Management Service solicits comments concerning the SF 3881 ``ACH Vendor/Miscellaneous Payment...

  14. Parkinson's disease (PD) with dementia and falls is improved by AChEI? A preliminary study report.

    PubMed

    Lauretani, Fulvio; Galuppo, Laura; Costantino, Cosimo; Ticinesi, Andrea; Ceda, Gianpaolo; Ruffini, Livio; Nardelli, Anna; Maggio, Marcello

    2016-06-01

    Advanced PD is often associated with cognitive impairment and frequent falls. We describe a suggestive case report of PD associated with mild cognitive impairment (MCI) and falls. The aim of our study was to test alteration in balance potentially related to use of acetylcholinesterase inhibitor (AchEI). We address this hypothesis after keeping the patient in stable dosage of dopamine agonist. We describe an initial pharmacological management in a 78-year-old man affected by Parkinson disease (PD) associated with mild cognitive impairment (MCI) and history of falls. The diagnosis of PD was also confirmed by SPECT with DATSCAN, after CT-brain exclusion of potential other causes of the symptoms. Cognitive and motor performances of the patient were initially evaluated by Mini Mental Examination State Examination (MMSE), Short Physical Performance Battery (SPPB) and Romberg test. We also recorded gait parameters using an accelerometer, while balance and stability were assessed by stabilometric platform with open and closed eyes. We repeated cognitive and motor tests and gait and balance evaluation after stable dosage of dopamine agonist before and after introduction of AchEI. After starting dopamine agonist therapy, there was a significant improvement in gait parameters (speed, stride/min, stride length, swing duration, and decrease in gait cycle duration and rolling duration). When stable dosage of dopamine agonist was reached, AchEI was introduced obtaining not only a significant improvement of cognitive performance, but also a significant positive change in balance. We hypothesize that AchEI could improve stability, balance and postural instability in addition to cognitive performance in PD with MCI and balance deficits.

  15. The Role of Cholesterol in the Activation of Nicotinic Acetylcholine Receptors.

    PubMed

    Baenziger, John E; Domville, Jaimee A; Therien, J P Daniel

    2017-01-01

    Cholesterol is a potent modulator of the nicotinic acetylcholine receptor (nAChR) from Torpedo. Here, we review current understanding of the mechanisms underlying cholesterol-nAChR interactions in the context of increasingly available high-resolution structural and functional data. Cholesterol and other lipids influence function by conformational selection and kinetic mechanisms, stabilizing varying proportions of activatable vs nonactivatable conformations, as well as influencing the rates of transitions between conformational states. In the absence of cholesterol and anionic lipids, the nAChR adopts an uncoupled conformation that binds agonist but does not undergo agonist-induced conformational transitions-unless the nAChR is located in a relatively thick lipid bilayer, such as that found in cholesterol-rich lipid rafts. We highlight different sites of cholesterol action, including the lipid-exposed M4 transmembrane α-helix. Cholesterol and other lipids likely alter function by modulating interactions between M4 and the adjacent transmembrane α-helices, M1 and M3. These same interactions have been implicated in both the folding and trafficking of nAChRs to the cell surface. We evaluate the nature of cholesterol-nAChR interactions, considering the evidence supporting the roles of both direct binding to allosteric sites and cholesterol-induced changes in bulk membrane physical properties. © 2017 Elsevier Inc. All rights reserved.

  16. The chimeric gene CHRFAM7A, a partial duplication of the CHRNA7 gene, is a dominant negative regulator of α7*nAChR function.

    PubMed

    Araud, Tanguy; Graw, Sharon; Berger, Ralph; Lee, Michael; Neveu, Estele; Bertrand, Daniel; Leonard, Sherry

    2011-10-15

    The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is a candidate gene for schizophrenia and an important drug target for cognitive deficits in the disorder. Activation of the α7*nAChR, results in opening of the channel and entry of mono- and divalent cations, including Ca(2+), that presynaptically participates to neurotransmitter release and postsynaptically to down-stream changes in gene expression. Schizophrenic patients have low levels of α7*nAChR, as measured by binding of the ligand [(125)I]-α-bungarotoxin (I-BTX). The structure of the gene, CHRNA7, is complex. During evolution, CHRNA7 was partially duplicated as a chimeric gene (CHRFAM7A), which is expressed in the human brain and elsewhere in the body. The association between a 2bp deletion in CHRFAM7A and schizophrenia suggested that this duplicate gene might contribute to cognitive impairment. To examine the putative contribution of CHRFAM7A on receptor function, co-expression of α7 and the duplicate genes was carried out in cell lines and Xenopus oocytes. Expression of the duplicate alone yielded protein expression but no functional receptor and co-expression with α7 caused a significant reduction of the amplitude of the ACh-evoked currents. Reduced current amplitude was not correlated with a reduction of I-BTX binding, suggesting the presence of non-functional (ACh-silent) receptors. This hypothesis is supported by a larger increase of the ACh-evoked current by the allosteric modulator 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea (PNU-120596) in cells expressing the duplicate than in the control. These results suggest that CHRFAM7A acts as a dominant negative modulator of CHRNA7 function and is critical for receptor regulation in humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. The chimeric gene CHRFAM7A, a partial duplication of the CHRNA7 gene, is a dominant negative regulator of α7*nAChR function

    PubMed Central

    Araud, Tanguy; Graw, Sharon; Berger, Ralph; Lee, Michael; Neveu, Estelle; Bertrand, Daniel; Leonard, Sherry

    2011-01-01

    The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is a candidate gene for schizophrenia and an important drug target for cognitive deficits in the disorder. Activation of the α7*nAChR, results in opening of the channel and entry of mono- and divalent cations, including Ca++, that presynaptically participates to neurotransmitter release and postsynaptically to down-stream changes in gene expression. Schizophrenic patients have low levels of α7*nAChR, as measured by binding of the ligand [125I]-α-bungarotoxin (I-BTX). The structure of the gene, CHRNA7, is complex. During evolution, CHRNA7 was partially duplicated as a chimeric gene (CHRFAM7A), which is expressed in the human brain and elsewhere in the body. The association between a 2bp deletion in CHRFAM7A and schizophrenia suggested that this duplicate gene might contribute to cognitive impairment. To examine the putative contribution of CHRFAM7A on receptor function, co-expression of α7 and the duplicate genes was carried out in cell lines and Xenopus oocytes. Expression of the duplicate alone yielded protein expression but no functional receptor and co-expression with α7 caused a significant reduction of the amplitude of the ACh-evoked currents. Reduced current amplitude was not correlated with a reduction of I-BTX binding, suggesting the presence of non-functional (ACh-silent) receptors. This hypothesis is supported by a larger increase of the ACh-evoked current by the allosteric modulator 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea (PNU-120596) in cells expressing the duplicate than in the control. These results suggest that CHRFAM7A acts as a dominant negative modulator of CHRNA7 function and is critical for receptor regulation in humans. PMID:21718690

  18. Acetylcholinesterase inhibitory activity of Thai traditional nootropic remedy and its herbal ingredients.

    PubMed

    Tappayuthpijarn, Pimolvan; Itharat, Arunporn; Makchuchit, Sunita

    2011-12-01

    The incidence of Alzheimer disease (AD) is increasing every year in accordance with the increasing of elderly population and could pose significant health problems in the future. The use of medicinal plants as an alternative prevention or even for a possible treatment of the AD is, therefore, becoming an interesting research issue. Acetylcholinesterase (AChE) inhibitors are well-known drugs commonly used in the treatment of AD. The aim of the present study was to screen for AChE inhibitory activity of the Thai traditional nootropic recipe and its herbal ingredients. The results showed that ethanolic extracts of four out of twenty-five herbs i.e. Stephania pierrei Diels. Kaempfera parviflora Wall. ex Baker, Stephania venosa (Blume) Spreng, Piper nigrum L at 0.1 mg/mL showed % AChE inhibition of 89, 64, 59, 50; the IC50 were 6, 21, 29, 30 microg/mL respectively. The other herbs as well as combination of the whole recipe had no synergistic inhibitory effect on AChE activity. However some plants revealed antioxidant activity. More research should have be performed on this local wisdom remedy to verify the uses in scientific term.

  19. Evidence for aging theories from the study of a hunter-gatherer people (Ache of Paraguay).

    PubMed

    Libertini, G

    2013-09-01

    In the late seventies, a small tribal population of Paraguay, the Ache, living under natural conditions, was studied. Data from this population turn out to be useful for considerations about evolutionary hypotheses on the aging phenomenon. 1) Ache show an age-related increasing mortality, which strongly limits the mean duration of life, as observed in other studies on mammal and bird species. 2) According to current theories on aging, in the wild very few or no individual reach old age and, so, aging cannot be directly influenced by natural selection. However, data from our population show that a significant proportion of the population reaches in the wild 60 and 70 years of age. 3) Data from Ache are also in agreement with the observation about an inverse correlation between extrinsic mortality and deaths due to the age-related increasing mortality. 4) For many gerontologists, the age-related decline of vital functions is a consequence of the gradual decline of cell turnover, genetically determined and regulated by the declining duplication capacities of stem cells. The current interpretation is that these restrictions are a general defense against the proliferation of any tumoral mass. However, among wild Ache cancer is virtually unknown in non-elderly subjects, and only among older individuals are there deaths attributable to oncological diseases. Moreover, fitness decline begins long before oncological diseases have fatal effects in significant numbers. This completely disproves the current hypothesis, because a supposed defense against a deadly disease cannot exterminate a population before the disease begins to kill. These data are consistent with similar data from other species studied under natural conditions, and they bring new arguments against the non-adaptive interpretation of aging and in support of the adaptive interpretation.

  20. Synthesis, DNA Cleavage Activity, Cytotoxicity, Acetylcholinesterase Inhibition, and Acute Murine Toxicity of Redox-Active Ruthenium(II) Polypyridyl Complexes.

    PubMed

    Alatrash, Nagham; Narh, Eugenia S; Yadav, Abhishek; Kim, Mahn-Jong; Janaratne, Thamara; Gabriel, James; MacDonnell, Frederick M

    2017-07-06

    Four mononuclear [(L-L) 2 Ru(tatpp)] 2+ and two dinuclear [(L-L) 2 Ru(tatpp)Ru(L-L) 2 ] 4+ ruthenium(II) polypyridyl complexes (RPCs) containing the 9,11,20,22-tetraazatetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (tatpp) ligand were synthesized, in which L-L is a chelating diamine ligand such as 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me 4 phen) or 4,7-diphenyl-1,10-phenanthroline (Ph 2 phen). These Ru-tatpp analogues all undergo reduction reactions with modest reducing agents, such as glutathione (GSH), at pH 7. These, plus several structurally related but non-redox-active RPCs, were screened for DNA cleavage activity, cytotoxicity, acetylcholinesterase (AChE) inhibition, and acute mouse toxicity, and their activities were examined with respect to redox activity and lipophilicity. All of the redox-active RPCs show single-strand DNA cleavage in the presence of GSH, whereas none of the non-redox-active RPCs do. Low-micromolar cytotoxicity (IC 50 ) against malignant H358, CCL228, and MCF7 cultured cell lines was mainly restricted to the redox-active RPCs; however, they were substantially less toxic toward nonmalignant MCF10 cells. The IC 50 values for AChE inhibition in cell-free assays and the acute toxicity of RPCs in mice revealed that whereas most RPCs show potent inhibitory action against AChE (IC 50 values <15 μm), Ru-tatpp complexes as a class are surprisingly well tolerated in animals relative to other RPCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper).

    PubMed

    Liu, Zewen; Williamson, Martin S; Lansdell, Stuart J; Denholm, Ian; Han, Zhaojun; Millar, Neil S

    2005-06-14

    Neonicotinoids, such as imidacloprid, are nicotinic acetylcholine receptor (nAChR) agonists with potent insecticidal activity. Since its introduction in the early 1990s, imidacloprid has become one of the most extensively used insecticides for both crop protection and animal health applications. As with other classes of insecticides, resistance to neonicotinoids is a significant threat and has been identified in several pest species, including the brown planthopper, Nilaparvata lugens, a major rice pest in many parts of Asia. In this study, radioligand binding experiments have been conducted with whole-body membranes prepared from imidacloprid-susceptible and imidacloprid-resistant strains of N. lugens. The results reveal a much higher level of [3H]imidacloprid-specific binding to the susceptible strain than to the resistant strain (16.7 +/- 1.0 and 0.34 +/- 0.21 fmol/mg of protein, respectively). With the aim of understanding the molecular basis of imidacloprid resistance, five nAChR subunits (Nlalpha1-Nlalpha4 and Nlbeta1) have been cloned from N. lugens.A comparison of nAChR subunit genes from imidacloprid-sensitive and imidacloprid-resistant populations has identified a single point mutation at a conserved position (Y151S) in two nAChR subunits, Nlalpha1 and Nlalpha3. A strong correlation between the frequency of the Y151S point mutation and the level of resistance to imidacloprid has been demonstrated by allele-specific PCR. By expression of hybrid nAChRs containing N. lugens alpha and rat beta2 subunits, evidence was obtained that demonstrates that mutation Y151S is responsible for a substantial reduction in specific [3H]imidacloprid binding. This study provides direct evidence for the occurrence of target-site resistance to a neonicotinoid insecticide.

  2. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening.

    PubMed

    Sun, Jian; Yang, Xiurong

    2015-12-15

    Based on the specific binding of Cu(2+) ions to the 11-mercaptoundecanoic acid (11-MUA)-protected AuNCs with intense orange-red emission, we have proposed and constructed a novel fluorescent nanomaterials-metal ions ensemble at a nonfluorescence off-state. Subsequently, an AuNCs@11-MUA-Cu(2+) ensemble-based fluorescent chemosensor, which is amenable to convenient, sensitive, selective, turn-on and real-time assay of acetylcholinesterase (AChE), could be developed by using acetylthiocholine (ATCh) as the substrate. Herein, the sensing ensemble solution exhibits a marvelous fluorescent enhancement in the presence of AChE and ATCh, where AChE hydrolyzes its active substrate ATCh into thiocholine (TCh), and then TCh captures Cu(2+) from the ensemble, accompanied by the conversion from fluorescence off-state to on-state of the AuNCs. The AChE activity could be detected less than 0.05 mU/mL within a good linear range from 0.05 to 2.5 mU/mL. Our proposed fluorescence assay can be utilized to evaluate the AChE activity quantitatively in real biological sample, and furthermore to screen the inhibitor of AChE. As far as we know, the present study has reported the first analytical proposal for sensing AChE activity in real time by using a fluorescent nanomaterials-Cu(2+) ensemble or focusing on the Cu(2+)-triggered fluorescence quenching/recovery. This strategy paves a new avenue for exploring the biosensing applications of fluorescent AuNCs, and presents the prospect of AuNCs@11-MUA-Cu(2+) ensemble as versatile enzyme activity assay platforms by means of other appropriate substrates/analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Analysis of the reaction of carbachol with acetylcholinesterase using thioflavin T as a coupled fluorescence reporter.

    PubMed

    Rosenberry, Terrone L; Sonoda, Leilani K; Dekat, Sarah E; Cusack, Bernadette; Johnson, Joseph L

    2008-12-09

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acylated enzyme intermediate is produced. Carbamates are very poor substrates that, like other AChE substrates, form an initial enzyme-substrate complex with free AChE (E) and proceed to an acylated enzyme intermediate (EC), which is then hydrolyzed. However, the hydrolysis of EC is slow enough to resolve the acylation and deacylation steps on the catalytic pathway. Here, we focus on the reaction of carbachol (carbamoylcholine) with AChE. The kinetics and thermodynamics of this reaction are of special interest because carbachol is an isosteric analogue of the physiological substrate acetylcholine. We show that the reaction can be monitored with thioflavin T as a fluorescent reporter group. The fluorescence of thioflavin T is strongly enhanced when it binds to the P-site of AChE, and this fluorescence is partially quenched when a second ligand binds to the A-site to form a ternary complex. Analysis of the fluorescence reaction profiles was challenging because four thermodynamic parameters and two fluorescence coefficients were fitted from the combined data both for E and for EC. Respective equilibrium dissociation constants of 6 and 26 mM were obtained for carbachol binding to the A- and P-sites in E and of 2 and 32 mM for carbachol binding to the A- and P-sites in EC. These constants for the binding of carbachol to the P-site are about an order of magnitude larger (i.e., indicating lower affinity) than previous estimates for the binding of acetylthiocholine to the P-site.

  4. Analysis of the reaction of carbachol with acetylcholinesterase with thioflavin T as a coupled fluorescence reporter†

    PubMed Central

    Rosenberry, Terrone L.; Sonoda, Leilani K.; Dekat, Sarah E.; Cusack, Bernadette; Johnson, Joseph L.

    2009-01-01

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acylated enzyme intermediate is produced. Carbamates are very poor substrates that, like other AChE substrates, form an initial enzyme-substrate complex with free AChE (E) and proceed to an acylated enzyme intermediate (EC) which is then hydrolyzed. However, the hydrolysis of EC is slow enough to resolve the acylation and deacylation steps on the catalytic pathway. Here we focus on the reaction of carbachol (carbamoylcholine) with AChE. The kinetics and thermodynamics of this reaction are of special interest because carbachol is an isosteric analog of the physiological substrate acetylcholine. We show that the reaction can be monitored with thioflavin T as a fluorescent reporter group. The fluorescence of thioflavin T is strongly enhanced when it binds to the P-site of AChE, and this fluorescence is partially quenched when a second ligand binds to the A-site to form a ternary complex. Analysis of the fluorescence reaction profiles was challenging, because four thermodynamic parameters and two fluorescence coefficients were fitted from the combined data both for E and for EC. Respective equilibrium dissociation constants of 6 and 26 mM were obtained for carbachol binding to the A- and P-sites in E and of 2 and 32 mM for carbachol binding to the A- and P-sites in EC. These constants for the binding of carbachol to the P-site are about an order of magnitude larger (i.e., indicating lower affinity) than previous estimates for the binding of acetylthiocholine to the P-site. PMID:19006330

  5. Antioxidant and acetylcholinesterase inhibitory activities of ginger root (Zingiber officinale Roscoe) extract.

    PubMed

    Tung, Bui Thanh; Thu, Dang Kim; Thu, Nguyen Thi Kim; Hai, Nguyen Thanh

    2017-05-04

    Background Zingiber officinale Roscoe has been used in traditional medicine for the treatment of neurological disorder. This study aimed to investigate the phenolic contents, antioxidant, acetylcholinesterase enzyme (AChE) inhibitory activities of different fraction of Z. officinale root grown in Vietnam. Methods The roots of Z. officinale are extracted with ethanol 96 % and fractionated with n-hexane, ethyl acetate (EtOAc) and butanol (BuOH) solvents. These fractions evaluated the antioxidant activity by 1,1-Diphenyl -2-picrylhydrazyl (DPPH) assay and AChE inhibitory activity by Ellman's colorimetric method. Results Our data showed that the total phenolic content of EtOAc fraction was highest equivalents to 35.2±1.4 mg quercetin/g of fraction. Our data also demonstrated that EtOAc fraction had the strongest antioxidant activity with IC50 was 8.89±1.37 µg/mL and AChE inhibitory activity with an IC50 value of 22.85±2.37 μg/mL in a dose-dependent manner, followed by BuOH fraction and the n-hexane fraction is the weakest. Detailed kinetic analysis indicated that EtOAc fraction was mixed inhibition type with Ki (representing the affinity of the enzyme and inhibitor) was 30.61±1.43 µg/mL. Conclusions Our results suggest that the EtOAc fraction of Z. officinale may be a promising source of AChE inhibitors for Alzheimer's disease.

  6. Does Your Patient’s Urine Turns Dark? Alkaptonuria and Low Back Ache: A Literature Review

    PubMed Central

    Kanniyan, Kalaivanan; Pathak, Aditya C; Dhammi, Ish Kumar; Jain, Anil Kumar

    2014-01-01

    Introduction: Alkaptonuria is a very rare inborn error of amino acid metabolism due to deficient homogentisic acid (HGA) oxidase enzyme leading to accumulation of HGA in plasma, cartilage, other tissues of human body and its excretion in urine. It has both systemic and peripheral signs and symptoms. Though low back is a common symptom of alkaptonuria but, in the absence of ochronosis it is rare. Alkaptonuria itself is very rare occurrence with no specific treatment option available to reverse the effect as yet. Case Report: A 38-year-old male, embroidery worker presented with chronic low back ache with history of staining of clothes in infancy. Later on laboratory and the radiological investigation patient was diagnosed to have alkaptonuria without ochronosis. No other systemic manifestation was present. Patient was treated conservatively and responded well. Conclusion: Though alkaptonuria is a very rare disease, and the occurrence of low back-ache in absence of ochronosis is much rarer. One must be aware of this inborn error of metabolism. Early diagnosis though being “diagnosis of exclusion” for low back-ache, high index of suspicion is advantageous as symptomatic treatment of the alkaptonuria can be initiated and evaluation of other systemic organs can be done in early stages itself. PMID:27298997

  7. Molecular docking and ex vivo and in vitro anticholinesterase activity studies of Salvia sp. and highlighted rosmarinic acid.

    PubMed

    Demirezer, Lütfiye Ömür; Gürbüz, Perihan; Kelicen Uğur, Emine Pelin; Bodur, Mine; Özenver, Nadire; Uz, Ayse; Güvenalp, Zühal

    2015-01-01

    To evaluate acetylcholinesterase (AChE) inhibitory activity and antioxidant capacity of the major molecule from Salvia sp., rosmarinic acid, as a drug candidate molecule for treatment of Alzheimer disease (AD). The AChE inhibitory activity of different extracts from Salvia trichoclada, Salvia verticillata, and Salvia fruticosa was determined by the Ellman and isolated guinea pig ileum methods, and the antioxidant capacity was determined with DPPH. The AChE inhibitory activity of the major molecule rosmarinic acid was determined by in silico docking and isolated guinea pig ileum methods. The methanol extract of Salvia trichoclada showed the highest inhibition on AChE. The same extract and rosmarinic acid showed significant contraction responses on isolated guinea pig ileum. All the extracts and rosmarinic acid showed high radical scavenging capacities. Docking results of rosmarinic acid showed high affinity to the selected target, AChE. In this study in vitro and ex vivo studies and in silico docking research of rosmarinic acid were used simultaneously for the first time. Rosmarinic acid showed promising results in all the methods tested.

  8. Integrated use of biomarkers and bioaccumulation data in Zebra mussel (Dreissena polymorpha) for site-specific quality assessment.

    PubMed

    Binelli, A; Ricciardi, F; Riva, C; Provini, A

    2006-01-01

    One of the useful biological tools for environmental management is the measurement of biomarkers whose changes are related to the exposure to chemicals or environmental stress. Since these responses might vary with different contaminants or depending on the pollutant concentration reached in the organism, the support of bioaccumulation data is needed to prevent false conclusions. In this study, several persistent organic pollutants -- 23 polychlorinated biphenyl (PCB) congeners, 11 polycyclic aromatic hydrocarbons (PAHs), six dichlorodiphenyltricholroethane (DDT) relatives, hexachlorobenzene (HCB), chlorpyrifos and its oxidized metabolite -- and some herbicides (lindane and the isomers alpha, beta, delta; terbutilazine; alachlor; metolachlor) were measured in the soft tissues of the freshwater mollusc Zebra mussel (Dreissena polymorpha) from 25 sampling sites in the Italian portions of the sub-alpine great lakes along with the measure of ethoxyresorufin dealkylation (EROD) and acetylcholinesterase (AChE) activity. The linkage between bioaccumulation and biomarker data allowed us to create site-specific environmental quality indexes towards man-made chemicals. This classification highlighted three different degrees of xenobiotic contamination of the Italian sub-alpine great lakes: a high water quality in Lake Lugano with negligible pollutant levels and no effects on enzyme activities, an homogeneous poor quality for Lakes Garda, Iseo and Como, and the presence of some xenobiotic point-sources in Lake Maggiore, whose ecological status could be jeopardized, also due to the heavy DDT contamination revealed since 1996.

  9. Insect nicotinic receptor interactions in vivo with neonicotinoid, organophosphorus, and methylcarbamate insecticides and a synergist

    PubMed Central

    Shao, Xusheng; Xia, Shanshan; Durkin, Kathleen A.; Casida, John E.

    2013-01-01

    The nicotinic acetylcholine (ACh) receptor (nAChR) is the principal insecticide target. Nearly half of the insecticides by number and world market value are neonicotinoids acting as nAChR agonists or organophosphorus (OP) and methylcarbamate (MC) acetylcholinesterase (AChE) inhibitors. There was no previous evidence for in vivo interactions of the nAChR agonists and AChE inhibitors. The nitromethyleneimidazole (NMI) analog of imidacloprid, a highly potent neonicotinoid, was used here as a radioligand, uniquely allowing for direct measurements of house fly (Musca domestica) head nAChR in vivo interactions with various nicotinic agents. Nine neonicotinoids inhibited house fly brain nAChR [3H]NMI binding in vivo, corresponding to their in vitro potency and the poisoning signs or toxicity they produced in intrathoracically treated house flies. Interestingly, nine topically applied OP or MC insecticides or analogs also gave similar results relative to in vivo nAChR binding inhibition and toxicity, but now also correlating with in vivo brain AChE inhibition, indicating that ACh is the ultimate OP- or MC-induced nAChR active agent. These findings on [3H]NMI binding in house fly brain membranes validate the nAChR in vivo target for the neonicotinoids, OPs and MCs. As an exception, the remarkably potent OP neonicotinoid synergist, O-propyl O-(2-propynyl) phenylphosphonate, inhibited nAChR in vivo without the corresponding AChE inhibition, possibly via a reactive ketene metabolite reacting with a critical nucleophile in the cytochrome P450 active site and the nAChR NMI binding site. PMID:24108354

  10. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Dongren; Howard, Angela; Bruun, Donald

    2008-04-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrationsmore » that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE{sup -/-}) versus wild type (AChE{sup +/+}) mice indicated that while these OPs inhibited axonal growth in AChE{sup +/+} DRG neurons, they had no effect on axonal growth in AChE{sup -/-} DRG neurons. However, transfection of AChE{sup -/-} DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs.« less

  11. Acetylcholinesterase, butyrylcholinesterase and paraoxonase 1 activities in rats treated with cannabis, tramadol or both.

    PubMed

    Abdel-Salam, Omar M E; Youness, Eman R; Khadrawy, Yasser A; Sleem, Amany A

    2016-11-01

    To investigate the effect of Cannabis sativa resin and/or tramadol, two commonly drugs of abuse on acetylcholinesterase and butyrylcholinesterase activities as a possible cholinergic biomarkers of neurotoxicity induced by these agents. Rats were treated with cannabis resin (5, 10 or 20 mg/kg) (equivalent to the active constituent Δ 9 -tetrahydrocannabinol), tramadol (5, 10 and 20 mg/kg) or tramadol (10 mg/kg) combined with cannabis resin (5, 10 and 20 mg/kg) subcutaneously daily for 6 weeks. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in brain and serum. We also measured the activity of paraoxonase-1 (PON1) in serum of rats treated with these agents. (i) AChE activity in brain increased after 10-20 mg/kg cannabis resin (by 16.3-36.5%). AChE activity in brain did not change after treatment with 5-20 mg/kg tramadol. The administration of both cannabis resin (5, 10 or 20 mg/kg) and tramadol (10 mg/kg) resulted in decreased brain AChE activity by 14.1%, 12.9% and 13.6%, respectively; (ii) BChE activity in serum was markedly and dose-dependently inhibited by cannabis resin (by 60.9-76.9%). BChE activity also decreased by 17.6-36.5% by 10-20 mg/kg tramadol and by 57.2-63.9% by the cannabis resin/tramadol combined treatment; (iii) Cannabis resin at doses of 20 mg/kg increased serum PON1 activity by 25.7%. In contrast, tramadol given at 5, 10 and 20 mg/kg resulted in a dose-dependent decrease in serum PON1 activity by 19%, 36.7%, and 46.1%, respectively. Meanwhile, treatment with cannabis resin plus tramadol resulted in 40.2%, 35.8%, 30.7% inhibition of PON1 activity compared to the saline group. These data suggest that cannabis resin exerts different effects on AChE and BChE activities which could contribute to the memory problems and the decline in cognitive function in chronic users. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  12. Effects of hyper- and hypothyroidism on acetylcholinesterase, (Na(+), K (+))- and Mg ( 2+ )-ATPase activities of adult rat hypothalamus and cerebellum.

