Holography optical memory recorded with error correcting bits
NASA Astrophysics Data System (ADS)
Song, J. H.; Moon, I.; Lee, Y. H.
2014-06-01
A novel error correction method is proposed for volume holographic memory systems. In this method the information of two adjacent binary bits is recorded in the space between the two bits, which is used to correct the errors in the data bits. The new method is compared with (15, 5) Reed—Solomon code using the same redundancy of 200% as ours. It is shown that the new method achieves the similar bit error rate as the RS code.
Adaptation of bit error rate by coding
NASA Astrophysics Data System (ADS)
Marguinaud, A.; Sorton, G.
1984-07-01
The use of coding in spacecraft wideband communication to reduce power transmission, save bandwith, and lower antenna specifications was studied. The feasibility of a coder decoder functioning at a bit rate of 10 Mb/sec with a raw bit error rate (BER) of 0.001 and an output BER of 0.000000001 is demonstrated. A single block code protection, and two coding levels protection are examined. A single level protection BCH code with 5 errors correction capacity, 16% redundancy, and interleaving depth 4 giving a coded block of 1020 bits is simple to implement, but has BER = 0.000000007. A single level BCH code with 7 errors correction capacity and 12% redundancy meets specifications, but is more difficult to implement. Two level protection with 9% BCH outer and 10% BCH inner codes, both levels with 3 errors correction capacity and 8% redundancy for a coded block of 7050 bits is the most complex, but offers performance advantages.
Error correction using a bit redundancy
NASA Astrophysics Data System (ADS)
Schweikert, Robert; Dolainsky, Frank; Foerster, Hans Peter; Vinck, Adrianus Johannes
1989-11-01
Communication satellite systems are featuring increased use of channel coding methods for error correction. This paper describes a procedure which uses only one bit redundancy. Decoding this code is extremely simple and permits a significant reduction in requisite transmission capacity. The code is particularly useful where high transmission speeds are needed. The structure of the code is well suited for realizing decoder installations with an application-specific, integrated circuit. The VLSI design for a CMOS-gate-array for such a realization is discussed. Concatenated with other codes, the present code leads to significant hardware savings; an example concatenation with the Reed-Solomon code is shown.
Design of bit error rate tester based on a high speed bit and sequence synchronization
NASA Astrophysics Data System (ADS)
Wang, Xuanmin; Zhao, Xiangmo; Zhang, Lichuan; Zhang, Yinglong
2013-03-01
In traditional BER (Bit Error Rate) tester, bit synchronization applied digital PLL and sequence synchronization utilized sequence's correlation.It resulted in a low speed on bit and sequence synchronization. this paper came up new method to realize bit and sequence synchronization .which were Bit-edge-tracking method and Immitting-sequence method.The BER tester based on FPGA was designed.The functions of inserting error-bit and removing the false sequence synchronization were added. The results of Debuging and simulating display that the time to realize bit synchronization is less than a bit width, the lagged time of the tracking bit pulse is 1/8 of the code cycle,and there is only a M sequence's cycle to realize sequence synchronization.This new BER tester has many advantages,such as a short time to realize bit and sequence synchronization,no false sequence synchronization,testing the ability of the receiving port's error -correcting and a simple hareware.
Using Bit Errors To Diagnose Fiber-Optic Links
NASA Technical Reports Server (NTRS)
Bergman, L. A.; Hartmayer, R.; Marelid, S.
1989-01-01
Technique for diagnosis of fiber-optic digital communication link in local-area network of computers based on measurement of bit-error rates. Variable optical attenuator inserted in optical fiber to vary power of received signal. Bit-error rate depends on ratio of peak signal power to root-mean-square noise in receiver. For optimum measurements, one selects bit-error rate between 10 to negative 8th power and 10 to negative 4th power. Greater rates result in low accuracy in determination of signal-to-noise ratios, while lesser rates require impractically long measurement times.
Theoretical Accuracy for ESTL Bit Error Rate Tests
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin
1998-01-01
"Bit error rate" [BER] for the purposes of this paper is the fraction of binary bits which are inverted by passage through a communication system. BER can be measured for a block of sample bits by comparing a received block with the transmitted block and counting the erroneous bits. Bit Error Rate [BER] tests are the most common type of test used by the ESTL for evaluating system-level performance. The resolution of the test is obvious: the measurement cannot be resolved more finely than 1/N, the number of bits tested. The tolerance is not. This paper examines the measurement accuracy of the bit error rate test. It is intended that this information will be useful in analyzing data taken in the ESTL. This paper is divided into four sections and follows a logically ordered presentation, with results developed before they are evaluated. However, first-time readers will derive the greatest benefit from this paper by skipping the lengthy section devoted to analysis, and treating it as reference material. The analysis performed in this paper is based on a Probability Density Function [PDF] which is developed with greater detail in a past paper, Theoretical Accuracy for ESTL Probability of Acquisition Tests, EV4-98-609.
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Schoggen, W. O.
1982-01-01
The design to achieve the required bit transition density for the Space Shuttle high rate multiplexes (HRM) data stream of the Space Laboratory Vehicle is reviewed. It contained a recommended circuit approach, specified the pseudo random (PN) sequence to be used and detailed the properties of the sequence. Calculations showing the probability of failing to meet the required transition density were included. A computer simulation of the data stream and PN cover sequence was provided. All worst case situations were simulated and the bit transition density exceeded that required. The Preliminary Design Review and the critical Design Review are documented. The Cover Sequence Generator (CSG) Encoder/Decoder design was constructed and demonstrated. The demonstrations were successful. All HRM and HRDM units incorporate the CSG encoder or CSG decoder as appropriate.
Achieving unequal error protection with convolutional codes
NASA Technical Reports Server (NTRS)
Mills, D. G.; Costello, D. J., Jr.; Palazzo, R., Jr.
1994-01-01
This paper examines the unequal error protection capabilities of convolutional codes. Both time-invariant and periodically time-varying convolutional encoders are examined. The effective free distance vector is defined and is shown to be useful in determining the unequal error protection (UEP) capabilities of convolutional codes. A modified transfer function is used to determine an upper bound on the bit error probabilities for individual input bit positions in a convolutional encoder. The bound is heavily dependent on the individual effective free distance of the input bit position. A bound relating two individual effective free distances is presented. The bound is a useful tool in determining the maximum possible disparity in individual effective free distances of encoders of specified rate and memory distribution. The unequal error protection capabilities of convolutional encoders of several rates and memory distributions are determined and discussed.
Measurements of Aperture Averaging on Bit-Error-Rate
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.; Burdge, Geoffrey L.; Wayne, David; Pescatore, Robert
2005-01-01
We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 in. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.
Improving bit error rate through multipath differential demodulation
NASA Astrophysics Data System (ADS)
Lize, Yannick Keith; Christen, Louis; Nuccio, Scott; Willner, Alan E.; Kashyap, Raman
2007-02-01
Differential phase shift keyed transmission (DPSK) is currently under serious consideration as a deployable datamodulation format for high-capacity optical communication systems due mainly to its 3 dB OSNR advantage over intensity modulation. However DPSK OSNR requirements are still 3 dB higher than its coherent counter part, PSK. Some strategies have been proposed to reduce this penalty through multichip soft detection but the improvement is limited to 0.3dB at BER 10-3. Better performance is expected from other soft-detection schemes using feedback control but the implementation is not straight forward. We present here an optical multipath error correction technique for differentially encoded modulation formats such as differential-phase-shift-keying (DPSK) and differential polarization shift keying (DPolSK) for fiber-based and free-space communication. This multipath error correction method combines optical and electronic logic gates. The scheme can easily be implemented using commercially available interferometers and high speed logic gates and does not require any data overhead therefore does not affect the effective bandwidth of the transmitted data. It is not merely compatible but also complementary to error correction codes commonly used in optical transmission systems such as forward-error-correction (FEC). The technique consists of separating the demodulation at the receiver in multiple paths. Each path consists of a Mach-Zehnder interferometer with an integer bit delay and a different delay is used in each path. Some basic logical operations follow and the three paths are compared using a simple majority vote algorithm. Receiver sensitivity is improved by 0.35 dB in simulations and 1.5 dB experimentally at BER of 10-3.
Design and verification of a bit error rate tester in Altera FPGA for optical link developments
NASA Astrophysics Data System (ADS)
Cao, T.; Chang, J.; Gong, D.; Liu, C.; Liu, T.; Xiang, A.; Ye, J.
2010-12-01
This paper presents a custom bit error rate (BER) tester implementation in an Altera Stratix II GX signal integrity development kit. This BER tester deploys a parallel to serial pseudo random bit sequence (PRBS) generator, a bit and link status error detector and an error logging FIFO. The auto-correlation pattern enables receiver synchronization without specifying protocol at the physical layer. The error logging FIFO records both bit error data and link operation events. The tester's BER and data acquisition functions are utilized in a proton test of a 5 Gbps serializer. Experimental and data analysis results are discussed.
Bit-to-bit error dependence in direct-sequence spread-spectrum multiple-access packet radio systems
NASA Astrophysics Data System (ADS)
Morrow, Robert K., Jr.
1988-05-01
Slotted direct-sequence spread-spectrum multiple-access (DS/SSMA) packet broadcasting systems with random signature sequences are analyzed within the framework of the lower three layers of the International Standards Organization Reference Model of Open Systems Interconnection. At the physical layer, we show that a widely-used Gaussian approximation (which we call the Standard Gaussian Approximation) for the probability of data bit error in a chip and phase asynchronous system is accurate only when there are a large number of simultaneous users on the channel; otherwise, this approximation can be optimistic by several orders of magnitude. For interfering signals with fixed delays and phases relative to the desired signal, however, the Standard Gaussian Approximation is quite accurate for any number of simultaneous users. To obtain a closer approximation to the probability of data bit error for an asynchronous system, we introduce the Improved Gaussian Approximation, which involves finding the distribution of the multiple-access interference variance over all possible delay and phase values and then taking a Gaussian approximation over the support of the distribution and averaging the results. To accurately analyze packet performance at the data link layer, we first use the theory of moment spaces to gain insight on the effect of bit-to-bit error dependence caused by the constant relative delays and (possibly) phases of the interfering signals over the duration of a desired packet.
Bit-Error-Rate Performance of a Gigabit Ethernet O-CDMA Technology Demonstrator (TD)
Hernandez, V J; Mendez, A J; Bennett, C V; Lennon, W J
2004-07-09
An O-CDMA TD based on 2-D (wavelength/time) codes is described, with bit-error-rate (BER) and eye-diagram measurements given for eight users. Simulations indicate that the TD can support 32 asynchronous users.
Shuttle bit rate synchronizer. [signal to noise ratios and error analysis
NASA Technical Reports Server (NTRS)
Huey, D. C.; Fultz, G. L.
1974-01-01
A shuttle bit rate synchronizer brassboard unit was designed, fabricated, and tested, which meets or exceeds the contractual specifications. The bit rate synchronizer operates at signal-to-noise ratios (in a bit rate bandwidth) down to -5 dB while exhibiting less than 0.6 dB bit error rate degradation. The mean acquisition time was measured to be less than 2 seconds. The synchronizer is designed around a digital data transition tracking loop whose phase and data detectors are integrate-and-dump filters matched to the Manchester encoded bits specified. It meets the reliability (no adjustments or tweaking) and versatility (multiple bit rates) of the shuttle S-band communication system through an implementation which is all digital after the initial stage of analog AGC and A/D conversion.
Reducing Measurement Error in Student Achievement Estimation
ERIC Educational Resources Information Center
Battauz, Michela; Bellio, Ruggero; Gori, Enrico
2008-01-01
The achievement level is a variable measured with error, that can be estimated by means of the Rasch model. Teacher grades also measure the achievement level but they are expressed on a different scale. This paper proposes a method for combining these two scores to obtain a synthetic measure of the achievement level based on the theory developed…
Bit-Error Ratio Testing of Xilinx FPGAs Using Pseudo-Random Binary Sequences
NASA Astrophysics Data System (ADS)
Goers, Andy
2008-10-01
With RHIC collision rates reaching orders of a MHz in pp reactions, it is vital that detector electronics are able to process the massive influx of data received every second. Much of this data processing is done by field programmable gate arrays (FPGAs). However, with any experimental setup, one must know the limitations of the apparatus. High speed electronics often see bit errors due to attenuation or simply from hardware failures. Bit errors in detector electronics can show up as bad data and even ``fake'' particles, so it is important to know how often these bit errors occur. Pseudo-random binary sequences (PRBS) are often used to test high speed electronics' bit-error ratios (BER), or errant bits per bits received. A PRBS is generated using polynomials creating a seemingly random sequence of binary numbers. A BER can be measured by sending out and receiving a known PRBS and checking for errors in the received sequence. I will present results of BER testing of gigabit transceiver protocols on Xilinx Virtex 5 LXT50T and LXT110T FPGAs for PHENIX detector electronics upgrades.
Bit error rate investigation of spin-transfer-switched magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Wang, Zihui; Zhou, Yuchen; Zhang, Jing; Huai, Yiming
2012-10-01
A method is developed to enable a fast bit error rate (BER) characterization of spin-transfer-torque magnetic random access memory magnetic tunnel junction (MTJ) cells without integrating with complementary metal-oxide semiconductor circuit. By utilizing the reflected signal from the devices under test, the measurement setup allows a fast measurement of bit error rates at >106, writing events per second. It is further shown that this method provides a time domain capability to examine the MTJ resistance states during a switching event, which can assist write error analysis in great detail. BER of a set of spin-transfer-torque MTJ cells has been evaluated by using this method, and bit error free operation (down to 10-8) for optimized in-plane MTJ cells has been demonstrated.
NASA Technical Reports Server (NTRS)
Ingels, F.; Schoggen, W. O.
1981-01-01
Several methods for increasing bit transition densities in a data stream are summarized, discussed in detail, and compared against constraints imposed by the 2 MHz data link of the space shuttle high rate multiplexer unit. These methods include use of alternate pulse code modulation waveforms, data stream modification by insertion, alternate bit inversion, differential encoding, error encoding, and use of bit scramblers. The psuedo-random cover sequence generator was chosen for application to the 2 MHz data link of the space shuttle high rate multiplexer unit. This method is fully analyzed and a design implementation proposed.
Cascade Error Projection with Low Bit Weight Quantization for High Order Correlation Data
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Daud, Taher
1998-01-01
In this paper, we reinvestigate the solution for chaotic time series prediction problem using neural network approach. The nature of this problem is such that the data sequences are never repeated, but they are rather in chaotic region. However, these data sequences are correlated between past, present, and future data in high order. We use Cascade Error Projection (CEP) learning algorithm to capture the high order correlation between past and present data to predict a future data using limited weight quantization constraints. This will help to predict a future information that will provide us better estimation in time for intelligent control system. In our earlier work, it has been shown that CEP can sufficiently learn 5-8 bit parity problem with 4- or more bits, and color segmentation problem with 7- or more bits of weight quantization. In this paper, we demonstrate that chaotic time series can be learned and generalized well with as low as 4-bit weight quantization using round-off and truncation techniques. The results show that generalization feature will suffer less as more bit weight quantization is available and error surfaces with the round-off technique are more symmetric around zero than error surfaces with the truncation technique. This study suggests that CEP is an implementable learning technique for hardware consideration.
Bit Error Probability for Maximum Likelihood Decoding of Linear Block Codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc P. C.; Rhee, Dojun
1996-01-01
In this paper, the bit error probability P(sub b) for maximum likelihood decoding of binary linear codes is investigated. The contribution of each information bit to P(sub b) is considered. For randomly generated codes, it is shown that the conventional approximation at high SNR P(sub b) is approximately equal to (d(sub H)/N)P(sub s), where P(sub s) represents the block error probability, holds for systematic encoding only. Also systematic encoding provides the minimum P(sub b) when the inverse mapping corresponding to the generator matrix of the code is used to retrieve the information sequence. The bit error performances corresponding to other generator matrix forms are also evaluated. Although derived for codes with a generator matrix randomly generated, these results are shown to provide good approximations for codes used in practice. Finally, for decoding methods which require a generator matrix with a particular structure such as trellis decoding or algebraic-based soft decision decoding, equivalent schemes that reduce the bit error probability are discussed.
NASA Technical Reports Server (NTRS)
Ingels, F.; Schoggen, W. O.
1981-01-01
The various methods of high bit transition density encoding are presented, their relative performance is compared in so far as error propagation characteristics, transition properties and system constraints are concerned. A computer simulation of the system using the specific PN code recommended, is included.
Optimal GSTDN/TDRSS bit error rate evaluation using limited sample sizes
NASA Technical Reports Server (NTRS)
Coffey, R. E.; Lawrence, G. M.; Stuart, J. R.
1982-01-01
Statistical studies of telemetry errors were made on data from the Solar Mesosphere Explorer (SME). Examination of frame sync words, as received at the ground station, indicated a wide spread of Bit Error Rates (BER) among stations. A study of the distribution of errors per station pass, however, showed that there was a tendency for the station software to add an even number of spurious errors to the count. A count of wild points in science data, rejecting drop-outs and other system errors, yielded an average random BER of 3.1 x 10 to the -6 with 99% confidence limits of 2.6 and 3.8 x 10 to the -6. The system errors are typically 5 to 100 times more frequent than the truly random errors.
Detecting bit-flip errors in a logical qubit using stabilizer measurements
Ristè, D.; Poletto, S.; Huang, M.-Z.; Bruno, A.; Vesterinen, V.; Saira, O.-P.; DiCarlo, L.
2015-01-01
Quantum data are susceptible to decoherence induced by the environment and to errors in the hardware processing it. A future fault-tolerant quantum computer will use quantum error correction to actively protect against both. In the smallest error correction codes, the information in one logical qubit is encoded in a two-dimensional subspace of a larger Hilbert space of multiple physical qubits. For each code, a set of non-demolition multi-qubit measurements, termed stabilizers, can discretize and signal physical qubit errors without collapsing the encoded information. Here using a five-qubit superconducting processor, we realize the two parity measurements comprising the stabilizers of the three-qubit repetition code protecting one logical qubit from physical bit-flip errors. While increased physical qubit coherence times and shorter quantum error correction blocks are required to actively safeguard the quantum information, this demonstration is a critical step towards larger codes based on multiple parity measurements. PMID:25923318
Multi-bits error detection and fast recovery in RISC cores
NASA Astrophysics Data System (ADS)
Jing, Wang; Xing, Yang; Yuanfu, Zhao; Weigong, Zhang; Jiao, Shen; Keni, Qiu
2015-11-01
The particles-induced soft errors are a major threat to the reliability of microprocessors. Even worse, multi-bits upsets (MBUs) are ever-increased due to the rapidly shrinking feature size of the IC on a chip. Several architecture-level mechanisms have been proposed to protect microprocessors from soft errors, such as dual and triple modular redundancies (DMR and TMR). However, most of them are inefficient to combat the growing multi-bits errors or cannot well balance the critical paths delay, area and power penalty. This paper proposes a novel architecture, self-recovery dual-pipeline (SRDP), to effectively provide soft error detection and recovery with low cost for general RISC structures. We focus on the following three aspects. First, an advanced DMR pipeline is devised to detect soft error, especially MBU. Second, SEU/MBU errors can be located by enhancing self-checking logic into pipelines stage registers. Third, a recovery scheme is proposed with a recovery cost of 1 or 5 clock cycles. Our evaluation of a prototype implementation exhibits that the SRDP can successfully detect particle-induced soft errors up to 100% and recovery is nearly 95%, the other 5% will inter a specific trap.
Characterization of multiple-bit errors from single-ion tracks in integrated circuits
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.; Edmonds, L. D.; Smith, L. S.
1989-01-01
The spread of charge induced by an ion track in an integrated circuit and its subsequent collection at sensitive nodal junctions can cause multiple-bit errors. The authors have experimentally and analytically investigated this phenomenon using a 256-kb dynamic random-access memory (DRAM). The effects of different charge-transport mechanisms are illustrated, and two classes of ion-track multiple-bit error clusters are identified. It is demonstrated that ion tracks that hit a junction can affect the lateral spread of charge, depending on the nature of the pull-up load on the junction being hit. Ion tracks that do not hit a junction allow the nearly uninhibited lateral spread of charge.
Error tolerance of topological codes with independent bit-flip and measurement errors
NASA Astrophysics Data System (ADS)
Andrist, Ruben S.; Katzgraber, Helmut G.; Bombin, H.; Martin-Delgado, M. A.
2016-07-01
Topological quantum error correction codes are currently among the most promising candidates for efficiently dealing with the decoherence effects inherently present in quantum devices. Numerically, their theoretical error threshold can be calculated by mapping the underlying quantum problem to a related classical statistical-mechanical spin system with quenched disorder. Here, we present results for the general fault-tolerant regime, where we consider both qubit and measurement errors. However, unlike in previous studies, here we vary the strength of the different error sources independently. Our results highlight peculiar differences between toric and color codes. This study complements previous results published in New J. Phys. 13, 083006 (2011), 10.1088/1367-2630/13/8/083006.
Bit error rate performance of Image Processing Facility high density tape recorders
NASA Technical Reports Server (NTRS)
Heffner, P.
1981-01-01
The Image Processing Facility at the NASA/Goddard Space Flight Center uses High Density Tape Recorders (HDTR's) to transfer high volume image data and ancillary information from one system to another. For ancillary information, it is required that very low bit error rates (BER's) accompany the transfers. The facility processes about 10 to the 11th bits of image data per day from many sensors, involving 15 independent processing systems requiring the use of HDTR's. When acquired, the 16 HDTR's offered state-of-the-art performance of 1 x 10 to the -6th BER as specified. The BER requirement was later upgraded in two steps: (1) incorporating data randomizing circuitry to yield a BER of 2 x 10 to the -7th and (2) further modifying to include a bit error correction capability to attain a BER of 2 x 10 to the -9th. The total improvement factor was 500 to 1. Attention is given here to the background, technical approach, and final results of these modifications. Also discussed are the format of the data recorded by the HDTR, the magnetic tape format, the magnetic tape dropout characteristics as experienced in the Image Processing Facility, the head life history, and the reliability of the HDTR's.