    PubMed

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-03-01

    Thyroid hormones (THs) are recognized as key metabolic hormones, and the metabolic rate increases in hyperthyroidism, while it decreases in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na(+), K(+))- and Mg(2+)-ATPase in the hypothalamus and the cerebellum of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, while hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. Neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities. In the cerebellum, hyperthyroidism provoked a significant decrease in both the AChE (-23%, p < 0.001) and the Na(+), K(+)-ATPase activities (-26%, p < 0.001). Moreover, hypothyroidism had a similar effect on the examined enzyme activities: AChE (-17%, p < 0.001) and Na(+), K(+)-ATPase (-27%, p < 0.001). Mg(2+)-ATPase activity was found unaltered in both the hyper- and the hypothyroid brain regions. neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities. In the cerebellum, hyperthyroidism provoked a significant decrease in both the AChE and the Na(+), K(+)-ATPase activities. The decreased (by the THs) Na(+), K(+)-ATPase activities may increase the synaptic acetylcholine release, and thus, could result in a decrease in the cerebellar AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems.

  13. Continuing Education in the Era of Quantum Change. 2003 ACHE Proceedings. (65th Annual Meeting, Charlottesville, VA, November 8-12, 2003)

    ERIC Educational Resources Information Center

    Barrineau, Irene T., Ed.

    2003-01-01

    This document presents the proceedings of the 2003 annual meeting of the Association for Continuing Higher Education (ACHE). These proceedings record the 65th Annual Meeting of ACHE held in Charlottesville, Virginia. President Allen Varner's theme for this annual meeting was, "Continuing Education in the Era of Quantum Change." The theme…

  14. Nicotine-Induced Airway Smooth Muscle Cell Proliferation Involves TRPC6-Dependent Calcium Influx Via α7 nAChR.

    PubMed

    Hong, Wei; Peng, Gongyong; Hao, Binwei; Liao, Baoling; Zhao, Zhuxiang; Zhou, Yumin; Peng, Fang; Ye, Xiuqin; Huang, Lingmei; Zheng, Mengning; Pu, Jinding; Liang, Chunxiao; Yi, Erkang; Peng, Huanhuan; Li, Bing; Ran, Pixin

    2017-01-01

    The proliferation of human bronchial smooth muscle cells (HBSMCs) is a key pathophysiological component of airway remodeling in chronic obstructive pulmonary disease (COPD) for which pharmacotherapy is limited, and only slight improvements in survival have been achieved in recent decades. Cigarette smoke is a well-recognized risk factor for COPD; however, the pathogenesis of cigarette smoke-induced COPD remains incompletely understood. This study aimed to investigate the mechanisms by which nicotine affects HBSMC proliferation. Cell viability was assessed with a CCK-8 assay. Proliferation was measured by cell counting and EdU immunostaining. Fluorescence calcium imaging was performed to measure intracellular Ca2+ concentration ([Ca2+]i). The results showed that nicotine promotes HBSMC proliferation, which is accompanied by elevated store-operated calcium entry (SOCE), receptor-operated calcium entry (ROCE) and basal [Ca2+]i in HBSMCs. Moreover, we also confirmed that canonical transient receptor potential protein 6 (TRPC6) and α7 nicotinic acetylcholine receptor (α7 nAChR) are involved in nicotine-induced upregulation of cell proliferation. Furthermore, we verified that activation of the PI3K/Akt signaling pathway plays a pivotal role in nicotine-enhanced proliferation and calcium influx in HBSMCs. Inhibition of α7 nAChR significantly decreased Akt phosphorylation levels, and LY294002 inhibited the protein expression levels of TRPC6. Herein, these data provide compelling evidence that calcium entry via the α7 nAChR-PI3K/Akt-TRPC6 signaling pathway plays an important role in the physiological regulation of airway smooth muscle cell proliferation, representing an important target for augmenting airway remodeling. © 2017 The Author(s). Published by S. Karger AG, Basel.

  15. Protein Surface Structural Recognition in Inactive Areas: A New Immobilization Strategy for Acetylcholinesterase.

    PubMed

    Diao, Jianxiong; Yu, Xiaolu; Ma, Lin; Li, Yuanqing; Sun, Ying

    2018-05-16

    This work reported a new method of design for the immobilization of acetylcholinesterase (AChE) based on its molecular structure to improve its sensitivity and stability. The immobilization binding site on the surface of AChE was determined using MOLCAD's multi-channel functionality. Then, 11 molecules ((+)-catechin, (-)-epicatechin, (-)-gallocatechin, hesperetin, naringenin, quercetin, taxifolin, (-)-epicatechin gallate, flupirtine, atropine, and hyoscyamine) were selected from the ZINC database (about 50 000 molecules) as candidate affinity ligands for AChE. The fluorescence results showed that the binding constant K b between AChE and the ligands ranged from 0.01344 × 10 4 to 4.689 × 10 4 M -1 and there was one independent class of binding site for the ligands on AChE. The AChE-ligand binding free energy ranged from -12.14 to -26.65 kJ mol -1 . Naringenin, hesperetin, and quercetin were the three most potent immobilized affinity ligands. In addition, it was confirmed that the binding between the immobilized ligands only occurred at a single site, located in an inactive area on the surface of AChE, and did not affect the enzymatic activity as shown through a competition experiment and enzyme assay. This method based on protein surface structural recognition with high sensitivity and stability can be used as a generic approach for design of the enzyme immobilization and biosensor development.

  16. Fusion-independent expression of functional ACh receptors in mouse mesoangioblast stem cells contacting muscle cells

    PubMed Central

    Grassi, Francesca; Pagani, Francesca; Spinelli, Gabriele; Angelis, Luciana De; Cossu, Giulio; Eusebi, Fabrizio

    2004-01-01

    Mesoangioblasts are vessel-associated fetal stem cells that can be induced to differentiate into skeletal muscle, both in vitro and in vivo. Whether this is due to fusion or to transdifferentiation into bona fide satellite cells is still an open question, for mesoangioblasts as well as for other types of stem cells. The early steps of satellite cell myogenic differentiation involve MyoD activation, membrane hyperpolarization and the appearance of ACh sensitivity and gap junctional communication. If mesoangioblasts differentiate into satellite cells, these characteristics should be observed in stem cells prior to fusion into multinucleated myotubes. We have investigated the functional properties acquired by mononucleated green fluorescent protein (GFP)-positive mesoangioblasts co-cultured with differentiating C2C12 myogenic cells, using the patch-clamp technique. Mesoangioblasts whose membrane contacted myogenic cells developed a hyperpolarized membrane resting potential and ACh-evoked current responses. Dye and electrical coupling was observed among mesoangioblasts but not between mesoangioblasts and myotubes. Mouse MyoD was detected by RT-PCR both in single, mononucleated mesoangioblasts co-cultured with C2C12 myotubes and in the total mRNA from mouse mesoangioblasts co-cultured with human myotubes, but not in human myotubes or stem cells cultured in isolation. In conclusion, when co-cultured with muscle cells, mesoangioblasts acquire many of the functional characteristics of differentiating satellite cells in the absence of cell fusion, strongly indicating that these stem cells undergo transdifferentiation into satellite cells, when exposed to a myogenic environment. PMID:15319417

  17. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and {beta}-adrenergic receptor signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor ({alpha}7 nAChR) and {beta}-adrenergic receptors. Treatment of cells with {alpha}-bungarotoxin ({alpha}-BTX, {alpha}7nAChR antagonist) or propranolol ({beta}-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE{sub 2} and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE{sub 2} induction canmore » only be suppressed by propranolol, but not {alpha}-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.« less

  18. Arisugacins A and B, novel and selective acetylcholinesterase inhibitors from Penicillium sp. FO-4259. I. Screening, taxonomy, fermentation, isolation and biological activity.

    PubMed

    Kuno, F; Otoguro, K; Shiomi, K; Iwai, Y; Omura, S

    1996-08-01

    An in vitro screening method for selective acetylcholinesterase (AChE) inhibitors was established. Inhibitory activity of AChE and butyrylcholinesterase (BuChE) was measured and the culture broths of microorganisms that showed selective inhibition against AChE were characterized. By using this method, a strain producing the novel and selective inhibitors of AChE, arisugacins A and B, was picked out among over seven thousand microorganisms tested. Arisugacins were obtained as white powders from the culture broth together with three known compounds, territrems B and C and cyclopenin that also showed selective inhibition against AChE. Arisugacins and territrems are members of the meroterpenoid compounds. They showed potent inhibitory activities against AChE with IC50 values in range of 1.0 approximately 25.8 nM. Furthermore, they showed greater than 2,000-fold more potent inhibition against AChE than BuChE.

  19. Nitric oxide/cGMP/PKG signaling pathway activated by M1-type muscarinic acetylcholine receptor cascade inhibits Na+-activated K+ currents in Kenyon cells

    PubMed Central

    Hasebe, Masaharu

    2016-01-01

    The interneurons of the mushroom body, known as Kenyon cells, are essential for the long-term memory of olfactory associative learning in some insects. Some studies have reported that nitric oxide (NO) is strongly related to this long-term memory in Kenyon cells. However, the target molecules and upstream and downstream NO signaling cascades are not completely understood. Here we analyzed the effect of the NO signaling cascade on Na+-activated K+ (KNa) channel activity in Kenyon cells of crickets (Gryllus bimaculatus). We found that two different NO donors, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-dl-penicillamine (SNAP), strongly suppressed KNa channel currents. Additionally, this inhibitory effect of GSNO on KNa channel activity was diminished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), and KT5823, an inhibitor of protein kinase G (PKG). Next, we analyzed the role of ACh in the NO signaling cascade. ACh strongly suppressed KNa channel currents, similar to NO donors. Furthermore, this inhibitory effect of ACh was blocked by pirenzepine, an M1 muscarinic ACh receptor antagonist, but not by 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) and mecamylamine, an M3 muscarinic ACh receptor antagonist and a nicotinic ACh receptor antagonist, respectively. The ACh-induced inhibition of KNa channel currents was also diminished by the PLC inhibitor U73122 and the calmodulin antagonist W-7. Finally, we found that ACh inhibition was blocked by the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME). These results suggested that the ACh signaling cascade promotes NO production by activating NOS and NO inhibits KNa channel currents via the sGC/cGMP/PKG signaling cascade in Kenyon cells. PMID:26984419

  20. Inhibition pathways of the potent organophosphate CBDP with cholinesterases revealed by X-ray crystallographic snapshots and mass spectrometry.

    PubMed

    Carletti, Eugénie; Colletier, Jacques-Philippe; Schopfer, Lawrence M; Santoni, Gianluca; Masson, Patrick; Lockridge, Oksana; Nachon, Florian; Weik, Martin

    2013-02-18

    Tri-o-cresyl-phosphate (TOCP) is a common additive in jet engine lubricants and hydraulic fluids suspected to have a role in aerotoxic syndrome in humans. TOCP is metabolized to cresyl saligenin phosphate (CBDP), a potent irreversible inhibitor of butyrylcholinesterase (BChE), a natural bioscavenger present in the bloodstream, and acetylcholinesterase (AChE), the off-switch at cholinergic synapses. Mechanistic details of cholinesterase (ChE) inhibition have, however, remained elusive. Also, the inhibition of AChE by CBDP is unexpected, from a structural standpoint, i.e., considering the narrowness of AChE active site and the bulkiness of CBDP. In the following, we report on kinetic X-ray crystallography experiments that provided 2.7-3.3 Å snapshots of the reaction of CBDP with mouse AChE and human BChE. The series of crystallographic snapshots reveals that AChE and BChE react with the opposite enantiomers and that an induced-fit rearrangement of Phe297 enlarges the active site of AChE upon CBDP binding. Mass spectrometry analysis of aging in either H(2)(16)O or H(2)(18)O furthermore allowed us to identify the inhibition steps, in which water molecules are involved, thus providing insights into the mechanistic details of inhibition. X-ray crystallography and mass spectrometry show the formation of an aged end product formed in both AChE and BChE that cannot be reactivated by current oxime-based therapeutics. Our study thus shows that only prophylactic and symptomatic treatments are viable to counter the inhibition of AChE and BChE by CBDP.

  1. Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: Assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activity.

    PubMed

    Topal, Ahmet; Alak, Gonca; Ozkaraca, Mustafa; Yeltekin, Aslı Cilingir; Comaklı, Selim; Acıl, Gurdal; Kokturk, Mine; Atamanalp, Muhammed

    2017-05-01

    The extensive use of imidacloprid, a neonicotinoid insecticide, causes undesirable toxicity in non-targeted organisms including fish in aquatic environments. We investigated neurotoxic responses by observing 8-hydroxy-2-deoxyguanosine (8-OHdG) activity, oxidative stress and acetylcholinesterase (AChE) activity in rainbow trout brain tissue after 21 days of imidacloprid exposure at levels of (5 mg/L, 10 mg/L, 20 mg/L). The obtained results indicated that 8-OHdG activity did not change in fish exposed to 5 mg/L of imidacloprid, but 10 mg/L and 20 mg/L of imidacloprid significantly increased 8-OHdG activity compared to the control (p < 0.05). An immunopositiv reaction to 8-OHdG was detected in brain tissues. The brain tissues indicated a significant increase in antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)) compared to the control and there was a significant increase in malondialdehyde (MDA) levels (p < 0.05). High concentrations of imidacloprid caused a significant decrease in AChE enzyme activity (p < 0.05). These results suggested that imidacloprid can be neurotoxic to fish by promoting AChE inhibition, an increase in 8-OHdG activity and changes in oxidative stress parameters. Therefore, these data may reflect one of the molecular pathways that play a role in imidacloprid toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Kinetics and molecular docking studies of loganin, morroniside and 7-O-galloyl-D-sedoheptulose derived from Corni fructus as cholinesterase and β-secretase 1 inhibitors.

    PubMed

    Bhakta, Himanshu Kumar; Park, Chan Hum; Yokozawa, Takako; Min, Byung-Sun; Jung, Hyun Ah; Choi, Jae Sue

    2016-06-01

    We evaluated the major active components isolated from Corni Fructus: loganin, morroniside, and 7-O-galloyl-D-sedoheptulose as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) for use in Alzheimer's disease treatment. These compounds exhibited predominant cholinesterase (ChEs) inhibitory effects with IC50 values of 0.33, 3.95, and 10.50 ± 1.16 µM, respectively, for AChE, and 33.02, 37.78, and 87.94 ± 4.66 µM, respectively, for BChE. Kinetics studies revealed that loganin and 7-O-galloyl-D-sedoheptulose inhibited AChE with characteristics typical of mixed inhibitors, while morroniside was found to be a noncompetitive inhibitor against AChE and also exerted mixed BChE inhibitory activities. For BACE1, loganin showed noncompetitive type inhibitory effects, while morroniside and 7-O-galloyl-D-sedoheptulose were found to be mixed inhibitors. Furthermore, these compounds exhibited dose-dependent inhibitory activity with ONOO(-)-mediated protein tyrosine nitration. Molecular docking simulation of these compounds demonstrated negative binding energies for ChEs, and BACE1, indicating high affinity and tighter binding capacity for the active site of the enzyme. Loganin was the most potent inhibitor against both ChEs and BACE1. The data suggest that these compounds together can act as a triple inhibitor of AChE, BChE, and BACE1, providing a preventive and therapeutic strategy for Alzheimer's disease treatment.

  3. Acetylcholine-induced seizure-like activity and modified cholinergic gene expression in chronically epileptic rats.

    PubMed

    Zimmerman, Gabriel; Njunting, Marleisje; Ivens, Sebastian; Tolner, Else A; Tolner, Elsa; Behrens, Christoph J; Gross, Miriam; Soreq, Hermona; Heinemann, Uwe; Friedman, Alon

    2008-02-01

    The entorhinal cortex (EC) plays an important role in temporal lobe epilepsy. Under normal conditions, the enriched cholinergic innervation of the EC modulates local synchronized oscillatory activity; however, its role in epilepsy is unknown. Enhanced neuronal activation has been shown to induce transcriptional changes of key cholinergic genes and thus alter cholinergic responses. To examine cholinergic modulations in epileptic tissue we studied molecular and electrophysiological cholinergic responses in the EC of chronically epileptic rats following exposure to pilocarpine or kainic acid. We confirmed that while the total activity of the acetylcholine (ACh)-hydrolysing enzyme, acetylcholinesterase (AChE) was not altered, epileptic rats showed alternative splicing of AChE pre-mRNA transcripts, accompanied by a shift from membrane-bound AChE tetramers to soluble monomers. This was associated with increased sensitivity to ACh application: thus, in control rats, ACh (10-100 microm) induced slow (< 1Hz), periodic events confined to the EC; however, in epileptic rats, ACh evoked seconds-long seizure-like events with initial appearance in the EC, and frequent propagation to neighbouring cortical regions. ACh-induced seizure-like events could be completely blocked by the non-specific muscarinic antagonist, atropine, and were partially blocked by the muscarinic-1 receptor antagonist, pirenzepine; but were not affected by the non-specific nicotinic antagonist, mecamylamine. Epileptic rats presented reduced transcript levels of muscarinic receptors with no evidence of mRNA editing or altered mRNA levels for nicotinic ACh receptors. Our findings suggest that altered cholinergic modulation may initiate seizure events in the epileptic temporal cortex.

  4. Acetylcholine-Binding Protein in the Hemolymph of the Planorbid Snail Biomphalaria glabrata Is a Pentagonal Dodecahedron (60 Subunits)

    PubMed Central

    Kapetanopoulos, Katharina; Braukmann, Sandra; Gebauer, Wolfgang; Tenzer, Stefan; Markl, Jürgen

    2012-01-01

    Nicotinic acetylcholine receptors (nAChR) play important neurophysiological roles and are of considerable medical relevance. They have been studied extensively, greatly facilitated by the gastropod acetylcholine-binding proteins (AChBP) which represent soluble structural and functional homologues of the ligand-binding domain of nAChR. All these proteins are ring-like pentamers. Here we report that AChBP exists in the hemolymph of the planorbid snail Biomphalaria glabrata (vector of the schistosomiasis parasite) as a regular pentagonal dodecahedron, 22 nm in diameter (12 pentamers, 60 active sites). We sequenced and recombinantly expressed two ∼25 kDa polypeptides (BgAChBP1 and BgAChBP2) with a specific active site, N-glycan site and disulfide bridge variation. We also provide the exon/intron structures. Recombinant BgAChBP1 formed pentamers and dodecahedra, recombinant BgAChBP2 formed pentamers and probably disulfide-bridged di-pentamers, but not dodecahedra. Three-dimensional electron cryo-microscopy (3D-EM) yielded a 3D reconstruction of the dodecahedron with a resolution of 6 Å. Homology models of the pentamers docked to the 6 Å structure revealed opportunities for chemical bonding at the inter-pentamer interfaces. Definition of the ligand-binding pocket and the gating C-loop in the 6 Å structure suggests that 3D-EM might lead to the identification of functional states in the BgAChBP dodecahedron. PMID:22916297

  5. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae).

    PubMed

    Wan Othman, Wan Nurul Nazneem; Liew, Sook Yee; Khaw, Kooi Yeong; Murugaiyah, Vikneswaran; Litaudon, Marc; Awang, Khalijah

    2016-09-15

    Alzheimer's disease is the most common form of dementia among older adults. Acetylcholinesterase and butyrylcholinesterase are two enzymes involved in the breaking down of the neurotransmitter acetylcholine. Inhibitors for these enzymes have potential to prolong the availability of acetylcholine. Hence, the search for such inhibitors especially from natural products is needed in developing potential drugs for Alzheimer's disease. The present study investigates the cholinesterase inhibitory activity of compounds isolated from three Cryptocarya species towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Nine alkaloids were isolated; (+)-nornantenine 1, (-)-desmethylsecoantofine 2, (+)-oridine 3, (+)-laurotetanine 4 from the leaves of Cryptocarya densiflora BI., atherosperminine 5, (+)-N-methylisococlaurine 6, (+)-N-methyllaurotetanine 7 from the bark of Cryptocarya infectoria Miq., 2-methoxyatherosperminine 8 and (+)-reticuline 9 from the bark of Cryptocarya griffithiana Wight. In general, most of the alkaloids showed higher inhibition towards BChE as compared to AChE. The phenanthrene type alkaloid; 2-methoxyatherosperminine 8, exhibited the most potent inhibition against BChE with IC50 value of 3.95μM. Analysis of the Lineweaver-Burk (LB) plot of BChE activity over a range of substrate concentration suggested that 2-methoxyatherosperminine 8 exhibited mixed-mode inhibition with an inhibition constant (Ki) of 6.72μM. Molecular docking studies revealed that 2-methoxyatherosperminine 8 docked well at the choline binding site and catalytic triad of hBChE (butyrylcholinesterase from Homo sapiens); hydrogen bonding with Tyr 128 and His 438 residues respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Acotiamide Hydrochloride, a Therapeutic Agent for Functional Dyspepsia, Enhances Acetylcholine-induced Contraction via Inhibition of Acetylcholinesterase Activity in Circular Muscle Strips of Guinea Pig Stomach.

    PubMed

    Ito, K; Kawachi, M; Matsunaga, Y; Hori, Y; Ozaki, T; Nagahama, K; Hirayama, M; Kawabata, Y; Shiraishi, Y; Takei, M; Tanaka, T

    2016-04-01

    Acotiamide is a first-in-class prokinetic drug approved in Japan for the treatment of functional dyspepsia. Given that acotiamide enhances gastric motility in conscious dogs and rats, we assessed the in vitro effects of this drug on the contraction of guinea pig stomach strips and on acetylcholinesterase (AChE) activity in stomach homogenate following fundus removal. We also investigated the serotonin 5-HT4 receptor agonist mosapride, dopamine D2 receptor and AChE inhibitor itopride, and representative AChE inhibitor neostigmine. Acotiamide (0.3 and 1 μM) and itopride (1 and 3 μM) significantly enhanced the contraction of gastric body strips induced by electrical field stimulation (EFS), but mosapride (1 and 10 μM) did not. Acotiamide and itopride significantly enhanced the contraction of gastric body and antrum strips induced by acetylcholine (ACh), but not that induced by carbachol (CCh). Neostigmine also significantly enhanced the contraction of gastric body strips induced by ACh, but not that by CCh. In contrast, mosapride failed to enhance contractions induced by either ACh or CCh in gastric antrum strips. Acotiamide exerted mixed inhibition of AChE, and the percentage inhibition of acotiamide (100 μM) against AChE activity was markedly reduced after the reaction mixture was dialyzed. In contrast, itopride exerted noncompetitive inhibition on AChE activity. These results indicate that acotiamide enhances ACh-dependent contraction in gastric strips of guinea pigs via the inhibition of AChE activity, and that it exerts mixed and reversible inhibition of AChE derived from guinea pig stomach. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Examining impacts of current-use pesticides in Southern Ontario using in situ exposures of the amphipod Hyalella azteca.

    PubMed

    Bartlett, Adrienne J; Struger, John; Grapentine, Lee C; Palace, Vince P

    2016-05-01

    In situ exposures with Hyalella azteca were used to assess impacts of current-use pesticides in Southern Ontario, Canada. Exposures were conducted over 2 growing seasons within areas of high pesticide use: 1 site on Prudhomme Creek and 3 sites on Twenty Mile Creek. Three sites on Spencer Creek, an area of low pesticide use, were added in the second season. Surface water samples were collected every 2 wk to 3 wk and analyzed for a suite of pesticides. Hyalella were exposed in situ for 1 wk every 4 wk to 6 wk, and survival and acetylcholinesterase (AChE) activity were measured. Pesticides in surface waters reflected seasonal use patterns: lower concentrations in spring and fall and higher concentrations during summer months. Organophosphate insecticides (chlorpyrifos, azinphos methyl, diazinon) and acid herbicides (2,4-dichlorophenoxyacetic acid [2,4-D], mecoprop) were routinely detected in Prudhomme Creek, whereas neutral herbicides (atrazine, metolachlor) dominated the pesticide signature of Twenty Mile Creek. Spencer Creek contained fewer pesticides, which were measured at lower concentrations. In situ effects also followed seasonal patterns: higher survival and AChE activity in spring and fall, and lower survival and AChE activity during summer months. The highest toxicity was observed at Prudhomme Creek and was primarily associated with organophosphates. The present study demonstrated that current-use pesticides in Southern Ontario were linked to in situ effects and identified sites of concern requiring further investigation. © 2015 Crown in the Right of Canada.

  8. Red blood cell acetylcholinesterase activity among healthy dwellers of an agrarian region in Sri Lanka: a descriptive cross-sectional study.

    PubMed

    Rathish, Devarajan; Senavirathna, Indika; Jayasumana, Channa; Agampodi, Suneth

    2018-06-21

    Assessment of acetylcholinesterase-inhibitor insecticide (AChEII) toxicity depends on the measurement of red blood cell acetylcholinesterase (RBC-AChE) activity. Its interpretation requires baseline values which is lacking in scientific literature. We aim to find the measures of central tendency and variation for RBC-AChE activity among dwellers of Anuradhapura, where the use and abuse of AChEIIs were rampant for the last few decades. A descriptive cross-sectional study with a community-based sampling for 100 healthy non-farmers (male:female = 1:1) was done using pre-determined selection criteria. Duplicate measurements of RBC-AChE activity were performed according to the modified Ellman procedure. Pearson's correlation and regression analysis were sort for RBC-AChE activity against its possible determinants. RBC-AChE activity had a mean of 449.8 (SD 74.2) mU/μM Hb with a statistical power of 0.847. It was similar to values of "healthy controls" from previous Sri Lankan toxicological studies but was low against international reference value [586.1 (SD 65.1) mU/μM Hb]. None of the possible determinants showed a significant strength of relationship with RBC-AChE activity. The baseline RBC-AChE activity among people of Anuradhapura is low in comparison with international reference values. This arises a need to find a causative mechanism.

  9. Bivalent ligands derived from Huperzine A as acetylcholinesterase inhibitors.

    PubMed

    Haviv, H; Wong, D M; Silman, I; Sussman, J L

    2007-01-01

    The naturally occurring alkaloid Huperzine A (HupA) is an acetylcholinesterase (AChE) inhibitor that has been used for centuries as a Chinese folk medicine in the context of its source plant Huperzia Serrata. The potency and relative safety of HupA rendered it a promising drug for the ameliorative treatment of Alzheimer's disease (AD) vis-à-vis the "cholinergic hypothesis" that attributes the cognitive decrements associated with AD to acetylcholine deficiency in the brain. However, recent evidence supports a neuroprotective role for HupA, suggesting that it could act as more than a mere palliative. Biochemical and crystallographic studies of AChE revealed two potential binding sites in the active-site gorge of AChE, one of which, the "peripheral anionic site" at the mouth of the gorge, was implicated in promoting aggregation of the beta amyloid (Abeta) peptide responsible for the neurodegenerative process in AD. This feature of AChE facilitated the development of dual-site binding HupA-based bivalent ligands, in hopes of concomitantly increasing AChE inhibition potency by utilizing the "chelate effect", and protecting neurons from Abeta toxicity. Crystal structures of AChE allowed detailed modeling and docking studies that were instrumental in enhancing the understanding of underlying principles of bivalent inhibitor-enzyme dynamics. This monograph reviews two categories of HupA-based bivalent ligands, in which HupA and HupA fragments serve as building blocks, with a focus on the recently solved crystallographic structures of Torpedo californica AChE in complex with such bifunctional agents. The advantages and drawbacks of such structured-based drug design, as well as species differences, are highlighted and discussed.