Design and Verification of an FPGA-based Bit Error Rate Tester
NASA Astrophysics Data System (ADS)
Xiang, Annie; Gong, Datao; Hou, Suen; Liu, Chonghan; Liang, Futian; Liu, Tiankuan; Su, Da-Shung; Teng, Ping-Kun; Ye, Jingbo
Bit error rate (BER) is the principle measure of performance of a data transmission link. With the integration of high-speed transceivers inside a field programmable gate array (FPGA), the BER testing can now be handled by transceiver-enabled FPGA hardware. This provides a cheaper alternative to dedicated table-top equipment and offers the flexibility of test customization and data analysis. This paper presents a BER tester implementation based on the Altera Stratix II GX and IV GT development boards. The architecture of the tester is described. Lab test results and field test data analysis are discussed. The Stratix II GX tester operates at up to 5 Gbps and the Stratix IV GT tester operates at up to 10 Gbps, both in 4 duplex channels. The tester deploys a pseudo random bit sequence (PRBS) generator and detector, a transceiver controller, and an error logger. It also includes a computer interface for data acquisition and user configuration. The tester's functionality was validated and its performance characterized in a point-to-point serial optical link setup. BER vs. optical receiver sensitivity was measured to emulate stressed link conditions. The Stratix II GX tester was also used in a proton test on a custom designed serializer chip to record and analyse radiation-induced errors.
High-speed communication detector characterization by bit error rate measurements
NASA Technical Reports Server (NTRS)
Green, S. I.
1978-01-01
Performance data taken on several candidate high data rate laser communications photodetectors is presented. Measurements of bit error rate versus signal level were made in both a 1064 nm system at 400 Mbps and a 532 nm system at 500 Mbps. RCA silicon avalanche photodiodes are superior at 1064 nm, but the Rockwell hybrid 3-5 avalanche photodiode preamplifiers offer potentially superior performance. Varian dynamic crossed field photomultipliers are superior at 532 nm, however, the RCA silicon avalanche photodiode is a close contender.
Digitally modulated bit error rate measurement system for microwave component evaluation
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary Jo W.; Budinger, James M.
1989-01-01
The NASA Lewis Research Center has developed a unique capability for evaluation of the microwave components of a digital communication system. This digitally modulated bit-error-rate (BER) measurement system (DMBERMS) features a continuous data digital BER test set, a data processor, a serial minimum shift keying (SMSK) modem, noise generation, and computer automation. Application of the DMBERMS has provided useful information for the evaluation of existing microwave components and of design goals for future components. The design and applications of this system for digitally modulated BER measurements are discussed.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Fujikawa, Gene; Svoboda, James S.; Lizanich, Paul J.
1990-01-01
Satellite communications links are subject to distortions which result in an amplitude versus frequency response which deviates from the ideal flat response. Such distortions result from propagation effects such as multipath fading and scintillation and from transponder and ground terminal hardware imperfections. Bit-error rate (BER) degradation resulting from several types of amplitude response distortions were measured. Additional tests measured the amount of BER improvement obtained by flattening the amplitude response of a distorted laboratory simulated satellite channel. The results of these experiments are presented.
Bit error rate testing of fiber optic data links for MMIC-based phased array antennas
NASA Technical Reports Server (NTRS)
Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.
1990-01-01
The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.
Bit error rate tester using fast parallel generation of linear recurring sequences
Pierson, Lyndon G.; Witzke, Edward L.; Maestas, Joseph H.
2003-05-06
A fast method for generating linear recurring sequences by parallel linear recurring sequence generators (LRSGs) with a feedback circuit optimized to balance minimum propagation delay against maximal sequence period. Parallel generation of linear recurring sequences requires decimating the sequence (creating small contiguous sections of the sequence in each LRSG). A companion matrix form is selected depending on whether the LFSR is right-shifting or left-shifting. The companion matrix is completed by selecting a primitive irreducible polynomial with 1's most closely grouped in a corner of the companion matrix. A decimation matrix is created by raising the companion matrix to the (n*k).sup.th power, where k is the number of parallel LRSGs and n is the number of bits to be generated at a time by each LRSG. Companion matrices with 1's closely grouped in a corner will yield sparse decimation matrices. A feedback circuit comprised of XOR logic gates implements the decimation matrix in hardware. Sparse decimation matrices can be implemented with minimum number of XOR gates, and therefore a minimum propagation delay through the feedback circuit. The LRSG of the invention is particularly well suited to use as a bit error rate tester on high speed communication lines because it permits the receiver to synchronize to the transmitted pattern within 2n bits.
Achieving high bit rate logical stochastic resonance in a bistable system by adjusting parameters
NASA Astrophysics Data System (ADS)
Yang, Ding-Xin; Gu, Feng-Shou; Feng, Guo-Jin; Yang, Yong-Min; Ball, Andrew
2015-11-01
The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not suitable for practical applications. First, we examine the responses of the bistable system with fixed parameters to different bit rate logic input signals, showing that an arbitrary high bit rate LSR in a bistable system cannot be achieved. Then, a normalized transform of the LSR bistable system is introduced through a kind of variable substitution. Based on the transform, it is found that LSR for arbitrary high bit rate logic signals in a bistable system can be achieved by adjusting the parameters of the system, setting bias value and amplifying the amplitudes of logic input signals and noise properly. Finally, the desired OR and AND logic outputs to high bit rate logic inputs in a bistable system are obtained by numerical simulations. The study might provide higher feasibility of LSR in practical engineering applications. Project supported by the National Natural Science Foundation of China (Grant No. 51379526).
Influence of wave-front aberrations on bit error rate in inter-satellite laser communications
NASA Astrophysics Data System (ADS)
Yang, Yuqiang; Han, Qiqi; Tan, Liying; Ma, Jing; Yu, Siyuan; Yan, Zhibin; Yu, Jianjie; Zhao, Sheng
2011-06-01
We derive the bit error rate (BER) of inter-satellite laser communication (lasercom) links with on-off-keying systems in the presence of both wave-front aberrations and pointing error, but without considering the noise of the detector. Wave-front aberrations induced by receiver terminal have no influence on the BER, while wave-front aberrations induced by transmitter terminal will increase the BER. The BER depends on the area S which is truncated out by the threshold intensity of the detector (such as APD) on the intensity function in the receiver plane, and changes with root mean square (RMS) of wave-front aberrations. Numerical results show that the BER rises with the increasing of RMS value. The influences of Astigmatism, Coma, Curvature and Spherical aberration on the BER are compared. This work can benefit the design of lasercom system.
Noise and measurement errors in a practical two-state quantum bit commitment protocol
NASA Astrophysics Data System (ADS)
Loura, Ricardo; Almeida, Álvaro J.; André, Paulo S.; Pinto, Armando N.; Mateus, Paulo; Paunković, Nikola
2014-05-01
We present a two-state practical quantum bit commitment protocol, the security of which is based on the current technological limitations, namely the nonexistence of either stable long-term quantum memories or nondemolition measurements. For an optical realization of the protocol, we model the errors, which occur due to the noise and equipment (source, fibers, and detectors) imperfections, accumulated during emission, transmission, and measurement of photons. The optical part is modeled as a combination of a depolarizing channel (white noise), unitary evolution (e.g., systematic rotation of the polarization axis of photons), and two other basis-dependent channels, namely the phase- and bit-flip channels. We analyze quantitatively the effects of noise using two common information-theoretic measures of probability distribution distinguishability: the fidelity and the relative entropy. In particular, we discuss the optimal cheating strategy and show that it is always advantageous for a cheating agent to add some amount of white noise—the particular effect not being present in standard quantum security protocols. We also analyze the protocol's security when the use of (im)perfect nondemolition measurements and noisy or bounded quantum memories is allowed. Finally, we discuss errors occurring due to a finite detector efficiency, dark counts, and imperfect single-photon sources, and we show that the effects are the same as those of standard quantum cryptography.
NASA Astrophysics Data System (ADS)
Kim, Do-Hyung; Cho, Janghyun; Moon, Hyungbae; Jeon, Sungbin; Park, No-Cheol; Yang, Hyunseok; Park, Kyoung-Su; Park, Young-Pil
2013-09-01
Optimized image restoration is suggested in angular-multiplexing-page-based holographic data storage. To improve the bit error rate (BER), an extended high frequency enhancement filter is recalculated from the point spread function (PSF) and Gaussian mask as the image restoration filter. Using the extended image restoration filter, the proposed system reduces the number of processing steps compared with the image upscaling method and provides better performance in BER and SNR. Numerical simulations and experiments were performed to verify the proposed method. The proposed system exhibited a marked improvement in BER from 0.02 to 0.002 for a Nyquist factor of 1.1, and from 0.006 to 0 for a Nyquist factor of 1.2. Moreover, more than 3 times faster performance in calculation time was achieved compared with image restoration with PSF upscaling owing to the reductions in the number of system process and calculation load.
SITE project. Phase 1: Continuous data bit-error-rate testing
NASA Astrophysics Data System (ADS)
Fujikawa, Gene; Kerczewski, Robert J.
1992-09-01
The Systems Integration, Test, and Evaluation (SITE) Project at NASA LeRC encompasses a number of research and technology areas of satellite communications systems. Phase 1 of this project established a complete satellite link simulator system. The evaluation of proof-of-concept microwave devices, radiofrequency (RF) and bit-error-rate (BER) testing of hardware, testing of remote airlinks, and other tests were performed as part of this first testing phase. This final report covers the test results produced in phase 1 of the SITE Project. The data presented include 20-GHz high-power-amplifier testing, 30-GHz low-noise-receiver testing, amplitude equalization, transponder baseline testing, switch matrix tests, and continuous-wave and modulated interference tests. The report also presents the methods used to measure the RF and BER performance of the complete system. Correlations of the RF and BER data are summarized to note the effects of the RF responses on the BER.
SITE project. Phase 1: Continuous data bit-error-rate testing
NASA Technical Reports Server (NTRS)
Fujikawa, Gene; Kerczewski, Robert J.
1992-01-01
The Systems Integration, Test, and Evaluation (SITE) Project at NASA LeRC encompasses a number of research and technology areas of satellite communications systems. Phase 1 of this project established a complete satellite link simulator system. The evaluation of proof-of-concept microwave devices, radiofrequency (RF) and bit-error-rate (BER) testing of hardware, testing of remote airlinks, and other tests were performed as part of this first testing phase. This final report covers the test results produced in phase 1 of the SITE Project. The data presented include 20-GHz high-power-amplifier testing, 30-GHz low-noise-receiver testing, amplitude equalization, transponder baseline testing, switch matrix tests, and continuous-wave and modulated interference tests. The report also presents the methods used to measure the RF and BER performance of the complete system. Correlations of the RF and BER data are summarized to note the effects of the RF responses on the BER.
NASA Astrophysics Data System (ADS)
Schmidt-Nielsen, Astrid
1987-08-01
The recognition of ICAO spelling alphabet words (ALFA, BRAVO, CHARLIE, etc.) is compared with diagnostic rhyme test (DRT) scores for the same conditions. The voice conditions include unprocessed speech; speech processed through the DOD standard linear-predictive-coding algorithm operating at 2400 bit/s with random error rates of 0, 2, 5, 8, and 12 percent; and speech processed through an 800-bit/s pattern-matching algorithm. The results suggest that, with distinctive vocabularies, word intelligibility can be expected to remain high even when DRT scores fall into the poor range. However, once the DRT scores fall below 75 percent, the intelligibility can be expected to fall off rapidly; at DRT scores below 50, the recognition of a distinctive vocabulary should also fall below 50 percent.
NASA Technical Reports Server (NTRS)
Marshall, Paul; Carts, Marty; Campbell, Art; Reed, Robert; Ladbury, Ray; Seidleck, Christina; Currie, Steve; Riggs, Pam; Fritz, Karl; Randall, Barb
2004-01-01
A viewgraph presentation that reviews recent SiGe bit error test data for different commercially available high speed SiGe BiCMOS chips that were subjected to various levels of heavy ion and proton radiation. Results for the tested chips at different operating speeds are displayed in line graphs.
Chen, Yu-Ta; Ou-Yang, Mang; Lee, Cheng-Chung
2012-06-01
Although widely recognized as a promising candidate for the next generation of data storage devices, holographic data storage systems (HDSS) incur adverse effects such as noise, misalignment, and aberration. Therefore, based on the structural similarity (SSIM) concept, this work presents a more accurate locating approach than the gray level weighting method (GLWM). Three case studies demonstrate the effectiveness of the proposed approach. Case 1 focuses on achieving a high performance of a Fourier lens in HDSS, Cases 2 and 3 replace the Fourier lens with a normal lens to decrease the quality of the HDSS, and Case 3 demonstrates the feasibility of a defocus system in the worst-case scenario. Moreover, the bit error rate (BER) is evaluated in several average matrices extended from the located position. Experimental results demonstrate that the proposed SSIM method renders a more accurate centering and a lower BER, lower BER of 2 dB than those of the GLWM in Cases 1 and 2, and BER of 1.5 dB in Case 3. PMID:22695607
Bit-error-rate testing of high-power 30-GHz traveling wave tubes for ground-terminal applications
NASA Technical Reports Server (NTRS)
Shalkhauser, Kurt A.; Fujikawa, Gene
1986-01-01
Tests were conducted at NASA Lewis to measure the bit-error-rate performance of two 30 GHz, 200 W, coupled-cavity traveling wave tubes (TWTs). The transmission effects of each TWT were investigated on a band-limited, 220 Mb/sec SMSK signal. The tests relied on the use of a recently developed digital simulation and evaluation system constructed at Lewis as part of the 30/20 GHz technology development program. The approach taken to test the 30 GHz tubes is described and the resultant test data are discussed. A description of the bit-error-rate measurement system and the adaptations needed to facilitate TWT testing are also presented.
Bounds of the bit error probability of a linear cyclic code over GF(2 exp l) and its extended code
NASA Technical Reports Server (NTRS)
Cheng, Unjeng; Huth, Gaylord K.
1988-01-01
An upper bound on the bit-error probability (BEP) of a linear cyclic code over GF(2 exp l) with hard-decision (HD) maximum-likelihood (ML) decoding on memoryless symmetric channels is derived. Performance results are presented for Reed-Solomon codes on GF(32), GF(64), and GF(128). Also, a union upper bound on the BEP of a linear cyclic code with either HD or soft-decision (SD) ML decoding is developed, as well as the corresponding bounds for the extended code of a linear cyclic code. Using these bounds, which are tight at low bit error rate, the performance advantage of SD and HD ML over bounded-distance decoding is established.
Bit-error-rate testing of high-power 30-GHz traveling-wave tubes for ground-terminal applications
NASA Technical Reports Server (NTRS)
Shalkhauser, Kurt A.
1987-01-01
Tests were conducted at NASA Lewis to measure the bit-error-rate performance of two 30-GHz 200-W coupled-cavity traveling-wave tubes (TWTs). The transmission effects of each TWT on a band-limited 220-Mbit/s SMSK signal were investigated. The tests relied on the use of a recently developed digital simulation and evaluation system constructed at Lewis as part of the 30/20-GHz technology development program. This paper describes the approach taken to test the 30-GHz tubes and discusses the test data. A description of the bit-error-rate measurement system and the adaptations needed to facilitate TWT testing are also presented.
NASA Technical Reports Server (NTRS)
Warner, Joseph D.; Theofylaktos, Onoufrios
2012-01-01
A method of determining the bit error rate (BER) of a digital circuit from the measurement of the analog S-parameters of the circuit has been developed. The method is based on the measurement of the noise and the standard deviation of the noise in the S-parameters. Once the standard deviation and the mean of the S-parameters are known, the BER of the circuit can be calculated using the normal Gaussian function.
NASA Astrophysics Data System (ADS)
Li, Mi; Li, Bowen; Zhang, Xuping; Song, Yuejiang; Liu, Jia; Tu, Guojie
2015-08-01
Space optical communication technique is attracting increasingly more attention because it owns advantages such as high security and great communication quality compared with microwave communication. As the space optical communication develops, people have already achieved the communication at data rate of Gb/s currently. The next generation for space optical system have goal of the higher data rate of 40Gb/s. However, the traditional optical communication system cannot satisfy it when the data rate of system is at such high extent. This paper will introduce ground optical communication system of 40Gb/s data rate as to achieve the space optical communication at high data rate. Speaking of the data rate of 40Gb/s, we must apply waveguide modulator to modulate the optical signal and magnify this signal by laser amplifier. Moreover, the more sensitive avalanche photodiode (APD) will be as the detector to increase the communication quality. Based on communication system above, we analyze character of communication quality in downlink of space optical communication system when data rate is at the level of 40Gb/s. The bit error rate (BER) performance, an important factor to justify communication quality, versus some parameter ratios is discussed. From results, there exists optimum ratio of gain factor and divergence angle, which shows the best BER performance. We can also increase ratio of receiving diameter and divergence angle for better communication quality. These results can be helpful to comprehend the character of optical communication system at high data rate and contribute to the system design.
Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate
Chau, H.F.
2002-12-01
A secret key shared through quantum key distribution between two cooperative players is secure against any eavesdropping attack allowed by the laws of physics. Yet, such a key can be established only when the quantum channel error rate due to eavesdropping or imperfect apparatus is low. Here, a practical quantum key distribution scheme by making use of an adaptive privacy amplification procedure with two-way classical communication is reported. Then, it is proven that the scheme generates a secret key whenever the bit error rate of the quantum channel is less than 0.5-0.1{radical}(5){approx_equal}27.6%, thereby making it the most error resistant scheme known to date.
Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate
NASA Astrophysics Data System (ADS)
Chau, H. F.
2002-12-01
A secret key shared through quantum key distribution between two cooperative players is secure against any eavesdropping attack allowed by the laws of physics. Yet, such a key can be established only when the quantum channel error rate due to eavesdropping or imperfect apparatus is low. Here, a practical quantum key distribution scheme by making use of an adaptive privacy amplification procedure with two-way classical communication is reported. Then, it is proven that the scheme generates a secret key whenever the bit error rate of the quantum channel is less than 0.5-0.1(5)≈27.6%, thereby making it the most error resistant scheme known to date.
Accurate Time-Dependent Traveling-Wave Tube Model Developed for Computational Bit-Error-Rate Testing
NASA Technical Reports Server (NTRS)
Kory, Carol L.
2001-01-01
prohibitively expensive, as it would require manufacturing numerous amplifiers, in addition to acquiring the required digital hardware. As an alternative, the time-domain TWT interaction model developed here provides the capability to establish a computational test bench where ISI or bit error rate can be simulated as a function of TWT operating parameters and component geometries. Intermodulation products, harmonic generation, and backward waves can also be monitored with the model for similar correlations. The advancements in computational capabilities and corresponding potential improvements in TWT performance may prove to be the enabling technologies for realizing unprecedented data rates for near real time transmission of the increasingly larger volumes of data demanded by planned commercial and Government satellite communications applications. This work is in support of the Cross Enterprise Technology Development Program in Headquarters' Advanced Technology & Mission Studies Division and the Air Force Office of Scientific Research Small Business Technology Transfer programs.
Alpha Dithering to Correct Low-Opacity 8 Bit Compositing Errors
Williams, P L; Frank, R J; LaMar, E C
2003-03-31
This paper describes and analyzes a dithering technique for accurately specifying small values of opacity ({alpha}) that would normally not be possible because of the limited number of bits available in the alpha channel of graphics hardware. This dithering technique addresses problems related to compositing numerous low-opacity semitransparent polygons to create volumetric effects with graphics hardware. The paper also describes the causes and a possible solution to artifacts that arise from parallel or distributed volume rendering using bricking on multiple GPU's.
Bit-error-rate testing of fiber optic data links for MMIC-based phased array antennas
NASA Technical Reports Server (NTRS)
Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.
1990-01-01
The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.
NASA Astrophysics Data System (ADS)
Nazrul Islam, A. K. M.; Majumder, S. P.
2015-06-01
Analysis is carried out to evaluate the conditional bit error rate conditioned on a given value of pointing error for a Free Space Optical (FSO) link with multiple receivers using Equal Gain Combining (EGC). The probability density function (pdf) of output signal to noise ratio (SNR) is also derived in presence of pointing error with EGC. The average BER of a SISO and SIMO FSO links are analytically evaluated by averaging the conditional BER over the pdf of the output SNR. The BER performance results are evaluated for several values of pointing jitter parameters and number of IM/DD receivers. The results show that, the FSO system suffers significant power penalty due to pointing error and can be reduced by increasing in the number of receivers at a given value of pointing error. The improvement of receiver sensitivity over SISO is about 4 dB and 9 dB when the number of photodetector is 2 and 4 at a BER of 10-10. It is also noticed that, system with receive diversity can tolerate higher value of pointing error at a given BER and transmit power.
Real-time minimal bit error probability decoding of convolutional codes
NASA Technical Reports Server (NTRS)
Lee, L. N.
1973-01-01
A recursive procedure is derived for decoding of rate R=1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e. fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications such as in the inner coding system for concatenated coding.
NASA Astrophysics Data System (ADS)
Andrist, Ruben S.; Wootton, James R.; Katzgraber, Helmut G.
2015-04-01
Current approaches for building quantum computing devices focus on two-level quantum systems which nicely mimic the concept of a classical bit, albeit enhanced with additional quantum properties. However, rather than artificially limiting the number of states to two, the use of d -level quantum systems (qudits) could provide advantages for quantum information processing. Among other merits, it has recently been shown that multilevel quantum systems can offer increased stability to external disturbances. In this study we demonstrate that topological quantum memories built from qudits, also known as Abelian quantum double models, exhibit a substantially increased resilience to noise. That is, even when taking into account the multitude of errors possible for multilevel quantum systems, topological quantum error-correction codes employing qudits can sustain a larger error rate than their two-level counterparts. In particular, we find strong numerical evidence that the thresholds of these error-correction codes are given by the hashing bound. Considering the significantly increased error thresholds attained, this might well outweigh the added complexity of engineering and controlling higher-dimensional quantum systems.
Extending the lifetime of a quantum bit with error correction in superconducting circuits.