  10. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirata, Yuki; Choi, Junho, E-mail: choi@mech.t.u-tokyo.ac.jp

    2015-08-28

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from −1.0 to −15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) andmore » Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting

  11. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    NASA Astrophysics Data System (ADS)

    Hirata, Yuki; Choi, Junho

    2015-08-01

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from -1.0 to -15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a deviation

  12. Effect of a nicotine vaccine on nicotine binding to the beta2-nAChRs in vivo in human tobacco smokers

    PubMed Central

    Esterlis, Irina; Hannestad, Jonas O.; Perkins, Evgenia; Bois, Frederic; D’Souza, D. Cyril; Tyndale, Rachel F.; Seibyl, John P.; Hatsukami, Dorothy M.; Cosgrove, Kelly P.; O’Malley, Stephanie S.

    2013-01-01

    Objective Nicotine acts in the brain to promote smoking in part by binding to the beta2-containing nicotinic acetylcholine receptors (β2*-nAChRs) and acting in the mesolimbic reward pathway. The effects of nicotine from smoking one tobacco cigarette are significant (80% of β2*-nAChRs occupied for >6h). This likely contributes to the maintenance of smoking dependence and low cessation outcomes. Development of nicotine vaccines provides potential for alternative treatments. We used [123I]5IA-85380 SPECT to evaluate the effect of 3′-AmNic-rEPA on the amount of nicotine that binds to the β2*-nAChRs in the cortical and subcortical regions in smokers. Method Eleven smokers (36years (SD=13); 19cig/day (SD=11) for 10years (SD=7) who were dependent on nicotine (Fagerström Test of Nicotine Dependence score =5.5 (SD=3); plasma nicotine 9.1 ng/mL (SD=5)) participated in 2 SPECT scan days: before and after immunization with 4–400μg doses of 3′-AmNic-rEPA. On SPECT scan days, 3 30-min baseline emission scans were obtained, followed by administration of IV nicotine (1.5mg/70kg) and up to 9 30-min emission scans. Results β2*-nAChR availability was quantified as VT/fP and nicotine binding was derived using the Lassen plot approach. Immunization led to a 12.5% reduction in nicotine binding (F=5.19, df=1,10, p=0.05). Significant positive correlations were observed between nicotine bound to β2*-nAChRs and nicotine injected before but not after vaccination (p=0.05 vs. p=0.98). There was a significant reduction in the daily number of cigarettes and desire for a cigarette (p=.01 and p=.04, respectively). Conclusions This proof-of-concept study demonstrates that immunization with nicotine vaccine can reduce the amount of nicotine binding to β2*-nAChRs and disrupt the relationship between nicotine administered vs. nicotine available to occupy β2*-nAChRs. PMID:23429725

  13. RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions.

    PubMed

    Chandna, Andrew R; Nair, Manoj; Chang, Christine; Pennington, Paul R; Yamamoto, Yasuhiko; Mousseau, Darrell D; Campanucci, Verónica A

    2015-02-01

    Autonomic dysfunction is a serious complication of diabetes and can lead to cardiovascular abnormalities and premature death. It was recently proposed that autonomic dysfunction is triggered by oxidation-mediated inactivation of neuronal nicotinic acetylcholine receptors (nAChRs), impairing synaptic transmission in sympathetic ganglia and resulting in autonomic failure. We investigated whether the receptor for advanced glycation end products (RAGE) and its role in the generation of reactive oxygen species (ROS) could be contributing to the events that initiate sympathetic malfunction under high glucose conditions. Using biochemical, live imaging and electrophysiological tools we demonstrated that exposure of sympathetic neurons to high glucose increases RAGE expression and oxidative markers, and that incubation with RAGE ligands (e.g. AGEs, S100 and HMGB1) mimics both ROS elevation and nAChR inactivation. In contrast, co-treatment with either antioxidants or an anti-RAGE IgG prevented the inactivation of nAChRs. Lastly, a role for RAGE in this context was corroborated by the lack of sensitivity of sympathetic neurons from RAGE knock-out mice to high glucose. These data define a pivotal role for RAGE in initiating the events associated with exposure of sympathetic neurons to high glucose, and strongly support RAGE signaling as a potential therapeutic target in the autonomic complications associated with diabetes. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. GaAs laser therapy reestablishes the morphology of the NMJ and nAChRs after injury due to bupivacaine.

    PubMed

    Pissulin, Cristiane Neves Alessi; de Souza Castro, Paula Aiello Tomé; Codina, Flávio; Pinto, Carina Guidi; Vechetti-Junior, Ivan Jose; Matheus, Selma Maria Michelin

    2017-02-01

    Local anesthetics are used to relieve pre- and postoperative pain, acting on both sodium channels and nicotinic acetylcholine receptors (nAChR) at the neuromuscular junction (NMJ). Bupivacaine acts as a non-competitive antagonist and has limitations, such as myotoxicity, neurotoxicity, and inflammation. Low-level laser therapy (LLLT) has anti-inflammatory, regenerative, and analgesic effects. The aim of the present study was to evaluate the effects of a gallium arsenide laser (GaAs) on the morphology of the NMJ and nAChRs after application of bupivacaine in the sternomastoid muscle. Thirty-two adult male Wistar rats received injections of bupivacaine 0.5% (Bupi: right antimere) and 0.9% sodium chloride (Cl: left antimere). Next, the animals were divided into a Control group (C) and a Laser group (LLLT). The laser group received LLLT (GaAs 904nm, 50mW, 4,8J) in both antimeres for five consecutive days. After seven days, the animals were euthanized and the surface portion of the sternomastoid muscle was removed, frozen, and subjected to morphological and morphometric analyses of the NMJs (nonspecific esterase reaction), confocal laser scanning, and an ultrastructural analysis. The nAChRs were quantified by Western blotting. In the chloride group, the morphology and morphometry of the NMJs remained stable. The maximum diameters of the NMJs were lower in the Bupi (15.048±1.985) and LLLT/Bupi subgroups (15.456±1.983) compared to the Cl (18.502±2.058) and LLLT/Cl subgroups (19.356±2.522) (p<0.05). Ultrastructurally, LLLT reduced myonecrosis observed after application of bupivacaine, with recovery in the junctional folds and active zone. There was an increase in the perimeter of the LLLT/Bupi subgroup (150.33) compared to the Bupi subgroup (74.69) (p<0.01) observed by confocal microscopy. There was also an increase in the relative planar area of the NMJ after LBI (8.75) compared to CBupi (4.80) (p<0.01). An analysis of the protein expression of nAChRα1 showed no

  15. Dissecting the active site of a photoreceptor protein

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Hara, Miwa; Ren, Jie; Moghadam, Farzaneh; Xie, Aihua; Kumauchi, Masato

    While enzymes are quite large molecules, functionally important chemical events are often limited to a small region of the protein: the active site. The physical and chemical properties of residues at such active sites are often strongly altered compared to the same groups dissolved in water. Understanding such effects is important for unraveling the mechanisms underlying protein function and for protein engineering, but has proven challenging. Here we report on our ongoing efforts on using photoactive yellow protein (PYP), a bacterial photoreceptor, as a model system for such effects. We will report on the following questions: How many residues affect active site properties? Are these residues in direct physical contact with the active site? Can functionally important residues be recognized in the crystal structure of a protein? What structural resolution is needed to understand active sites? What spectroscopic techniques are most informative? Which weak interactions dominate active site properties?

  16. Active site dynamics of ribonuclease.

    PubMed Central

    Brünger, A T; Brooks, C L; Karplus, M

    1985-01-01

    The stochastic boundary molecular dynamics method is used to study the structure, dynamics, and energetics of the solvated active site of bovine pancreatic ribonuclease A. Simulations of the native enzyme and of the enzyme complexed with the dinucleotide substrate CpA and the transition-state analog uridine vanadate are compared. Structural features and dynamical couplings for ribonuclease residues found in the simulation are consistent with experimental data. Water molecules, most of which are not observed in crystallographic studies, are shown to play an important role in the active site. Hydrogen bonding of residues with water molecules in the free enzyme is found to mimic the substrate-enzyme interactions of residues involved in binding. Networks of water stabilize the cluster of positively charged active site residues. Correlated fluctuations between the uridine vanadate complex and the distant lysine residues are mediated through water and may indicate a possible role for these residues in stabilizing the transition state. Images PMID:3866234

  17. Alkaloids from roots of Stephania rotunda and their cholinesterase inhibitory activity.

    PubMed

    Hung, Tran Manh; Dang, Nguyen Hai; Kim, Jin Cheol; Jang, Han-Su; Ryoo, Sung-Woo; Lee, Jeong Hyung; Choi, Jae Sue; Bae, Kihwan; Min, Byung Sun

    2010-10-01

    In the course of screening plants used in folk medicine as memory enhancers, a 70% ethanolic extract of Stephania rotunda roots showed significant AChE inhibitory activity. Repeated column chromatography led to the isolation of a new protoberberine alkaloid, which we named stepharotudine (1), and seven known compounds (2-8). The chemical structures of the isolated compounds were elucidated based on extensive 1D and 2D NMR spectroscopic data. Compounds 1-8 were investigated in vitro for their anticholinesterase activity using a rat cortex AChE enzyme. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Ebselen inhibits the activity of acetylcholinesterase globular isoform G4 in vitro and attenuates scopolamine-induced amnesia in mice.

    PubMed

    Martini, Franciele; Pesarico, Ana P; Brüning, César A; Zeni, Gilson; Nogueira, Cristina W

    2018-02-05

    There is a well-known relationship between the cholinergic system and learning, memory, and other common cognitive processes. The process for researching and developing new drugs has lead researchers to repurpose older ones. This study investigated the effects of ebselen on the activity of acethylcholinesterase (AChE) isoforms in vitro and in an amnesia model induced by scopolamine in Swiss mice. In vitro, ebselen at concentrations equal or higher than 10 μM inhibited the activity of cortical and hippocampal G4/AChE, but not G1/AChE isoform. Treatment of mice with ebselen (50 mg/kg, i.p.) was effective against impairment of spatial recognition memory in both Y-maze and novel object recognition tests induced by scopolamine (1 mg/kg, i.p.). Ebselen (50 mg/kg) inhibited hippocampal AChE activity in mice. The present study demonstrates that ebselen inhibited the G4/AChE isoform in vitro and elicited an anti-amnesic effect in a mouse model induced by scopolamine. These findings reveal ebselen as a potential compound in terms of opening up valid therapeutic avenues for the treatment of memory impairment diseases. © 2018 Wiley Periodicals, Inc.

  19. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  20. Potentiometric/turbidometric titration of antiperspirant actives.

    PubMed

    Johnston, Clifford T; Hem, Stanley L; Guenin, Eric; Mattai, Jairajh; Afflito, John

    2003-01-01

    A titration procedure that simultaneously monitors the pH and turbidity of an antiperspirant solution during neutralization with sodium hydroxide was developed to characterize antiperspirant actives. Aluminum chloride, aluminum chlorohydrate (ACH), and aluminum zirconium glycine complex (AZG) gave distinctive pH/turbidity profiles. The activated forms of aluminum chlorohydrate (ACH') and aluminum zirconium glycine complex (AZG') produced more turbidity than the non-activated forms. On an equimolar basis, AZG' produced more turbidity than any of the antiperspirant actives tested.

  1. Design, synthesis and biological evaluation of 3,4-dihydro-2(1H)-quinoline-O-alkylamine derivatives as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer's disease.

    PubMed

    Sang, Zhipei; Pan, Wanli; Wang, Keren; Ma, Qinge; Yu, Lintao; Liu, Wenmin

    2017-06-15

    A new family of multitarget molecules able to interact with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as with monoamino oxidase (MAO) A and B, has been synthesized. Novel 3,4-dihydro-2(1H)-quinoline-O-alkylamine derivatives have been designed using a conjunctive approach that combines the JMC49 and donepezil. The most promising compound TM-33 showed potent and balance inhibitory activities toward ChE and MAO (eeAChE, eqBuChE, hMAO-A and hMAO-B with IC 50 values of 0.56μM, 2.3μM, 0.3μM and 1.4μM, respectively) but low selectivity. Both kinetic analysis of AChE inhibition and molecular modeling study suggested that TM-33 binds simultaneously to the catalytic active site and peripheral anionic site of AChE. Furthermore, our investigation proved that TM-33 could cross the blood-brain barrier (BBB) in vitro, and abided by Lipinski's rule of five. The results suggest that compound TM-33, an interesting multi-targeted active molecule, offers an attractive starting point for further lead optimization in the drug-discovery process against Alzheimer's disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  3. Competitive regulation of alternative splicing and alternative polyadenylation by hnRNP H and CstF64 determines acetylcholinesterase isoforms.

    PubMed

    Nazim, Mohammad; Masuda, Akio; Rahman, Mohammad Alinoor; Nasrin, Farhana; Takeda, Jun-Ichi; Ohe, Kenji; Ohkawara, Bisei; Ito, Mikako; Ohno, Kinji

    2017-02-17

    Acetylcholinesterase (AChE), encoded by the ACHE gene, hydrolyzes the neurotransmitter acetylcholine to terminate synaptic transmission. Alternative splicing close to the 3΄ end generates three distinct isoforms of AChET, AChEH and AChER. We found that hnRNP H binds to two specific G-runs in exon 5a of human ACHE and activates the distal alternative 3΄ splice site (ss) between exons 5a and 5b to generate AChET. Specific effect of hnRNP H was corroborated by siRNA-mediated knockdown and artificial tethering of hnRNP H. Furthermore, hnRNP H competes for binding of CstF64 to the overlapping binding sites in exon 5a, and suppresses the selection of a cryptic polyadenylation site (PAS), which additionally ensures transcription of the distal 3΄ ss required for the generation of AChET. Expression levels of hnRNP H were positively correlated with the proportions of the AChET isoform in three different cell lines. HnRNP H thus critically generates AChET by enhancing the distal 3΄ ss and by suppressing the cryptic PAS. Global analysis of CLIP-seq and RNA-seq also revealed that hnRNP H competitively regulates alternative 3΄ ss and alternative PAS in other genes. We propose that hnRNP H is an essential factor that competitively regulates alternative splicing and alternative polyadenylation.

  4. Pesticide residues, heavy metals, and DNA damage in sentinel oysters Crassostrea gigas from Sinaloa and Sonora, Mexico.

    PubMed

    Vázquez-Boucard, Celia; Anguiano-Vega, Gerardo; Mercier, Laurence; Rojas del Castillo, Emilio

    2014-01-01

    Pesticides and heavy metals were analyzed in sentinel Crassostrea gigas oysters placed in six aquaculture sites close to a contaminated agricultural region. Each site was sampled twice. Tests revealed the presence of organochlorine (OC) pesticides in the oysters at concentrations varying from 31.8 to 72.5 μg/kg for gamma-hexachlorocyclohexane (γ-HCH); from 1.2 to 3.1 μg/kg for dichlorodiphenyldichloroethylene (4,4-DDE); from 1.6 to 2.3 μg/kg for endosulfan I; and from 1.4 to 41.2 μg/kg for endosulfan II, as well as heavy metals in concentrations that exceeded Mexican tolerance levels (405.5 to 987.8 μg/g for zinc; 4.2 to 7.3 μg/g for cadmium; and 7.2 to 9.9 μg/g for lead). Significant levels of DNA damage in oyster hemocytes were also detected. There was a significant, positive correlation between genotoxic damage and concentration of nickel or the presence of endosulfan II. Cellular viability evaluated by cytotoxic analyses was found to be high at 80%. Marked inhibition in activity of acetylcholinesterase (AChE ) and induction of glutathione S-transferase (GST) activity was noted. Data demonstrated a significant relation between AChE activity inhibition and presence of endosulfan II, γ-HCH, copper, lead, and 4,4-DDE, as well as between AChE and GST activity at different sites.

  5. Compounds from the aerial parts of Piper bavinum and their anti-cholinesterase activity.

    PubMed

    Dung, Hoang Viet; Cuong, To Dao; Chinh, Nguyen Minh; Quyen, Do; Kim, Jeong Ah; Byeon, Jeong Su; Woo, Mi Hee; Choi, Jae Sui; Min, Byung Sun

    2015-01-01

    A new alkenylphenol, bavinol A (1), together with six known compounds (2-7) were isolated from the aerial parts of Piper bavinum (Piperaceae). The chemical structures of these compounds were determined by spectroscopic analyses including 2D NMR spectroscopy. The anti-Alzheimer effects of compounds 1-7 were evaluated from acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity assays. Bavinol A (1), ampelopsin (3), and violanthin (4) exhibited AChE inhibitory activities with IC50 values of 29.80, 59.47 and 79.80 μM. Compound 1 also showed the most potent BChE inhibitory activity with an IC50 value of 19.25 μM.

  6. Anticholinesterase activity of 7-methoxyflavones isolated from Kaempferia parviflora.

    PubMed

    Sawasdee, Pattara; Sabphon, Chalisa; Sitthiwongwanit, Duangporn; Kokpol, Udom

    2009-12-01

    The rhizome of Kaempferia parviflora or kra-chai-dum (in Thai) is used traditionally as a folk medicine. The preliminary cholinesterase inhibitory screening of this plant extract exhibited significant acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Thirteen known methoxyflavones (1-13) were isolated and their structures were completely elucidated based on NMR analysis and compared with literature reports. Minor compounds 12-13 were reported for the first time from this species. The cholinesterase inhibitory test results showed that the highest potential inhibitors toward AChE and BChE were 5,7,4'-trimethoxyflavone (6) and 5,7-dimethoxyflavone (7), respectively, with the percentage inhibitory activity varying over 43-85%. The structure-activity relationship study led to the conclusion that compounds bearing 5,7-dimethoxy groups and a free substituent at C-3 had a significant inhibitory effect at a concentration of 0.1 mg/mL, but those bearing a 5-hydroxyl group reduced the inhibitory potency. On the other hand, flavones bearing a 3'- or 5'-methoxy group did not influence the inhibitory effect. Interestingly, 5,7-dimethoxyflavone (7) exhibited strong selectivity for BChE over AChE which may be of great interest to modify as a treatment agent for Alzheimer's disease. Copyright (c) 2009 John Wiley & Sons, Ltd.

  7. Distribution of acetylcholine receptors at frog neuromuscular junctions with a discussion of some physiological implications.

    PubMed Central

    Matthews-Bellinger, J; Salpeter, M M

    1978-01-01

    1. The distribution of acetylcholine receptors (AChR) at frog cutaneous pectoris neuromuscular junctions was studied quantitatively using [1125]alpha-bungarotoxin (alpha-BTX) labelling and EM autoradiography. 2. We found that, as in mouse end-plates, the AChR is localized uniformly along the thickened post-junctional membrane. In the frog muscle this specialized membrane constitutes approximately the top 50% of the junctional folds. 3. The receptor site density is approximately 26,000 +/- 6000 sites/micrometer2 on the thickened post-junctional membrane and falls sharply to approximately 50 sites/micrometer2 within 15 micrometer from the axon terminal. 4. alpha-BTX site density on the presynaptic axonal membrane was directly determined to be at most 5% of the value on the thickened post-junctional membrane. 5. The high post junctional AChR site density leads us to conclude that: (a) each quantum of ACh needs to spread only over a very small post-junctional area (to be called the 'critical area') before it encounters as many AChR (plus AchE) sites as there are ACh molecules in the quantum (for a packet of 10(4) ACh molecules this critical area is approximately 0.3 micrometer2), (b) the average concentration of ACh prevailing in the cleft over this critical area during a quantal response will be approximately 10(-3)M (independent of the size of the quantal packet), and (c) since 10(-3)M-ACh is large compared to any estimates of the dissociation constant Kd for ACh binding to the AChR, the ACh will essentially saturate the AChR within the critical area (provided the ACh binding rate is sufficiently faster than the ACh spreading rate). 6. The total receptive surface for a frog end-plate is calculated to be approximately 1500 micrometer2, and therefore an end-plate potential resulting from 300 quanta will be due to the activation of less than 10% of the total receptive area. 7. Free diffusion would allow each small post-junctional critical area to be reached in less than

  8. Acotiamide hydrochloride (Z-338) enhances gastric motility and emptying by inhibiting acetylcholinesterase activity in rats.

    PubMed

    Kawachi, Masanao; Matsunaga, Yugo; Tanaka, Takao; Hori, Yuko; Ito, Katsunori; Nagahama, Kenji; Ozaki, Tomoko; Inoue, Naonori; Toda, Ryoko; Yoshii, Kazuyoshi; Hirayama, Masamichi; Kawabata, Yoshihiro; Takei, Mineo

    2011-09-01

    In clinical trials, acotiamide hydrochloride (acotiamide: Z-338) has been reported to be useful in the treatment of functional dyspepsia. Here, we investigated the effects of acotiamide on gastric contraction and emptying activities in rats in comparison with itopride hydrochloride (itopride) and mosapride citrate (mosapride). We also examined in vitro the compound's inhibitory effect on acetylcholinesterase (AChE) activity derived from rat stomach. In in vivo studies, acotiamide (30 and 100mg/kg s.c.) and itopride (100mg/kg s.c.) markedly enhanced normal gastric antral motility in rats. In gastric motility dysfunction models, acotiamide (100mg/kg s.c.) and itopride (100mg/kg s.c.) improved both gastric antral hypomotility and the delayed gastric emptying induced by clonidine, an α(2)-adrenoceptor agonist. In contrast, mosapride (10mg/kg s.c.) had no effect on these models. Like the AChE inhibitors itopride (30 mg/kg s.c.) and neostigmine (10 μg/kg s.c.), acotiamide (10mg/kg s.c.) also clearly enhanced gastric body contractions induced by electrical stimulation of the vagus, which were abolished by atropine and hexamethonium, whereas mosapride (3 and 10mg/kg s.c.) did not. In in vitro studies, acotiamide concentration-dependently inhibited rat stomach-derived AChE activity (IC(50)=2.3 μmol/l). In addition, stomach tissue concentrations of acotiamide after administration at 10mg/kg s.c. were sufficient to produce inhibition of AChE activity in rat stomach. These results suggest that acotiamide stimulates gastric motility and improves gastric motility dysfunction in rats by inhibiting AChE activity, and may suggest a role for acotiamide in improving gastric motility dysfunction in patients with functional dyspepsia. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Aflatoxins produced by Aspergillus parasiticus present in the diet of quails increase the activities of cholinesterase and adenosine deaminase.

    PubMed

    da Silva, Aleksandro Schafer; Santurio, Janio M; Roza, Lenilson F; Bottari, Nathieli B; Galli, Gabriela M; Morsch, Vera M; Schetinger, Maria Rosa C; Baldissera, Matheus D; Stefani, Lenita M; Radavelli, Willian M; Tomasi, Thainã; Boiago, Marcel M

    2017-06-01

    The aim of this study was to evaluate the effects of aflatoxins on cholinesterases (acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and adenosine deaminase (ADA) activities in quails. For this, twenty male quails were randomly distributed into two groups (n = 10 each): the group A was composed by quails that received feed without aflatoxin (the control group); while the group B was composed by quails that received feed contaminated with 200 ppm/kg of feed of aflatoxin. On day 20, the animals were euthanized to measure the activities of AChE (total blood and brain), BChE (serum) and ADA (serum, liver, and brain), as well as for histopathological analyses (liver and intestine). AChE, BChE, and ADA levels increased in animals intoxicated by aflatoxin compared to the control group. The presence of aflatoxin lead to severe hydropic degeneration of hepatocytes and small focus of hepatocyte necrosis. In conclusion, aflatoxins poisoning increased AChE, BChE, and ADA activities, suggesting the involvement of these enzymes during this type of intoxication, in addition to the fact that they are well known molecules that participate in physiological and pathological events as inflammatory mediators. In summary, increased AChE, BChE and ADA activities contribute directly to the inflammatory process and tissue damage, and they might be involved in disease development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Acetylcholinesterase and neuropathy target esterase activities in 11 cases of symptomatic flight crew members after fume events.

    PubMed

    Heutelbeck, Astrid R R; Bornemann, Catherine; Lange, Martina; Seeckts, Anke; Müller, Michael M

    2016-01-01

    In modern aviation, so-called fume events such as exposure to an unknown mixture of chemicals introduced into the aircraft cabin with bleed air drawn off at the engines may occur. Human exposure may result in (neuro)toxic symptoms described as so-called "aerotoxic syndrome." Currently, among other agents organophosphates (OP) are regarded as a likely cause of the observed adverse effects. After fume events 11 flight crew members (9 female/2 male; ages 23-58 yr) were admitted for a medical examination within 5 d post exposure. Individual acetylcholinesterase (AChE) and neuropathy target esterase (NTE) activities were determined. Anamnesis and clinical findings confirmed prominent symptoms of an intoxication, including headache, cognitive difficulties, and neurological disorders, among others. Patient AChE activities ranged from 37 to 50 U/g hemoglobin (reference values: 26.7-50.9 U/g hemoglobin). Ten individuals showed NTE activities ranging from 3.14 to 6.3 nmol phenyl valerate/(min × mg protein) (reference values: 3.01-24), with one patient exhibiting low NTE activity of 1.4. Biochemical effect monitoring was applied to encompass a broad range of AChE-inhibiting compounds such as OP, carbamates, and isocyanates, or to detect inhibition of NTE. The measured AChE activities indicated a subordinate contribution of OP or related compounds to the observed symptoms. All noted NTE activities were clustered at low levels. Our data suggest a likely inhibition of NTE activities in patients after fume events, which warrants further investigation. The observed symptoms may be linked to known chemical compounds in fume events, and it is not possible to infer a direct correlation between manifestations and AChE -inhibiting compounds at this time.

  11. Study of Inhibition, Reactivation and Aging Processes of Pesticides Using Graphene Nanosheets/Gold Nanoparticles-Based Acetylcholinesterase Biosensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lin; Long, Linjuan; Zhang, Weiying

    2012-09-10

    Organophosphate (OP) and carbamate pesticides exert their toxicity via attacking the hydroxyl moiety of serine in the 'active site' of acetylcholinesterase (AChE). In this paper we developed a stable AChE biosensor based on self-assembling AChE to graphene nanosheet (GN)-gold nanoparticles (AuNPs) nanocomposite electrode for investigation of inhibition, reactivation and aging processes of different pesticides. It is confirmed that pesticides can inhibit AChE in a short time. OPs poisoning is treatable with oximes while carbarmates exposure is insensitive to oximes. The proposed electrochemical approach thus provides a new simple tool for comparison of pesticide sensitivity and guide of therapeutic intervention.

  12. Differential Modulation of Spontaneous and Evoked Thalamocortical Network Activity by Acetylcholine Level In Vitro

    PubMed Central

    Wester, Jason C.

    2013-01-01

    Different levels of cholinergic neuromodulatory tone have been hypothesized to set the state of cortical circuits either to one dominated by local cortical recurrent activity (low ACh) or to one dependent on thalamic input (high ACh). High ACh levels depress intracortical but facilitate thalamocortical synapses, whereas low levels potentiate intracortical synapses. Furthermore, recent work has implicated the thalamus in controlling cortical network state during waking and attention, when ACh levels are highest. To test this hypothesis, we used rat thalamocortical slices maintained in medium to generate spontaneous up- and down-states and applied different ACh concentrations to slices in which thalamocortical connections were either maintained or severed. The effects on spontaneous and evoked up-states were measured using voltage-sensitive dye imaging, intracellular recordings, local field potentials, and single/multiunit activity. We found that high ACh can increase the frequency of spontaneous up-states, but reduces their duration in slices with intact thalamocortical connections. Strikingly, when thalamic connections are severed, high ACh instead greatly reduces or abolishes spontaneous up-states. Furthermore, high ACh reduces the spatial propagation, velocity, and depolarization amplitude of evoked up-states. In contrast, low ACh dramatically increases up-state frequency regardless of the presence or absence of intact thalamocortical connections and does not reduce the duration, spatial propagation, or velocity of evoked up-states. Therefore, our data support the hypothesis that strong cholinergic modulation increases the influence, and thus the signal-to-noise ratio, of afferent input over local cortical activity and that lower cholinergic tone enhances recurrent cortical activity regardless of thalamic input. PMID:24198382

  13. Effects of structural modifications on the metal binding, anti-amyloid activity, and cholinesterase inhibitory activity of chalcones.

    PubMed

    Fosso, Marina Y; LeVine, Harry; Green, Keith D; Tsodikov, Oleg V; Garneau-Tsodikova, Sylvie

    2015-09-28

    As the number of individuals affected with Alzheimer's disease (AD) increases and the availability of drugs for AD treatment remains limited, the need to develop effective therapeutics for AD becomes more and more pressing. Strategies currently pursued include inhibiting acetylcholinesterase (AChE) and targeting amyloid-β (Aβ) peptides and metal-Aβ complexes. This work presents the design, synthesis, and biochemical evaluation of a series of chalcones, and assesses the relationship between their structures and their ability to bind metal ions and/or Aβ species, and inhibit AChE/BChE activity. Several chalcones were found to exhibit potent disaggregation of pre-formed N-biotinyl Aβ1-42 (bioAβ42) aggregates in vitro in the absence and presence of Cu(2+)/Zn(2+), while others were effective at inhibiting the action of AChE.

  14. Design and synthesis of some new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring and the investigation of their inhibitory potential on in-vitro acetylcholinesterase and butyrylcholinesterase.

    PubMed

    Kilic, Burcu; Gulcan, Hayrettin O; Aksakal, Fatma; Ercetin, Tugba; Oruklu, Nihan; Umit Bagriacik, E; Dogruer, Deniz S

    2018-05-08

    A series of new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring were designed, synthesized and evaluated for their ability to inhibit both cholinesterase enzymes. In addition, a series of carboxamide and propanamide derivatives bearing biphenyl instead of phenylpyridazine were also synthesized to examine the inhibitory effect of pyridazine moiety on both cholinesterase enzymes. The inhibitory activity results revealed that compounds 5b, 5f, 5h, 5j, 5l pyridazine-3-carboxamide derivative, exhibited selective acetylcholinesterase (AChE) inhibition with IC 50 values ranging from 0.11 to 2.69 µM. Among them, compound 5h was the most active one (IC 50  = 0.11 µM) without cytotoxic effect at its effective concentration against AChE. Additionally, pyridazine-3-carboxamide derivative 5d (IC 50 for AChE = 0.16 µM and IC 50 for BChE = 9.80 µM) and biphenyl-4-carboxamide derivative 6d (IC 50 for AChE = 0.59 µM and IC 50 for BChE = 1.48 µM) displayed dual cholinesterase inhibitory activity. Besides, active compounds were also tested for their ability to inhibit Aβ aggregation. Theoretical physicochemical properties of the compounds were calculated by using Molinspiration Program as well. The Lineweaver-Burk plot and docking study showed that compound 5 h targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents.

    PubMed

    Jameel, Ehtesham; Meena, Poonam; Maqbool, Mudasir; Kumar, Jitendra; Ahmed, Waqar; Mumtazuddin, Syed; Tiwari, Manisha; Hoda, Nasimul; Jayaram, B

    2017-08-18

    In our endeavor towards the development of potent multitarget ligands for the treatment of Alzheimer's disease, a series of triazine-triazolopyrimidine hybrids were designed, synthesized and characterized by various spectral techniques. Docking and scoring techniques were used to design the inhibitors and to display their interaction with key residues of active site. Organic synthesis relied upon convergent synthetic routes were mono and di-substituted triazines were connected with triazolopyrimidine using piperazine as a linker. In total, seventeen compounds were synthesized in which the di-substituted triazine-triazolopyrimidine derivatives 9a-d showed better acetylcholinesterase (AChE) inhibitory activity than the corresponding tri-substituted triazine-triazolopyrimidine derivatives 10a-f. Out of the disubstituted triazine-triazolopyrimidine based compounds, 9a and 9b showed encouraging inhibitory activity on AChE with IC 50 values 0.065 and 0.092 μM, respectively. Interestingly, 9a and 9b also demonstrated good inhibition selectivity towards AChE over BuChE by ∼28 folds. Furthermore, kinetic analysis and molecular modeling studies showed that 9a and 9b target both catalytic active site as well as peripheral anionic site of AChE. In addition, these derivatives effectively modulated Aβ self-aggregation as investigated through CD spectroscopy, ThT fluorescence assay and electron microscopy. Besides, these compounds exhibited potential antioxidants (2.15 and 2.91 trolox equivalent by ORAC assay) and metal chelating properties. In silico ADMET profiling highlighted that, these novel triazine derivatives have appropriate drug like properties and possess very low toxic effects in the primarily pharmacokinetic study. Overall, the multitarget profile exerted by these novel triazine molecules qualified them as potential anti-Alzheimer drug candidates in AD therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Isolation of cholinesterase and β-secretase 1 inhibiting compounds from Lycopodiella cernua.

    PubMed

    Nguyen, Van Thu; To, Dao Cuong; Tran, Manh Hung; Oh, Sang Ho; Kim, Jeong Ah; Ali, Md Yousof; Woo, Mi-Hee; Choi, Jae Sue; Min, Byung Sun

    2015-07-01

    Three new serratene-type triterpenoids (1-3) and a new hydroxy unsaturated fatty acid (13) together with nine known compounds (4-12) were isolated from Lycopodiella cernua. The chemical structures were established using NMR, MS, and Mosher's method. Compound 13 showed the most potent inhibitory activity against acetylcholinesterase (AChE) with an IC50 value of 0.22μM. For butyrylcholinesterase (BChE) inhibitory activity, 5 showed the most potent activity with an IC50 value of 0.42μM. Compound 2 showed the most potent activity with an IC50 of 0.23μM for BACE-1 inhibitory activity. The kinetic activities were investigated to determine the type of enzyme inhibition involved. The types of AChE inhibition shown by compounds 4, 5, and 13 were mixed; BChE inhibition by 5 was competitive, while 2 and 6 showed mixed-types. In addition, molecular docking studies were performed to investigate the interaction of these compounds with the pocket sites of AChE. The docking results revealed that the tested inhibitors 3, 4, and 13 were stably present in several pocket domains of the AChE residue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The role of the laterodorsal tegmental nucleus in methamphetamine conditioned place preference and locomotor activity.

    PubMed

    Dobbs, Lauren K; Cunningham, Christopher L

    2014-05-15

    Methamphetamine (METH) indirectly stimulates the laterodorsal tegmental nucleus (LDT) acetylcholine (ACh) neurons to increase ACh within the ventral tegmental area (VTA). LDT ACh inhibition attenuates METH and saline locomotor activity. The aim of these experiments was to determine whether LDT ACh contributes to METH conditioned place preference (CPP). C57BL/6J mice received a bilateral electrolytic or sham lesion of the LDT. After recovery, mice received alternating pairings of METH (0.5 mg/kg) and saline with distinct tactile floor cues over 8 days. During preference tests, mice were given access to both floor types and time spent on each was recorded. Mice were tested again after exposure to both extinction and reconditioning trials. Brains were then processed for choline acetyltransferase immunohistochemistry to label LDT ACh neurons. Lesioned mice had significantly fewer LDT ACh neurons and showed increased saline and METH locomotor activity during the first conditioning trial compared to sham mice. Locomotor activity (saline and METH) was negatively correlated with the number of LDT ACh neurons. Lesioned and sham mice showed similar METH CPP following conditioning, extinction and reconditioning trials. LDT ACh neurons are not necessary for METH reward as indexed by CPP, but may be important for basal and METH-induced locomotor activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Exposure to insecticides of brushland wildlife within the Lower Rio Grande Valley, Texas, USA

    USGS Publications Warehouse

    Custer, T.W.; Mitchell, C.A.

    1987-01-01

    Brushland wildlife within the Lower Rio Grande Valley of south Texas were studied following applications of eleven insecticides to nearby sugarcane or cotton fields. During the study no wildlife were found dead. Mean brain acetylcholinesterase (AChE) activity of great-tailed grackles (Quiscalus mexicanus) and mourning doves (Zenaida macroura) was significantly lower than controls following application of some organophosphorous insecticides. Brain AChE activity varied significantly among chemicals, days after exposure and application rates. Mean brain AChE activity of white-winged doves (Zenaida asiatica) and three small mammal species was not significantly different than their respective controls following application of insecticides. Mean brain AChE activity of grackles was inhibited significantly more than white-winged doves after application of Bolstar, EPN-methyl parathion, and Azodrin and significantly more than that of mourning doves after applications of Bolstar and EPN-methyl parathion. Our data indicate that there were no adverse effects on most brushland wildlife. Exposure was probably dependent upon use of the agricultural fields as feeding or resting sites and only grackles and mourning doves were regularly present in the fields.

  19. Exposure to insecticides of brushland wildlife within the lower Rio Grande valley Texas USA

    USGS Publications Warehouse

    Custer, T.W.; Mitchell, C.A.

    1987-01-01

    Brushland wildlife within the Lower Rio Grande Valley of south Texas were studied following applications of eleven insecticides to nearby sugarcane or cotton fields. During the study no wildlife were found dead. Mean brain acetycholinesterase (AChE) activity of great-tailed grackles (Quiscalus mexicanus) and mourning doves (Zenaida microura) was significantly lower than controls following application of some organophosphorus insecticides. Brain AChE activity varied significantly among chemicals, days after exposure and lactin rates. Mean brain AChE activity of white-winged doves (Zenaida asiatica) and three small mammals species was not significantly different than their respective control following application of the insecticides. Mean brain AChE activity of grackles was inhibited significantly more than white-winged doves after application of Bolstar, EPN-methyl parathion, and Azodrin and significantly more than that of mourning doves after applications of Bolstar and EPN-methyl parathion. Our data indicate that there were no adverse effects on most brushland wildlife. Exposure was probably dependent upon use of the agricultural fields as feeding or resting site and only grackles and mourning doves were regularly present in the fields.

  20. In Vitro and In Vivo Metabolism and Inhibitory Activities of Vasicine, a Potent Acetylcholinesterase and Butyrylcholinesterase Inhibitor

    PubMed Central

    Liu, Wei; Shi, Xiaoyuan; Yang, Yadi; Cheng, Xuemei; Liu, Qing; Han, Han; Yang, Baohua; He, Chunyong; Wang, Yongli; Jiang, Bo; Wang, Zhengtao; Wang, Changhong

    2015-01-01

    Vasicine (VAS), a potential natural cholinesterase inhibitor, exhibited promising anticholinesterase activity in preclinical models and has been in development for treatment of Alzheimer’s disease. This study systematically investigated the in vitro and in vivo metabolism of VAS in rat using ultra performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry. A total of 72 metabolites were found based on a detailed analysis of their 1H- NMR and 13C NMR data. Six key metabolites were isolated from rat urine and elucidated as vasicinone, vasicinol, vasicinolone, 1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-yl hydrogen sulfate, 9-oxo-1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-yl hydrogen sulfate, and 1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-β-D-glucuronide. The metabolic pathway of VAS in vivo and in vitro mainly involved monohydroxylation, dihydroxylation, trihydroxylation, oxidation, desaturation, sulfation, and glucuronidation. The main metabolic soft spots in the chemical structure of VAS were the 3-hydroxyl group and the C-9 site. All 72 metabolites were found in the urine sample, and 15, 25, 45, 18, and 11 metabolites were identified from rat feces, plasma, bile, rat liver microsomes, and rat primary hepatocyte incubations, respectively. Results indicated that renal clearance was the major excretion pathway of VAS. The acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of VAS and its main metabolites were also evaluated. The results indicated that although most metabolites maintained potential inhibitory activity against AChE and BChE, but weaker than that of VAS. VAS undergoes metabolic inactivation process in vivo in respect to cholinesterase inhibitory activity. PMID:25849329

  1. Seasonal variation in biomarker responses of Donax trunculus from the Gulf of Annaba (Algeria): Implication of metal accumulation in sediments

    NASA Astrophysics Data System (ADS)

    Amira, Akila; Merad, Isma; Almeida, C. Marisa R.; Guimarães, Laura; Soltani, Nourredine

    2018-05-01

    The aim of the present study was to test biomarker responses in an edible mollusk, Donax trunculus L. (Mollusca, Bivalvia) associated with environmental pollution in the Gulf of Annaba (northeastern Algeria). The biomarkers selected were glutathione S-transferase (GST), acetylcholinesterase (AChE) and metallothioneins (MTs). Samples were collected seasonally (September 2014, and January, April and July 2015) from two sites located over the Gulf of Annaba: El Battah and Sidi Salem. The results obtained reveal that autumn and winter were the two seasons that show an increase in GST activity, an inhibition of AChE activity and a high rate of MT. In addition, a decrease in AChE activity, an increase in both GST activity and MT levels in D. Trunculus collected from Sidi Salem in comparison with those of El Battah were observed. The biomarker responses at the Sidi Salem site reflect the presence of certain pro-oxidative compounds such as metals (Cd, Cu, Pb, Zn, Mn and Fe) determined in sediments in winter (January) 2015. Moreover, metal concentrations, except Fe, were higher at Sidi Salem than at El Battah. Overall, the Gulf of Annaba remains contaminated by heavy metal. However, this metallic contamination is relatively low and the risks for local population via this edible species were also low.

  2. Dual enzyme activities assay by quantitative electrospray ionization quadrupole-time-of-flight mass spectrometry.

    PubMed

    Cai, Tingting; Zhang, Li; Wang, Haoyang; Zhang, Jing; Wang, Rong; Zhang, Yurong; Guo, Yinlong

    2012-01-01

    A practical and rapid method based on electrospray ionization quadrupole-time of flight mass spectrometry (ESI-Q-ToF MS) was developed for detecting activities of both acetylcholinesterase IAChEI and glutathione S-transferase (GST). The simultaneous study of these two enzyme activities is significant for studying human bio-functions, especially for those who take in toxic compounds and have a risk of disease. Here, the enzyme activities were represented by the conversion of enzymatic substrates and determined by quantitatively analyzing enzymatic substrates. Different internal standards were used to quantify each enzymatic substrate and the good linearity of calibration curves demonstrated the feasibility of the internal standards. The Michaelis-Menten constants (Km) of both GST and AChE were measured by this method and were consistent with values previously reported. Furthermore, we applied this approach to detect GST and AChE activities of whole bloods from four deceased and healthy people. The variation in enzyme activity was in accord with information from gas chromatography mass spectrometry [GC/MS). The screening of AChE and GST provided reliable results and strong forensic evidence. This method offers an alternative choice for detecting enzyme activities and is anticipated to have wide applications in pharmaceutical research and prevention in toxic compounds.

  3. ACETYL CHOLINESTERASE AND BUTYRYL CHOLINESTERASE INhIBITORY ACTIVITIES OF ZALEYA PENTANDRA.

    PubMed

    Afzal, Samina; Chaudhry, Bashir Ahmad; Afzal, Khurram; Saeed, Javeria; Akash, Sajd Hamid; Qadir, Muhammad Imran

    2017-05-01

    The aim of this study was to reveal acetyl cholinesterase (AchE) and butyryl cholinesterase (BchE) inhibitory activities of Zaleya pentandra. The aerial parts of the plant were air, freeze-dried and powdered. The extraction was carried out with methanol at room temperature for 24 h. The extract was concentrated on rotavapor and fractioned by column chromatography. The isolation and purification afforded amorphous solid which was subjected to physical, chemical and spectroscopic techniques i.e., UV, IR, H-NMR, "C-NMR and HREI-MS for the structure elucidation of the isolated compound. The compound was concluded as "Pentandradione" a novel compound. AchE and BchE inhibitory activities were estimated. The result showed that the isolated extract possessed significant activity against butyryl cholinesterase as compared to standard eserine while the extract lacks acetyl cholinesterase inhibitory activity.

  4. Foccα6, a truncated nAChR subunit, positively correlates with spinosad resistance in the western flower thrips, Frankliniella occidentalis (Pergande).

    PubMed

    Wan, Yanran; Yuan, Guangdi; He, Bingqing; Xu, Baoyun; Xie, Wen; Wang, Shaoli; Zhang, Youjun; Wu, Qingjun; Zhou, Xuguo

    2018-08-01

    Nicotinic acetylcholine receptors (nAChRs), a molecular target for spinosyns and neonicotinoids, mediate rapid cholinergic transmission in insect central nervous system by binding acetylcholine. Previous studies have shown that mutations in nAChRs contribute to the high level of resistance to these two classes of insecticides. In this study, we identified nine nAChR subunits from a transcriptome of the western flower thrips, Frankliniella occidentalis, including α1-7, β1, and β2. Exon 4 of α4 and exons 3 and 8 of α6 each have two splicing variants, respectively. In addition, altered or incorrect splicing leads to truncated forms of α3, α5, and α6 subunits. The abundance of every nAChRs in both spinosad susceptible and resistant strains was highest in the 1st instar nymph. Significantly more truncated forms of α6 subunit were detected in spinosad resistant strains, whereas, hardly any full-length form was found in the two highly resistant F. occidentalis strains (resistance ratio >10 4 -fold). Under laboratory conditions, spinosad resistance was positively correlated with truncated α6 transcripts. The correlation was later confirmed under the field conditions using five field strains. As the molecular target of spinosad, the percentage of truncated nAChR α6 subunits can be used as a diagnostic tool to detect and quantify spinosad resistance in the field. Copyright © 2018. Published by Elsevier Ltd.

  5. Effect of environmental contaminants in the Mississippi River Basin on carboxylesterases from four aquatic species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaiswal, R.; Huang, T.; Obih, P.

    1995-12-31

    The objectives of this study are to investigate the sensitivity of different classes of esterases in various aquatic species to environmental contaminants and the possible use of these enzymes as biomarkers for monitoring the effects of pollutants. Acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and the non-specific carboxylesterases (CaE) were analyzed in three fish species, Ictiobus bubalus (small mouth buffalo), Ictiobus cyprinellus (big mouth buffalo) and Lepisosteus oculatus (spotted gar) and the green tree frog, Hyla cinerea. These samples were collected from the Devil`s Swamp Site (DSS), an industrial site known to be highly contaminated at the Mississippi River Basin, and Lake Tunica,more » a nonindustrial site. ACHE and BuChE activities in the subcellular fractions of liver and brain were significantly lower in fishes and frogs obtained from DSS when compared to the same species obtained from Tunica swamp site. The greatest decrease was observed with ACHE activity in the liver and brain of Ictiobus bubalus from DSS. CaE activity analyzed with p-nitrophenyl acetate was found to be significantly lower in the liver of all three fish species collected from DSS when compared to the same fish species obtained from the Tunica swamp site.« less

  6. Design, synthesis, molecular modeling and anticholinesterase activity of benzylidene-benzofuran-3-ones containing cyclic amine side chain.

    PubMed

    Mehrabi, Farzad; Pourshojaei, Yaghoub; Moradi, Alireza; Sharifzadeh, Mohammad; Khosravani, Leila; Sabourian, Reyhaneh; Rahmani-Nezhad, Samira; Mohammadi-Khanaposhtani, Maryam; Mahdavi, Mohammad; Asadipour, Ali; Rahimi, Hamid Reza; Moghimi, Setareh; Foroumadi, Alireza

    2017-05-01

    A series of 2-benzylidene-benzofuran-3-ones were designed from the structures of Ebselen analogs and aurone derivatives and synthesized in good yields. The target compounds were prepared by the condensation reaction between appropriate benzofuranones with amino alkoxy aldehydes and evaluated as cholinesterase inhibitors by Ellman's method. The in vitro anti-acetylcholinesterase (AChE)/butyrylcholinesterase activities of the synthesized compounds revealed that 7e (IC 50 = 0.045 μM) is the most active compound against AChE. Furthermore, the docking study confirmed the results obtained through in vitro experiments and predicted the possible binding conformation. The anticholinesterase activities of benzylidene-benzofurane-3-ones as aurone analogs revealed that the compounds bearing piperidinylethoxy residue showed better activities against AChE, introducing these compounds for further drug discovery developments. [Formula: see text].

  7. Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machaalani, R., E-mail: rita.machaalani@sydney.edu.au; Bosch Institute, The University of Sydney, NSW 2006; The Children's Hospital at Westmead, NSW 2145

    Smoking during pregnancy is associated with low birth weight, premature delivery, and neonatal morbidity and mortality. Nicotine, a major pathogenic compound of cigarette smoke, binds to the nicotinic acetylcholine receptors (nAChRs). A total of 16 nAChR subunits have been identified in mammals (9 α, 4 β, and 1 δ, γ and ε subunits). The effect of cigarette smoking on the expression of these subunits in the placenta has not yet been determined, thus constituting the aim of this study. Using RT-qPCR and western blotting, this study investigated all 16 mammalian nAChR subunits in the normal healthy human placenta, and comparedmore » mRNA and protein expressions in the placentas from smokers (n = 8) to controls (n = 8). Our data show that all 16 subunit mRNAs are expressed in the normal, non-diseased human placenta and that the expression of α2, α3, α4, α9, β2 and β4 subunits is greater than the other subunits. For mRNA, cigarette smoke exposure was associated with increased expression of the α9 subunit, and decreased expression of the δ subunit. At the protein level, expression of both α9 and δ was increased. Thus, cigarette smoking in pregnancy is sufficient to regulate nAChR subunits in the placenta, specifically α9 and δ subunits, and could contribute to the adverse effects of vasoconstriction and decreased re-epithelialisation (α9), and increased calcification and apoptosis (δ), seen in the placentas of smoking women. - Highlights: • All 16 mammalian nAChR subunits are expressed in the human placenta. • Cigarette smoking increases α9 mRNA and protein in the placenta. • Cigarette smoking decreases δ mRNA but increases δ protein in the placenta.« less

  8. Increased serum butyrylcholinesterase activity in type IIb hyperlipidaemic patients.

    PubMed

    Kálmán, János; Juhász, Anna; Rakonczay, Zoltán; Abrahám, György; Zana, Marianna; Boda, Krisztina; Farkas, Tibor; Penke, Botond; Janka, Zoltán

    2004-07-23

    The inheritance of the apolipoprotein E4 (APOE4) allele has been shown to increase the plasma cholesterol level, but little information is as concerns the association of the APOE genotype and hyperlipidaemia and the activities of two serum enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Blood samples from 55 type IIb hyperlipidaemic, non-demented patients and 55 age- and sex-matched controls were therefore examined in this pilot study. A significantly increased BChE activity was found in the serum of type IIb hyperlipidaemic patients, but the AChE activity did not differ significantly as compared with that in the control group. The APOE4 allele was significantly overrepresented among the hyperlipidaemic probands, but neither serum cholinesterase activity was affected by the dosage of the APOE4 gene. Our results point to a possible association between an abnormal lipid metabolism and the BChE activity and might have implications as regards the pathomechanism of both Alzheimer's and vascular dementias and the cholinesterase inhibitor therapy of dementing disorders.

  9. Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions.

    PubMed

    Fang, Aijin; Chen, Hongyu; Li, Haitao; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2017-01-15

    A dual-functional platform for the sensing of acetylcholinesterase (AChE) activity and cadmium ions (Cd 2+ ) was developed based on the fluorescence resonance energy transfer (FRET) between NaYF 4 :Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs) via glutathione regulation. The detection mechanism is based on the fact that AuNPs can quench the fluorescence of UCNPs. AChE catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine which reacts with AuNPs by S-Au conjunction and results the aggregation of AuNPs and change in fluorescence of UCNPs. Therefore, the AChE activity can be detected through the changes of the color of solution and fluorescence recovery of UCNPs. However, the presence of glutathione (GSH) can protect AuNPs from aggregation and enlarge the inter-particle distance between AuNPs and UCNPs. When Cd 2+ is added into the stable mixture of AuNPs, GSH and AChE/ATC, Cd 2+ could interact with GSH to form a spherical shaped (GSH) 4 Cd complex, which decreases the free GSH on the surface of AuNPs to weaken the stability of AuNPs and lead to the easily aggregation of them in the system. The aggregated-AuNPs are released from the surface of UCNPs, which results in the fluorescence of UCNPs gradually recovered. Under the optimized conditions, the detection limits of AChE activity and Cd 2+ are estimated to be 0.015mU/mL and 0.2µM, respectively. The small molecules regulated dual-functional platform based on UCNPs/AuNPs is a simple, label-free method and can be applied for the turn-on fluorescence detection of AChE activity in human serum and Cd 2+ in real water samples. The present work demonstrates a general strategy for the design of small molecules regulated multifunctional platform and will be expanded for different areas in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Design, synthesis and biological evaluation of phthalimide-alkylamine derivatives as balanced multifunctional cholinesterase and monoamine oxidase-B inhibitors for the treatment of Alzheimer's disease.

    PubMed

    Sang, Zhipei; Wang, Keren; Wang, Huifang; Yu, Lintao; Wang, Huijuan; Ma, Qianwen; Ye, Mengyao; Han, Xue; Liu, Wenmin

    2017-11-15

    A series of novel phthalimide-alkylamine derivatives were synthesized and evaluated as multi-functions inhibitors for the treatment of Alzheimer's disease (AD). The results showed that compound TM-9 could be regarded as a balanced multi-targets active molecule. It exhibited potent and balanced inhibitory activities against ChE and MAO-B (huAChE, huBuChE, and huMAO-B with IC 50 values of 1.2μM, 3.8μM and 2.6 μM, respectively) with low selectivity. Both kinetic analysis of AChE inhibition and molecular modeling study suggested that TM-9 binds simultaneously to the catalytic active site and peripheral anionic site of AChE. Interestingly, compound TM-9 abided by Lipinski's rule of five. Furthermore, our investigation proved that TM-9 indicated weak cytotoxicity, and it could cross the blood-brain barrier (BBB) in vitro. The results suggest that compound TM-9, an interesting multi-targeted active molecule, offers an attractive starting point for further lead optimization in the drug-discovery process against Alzheimer's disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Modulators of Acetylcholinesterase Activity: From Alzheimer's Disease to Anti-Cancer Drugs.

    PubMed

    Lazarevic-Pasti, Tamara; Leskovac, Andreja; Momic, Tatjana; Petrovic, Sandra; Vasic, Vesna

    2017-01-01

    Acetylcholinesterase (AChE) is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs for different neurodegenerative diseases (such as Alzheimer's and Parkinson's) as well as toxins. At the same time, there are increasing evidence that in non-neuronal context, AChE is involved in the regulation of cell proliferation, differentiation, apoptosis and cell-cell interaction. An irregular expression of AChE has been found in different types of tumors, suggesting the involvement of AChE in the regulation of tumor development. Having all this in mind, there is a possibility that some AChE inhibitors could be used as anti-cancer agents. This contribution will discuss a broad range of possible application of different AChE inhibitors as drugs, from well-known anti-Alzheimer's disease drugs to their use in cancer treatment in future. Emphasis will be put on various known AChE inhibitors classes, whose application as drugs could be controversy, as well as on newly investigated natural products, which can also modulate AChE activity. It is not clear a patient treated for neurodegenerative condition prone to increased risk for some types of cancer and vice versa. This is necessary to keep in mind during rational drug design process for all therapies, which are based on AChE as a target molecule. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. 2-Arylbenzofurans from Artocarpus lakoocha and methyl ether analogs with potent cholinesterase inhibitory activity.