Ofek, Nissim; Petrenko, Andrei; Heeres, Reinier; Reinhold, Philip; Leghtas, Zaki; Vlastakis, Brian; Liu, Yehan; Frunzio, Luigi; Girvin, S M; Jiang, L; Mirrahimi, Mazyar; Devoret, M H; Schoelkopf, R J
2016-08-25
Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations. The 'break-even' point of QEC--at which the lifetime of a qubit exceeds the lifetime of the constituents of the system--has so far remained out of reach. Although previous works have demonstrated elements of QEC, they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrödinger-cat states of a superconducting resonator. We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the |0〉f and |1〉f Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system. PMID:27437573
NASA Astrophysics Data System (ADS)
Suess, D.; Fuger, M.; Abert, C.; Bruckner, F.; Vogler, C.
2016-06-01
We report two effects that lead to a significant reduction of the switching field distribution in exchange spring media. The first effect relies on a subtle mechanism of the interplay between exchange coupling between soft and hard layers and anisotropy that allows significant reduction of the switching field distribution in exchange spring media. This effect reduces the switching field distribution by about 30% compared to single-phase media. A second effect is that due to the improved thermal stability of exchange spring media over single-phase media, the jitter due to thermal fluctuation is significantly smaller for exchange spring media than for single-phase media. The influence of this overall improved switching field distribution on the transition jitter in granular recording and the bit error rate in bit-patterned magnetic recording is discussed. The transition jitter in granular recording for a distribution of Khard values of 3% in the hard layer, taking into account thermal fluctuations during recording, is estimated to be a = 0.78 nm, which is similar to the best reported calculated jitter in optimized heat-assisted recording media.
Suess, D; Fuger, M; Abert, C; Bruckner, F; Vogler, C
2016-01-01
We report two effects that lead to a significant reduction of the switching field distribution in exchange spring media. The first effect relies on a subtle mechanism of the interplay between exchange coupling between soft and hard layers and anisotropy that allows significant reduction of the switching field distribution in exchange spring media. This effect reduces the switching field distribution by about 30% compared to single-phase media. A second effect is that due to the improved thermal stability of exchange spring media over single-phase media, the jitter due to thermal fluctuation is significantly smaller for exchange spring media than for single-phase media. The influence of this overall improved switching field distribution on the transition jitter in granular recording and the bit error rate in bit-patterned magnetic recording is discussed. The transition jitter in granular recording for a distribution of Khard values of 3% in the hard layer, taking into account thermal fluctuations during recording, is estimated to be a = 0.78 nm, which is similar to the best reported calculated jitter in optimized heat-assisted recording media. PMID:27245287
Suess, D.; Fuger, M.; Abert, C.; Bruckner, F.; Vogler, C.
2016-01-01
We report two effects that lead to a significant reduction of the switching field distribution in exchange spring media. The first effect relies on a subtle mechanism of the interplay between exchange coupling between soft and hard layers and anisotropy that allows significant reduction of the switching field distribution in exchange spring media. This effect reduces the switching field distribution by about 30% compared to single-phase media. A second effect is that due to the improved thermal stability of exchange spring media over single-phase media, the jitter due to thermal fluctuation is significantly smaller for exchange spring media than for single-phase media. The influence of this overall improved switching field distribution on the transition jitter in granular recording and the bit error rate in bit-patterned magnetic recording is discussed. The transition jitter in granular recording for a distribution of Khard values of 3% in the hard layer, taking into account thermal fluctuations during recording, is estimated to be a = 0.78 nm, which is similar to the best reported calculated jitter in optimized heat-assisted recording media. PMID:27245287
NASA Astrophysics Data System (ADS)
Li, Zexian; Latva-aho, Matti
2004-12-01
Multicarrier code division multiple access (MC-CDMA) is a promising technique that combines orthogonal frequency division multiplexing (OFDM) with CDMA. In this paper, based on an alternative expression for the[InlineEquation not available: see fulltext.]-function, characteristic function and Gaussian approximation, we present a new practical technique for determining the bit error rate (BER) of multiuser MC-CDMA systems in frequency-selective Nakagami-[InlineEquation not available: see fulltext.] fading channels. The results are applicable to systems employing coherent demodulation with maximal ratio combining (MRC) or equal gain combining (EGC). The analysis assumes that different subcarriers experience independent fading channels, which are not necessarily identically distributed. The final average BER is expressed in the form of a single finite range integral and an integrand composed of tabulated functions which can be easily computed numerically. The accuracy of the proposed approach is demonstrated with computer simulations.
NASA Astrophysics Data System (ADS)
Lin, Maria Yu; Teo, Kim Keng; Chan, Kheong Sann
2015-05-01
Shingled Magnetic Recording (SMR) is an upcoming technology to see the hard disk drive industry over until heat assisted magnetic recording or another technology matures. In this work, we study the impact of variations in media parameters on the raw channel bit error rate (BER) through micromagnetic simulations and the grain flipping probability channel model in the SMR situation. This study aims to provide feedback to media designers on how media property variations influence the SMR channel performance. In particular, we analyse the effect of variations in the anisotropy constant (Ku), saturation magnetization (Ms), easy axis (ez), grain size (gs), and exchange coupling (Ax), on the written micromagnetic output and the ensuing hysteresis loop. We also compare these analyses with the channel performance on signal to noise ratio (SNR) and the raw channel BER.
Bit-error-rate performance of non-line-of-sight UV transmission with spatial diversity reception.
Xiao, Houfei; Zuo, Yong; Wu, Jian; Li, Yan; Lin, Jintong
2012-10-01
In non-line-of-sight (NLOS) UV communication links using intensity modulation with direct detection, atmospheric turbulence-induced intensity fluctuations can significantly impair link performance. To mitigate turbulence-induced fading and, therefore, to improve the bit error rate (BER) performance, spatial diversity reception can be used over NLOS UV links, which involves the deployment of multiple receivers. The maximum-likelihood (ML) spatial diversity scheme is derived for spatially correlated NLOS UV links, and the influence of various fading correlation at different receivers on the BER performance is investigated. For the dual-receiver case, ML diversity detection is compared with equal gain combining and optimal combining schemes under different turbulence intensity conditions. PMID:23027306
NASA Technical Reports Server (NTRS)
Cox, Christina B.; Coney, Thom A.
1999-01-01
The Advanced Communications Technology Satellite (ACTS) communications system operates at Ka band. ACTS uses an adaptive rain fade compensation protocol to reduce the impact of signal attenuation resulting from propagation effects. The purpose of this paper is to present the results of an analysis characterizing the improvement in VSAT performance provided by this protocol. The metric for performance is VSAT bit error rate (BER) availability. The acceptable availability defined by communication system design specifications is 99.5% for a BER of 5E-7 or better. VSAT BER availabilities with and without rain fade compensation are presented. A comparison shows the improvement in BER availability realized with rain fade compensation. Results are presented for an eight-month period and for 24 months spread over a three-year period. The two time periods represent two different configurations of the fade compensation protocol. Index Terms-Adaptive coding, attenuation, propagation, rain, satellite communication, satellites.
NASA Astrophysics Data System (ADS)
Schmidt-Nielsen, Astrid; Kallman, Howard J.
1987-11-01
The comprehension of narrowband digital speech with bit errors was tested by using a sentence verification task. The use of predicates that were either strongly or weakly related to the subjects (e.g., A toad has warts./ A toad has eyes.) varied the difficulty of the verification task. The test conditions included unprocessed and processed speech using a 2.4 kb/s (kilobits per second) linear predictive coding (LPC) voice processing algorithm with random bit error rates of 0 percent, 2 percent, and 5 percent. In general, response accuracy decreased and reaction time increased with LPC processing and with increasing bit error rates. Weakly related true sentences and strongly related false sentences were more difficult than their counterparts. Interactions between sentence type and speech processing conditions are discussed.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Daugherty, Elaine S.; Kramarchuk, Ihor
1987-01-01
The performance of microwave systems and components for digital data transmission can be characterized by a plot of the bit-error rate as a function of the signal to noise ratio (or E sub b/E sub o). Methods for the efficient automated measurement of bit-error rates and signal-to-noise ratios, developed at NASA Lewis Research Center, are described. Noise measurement considerations and time requirements for measurement accuracy, as well as computer control and data processing methods, are discussed.
ERIC Educational Resources Information Center
Abedi, Razie; Latifi, Mehdi; Moinzadeh, Ahmad
2010-01-01
This study tries to answer some ever-existent questions in writing fields regarding approaching the most effective ways to give feedback to students' errors in writing by comparing the effect of error correction and error detection on the improvement of students' writing ability. In order to achieve this goal, 60 pre-intermediate English learners…
NASA Astrophysics Data System (ADS)
Hwang, Won-Young; Su, Hong-Yi; Bae, Joonwoo
2016-07-01
We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing.
Bit error rate performance of pi/4-DQPSK in a frequency-selective fast Rayleigh fading channel
NASA Technical Reports Server (NTRS)
Liu, Chia-Liang; Feher, Kamilo
1991-01-01
The bit error rate (BER) performance of pi/4-differential quadrature phase shift keying (DQPSK) modems in cellular mobile communication systems is derived and analyzed. The system is modeled as a frequency-selective fast Rayleigh fading channel corrupted by additive white Gaussian noise (AWGN) and co-channel interference (CCI). The probability density function of the phase difference between two consecutive symbols of M-ary differential phase shift keying (DPSK) signals is first derived. In M-ary DPSK systems, the information is completely contained in this phase difference. For pi/4-DQPSK, the BER is derived in a closed form and calculated directly. Numerical results show that for the 24 kBd (48 kb/s) pi/4-DQPSK operated at a carrier frequency of 850 MHz and C/I less than 20 dB, the BER will be dominated by CCI if the vehicular speed is below 100 mi/h. In this derivation, frequency-selective fading is modeled by two independent Rayleigh signal paths. Only one co-channel is assumed in this derivation. The results obtained are also shown to be valid for discriminator detection of M-ary DPSK signals.
Das, Bhargab; Joseph, Joby; Singh, Kehar
2007-08-01
One of the methods for smoothing the high intensity dc peak in the Fourier spectrum for reducing the reconstruction error in a Fourier transform volume holographic data storage system is to record holograms some distance away from or in front of the Fourier plane. We present the results of our investigation on the performance of such a defocused holographic data storage system in terms of bit-error rate and content search capability. We have evaluated the relevant recording geometry through numerical simulation, by obtaining the intensity distribution at the output detector plane. This has been done by studying the bit-error rate and the content search capability as a function of the aperture size and position of the recording material away from the Fourier plane. PMID:17676163
32-Bit-Wide Memory Tolerates Failures
NASA Technical Reports Server (NTRS)
Buskirk, Glenn A.
1990-01-01
Electronic memory system of 32-bit words corrects bit errors caused by some common type of failures - even failure of entire 4-bit-wide random-access-memory (RAM) chip. Detects failure of two such chips, so user warned that ouput of memory may contain errors. Includes eight 4-bit-wide DRAM's configured so each bit of each DRAM assigned to different one of four parallel 8-bit words. Each DRAM contributes only 1 bit to each 8-bit word.
Hwang, Won-Young; Su, Hong-Yi; Bae, Joonwoo
2016-01-01
We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing. PMID:27452275
Hwang, Won-Young; Su, Hong-Yi; Bae, Joonwoo
2016-01-01
We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing. PMID:27452275
ERIC Educational Resources Information Center
Prewett, Peter N.; McCaffery, Lucy K.
1993-01-01
Examined relationship between Kaufman Brief Intelligence Test (K-BIT), Stanford-Binet, two-subtests short form, and Kaufman Test of Educational Achievement (K-TEA) with population of 75 academically referred students. K-BIT correlated significantly with Stanford-Binet and K-TEA Math, Reading, and Spelling scores. Results support use of K-BIT as…
NASA Astrophysics Data System (ADS)
Wang, Ran-ran; Wang, Ping; Cao, Tian; Guo, Li-xin; Yang, Yintang
2015-07-01
Based on the space diversity reception, the binary phase-shift keying (BPSK) modulated free space optical (FSO) system over Málaga (M) fading channels is investigated in detail. Under independently and identically distributed and independently and non-identically distributed dual branches, the analytical average bit error rate (ABER) expressions in terms of H-Fox function for maximal ratio combining (MRC) and equal gain combining (EGC) diversity techniques are derived, respectively, by transforming the modified Bessel function of the second kind into the integral form of Meijer G-function. Monte Carlo (MC) simulation is also provided to verify the accuracy of the presented models.
Insight into error hiding: exploration of nursing students' achievement goal orientations.
Dunn, Karee E
2014-02-01
An estimated 50% of medication errors go unreported, and error hiding is costly to hospitals and patients. This study explored one issue that may facilitate error hiding. Descriptive statistics were used to examine nursing students' achievement goal orientations in a high-fidelity simulation course. Results indicated that although this sample of nursing students held high mastery goal orientations, they also held moderate levels of performance-approach and performance-avoidance goal orientations. These goal orientations indicate that this sample is at high risk for error hiding, which places the benefits that are typically gleaned from a strong mastery orientation at risk. Understanding variables, such as goal orientation, that can be addressed in nursing education to reduce error hiding is an area of research that needs to be further explored. This article discusses the study results and evidence-based instructional practices for this sample's achievement goal orientation profile. PMID:24444007
NASA Technical Reports Server (NTRS)
Safren, H. G.
1987-01-01
The effect of atmospheric turbulence on the bit error rate of a space-to-ground near infrared laser communications link is investigated, for a link using binary pulse position modulation and an avalanche photodiode detector. Formulas are presented for the mean and variance of the bit error rate as a function of signal strength. Because these formulas require numerical integration, they are of limited practical use. Approximate formulas are derived which are easy to compute and sufficiently accurate for system feasibility studies, as shown by numerical comparison with the exact formulas. A very simple formula is derived for the bit error rate as a function of signal strength, which requires only the evaluation of an error function. It is shown by numerical calculations that, for realistic values of the system parameters, the increase in the bit error rate due to turbulence does not exceed about thirty percent for signal strengths of four hundred photons per bit or less. The increase in signal strength required to maintain an error rate of one in 10 million is about one or two tenths of a db.
NASA Astrophysics Data System (ADS)
Murshid, Syed H.; Chakravarty, Abhijit
2011-06-01
Spatial domain multiplexing (SDM) utilizes co-propagation of exactly the same wavelength in optical fibers to increase the bandwidth by integer multiples. Input signals from multiple independent single mode pigtail laser sources are launched at different input angles into a single multimode carrier fiber. The SDM channels follow helical paths and traverse through the carrier fiber without interfering with each other. The optical energy from the different sources is spatially distributed and takes the form of concentric circular donut shaped rings, where each ring corresponds to an independent laser source. At the output end of the fiber these donut shaped independent channels can be separated either with the help of bulk optics or integrated concentric optical detectors. This presents the experimental setup and results for a four channel SDM system. The attenuation and bit error rate for individual channels of such a system is also presented.
ERIC Educational Resources Information Center
Arce-Ferrer, Alvaro; Frisbie, David A.; Kolen, Michael J.
2002-01-01
Studies of the achievement test results for about 490 school districts at grade 4 and about 420 districts at grade 5 show that the error variance of estimates of change at the school level is large enough to interfere with interpretations of annual change estimates. (SLD)
Bit error rate optimization of an acousto-optic tracking system for free-space laser communications
NASA Astrophysics Data System (ADS)
Sofka, J.; Nikulin, V.
2006-02-01
Optical communications systems have been gaining momentum with the increasing demand for transmission bandwidth in the last several years. Optical cable based solutions have become an attractive alternative to copper based system in the most bandwidth demanding applications due to increased bandwidth and longer inter-repeater distances. The promise of similar benefits over radio communications systems is driving the research into free space laser communications. Along with increased communications bandwidth, a free space laser communications system offers lower power consumption and the possibility for covert data links due to the concentration of the energy of the laser into a narrow beam. A narrow beam, however, results in a requirement for much more accurate and agile steering, so that a data link can be maintained in a scenario of communication platforms in relative motion or in the presence of vibrations. This paper presents a laser beam tracking system employing an acousto-optic cell capable of deflecting a laser beam at a very high rate (order of tens of kHz). The tracking system is subjected to vibrations to simulate a realistic implementation, resulting in the increase of BER. The performance of the system can be significantly improved through digital control. A constant gain controller is complemented by a Kalman filter the parameters of which are optimized to achieve the lowest possible BER for a given vibrations spectrum.
Yousefi, Masoud; Golmohammady, Shole; Mashal, Ahmad; Kashani, Fatemeh Dabbagh
2015-11-01
In this paper, on the basis of the extended Huygens-Fresnel principle, a semianalytical expression for describing on-axis scintillation index of a partially coherent flat-topped (PCFT) laser beam of weak to moderate oceanic turbulence is derived; consequently, by using the log-normal intensity probability density function, the bit error rate (BER) is evaluated. The effects of source factors (such as wavelength, order of flatness, and beam width) and turbulent ocean parameters (such as Kolmogorov microscale, relative strengths of temperature and salinity fluctuations, rate of dissipation of the mean squared temperature, and rate of dissipation of the turbulent kinetic energy per unit mass of fluid) on propagation behavior of scintillation index, and, hence, on BER, are studied in detail. Results indicate that, in comparison with a Gaussian beam, a PCFT laser beam with a higher order of flatness is found to have lower scintillations. In addition, the scintillation index and BER are most affected when salinity fluctuations in the ocean dominate temperature fluctuations. PMID:26560913
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru; Liao, Yu-Sheng
2004-04-01
The sensitivity of SONET p-i-n photodiode receivers with transimpedance amplifier (PIN-TIA) from OC-3 to OC-48 data rates measured by using a standard bit-error-rate tester (BERT) and a novel synchronous-modulation inter-mixing (SMIM) technique are compared. A threshold inter-mixed voltage of below 15.8 mV obtained by SMIM method corresponding to the sensitivity of PIN-TIA receiver beyond -32 dBm determined by BERT for the SONET OC-48 PIN-TIA receivers with a required BER of better than 10-10 is reported. the analysis interprets that the inter-mixed voltage for improving the PIN-TIA receiver sensitivity from -31 dBm to -33 dBm has to be increased from 12.5 mV to 20.4 mV. As compared to the BERT, the SMIM is a relatively simplified and low-cost technique for on-line mass-production diagnostics for measureing the sensitivity and evaluationg the BER performances of PIN-TIA receivers.
NASA Astrophysics Data System (ADS)
Kameda, Yoshio; Hashimoto, Yoshihito; Yorozu, Shinichi
We developed a 4×4 SFQ network switch prototype system and demonstrated its operation at 10Gbps. The system's core is composed of two SFQ chips: a 4×4 switch and a 6-channel voltage driver. The 4×4 switch chip contained both a switch fabric (i. e. a data path) and a switch scheduler (i. e. a controller). Both chips were attached to a multichip-module (MCM) carrier, which was then installed in a cryocooled system with 32 10-Gbps ports. Each chip contained about 2100 Josephson junctions on a 5-mm×5-mm die. An NEC standard 2.5-kA/cm2 fabrication process was used for the switch chip. We increased the critical current density to 10kA/cm2 for the driver chip to improve speed while maintaining wide bias margins. MCM implementation enabled us to use a hybrid critical current density technology. Voltage pulses were transferred between two chips through passive transmission lines on the MCM carrier. The cryocooled system was cooled down to about 4K using a two-stage 1-W cryocooler. We correctly operated the whole system at 10Gbps. The switch scheduler, which is driven by an on-chip clock generator, operated at 40GHz. The speed gap between SFQ and room temperature devices was filled by on-chip SFQ FIFO buffers or shift registers. We measured the bit error rate at 10Gbps and found that it was on the order of 10-13 for the 4×4 SFQ switch fabric. In addition, using semiconductor interface circuitry, we built a four-port SFQ Ethernet switch. All the components except for a compressor were installed in a standard 19-inch rack, filling a space 21 U (933.5mm or 36.75 inches) in height. After four personal computers (PCs) were connected to the switch, we have successfully transferred video data between them.
Liu, Yun; Zhao, Shanghong; Gong, Zizheng; Zhao, Jing; Dong, Chen; Li, Xuan
2016-04-10
Displacement damage (DD) effect induced bit error ratio (BER) performance degradations in on-off keying (OOK), pulse position modulation (PPM), differential phase-shift keying (DPSK), and homodyne binary phase shift keying (BPSK) based systems were simulated and discussed under 1 MeV neutron irradiation to a total fluence of 1×10^{12} n/cm^{2} in this paper. Degradation of main optoelectronic devices included in communication systems were analyzed on the basis of existing experimental data. The system BER degradation was subsequently simulated and the variations of BER with different neutron irradiation location were also achieved. The result shows that DD on an Er-doped fiber amplifier (EDFA) is the dominant cause of system degradation, and a BPSK-based system performs better than the other three systems against DD. In order to improve radiation hardness of communication systems against DD, protection and enhancement of EDFA are required, and the use of a homodyne BPSK modulation scheme is a considered choice. PMID:27139876
Inter-bit prediction based on maximum likelihood estimate for distributed video coding
NASA Astrophysics Data System (ADS)
Klepko, Robert; Wang, Demin; Huchet, Grégory
2010-01-01
Distributed Video Coding (DVC) is an emerging video coding paradigm for the systems that require low complexity encoders supported by high complexity decoders. A typical real world application for a DVC system is mobile phones with video capture hardware that have a limited encoding capability supported by base-stations with a high decoding capability. Generally speaking, a DVC system operates by dividing a source image sequence into two streams, key frames and Wyner-Ziv (W) frames, with the key frames being used to represent the source plus an approximation to the W frames called S frames (where S stands for side information), while the W frames are used to correct the bit errors in the S frames. This paper presents an effective algorithm to reduce the bit errors in the side information of a DVC system. The algorithm is based on the maximum likelihood estimation to help predict future bits to be decoded. The reduction in bit errors in turn reduces the number of parity bits needed for error correction. Thus, a higher coding efficiency is achieved since fewer parity bits need to be transmitted from the encoder to the decoder. The algorithm is called inter-bit prediction because it predicts the bit-plane to be decoded from previously decoded bit-planes, one bitplane at a time, starting from the most significant bit-plane. Results provided from experiments using real-world image sequences show that the inter-bit prediction algorithm does indeed reduce the bit rate by up to 13% for our test sequences. This bit rate reduction corresponds to a PSNR gain of about 1.6 dB for the W frames.