    PubMed

    Namdaung, Umalee; Athipornchai, Anan; Khammee, Thongchai; Kuno, Mayuso; Suksamrarn, Sunit

    2018-01-01

    In vitro screening for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of the Artocarpus lakoocha root-bark extracts revealed interesting results. Bioassay-guided fractionation resulted in the isolation of two new (1 and 2) and six known 2-arylbenzofurans 3-8, along with one stilbenoid 9 and one flavonoid 10. The structures of the isolated compounds were elucidated by UV, IR, 1D- and 2D-NMR and MS spectroscopic data analysis. Compounds 4, 6 and 7 exhibited more potent AChE inhibitory activity (IC 50  = 0.87-1.10 μM) than the reference drug, galantamine. Compounds 4, 8 and 9 displayed greater BChE inhibition than the standard drug. The preferential inhibition of BChE over AChE indicated that 4 also showed a promising dual AChE and BChE inhibitor. The synthetic mono-methylated analogs 4a-c and 6a-b were found to be good BChE inhibitors with IC 50 values ranging between 0.31 and 1.11 μM. Based on the docking studies, compounds 4 and 6 are well-fitted in the catalytic triad of AChE. Compounds 4 and 6 showed different binding orientations on BChE, and the most potent BChE inhibitor 4 occupied dual binding to both CAS and PAS more efficiently. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Competitive regulation of alternative splicing and alternative polyadenylation by hnRNP H and CstF64 determines acetylcholinesterase isoforms

    PubMed Central

    Nazim, Mohammad; Masuda, Akio; Rahman, Mohammad Alinoor; Nasrin, Farhana; Takeda, Jun-ichi; Ohe, Kenji; Ohkawara, Bisei; Ito, Mikako

    2017-01-01

    Abstract Acetylcholinesterase (AChE), encoded by the ACHE gene, hydrolyzes the neurotransmitter acetylcholine to terminate synaptic transmission. Alternative splicing close to the 3΄ end generates three distinct isoforms of AChET, AChEH and AChER. We found that hnRNP H binds to two specific G-runs in exon 5a of human ACHE and activates the distal alternative 3΄ splice site (ss) between exons 5a and 5b to generate AChET. Specific effect of hnRNP H was corroborated by siRNA-mediated knockdown and artificial tethering of hnRNP H. Furthermore, hnRNP H competes for binding of CstF64 to the overlapping binding sites in exon 5a, and suppresses the selection of a cryptic polyadenylation site (PAS), which additionally ensures transcription of the distal 3΄ ss required for the generation of AChET. Expression levels of hnRNP H were positively correlated with the proportions of the AChET isoform in three different cell lines. HnRNP H thus critically generates AChET by enhancing the distal 3΄ ss and by suppressing the cryptic PAS. Global analysis of CLIP-seq and RNA-seq also revealed that hnRNP H competitively regulates alternative 3΄ ss and alternative PAS in other genes. We propose that hnRNP H is an essential factor that competitively regulates alternative splicing and alternative polyadenylation. PMID:28180311

  14. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.

    PubMed

    Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F

    2014-12-16

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.

  15. Activation of Phenylalanine Hydroxylase by Phenylalanine Does Not Require Binding in the Active Site

    PubMed Central

    2015-01-01

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein’s regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The kcat/Kphe value is down 104 for the mutant enzyme, and the Km value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain. PMID:25453233

  16. Cholinesterases inhibition and molecular modeling studies of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones.

    PubMed

    Shah, Muhammad Shakil; Khan, Shafi Ullah; Ejaz, Syeda Abida; Afridi, Saifullah; Rizvi, Syed Umar Farooq; Najam-Ul-Haq, Muhammad; Iqbal, Jamshed

    2017-01-22

    Super-activation of cholinesterases (acetylcholinesterase and butyrylcholinesterase) are linked to various neurological problems most precisely Alzheimer's disease (AD), which leads to senile dementia. Therefore, cholinesterases (AChE & BChE) inhibition are considered as a promising strategy for the treatment of Alzheimer's disease. FDA approved drugs for the treatment of AD, belong to a group of cholinesterase inhibitors. However, none of them is able to combat or completely abrogate the disease progression. Herein, we report a series of newly synthesized chalcone derivatives with anti-AD potential. For this purpose, a series of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones were tested for their cholinesterases (AChE & BChE) inhibitory activity. All compounds were found as selective inhibitor of AChE. In piperidyl chalcones derivatives compound 1e having IC 50 of 0.16 ± 0.008 μM and 2m in 2-pyrazoline chalcones with IC 50 of 0.13 ± 0.006 μM, were found to be the most potent inhibitors of AChE, exhibiting ≈142 and ≈ 173-fold greater inhibitory potential compared to the reference inhibitor i.e., Neostigmine (IC 50  ± SEM = 22.2 ± 3.2 μM). Molecular docking studies of most potent inhibitors were carried out to investigate the binding interactions inside the active site. Molecular docking study revealed that potent compounds and co-crystalized ligand had same binding orientation within the active site of target enzyme. Most of these compounds are selective inhibitors of AChE with a potential use against progressive neurodegenerative disorder and age related problems. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Distribution of intravenously administered acetylcholinesterase inhibitor and acetylcholinesterase activity in the adrenal gland: 11C-donepezil PET study in the normal rat.

    PubMed

    Watabe, Tadashi; Naka, Sadahiro; Ikeda, Hayato; Horitsugi, Genki; Kanai, Yasukazu; Isohashi, Kayako; Ishibashi, Mana; Kato, Hiroki; Shimosegawa, Eku; Watabe, Hiroshi; Hatazawa, Jun

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered (11)C-Donepezil (DNP) and the AChE activity in the normal rat, with special focus on the adrenal glands. The distribution of (11)C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight  = 220 ± 8.9 g). A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of (11)C-DNP (45.0 ± 10.7 MBq). The whole-body distribution of the (11)C-DNP PET was evaluated based on the Vt (total distribution volume) by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of (11)C-DNP in the body (following the liver) (13.33 ± 1.08 and 19.43 ± 1.29 ml/cm(3), respectively), indicating that the distribution of (11)C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach) (24.9 ± 1.6, 83.1 ± 3.0, and 38.5 ± 8.1 mU/mg, respectively), indicating high activity of AChE in the adrenal glands. We demonstrated the whole-body distribution of (11)C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of (11)C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors.

  18. Non-competitive inhibition by active site binders.

    PubMed

    Blat, Yuval

    2010-06-01

    Classical enzymology has been used for generations to understand the interactions of inhibitors with their enzyme targets. Enzymology tools enabled prediction of the biological impact of inhibitors as well as the development of novel, more potent, ones. Experiments designed to examine the competition between the tested inhibitor and the enzyme substrate(s) are the tool of choice to identify inhibitors that bind in the active site. Competition between an inhibitor and a substrate is considered a strong evidence for binding of the inhibitor in the active site, while the lack of competition suggests binding to an alternative site. Nevertheless, exceptions to this notion do exist. Active site-binding inhibitors can display non-competitive inhibition patterns. This unusual behavior has been observed with enzymes utilizing an exosite for substrate binding, isomechanism enzymes, enzymes with multiple substrates and/or products and two-step binding inhibitors. In many of these cases, the mechanisms underlying the lack of competition between the substrate and the inhibitor are well understood. Tools like alternative substrates, testing the enzyme reaction in the reverse direction and monitoring inhibition time dependence can be applied to enable distinction between 'badly behaving' active site binders and true exosite inhibitors.

  19. Carnitine modulates crucial myocardial adenosine triphosphatases and acetylcholinesterase enzyme activities in choline-deprived rats.

    PubMed

    Strilakou, Athina A; Tsakiris, Stylianos T; Kalafatakis, Konstantinos G; Stylianaki, Aikaterini T; Karkalousos, Petros L; Koulouris, Andreas V; Mourouzis, Iordanis S; Liapi, Charis A

    2014-01-01

    Choline is an essential nutrient, and choline deficiency has been associated with cardiovascular morbidity. Choline is also the precursor of acetylcholine (cholinergic component of the heart's autonomic nervous system), whose levels are regulated by acetylcholinesterase (AChE). Cardiac contraction-relaxation cycles depend on ion gradients established by pumps like the adenosine triphosphatases (ATPases) Na(+)/K(+)-ATPase and Mg(2+)-ATPase. This study aimed to investigate the impact of dietary choline deprivation on the activity of rat myocardial AChE (cholinergic marker), Na(+)/K(+)-ATPase, and Mg(2+)-ATPase, and the possible effects of carnitine supplementation (carnitine, structurally relevant to choline, is used as an adjunct in treating cardiac diseases). Adult male albino Wistar rats were distributed among 4 groups, and were fed a standard or choline-deficient diet for one month with or without carnitine in their drinking water (0.15% w/v). The enzyme activities were determined spectrophotometrically in the myocardium homogenate. Choline deficiency seems to affect the activity of the aforementioned parameters, but only the combination of choline deprivation and carnitine supplementation increased myocardial Na(+)/K(+)-ATPase activity along with a concomitant decrease in the activities of Mg(2+)-ATPase and AChE. The results suggest that carnitine, in the setting of choline deficiency, modulates cholinergic myocardial neurotransmission and the ATPase activity in favour of cardiac work efficiency.

  20. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive materialmore » contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.« less

  1. Postnatal growth hormone deficiency in growing rats causes marked decline in the activity of spinal cord acetylcholinesterase but not butyrylcholinesterase.

    PubMed

    Koohestani, Faezeh; Brown, Chester M; Meisami, Esmail

    2012-11-01

    The effects of growth hormone (GH) deficiency on the developmental changes in the abundance and activity of cholinesterase enzymes were studied in the developing spinal cord (SC) of postnatal rats by measuring the specific activity of acetylcholinesterase (AChE), a marker for cholinergic neurons and their synaptic compartments, and butyrylcholinesterase (BuChE), a marker for glial cells and neurovascular cells. Specific activities of these two enzymes were measured in SC tissue of 21- and 90 day-old (P21, weaning age; P90, young adulthood) GH deficient spontaneous dwarf (SpDwf) mutant rats which lack anterior pituitary and circulating plasma GH, and were compared with SC tissue of normal age-matched control animals. Assays were carried out for AChE and BuChE activity in the presence of their specific chemical inhibitors, BW284C51 and iso-OMPA, respectively. Results revealed that mean AChE activity was markedly and significantly reduced [28% at P21, 49% at P90, (p<0.01)] in the SC of GH deficient rats compared to age-matched controls. GH deficiency had a higher and more significant effect on AChE activity of the older (P90) rats than the younger ones (P21) ones. In contrast, BuChE activity in SC showed no significant changes in GH deficient rats at either of the two ages studied. Results imply that, in the absence of pituitary GH, the postnatal proliferation of cholinergic synapses in the rat SC, a CNS structure, where AChE activity is abundant, is markedly reduced during both the pre- and postweaning periods; more so in the postweaning than preweaning ages. In contrast, the absence of any effects on BuChE activity implies that GH does not affect the development of non-neuronal elements, e.g., glia, as much as the neuronal and synaptic compartments of the developing rat SC. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  2. α7 nicotinic ACh receptors as a ligand-gated source of Ca(2+) ions: the search for a Ca(2+) optimum.

    PubMed

    Uteshev, Victor V

    2012-01-01

    The spatiotemporal distribution of cytosolic Ca(2+) ions is a key determinant of neuronal behavior and survival. Distinct sources of Ca(2+) ions including ligand- and voltage-gated Ca(2+) channels contribute to intracellular Ca(2+) homeostasis. Many normal physiological and therapeutic neuronal functions are Ca(2+)-dependent, however an excess of cytosolic Ca(2+) or a lack of the appropriate balance between Ca(2+) entry and clearance may destroy cellular integrity and cause cellular death. Therefore, the existence of optimal spatiotemporal patterns of cytosolic Ca(2+) elevations and thus, optimal activation of ligand- and voltage-gated Ca(2+) ion channels are postulated to benefit neuronal function and survival. Alpha7 nicotinic -acetylcholine receptors (nAChRs) are highly permeable to Ca(2+) ions and play an important role in modulation of neurotransmitter release, gene expression and neuroprotection in a variety of neuronal and non-neuronal cells. In this review, the focus is placed on α7 nAChR-mediated currents and Ca(2+) influx and how this source of Ca(2+) entry compares to NMDA receptors in supporting cytosolic Ca(2+) homeostasis, neuronal function and survival.

  3. Postsynaptic activity reverses the sign of the acetylcholine-induced long-term plasticity of GABAA inhibition

    PubMed Central

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2014-01-01

    Acetylcholine (ACh) regulates forms of plasticity that control cognitive functions but the underlying mechanisms remain largely unknown. ACh controls the intrinsic excitability, as well as the synaptic excitation and inhibition of CA1 hippocampal pyramidal cells (PCs), cells known to participate in circuits involved in cognition and spatial navigation. However, how ACh regulates inhibition in function of postsynaptic activity has not been well studied. Here we show that in rat PCs, a brief pulse of ACh or a brief stimulation of cholinergic septal fibers combined with repeated depolarization induces strong long-term enhancement of GABAA inhibition (GABAA-LTP). Indeed, this enhanced inhibition is due to the increased activation of α5βγ2 subunit-containing GABAA receptors by the GABA released. GABAA-LTP requires the activation of M1-muscarinic receptors and an increase in cytosolic Ca2+. In the absence of PC depolarization ACh triggered a presynaptic depolarization-induced suppression of inhibition (DSI), revealing that postsynaptic activity gates the effects of ACh from presynaptic DSI to postsynaptic LTP. These results provide key insights into mechanisms potentially linked with cognitive functions, spatial navigation, and the homeostatic control of abnormal hyperexcitable states. PMID:24938789

  4. Novel long‐acting antagonists of muscarinic ACh receptors

    PubMed Central

    Randáková, Alena; Rudajev, Vladimír; Doležal, Vladimír; Boulos, John

    2018-01-01

    Background and Purpose The aim of this study was to develop potent and long‐acting antagonists of muscarinic ACh receptors. The 4‐hexyloxy and 4‐butyloxy derivatives of 1‐[2‐(4‐oxidobenzoyloxy)ethyl]‐1,2,3,6‐tetrahydropyridin‐1‐ium were synthesized and tested for biological activity. Antagonists with long‐residence time at receptors are therapeutic targets for the treatment of several neurological and psychiatric human diseases. Their long‐acting effects allow for reduced daily doses and adverse effects. Experimental Approach The binding and antagonism of functional responses to the agonist carbachol mediated by 4‐hexyloxy compounds were investigated in CHO cells expressing individual subtypes of muscarinic receptors and compared with 4‐butyloxy analogues. Key Results The 4‐hexyloxy derivatives were found to bind muscarinic receptors with micromolar affinity and antagonized the functional response to carbachol with a potency ranging from 30 nM at M1 to 4 μM at M3 receptors. Under washing conditions to reverse antagonism, the half‐life of their antagonistic action ranged from 1.7 h at M2 to 5 h at M5 receptors. Conclusions and Implications The 4‐hexyloxy derivatives were found to be potent long‐acting M1‐preferring antagonists. In view of current literature, M1‐selective antagonists may have therapeutic potential for striatal cholinergic dystonia, delaying epileptic seizure after organophosphate intoxication or relieving depression. These compounds may also serve as a tool for research into cognitive deficits. PMID:29498041

  5. [Toxic effect of DDT, chlordane and water from the Ignacio Ramírez dam (Mexico), on Daphnia magna (Crustacea: Daphnidae)].

    PubMed

    Martínez-Tabche, L; Romero Solís, M; López López, E; Galar Martínez, M

    1999-12-01

    Chlorodiphenylnitrichloroethane (DDT) and chlordane (CLO) are currently used in Mexico to control malaria and termites. From 1990 to 1996 a total of 27 ton of DDT and 508 of CLO were imported. We establish a methodology to determine their environmental impact in a Mexican dam (Ignacio Ramírez). The toxic effect of DDT and CLO were evaluated on the o-demethylase (OD) and acethycholinesterase activities (AchA) of the cladoceran Daphnia magna exposed to different concentrations of the insecticides solved in water from three sites. Their effect on the AchA and OD activities, and so the CL50 were used as exposure bioindicators to determine the more polluted sites. The physicochemical characteristics of water and the biodiversity of the dam test sites were considered. The station near the floodgate has toxicity potential because enzymatic activities were modified. We suggest the use of AchA and OD activities measure in the cladoceran to evaluate the toxicity of a water body polluted by organochlorate insecticides.

  6. Phenolic composition, antioxidant and anti-acetylcholinesterase activities of the Tunisian Scabiosa arenaria.

    PubMed

    Besbes Hlila, Malek; Omri, Amel; Ben Jannet, Hichem; Lamari, Ali; Aouni, Mahjoub; Selmi, Boulbaba

    2013-05-01

    There is a need for the discovery of novel natural antioxidants and acetylcholinesterase inhibitors (AChEIs) that are safe and effective at a global level. This is the first study on antioxidant and anti-acethylcholinesterase activity of Scabiosa arenaria Forssk (Dipsacaceae). The antioxidant potential and anti-acetylcholinesterase (AChE) activity of S. arenaria were investigated. The crude, ethyl acetate (EtOAc), butanol (n-BuOH) and water extracts prepared from flowers, fruits and stems and leaves of S. arenaria were tested to determine their total polyphenol content (TPC), total flavonoid content (TFC), total condensed tannin content (CTC) and their antioxidant activity by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), reducing power and β-carotene bleaching inhibition activity. Anti-AChE activity was also determined. EtOAc and n-BuOH fractions of fruits had both the highest (TPC) (269.09 mg gallic acid equivalents/g dry weight). The crude extract of stems and leaves had the highest TFC (10.9 mg quercetin equivalent/g dry weight). The n-BuOH fraction of stems and leaves had the highest CTC (489.75 mg catechin equivalents/g dry weight). The EtOAc fraction of flowers exhibit a higher activity in each antioxidant system with a special attention for DPPH assay (IC50 = 0.017 mg/mL) and reducing power (EC50 = 0.02 mg/mL). The EtOAc and n-BuOH fractions of stems and leaves showed strong inhibition of AChE (IC50 = 0.016 and 0.029 mg/mL, respectively). These results suggest the potential of S. arenaria as a possible source of novel compounds and as an alternative antioxidant and AChEIs.

  7. Geissoschizine methyl ether N-oxide, a new alkaloid with antiacetylcholinesterase activity from Uncaria rhynchophylla.

    PubMed

    Jiang, Wei-Wei; Su, Jia; Wu, Xing-De; He, Juan; Peng, Li-Yan; Cheng, Xiao; Zhao, Qin-Shi

    2015-01-01

    Geissoschizine methyl ether N-oxide, a new oxindole alkaloid, along with 14 known alkaloids, was isolated from the aerial part of Uncaria rhynchophylla. Their structures were identified by comprehensive spectral methods, including 2D NMR experiments, and confirmed by comparing with the literature data. In vitro acetylcholinesterase (AChE) inhibitory activity assay showed that the new compound exhibited anti-AChE activity with IC₅₀ value of 23.4 μM.

  8. Anticholinesterase Effect on Motor Kinematic Measures and Brain Activation in Parkinson’s Disease

    PubMed Central

    Mentis, Marc J.; Delalot, Dominique; Naqvi, Hassan; Gordon, Mark F.; Gudesblatt, Mark; Edwards, Christine; Donatelli, Luke; Dhawan, Vijay; Eidelberg, David

    2015-01-01

    Anticholinesterase (AChE) drugs are being prescribed off label for nonmotor symptoms in Parkinson’s disease (PD). Theoretically, these drugs can impair motor function. A small literature suggests AChE therapy has little effect on clinical motor evaluation; however, no study has made objective motor kinematic measures or evaluated brain function. We hypothesized that even if clinical examination was normal in PD patients on dopamine therapy, (1) sensitive kinematic measures would be abnormal during AChE therapy or (2) normal kinematic measures would be maintained by compensatory brain activation. We carried out a randomized, double-blind, placebo-controlled trial of 8 weeks donepezil (10 mg/day) in 17 PD subjects. Subjects carried out a computerized motor task during a positron emission tomography (PET) scan before starting the drug and again after 8 weeks of donepezil or placebo. Kinematic measures of motor function and PET scans were analyzed to compare the effects of donepezil and placebo. Neither placebo nor donepezil altered motor kinematic measures. Furthermore, movement integrity while on donepezil was maintained without compensatory brain activity. Donepezil 10 mg/day can be given for nonmotor symptoms in PD without adverse motor effects or compensatory brain activity. PMID:16228997

  9. Skin blood flow responses to the iontophoresis of acetylcholine and sodium nitroprusside in man: possible mechanisms.

    PubMed

    Morris, S J; Shore, A C

    1996-10-15

    1. The mechanisms involved in the human skin blood flow responses to iontophoretic application of acetylcholine (ACH; delivered using an anodal charge) or sodium nitroprusside (SNP; administered with a cathodal charge) are unclear. The aims of this study were to investigate possible contributions of prostaglandin production to the increase in skin blood flow induced following the iontophoresis of ACh and to investigate possible contributions from local sensory nerves to the perfusion responses induced by ACh, SNP and their vehicles. 2. The contribution of prostaglandins to the ACh response was determined in a randomized double-blind study of eight healthy subjects, who were studied on two occasions. Basal responses to ACh were measured before the oral administration of 600 mg soluble aspirin in diluted orange juice (1 occasion or orange juice (1 occasion) and again 30 min after the drink. The contribution of local sensory nerve activation to the responses to ACh and ACh vehicle (8 subjects) and to SNP and SNP vehicle (7 subjects) was assessed. EMLA (5%) (a eutectic mixture of lignocaine and prilocaine) and placebo cream were applied to two separate areas on the forearm in a double-blind randomized manner 2 h before drug responses were measured. In all studies the skin microcirculation responses to iontophoretically applied drug vehicle (1 site) and drug (2 sites) were recorded by laser Doppler perfusion imaging. 3. The increase in forearm skin perfusion (P < 0.001) in response to the iontophoresis of ACh minus the response to ACh vehicle was not significantly different following placebo or aspirin administration. The increase in forearm skin red blood cell flux (P < 0.001) in response to the iontophoresis of ACh minus the response to ACh vehicle was not significantly different at the placebo-compared with the EMLA-treated site. THe small increase in perfusion (P < 0.001) in response to the iontophoresis of ACh vehicle was significantly inhibited at the EMLA

  10. Acetylcholinesterase activity in soleus muscle intrafusal and extrafusal fibres in tail suspended rats.

    PubMed

    Tang, Bin; Fan, Xiao-li; Wu, Su-di

    2002-10-01

    Objective. To explore the mechanisms involved in muscle atrophy and conversion of the fiber types induced by simulated weightlessness. Method. Weightlessness was simulated by tail suspension of female rats. Intrafusal and extrafusal fibers of soleus muscles in the rat were examined histochemically for their activity of acetylcholinesterase (AChE) and succinic dehydrogenase (SDH) in 7 d, 14 d, 21 d tail-suspended groups and control groups. Result. Staining for succinic dehydrogenase showed that simulated weightlessness caused obvious atrophy and change in fiber type composition in soleus muscle, with decrease of the proportion of type I fiber and increase of type II fiber. Acetylcholinesterase activities of intrafusal and extrafusal fibers were both decreased significantly after 21 d tail suspension. Conclusion. Simulated weightlessness could induce decrease of AChE activity in neuromuscular junctions, which might be linked with decrease in motor neuron activity.

  11. Chemical Composition and Acetylcholinesterase Inhibitory Activity of Essential Oils from Piper Species.

    PubMed

    Xiang, Cai-Peng; Han, Jia-Xin; Li, Xing-Cong; Li, Yun-Hui; Zhang, Yi; Chen, Lin; Qu, Yan; Hao, Chao-Yun; Li, Hai-Zhou; Yang, Chong-Ren; Zhao, San-Jun; Xu, Min

    2017-05-10

    The essential oils (EOs) derived from aromatic plants such as Piper species are considered to play a role in alleviating neuronal ailments that are associated with inhibition of acetylcholinesterase (AChE). The chemical compositions of 23 EOs prepared from 16 Piper spp. were analyzed by both gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). A total of 76 compounds were identified in the EOs from the leaves and stems of 19 samples, while 30 compounds were detected in the EOs from the fruits of four samples. Sesquiterpenes and phenylpropanoids were found to be rich in these EOs, of which asaricin, caryophyllene, caryophyllene oxide, isospathulenol, (+)-spathulenol, and β-bisabolene are the major constituents. The EOs from the leaves and stems of Piper austrosinense, P. puberulum, P. flaviflorum, P. betle, and P. hispidimervium showed strong AChE inhibitory activity with IC 50 values in the range of 1.51 to 13.9 mg/mL. A thin-layer chromatography (TLC) bioautography assay was employed to identify active compound(s) in the most active EO from P. hispidimervium. The active compound was isolated and identified as asaricin, which gave an IC 50 value of 0.44 ± 0.02 mg/mL against AChE, comparable to galantamine with an IC 50 0.15 ± 0.01 mg/mL.

  12. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  13. Novel structural hybrids of pyrazolobenzothiazines with benzimidazoles as cholinesterase inhibitors.

    PubMed

    Aslam, Sana; Zaib, Sumera; Ahmad, Matloob; Gardiner, John M; Ahmad, Aqeel; Hameed, Abdul; Furtmann, Norbert; Gütschow, Michael; Bajorath, Jürgen; Iqbal, Jamshed

    2014-05-06

    Two series of novel pyrazolobenzothiazine-based hybrid compounds were efficiently synthesized starting from saccharin sodium salt. Pyrazolo[4,3-c][1,2]benzothiazine scaffolds were N-arylated by using p-fluorobenzaldehyde, followed by the incorporation of a benzimidazole or similar ring systems by treatment with arylenediamines. These phenylene-connected hybrid compounds were investigated as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Compounds 12d and 12k were the most potent AChE inhibitors with IC50 values of 11 and 13 nM, respectively, while 6j (IC50 = 17 nM) proved to be the most active inhibitor against BuChE with remarkable selectivity for BuChE over AChE. Molecular docking studies were also performed on human AChE and BuChE to suggest possible binding modes in which the inhibitor's extended structure is accommodated along the active site gorge of both enzymes. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. The Activity of Cholinesterases in Diapausing and Flying Red Mason Bees Osmia bicornis (Megachilidae).

    PubMed

    Dmochowska-Slezak, Kamila; Zaobidna, Ewa; Domeracka, Joanna; Swiatkowska, Marta; Rusznica, Małgorzata; Zółtowska, Krystyna

    2015-01-01

    The red mason bee (Osmia bicornis) is a highly effective pollinator that is exposed to various xenobiotics. The organism's potential resistance to the toxic effects of xenobiotics can be determined based on cholinesterase activity. The activity of cholinesterases (ChEs) towards acetylcholine (ACh) and butyrylcholine (BCh) was determined in extracts of diapausing (between October and late March) and flying bees (May). In both males and females, enzyme activity was higher towards ACh than towards BCh. The ratio of ACh/BCh activity was determined in the range of 1.43 to 4.15 in diapausing females and 3.00 to 7.18 in diapausing males. No significant changes in ChE activity towards ACh were observed in females before December and in males before February. Enzyme activity towards ACh increased dynamically in the second half of March. Enzyme activity towards BCh remained stable in both sexes until mid-March, after which it increased significantly. Excluding mid-March, enzyme BCh activity was significantly higher in females than in males. The activity of carboxylesterase towards 4-p-nitrophenyl butyrate was determined in females to assess the involvement of non-specific esterases in the hydrolysis of choline esters. Carboxylesterase activity was low in comparison with cholinesterase activity, and it remained practically unchanged throughout diapause, suggesting that choline esters in female O. bicornis extracts were hydrolyzed mainly by acetylcholinesterases.

  15. Identification of amino acids in the nicotinic acetylcholine receptor agonist binding site and ion channel photolabeled by 4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine, a novel photoaffinity antagonist.