Low bit rate speech transmission
NASA Astrophysics Data System (ADS)
Rothweiler, J.; Bertrand, J.
The achievement of very low bit rates in all-digital military communications is important in tactical systems. Attention is presently given to a 400-2400 bit/sec system in which feature extraction is performed by standard linear predictive coding together with pattern matching by vector quantization and trellis coding. Some part of this system have been implemented in hardware, and others in simulation. Diagnostic rhyme test results are presented to indicate the performance of the system at various bit rates.
Least Reliable Bits Coding (LRBC) for high data rate satellite communications
NASA Astrophysics Data System (ADS)
Vanderaar, Mark; Wagner, Paul; Budinger, James
1992-02-01
An analysis and discussion of a bandwidth efficient multi-level/multi-stage block coded modulation technique called Least Reliable Bits Coding (LRBC) is presented. LRBC uses simple multi-level component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Further, soft-decision multi-stage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Using analytical expressions and tight performance bounds it is shown that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of Binary Phase Shift Keying (BPSK). Bit error rates (BER) vs. channel bit energy with Additive White Gaussian Noise (AWGN) are given for a set of LRB Reed-Solomon (RS) encoded 8PSK modulation formats with an ensemble rate of 8/9. All formats exhibit a spectral efficiency of 2.67 = (log2(8))(8/9) information bps/Hz. Bit by bit coded and uncoded error probabilities with soft-decision information are determined. These are traded with with code rate to determine parameters that achieve good performance. The relative simplicity of Galois field algebra vs. the Viterbi algorithm and the availability of high speed commercial Very Large Scale Integration (VLSI) for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.
Least Reliable Bits Coding (LRBC) for high data rate satellite communications
NASA Technical Reports Server (NTRS)
Vanderaar, Mark; Wagner, Paul; Budinger, James
1992-01-01
An analysis and discussion of a bandwidth efficient multi-level/multi-stage block coded modulation technique called Least Reliable Bits Coding (LRBC) is presented. LRBC uses simple multi-level component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Further, soft-decision multi-stage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Using analytical expressions and tight performance bounds it is shown that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of Binary Phase Shift Keying (BPSK). Bit error rates (BER) vs. channel bit energy with Additive White Gaussian Noise (AWGN) are given for a set of LRB Reed-Solomon (RS) encoded 8PSK modulation formats with an ensemble rate of 8/9. All formats exhibit a spectral efficiency of 2.67 = (log2(8))(8/9) information bps/Hz. Bit by bit coded and uncoded error probabilities with soft-decision information are determined. These are traded with with code rate to determine parameters that achieve good performance. The relative simplicity of Galois field algebra vs. the Viterbi algorithm and the availability of high speed commercial Very Large Scale Integration (VLSI) for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.
Achieving minimum-error discrimination of an arbitrary set of laser-light pulses
NASA Astrophysics Data System (ADS)
da Silva, Marcus P.; Guha, Saikat; Dutton, Zachary
2013-05-01
Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states—the quantum states of light emitted by an ideal laser—has immense practical importance. Due to fundamental limits imposed by quantum mechanics, such discrimination has a finite minimum probability of error. While concrete optical circuits for the optimal discrimination between two coherent states are well known, the generalization to larger sets of coherent states has been challenging. In this paper, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multicopy quantum hypotheses [Blume-Kohout, Croke, and Zwolak, arXiv:1201.6625]. As illustrative examples, we analyze the performance of discriminating a ternary alphabet and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show that our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.
A 25μm pitch LWIR staring focal plane array with pixel-level 15-bit ADC ROIC achieving 2mK NETD
NASA Astrophysics Data System (ADS)
Bisotto, Sylvette; de Borniol, Eric; Mollard, Laurent; Guellec, Fabrice; Peizerat, Arnaud; Tchagaspanian, Micha"l.; Castelein, Pierre; Maillart, Patrick
2010-10-01
CEA-Leti MINATEC has been involved in infrared focal plane array (IRFPA) development since many years, with performing HgCdTe in-house process from SWIR to LWIR and more recently in focusing its work on new ROIC architectures. The trend is to integrate advanced functions into the CMOS design for the purpose of applications demanding a breakthrough in Noise Equivalent Temperature Difference (NETD) performances (reaching the mK in LWIR band) or a high dynamic range (HDR) with high-gain APDs. In this paper, we present a mid-TV format focal plane array (FPA) operating in LWIR with 25μm pixel pitch, including a new readout IC (ROIC) architecture based on pixel-level charge packets counting. The ROIC has been designed in a standard 0.18μm 6-metal CMOS process, LWIR n/p HgCdTe detectors were fabricated with CEA-Leti in-house process. The FPA operates at 50Hz frame rate in a snapshot integrate-while-read (IWR) mode, allowing a large integration time. While classical pixel architectures are limited by the charge well capacity, this architecture exhibits a large well capacity (near 3Ge-) and the 15-bit pixel level ADC preserves an excellent signal-to-noise ratio (SNR) at full well. These characteristics are essential for LWIR FPAs as broad intra-scene dynamic range imaging requires high sensitivity. The main design challenges for this digital pixel array (SNR, power consumption and layout density) are discussed. The electro-optical results demonstrating a peak NETD value of 2mK and images taken with the FPA are presented. They validate both the pixel-level ADC concept and its circuit implementation. A previously unreleased SNR of 90dB is achieved.
ERIC Educational Resources Information Center
Keuning, Jos; Hemker, Bas
2014-01-01
The data collection of a cohort study requires making many decisions. Each decision may introduce error in the statistical analyses conducted later on. In the present study, a procedure was developed for estimation of the error made due to the composition of the sample, the item selection procedure, and the test equating process. The math results…
NASA Astrophysics Data System (ADS)
Gurkin, N. V.; Konyshev, V. A.; Nanii, O. E.; Novikov, A. G.; Treshchikov, V. N.; Ubaydullaev, R. R.
2015-01-01
We have studied experimentally and using numerical simulations and a phenomenological analytical model the dependences of the bit error rate (BER) on the signal power and length of a coherent single-span communication line with transponders employing polarisation division multiplexing and four-level phase modulation (100 Gbit s-1 DP-QPSK format). In comparing the data of the experiment, numerical simulations and theoretical analysis, we have found two optimal powers: the power at which the BER is minimal and the power at which the fade margin in the line is maximal. We have derived and analysed the dependences of the BER on the optical signal power at the fibre line input and the dependence of the admissible input signal power range for implementation of the communication lines with a length from 30 - 50 km up to a maximum length of 250 km.
Gurkin, N V; Konyshev, V A; Novikov, A G; Treshchikov, V N; Ubaydullaev, R R
2015-01-31
We have studied experimentally and using numerical simulations and a phenomenological analytical model the dependences of the bit error rate (BER) on the signal power and length of a coherent single-span communication line with transponders employing polarisation division multiplexing and four-level phase modulation (100 Gbit s{sup -1} DP-QPSK format). In comparing the data of the experiment, numerical simulations and theoretical analysis, we have found two optimal powers: the power at which the BER is minimal and the power at which the fade margin in the line is maximal. We have derived and analysed the dependences of the BER on the optical signal power at the fibre line input and the dependence of the admissible input signal power range for implementation of the communication lines with a length from 30 – 50 km up to a maximum length of 250 km. (optical transmission of information)
Efficient Bit-to-Symbol Likelihood Mappings
NASA Technical Reports Server (NTRS)
Moision, Bruce E.; Nakashima, Michael A.
2010-01-01
This innovation is an efficient algorithm designed to perform bit-to-symbol and symbol-to-bit likelihood mappings that represent a significant portion of the complexity of an error-correction code decoder for high-order constellations. Recent implementation of the algorithm in hardware has yielded an 8- percent reduction in overall area relative to the prior design.
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.; Courturier, Servanne; Levy, Yannick; Mills, Diane G.; Perez, Lance C.; Wang, Fu-Quan
1993-01-01
In his seminal 1948 paper 'The Mathematical Theory of Communication,' Claude E. Shannon derived the 'channel coding theorem' which has an explicit upper bound, called the channel capacity, on the rate at which 'information' could be transmitted reliably on a given communication channel. Shannon's result was an existence theorem and did not give specific codes to achieve the bound. Some skeptics have claimed that the dramatic performance improvements predicted by Shannon are not achievable in practice. The advances made in the area of coded modulation in the past decade have made communications engineers optimistic about the possibility of achieving or at least coming close to channel capacity. Here we consider the possibility in the light of current research results.
Performance of concatenated codes using 8-bit and 10-bit Reed-Solomon codes
NASA Technical Reports Server (NTRS)
Pollara, F.; Cheung, K.-M.
1989-01-01
The performance improvement of concatenated coding systems using 10-bit instead of 8-bit Reed-Solomon codes is measured by simulation. Three inner convolutional codes are considered: (7,1/2), (15,1/4), and (15,1/6). It is shown that approximately 0.2 dB can be gained at a bit error rate of 10(-6). The loss due to nonideal interleaving is also evaluated. Performance comparisons at very low bit error rates may be relevant for systems using data compression.
Positional information, in bits
Dubuis, Julien O.; Tkačik, Gašper; Wieschaus, Eric F.; Gregor, Thomas; Bialek, William
2013-01-01
Cells in a developing embryo have no direct way of “measuring” their physical position. Through a variety of processes, however, the expression levels of multiple genes come to be correlated with position, and these expression levels thus form a code for “positional information.” We show how to measure this information, in bits, using the gap genes in the Drosophila embryo as an example. Individual genes carry nearly two bits of information, twice as much as would be expected if the expression patterns consisted only of on/off domains separated by sharp boundaries. Taken together, four gap genes carry enough information to define a cell’s location with an error bar of along the anterior/posterior axis of the embryo. This precision is nearly enough for each cell to have a unique identity, which is the maximum information the system can use, and is nearly constant along the length of the embryo. We argue that this constancy is a signature of optimality in the transmission of information from primary morphogen inputs to the output of the gap gene network. PMID:24089448
Hood, Michael
1986-01-01
A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face.
Hood, M.
1986-02-11
A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face. 4 figs.
One-bit digital-to-analog converter based on rapid single flux quantum circuit
NASA Astrophysics Data System (ADS)
Hirayama, F.; Maezawa, M.; Suzuki, M.
2007-10-01
Rapid single flux quantum digital-to-analog (D/A) converters which synthesize arbitrary waveforms with metrological accuracy are under development. We propose a 1-bit RSFQ D/A converter which is expected to operate at higher sampling frequencies than the multi-bit converter and is suitable for multi-chip operation to achieve the output voltages exceeding 100 mV. Calculations of the noise power and the attenuation of the signal suggested that the rms error in a 10 kHz sine wave synthesized by the 1-bit converter with a third-order low-pass filter can be smaller than 10-7 at the sampling frequency of 100 MHz. A prototype 1-bit D/A converter was fabricated and the generation of dc voltages was confirmed as expected.
NASA Astrophysics Data System (ADS)
Koike, Hiroki; Ohsawa, Takashi; Miura, Sadahiko; Honjo, Hiroaki; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo
2015-04-01
A spintronic-based power-gated micro-processing unit (MPU) is proposed. It includes a power control circuit activated by the newly supported power-off instruction for the deep-sleep mode. These means enable the power-off procedure for the MPU to be executed appropriately. A test chip was designed and fabricated using 90 nm CMOS and an additional 100 nm MTJ process; it was successfully operated. The guideline of the energy reduction effects for this MPU was presented, using the estimation based on the measurement results of the test chip. The result shows that a large operation energy reduction of 1/28 can be achieved when the operation duty is 10%, under the condition of a sufficient number of idle clock cycles.
Bidirectional synchronization and hierarchical error correction for robust image transmission
NASA Astrophysics Data System (ADS)
Li, HongZhi; Chen, Chang W.
1998-12-01
In this paper, we present a novel joint source and channel image coding scheme for noisy channel transmission. The proposed scheme consists of two innovative components: (1) Intelligent bi-directional synchronization, and (2) Layered bit-plane error protection. The bi-directional synchronization is able to recover the coding synchronization when any single or even when two consecutive synchronization codes are corrupted by the channel noise. With synchronized partition, unequal error protection for each bit-plane can be designed to suit for a wide range of channel environments. The hierarchical error protection strategy is based on the analysis of bit-plane error sensitivity, aiming at achieving an optimal joint source and channel coding when the compressed image data are transmitted over noisy channels. Experimental results over extensive channel simulations show that the proposed scheme outperforms the approach proposed by Sherwood and Zeger who have reported the best numerical results in the literature.
Deterministic relativistic quantum bit commitment
NASA Astrophysics Data System (ADS)
Adlam, Emily; Kent, Adrian
2015-06-01
We describe new unconditionally secure bit commitment schemes whose security is based on Minkowski causality and the monogamy of quantum entanglement. We first describe an ideal scheme that is purely deterministic, in the sense that neither party needs to generate any secret randomness at any stage. We also describe a variant that allows the committer to proceed deterministically, requires only local randomness generation from the receiver, and allows the commitment to be verified in the neighborhood of the unveiling point. We show that these schemes still offer near-perfect security in the presence of losses and errors, which can be made perfect if the committer uses an extra single random secret bit. We discuss scenarios where these advantages are significant.
Dokos, James A.
1997-01-01
A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.
Dokos, J.A.
1997-12-30
A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.
Multi-Bit Quantum Private Query
NASA Astrophysics Data System (ADS)
Shi, Wei-Xu; Liu, Xing-Tong; Wang, Jian; Tang, Chao-Jing
2015-09-01
Most of the existing Quantum Private Queries (QPQ) protocols provide only single-bit queries service, thus have to be repeated several times when more bits are retrieved. Wei et al.'s scheme for block queries requires a high-dimension quantum key distribution system to sustain, which is still restricted in the laboratory. Here, based on Markus Jakobi et al.'s single-bit QPQ protocol, we propose a multi-bit quantum private query protocol, in which the user can get access to several bits within one single query. We also extend the proposed protocol to block queries, using a binary matrix to guard database security. Analysis in this paper shows that our protocol has better communication complexity, implementability and can achieve a considerable level of security.
Yang, Aiying; Li, Xiangming; Jiang, Tao
2012-04-23
Combination of overlapping pulse position modulation and pulse width modulation at the transmitter and grouped bit-flipping algorithm for low-density parity-check decoding at the receiver are proposed for visible Light Emitting Diode (LED) indoor communication system in this paper. The results demonstrate that, with the same Photodetector, the bit rate can be increased and the performance of the communication system can be improved by the scheme we proposed. Compared with the standard bit-flipping algorithm, the grouped bit-flipping algorithm can achieve more than 2.0 dB coding gain at bit error rate of 10^{-5}. By optimizing the encoding of overlapping pulse position modulation and pulse width modulation symbol, the performance can be further improved. It is reasonably expected that the bit rate can be upgraded to 400 Mbit/s with a single available LED, thus transmission rate beyond 1 Gbit/s is foreseen by RGB LEDs. PMID:22535108
ERIC Educational Resources Information Center
Rodrigo, Ma. Mercedes T.; Andallaza, Thor Collin S.; Castro, Francisco Enrique Vicente G.; Armenta, Marc Lester V.; Dy, Thomas T.; Jadud, Matthew C.
2013-01-01
In this article we quantitatively and qualitatively analyze a sample of novice programmer compilation log data, exploring whether (or how) low-achieving, average, and high-achieving students vary in their grasp of these introductory concepts. High-achieving students self-reported having the easiest time learning the introductory programming…
Barr, J. D.
1985-12-17
A drill bit comprises a bit body having an operating end face. A plurality of self-sharpening cutters are mounted in the bit body and extend through the operating end face. The cutters have cutting faces adapted to engage an earth formation and cut the earth formation to a desired three-dimensional profile. The cutting faces define surfaces having back rake angles which decrease with distance from the profile. The individual cutting faces may be inwardly concave in a plane parallel to the intended direction of motion of the cutter in use.
NASA Astrophysics Data System (ADS)
Bhooplapur, Sharad; Akbulut, Mehmetkan; Quinlan, Franklyn; Delfyett, Peter J.
2010-04-01
A novel scheme for recognition of electronic bit-sequences is demonstrated. Two electronic bit-sequences that are to be compared are each mapped to a unique code from a set of Walsh-Hadamard codes. The codes are then encoded in parallel on the spectral phase of the frequency comb lines from a frequency-stabilized mode-locked semiconductor laser. Phase encoding is achieved by using two independent spatial light modulators based on liquid crystal arrays. Encoded pulses are compared using interferometric pulse detection and differential balanced photodetection. Orthogonal codes eight bits long are compared, and matched codes are successfully distinguished from mismatched codes with very low error rates, of around 10-18. This technique has potential for high-speed, high accuracy recognition of bit-sequences, with applications in keyword searches and internet protocol packet routing.
Semi-fixed-length motion vector coding for H.263-based low bit rate video compression.
Côté, G; Gallant, M; Kossentini, F
1999-01-01
We present a semi-fixed-length motion vector coding method for H.263-based low bit rate video compression. The method exploits structural constraints within the motion field. The motion vectors are encoded using semi-fixed-length codes, yielding essentially the same levels of rate-distortion performance and subjective quality achieved by H.263's Huffman-based variable length codes in a noiseless environment. However, such codes provide substantially higher error resilience in a noisy environment. PMID:18267417
Bit corruption correlation and autocorrelation in a stochastic binary nano-bit system
NASA Astrophysics Data System (ADS)
Sa-nguansin, Suchittra
2014-10-01
The corruption process of a binary nano-bit model resulting from an interaction with N stochastically-independent Brownian agents (BAs) is studied with the help of Monte-Carlo simulations and analytic continuum theory to investigate the data corruption process through the measurement of the spatial two-point correlation and the autocorrelation of bit corruption at the origin. By taking into account a more realistic correlation between bits, this work will contribute to the understanding of the soft error or the corruption of data stored in nano-scale devices.
Numerical optimization of writer and media for bit patterned magnetic recording
NASA Astrophysics Data System (ADS)
Kovacs, A.; Oezelt, H.; Schabes, M. E.; Schrefl, T.
2016-07-01
In this work, we present a micromagnetic study of the performance potential of bit-patterned (BP) magnetic recording media via joint optimization of the design of the media and of the magnetic write heads. Because the design space is large and complex, we developed a novel computational framework suitable for parallel implementation on compute clusters. Our technique combines advanced global optimization algorithms and finite-element micromagnetic solvers. Targeting data bit densities of 4 Tb/in2, we optimize designs for centered, staggered, and shingled BP writing. The magnetization dynamics of the switching of the exchange-coupled composite BP islands of the media is treated micromagnetically. Our simulation framework takes into account not only the dynamics of on-track errors but also the thermally induced adjacent-track erasure. With co-optimized write heads, the results show superior performance of shingled BP magnetic recording where we identify two particular designs achieving write bit-error rates of 1.5 ×10-8 and 8.4 ×10-8 , respectively. A detailed description of the key design features of these designs is provided and contrasted with centered and staggered BP designs which yielded write bit error rates of only 2.8 ×10-3 (centered design) and 1.7 ×10-2 (staggered design) even under optimized conditions.
Critique of a Hughes shuttle Ku-band data sampler/bit synchronizer
NASA Technical Reports Server (NTRS)
Holmes, J. K.
1980-01-01
An alternative bit synchronizer proposed for shuttle was analyzed in a noise-free environment by considering the basic operation of the loop via timing diagrams and by linearizing the bit synchronizer as an equivalent, continuous, phased-lock loop (PLL). The loop is composed of a high-frequency phase-frequency detector which is capable of detecting both phase and frequency errors and is used to track the clock, and a bit transition detector which attempts to track the transitions of the data bits. It was determined that the basic approach was a good design which, with proper implementation of the accumulator, up/down counter and logic should provide accurate mid-bit sampling with symmetric bits. However, when bit asymmetry occurs, the bit synchronizer can lock up with a large timing error, yet be quasi-stable (timing will not change unless the clock and bit sequence drift). This will result in incorrectly detecting some bits.
Heat-assisted magnetic recording of bit-patterned media beyond 10 Tb/in2
NASA Astrophysics Data System (ADS)
Vogler, Christoph; Abert, Claas; Bruckner, Florian; Suess, Dieter; Praetorius, Dirk
2016-03-01
The limits of areal storage density that is achievable with heat-assisted magnetic recording are unknown. We addressed this central question and investigated the areal density of bit-patterned media. We analyzed the detailed switching behavior of a recording bit under various external conditions, allowing us to compute the bit error rate of a write process (shingled and conventional) for various grain spacings, write head positions, and write temperatures. Hence, we were able to optimize the areal density yielding values beyond 10 Tb/in2. Our model is based on the Landau-Lifshitz-Bloch equation and uses hard magnetic recording grains with a 5-nm diameter and 10-nm height. It assumes a realistic distribution of the Curie temperature of the underlying material, grain size, as well as grain and head position.
Morrell, Roger J.; Larson, David A.; Ruzzi, Peter L.
1994-01-01
A double acting bit holder that permits bits held in it to be resharpened during cutting action to increase energy efficiency by reducing the amount of small chips produced. The holder consist of: a stationary base portion capable of being fixed to a cutter head of an excavation machine and having an integral extension therefrom with a bore hole therethrough to accommodate a pin shaft; a movable portion coextensive with the base having a pin shaft integrally extending therefrom that is insertable in the bore hole of the base member to permit the moveable portion to rotate about the axis of the pin shaft; a recess in the movable portion of the holder to accommodate a shank of a bit; and a biased spring disposed in adjoining openings in the base and moveable portions of the holder to permit the moveable portion to pivot around the pin shaft during cutting action of a bit fixed in a turret to allow front, mid and back positions of the bit during cutting to lessen creation of small chip amounts and resharpen the bit during excavation use.
Continuous operation of high bit rate quantum key distribution
NASA Astrophysics Data System (ADS)
Dixon, A. R.; Yuan, Z. L.; Dynes, J. F.; Sharpe, A. W.; Shields, A. J.
2010-04-01
We demonstrate a quantum key distribution with a secure bit rate exceeding 1 Mbit/s over 50 km fiber averaged over a continuous 36 h period. Continuous operation of high bit rates is achieved using feedback systems to control path length difference and polarization in the interferometer and the timing of the detection windows. High bit rates and continuous operation allows finite key size effects to be strongly reduced, achieving a key extraction efficiency of 96% compared to keys of infinite lengths.
Bit-serial neuroprocessor architecture
NASA Technical Reports Server (NTRS)
Tawel, Raoul (Inventor)
2001-01-01
A neuroprocessor architecture employs a combination of bit-serial and serial-parallel techniques for implementing the neurons of the neuroprocessor. The neuroprocessor architecture includes a neural module containing a pool of neurons, a global controller, a sigmoid activation ROM look-up-table, a plurality of neuron state registers, and a synaptic weight RAM. The neuroprocessor reduces the number of neurons required to perform the task by time multiplexing groups of neurons from a fixed pool of neurons to achieve the successive hidden layers of a recurrent network topology.
... Sledding, Skiing, Snowboarding, Skating Crushes What's a Booger? Hey! A Louse Bit Me! KidsHealth > For Kids > Hey! A Louse Bit Me! Print A A A ... For Kids For Parents MORE ON THIS TOPIC Hey! A Gnat Bit Me! Hey! A Flea Bit ...
Lubrication of rotary rock bits
MacPhail, J.; Gardner, H.
1996-12-01
The rotary rock bit is designed so that both the bearings and cutting structure work together as one unit. Should the bearings wear prematurely before the cutting structure is worn out, then the complete bit will rapidly deteriorate leading to a shortened bit life. The optimum bit run is when the bearings and cutting structure wear out simultaneously, having obtained a good footage and rate of penetration. This paper discusses reasons why users of rotary air blast hole bits encounter premature bit failure due to bearing failure. It also discusses a lubrication system designed for rotary rock bits to combat bearing failure.
Dissipation-induced continuous quantum error correction for superconducting circuits
NASA Astrophysics Data System (ADS)
Cohen, Joachim; Mirrahimi, Mazyar
2014-12-01
Quantum error correction (QEC) is a crucial step towards long coherence times required for efficient quantum information processing. One major challenge in this direction concerns the fast real-time analysis of error syndrome measurements and the associated feedback control. Recent proposals on autonomous QEC (AQEC) have opened new perspectives to overcome this difficulty. Here, we design an AQEC scheme based on quantum reservoir engineering adapted to superconducting qubits. We focus on a three-qubit bit-flip code, where three transmon qubits are dispersively coupled to a few low-Q resonator modes. By applying only continuous-wave drives of fixed but well-chosen frequencies and amplitudes, we engineer an effective interaction Hamiltonian to evacuate the entropy created by eventual bit-flip errors. We provide a full analytical and numerical study of the protocol while introducing the main limitations on the achievable error correction rates.
NASA Astrophysics Data System (ADS)
Daly, Scott J.; Feng, Xiaofan
2003-01-01
Continuous tone, or "contone", imagery usually has 24 bits/pixel as a minimum, with eight bits each for the three primaries in typical displays. However, lower-cost displays constrain this number because of various system limitations. Conversely, high quality displays seek to achieve 9-10 bits/pixel/color, though there may be system bottlenecks limited at 8. The two main artifacts from reduced bit-depth are contouring and loss of amplitude detail; these can be prevented by dithering the image prior to these bit-depth losses. Early work in this area includes Roberts" noise modulation technique, Mista"s blue noise mask, Tyler"s technique of bit-stealing, and Mulligan"s use of the visual system"s spatiotemporal properties for spatiotemporal dithering. However, most halftoning/dithering work was primarily directed to displays at the lower end of bits/pixel (e.g., 1 bit as in halftoning) and higher ppi. Like Tyler, we approach the problem from the higher end of bits/pixel/color, say 6-8, and use available high frequency color content to generate even higher luminance amplitude resolution. Bit-depth extension with a high starting bit-depth (and often lower spatial resolution) changes the game substantially from halftoning experience. For example, complex algorithms like error diffusion and annealing are not needed, just the simple addition of noise. Instead of a spatial dither, it is better to use an amplitude dither, termed microdither by Pappas. We have looked at methods of generating the highest invisible opponent color spatiotemporal noise and other patterns, and have used Ahumada"s concept of equivalent input noise to guide our work. This paper will report on techniques and observations made in achieving contone quality on ~100 ppi 6 bits/pixel/color LCD displays with no visible dither patterns, noise, contours, or loss of amplitude detail at viewing distances as close as the near focus limit (~120 mm). These include the interaction of display nonlinearities and
Error control coding for multi-frequency modulation
NASA Astrophysics Data System (ADS)
Ives, Robert W.
1990-06-01
Multi-frequency modulation (MFM) has been developed at NPS using both quadrature-phase-shift-keyed (QPSK) and quadrature-amplitude-modulated (QAM) signals with good bit error performance at reasonable signal-to-noise ratios. Improved performance can be achieved by the introduction of error control coding. This report documents a FORTRAN simulation of the implementation of error control coding into an MFM communication link with additive white Gaussian noise. Four Reed-Solomon codes were incorporated, two for 16-QAM and two for 32-QAM modulation schemes. The error control codes used were modified from the conventional Reed-Solomon codes in that one information symbol was sacrificed to parity in order to use a simplified decoding algorithm which requires no iteration and enhances error detection capability. Bit error rates as a function of SNR and E(sub b)/N(sub 0) were analyzed, and bit error performance was weighed against reduction in information rate to determine the value of the codes.
Ford, G.A.
1987-09-22
A continuous coring drill bit is described comprising: (a) body means defining a vertical axis and adapted for connection to drill pipe and forming an internal body cavity disposed in eccentric relation with the vertical axis and a generally circular throat in communication with the body cavity for conducting drilling fluid. The throat defining a throat axis coincident with the vertical axis and being of a configuration permitting passage of a formation core into the body cavity; (b) a generally cylindrical tubular core breaker being rotatably mounted within the body cavity and defining a vertical axis of rotation of generally parallel and offset relation with the vertical axis of the body means; and (c) a buttress element extending inwardly from the core breaker and adapted to contact the formation core. Upon each rotation of the drill bit the buttress element applying transverse force to the core for fracturing of the core into sections sufficiently small for transport by the drilling fluid.
NASA Astrophysics Data System (ADS)
Kartiwa, Iwa; Jung, Sang-Min; Hong, Moon-Ki; Han, Sang-Kook
2013-06-01
We experimentally demonstrate the use of millimeter-wave signal generation by optical carrier suppression (OCS) method using single-drive Mach-Zehnder modulator as a light sources seed for 20 Gb/s WDM-OFDM-PON in 20-km single fiber loopback transmission based on cost-effective RSOA modulation. Practical discrete rate adaptive bit loading algorithm was employed in this colorless ONU system to maximize the achievable bit rate for an average bit error rate (BER) below 2 × 10-3.
Sandford, II, Maxwell T.; Handel, Theodore G.; Ettinger, J. Mark
1999-01-01
A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.
A novel bit-wise adaptable entropy coding technique
NASA Technical Reports Server (NTRS)
Kiely, A.; Klimesh, M.
2001-01-01
We present a novel entropy coding technique which is adaptable in that each bit to be encoded may have an associated probability esitmate which depends on previously encoded bits. The technique may have advantages over arithmetic coding. The technique can achieve arbitrarily small redundancy and admits a simple and fast decoder.
Core bit design reduces mud invasion, improves ROP
Clydesdale, G. ); Leseultre, A.; Lamine, E. )
1994-08-08
A recently developed core bit reduces fluid invasion in the cut core by minimizing the exposure to the drilling fluid and by increasing the rate of penetration (ROP). A high ROP during coring is one of the major factors in reducing mud filtrate invasion in cores. This new low-invasion polycrystalline diamond compact (PDC) core bit was designed to achieve a higher ROP than conventional PDC core bits without detriment to the cutting structure. The paper describes the bit and its operation, results of lab tests, fluid dynamics, and results of field tests.
Entanglement and Quantum Error Correction with Superconducting Qubits
NASA Astrophysics Data System (ADS)
Reed, Matthew
2015-03-01
Quantum information science seeks to take advantage of the properties of quantum mechanics to manipulate information in ways that are not otherwise possible. Quantum computation, for example, promises to solve certain problems in days that would take a conventional supercomputer the age of the universe to decipher. This power does not come without a cost however, as quantum bits are inherently more susceptible to errors than their classical counterparts. Fortunately, it is possible to redundantly encode information in several entangled qubits, making it robust to decoherence and control imprecision with quantum error correction. I studied one possible physical implementation for quantum computing, employing the ground and first excited quantum states of a superconducting electrical circuit as a quantum bit. These ``transmon'' qubits are dispersively coupled to a superconducting resonator used for readout, control, and qubit-qubit coupling in the cavity quantum electrodynamics (cQED) architecture. In this talk I will give an general introduction to quantum computation and the superconducting technology that seeks to achieve it before explaining some of the specific results reported in my thesis. One major component is that of the first realization of three-qubit quantum error correction in a solid state device, where we encode one logical quantum bit in three entangled physical qubits and detect and correct phase- or bit-flip errors using a three-qubit Toffoli gate. My thesis is available at arXiv:1311.6759.
Rig site computer optimizes bit weight
Enen, J.; Callas, N.P.; Sullivan, W.
1984-02-13
A new tool has been developed to optimize the factors which control hole angle so faster drilling rates can be achieved. A computer program determines best stabilizer placement to prevent sacrifice of bit weight. It also learns from the last bit run and corrects itself. The program can quickly evaluate the angle build or drop characteristics of a bottom hole assembly (BHA) and compare it with the well plan. A corollary program evaluates casing centralization and stand off. These techniques can save drilling time and money in several circumstances. Whenever time is lost in straight hole drilling because of low bit weight for angle control, the program suggests a better BHA and higher weights. In directional drilling, it finds the fastest approach through one or more targets, again at the highest practical bit weight. In both instances, weight and rpm are designed for the formation drillability; BHA is designed to control angle under those specific conditions. This in effect frees up incremental bit weight without undue risk of crooked hole.
NASA Technical Reports Server (NTRS)
Noble, Viveca K.
1993-01-01
There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.
NASA Astrophysics Data System (ADS)
Noble, Viveca K.
1993-11-01
There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.
NASA Technical Reports Server (NTRS)
Montesano, P. M.; Cook, B. D.; Sun, G.; Simard, M.; Zhang, Z.; Nelson, R. F.; Ranson, K. J.; Lutchke, S.; Blair, J. B.
2012-01-01
The synergistic use of active and passive remote sensing (i.e., data fusion) demonstrates the ability of spaceborne light detection and ranging (LiDAR), synthetic aperture radar (SAR) and multispectral imagery for achieving the accuracy requirements of a global forest biomass mapping mission. This data fusion approach also provides a means to extend 3D information from discrete spaceborne LiDAR measurements of forest structure across scales much larger than that of the LiDAR footprint. For estimating biomass, these measurements mix a number of errors including those associated with LiDAR footprint sampling over regional - global extents. A general framework for mapping above ground live forest biomass (AGB) with a data fusion approach is presented and verified using data from NASA field campaigns near Howland, ME, USA, to assess AGB and LiDAR sampling errors across a regionally representative landscape. We combined SAR and Landsat-derived optical (passive optical) image data to identify forest patches, and used image and simulated spaceborne LiDAR data to compute AGB and estimate LiDAR sampling error for forest patches and 100m, 250m, 500m, and 1km grid cells. Forest patches were delineated with Landsat-derived data and airborne SAR imagery, and simulated spaceborne LiDAR (SSL) data were derived from orbit and cloud cover simulations and airborne data from NASA's Laser Vegetation Imaging Sensor (L VIS). At both the patch and grid scales, we evaluated differences in AGB estimation and sampling error from the combined use of LiDAR with both SAR and passive optical and with either SAR or passive optical alone. This data fusion approach demonstrates that incorporating forest patches into the AGB mapping framework can provide sub-grid forest information for coarser grid-level AGB reporting, and that combining simulated spaceborne LiDAR with SAR and passive optical data are most useful for estimating AGB when measurements from LiDAR are limited because they minimized
NASA Technical Reports Server (NTRS)
Vo, Q. D.
1984-01-01
A program which was written to simulate Real Time Minimal-Byte-Error Probability (RTMBEP) decoding of full unit-memory (FUM) convolutional codes on a 3-bit quantized AWGN channel is described. This program was used to compute the symbol-error probability of FUM codes and to determine the signal to noise (SNR) required to achieve a bit error rate (BER) of 10 to the minus 6th power for corresponding concatenated systems. A (6,6/30) FUM code, 6-bit Reed-Solomon code combination was found to achieve the required BER at a SNR of 1.886 dB. The RTMBEP algorithm was then modified for decoding partial unit-memory (PUM) convolutional codes. A simulation program was also written to simulate the symbol-error probability of these codes.
Drilling bits optimized for the Paris basin
Vennin, H.C. Pouyastruc )
1989-07-31
Paris basin wells have been successfully drilled using steel-body bits with stud-type cutters. These bits offer the possibility of optimizing the bit-face based on the strata to be drilled, as well as allowing replacement of worn cutters. This article discusses: bit manufacturing; bit repair; optimizing bits; hydraulics.
Short, L.W. Jr.; Barr, J.D.
1987-04-28
A drag-type drill bit is described comprising: a bit body having an operating end face; and a multiplicity of superhard cutting elements interlocked to the body. The cutting elements define a multiplicity of cutting areas dispersed over the operating end face of the bit body in a pattern adapted to cause the cutting areas to cut an earth formation to a desired three-dimensional profile as the bit body is rotated, the cutting areas having back rake angles which become more negative with distance from the profile.
Simultaneous message framing and error detection
NASA Technical Reports Server (NTRS)
Frey, A. H., Jr.
1968-01-01
Circuitry simultaneously inserts message framing information and detects noise errors in binary code data transmissions. Separate message groups are framed without requiring both framing bits and error-checking bits, and predetermined message sequence are separated from other message sequences without being hampered by intervening noise.
Drill bit assembly for releasably retaining a drill bit cutter
Glowka, David A.; Raymond, David W.
2002-01-01
A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.
... Sledding, Skiing, Snowboarding, Skating Crushes What's a Booger? Hey! A Chigger Bit Me! KidsHealth > For Kids > Hey! A Chigger Bit Me! Print A A A ... For Kids For Parents MORE ON THIS TOPIC Hey! A Fire Ant Stung Me! Hey! A Gnat ...
Positional Information, in bits
NASA Astrophysics Data System (ADS)
Dubuis, Julien; Bialek, William; Wieschaus, Eric; Gregor, Thomas
2010-03-01
Pattern formation in early embryonic development provides an important testing ground for ideas about the structure and dynamics of genetic regulatory networks. Spatial variations in the concentration of particular transcription factors act as ``morphogens,'' driving more complex patterns of gene expression that in turn define cell fates, which must be appropriate to the physical location of the cells in the embryo. Thus, in these networks, the regulation of gene expression serves to transmit and process ``positional information.'' Here, using the early Drosophila embryo as a model system, we measure the amount of positional information carried by a group of four genes (the gap genes Hunchback, Kr"uppel, Giant and Knirps) that respond directly to the primary maternal morphogen gradients. We find that the information carried by individual gap genes is much larger than one bit, so that their spatial patterns provide much more than the location of an ``expression boundary.'' Preliminary data indicate that, taken together these genes provide enough information to specify the location of every row of cells along the embryo's anterior-posterior axis.
Experimental unconditionally secure bit commitment
NASA Astrophysics Data System (ADS)
Liu, Yang; Cao, Yuan; Curty, Marcos; Liao, Sheng-Kai; Wang, Jian; Cui, Ke; Li, Yu-Huai; Lin, Ze-Hong; Sun, Qi-Chao; Li, Dong-Dong; Zhang, Hong-Fei; Zhao, Yong; Chen, Teng-Yun; Peng, Cheng-Zhi; Zhang, Qiang; Cabello, Adan; Pan, Jian-Wei
2014-03-01
Quantum physics allows unconditionally secure communication between parties that trust each other. However, when they do not trust each other such as in the bit commitment, quantum physics is not enough to guarantee security. Only when relativistic causality constraints combined, the unconditional secure bit commitment becomes feasible. Here we experimentally implement a quantum bit commitment with relativistic constraints that offers unconditional security. The commitment is made through quantum measurements in two quantum key distribution systems in which the results are transmitted via free-space optical communication to two agents separated with more than 20 km. Bits are successfully committed with less than 5 . 68 ×10-2 cheating probability. This provides an experimental proof of unconditional secure bit commitment and demonstrates the feasibility of relativistic quantum communication.
Extremely Low Bit-Rate Nearest Neighbor Search Using a Set Compression Tree.
Arandjelović, Relja; Zisserman, Andrew
2014-12-01
The goal of this work is a data structure to support approximate nearest neighbor search on very large scale sets of vector descriptors. The criteria we wish to optimize are: (i) that the memory footprint of the representation should be very small (so that it fits into main memory); and (ii) that the approximation of the original vectors should be accurate. We introduce a novel encoding method, named a Set Compression Tree (SCT), that satisfies these criteria. It is able to accurately compress 1 million descriptors using only a few bits per descriptor. The large compression rate is achieved by not compressing on a per-descriptor basis, but instead by compressing the set of descriptors jointly. We describe the encoding, decoding and use for nearest neighbor search, all of which are quite straightforward to implement. The method, tested on standard benchmarks (SIFT1M and 80 Million Tiny Images), achieves superior performance to a number of state-of-the-art approaches, including Product Quantization, Locality Sensitive Hashing, Spectral Hashing, and Iterative Quantization. For example, SCT has a lower error using 5 bits than any of the other approaches, even when they use 16 or more bits per descriptor. We also include a comparison of all the above methods on the standard benchmarks. PMID:26353147
Adams, Diane L.; Norman, Helen; Burroughs, Valentine J.
2002-01-01
Medical practice today, more than ever before, places greater demands on physicians to see more patients, provide more complex medical services and adhere to stricter regulatory rules, leaving little time for coding and billing. Yet, the need to adequately document medical records, appropriately apply billing codes and accurately charge insurers for medical services is essential to the medical practice's financial condition. Many physicians rely on office staff and billing companies to process their medical bills without ever reviewing the bills before they are submitted for payment. Some physicians may not be receiving the payment they deserve when they do not sufficiently oversee the medical practice's coding and billing patterns. This article emphasizes the importance of monitoring and auditing medical record documentation and coding application as a strategy for achieving compliance and reducing billing errors. When medical bills are submitted with missing and incorrect information, they may result in unpaid claims and loss of revenue to physicians. Addressing Medical Audits, Part I--A Strategy for Achieving Compliance--CMS, JCAHO, NCQA, published January 2002 in the Journal of the National Medical Association, stressed the importance of preparing the medical practice for audits. The article highlighted steps the medical practice can take to prepare for audits and presented examples of guidelines used by regulatory agencies to conduct both medical and financial audits. The Medicare Integrity Program was cited as an example of guidelines used by regulators to identify coding errors during an audit and deny payment to providers when improper billing occurs. For each denied claim, payments owed to the medical practice are are also denied. Health care is, no doubt, a costly endeavor for health care providers, consumers and insurers. The potential risk to physicians for improper billing may include loss of revenue, fraud investigations, financial sanction
Inadvertently programmed bits in Samsung 128 Mbit flash devices: a flaky investigation
NASA Technical Reports Server (NTRS)
Swift, G.
2002-01-01
JPL's X2000 avionics design pioneers new territory by specifying a non-volatile memory (NVM) board based on flash memories. The Samsung 128Mb device chosen was found to demonstrate bit errors (mostly program disturbs) and block-erase failures that increase with cycling. Low temperature, certain pseudo- random patterns, and, probably, higher bias increase the observable bit errors. An experiment was conducted to determine the wearout dependence of the bit errors to 100k cycles at cold temperature using flight-lot devices (some pre-irradiated). The results show an exponential growth rate, a wide part-to-part variation, and some annealing behavior.
A VLSI single chip 8-bit finite field multiplier
NASA Technical Reports Server (NTRS)
Deutsch, L. J.; Shao, H. M.; Hsu, I. S.; Truong, T. K.
1985-01-01
A Very Large Scale Integration (VLSI) architecture and layout for an 8-bit finite field multiplier is described. The algorithm used in this design was developed by Massey and Omura. A normal basis representation of finite field elements is used to reduce the multiplication complexity. It is shown that a drastic improvement was achieved in this design. This multiplier will be used intensively in the implementation of an 8-bit Reed-Solomon decoder and in many other related projects.
Experimental unconditionally secure bit commitment.
Liu, Yang; Cao, Yuan; Curty, Marcos; Liao, Sheng-Kai; Wang, Jian; Cui, Ke; Li, Yu-Huai; Lin, Ze-Hong; Sun, Qi-Chao; Li, Dong-Dong; Zhang, Hong-Fei; Zhao, Yong; Chen, Teng-Yun; Peng, Cheng-Zhi; Zhang, Qiang; Cabello, Adán; Pan, Jian-Wei
2014-01-10
Quantum physics allows for unconditionally secure communication between parties that trust each other. However, when the parties do not trust each other such as in the bit commitment scenario, quantum physics is not enough to guarantee security unless extra assumptions are made. Unconditionally secure bit commitment only becomes feasible when quantum physics is combined with relativistic causality constraints. Here we experimentally implement a quantum bit commitment protocol with relativistic constraints that offers unconditional security. The commitment is made through quantum measurements in two quantum key distribution systems in which the results are transmitted via free-space optical communication to two agents separated with more than 20 km. The security of the protocol relies on the properties of quantum information and relativity theory. In each run of the experiment, a bit is successfully committed with less than 5.68×10(-2) cheating probability. This demonstrates the experimental feasibility of quantum communication with relativistic constraints. PMID:24483878
Experimental Unconditionally Secure Bit Commitment
NASA Astrophysics Data System (ADS)
Liu, Yang; Cao, Yuan; Curty, Marcos; Liao, Sheng-Kai; Wang, Jian; Cui, Ke; Li, Yu-Huai; Lin, Ze-Hong; Sun, Qi-Chao; Li, Dong-Dong; Zhang, Hong-Fei; Zhao, Yong; Chen, Teng-Yun; Peng, Cheng-Zhi; Zhang, Qiang; Cabello, Adán; Pan, Jian-Wei
2014-01-01
Quantum physics allows for unconditionally secure communication between parties that trust each other. However, when the parties do not trust each other such as in the bit commitment scenario, quantum physics is not enough to guarantee security unless extra assumptions are made. Unconditionally secure bit commitment only becomes feasible when quantum physics is combined with relativistic causality constraints. Here we experimentally implement a quantum bit commitment protocol with relativistic constraints that offers unconditional security. The commitment is made through quantum measurements in two quantum key distribution systems in which the results are transmitted via free-space optical communication to two agents separated with more than 20 km. The security of the protocol relies on the properties of quantum information and relativity theory. In each run of the experiment, a bit is successfully committed with less than 5.68×10-2 cheating probability. This demonstrates the experimental feasibility of quantum communication with relativistic constraints.