    PubMed

    Chiara, David C; Trinidad, Jonathan C; Wang, Dong; Ziebell, Michael R; Sullivan, Deirdre; Cohen, Jonathan B

    2003-01-21

    [(3)H]4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine (TDBzcholine) was synthesized and used as a photoaffinity probe to map the orientation of an aromatic choline ester within the agonist binding sites of the Torpedo nicotinic acetylcholine receptor (nAChR). TDBzcholine acts as a nAChR competitive antagonist that binds at equilibrium with equal affinity to both agonist sites (K(D) approximately 10 microM). Upon UV irradiation (350 nm), nAChR-rich membranes equilibrated with [(3)H]TDBzcholine incorporate (3)H into the alpha, gamma, and delta subunits in an agonist-inhibitable manner. The specific residues labeled by [(3)H]TDBzcholine were determined by N-terminal sequence analysis of subunit fragments produced by enzymatic cleavage and purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and/or reversed-phase high-performance liquid chromatography. For the alpha subunit, [(3)H]TDBzcholine photoincorporated into alphaCys-192, alphaCys-193, and alphaPro-194. For the gamma and delta subunits, [(3)H]TDBzcholine incorporated into homologous leucine residues, gammaLeu-109 and deltaLeu-111. The photolabeling of these amino acids suggests that when the antagonist TDBzcholine occupies the agonist binding sites, the Cys-192-193 disulfide and Pro-194 from the alpha subunit Segment C are oriented toward the agonist site and are in proximity to gammaLeu-109/deltaLeu-111 in Segment E, a conclusion consistent with the structure of the binding site in the molluscan acetylcholine binding protein, a soluble protein that is homologous to the nAChR extracellular domain.

  16. The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor (nAChR) ligands. Part 1: the influence of different hydrogen bond acceptor systems on alkyl and (hetero)aryl substituents.

    PubMed

    Eibl, Christoph; Tomassoli, Isabelle; Munoz, Lenka; Stokes, Clare; Papke, Roger L; Gündisch, Daniela

    2013-12-01

    3,7-Diazabicyclo[3.3.1]nonane is a naturally occurring scaffold interacting with nicotinic acetylcholine receptors (nAChRs). When one nitrogen of the 3,7-diazabicyclo[3.3.1]nonane scaffold was implemented in a carboxamide motif displaying a hydrogen bond acceptor (HBA) functionality, compounds with higher affinities and subtype selectivity for α4β2(∗) were obtained. The nature of the HBA system (carboxamide, sulfonamide, urea) had a strong impact on nAChR interaction. High affinity ligands for α4β2(∗) possessed small alkyl chains, small un-substituted hetero-aryl groups or para-substituted phenyl ring systems along with a carboxamide group. Electrophysiological responses of selected 3,7-diazabicyclo[3.3.1]nonane derivatives to Xenopus oocytes expressing various nAChR subtypes showed diverse activation profiles. Compounds with strongest agonistic profiles were obtained with small alkyl groups whereas a shift to partial agonism/antagonism was observed for aryl substituents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Discriminative structural approaches for enzyme active-site prediction.

    PubMed

    Kato, Tsuyoshi; Nagano, Nozomi

    2011-02-15

    Predicting enzyme active-sites in proteins is an important issue not only for protein sciences but also for a variety of practical applications such as drug design. Because enzyme reaction mechanisms are based on the local structures of enzyme active-sites, various template-based methods that compare local structures in proteins have been developed to date. In comparing such local sites, a simple measurement, RMSD, has been used so far. This paper introduces new machine learning algorithms that refine the similarity/deviation for comparison of local structures. The similarity/deviation is applied to two types of applications, single template analysis and multiple template analysis. In the single template analysis, a single template is used as a query to search proteins for active sites, whereas a protein structure is examined as a query to discover the possible active-sites using a set of templates in the multiple template analysis. This paper experimentally illustrates that the machine learning algorithms effectively improve the similarity/deviation measurements for both the analyses.

  18. Furoquinoline Alkaloids from the Leaves of Evodia lepta as Potential Cholinesterase Inhibitors and their Molecular Docking.

    PubMed

    Sichaem, Jirapast; Rojpitikul, Thanawan; Sawasdee, Pattara; Lugsannangarm, Kiattisak; Santi, Tip-pyang

    2015-08-01

    Nine furoquinoline alkaloids (1-9) were isolated from the leaves of Evodia lepta based on bioassay-guided fractionation and chromatographic techniques. All isolates were evaluated for their cholinesterase (ChEs) inhibitory activities, in which kokusaginine (7) and melineurine (5) exhibited the highest activity toward AChE and BChE, respectively. Lineweaver-Burk plots indicated that 5 and 7 were mixed mode inhibitors of both ChE enzymes. Molecular docking studies on the binding sites of AChE and BChE were performed in order to afford a molecular insight into the mode of action of these active compounds. From this study these compounds have emerged as promising molecules for Alzheimer's disease therapy.

  19. Hypothyroidism Enhanced Ectonucleotidases and Acetylcholinesterase Activities in Rat Synaptosomes can be Prevented by the Naturally Occurring Polyphenol Quercetin.

    PubMed

    Baldissarelli, Jucimara; Santi, Adriana; Schmatz, Roberta; Abdalla, Fátima Husein; Cardoso, Andréia Machado; Martins, Caroline Curry; Dias, Glaecir R Mundstock; Calgaroto, Nicéia Spanholi; Pelinson, Luana Paula; Reichert, Karine Paula; Loro, Vania Lucia; Morsch, Vera Maria Melchiors; Schetinger, Maria Rosa Chitolina

    2017-01-01

    Thyroid hormones have an influence on the functioning of the central nervous system. Furthermore, the cholinergic and purinergic systems also are extensively involved in brain function. In this context, quercetin is a polyphenol with antioxidant and neuroprotective properties. This study investigated the effects of (MMI)-induced hypothyroidism on the NTPDase, 5'-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes of rats and whether the quercetin can prevent it. MMI at a concentration of 20 mg/100 mL was administered for 90 days in the drinking water. The animals were divided into six groups: control/water (CT/W), control/quercetin 10 mg/kg, control/quercetin 25 mg/kg, methimazole/water (MMI/W), methimazole/quercetin 10 mg/kg (MMI/Q10), and methimazole/quercetin 25 mg/kg (MMI/Q25). On the 30th day, hormonal dosing was performed to confirm hypothyroidism, and the animals were subsequently treated with 10 or 25 mg/kg quercetin for 60 days. NTPDase activity was not altered in the MMI/W group. However, treatment with quercetin decreased ATP and ADP hydrolysis in the MMI/Q10 and MMI/Q25 groups. 5'-nucleotidase activity increased in the MMI/W group, but treatments with 10 or 25 mg/kg quercetin decreased 5'-nucleotidase activity. ADA activity decreased in the CT/25 and MMI/Q25 groups. Furthermore, AChE activity was reduced in all groups with hypothyroidism. In vitro tests also demonstrated that quercetin per se decreased NTPDase, 5'-nucleotidase, and AChE activities. This study demonstrated changes in the 5'-nucleotidase and AChE activities indicating that purinergic and cholinergic neurotransmission are altered in this condition. In addition, quercetin can alter these parameters and may be a promising natural compound with important neuroprotective actions in hypothyroidism.

  20. Assessing joint toxicity of four organophosphate and carbamate insecticides in common carp (Cyprinus carpio) using acetylcholinesterase activity as an endpoint.

    PubMed

    Wang, Yanhua; Chen, Chen; Zhao, Xueping; Wang, Qiang; Qian, Yongzhong

    2015-07-01

    Mixtures of organophosphate (OP) and carbamate (CB) pesticides are commonly detected in freshwater ecosystems. These pesticides inhibit the activity of acetylcholinesterase (AChE) and have potential to interfere with behaviors that may be essential for the survival of species. Although the effects of individual anticholinesterase insecticides on aquatic species have been studied for decades, the neurotoxicity of mixtures is still poorly understood. In the present study, brain AChE inhibition in carp (Cyprinus carpio) exposed to a series of concentrations of the organophosphates (malathion and triazophos) as well as the carbamates (fenobucarb and carbosulfan) was measured. In equitoxic mixtures, the observed AChE activity inhibition of the malathion plus triazophos, and triazophos plus carbosulfan mixtures, was synergism. In equivalent concentration mixtures, the combination of malathion plus fenobucarb mixture conformed to synergism, while the observed AChE activity inhibition of the remaining pairings was less than additive. Single pesticide risk assessments are likely to underestimate the impacts of these insecticides on carps in aquatic environment where mixtures occur. Moreover, mixtures of pesticides that have been commonly reported in aquatic ecosystems may pose a more important challenge than previously anticipated. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Mouse Acetylcholinesterase Unliganded and in Complex with Huperzine A: A Comparison of Molecular Dynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tara, Sylvia; Straatsma, TP; Mccammon, Andy

    1999-06-01

    A 1 ns molecular dynamics simulation of unliganded mouse acetylcholinesterase (AChE) is compared to a previous simulation of mouse AChE complexed with Huperzine A (HupA). Several common features are observed. In both simulations, the active site gorge fluctuates in size during the 1 ns trajectory, and is completely pinched off several times. Many of the residues in the gorge that formed hydrogen bonds with HupA in the simulation of the complex, now form hydrogen bonds with other protein residues and water molecules in the gorge. The opening of a "backdoor" entrance to the active site that was found in themore » simulation of the complex is also observed in the unliganded simulation. Differences between the two simulations include overall lower structural RMS deviations for residues in the gorge in the unliganded simulation, a smaller diameter of the gorge in the absence of HupA, and the disappearance of a side channel that was frequently present in the liganded simulation. The differences between the two simulations can be attributed, in part, to the interaction of AChE with HupA.« less

  2. M1 muscarinic receptor activation mediates cell death in M1-HEK293 cells.

    PubMed

    Graham, E Scott; Woo, Kerhan K; Aalderink, Miranda; Fry, Sandie; Greenwood, Jeffrey M; Glass, Michelle; Dragunow, Mike

    2013-01-01

    HEK293 cells have been used extensively to generate stable cell lines to study G protein-coupled receptors, such as muscarinic acetylcholine receptors (mAChRs). The activation of M1 mAChRs in various cell types in vitro has been shown to be protective. To further investigate M1 mAChR-mediated cell survival, we generated stable HEK293 cell-lines expressing the human M1 mAChR. M1 mAChRs were efficiently expressed at the cell surface and efficiently internalised within 1 h by carbachol. Carbachol also induced early signalling cascades similar to previous reports. Thus, ectopically expressed M1 receptors behaved in a similar fashion to the native receptor over short time periods of analysis. However, substantial cell death was observed in HEK293-M1 cells within 24 h after carbachol application. Death was only observed in HEK cells expressing M1 receptors and fully blocked by M1 antagonists. M1 mAChR-stimulation mediated prolonged activation of the MEK-ERK pathway and resulted in prolonged induction of the transcription factor EGR-1 (>24 h). Blockade of ERK signalling with U0126 did not reduce M1 mAChR-mediated cell-death significantly but inhibited the acute induction of EGR-1. We investigated the time-course of cell death using time-lapse microscopy and xCELLigence technology. Both revealed the M1 mAChR cytotoxicity occurs within several hours of M1 activation. The xCELLigence assay also confirmed that the ERK pathway was not involved in cell-death. Interestingly, the MEK blocker did reduce carbachol-mediated cleaved caspase 3 expression in HEK293-M1 cells. The HEK293 cell line is a widely used pharmacological tool for studying G-protein coupled receptors, including mAChRs. Our results highlight the importance of investigating the longer term fate of these cells in short term signalling studies. Identifying how and why activation of the M1 mAChR signals apoptosis in these cells may lead to a better understanding of how mAChRs regulate cell-fate decisions.

  3. The impact of a parkinsonian lesion on dynamic striatal dopamine transmission depends on nicotinic receptor activation

    PubMed Central

    Jennings, Katie A.; Platt, Nicola J.; Cragg, Stephanie J.

    2015-01-01

    Dopamine function is disturbed in Parkinson's disease (PD), but whether and how release of dopamine from surviving neurons is altered has long been debated. Nicotinic acetylcholine receptors (nAChRs) on dopamine axons powerfully govern dopamine release and could be critical contributing factors. We revisited whether fundamental properties of dopamine transmission are changed in a parkinsonian brain and tested the potentially profound masking effects of nAChRs. Using real-time detection of dopamine in mouse striatum after a partial 6-hydroxydopamine lesion and under nAChR inhibition, we reveal that dopamine signals show diminished sensitivity to presynaptic activity. This effect manifested as diminished contrast between DA release evoked by the lowest versus highest frequencies. This reduced activity-dependence was underpinned by loss of short-term facilitation of dopamine release, consistent with an increase in release probability (Pr). With nAChRs active, the reduced activity-dependence of dopamine release after a parkinsonian lesion was masked. Consequently, moment-by-moment variation in activity of nAChRs may lead to dynamic co-variation in dopamine signal impairments in PD. PMID:26117304

  4. Brain regional acetylcholinesterase activity and muscarinic acetylcholine receptors in rats after repeated administration of cholinesterase inhibitors and its withdrawal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Haruo; Suzuki, Tadahiko; Sakamoto, Maki

    Activity of acetylcholinesterase (AChE) and specific binding of [{sup 3}H]quinuclidinyl benzilate (QNB), [{sup 3}H]pirenzepine (PZP) and [{sup 3}H]AF-DX 384 to muscarinic acetylcholine receptor (mAChR) preparations in the striatum, hippocampus and cortex of rats were determined 1, 6 and 11 days after the last treatment with an organophosphate DDVP, a carbamate propoxur or a muscarinic agonist oxotremorine as a reference for 7 and 14 days. AChE activity was markedly decreased in the three regions 1 day after the treatment with DDVP for 7 and 14 days with a gradual recovery 6 to 11 days, and much less decreased 1, 6 andmore » 11 days after the treatment with propoxur for 7 days but not for 14 days in the hippocampus and cortex. The binding of [{sup 3}H]-QNB, PZP and AF-DX 384 in the three regions was generally decreased by the treatment with DDVP for 7 and 14 days. Such down-regulations were generally restored 6 or 11 days after the treatment for 7 but not for 14 days. The down-regulation or up-regulation as measured by [{sup 3}H]-QNB, PZP and AF-DX 384 was observed 1, 6 or 11 days after treatment with propoxur for 7 days and/or 14 days. Repeated treatment with oxotremorine produced similar effects except AChE activity to DDVP. These results suggest that repeated inhibition of AChE activity may usually cause down-regulation of mAChRs with some exception in the hippocampus when a reversible antiChE propoxur is injected.« less

  5. Synthesis, biological evaluation and molecular modelling of diversely functionalized heterocyclic derivatives as inhibitors of acetylcholinesterase/butyrylcholinesterase and modulators of Ca2+ channels and nicotinic receptors.

    PubMed

    Marco, José L; de los Ríos, Cristóbal; García, Antonio G; Villarroya, Mercedes; Carreiras, M Carmo; Martins, Carla; Eleutério, Ana; Morreale, Antonio; Orozco, M; Luque, F Javier

    2004-05-01

    The synthesis and the biological activity of compounds 5-40 as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as modulators of voltage-dependent Ca(2+) channels and nicotinic receptors, are described. These molecules are tacrine analogues, which have been prepared from polyfunctionalized 6-amino-5-cyano-4H-pyrans, 6-amino-5-cyano-pyridines and 5-amino-2-aryl-3-cyano-1,3-oxazoles via Friedländer reaction with selected cycloalkanones. These compounds are moderate acetylcholinesterase and butyrylcholinesterase inhibitors, the BuChE/AChE selectivity of the most active molecules ranges from 10.0 (compound 29) to 76.9 (compound 16). Interestingly, the 'oxazolo-tacrine' derivatives are devoid of any activity. All compounds showed an important inhibitory effect on the nicotinic acetylcholine receptor. Most of them also blocked L-type Ca(2+) channels, and three of them, 64, 19 and 67, the non-L type of Ca(2+) channels. Molecular modelling studies suggest that these compounds might bind at the peripheral binding site of AChE, which opens the possibility to design inhibitors able to bind at both, the catalytic and peripheral binding sites of the enzyme.

  6. Demonstration of muscarinic and nicotinic receptor binding activities of distigmine to treat detrusor underactivity.

    PubMed

    Harada, Taketsugu; Fushimi, Kazumi; Kato, Aya; Ito, Yoshihiko; Nishijima, Saori; Sugaya, Kimio; Yamada, Shizuo

    2010-01-01

    The present study was undertaken to examine whether distigmine, a therapeutic agent used to treat detrusor underactivity, binds directly to muscarinic and nicotinic receptors. We used radioreceptor binding assays and compared the effects of distigmine with those of neostigmine and donepedil. The inhibitory effect of distigmine on the blood acetylcholinesterase (AChE) activity was significantly weaker than that of neostigmine. Distigmine, neostigmine, and donepezil competed for specific binding sites of [N-methyl-(3)H]scopolamine methyl chloride ([(3)H]NMS ) and [(3)H]oxotremorine-M in the bladder, submaxillary gland and cerebral cortex of rats in a concentration-dependent manner, indicating significant binding activity of muscarinic receptors. Distigmine displayed significantly higher affinity for binding sites of [(3)H]oxotremorine-M compared with those of [(3)H]NMS as revealed by large ratios of its K(i) value for [(3)H]NMS to that for [(3)H]oxotremorine-M, suggesting that it has preferential affinity for agonist sites of muscarinic receptors. Distigmine seemed to bind to the agonist sites of muscarinic receptors in a competitive manner. Repeated oral administration of distigmine caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]NMS in the bladder and submaxillary gland but not cerebral cortex. Distigmine also bound to nicotinic receptors in the rat cerebral cortex. In conclusion, distigmine shows direct binding to muscarinic receptors in the rat bladder, and repeated oral administration of distigmine causes downregulation of muscarinic receptors in the rat bladder. The observed direct interaction of distigmine with the bladder muscarinic receptors may partly contribute to the therapeutic and/or side effects seen in the treatment of detrusor underactivity.

  7. Ionizable side chains at catalytic active sites of enzymes.

    PubMed

    Jimenez-Morales, David; Liang, Jie; Eisenberg, Bob

    2012-05-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1,072 Å(3). The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes.

  8. 7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer's disease treatment--synthesis, biological evaluation and molecular modeling studies.

    PubMed

    Spilovska, Katarina; Korabecny, Jan; Kral, Jan; Horova, Anna; Musilek, Kamil; Soukup, Ondrej; Drtinova, Lucie; Gazova, Zuzana; Siposova, Katarina; Kuca, Kamil

    2013-02-20

    A structural series of 7-MEOTA-adamantylamine thioureas was designed, synthesized and evaluated as inhibitors of human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE). The compounds were prepared based on the multi-target-directed ligand strategy with different linker lengths (n = 2-8) joining the well-known NMDA antagonist adamantine and the hAChE inhibitor 7-methoxytacrine (7-MEOTA). Based on in silico studies, these inhibitors proved dual binding site character capable of simultaneous interaction with the peripheral anionic site (PAS) of hAChE and the catalytic active site (CAS). Clearly, these structural derivatives exhibited very good inhibitory activity towards hBChE resulting in more selective inhibitors of this enzyme. The most potent cholinesterase inhibitor was found to be thiourea analogue 14 (with an IC₅₀ value of 0.47 µM for hAChE and an IC₅₀ value of 0.11 µM for hBChE, respectively). Molecule 14 is a suitable novel lead compound for further evaluation proving that the strategy of dual binding site inhibitors might be a promising direction for development of novel AD drugs.

  9. 9-Substituted acridine derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors possessing antioxidant activity for Alzheimer's disease treatment.

    PubMed

    Makhaeva, Galina F; Lushchekina, Sofya V; Boltneva, Natalia P; Serebryakova, Olga G; Rudakova, Elena V; Ustyugov, Alexey A; Bachurin, Sergey O; Shchepochkin, Alexander V; Chupakhin, Oleg N; Charushin, Valery N; Richardson, Rudy J

    2017-11-01

    We investigated the inhibitory activity of 4 groups of novel acridine derivatives against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterase (CaE) using the methods of enzyme kinetics and molecular docking. Antioxidant activity of the compounds was determined using the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS + ) radical decolorization assay as their ability to scavenge free radicals. Analysis of the esterase profiles and antiradical activities of the acridine derivatives showed that 9-aryl(heteroaryl)-N-methyl-9,10-dihydroacridines have a high radical-scavenging activity but low potency as AChE and BChE inhibitors, whereas 9-aryl(heteroaryl)-N-methyl-acridinium tetrafluoroborates effectively inhibit cholinesterases but do not exhibit antiradical activity. In contrast, a group of derivatives of 9-heterocyclic amino-N-methyl-9,10-dihydroacridine has been found that combine effective inhibition of AChE and BChE with rather high radical-scavenging activity. The results of molecular docking well explain the observed features in the efficacy, selectivity, and mechanism of cholinesterase inhibition by the acridine derivatives. Thus, in a series of acridine derivatives we have found compounds possessing dual properties of effective and selective cholinesterase inhibition together with free radical scavenging, which makes promising the use of the acridine scaffold to create multifunctional drugs for the therapy of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A Mechanism-based 3D-QSAR Approach for Classification and Prediction of Acetylcholinesterase Inhibitory Potency of Organophosphate and Carbamate Analogs

    EPA Science Inventory

    Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a serine residue in the enzyme active site, and their inhibitory potency depends largely on affinity for the enzyme and the reactivity of the ester. Despite this understandi...

  11. Induction of plasma acetylcholinesterase activity in mice challenged with organophosphorus poisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duysen, Ellen G.; Lockridge, Oksana, E-mail: olockrid@unmc.edu

    2011-09-01

    The restoration of plasma acetylcholinesterase activity in mice following inhibition by organophosphorus pesticides and nerve agents has been attributed to synthesis of new enzyme. It is generally assumed that activity levels return to normal, are stable and do not exceed the normal level. We have observed over the past 10 years that recovery of acetylcholinesterase activity levels in mice treated with organophosphorus agents (OP) exceeds pretreatment levels and remains elevated for up to 2 months. The most dramatic case was in mice treated with tri-cresyl phosphate and tri-ortho-cresyl phosphate, where plasma acetylcholinesterase activity rebounded to a level 250% higher thanmore » the pretreatment activity. The present report summarizes our observations on plasma acetylcholinesterase activity in mice treated with chlorpyrifos, chlorpyrifos oxon, diazinon, tri-ortho-cresyl phosphate, tri-cresyl phosphate, tabun thiocholine, parathion, dichlorvos, and diisopropylfluorophosphate. We have developed a hypothesis to explain the excess acetylcholinesterase activity, based on published observations. We hypothesize that acetylcholinesterase activity is induced when cells undergo apoptosis and that consequently there is a rise in the level of plasma acetylcholinesterase. - Highlights: > Acetylcholinesterase activity is induced by organophosphorus agents. > AChE induction is related to apoptosis. > Induction of AChE activity by OP is independent of BChE.« less

  12. Extrasynaptic accumulations of acetylcholinesterase in the rat sternocleidomastoid muscle after neonatal denervation. Light and electron microscopic localization and molecular forms.

    PubMed

    Gautron, J; Rieger, F; Blondet, B; Pinçon-Raymond, M

    1983-01-01

    Denervated neonatal rat sternocleidomastoid muscle has decreased levels of total AChE when compared to control muscle. Denervated versus control values of total muscle AChE present a three-phase curve in function of time after denervation. There is a rapid initial fall 0-3 days after denervation, an increase during about 2 weeks, then again a decrease in total AChE. Thus, there is a transitory net accumulation of AChE after the initial fall of activity in denervated developing muscle. Extrasynaptic areas of high AChE activity develop between 1 and 2 weeks after denervation and remain visible up to 1 month after denervation before vanishing. An electron microscope study shows that these accumulations are internal to the muscle fiber, close to a limited number of muscle nuclei and associated to the sarcoplasmic reticulum and nuclear envelope, but not to the T-tubule system. As found in adult rat muscle, the initial fall in AChE affects first the 16 S AChE form, and soon after, the 4 S and 10 S AChE forms. A main difference with adult muscle is the sudden increase and predominance over other forms of 10 S AChE 2 weeks after denervation at birth. Later, the decrease in AChE affects 16 S and 4 S AChE before 10 S AChE. The regions rich in extrasynaptic sites of AChE accumulation possess a very high proportion of 10 S AChE. Thus, the mechanisms of biosynthesis, intracellular transport and/or secretion of AChE may be very different in young, developing muscle compared to adult muscle.

  13. Evaluation of the nature of camel retinal acetylcholinesterase: inhibition by hexamethonium.

    PubMed

    Alhomida, A S; Kamal, M A; al-Jafari, A A

    1997-12-01

    Acetylcholinesterase (AChE, EC 3.1.1.7) has been demonstrated in retinas of several species, however, the nature of the interaction of AChE with specific inhibitors are very limited in the literature and the mode of inhibition of camel retinal AChE by hexamethonium has been studied. Hexamethonium reversibly inhibited AChE in a concentration dependent manner, the IC50 value being c. 2.52 mM. The Km for the hydrolysis of acetylthiocholine iodide was found to be 0.087 mM and the Vmax was 0.63 mumol/min/mg protein. Dixon, as well as Lineweaver-Burk, plots and their secondary replots indicated that the nature of the inhibition is of the hyperbolic (partial) mixed type, which is considered to be a partial competitive and non-competitive mixture. The values of Ki(slope) and KI(intercept) from a Lineweaver-Burk plot were estimated as 0.30 mM and 0.17 mM, respectively, while Ki from a Dixon plot was estimated as 0.725 mM. The Ki was greater than KI indicating that hexamethonium has a greater affinity of binding for the active site than the peripheral site of the camel retina AChE.

  14. Nicotinic acetylcholine receptor probed with a photoactivatable agonist: improved labeling specificity by addition of CeIV/glutathione. Extension to laser flash photolabeling.

    PubMed

    Grutter, T; Goeldner, M; Kotzyba-Hibert, F

    1999-06-08

    The molecular structure of Torpedo marmorata acetylcholine binding sites has been investigated previously by photoaffinity labeling. However, besides the nicotine molecule [Middleton et al. (1991) Biochemistry 30, 6987-6997], all other photosensitive probes used for this purpose interacted only with closed receptor states. In the perspective of mapping the functional activated state, we synthesized and developed a new photoactivatable agonist of nAChR capable of alkylation of the acetylcholine (ACh) binding sites, as reported previously [Kotzyba-Hibert et al. (1997) Bioconjugate Chem. 8, 472-480]. Here, we describe the setup of experimental conditions that were made in order to optimize the photolabeling reaction and in particular its specificity. We found that subsequent addition of the oxidant ceric ion (CeIV) and reduced glutathione before the photolabeling step lowered considerably nonspecific labeling (over 90% protection with d-tubocurarine) without affecting the binding properties of the ACh binding sites. As a consequence, irradiation at 360 nm for 20 min in these new conditions gave satisfactory coupling yields (7.5%). A general mechanism was proposed to explain the successive reactions occurring and their drastic effect on the specificity of the labeling reaction. Last, these incubation conditions can be extended to nanosecond pulsed laser photolysis leading to the same specific photoincorporation as for usual irradiations (8.5% coupling yield of ACh binding sites, 77% protection with carbamylcholine). Laser flash photocoupling of a diazocyclohexadienoyl probe on nAChR was achieved for the first time. Taken together, these data indicate that future investigation of the molecular dynamics of allosteric transitions occurring at the activated ACh binding sites should be possible.

  15. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor- targeted therapeutics: advantages and limitations

    PubMed Central

    Williams, Dustin K.; Wang, Jingyi; Papke, Roger L.

    2011-01-01

    Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues. PMID:21575610

  16. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations.

    PubMed

    Williams, Dustin K; Wang, Jingyi; Papke, Roger L

    2011-10-15

    Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Negative inotropic effect of carbachol and interaction between acetylcholine receptor-operated potassium channel (K.ACh channel) and GTP binding protein in mouse isolated atrium--a novel methodological trial.