Optimal encryption of quantum bits
Boykin, P. Oscar; Roychowdhury, Vwani
2003-04-01
We show that 2n random classical bits are both necessary and sufficient for encrypting any unknown state of n quantum bits in an informationally secure manner. We also characterize the complete set of optimal protocols in terms of a set of unitary operations that comprise an orthonormal basis in a canonical inner product space. Moreover, a connection is made between quantum encryption and quantum teleportation that allows for a different proof of optimality of teleportation.
Simplified 2-bit photonic digital-to-analog conversion unit based on polarization multiplexing
NASA Astrophysics Data System (ADS)
Zhang, Fangzheng; Gao, Bindong; Ge, Xiaozhong; Pan, Shilong
2016-03-01
A 2-bit photonic digital-to-analog conversion unit is proposed and demonstrated based on polarization multiplexing. The proposed 2-bit digital-to-analog converter (DAC) unit is realized by optical intensity weighting and summing, and its complexity is greatly reduced compared with the traditional 2-bit photonic DACs. Performance of the proposed 2-bit DAC unit is experimentally investigated. The established 2-bit DAC unit achieves a good linear transfer function, and the effective number of bits is calculated to be 1.3. Based on the proposed 2-bit DAC unit, two DAC structures with higher (>2) bit resolutions are proposed and discussed, and the system complexity is expected to be reduced by half by using the proposed technique.
String bit models for superstring
Bergman, O.; Thorn, C.B.
1995-12-31
The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D {minus} 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D {minus} 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring.
String bit models for superstring
Bergman, O.; Thorn, C.B.
1995-11-15
We extend the model of string as a polymer of string bits to the case of superstring. We mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string we work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei-invariant theory in [({ital D}{minus}2)+1]-dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in {ital D}{minus}2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in {ital D}-dimensional space-time enjoying the full {ital N}=2 Poincare supersymmetric dynamics of type II-B superstring.
Modeling and analysis of stick-slip and bit bounce in oil well drillstrings equipped with drag bits
NASA Astrophysics Data System (ADS)
Kamel, Jasem M.; Yigit, Ahmet S.
2014-12-01
Rotary drilling systems equipped with drag bits or fixed cutter bits (also called PDC), used for drilling deep boreholes for the production and the exploration of oil and natural gas, often suffer from severe vibrations. These vibrations are detrimental to the bit and the drillstring causing different failures of equipment (e.g., twist-off, abrasive wear of tubulars, bit damage), and inefficiencies in the drilling operation (reduction of the rate of penetration (ROP)). Despite extensive research conducted in the last several decades, there is still a need to develop a consistent model that adequately captures all phenomena related to drillstring vibrations such as nonlinear cutting and friction forces at the bit/rock formation interface, drive system characteristics and coupling between various motions. In this work, a physically consistent nonlinear model for the axial and torsional motions of a rotating drillstring equipped with a drag bit is proposed. A more realistic cutting and contact model is used to represent bit/rock formation interaction at the bit. The dynamics of both drive systems for rotary and translational motions of the drillstring, including the hoisting system are also considered. In this model, the rotational and translational motions of the bit are obtained as a result of the overall dynamic behavior rather than prescribed functions or constants. The dynamic behavior predicted by the proposed model qualitatively agree well with field observations and published theoretical results. The effects of various operational parameters on the dynamic behavior are investigated with the objective of achieving a smooth and efficient drilling. The results show that with proper choice of operational parameters, it may be possible to minimize the effects of stick-slip and bit-bounce and increase the ROP. Therefore, it is expected that the results will help reduce the time spent in drilling process and costs incurred due to severe vibrations and consequent
NASA Technical Reports Server (NTRS)
Wilson, E.
2001-01-01
The Jet Propulsion Laboratory's (JPL) Advanced Multi-Mission Operations System (AMMOS) system processes data received from deep-space spacecraft, where error rates are high, bit rates are low, and every bit is precious. Frame synchronization and data extraction as performed by AMMOS enhanced data acquisition and reliability for maximum data return and validity.
De Groot, A.J.
1989-01-01
In this dissertation the author considered the design of bit - level systolic arrays where the basic computational unit consists of a simple one - bit logic unit, so that the systolic process is carried out at the level of individual bits. In order to pursue the foregoing research, several areas have been studied. First, the concept of systolic processing has been investigated. Several important algorithms were investigated and put into systolic form using graph-theoretic methods. The bit-level, word-level and block-level systolic arrays which have been designed for these algorithms exhibit linear speedup with respect to the number of processors and exhibit efficiency close to 100%, even with low interprocessor communication bandwidth. Block-level systolic arrays deal with blocks of data with block-level operations and communications. Block-level systolic arrays improve cell efficiency and are more efficient than their word-level counterparts. A comparison of bit-level, word-level and block-level systolic arrays was performed. In order to verify the foregoing theory and analysis a systolic processor called the SPRINT was developed to provide and environment where bit-level, word-level and block-level systolic algorithms could be confirmed by direct implementation rather than by computer simulation. The SPRINT is a supercomputer class, 64-element multiprocessor with a reconfigurable interconnection network. The theory has been confirmed by the execution on the SPRINT of the bit-level, word-level, and block-level systolic algorithms presented in the dissertation.
Drill bit method and apparatus
Davis, K.
1986-08-19
This patent describes a drill bit having a lower cutting face which includes a plurality of stud assemblies radially spaced from a longitudinal axial centerline of the bit, each stud assembly being mounted within a stud receiving socket which is formed in the bit cutting face. The method of removing the stud assemblies from the sockets of the bit face consists of: forming a socket passageway along the longitudinal axial centerline of the stud receiving socket and extending the passageway rearwardly of the socket; forming a blind passageway which extends from the bit cutting face into the bit body, and into intersecting relationship respective to the socket passageway; while arranging the socket passageway and the blind passageway laterally respective to one another; forming a wedge face on one side of a tool, forming a support post which has one side inclined to receive the wedge face of the tool thereagainst; forcing a ball to move from the cutting face of the bit, into the blind passageway, onto the support post, then into the socket passageway, and into abutting engagement with a rear end portion of the stud assembly; placing the wedge face against the side of the ball which is opposed to the stud assembly; forcing the tool to move into the blind passageway while part of the tool engages the blind passageway and the wedge face engages the ball and thereby forces the ball to move in a direction away from the blind passageway; applying sufficient force to the tool to cause the ball to engage the stud assembly with sufficient force to be moved outwardly in a direction away from the socket, thereby releasing the stud assembly from the socket.
Drill bit and method of renewing drill bit cutting face
Davis, K.
1987-04-07
This patent describes a drill bit having a lower formation engaging face which includes sockets formed therein, a stud assembly mounted in each socket. The method is described of removing the stud assemblies from the bit face comprises: placing a seal means about each stud assembly so that a stud assembly can sealingly reciprocate within a socket with a piston-like action; forming a reduced diameter passageway which extends rearwardly from communication with each socket to the exterior of the bit; flowing fluid into the passageway, thereby exerting fluid pressure against the rear end of the stud assembly; applying sufficient pressure to the fluid within the passageway to produce a pressure differential across the stud assembly to force the stud assembly to move outwardly in a direction away from the socket, thereby releasing the stud assembly from the socket.
Image data compression having minimum perceptual error
NASA Technical Reports Server (NTRS)
Watson, Andrew B. (Inventor)
1995-01-01
A method for performing image compression that eliminates redundant and invisible image components is described. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.
Bit by bit: the Darwinian basis of life.
Joyce, Gerald F
2012-01-01
All known examples of life belong to the same biology, but there is increasing enthusiasm among astronomers, astrobiologists, and synthetic biologists that other forms of life may soon be discovered or synthesized. This enthusiasm should be tempered by the fact that the probability for life to originate is not known. As a guiding principle in parsing potential examples of alternative life, one should ask: How many heritable "bits" of information are involved, and where did they come from? A genetic system that contains more bits than the number that were required to initiate its operation might reasonably be considered a new form of life. PMID:22589698
A unified framework for optimal multiple video object bit allocation
NASA Astrophysics Data System (ADS)
Chen, Zhenzhong; Ngan, King Ngi
2005-07-01
MPEG-4 supports object-level video coding. It is a challenge to design an optimal bit allocation strategy which considers not only how to distribute bits among multiple video objects (MVO's) but also how to achieve optimization between the texture and shape information. In this paper, we present a uniform framework for optimal multiple video object bit allocation in MPEG-4. We combine the rate-distortion (R-D) models for the texture and shape information of arbitrarily shaped video objects to develop the joint texture-shape rate-distortion models. The dynamic programming (DP) technique is applied to optimize the bit allocation for the multiple video objects. The simulation results demonstrate that the proposed joint texture-shape optimization algorithm outperforms the MPEG-4 verification model on the decoded picture quality.
Analysis of transmission error effects on the transfer of real-time simulation data
NASA Technical Reports Server (NTRS)
Credeur, L.
1977-01-01
An analysis was made to determine the effect of transmission errors on the quality of data transferred from the Terminal Area Air Traffic Model to a remote site. Data formating schemes feasible within the operational constraints of the data link were proposed and their susceptibility to both random bit error and to noise burst were investigated. It was shown that satisfactory reliability is achieved by a scheme formating the simulation output into three data blocks which has the priority data triply redundant in the first block in addition to having a retransmission priority on that first block when it is received in error.
A bit serial sequential circuit
NASA Technical Reports Server (NTRS)
Hu, S.; Whitaker, S.
1990-01-01
Normally a sequential circuit with n state variables consists of n unique hardware realizations, one for each state variable. All variables are processed in parallel. This paper introduces a new sequential circuit architecture that allows the state variables to be realized in a serial manner using only one next state logic circuit. The action of processing the state variables in a serial manner has never been addressed before. This paper presents a general design procedure for circuit construction and initialization. Utilizing pass transistors to form the combinational next state forming logic in synchronous sequential machines, a bit serial state machine can be realized with a single NMOS pass transistor network connected to shift registers. The bit serial state machine occupies less area than other realizations which perform parallel operations. Moreover, the logical circuit of the bit serial state machine can be modified by simply changing the circuit input matrix to develop an adaptive state machine.
NASA Astrophysics Data System (ADS)
Smarandache, Florentin; Christianto, V.
2011-03-01
Mu-bit is defined here as `multi-space bit'. It is different from the standard meaning of bit in conventional computation, because in Smarandache's multispace theory (also spelt multi-space) the bit is created simultaneously in many subspaces (that form together a multi-space). This new `bit' term is different from multi-valued-bit already known in computer technology, for example as MVLong. This new concept is also different from qu-bit from quantum computation terminology. We know that using quantum mechanics logic we could introduce new way of computation with `qubit' (quantum bit), but the logic remains Neumann. Now, from the viewpoint of m-valued multi-space logic, we introduce a new term: `mu-bit' (from `multi-space bit).
NASA Technical Reports Server (NTRS)
Noble, Viveca K.
1994-01-01
When data is transmitted through a noisy channel, errors are produced within the data rendering it indecipherable. Through the use of error control coding techniques, the bit error rate can be reduced to any desired level without sacrificing the transmission data rate. The Astrionics Laboratory at Marshall Space Flight Center has decided to use a modular, end-to-end telemetry data simulator to simulate the transmission of data from flight to ground and various methods of error control. The simulator includes modules for random data generation, data compression, Consultative Committee for Space Data Systems (CCSDS) transfer frame formation, error correction/detection, error generation and error statistics. The simulator utilizes a concatenated coding scheme which includes CCSDS standard (255,223) Reed-Solomon (RS) code over GF(2(exp 8)) with interleave depth of 5 as the outermost code, (7, 1/2) convolutional code as an inner code and CCSDS recommended (n, n-16) cyclic redundancy check (CRC) code as the innermost code, where n is the number of information bits plus 16 parity bits. The received signal-to-noise for a desired bit error rate is greatly reduced through the use of forward error correction techniques. Even greater coding gain is provided through the use of a concatenated coding scheme. Interleaving/deinterleaving is necessary to randomize burst errors which may appear at the input of the RS decoder. The burst correction capability length is increased in proportion to the interleave depth. The modular nature of the simulator allows for inclusion or exclusion of modules as needed. This paper describes the development and operation of the simulator, the verification of a C-language Reed-Solomon code, and the possibility of using Comdisco SPW(tm) as a tool for determining optimal error control schemes.
NASA Astrophysics Data System (ADS)
Noble, Viveca K.
1994-10-01
When data is transmitted through a noisy channel, errors are produced within the data rendering it indecipherable. Through the use of error control coding techniques, the bit error rate can be reduced to any desired level without sacrificing the transmission data rate. The Astrionics Laboratory at Marshall Space Flight Center has decided to use a modular, end-to-end telemetry data simulator to simulate the transmission of data from flight to ground and various methods of error control. The simulator includes modules for random data generation, data compression, Consultative Committee for Space Data Systems (CCSDS) transfer frame formation, error correction/detection, error generation and error statistics. The simulator utilizes a concatenated coding scheme which includes CCSDS standard (255,223) Reed-Solomon (RS) code over GF(2(exp 8)) with interleave depth of 5 as the outermost code, (7, 1/2) convolutional code as an inner code and CCSDS recommended (n, n-16) cyclic redundancy check (CRC) code as the innermost code, where n is the number of information bits plus 16 parity bits. The received signal-to-noise for a desired bit error rate is greatly reduced through the use of forward error correction techniques. Even greater coding gain is provided through the use of a concatenated coding scheme. Interleaving/deinterleaving is necessary to randomize burst errors which may appear at the input of the RS decoder. The burst correction capability length is increased in proportion to the interleave depth. The modular nature of the simulator allows for inclusion or exclusion of modules as needed. This paper describes the development and operation of the simulator, the verification of a C-language Reed-Solomon code, and the possibility of using Comdisco SPW(tm) as a tool for determining optimal error control schemes.
Bond, J.W.
1988-01-01
Data-compression codes offer the possibility of improving the thruput of existing communication systems in the near term. This study was undertaken to determine if data-compression codes could be utilized to provide message compression in a channel with up to a 0.10-bit error rate. The data-compression capabilities of codes were investigated by estimating the average number of bits-per-character required to transmit narrative files. The performance of the codes in a channel with errors (a noisy channel) was investigated in terms of the average numbers of characters-decoded-in-error and of characters-printed-in-error-per-bit-error. Results were obtained by encoding four narrative files, which were resident on an IBM-PC and use a 58-character set. The study focused on Huffman codes and suffix/prefix comma-free codes. Other data-compression codes, in particular, block codes and some simple variants of block codes, are briefly discussed to place the study results in context. Comma-free codes were found to have the most-promising data compression because error propagation due to bit errors are limited to a few characters for these codes. A technique was found to identify a suffix/prefix comma-free code giving nearly the same data compressions as a Huffman code with much less error propagation than the Huffman codes. Greater data compression can be achieved through the use of this comma-free code word assignments based on conditioned probabilities of character occurrence.
Hondo, Toshinobu; Kawai, Yousuke; Toyoda, Michisato
2015-01-01
Rapid acquisition of time-of-flight (TOF) spectra from fewer acquisitions on average was investigated using the newly introduced 12-bit digitizer, Keysight model U5303A. This is expected to achieve a spectrum acquisition 32 times faster than the commonly used 8-bit digitizer for an equal signal-to-noise (S/N) ratio. Averaging fewer pulses improves the detection speed and chromatographic separation performance. However, increasing the analog-to-digital converter bit resolution for a high-frequency signal, such as a TOF spectrum, increases the system noise and requires the timing jitter (aperture error) to be minimized. We studied the relationship between the S/N ratio and the average number of acquisitions using U5303A and compared this with an 8-bit digitizer. The results show that the noise, measured as root-mean-square, decreases linearly to the square root of the average number of acquisitions without background subtraction, which means that almost no systematic noise existed in our signal bandwidth of interest (a few hundreds megahertz). In comparison, 8-bit digitizers that are commonly used in the market require 32 times more pulses with background subtraction. PMID:25906030
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.
1986-01-01
High rate concatenated coding systems with trellis inner codes and Reed-Solomon (RS) outer codes for application in satellite communication systems are considered. Two types of inner codes are studied: high rate punctured binary convolutional codes which result in overall effective information rates between 1/2 and 1 bit per channel use; and bandwidth efficient signal space trellis codes which can achieve overall effective information rates greater than 1 bit per channel use. Channel capacity calculations with and without side information performed for the concatenated coding system. Concatenated coding schemes are investigated. In Scheme 1, the inner code is decoded with the Viterbi algorithm and the outer RS code performs error-correction only (decoding without side information). In scheme 2, the inner code is decoded with a modified Viterbi algorithm which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, while branch metrics are used to provide the reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. These two schemes are proposed for use on NASA satellite channels. Results indicate that high system reliability can be achieved with little or no bandwidth expansion.
High Capacity Reversible Watermarking for Audio by Histogram Shifting and Predicted Error Expansion
Wang, Fei; Chen, Zuo
2014-01-01
Being reversible, the watermarking information embedded in audio signals can be extracted while the original audio data can achieve lossless recovery. Currently, the few reversible audio watermarking algorithms are confronted with following problems: relatively low SNR (signal-to-noise) of embedded audio; a large amount of auxiliary embedded location information; and the absence of accurate capacity control capability. In this paper, we present a novel reversible audio watermarking scheme based on improved prediction error expansion and histogram shifting. First, we use differential evolution algorithm to optimize prediction coefficients and then apply prediction error expansion to output stego data. Second, in order to reduce location map bits length, we introduced histogram shifting scheme. Meanwhile, the prediction error modification threshold according to a given embedding capacity can be computed by our proposed scheme. Experiments show that this algorithm improves the SNR of embedded audio signals and embedding capacity, drastically reduces location map bits length, and enhances capacity control capability. PMID:25097883
... leave you alone. Reviewed by: Elana Pearl Ben-Joseph, MD Date reviewed: April 2013 For Teens For Kids For Parents MORE ON THIS TOPIC Hey! A Fire Ant Stung Me! Hey! A Scorpion Stung Me! Hey! A Black Widow Spider Bit Me! Hey! A Brown Recluse ...
... Here's Help White House Lunch Recipes Hey! A Mosquito Bit Me! KidsHealth > For Kids > Hey! A Mosquito ... español ¡Ay! ¡Me picó un mosquito! What's a Mosquito? A mosquito (say: mus-KEE-toe) is an ...
... Snowboarding, Skating Crushes What's a Booger? Hey! A Bedbug Bit Me! KidsHealth > For Kids > Hey! A Bedbug ... español ¡Ay! ¡Me picó una chinche! What a Bedbug Is A bedbug is a small (about the ...
Ultraspectral sounder data compression using a novel marker-based error-resilient arithmetic coder
NASA Astrophysics Data System (ADS)
Huang, Bormin; Sriraja, Y.; Wei, Shih-Chieh
2006-08-01
Entropy coding techniques aim to achieve the entropy of the source data by assigning variable-length codewords to symbols with the code lengths linked to the corresponding symbol probabilities. Entropy coders (e.g. Huffman coding, arithmetic coding), in one form or the other, are commonly used as the last stage in various compression schemes. While these variable-length coders provide better compression than fixed-length coders, they are vulnerable to transmission errors. Even a single bit error in the transmission process can cause havoc in the subsequent decoded stream. To cope with it, this research proposes a marker-based sentinel mechanism in entropy coding for error detection and recovery. We use arithmetic coding as an example to demonstrate this error-resilient technique for entropy coding. Experimental results on ultraspectral sounder data indicate that the marker-based error-resilient arithmetic coder provides remarkable robustness to correct transmission errors without significantly compromising the compression gains.
Takahashi, Koji; Matsui, Hideki; Nagashima, Tomotaka; Konishi, Tsuyoshi
2013-11-15
We demonstrate a resolution upgrade toward 6 bit optical quantization using a power-to-wavelength conversion without an increment of system parallelism. Expansion of a full-scale input range is employed in conjunction with reduction of a quantization step size with keeping a sampling-rate transparency characteristic over several 100 sGS/s. The effective number of bits is estimated to 5.74 bit, and the integral nonlinearity error and differential nonlinearity error are estimated to less than 1 least significant bit. PMID:24322152
Compact disk error measurements
NASA Technical Reports Server (NTRS)
Howe, D.; Harriman, K.; Tehranchi, B.
1993-01-01
The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.
Priority-based error correction using turbo codes for compressed AIRS data
NASA Astrophysics Data System (ADS)
Gladkova, I.; Grossberg, M.; Grayver, E.; Olsen, D.; Nalli, N.; Wolf, W.; Zhou, L.; Goldberg, M.