    PubMed

    Okada, Muneyoshi; Noma, Chihiro; Yamawaki, Hideyuki; Hara, Yukio

    2013-01-01

    Interaction between acetylcholine receptor-operated potassium channel (K.ACh channel) and GTP binding protein was examined by an immunoprecipitation-Western blotting system in mouse isolated atrium. The carbachol-induced negative inotropic action in indomethacin-pretreated mouse atrium was significantly inhibited by a K.ACh channel blocker, tertiapin or atropine. Kir3.1 K.ACh channel (Kir3.1) was immunoprecipitated with a mouse anti-Kir3.1 antibody. Coprecipitating Gβ with Kir3.1, detected by Western blotting, was significantly augmented by carbachol. Atropine, but not tertiapin, significantly inhibited the carbachol-induced coprecipitating Gβ with Kir3.1. The data indicate that immunoprecipitation with Kir3.1 and Western blotting of Gβ system is a useful method for assessing interaction between K.ACh channel and GTP binding protein in mouse atrium.

  18. Biphasic photoelectrochemical sensing strategy based on in situ formation of CdS quantum dots for highly sensitive detection of acetylcholinesterase activity and inhibition.

    PubMed

    Hou, Ting; Zhang, Lianfang; Sun, Xinzhi; Li, Feng

    2016-01-15

    Herein, we reported a facile and highly sensitive biphasic photoelectrochemical (PEC) sensing strategy based on enzymatic product-mediated in situ formation of CdS quantum dots (QDs), and assayed the activity and inhibition of acetylcholinesterase (AChE) in its optimal state. Upon the hydrolysis of acetylthiocholine catalyzed by AChE, the product thiocholine stabilizes the in situ formation of CdS QDs in homogenous solution. Due to the electrostatic attraction, the resulting tertiary amino group-functionalized CdS QDs are attached to the surface of the negatively charged indium tin oxide (ITO) electrode, generating significant PEC response upon illumination in the presence of electron donors. By taking full advantage of the in situ formation of CdS QDs in homogenous solution, this strategy is capable of detecting AChE activity and inhibition in its optimal state. A directly measured detection limit of 0.01mU/mL for AChE activity is obtained, which is superior to those obtained by some fluorescence methods. The inhibition of AChE activity by aldicarb is successfully detected, and the corresponding IC50 is determined to be 13μg/L. In addition to high sensitivity and good selectivity, this strategy also exhibits additional advantages of simplicity, low cost and easy operation. To the best of our knowledge, the as-proposed strategy is the first example demonstrating the application of CdS QDs formed in situ for biphasic PEC detection of enzyme activity and inhibition. More significantly, it opens up a new horizon for the development of homogenous PEC sensing platforms, and has great potential in probing many other analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry uponmore » binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.« less

  20. Cellular responses to nicotinic receptor activation are decreased after prolonged exposure to galantamine in human neuroblastoma cells.

    PubMed

    Barik, Jacques; Dajas-Bailador, Federico; Wonnacott, Susan

    2005-08-01

    In this study, we have examined cellular responses of neuroblastoma SH-SY5Y cells after chronic treatment with galantamine, a drug used to treat Alzheimer's disease that has a dual mechanism of action: inhibition of acetylcholinesterase and allosteric potentiation of nicotinic acetylcholine receptors (nAChR). Acute experiments confirmed that maximum potentiation of nicotinic responses occurs at 1 microM galantamine; hence this concentration was chosen for chronic treatment. Exposure to 1 microM galantamine for 4 days decreased Ca(2+) responses (by 19.8+/-3.6%) or [(3)H]noradrenaline ([(3)H]NA) release (by 23.9+/-3.3%) elicited by acute application of nicotine. KCl-evoked increases in intracellular Ca(2+) were also inhibited by 10.0+/-1.9% after 4 days' treatment with galantamine. These diminished responses are consistent with the downregulation of downstream cellular processes. Ca(2+) responses evoked by activation of muscarinic acetylcholine receptors were unaffected by chronic galantamine treatment. Exposure to the more potent acetylcholinesterase inhibitor rivastigmine (1 microM) for 4 days failed to alter nicotine-, KCl-, or muscarinic receptor-evoked increases in intracellular Ca(2+). These observations support the hypothesis that chronic galantamine exerts its effects through interaction with nAChR in this cell line. Exposure to 10 microM nicotine for 4 days produced decreases in acute nicotine- (18.0+/-3.5%) and KCl-evoked Ca(2+) responses (10.6+/-2.5%) and nicotine-evoked [(3)H]NA release (26.0+/-3.3%) that are comparable to the effects of a corresponding exposure to galantamine. Treatment with 1 microM galantamine did not alter numbers of [(3)H]epibatidine-binding sites in SH-SY5Y cells, in contrast to 62% upregulation of these sites in response to 10 microM nicotine. Thus, chronic galantamine acts at nAChR to decrease subsequent functional responses to acute stimulation with nicotine or KCl. This effect appears to be independent of the upregulation of nACh

  1. Coronaridine congeners inhibit human α3β4 nicotinic acetylcholine receptors by interacting with luminal and non-luminal sites.

    PubMed

    Arias, Hugo R; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Jozwiak, Krzysztof

    2015-08-01

    To characterize the interaction of coronaridine congeners with human (h) α3β4 nicotinic acetylcholine receptors (AChRs), structural and functional approaches were used. The Ca(2+) influx results established that coronaridine congeners noncompetitively inhibit hα3β4 AChRs with the following potency (IC50's in μM) sequence: (-)-ibogamine (0.62±0.23)∼(+)-catharanthine (0.68±0.10)>(-)-ibogaine (0.95±0.10)>(±)-18-methoxycoronaridine [(±)-18-MC] (1.47±0.21)>(-)-voacangine (2.28±0.33)>(±)-18-methylaminocoronaridine (2.62±0.57 μM)∼(±)-18-hydroxycoronaridine (2.81±0.54)>(-)-noribogaine (6.82±0.78). A good linear correlation (r(2)=0.771) between the calculated IC50 values and their polar surface area was found, suggesting that this is an important structural feature for its activity. The radioligand competition results indicate that (±)-18-MC and (-)-ibogaine partially inhibit [(3)H]imipramine binding by an allosteric mechanism. Molecular docking, molecular dynamics, and in silico mutation results suggest that protonated (-)-18-MC binds to luminal [i.e., β4-Phe255 (phenylalanine/valine ring; position 13'), and α3-Leu250 and β4-Leu251 (leucine ring; position 9')], non-luminal, and intersubunit sites. The pharmacophore model suggests that nitrogens from the ibogamine core as well as methylamino, hydroxyl, and methoxyl moieties at position 18 form hydrogen bonds. Collectively our data indicate that coronaridine congeners inhibit hα3β4 AChRs by blocking the ion channel's lumen and probably by additional negative allosteric mechanisms by interacting with a series of non-luminal sites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Activity of cholinesterases of blood and heart in rats of different sex and age during muscular loads and hypokinesia

    NASA Technical Reports Server (NTRS)

    Rozanova, V. D.; Antonova, G. A.

    1979-01-01

    The activity of acetylcholinesterase (Ache) and butyrilcholinesterase (Bche) in the blood and the heart of 3 and 13 month old control male rats is considerably lower than in female rats. In 25 month old rats, no sex differences in the Ache and Bche were revealed in the heart. In 3 and 13 month old male and female rats, under conditions of muscular exercises, the Ache and Bche activity is lower, and in hypokinetic male rats -- higher than that in respective control animals. In all the rats, irrespective of sex, age, and motor conditions, Ache and Bche activity tended to decrease from the sinoatrial node to the heart apex.

  3. Cholinesterase inhibitory activities of Apai-sa-le recipe and its ingredients.

    PubMed

    Senavong, Pimolvan; Sattaponpan, Chitsanucha; Silavat Suk-um; Itharat, Arunporn

    2014-08-01

    Acetylcholinesterase and butyrylcholoinesterase inhibitors are well-known drugs commonly used in the treatment ofAlzheimer's disease (AD) to improve cognitive function. These enzyme inhibitors were reported to be found in manyplants. Apai-sa-le recipe was a Thai tradition used as nootropic recipe and formerly claimed to improve memory. Therefore, it is interesting to investigate cholinesterase inhibitory activity ofthe recipe and its ingredients. To determine the whole recipe ofApai-sa-le and its ingredients for inhibitory effect on acetylcholinesterase (AChE) and human butyrylcholinesterase (BuChE) activities. Thirty grams of each plant and 181 grams of the whole recipe were separately extracted by 95% ethanol, after filtered the filtrate were evaporated and vacuum-dried at 45°C. By Elman method, the inhibitory activities of both enzymes were assessed. The volatile constituents ofeach extract were determined by GCMS. The constituents in the non- volatile extract were examined by TLC and the antioxidant activity was determined. Four plants exhibited specific BuChE inhibitor were Lepidium sativum Linn. (Ls), Piper nigrum L. (Pn), Angelica dahurica Benth (Ad) andAtractylodes lancea DC. (Al), which shown the lC50 of 5.59, 24.52, 73.23, 96.25 μg/ml, respectively whereas galantamine and the whole recipe showed IC50 of 0.59 and 236 μg/ml. Only Pn extract inhibited AChE at lCso of 25.46 μg/ml. By GCMS and TLC fingerprints revealed the main constituents in LS, Ad, Al andPn as apiol, cumialdehyde, furanodiene and piperine. Moreover nine plant extracts and the whole recipe showed antioxidant activity. Lepidium sativum Linn. (Ls) extract showed the most potency on BuChE inhibitory effect. Three ingredients and the whole recipe exhibited mild activity. Only Piper nigrum L demonstrated inhibition effect on both AChE and BuChE.

  4. Effects of lithium-implantation on the hydrogen retention in both a-C:H and a-SiC:H materials submitted to deuterium bombardment

    NASA Astrophysics Data System (ADS)

    Barbier, G.; Ross, G. G.; El Khakani, M. A.; Chevarier, N.; Chevarier, A.

    1997-02-01

    The hydrogen release in plasma facing materials is a challenging problem for the hydrogen recycling. The hydrogen desorption from the a-C:H and a-SiC:H materials induced by deuterium bombardment has been investigated. Prior to the deuterium bombardment, both materials were implanted with different fluences of lithium ions. Before and after each irradiation, depth profiles of H, Li and deuterium were determined by nuclear microanalysis. After deuterium bombardment, it is shown that the retention of the initial hydrogen in both materials was enhanced by increasing the total dose of the implanted Li. For the a-C:H samples, the hydrogen desorption under deuterium bombardment was strongly reduced by lithium implantation. This effect was also evidenced in a-SiC:H samples, even though it is less spectacular than in a-C:H. Also, nuclear analyses showed that the retained dose of deuterium decreases when the lithium concentration increases. This could be a result of the formation of LiH bonds which occurs to the detriment of deuterium retention in both a-C:H and a-SiC:H materials. Preliminary results of both materials exposed to TdeV tokamak discharges confirms the role of Li in hydrogen retention, already observed in deuterium bombardment exposure.

  5. Zingiberis Siccatum Rhizoma, the active component of the Kampo formula Daikenchuto, induces anti-inflammatory actions through α7 nicotinic acetylcholine receptor activation.

    PubMed

    Endo, M; Hori, M; Mihara, T; Ozaki, H; Oikawa, T; Odaguchi, H; Hanawa, T

    2017-12-01

    We previously reported that Daikenchuto (DKT), a gastrointestinal prokinetic Japanese herbal (Kampo) medicine used for the treatment of postoperative ileus (POI), has characteristic potent anti-inflammatory activity. This effect may be partly mediated by the activation of α7 nicotinic acetylcholine receptor (nAChR). In this study, we identified the specific herbs in DKT that induce anti-inflammatory action. The herbal components of DKT were individually administered orally to each mouse four times before and after intestinal manipulation (IM) was carried out on the distal ileum. The anti-inflammatory activity of each crude drug was subsequently evaluated using immunohistochemical analyses of relevant molecules. Treatment with Zingiberis Siccatum Rhizoma (ZSR) but not the other components inhibited the infiltration of cluster of differentiation 68 (CD68)-positive macrophages as effectively as DKT treatment. Selective α7nAChR antagonists, such as methyllycaconitine citrate, or transient receptor potential ankyrin 1 (TRPA1) antagonists, such as HC-030031, significantly inhibited the amelioration of macrophage infiltration by ZSR. The inhibition of macrophage infiltration by ZSR was abolished in both α7nAChR and 5-hydroxytryptamine 4 receptor (5-HT 4 R) knockout mice. Daikenchuto-induced anti-inflammatory activity, which was mediated by inhibiting macrophage infiltration in POI, is dependent on the effects of ZSR. Zingiberis Siccatum Rhizoma activates TRPA1 channels possibly in enterochromaffin (EC) cells to release 5-HT, which stimulates 5-HT 4 R in the myenteric plexus neurons to release ACh, which in turn activates α7nAChR on macrophages to inhibit inflammation in POI. © 2017 John Wiley & Sons Ltd.

  6. Structure-activity relationship of ibogaine analogs interacting with nicotinic acetylcholine receptors in different conformational states.

    PubMed

    Arias, Hugo R; Feuerbach, Dominik; Targowska-Duda, Katarzyna M; Jozwiak, Krzysztof

    2011-09-01

    The interaction of ibogaine analogs with nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that ibogaine analogs: (a) inhibit (±)-epibatidine-induced Ca²⁺ influx in human embryonic muscle AChRs with the following potency sequence (IC(50) in μM): (±)-18-methylaminocoronaridine (5.9±0.3)∼(±)-18-methoxycoronaridine (18-MC) (6.8±0.8)>(-)-ibogaine (17±3)∼(+)-catharanthine (20±1)>(±)-albifloranine (46±13), (b) bind to the [³H]TCP binding site with higher affinity when the Torpedo AChR is in the desensitized state compared to that in the resting state. Similar results were obtained using [³H]18-MC. These and docking results suggest a steric interaction between TCP and ibogaine analogs for the same site, (c) enhance [³H]cytisine binding to resting but not to desensitized AChRs, with desensitizing potencies (apparent EC₅₀) that correlate very well with the pK(i) values in the desensitized state, and (d) there are good bilinear correlations between the ligand molecular volumes and their affinities in the desensitized and resting states, with an optimal volume of ∼345 ų for the ibogaine site. These results indicate that the size of the binding sites for ibogaine analogs, located between the serine and nonpolar rings and shared with TCP, is an important structural feature for binding and for inducing desensitization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

    PubMed

    Stiti, Naim; Chandrasekar, Balakumaran; Strubl, Laura; Mohammed, Shabaz; Bartels, Dorothea; van der Hoorn, Renier A L

    2016-06-17

    Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes.

  8. Naturally Occurring Genetic Variants of Human Acetylcholinesterase and Butyrylcholinesterase and Their Potential Impact on the Risk of Toxicity from Cholinesterase Inhibitors.

    PubMed

    Lockridge, Oksana; Norgren, Robert B; Johnson, Rudolph C; Blake, Thomas A

    2016-09-19

    Acetylcholinesterase (AChE) is the physiologically important target for organophosphorus toxicants (OP) including nerve agents and pesticides. Butyrylcholinesterase (BChE) in blood serves as a bioscavenger that protects AChE in nerve synapses from inhibition by OP. Mass spectrometry methods can detect exposure to OP by measuring adducts on the active site serine of plasma BChE. Genetic variants of human AChE and BChE do exist, but loss of function mutations have been identified only in the BCHE gene. The most common AChE variant, His353Asn (H322N), also known as the Yt blood group antigen, has normal AChE activity. The most common BChE variant, Ala567Thr (A539T) or the K-variant in honor of Werner Kalow, has 33% reduced plasma BChE activity. The genetic variant most frequently associated with prolonged response to muscle relaxants, Asp98Gly (D70G) or atypical BChE, has reduced activity and reduced enzyme concentration. Early studies in young, healthy males, performed at a time when it was legal to test nerve agents in humans, showed that individuals responded differently to the same low dose of sarin with toxic symptoms ranging in severity from minimal to moderate. Additionally, animal studies indicated that BChE protects from toxicants that have a higher reactivity with AChE than with BChE (e.g., nerve agents) but not from toxicants that have a higher reactivity with BChE than with AChE (e.g., OP pesticides). As a corollary, we hypothesize that individuals with genetic variants of BChE may be at increased risk of toxicity from nerve agents but not from OP pesticides.

  9. Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species.

    PubMed

    Orhan, Nilufer; Orhan, Ilkay Erdogan; Ergun, Fatma

    2011-09-01

    In vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory and antioxidant activities of the aqueous and ethanol extracts of the leaves, ripe fruits, and unripe fruits of Juniperus communis ssp. nana, Juniperus oxycedrus ssp. oxycedrus, Juniperus sabina, Juniperus foetidissima, and Juniperus excelsa were investigated in the present study. Cholinesterase inhibition of the extracts was screened using ELISA microplate reader. Antioxidant activity of the extracts was tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenging, ferrous ion-chelating, and ferric-reducing antioxidant power (FRAP) assays. Total phenol and flavonoid contents of the extracts were determined spectrophotometrically. The extracts had low or no inhibition towards AChE, whereas the leaf aqueous extract of J. foetidissima showed the highest BChE inhibition (93.94 ± 0.01%). The leaf extracts usually exerted higher antioxidant activity. We herein describe the first study on anticholinesterase and antioxidant activity by the methods of ferrous ion-chelating, superoxide radical scavenging, and ferric-reducing antioxidant power (FRAP) assays of the mentioned Juniperus species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. A Wrench in the Works of Human Acetylcholinesterase: Soman Induced Conformational Changes Revealed by Molecular Dynamics Simulations

    PubMed Central

    Fattebert, Jean-Luc; Emigh, Aiyana

    2015-01-01

    Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone and sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures. PMID:25874456

  11. A wrench in the works of human acetylcholinesterase: Soman induced conformational changes revealed by molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Brian J.; Essiz, Sebnem G.; Lau, Edmond Y.

    Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone andmore » sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures.« less

  12. A wrench in the works of human acetylcholinesterase: Soman induced conformational changes revealed by molecular dynamics simulations

    DOE PAGES

    Bennion, Brian J.; Essiz, Sebnem G.; Lau, Edmond Y.; ...

    2015-04-13

    Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone andmore » sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures.« less

  13. Inhibition of cholinesterase activity by extracts, fractions and compounds from Calceolaria talcana and C. integrifolia (Calceolariaceae: Scrophulariaceae).

    PubMed

    Cespedes, Carlos L; Muñoz, Evelyn; Salazar, Juan R; Yamaguchi, Lydia; Werner, Enrique; Alarcon, Julio; Kubo, Isao

    2013-12-01

    Extracts, fractions and compounds from Calceolaria talcana and C. integrifolia exhibited strong inhibitory effects of the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes using the in vitro Ellman's method. The most active samples were from the ethyl acetate extract, which caused a mixed-type inhibition against AChE (69.8% and 79.5% at 100 and 200 μg/ml, respectively) and against BChE (98.5% and 99.8% at 100 and 200 μg/ml, respectively) and its major components verbascoside 8 (50.9% and 70.0% at 200 μg/ml, against AChE and BChE, respectively), martynoside 9, and fraction F-7 (which corresponds to a mixture of 8, 9, and other phenylethanoids and phenolics that remain unidentified) (80.2% and 85.3% at 100 and 200 μg/ml, against AChE, respectively and 99.1% and 99.7% at 100 and 200 μg/ml, against BChE, respectively) inhibited the acetylcholinesterase enzyme competitively. The most polar fraction F-5 from n-hexane extract (a mixture of naphthoquinones: 2-hydroxy-3-(1,1-dimethylallyl-1,4-naphthoquinone) 6, α-dunnione 7 and other polar compounds that remain unidentified) showed a mixed-type inhibition (71.5% and 72.1% against AChE and BChE at 200 μg/ml, respectively). Finally, the methanol-soluble residue presented a complex, mixed-type inhibition (39.9% and 67.9% against AChE and BChE at 200 μg/ml, respectively). The mixture F-3 with diterpenes was obtained from the n-hexane extract: (1,10-cyclopropyl-9-epi-ent-isopimarol) 1, 19-α-hydroxy-abietatriene 2, and F-4 a mixture of triterpenes α-lupeol 3, β-sitosterol 4, ursolic acid 5 together with a complex mixture of terpenes that did not show activity. In summary, extracts and natural compounds from C. talcana and C. integrifolia were isolated, identified and characterized as cholinesterase inhibitors.

  14. Spinal activation of alpha7-nicotinic acetylcholine receptor attenuates posttraumatic stress disorder-related chronic pain via suppression of glial activation.

    PubMed

    Sun, Rao; Zhang, Wei; Bo, Jinhua; Zhang, Zuoxia; Lei, Yishan; Huo, Wenwen; Liu, Yue; Ma, Zhengliang; Gu, Xiaoping

    2017-03-06

    The high prevalence of chronic pain in posttraumatic stress disorder (PTSD) individuals has been widely reported by clinical studies, which emphasized an urgent need to uncover the underlying mechanisms and identify potential therapeutic targets. Recent studies suggested that targeting activated glia and their pro-inflammatory products may provide a novel and effective therapy for the stress-related pain. In this study, we investigated whether activation of alpha-7 nicotinic acetylcholine receptor (α7 nAChR), a novel anti-inflammatory target, could attenuate PTSD-related chronic pain. The experiments were conducted in a rat model of single prolonged stress (SPS), an established model of PTSD-pain comorbidity. We found that SPS exposure produced persistent mechanical allodynia. Immunohistochemical and enzyme-linked immuno sorbent assay analysis showed that SPS also induced elevated activation of glia cells (including microglia and astrocytes) and accumulation of pro-inflammatory cytokines in spinal cord. In another experiment, we found that intrathecal injection of PHA-543613, a selective α7 nAchR agonist, attenuated the SPS-evoked allodynia in a dose dependent manner. However, this anti-hyperalgesic effect was blocked by pretreatment with methyllycaconitine (MLA), a selective α7 nAchR antagonist. Further analyses showed that PHA-543613 suppressed SPS-induced spinal glial activation and SPS-elevated spinal pro-inflammatory cytokines, and these were abolished by MLA. Taken together, the present study showed that spinal activation of α7 nAChR by PHA-543613 attenuated mechanical allodynia induced by PTSD-like stress, and the suppression of spinal glial activation may underlie this anti-hyperalgesic effect. Our study demonstrated the therapeutic potential of targeting α7 nAChR in the treatment of PTSD-related chronic pain. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Quantum mechanical design of enzyme active sites.

    PubMed

    Zhang, Xiyun; DeChancie, Jason; Gunaydin, Hakan; Chowdry, Arnab B; Clemente, Fernando R; Smith, Adam J T; Handel, T M; Houk, K N

    2008-02-01

    The design of active sites has been carried out using quantum mechanical calculations to predict the rate-determining transition state of a desired reaction in presence of the optimal arrangement of catalytic functional groups (theozyme). Eleven versatile reaction targets were chosen, including hydrolysis, dehydration, isomerization, aldol, and Diels-Alder reactions. For each of the targets, the predicted mechanism and the rate-determining transition state (TS) of the uncatalyzed reaction in water is presented. For the rate-determining TS, a catalytic site was designed using naturalistic catalytic units followed by an estimation of the rate acceleration provided by a reoptimization of the catalytic site. Finally, the geometries of the sites were compared to the X-ray structures of related natural enzymes. Recent advances in computational algorithms and power, coupled with successes in computational protein design, have provided a powerful context for undertaking such an endeavor. We propose that theozymes are excellent candidates to serve as the active site models for design processes.

  16. Discovery of New Classes of Compounds that Reactivate Acetylcholinesterase Inhibited by Organophosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Francine S.; Pecic, Stevan; Tran, Timothy H.

    Acetylcholinesterase (AChE) that has been covalently inhibited by organophosphate compounds (OPCs), such as nerve agents and pesticides, has traditionally been reactivated by using nucleophilic oximes. There is, however, a clearly recognized need for new classes of compounds with the ability to reactivate inhibited AChE with improved in vivo efficacy. Here we describe our discovery of new functional groups—Mannich phenols and general bases—that are capable of reactivating OPC-inhibited AChE more efficiently than standard oximes and we describe the cooperative mechanism by which these functionalities are delivered to the active site. These discoveries, supported by preliminary in vivo results and crystallographic data,more » significantly broaden the available approaches for reactivation of AChE.« less

  17. Anti-acetylcholinesterase activity and antioxidant properties of extracts and fractions of Carpolobia lutea.

    PubMed

    Nwidu, Lucky Legbosi; Elmorsy, Ekramy; Thornton, Jack; Wijamunige, Buddhika; Wijesekara, Anusha; Tarbox, Rebecca; Warren, Averil; Carter, Wayne Grant

    2017-12-01

    There is an unmet need to discover new treatments for Alzheimer's disease. This study determined the anti-acetylcholinesterase (AChE) activity, DPPH free radical scavenging and antioxidant properties of Carpolobia lutea G. Don (Polygalaceae). The objective of this study is to quantify C. lutea anti-AChE, DPPH free radical scavenging, and antioxidant activities and cell cytotoxicity. Plant stem, leaves and roots were subjected to sequential solvent extractions, and screened for anti-AChE activity across a concentration range of 0.02-200 μg/mL. Plant DPPH radical scavenging activity, reducing power, and total phenolic and flavonoid contents were determined, and cytotoxicity evaluated using human hepatocytes. Carpolobia lutea exhibited concentration-dependent anti-AChE activity. The most potent inhibitory activity for the stem was the crude ethanol extract and hexane stem fraction oil (IC 50  = 140 μg/mL); for the leaves, the chloroform leaf fraction (IC 50  = 60 μg/mL); and for roots, the methanol, ethyl acetate and aqueous root fractions (IC 50  = 0.3-3 μg/mL). Dose-dependent free radical scavenging activity and reducing power were observed with increasing stem, leaf or root concentration. Total phenolic contents were the highest in the stem: ∼632 mg gallic acid equivalents/g for a hexane stem fraction oil. Total flavonoid content was the highest in the leaves: ∼297 mg quercetin equivalents/g for a chloroform leaf fraction. At 1 μg/mL, only the crude ethanol extract oil was significantly cytotoxic to hepatocytes. Carpolobia lutea possesses anti-AChE activity and beneficial antioxidant capacity indicative of its potential development as a treatment of Alzheimer's and other diseases characterized by a cholinergic deficit.

  18. In vitro and ex vivo anticholinesterase activities of Erythrina velutina leaf extracts.

    PubMed

    Santos, Wanderson Praxedes; da Silva Carvalho, Ana Carla; dos Santos Estevam, Charles; Santana, Antônio Euzébio Goulart; Marçal, Rosilene Moretti

    2012-07-01

    Erythrina velutina (EV) Willd (Fabaceae-Faboideae) is a medicinal tree that is commonly used in Brazil for the treatment of several central nervous system disorders. The anticholinesterase activity of EV is described in this work. Concentration-response curves (0-1.6 mg/mL) for EV leaf aqueous extract (AE) and alkaloid-rich extracts (AKEs) were performed in vitro. Cholinesterase inhibition was examined in mouse brains, as the cholinesterase source, and in pure acetylcholinesterase (AChE) or butyrylcholinesterase (BuChE). Mice were treated with AE or AKE (100, 200, and 400 mg/kg, p.o.) and their brains were used for the measurement of cholinesterase activity (CA) ex vivo. CA was inhibited by AE (IC(50) = 0.57 [0.43-0.75] mg/mL) and AKE (IC(50) = 0.52 [0.39-0.70] mg/mL) in brain homogenates in a concentration-dependent manner. The ex vivo experiments indicated that AE (400 mg/kg, p < 0.05, 32.2 ± 3.9% of inhibition) and AKE (all doses: p < 0.05-p < 0.001, 29.6 ± 3.2% as the maximum inhibition) significantly inhibited CA in the central nervous system after oral administration. AE and AKE inhibited AChE and BuChE activities in a concentration-dependent manner (AE: IC(50AChE) = 0.56 [0.38-0.81] mg/mL, IC(50BuChE) = 2.95 [1.51-5.76] mg/mL, AKE: IC(50AChE) = 0.87 [0.60-12.5] mg/mL, IC(50BuChE) = 2.67 [0.87-8.11] mg/mL). These data indicated that AE and AKE crossed the blood-brain barrier to inhibit CA in the brain. AE and AKE also exhibited a dual inhibitory action on acetyl- and BuChE.