2006-08-01
Errors due to wireless transmission can have an arbitrarily large impact on a compressed file. A single bit error appearing in the compressed file can propagate during a decompression procedure and destroy the entire granule. Such a loss is unacceptable since this data is critical for a range of applications, including weather prediction and emergency response planning. The impact of a bit error in the compressed granule is very sensitive to the error's location in the file. There is a natural hierarchy of compressed data in terms of impact on the final retrieval products. For the considered compression scheme, errors in some parts of the data yield no noticeable degradation in the final products. We formulate a priority scheme for the compressed data and present an error correction approach based on minimizing impact on the retrieval products. Forward error correction codes (e.g., turbo, LDPC) allow the tradeoff between error correction strength and file inflation (bandwidth expansion). We propose segmenting the compressed data based on its priority and applying different-strength FEC codes to different segments. In this paper we demonstrate that this approach can achieve negligible product degradation while maintaining an overall 3-to-1 compression ratio on the final file. We apply this to AIRS sounder data to demonstrate viability for the sounder on the next-generation GOES-R platform.
Stability of single skyrmionic bits
Hagemeister, J.; Romming, N.; von Bergmann, K.; Vedmedenko, E. Y.; Wiesendanger, R.
2015-01-01
The switching between topologically distinct skyrmionic and ferromagnetic states has been proposed as a bit operation for information storage. While long lifetimes of the bits are required for data storage devices, the lifetimes of skyrmions have not been addressed so far. Here we show by means of atomistic Monte Carlo simulations that the field-dependent mean lifetimes of the skyrmionic and ferromagnetic states have a high asymmetry with respect to the critical magnetic field, at which these lifetimes are identical. According to our calculations, the main reason for the enhanced stability of skyrmions is a different field dependence of skyrmionic and ferromagnetic activation energies and a lower attempt frequency of skyrmions rather than the height of energy barriers. We use this knowledge to propose a procedure for the determination of effective material parameters and the quantification of the Monte Carlo timescale from the comparison of theoretical and experimental data. PMID:26465211
Image Data Compression Having Minimum Perceptual Error
NASA Technical Reports Server (NTRS)
Watson, Andrew B. (Inventor)
1997-01-01
A method is presented for performing color or grayscale image compression that eliminates redundant and invisible image components. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The quantization matrix comprises visual masking by luminance and contrast technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.
Potter, Beth K; Chakraborty, Pranesh; Kronick, Jonathan B; Wilson, Kumanan; Coyle, Doug; Feigenbaum, Annette; Geraghty, Michael T; Karaceper, Maria D; Little, Julian; Mhanni, Aizeddin; Mitchell, John J; Siriwardena, Komudi; Wilson, Brenda J; Syrowatka, Ania
2013-06-01
Across all areas of health care, decision makers are in pursuit of what Berwick and colleagues have called the "triple aim": improving patient experiences with care, improving health outcomes, and managing health system impacts. This is challenging in a rare disease context, as exemplified by inborn errors of metabolism. There is a need for evaluative outcomes research to support effective and appropriate care for inborn errors of metabolism. We suggest that such research should consider interventions at both the level of the health system (e.g., early detection through newborn screening, programs to provide access to treatments) and the level of individual patient care (e.g., orphan drugs, medical foods). We have developed a practice-based evidence framework to guide outcomes research for inborn errors of metabolism. Focusing on outcomes across the triple aim, this framework integrates three priority themes: tailoring care in the context of clinical heterogeneity; a shift from "urgent care" to "opportunity for improvement"; and the need to evaluate the comparative effectiveness of emerging and established therapies. Guided by the framework, a new Canadian research network has been established to generate knowledge that will inform the design and delivery of health services for patients with inborn errors of metabolism and other rare diseases. PMID:23222662
Panel focuses on diamond shear bit care
Park, A.
1982-10-04
This article examines drilling parameters and marketability of Stratapax bits. Finds that core bits drill from 2 to 3 times faster than conventional diamond bits, thereby reducing filtrate invasion. Predicts that high speed drilling, downhole motors, deeper wells and slim hole drilling will mean greater Stratapax use.
Development of PDC Bits for Downhole Motors
Karasawa, H.; Ohno, T.
1995-01-01
To develop polycrystalline hamond compact (PDC) bits of the full-face type which can be applied to downhole motor drilling, drilling tests for granite and two types of andesite were conducted using bits with 98.43 and 142.88 mm diameters. The bits successfully drilled these types of rock at rotary speeds from 300 to 400 rpm.
A fast 2-bit digitizer for radio astronomy
NASA Astrophysics Data System (ADS)
Padin, Stephen; Ewing, Martin S.
1989-12-01
The design and performance details for a 2-bit digitizer operating at a 250-MHz clock rate are presented. The digitizer is part of a new correlator system for a three-element millimeter-wave interferometer. The performance of the digitizer circuit is analyzed in terms of threshold errors, indecision, sampling aperture width, and timing errors. For an input bandwidth of 125 MHz, digitizer distortion actually improves the sensitivity of the interferometer by about 0.3 percent but limits the dynamic range of the instrument to about 2 X 10 to the 3rd.
Bit by Bit: The Darwinian Basis of Life
Joyce, Gerald F.
2012-01-01
All known examples of life belong to the same biology, but there is increasing enthusiasm among astronomers, astrobiologists, and synthetic biologists that other forms of life may soon be discovered or synthesized. This enthusiasm should be tempered by the fact that the probability for life to originate is not known. As a guiding principle in parsing potential examples of alternative life, one should ask: How many heritable “bits” of information are involved, and where did they come from? A genetic system that contains more bits than the number that were required to initiate its operation might reasonably be considered a new form of life. PMID:22589698
Demonstration of low-power bit-interleaving TDM PON.
Van Praet, Christophe; Chow, Hungkei; Suvakovic, Dusan; Van Veen, Doutje; Dupas, Arnaud; Boislaigue, Roger; Farah, Robert; Lau, Man Fai; Galaro, Joseph; Qua, Gin; Anthapadmanabhan, N Prasanth; Torfs, Guy; Yin, Xin; Vetter, Peter
2012-12-10
A functional demonstration of bit-interleaving TDM downstream protocol for passive optical networks (Bi-PON) is reported. The proposed protocol presents a significant reduction in dynamic power consumption in the customer premise equipment over the conventional TDM protocol. It allows to select the relevant bits of all aggregated incoming data immediately after clock and data recovery (CDR) and, hence, allows subsequent hardware to run at much lower user rate. Comparison of experimental results of FPGA-based implementations of Bi-PON and XG-PON shows that more than 30x energy-savings in protocol processing is achievable. PMID:23262914
Smooth quality streaming with bit-plane labeling
NASA Astrophysics Data System (ADS)
Cho, Chuan-Yu; Chen, Hong-Sheng; Wang, Jia-Shung
2005-07-01
Bit-plane coding techniques have been proposed as an efficient way to achieve the goal of fine granularity scalability (FGS). Both in image and video coding standards such as JPEG 2000 and MPEG-4, bit-plane coding techniques have been utilized to code a universal bit-stream for various bandwidth applications. With the bit-plane coding, a bit-stream can be truncated according to the available bandwidth. Hence, the video quality can be very sensitive to the network bandwidth variation especially while streaming a video over the Internet or a wireless link. For overall human perception, a consistent and smooth quality video is much better than to have high video quality in just a short period but with highly quality variation in general. We classify the quality variation into two categories: inter-frame and intraframe quality variation. The inter-frame quality variation may cause by the constant bit rate coded (CBR) base layer video or the network bandwidth variation, while the intra-frame quality variation causes mainly by the various motion types. For example, moving objects are usually more difficult to be encoded. This paper focuses on the inter-frame quality variation because quality variation is more significant between frames than within a frame. An enhancement layer labeling algorithm is proposed to reduce the inter-frame quality variation, and a dynamic bit-plane truncation scheme is utilized to maintain the smooth streaming video quality. The proposed algorithm has no overhead in the decoder, and the experimental results portray that our proposed algorithm can greatly eliminate the inter-frame quality variation.
Quantifying the Impact of Single Bit Flips on Floating Point Arithmetic
Elliott, James J; Mueller, Frank; Stoyanov, Miroslav K; Webster, Clayton G
2013-08-01
In high-end computing, the collective surface area, smaller fabrication sizes, and increasing density of components have led to an increase in the number of observed bit flips. If mechanisms are not in place to detect them, such flips produce silent errors, i.e. the code returns a result that deviates from the desired solution by more than the allowed tolerance and the discrepancy cannot be distinguished from the standard numerical error associated with the algorithm. These phenomena are believed to occur more frequently in DRAM, but logic gates, arithmetic units, and other circuits are also susceptible to bit flips. Previous work has focused on algorithmic techniques for detecting and correcting bit flips in specific data structures, however, they suffer from lack of generality and often times cannot be implemented in heterogeneous computing environment. Our work takes a novel approach to this problem. We focus on quantifying the impact of a single bit flip on specific floating-point operations. We analyze the error induced by flipping specific bits in the most widely used IEEE floating-point representation in an architecture-agnostic manner, i.e., without requiring proprietary information such as bit flip rates and the vendor-specific circuit designs. We initially study dot products of vectors and demonstrate that not all bit flips create a large error and, more importantly, expected value of the relative magnitude of the error is very sensitive on the bit pattern of the binary representation of the exponent, which strongly depends on scaling. Our results are derived analytically and then verified experimentally with Monte Carlo sampling of random vectors. Furthermore, we consider the natural resilience properties of solvers based on the fixed point iteration and we demonstrate how the resilience of the Jacobi method for linear equations can be significantly improved by rescaling the associated matrix.
A cascaded coding scheme for error control
NASA Technical Reports Server (NTRS)
Kasami, T.; Lin, S.
1985-01-01
A cascaded coding scheme for error control was investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are studied which seem to be quite suitable for satellite down-link error control.
BIT BY BIT: A Game Simulating Natural Language Processing in Computers
ERIC Educational Resources Information Center
Kato, Taichi; Arakawa, Chuichi
2008-01-01
BIT BY BIT is an encryption game that is designed to improve students' understanding of natural language processing in computers. Participants encode clear words into binary code using an encryption key and exchange them in the game. BIT BY BIT enables participants who do not understand the concept of binary numbers to perform the process of…
Bit-synchronizer lock detector
NASA Technical Reports Server (NTRS)
Huey, D. C.; Itri, B. A.
1978-01-01
Circuit measures phase error that exists in phase-locked loop between clock signal recorded in data on magnetic tape and reconstructed clock signal. Circuit presents error as digital word that can be compared with predetermined threshold to indicate lock status. With simple alterations, circuit can also be used as phase detector.
Proper nozzle location, bit profile, and cutter arrangement affect PDC-bit performance significantly
Garcia-Gavito, D.; Azar, J.J.
1994-09-01
During the past 20 years, the drilling industry has looked to new technology to halt the exponentially increasing costs of drilling oil, gas, and geothermal wells. This technology includes bit design innovations to improve overall drilling performance and reduce drilling costs. These innovations include development of drag bits that use PDC cutters, also called PDC bits, to drill long, continuous intervals of soft to medium-hard formations more economically than conventional three-cone roller-cone bits. The cost advantage is the result of higher rates of penetration (ROP's) and longer bit life obtained with the PDC bits. An experimental study comparing the effects of polycrystalline-diamond-compact (PDC)-bit design features on the dynamic pressure distribution at the bit/rock interface was conducted on a full-scale drilling rig. Results showed that nozzle location, bit profile, and cutter arrangement are significant factors in PDC-bit performance.
Arbitrarily Long Relativistic Bit Commitment
NASA Astrophysics Data System (ADS)
Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony
2015-12-01
We consider the recent relativistic bit commitment protocol introduced by Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015)] and present a new security analysis against classical attacks. In particular, while the initial complexity of the protocol scales double exponentially with the commitment time, our analysis shows that the correct dependence is only linear. This has dramatic implications in terms of implementation: in particular, the commitment time can easily be made arbitrarily long, by only requiring both parties to communicate classically and perform efficient classical computation.
Ultraspectral sounder data compression using error-detecting reversible variable-length coding
NASA Astrophysics Data System (ADS)
Huang, Bormin; Ahuja, Alok; Huang, Hung-Lung; Schmit, Timothy J.; Heymann, Roger W.
2005-08-01
Nonreversible variable-length codes (e.g. Huffman coding, Golomb-Rice coding, and arithmetic coding) have been used in source coding to achieve efficient compression. However, a single bit error during noisy transmission can cause many codewords to be misinterpreted by the decoder. In recent years, increasing attention has been given to the design of reversible variable-length codes (RVLCs) for better data transmission in error-prone environments. RVLCs allow instantaneous decoding in both directions, which affords better detection of bit errors due to synchronization losses over a noisy channel. RVLCs have been adopted in emerging video coding standards--H.263+ and MPEG-4--to enhance their error-resilience capabilities. Given the large volume of three-dimensional data that will be generated by future space-borne ultraspectral sounders (e.g. IASI, CrIS, and HES), the use of error-robust data compression techniques will be beneficial to satellite data transmission. In this paper, we investigate a reversible variable-length code for ultraspectral sounder data compression, and present its numerical experiments on error propagation for the ultraspectral sounder data. The results show that the RVLC performs significantly better error containment than JPEG2000 Part 2.
Experimental Quantum Error Detection
Jin, Xian-Min; Yi, Zhen-Huan; Yang, Bin; Zhou, Fei; Yang, Tao; Peng, Cheng-Zhi
2012-01-01
Faithful transmission of quantum information is a crucial ingredient in quantum communication networks. To overcome the unavoidable decoherence in a noisy channel, to date, many efforts have been made to transmit one state by consuming large numbers of time-synchronized ancilla states. However, such huge demands of quantum resources are hard to meet with current technology and this restricts practical applications. Here we experimentally demonstrate quantum error detection, an economical approach to reliably protecting a qubit against bit-flip errors. Arbitrary unknown polarization states of single photons and entangled photons are converted into time bins deterministically via a modified Franson interferometer. Noise arising in both 10 m and 0.8 km fiber, which induces associated errors on the reference frame of time bins, is filtered when photons are detected. The demonstrated resource efficiency and state independence make this protocol a promising candidate for implementing a real-world quantum communication network. PMID:22953047
Quantum Error Correction with Biased Noise
NASA Astrophysics Data System (ADS)
Brooks, Peter
Quantum computing offers powerful new techniques for speeding up the calculation of many classically intractable problems. Quantum algorithms can allow for the efficient simulation of physical systems, with applications to basic research, chemical modeling, and drug discovery; other algorithms have important implications for cryptography and internet security. At the same time, building a quantum computer is a daunting task, requiring the coherent manipulation of systems with many quantum degrees of freedom while preventing environmental noise from interacting too strongly with the system. Fortunately, we know that, under reasonable assumptions, we can use the techniques of quantum error correction and fault tolerance to achieve an arbitrary reduction in the noise level. In this thesis, we look at how additional information about the structure of noise, or "noise bias," can improve or alter the performance of techniques in quantum error correction and fault tolerance. In Chapter 2, we explore the possibility of designing certain quantum gates to be extremely robust with respect to errors in their operation. This naturally leads to structured noise where certain gates can be implemented in a protected manner, allowing the user to focus their protection on the noisier unprotected operations. In Chapter 3, we examine how to tailor error-correcting codes and fault-tolerant quantum circuits in the presence of dephasing biased noise, where dephasing errors are far more common than bit-flip errors. By using an appropriately asymmetric code, we demonstrate the ability to improve the amount of error reduction and decrease the physical resources required for error correction. In Chapter 4, we analyze a variety of protocols for distilling magic states, which enable universal quantum computation, in the presence of faulty Clifford operations. Here again there is a hierarchy of noise levels, with a fixed error rate for faulty gates, and a second rate for errors in the distilled
Stability of single skyrmionic bits
NASA Astrophysics Data System (ADS)
Vedmedenko, Olena; Hagemeister, Julian; Romming, Niklas; von Bergmann, Kirsten; Wiesendanger, Roland
The switching between topologically distinct skyrmionic and ferromagnetic states has been proposed as a bit operation for information storage. While long lifetimes of the bits are required for data storage devices, the lifetimes of skyrmions have not been addressed so far. Here we show by means of atomistic Monte Carlo simulations that the field-dependent mean lifetimes of the skyrmionic and ferromagnetic states have a high asymmetry with respect to the critical magnetic field, at which these lifetimes are identical. According to our calculations, the main reason for the enhanced stability of skyrmions is a different field dependence of skyrmionic and ferromagnetic activation energies and a lower attempt frequency of skyrmions rather than the height of energy barriers. We use this knowledge to propose a procedure for the determination of effective material parameters and the quantification of the Monte Carlo timescale from the comparison of theoretical and experimental data. Financial support from the DFG in the framework of the SFB668 is acknowledged.
Multiple-error-correcting codes for improving the performance of optical matrix-vector processors.
Neifeld, M A
1995-04-01
I examine the use of Reed-Solomon multiple-error-correcting codes for enhancing the performance of optical matrix-vector processors. An optimal code rate of 0.75 is found, and n = 127 block-length codes are seen to increase the optical matrix dimension achievable by a factor of 2.0 for a required system bit-error rate of 10(-15). The optimal codes required for various matrix dimensions are determined. I show that single code word implementations are more efficient than those utilizing multiple code words. PMID:19859320
Performance analyses of subcarrier BPSK modulation over M turbulence channels with pointing errors
NASA Astrophysics Data System (ADS)
Ma, Shuang; Li, Ya-tian; Wu, Jia-bin; Geng, Tian-wen; Wu, Zhiyong
2016-05-01
An aggregated channel model is achieved by fitting the Weibull distribution, which includes the effects of atmospheric attenuation, M distributed atmospheric turbulence and nonzero boresight pointing errors. With this approximate channel model, the bit error rate ( BER) and the ergodic capacity of free-space optical (FSO) communication systems utilizing subcarrier binary phase-shift keying (BPSK) modulation are analyzed, respectively. A closed-form expression of BER is derived by using the generalized Gauss-Lagueree quadrature rule, and the bounds of ergodic capacity are discussed. Monte Carlo simulation is provided to confirm the validity of the BER expressions and the bounds of ergodic capacity.
Josephson 32-bit shift register
Yuh, P.F.; Yao, C.T.; Bradley, P. )
1991-03-01
This paper reports on a 32-bit shift register designed by edge-triggered gates tested with {plus minus}25% bias margin and {plus minus}81% input margin for the full array. Simulations have shown {plus minus}55% bias margin at 3.3 GHz and working up to a maximum frequency of 30 GHz with a junction current density of 2000A/cm{sup 2} although the shift register has only been tested up to 500 MHz, limited by instrumentation. This edge-triggered gate consisting of a pair of conventional Josephson logic gates in series has the advantages of wide margins, short reset time, and insensitivity to global parameter-variations.
Wu, Kesheng
2007-08-02
An index in a database system is a data structure that utilizes redundant information about the base data to speed up common searching and retrieval operations. Most commonly used indexes are variants of B-trees, such as B+-tree and B*-tree. FastBit implements a set of alternative indexes call compressed bitmap indexes. Compared with B-tree variants, these indexes provide very efficient searching and retrieval operations by sacrificing the efficiency of updating the indexes after the modification of an individual record. In addition to the well-known strengths of bitmap indexes, FastBit has a special strength stemming from the bitmap compression scheme used. The compression method is called the Word-Aligned Hybrid (WAH) code. It reduces the bitmap indexes to reasonable sizes and at the same time allows very efficient bitwise logical operations directly on the compressed bitmaps. Compared with the well-known compression methods such as LZ77 and Byte-aligned Bitmap code (BBC), WAH sacrifices some space efficiency for a significant improvement in operational efficiency. Since the bitwise logical operations are the most important operations needed to answer queries, using WAH compression has been shown to answer queries significantly faster than using other compression schemes. Theoretical analyses showed that WAH compressed bitmap indexes are optimal for one-dimensional range queries. Only the most efficient indexing schemes such as B+-tree and B*-tree have this optimality property. However, bitmap indexes are superior because they can efficiently answer multi-dimensional range queries by combining the answers to one-dimensional queries.
Error detection and correction unit with built-in self-test capability for spacecraft applications
NASA Technical Reports Server (NTRS)
Timoc, Constantin
1990-01-01
The objective of this project was to research and develop a 32-bit single chip Error Detection and Correction unit capable of correcting all single bit errors and detecting all double bit errors in the memory systems of a spacecraft. We designed the 32-bit EDAC (Error Detection and Correction unit) based on a modified Hamming code and according to the design specifications and performance requirements. We constructed a laboratory prototype (breadboard) which was converted into a fault simulator. The correctness of the design was verified on the breadboard using an exhaustive set of test cases. A logic diagram of the EDAC was delivered to JPL Section 514 on 4 Oct. 1988.
Coded modulation with unequal error protection
NASA Astrophysics Data System (ADS)
Wei, Lee-Fang
1993-10-01
It is always desirable to maintain communications in difficult situations, even though fewer messages can get across. This paper provides such capabilities for one-way broadcast media, such as the envisioned terrestrial broadcasting of digital high-definition television signals. In this television broadcasting, the data from video source encoders are not equally important. It is desirable that the important data be recovered by each receiver even under poor receiving conditions. Two approaches for providing such unequal error protection to different classes of data are presented. Power-efficient and bandwidth-efficient coded modulation is used in both approaches. The first approach is based on novel signal constellations with nonuniformly spaced signal points. The second uses time division multiplexing of different conventional coded modulation schemes. Both approaches can provide error protection for the important data to an extent that can hardly be achieved using conventional coded modulation with equal error protection. For modest amounts of important data, the first approach has, additionally, the potential of providing immunity from impulse noise through simple bit or signal-point interleaving.
Masking of errors in transmission of VAPC-coded speech
NASA Technical Reports Server (NTRS)
Cox, Neil B.; Froese, Edwin L.
1990-01-01
A subjective evaluation is provided of the bit error sensitivity of the message elements of a Vector Adaptive Predictive (VAPC) speech coder, along with an indication of the amenability of these elements to a popular error masking strategy (cross frame hold over). As expected, a wide range of bit error sensitivity was observed. The most sensitive message components were the short term spectral information and the most significant bits of the pitch and gain indices. The cross frame hold over strategy was found to be useful for pitch and gain information, but it was not beneficial for the spectral information unless severe corruption had occurred.