  19. Blood cholinesterase activity levels of farmers in winter and hot season of Mae Taeng District, Chiang Mai Province, Thailand.

    PubMed

    Hongsibsong, Surat; Kerdnoi, Tanyaporn; Polyiem, Watcharapon; Srinual, Niphan; Patarasiriwong, Vanvimol; Prapamontol, Tippawan

    2018-03-01

    Organophosphate and carbamate pesticides have been widely used by farmers for crop protection and pest control. Inhibition of acetylcholinesterase (AChE) in erythrocyte and butyrylcholinesterase (BChE) in plasma is the predominant toxic effect of organophosphate and carbamate pesticides. Mae Taeng District, Chiang Mai Province, is one of the large areas of growing vegetables and fruits. Due to their regular exposure to these pesticides, the farmers are affected by this toxicity. The objective of the study was to examine the AChE and the BChE activity levels in the blood of 102 farmers for comparison of exposure in two cropping seasons, winter and hot. Blood samples were collected in December 2013 (winter) and April-June 2014 (hot). A total of 102 farmers joined the study, represented by 76 males (74.5 %) and 26 females (25.5 %). The age of most of the farmers was 53.4 ± 8.7 years. Out of 102, 21 farmers used carbamate pesticides. The results showed that the AChE and the BChE activity levels of all the farmers were 3.27 ± 0.84 Unit/mL and 2.15 ± 0.58 Unit/mL, respectively. The AChE and the BChE activity levels in males were 3.31 ± 0.88 Unit/mL and 1.97 ± 0.60 U/mL, respectively, during winter and 3.27 ± 0.82 Unit/mL and 2.15 ± 0.58 U/mL, respectively, during the hot season, and AChE and the BChE activity levels in females were 3.27 ± 0.82 U/mL and 2.44 ± 0.56 U/mL, respectively, during the hot season. The cholinesterase activity levels, both AChE and BChE, in the male farmers' blood had significant difference between the two seasons, while in the case of the female farmers, there was significant difference in the BChE activity levels, at p < 0.05. The BChE activity level was found to significantly correlate with self-spray (p < 0.05), which implies that the BChE activity decreased when they sprayed by themselves. The cholinesterase activity levels of the present study were lower than those of the other

  20. Changes in acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats.

    PubMed

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-08-01

    The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.

  1. Immunocytochemical localization of choline acetyltransferase and muscarinic ACh receptors in the antenna during development of the sphinx moth Manduca sexta.

    PubMed

    Clark, Julie; Meisner, Shannon; Torkkeli, Päivi H

    2005-04-01

    Immunocytochemistry with monoclonal antibodies was used to investigate the locations of muscarinic acetylcholine receptors (mAChR) and choline acetyltransferase (ChAT) in sections of the developing antennae of the moth Manduca sexta. The results were correlated with a previous morphological investigation in the developing antennae which allowed us to locate different cell types at various stages of development. Our findings indicated that the muscarinic cholinergic system was not restricted to the sensory neurons but was also present in glial and epidermal cells. By day 4-5 of adult development, immunoreactivity against both antibodies was present in the axons of the antennal nerve, and more intense labeling was present in sections from older pupae. At days 4-9, the cell bodies of the sensory neurons in the basal part of the epidermis were also intensely immunolabeled by the anti-mAChR antibody. In mature flagella, large numbers of cells, some with processes into hairs, were strongly labeled by both antibodies. Antennal glial cells were intensely immunolabeled with both antibodies by days 4-5, but in later stages, it was not possible to discriminate between glial and neural staining. At days 4-9, we observed a distinctly labeled layer of epidermal cells close to the developing cuticle. The expression of both ChAT and mAChRs by neurons in moth antennae may allow the regulation of excitability by endogenous ACh. Cholinergic communication between neurons and glia may be part of the system that guides axon elongation during development. The cholinergic system in the apical part of the developing epidermis could be involved in cuticle formation.

  2. Selectivity of antagonists for the Cys-loop native receptors for ACh, 5-HT and GABA in guinea-pig myenteric neurons.

    PubMed

    Juárez, E H; Ochoa-Cortés, F; Miranda-Morales, M; Espinosa-Luna, R; Montaño, L M; Barajas-López, C

    2014-01-01

    The three most common Cys-loop receptors expressed by myenteric neurons are nACh, 5-HT3 and GABAA . To investigate the function of these proteins researchers have used channel inhibitors such as hexamethonium (antagonist of nACh receptors), ondansetron (antagonist of 5-HT3 receptors), picrotoxin and bicuculline (both antagonists of GABAA receptors). The aim of this study was to investigate the specificity of these inhibitors on Cys-loop receptors of primary cultured neurons obtained from the guinea-pig small intestine. The whole-cell configuration of the patch clamp techniques was used to record membrane currents induced by ACh (IACh ), 5-HT (I5-HT ) and GABA (IGABA ) in the absence and the presence of various concentrations of hexamethonium, ondansetron, picrotoxin or bicuculline. The three Cys-loop receptors present in enteric neurons are expressed independently and they do not cross-desensitized. Hexamethonium inhibited IACh without affecting I5-HT and IGABA . Ondansetron inhibited I5-HT and also IACh but did not affect IGABA . Picrotoxin and bicuculline inhibited I5-HT , IACh and IGABA with different potency, being the lowest potency on 5-HT3 receptors. All these inhibitory effects were concentration dependent and reversible. Our observations showed that except for hexamethonium, all other inhibitors used here show different degrees of selectivity, which has to be considered when these antagonists are used in experimental studies aimed to investigate the functions of these receptors. In particular, in tissues expressing nACh receptors because these are the targets of all other inhibitors used here. The low potency of picrotoxin and bicuculline to inhibit 5-HT3 receptors suggests that these receptors are heteromeric proteins. © 2013 John Wiley & Sons Ltd.

  3. Design, synthesis and biological evaluation of 4'-aminochalcone-rivastigmine hybrids as multifunctional agents for the treatment of Alzheimer's disease.

    PubMed

    Xiao, Ganyuan; Li, Yan; Qiang, Xiaoming; Xu, Rui; Zheng, Yunxiaozhu; Cao, Zhongcheng; Luo, Li; Yang, Xia; Sang, Zhipei; Su, Fu; Deng, Yong

    2017-02-01

    A series of 4'-aminochalcone-revastigmine hybrids were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer's disease. The results showed that most of these compounds exhibited good multifunctional activities. In particular, compound 6c displayed the best inhibitory potency on acetylcholinesterase (IC 50 =4.91μM), and significant antioxidative activity with a value 2.83-fold of Trolox. The kinetic analysis of AChE inhibition revealed that 6c showed mixed-type inhibition, binding simultaneously to the catalytic active site and peripheral anionic site of AChE. In addition, 6c inhibited self-induced Aβ 1-42 aggregation and Cu 2+ -induced Aβ 1-42 aggregation by 89.5% and 79.7% at 25μM respectively, as well as acted as a selective monoamine oxidase B inhibitor (IC 50 =0.29μM) and a selective biometal chelator. Furthermore, 6c could cross the blood-brain barrier in vitro. Based on these results, Compound 6c could be considered as a very promising lead compound for Alzheimer's disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Diagnosis of anticholinesterase poisoning in birds: Effects of environmental temperature and underfeeding on cholinesterase activity

    USGS Publications Warehouse

    Rattner, B.A.

    1982-01-01

    Brain cholinesterase (ChE) activity has been used extensively to monitor exposure to organophosphorus (OP) and carbamate (CB) insecticides in wild birds. A series of factorial experiments was conducted to assess the extent to which noncontaminant-related environmental conditions might affect brain ChE activity and thereby confound the diagnosis of OP and CB intoxication. Underfeeding (restricting intake to 50% of control for 21 d or fasting for 1-3 d) or exposure to elevated temperature (36 + 1?C for 1 d) caused only slight reductions (10-17%) in brain AChE activity in adult male Japanese quail (Coturnix coturnix japonica). This degree of 'reduction' in brain AChE activity is considerably less than the 50% 'inhibition' criterion employed in the diagnosis of insecticide-induced mortality, but nevertheless approaches the 20% 'inhibition' level used as a conservative estimate of sublethal exposure to a known insecticide application.

  5. Novel coumarin derivatives bearing N-benzyl pyridinium moiety: potent and dual binding site acetylcholinesterase inhibitors.

    PubMed

    Alipour, Masoumeh; Khoobi, Mehdi; Foroumadi, Alireza; Nadri, Hamid; Moradi, Alireza; Sakhteman, Amirhossein; Ghandi, Mehdi; Shafiee, Abbas

    2012-12-15

    A novel series of coumarin derivatives linked to benzyl pyridinium group were synthesized and biologically evaluated as inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The enzyme inhibitory activity of synthesized compounds was measured using colorimetric Ellman's method. It was revealed that compounds 3e, 3h, 3l, 3r and 3s have shown higher activity compared with donepezil hydrochloride as standard drug. Most of the compounds in these series had nanomolar range IC(50) in which compound 3r (IC(50) = 0.11 nM) was the most active compound against acetylcholinesterase enzyme. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. T-cell antigenic sites involved in myasthenia gravis: correlations with antibody titre and disease severity.

    PubMed

    Berrih-Aknin, S; Cohen-Kaminsky, S; Lepage, V; Neumann, D; Bach, J F; Fuchs, S

    1991-02-01

    We have evaluated the ability of eight synthetic peptides corresponding to selected regions of the alpha-subunit from human (H) or Torpedo (T) acetylcholine receptor (AChR) to stimulate proliferative responses of peripheral blood lymphocytes (PBL) and thymic cells from patients with Myasthenia Gravis (MG) in comparison to healthy controls. Using PBL, two of the peptides were most reactive: in the 40 myasthenic patients tested, peptide 169-181 (H) induced significant proliferative responses in 10 patients and peptide 351-368 (H) in five, while there was no response in any of the 34 healthy controls tested. Interestingly, clear associations between proliferation to peptides and clinical data were observed. Indeed, among responding patients, all presented thymic hyperplasia and most showed a high anti-AChR Ab titre and/or a severe form of the disease. In addition, responses to AChR cytoplasmic sequences were observed only in severely affected patients. Correlation with HLA-DR haplotype, sought in a subgroup of patients, indicated that response to 169-181 (H) is associated with HLA-DR5 in the patients presenting a high anti-AChR antibody titre. Using thymic lymphocytes, few responses were obtained with the human peptides, suggesting that the frequency of autoreactive cells is lower than in the blood. Similar to PBL, responses to peptides were observed only with lymphocytes isolated from hyperplastic thymuses. The correlations observed between responses to peptides and clinical parameters underline the pathophysiological relevance of our data and indicate that pathogenic and nonpathogenic T-cell antigenic sites involved in the anti-AChR response could be identified by this approach.

  7. Inositol trisphosphate mediates cloned muscarinic receptor-activated conductances in transfected mouse fibroblast A9 L cells.

    PubMed Central

    Jones, S V; Barker, J L; Goodman, M B; Brann, M R

    1990-01-01

    1. The mechanism by which cloned m1 and m3 muscarinic receptor subtypes activate Ca2+-dependent channels was investigated with whole-cell and cell-attached patch-clamp recording techniques and with Fura-2 Ca2+ indicator dye measurements in cultured A9 L cells transfected with rat m1 and m3 cDNAs. 2. The Ca2+-dependent K+ and Cl- currents induced by muscarinic receptor stimulation were dependent on GTP. Responses were reduced when GTP was excluded from the intracellular recording solution or when GDP-beta-S was added. Intracellular GTP-gamma-S activated spontaneous fluctuations and permitted only one acetylcholine-(ACh) induced current response. These results implicate GTP-binding proteins (G protein) in the signal transduction pathway. This G protein is probably not pertussis toxin-sensitive as the ACh-induced electrical response was not abolished by pertussis toxin treatment. 3. Cell-attached single-channel recordings revealed activation of ion channels within the patch during application of ACh outside the patch, implying that second messengers might be involved in the ACh-induced response. Two types of K+ channel were activated, a discrete channel of 36 pS and channel activity calculated to be about 5 pS. 4. Application of 8-bromo cyclic AMP or 1-oleoyl-1,2-acetylglycerol (OAG) produced no electrical response and did not affect the ACh-induced responses. Phorbol myristic acetate (PMA) evoked no electrical response, but reduced the ACh-induced responses. 5. Inclusion of inositol 1,4,5-trisphosphate (IP3) in the intracellular pipette solution activated outward currents at -50 mV associated with an increase in conductance. The IP3-induced current response reversed polarity at -65 mV and showed a dependence on K+. Increasing the intracellular free Ca2+ concentration ([Ca2+]i) from 20 nM to 1 microM also induced an outward current response associated with an increase in conductance. Inclusion of inositol 1,3,4,5-tetrakisphosphate (IP4) in the intracellular solution

  8. Two distinctive β subunits are separately involved in two binding sites of imidacloprid with different affinities in Locusta migratoria manilensis.

    PubMed

    Bao, Haibo; Liu, Yang; Zhang, Yixi; Liu, Zewen

    2017-08-01

    Due to great diversity of nicotinic acetylcholine receptor (nAChR) subtypes in insects, one β subunit may be contained in numerous nAChR subtypes. In the locust Locusta migratoria, a model insect species with agricultural importance, the third β subunits (Locβ3) was identified in this study, which reveals at least three β subunits in this insect species. Imidacloprid was found to bind nAChRs in L. migratoria central nervous system at two sites with different affinities, with K d values of 0.16 and 10.31nM. The specific antisera (L1-1, L2-1 and L3-1) were raised against fusion proteins at the large cytoplasmic loop of Locβ1, Locβ2 and Locβ3 respectively. Specific immunodepletion of Locβ1 with antiserum L1-1 resulted in the selective loss of the low affinity binding site for imidacloprid, whereas the immunodepletion of Locβ3 with L3-1 caused the selective loss of the high affinity site. Dual immunodepletion with L1-1 and L3-1 could completely abolish imidacloprid binding. In contrast, the immunodepletion of Locβ2 had no significant effect on the specific [ 3 H]imidacloprid binding. Taken together, these data indicated that Locβ1 and Locβ3 were respectively contained in the low- and high-affinity binding sites for imidacloprid in L. migratoria, which is different to the previous finding in Nilaparvata lugens that Nlβ1 was in two binding sites for imidacloprid. The involvement of two β subunits separately in two binding sites may decrease the risk of imidacloprid resistance due to putative point mutations in β subunits in L. migratoria. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Inhibition of acetylcholinesterase by two genistein derivatives: kinetic analysis, molecular docking and molecular dynamics simulation.

    PubMed

    Fang, Jiansong; Wu, Ping; Yang, Ranyao; Gao, Li; Li, Chao; Wang, Dongmei; Wu, Song; Liu, Ai-Lin; Du, Guan-Hua

    2014-12-01

    In this study two genistein derivatives (G1 and G2) are reported as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and differences in the inhibition of AChE are described. Although they differ in structure by a single methyl group, the inhibitory effect of G1 (IC50=264 nmol/L) on AChE was 80 times stronger than that of G2 (IC50=21,210 nmol/L). Enzyme-kinetic analysis, molecular docking and molecular dynamics (MD) simulations were conducted to better understand the molecular basis for this difference. The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE. The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area (MM/GBSA) method were consistent with the experimental data. The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions (ΔE ele+ΔG GB) was responsible for the binding affinities of these two inhibitors. Additionally, analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124, Glu292, Val294 and Phe338 of AChE. In conclusion, the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds.

  10. Inflammation triggers constitutive activity and agonist-induced negative responses at M(3) muscarinic receptor in dental pulp.

    PubMed

    Sterin-Borda, Leonor; Orman, Betina; De Couto Pita, Alejandra; Borda, Enri

    2011-02-01

    The purpose of this study was to investigate whether the inflammation of rat dental pulp induces the muscarinic acetylcholine receptor (mAChR) constitutive receptor activity. Pulpitis was induced with bacterial lipolysaccharide in rat incisors dental pulp. Saturation assay with [(3)H]-quinuclidinyl benzilate ([(3)H] QNB), competitive binding with different mAChR antagonist subtypes, and nitric oxide synthase (NOS) activity were performed. A drastic change in expression and response to mAChR subtypes was observed in pulpitis. Inflamed pulp expressed high number of M(3) mAChR of high affinity, whereas the M(1) mAChR is the main subtype displayed in normal pulp. Consistent with the identification of the affinity constant (Ki) of M(3) and Ki of M(1) in both pulpitis and in normal pulps are the differences in the subtype functionality of these cells. In pulpitis, pilocarpine (1 × 10(-11) mol/L to 5 × 10(-9) mol/L) exerted an inhibitory action on NOS activity that was blocked by J 104129 fumarate (highest selective affinity to M(3) mAChR). In normal pulps, pilocarpine (1 × 10(-11) mol/L to 5 × 10(-9) mol/L) has no effect. NOS basal activity was 5.9 times as high in pulpitis as in the normal pulp as a result of the activation of inducible NOS. The irreversible pulpitis could induce a mAChR alteration, increasing the high-affinity receptor density and transduction-coupling efficiency of inducible NOS activity, leading to a spontaneously active conformation of the receptor. Pilocarpine acting as an inverse agonist might be useful therapeutically to prevent necrosis and subsequent loss of dental pulp. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Beneficial effects of Urtica dioica on scopolamine-induced memory impairment in rats: protection against acetylcholinesterase activity and neuronal oxidative damage.

    PubMed

    Ghasemi, Simagol; Moradzadeh, Malihe; Hosseini, Mahmoud; Beheshti, Farimah; Sadeghnia, Hamid Reza

    2018-05-10

    This study was conducted to investigate protective effects of Urtica dioica extract on acetylcholinesterase (AChE) activity and the oxidative damage of brain tissues in scopolamine-induced memory impairment model. The rats were treated with (1) saline (control), (2) scopolamine, and (3-5) the plant extract (20, 50, or 100 mg/kg) before scopolamine. The traveled distance and the latency to find the platform in Morris water maze (MWM) by scopolamine-treated group were longer while the time spent in target quadrant was shorter than those of the control. Scopolamine decreased the latency to enter the dark in passive avoidance test. Besides, it also increased AChE activity and malondialdehyde (MDA) concentration in the hippocampal and cortical tissues while decreased thiols content and superoxide dismutase (SOD) and catalase (CAT) activities in the brain (p < 0.01-p <0.001). Treatment by the extract reversed all the effects of scopolamine (p < 0.05-p <0.001). According to the results of present study, the beneficial effects of U. dioica on memory can be attributed to its protective effects on oxidative damage of brain tissue and AChE activity.

  12. Physiological response of the lichen Phaeophyscia hispidula (Ach.) Essl., to the urban environment of Pauri and Srinagar (Garhwal), Himalayas, India.

    PubMed

    Shukla, Vertika; Upreti, Dalip K

    2007-12-01

    The present study was designed with an aim to observe the effect of increasing urbanization and traffic activity on the physiology of a foliose lichen, Phaeophyscia hispidula (Ach.) Essl., collected from 13 different localities, growing in their natural habitat, in Pauri and Srinagar, two cities in the Himalayas. Six parameters i.e., Chl. a, Chl. b, total pigment, chlorophyll degradation, carotenoid and total protein content, proved the most useful to assess air pollution, were measured. Chlorophyll content and protein content are an efficient parameter to measure the air quality of a region. The study indicates that P. hispidula is pollution tolerant (adaptation) and able to withstand local emissions from vehicle exhausts.

  13. New derivatives of 3,4-dihydroisoquinoline-3-carboxylic acid with free-radical scavenging, D-amino acid oxidase, acetylcholinesterase and butyrylcholinesterase inhibitory activity.

    PubMed

    Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata

    2014-09-30

    A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.

  14. Active and regulatory sites of cytosolic 5'-nucleotidase.

    PubMed

    Pesi, Rossana; Allegrini, Simone; Careddu, Maria Giovanna; Filoni, Daniela Nicole; Camici, Marcella; Tozzi, Maria Grazia

    2010-12-01

    Cytosolic 5'-nucleotidase (cN-II), which acts preferentially on 6-hydroxypurine nucleotides, is essential for the survival of several cell types. cN-II catalyses both the hydrolysis of nucleotides and transfer of their phosphate moiety to a nucleoside acceptor through formation of a covalent phospho-intermediate. Both activities are regulated by a number of phosphorylated compounds, such as diadenosine tetraphosphate (Ap₄A), ADP, ATP, 2,3-bisphosphoglycerate (BPG) and phosphate. On the basis of a partial crystal structure of cN-II, we mutated two residues located in the active site, Y55 and T56. We ascertained that the ability to catalyse the transfer of phosphate depends on the presence of a bulky residue in the active site very close to the aspartate residue that forms the covalent phospho-intermediate. The molecular model indicates two possible sites at which adenylic compounds may interact. We mutated three residues that mediate interaction in the first activation site (R144, N154, I152) and three in the second (F127, M436 and H428), and found that Ap₄A and ADP interact with the same site, but the sites for ATP and BPG remain uncertain. The structural model indicates that cN-II is a homotetrameric protein that results from interaction through a specific interface B of two identical dimers that have arisen from interaction of two identical subunits through interface A. Point mutations in the two interfaces and gel-filtration experiments indicated that the dimer is the smallest active oligomerization state. Finally, gel-filtration and light-scattering experiments demonstrated that the native enzyme exists as a tetramer, and no further oligomerization is required for enzyme activation. © 2010 The Authors Journal compilation © 2010 FEBS.

  15. Regional acetylcholinesterase activity and its correlation with behavioral performances in 15-month old transgenic mice expressing the human C99 fragment of APP.

    PubMed

    Dumont, M; Lalonde, R; Ghersi-Egea, J-F; Fukuchi, K; Strazielle, C

    2006-09-01

    In addition to Abeta plaques and neurofibrillary tangles, Alzheimer's disease (AD) is characterized by increased brain levels of APP C-terminal fragments. In the present investigation, the cholinergic innervation in forebrain regions of transgenic mice (Tg13592) expressing the human betaAPP C99 fragment was compared to that of non-transgenic controls by measuring the activity of the non-specific catabolic enzyme, acetylcholinesterase (AChE). The AchE activity of Tg13592 mice was altered in several regions implicated in the functional loop of regulation between septum and hippocampus, vulnerable in Alzheimer pathology and critically involved in cognitive functions. In particular, AChE activity was upregulated in three basal forebrain regions containing cholinergic cell bodies, prelimbic cortex, anterior subiculum, and paraventricular thalamus, but downregulated in lateral septum and reticular thalamus. The increased activity in medial septum and anterior subiculum was linearly correlated with poor performances in a spatial learning task, possibly due to cell stress mechanisms. Because of some similarities in terms of neurochemistry and behavior, this mouse model may be of use for studying prodromal AD.

  16. Water in the Active Site of Ketosteroid Isomerase

    PubMed Central

    Hanoian, Philip; Hammes-Schiffer, Sharon

    2011-01-01

    Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two waters in the Y16S mutant, one water in the Y16F and FFF mutants, and intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of 1H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less

  17. Water in the active site of ketosteroid isomerase.

    PubMed

    Hanoian, Philip; Hammes-Schiffer, Sharon

    2011-08-09

    Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two in the Y16S mutant and one in the Y16F and FFF mutants, with intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of (1)H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less probable

  18. Acetylcholine from the mesopontine tegmental nuclei differentially affects methamphetamine induced locomotor activity and neurotransmitter levels in the mesolimbic pathway

    PubMed Central

    Dobbs, Lauren K.; Mark, Gregory P.

    2012-01-01

    Methamphetamine (MA) increases dopamine (DA) levels within the mesolimbic pathway and acetylcholine (ACh), a neurotransmitter known to increase DA cell firing and release and mediate reinforcement, within the ventral tegmental area (VTA). The laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei provide cholinergic input to the VTA; however, the contribution of LDT- and PPT-derived ACh to MA-induced DA and ACh levels and locomotor activation remains unknown. The first experiment examined the role of LDT-derived ACh in MA locomotor activation by reversibly inhibiting these neurons with bilateral intra-LDT microinjections of the M2 receptor agonist oxotremorine (OXO). Male C57BL/6 J mice were given a bilateral 0.1 µl OXO (0, 1, or 10 nM/side) microinjection immediately prior to IP saline or MA (2 mg/kg). The highest OXO concentration significantly inhibited both saline-and MA-primed locomotor activity. In a second set of experiments we characterized the individual contributions of ACh originating in the LDT or pedunculopontine tegmental nucleus (PPT) to MA-induced levels of ACh and DA by administering intra-LDT or PPT OXO and performing in vivo microdialysis in the VTA and NAc. Intra-LDT OXO dose-dependently attenuated the MA-induced increase in ACh within the VTA but had no effect on DA in NAc. Intra-PPT OXO had no effect on ACh or DA levels within the VTA or NAc, respectively. We conclude that LDT, but not PPT, ACh is important in locomotor behavior and the cholinergic, but not dopaminergic, response to systemic MA. PMID:21945297

  19. Active Site Characterization of Proteases Sequences from Different Species of Aspergillus.

    PubMed

    Morya, V K; Yadav, Virendra K; Yadav, Sangeeta; Yadav, Dinesh

    2016-09-01

    A total of 129 proteases sequences comprising 43 serine proteases, 36 aspartic proteases, 24 cysteine protease, 21 metalloproteases, and 05 neutral proteases from different Aspergillus species were analyzed for the catalytically active site residues using MEROPS database and various bioinformatics tools. Different proteases have predominance of variable active site residues. In case of 24 cysteine proteases of Aspergilli, the predominant active site residues observed were Gln193, Cys199, His364, Asn384 while for 43 serine proteases, the active site residues namely Asp164, His193, Asn284, Ser349 and Asp325, His357, Asn454, Ser519 were frequently observed. The analysis of 21 metalloproteases of Aspergilli revealed Glu298 and Glu388, Tyr476 as predominant active site residues. In general, Aspergilli species-specific active site residues were observed for different types of protease sequences analyzed. The phylogenetic analysis of these 129 proteases sequences revealed 14 different clans representing different types of proteases with diverse active site residues.

  20. Half-of-the-sites reactivity of outer-membrane phospholipase A against an active-site-directed inhibitor.

    PubMed

    Ubarretxena-Belandia, I; Cox, R C; Dijkman, R; Egmond, M R; Verheij, H M; Dekker, N

    1999-03-01

    The reaction of a novel active-site-directed phospholipase A1 inhibitor with the outer-membrane phospholipase A (OMPLA) was investigated. The inhibitor 1-p-nitrophenyl-octylphosphonate-2-tridecylcarbamoyl-3-et hanesulfonyl -amino-3-deoxy-sn-glycerol irreversibly inactivated OMPLA. The inhibition reaction did not require the cofactor calcium or an unprotonated active-site His142. The inhibition of the enzyme solubilized in hexadecylphosphocholine micelles was characterized by a rapid (t1/2 = 20 min) and complete loss of enzymatic activity, concurrent with the covalent modification of 50% of the active-site serines, as judged from the amount of p-nitrophenolate (PNP) released. Modification of the remaining 50% occurred at a much lower rate, indicative of half-of-the-sites reactivity against the inhibitor of this dimeric enzyme. Inhibition of monomeric OMPLA solubilized in hexadecyl-N,N-dimethyl-1-ammonio-3-propanesulfonate resulted in an equimolar monophasic release of PNP, concurrent with the loss of enzymatic activity (t1/2 = 14 min). The half-of-the-sites reactivity is discussed in view of the dimeric nature of this enzyme.