Improvement of PDC bit`s performance at high rotary speed
Karasawa, Hirokazu; Ohno, Tetsuji; Kobayashi, Hideo
1996-12-31
To develop polycrystalline diamond compact (PDC) full-face bits with high drilling efficiency, the effect of cutter diameter on the bit performance was investigated using 98.43 mm-dia bits. On the basis of this investigation, 142.88 mm-dia bits were fabricated and tested. The 142.88 mm-dia bits could drill through medium-hard to hard rocks at the rotary speeds from 256 to 400 rpm. Durability tests for granite using a 142.88 mm-dia bit revealed that it is necessary to improve the bit with regard to the arrangement of cutters and the number of cutters set on a bit body.
Photon-number-resolving detector with 10 bits of resolution
Jiang, Leaf A.; Dauler, Eric A.; Chang, Joshua T
2007-06-15
A photon-number-resolving detector with single-photon resolution is described and demonstrated. It has 10 bits of resolution, does not require cryogenic cooling, and is sensitive to near ir wavelengths. This performance is achieved by flood illuminating a 32x32 element In{sub x}Ga{sub 1-x}AsP Geiger-mode avalanche photodiode array that has an integrated counter and digital readout circuit behind each pixel.
Photon-number-resolving detector with 10bits of resolution
NASA Astrophysics Data System (ADS)
Jiang, Leaf A.; Dauler, Eric A.; Chang, Joshua T.
2007-06-01
A photon-number-resolving detector with single-photon resolution is described and demonstrated. It has 10bits of resolution, does not require cryogenic cooling, and is sensitive to near ir wavelengths. This performance is achieved by flood illuminating a 32×32 element InxGa1-xAsP Geiger-mode avalanche photodiode array that has an integrated counter and digital readout circuit behind each pixel.
Optimal multitone bit allocation for fixed-rate video transmission over ADSL
NASA Astrophysics Data System (ADS)
Antonini, Marc; Moureaux, Jean-Marie; Lecuire, Vincent
2002-01-01
In this paper we propose a novel approach for the bit allocation performed in an ADSL modulator. This new method is based on the observation that the transmission speed using ADSL strongly depends on the distance between the central office and the subscriber's side and does not permit real-time transmission for high bitrate video on long distances. The algorithm we develop takes into account the characteristics of a video sequence and distributes the channel error according to visual sensitivity. This method involves variable transmission Bit Error Rate.
Steganography forensics method for detecting least significant bit replacement attack
NASA Astrophysics Data System (ADS)
Wang, Xiaofeng; Wei, Chengcheng; Han, Xiao
2015-01-01
We present an image forensics method to detect least significant bit replacement steganography attack. The proposed method provides fine-grained forensics features by using the hierarchical structure that combines pixels correlation and bit-planes correlation. This is achieved via bit-plane decomposition and difference matrices between the least significant bit-plane and each one of the others. Generated forensics features provide the susceptibility (changeability) that will be drastically altered when the cover image is embedded with data to form a stego image. We developed a statistical model based on the forensics features and used least square support vector machine as a classifier to distinguish stego images from cover images. Experimental results show that the proposed method provides the following advantages. (1) The detection rate is noticeably higher than that of some existing methods. (2) It has the expected stability. (3) It is robust for content-preserving manipulations, such as JPEG compression, adding noise, filtering, etc. (4) The proposed method provides satisfactory generalization capability.
REVERSIBLE N-BIT TO N-BIT INTEGER HAAR-LIKE TRANSFORMS
Duchaineau, M; Joy, K I; Senecal, J
2004-02-14
We introduce TLHaar, an n-bit to n-bit reversible transform similar to the Haar IntegerWavelet Transform (IWT). TLHaar uses lookup tables that approximate the Haar IWT, but reorder the coefficients so they fit into n bits. TLHaar is suited for lossless compression in fixed-width channels, such as digital video channels and graphics hardware frame buffers.
Hey! A Brown Recluse Spider Bit Me!
... putting them on. Reviewed by: Elana Pearl Ben-Joseph, MD Date reviewed: April 2013 For Teens For Kids For Parents MORE ON THIS TOPIC Hey! A Fire Ant Stung Me! Hey! A Tarantula Bit Me! Hey! A Scorpion Stung Me! Hey! A Black Widow Spider Bit Me! Camping and Woods Safety ...
NASA Astrophysics Data System (ADS)
Fu, Hui-hua; Wang, Ping; Wang, Ran-ran; Liu, Xiao-xia; Guo, Li-xin; Yang, Yin-tang
2016-07-01
The average bit error rate ( ABER) performance of a decode-and-forward (DF) based relay-assisted free-space optical (FSO) communication system over gamma-gamma distribution channels considering the pointing errors is studied. With the help of Meijer's G-function, the probability density function (PDF) and cumulative distribution function (CDF) of the aggregated channel model are derived on the basis of the best path selection scheme. The analytical ABER expression is achieved and the system performance is then investigated with the influence of pointing errors, turbulence strengths and structure parameters. Monte Carlo (MC) simulation is also provided to confirm the analytical ABER expression.
Córcoles, A.D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M.
2015-01-01
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. PMID:25923200
Decoding of DBEC-TBED Reed-Solomon codes. [Double-Byte-Error-Correcting, Triple-Byte-Error-Detecting
NASA Technical Reports Server (NTRS)
Deng, Robert H.; Costello, Daniel J., Jr.
1987-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256 K bit DRAM's are organized in 32 K x 8 bit-bytes. Byte-oriented codes such as Reed-Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. The paper presents a special decoding technique for double-byte-error-correcting, triple-byte-error-detecting RS codes which is capable of high-speed operation. This technique is designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.
An Improved N-Bit to N-Bit Reversible Haar-Like Transform
Senecal, J G; Lindstrom, P; Duchaineau, M A; Joy, K I
2004-07-26
We introduce the Piecewise-Linear Haar (PLHaar) transform, a reversible n-bit to n-bit transform that is based on the Haar wavelet transform. PLHaar is continuous, while all current n-bit to n-bit methods are not, and is therefore uniquely usable with both lossy and lossless methods (e.g. image compression). PLHaar has both integer and continuous (i.e. non-discrete) forms. By keeping the coefficients to n bits PLHaar is particularly suited for use in hardware environments where channel width is limited, such as digital video channels and graphics hardware.
... and lens of your eye helps you focus. Refractive errors are vision problems that happen when the ... cornea, or aging of the lens. Four common refractive errors are Myopia, or nearsightedness - clear vision close ...
High performance 14-bit pipelined redundant signed digit ADC
NASA Astrophysics Data System (ADS)
Narula, Swina; Pandey, Sujata
2016-03-01
A novel architecture of a pipelined redundant-signed-digit analog to digital converter (RSD-ADC) is presented featuring a high signal to noise ratio (SNR), spurious free dynamic range (SFDR) and signal to noise plus distortion (SNDR) with efficient background correction logic. The proposed ADC architecture shows high accuracy with a high speed circuit and efficient utilization of the hardware. This paper demonstrates the functionality of the digital correction logic of 14-bit pipelined ADC at each 1.5 bit/stage. This prototype of ADC architecture accounts for capacitor mismatch, comparator offset and finite Op-Amp gain error in the MDAC (residue amplification circuit) stages. With the proposed architecture of ADC, SNDR obtained is 85.89 dB, SNR is 85.9 dB and SFDR obtained is 102.8 dB at the sample rate of 100 MHz. This novel architecture of digital correction logic is transparent to the overall system, which is demonstrated by using 14-bit pipelined ADC. After a latency of 14 clocks, digital output will be available at every clock pulse. To describe the circuit behavior of the ADC, VHDL and MATLAB programs are used. The proposed architecture is also capable of reducing the digital hardware. Silicon area is also the complexity of the design.
Noyes, H.P.
1990-01-29
We construct discrete space-time coordinates separated by the Lorentz-invariant intervals h/mc in space and h/mc{sup 2} in time using discrimination (XOR) between pairs of independently generated bit-strings; we prove that if this space is homogeneous and isotropic, it can have only 1, 2 or 3 spacial dimensions once we have related time to a global ordering operator. On this space we construct exact combinatorial expressions for free particle wave functions taking proper account of the interference between indistinguishable alternative paths created by the construction. Because the end-points of the paths are fixed, they specify completed processes; our wave functions are born collapsed''. A convenient way to represent this model is in terms of complex amplitudes whose squares give the probability for a particular set of observable processes to be completed. For distances much greater than h/mc and times much greater than h/mc{sup 2} our wave functions can be approximated by solutions of the free particle Dirac and Klein-Gordon equations. Using a eight-counter paradigm we relate this construction to scattering experiments involving four distinguishable particles, and indicate how this can be used to calculate electromagnetic and weak scattering processes. We derive a non-perturbative formula relating relativistic bound and resonant state energies to mass ratios and coupling constants, equivalent to our earlier derivation of the Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion as a relativistic bound state containing a nucleon-antinucleon pair, we find that (G{sub {pi}N}{sup 2}){sup 2} = (2m{sub N}/m{sub {pi}}){sup 2} {minus} 1. 21 refs., 1 fig.
Changes realized from extended bit-depth and metal artifact reduction in CT
Glide-Hurst, C.; Chen, D.; Zhong, H.; Chetty, I. J.
2013-06-15
Purpose: High-Z material in computed tomography (CT) yields metal artifacts that degrade image quality and may cause substantial errors in dose calculation. This study couples a metal artifact reduction (MAR) algorithm with enhanced 16-bit depth (vs standard 12-bit) to quantify potential gains in image quality and dosimetry. Methods: Extended CT to electron density (CT-ED) curves were derived from a tissue characterization phantom with titanium and stainless steel inserts scanned at 90-140 kVp for 12- and 16-bit reconstructions. MAR was applied to sinogram data (Brilliance BigBore CT scanner, Philips Healthcare, v.3.5). Monte Carlo simulation (MC-SIM) was performed on a simulated double hip prostheses case (Cerrobend rods embedded in a pelvic phantom) using BEAMnrc/Dosxyz (400 000 0000 histories, 6X, 10 Multiplication-Sign 10 cm{sup 2} beam traversing Cerrobend rod). A phantom study was also conducted using a stainless steel rod embedded in solid water, and dosimetric verification was performed with Gafchromic film analysis (absolute difference and gamma analysis, 2% dose and 2 mm distance to agreement) for plans calculated with Anisotropic Analytic Algorithm (AAA, Eclipse v11.0) to elucidate changes between 12- and 16-bit data. Three patients (bony metastases to the femur and humerus, and a prostate cancer case) with metal implants were reconstructed using both bit depths, with dose calculated using AAA and derived CT-ED curves. Planar dose distributions were assessed via matrix analyses and using gamma criteria of 2%/2 mm. Results: For 12-bit images, CT numbers for titanium and stainless steel saturated at 3071 Hounsfield units (HU), whereas for 16-bit depth, mean CT numbers were much larger (e.g., titanium and stainless steel yielded HU of 8066.5 {+-} 56.6 and 13 588.5 {+-} 198.8 for 16-bit uncorrected scans at 120 kVp, respectively). MC-SIM was well-matched between 12- and 16-bit images except downstream of the Cerrobend rod, where 16-bit dose was {approx}6
Cheat sensitive quantum bit commitment via pre- and post-selected quantum states
NASA Astrophysics Data System (ADS)
Li, Yan-Bing; Wen, Qiao-Yan; Li, Zi-Chen; Qin, Su-Juan; Yang, Ya-Tao
2014-01-01
Cheat sensitive quantum bit commitment is a most important and realizable quantum bit commitment (QBC) protocol. By taking advantage of quantum mechanism, it can achieve higher security than classical bit commitment. In this paper, we propose a QBC schemes based on pre- and post-selected quantum states. The analysis indicates that both of the two participants' cheat strategies will be detected with non-zero probability. And the protocol can be implemented with today's technology as a long-term quantum memory is not needed.
Room temperature single-photon detectors for high bit rate quantum key distribution
Comandar, L. C.; Patel, K. A.; Fröhlich, B. Lucamarini, M.; Sharpe, A. W.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.
2014-01-13
We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.
Finger Vein Recognition Based on a Personalized Best Bit Map
Yang, Gongping; Xi, Xiaoming; Yin, Yilong
2012-01-01
Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735
The 40 Gbps cascaded bit-interleaving PON
NASA Astrophysics Data System (ADS)
Vyncke, A.; Torfs, G.; Van Praet, C.; Verbeke, M.; Duque, A.; Suvakovic, D.; Chow, H. K.; Yin, X.
2015-12-01
In this paper, a 40 Gbps cascaded bit-interleaving passive optical network (CBI-PON) is proposed to achieve power reduction in the network. The massive number of devices in the access network makes that power consumption reduction in this part of the network has a major impact on the total network power consumption. Starting from the proven BiPON technology, an extension to this concept is proposed to introduce multiple levels of bit-interleaving. The paper discusses the CBI protocol in detail, as well as an ASIC implementation of the required custom CBI Repeater and End-ONT. From the measurements of this first 40 Gbps ASIC prototype, power consumption reduction estimates are presented.
Effect of video decoder errors on video interpretability
NASA Astrophysics Data System (ADS)
Young, Darrell L.
2014-06-01
The advancement in video compression technology can result in more sensitivity to bit errors. Bit errors can propagate causing sustained loss of interpretability. In the worst case, the decoder "freezes" until it can re-synchronize with the stream. Detection of artifacts enables downstream processes to avoid corrupted frames. A simple template approach to detect block stripes and a more advanced cascade approach to detect compression artifacts was shown to correlate to the presence of artifacts and decoder messages.
Spin glasses and error-correcting codes
NASA Technical Reports Server (NTRS)
Belongie, M. L.
1994-01-01
In this article, we study a model for error-correcting codes that comes from spin glass theory and leads to both new codes and a new decoding technique. Using the theory of spin glasses, it has been proven that a simple construction yields a family of binary codes whose performance asymptotically approaches the Shannon bound for the Gaussian channel. The limit is approached as the number of information bits per codeword approaches infinity while the rate of the code approaches zero. Thus, the codes rapidly become impractical. We present simulation results that show the performance of a few manageable examples of these codes. In the correspondence that exists between spin glasses and error-correcting codes, the concept of a thermal average leads to a method of decoding that differs from the standard method of finding the most likely information sequence for a given received codeword. Whereas the standard method corresponds to calculating the thermal average at temperature zero, calculating the thermal average at a certain optimum temperature results instead in the sequence of most likely information bits. Since linear block codes and convolutional codes can be viewed as examples of spin glasses, this new decoding method can be used to decode these codes in a way that minimizes the bit error rate instead of the codeword error rate. We present simulation results that show a small improvement in bit error rate by using the thermal average technique.
A 1 GHz sample rate, 256-channel, 1-bit quantization, CMOS, digital correlator chip
NASA Technical Reports Server (NTRS)
Timoc, C.; Tran, T.; Wongso, J.
1992-01-01
This paper describes the development of a digital correlator chip with the following features: 1 Giga-sample/second; 256 channels; 1-bit quantization; 32-bit counters providing up to 4 seconds integration time at 1 GHz; and very low power dissipation per channel. The improvements in the performance-to-cost ratio of the digital correlator chip are achieved with a combination of systolic architecture, novel pipelined differential logic circuits, and standard 1.0 micron CMOS process.
PDC bits find applications in Oklahoma drilling
Offenbacher, L.A.; McDermaid, J.D.; Patterson, C.R.
1983-02-01
Drilling in Oklahoma is difficult by any standards. Polycrystalline diamond cutter (PDC) bits, with proven success drilling soft, homogenous formations common in the North Sea and U.S. Gulf Coast regions, have found some significant ''spot'' applications in Oklahoma. Applications qualified by bit design and application development over the past two (2) years include slim hole drilling in the deep Anadarko Basin, deviation control in Southern Oklahoma, drilling on mud motors, drilling in oil base mud, drilling cement, sidetracking, coring and some rotary drilling in larger hole sizes. PDC bits are formation sensitive, and care must be taken in selecting where to run them in Oklahoma. Most of the successful runs have been in water base mud drilling hard shales and soft, unconsolidated sands and lime, although bit life is often extended in oil-base muds.
FastBit: Interactively Searching Massive Data
Wu, Kesheng; Ahern, Sean; Bethel, E. Wes; Chen, Jacqueline; Childs, Hank; Cormier-Michel, Estelle; Geddes, Cameron; Gu, Junmin; Hagen, Hans; Hamann, Bernd; Koegler, Wendy; Lauret, Jerome; Meredith, Jeremy; Messmer, Peter; Otoo, Ekow; Perevoztchikov, Victor; Poskanzer, Arthur; Prabhat,; Rubel, Oliver; Shoshani, Arie; Sim, Alexander; Stockinger, Kurt; Weber, Gunther; Zhang, Wei-Ming
2009-06-23
As scientific instruments and computer simulations produce more and more data, the task of locating the essential information to gain insight becomes increasingly difficult. FastBit is an efficient software tool to address this challenge. In this article, we present a summary of the key underlying technologies, namely bitmap compression, encoding, and binning. Together these techniques enable FastBit to answer structured (SQL) queries orders of magnitude faster than popular database systems. To illustrate how FastBit is used in applications, we present three examples involving a high-energy physics experiment, a combustion simulation, and an accelerator simulation. In each case, FastBit significantly reduces the response time and enables interactive exploration on terabytes of data.
A practical quantum bit commitment protocol
NASA Astrophysics Data System (ADS)
Arash Sheikholeslam, S.; Aaron Gulliver, T.
2012-01-01
In this paper, we introduce a new quantum bit commitment protocol which is secure against entanglement attacks. A general cheating strategy is examined and shown to be practically ineffective against the proposed approach.
28-Bit serial word simulator/monitor
NASA Technical Reports Server (NTRS)
Durbin, J. W.
1979-01-01
Modular interface unit transfers data at high speeds along four channels. Device expedites variable-word-length communication between computers. Operation eases exchange of bit information by automatically reformatting coded input data and status information to match requirements of output.
Diffusion bonding of Stratapax for drill bits
Middleton, J.N.; Finger, J.T.
1983-01-01
A process has been developed for the diffusion bonding of General Electric's Stratapax drill blanks to support studs for cutter assemblies in drill bits. The diffusion bonding process is described and bond strength test data are provided for a variety of materials. The extensive process details, provided in the Appendices, should be sufficient to enable others to successfully build diffusion-bonded drill bit cutter assemblies.
NASA Astrophysics Data System (ADS)
Dey, Sukomal; Koul, Shiban K.
2015-06-01
This paper presents a frequency tunable 5-bit true-time-delay digital phase shifter using radio frequency microelectromechanical system (RF MEMS) technology. The phase shifter is based on the distributed MEMS transmission line (DMTL) concept utilizing a MEMS varactor. The main source of frequency tuning in this work is a bridge actuation mechanism followed by capacitance variation. Two stages of actuation mechanisms (push and pull) are used to achieve a 2:1 tuning ratio. Accurate control of the actuation voltage between the pull to push stages contributes differential phase shift over the band of interest. The functional behavior of the push-pull actuation over the phase shifter application is theoretically established, experimentally investigated and validated with simulation. The phase shifter is fabricated monolithically using a gold based surface micromachining process on an alumina substrate. The individual primary phase-bits (11.25°/22.5°/45°/90°/180°) that are the fundamental building blocks of the complete 5-bit phase shifter are designed, fabricated and experimentally characterized from 10-25 GHz for specific applications. Finally, the complete 5-bit phase shifter demonstrates an average phase error of 4.32°, 2.8°, 1° and 1.58°, an average insertion loss of 3.76, 4.1, 4.2 and 4.84 dB and an average return loss of 11.7, 12, 14 and 11.8 dB at 10, 12, 17.2 and 25 GHz, respectively. To the best of the authors’ knowledge, this is the first reported band tunable stand alone 5-bit phase shifter in the literature which can work over the large spectrum for different applications. The total area of the 5-bit phase shifter is 15.6 mm2. Furthermore, the cold-switched reliability of the unit cell and the complete 5-bit MEMS phase shifter are extensively investigated and presented.
Just noticeable disparity error-based depth coding for three-dimensional video
NASA Astrophysics Data System (ADS)
Luo, Lei; Tian, Xiang; Chen, Yaowu
2014-07-01
A just noticeable disparity error (JNDE) measurement to describe the maximum tolerated error of depth maps is proposed. Any error of depth value inside the JNDE range would not cause a noticeable distortion observed by human eyes. The JNDE values are used to preprocess the original depth map in the prediction process during the depth coding and to adjust the prediction residues for further improvement of the coding quality. The proposed scheme can be incorporated in any standardized video coding algorithm based on prediction and transform. The experimental results show that the proposed method can achieve a 34% bit rate saving for depth video coding. Moreover, the perceptual quality of the synthesized view is also improved by the proposed method.
A forward error correction technique using a high-speed, high-rate single chip codec
NASA Technical Reports Server (NTRS)
Boyd, R. W.; Hartman, W. F.; Jones, Robert E.
1989-01-01
The authors describe an error-correction coding approach that allows operation in either burst or continuous modes at data rates of multiple hundreds of megabits per second. Bandspreading is low since the code rate is 7/8 or greater, which is consistent with high-rate link operation. The encoder, along with a hard-decision decoder, fits on a single application-specific integrated circuit (ASIC) chip. Soft-decision decoding is possible utilizing applique hardware in conjunction with the hard-decision decoder. Expected coding gain is a function of the application and is approximately 2.5 dB for hard-decision decoding at 10-5 bit-error rate with phase-shift-keying modulation and additive Gaussian white noise interference. The principal use envisioned for this technique is to achieve a modest amount of coding gain on high-data-rate, bandwidth-constrained channels. Data rates of up to 300 Mb/s can be accommodated by the codec chip. The major objective is burst-mode communications, where code words are composed of 32 n data bits followed by 32 overhead bits.
Error correction for free-space optical interconnects: space-time resource optimization.
Neifeld, M A; Kostuk, R K
1998-01-10
We study the joint optimization of time and space resources withinfree-space optical interconnect (FSOI) systems. Both analyticaland simulation results are presented to support this optimization studyfor two different models of FSOI cross-talk noise: diffraction froma rectangular aperture and Gaussian propagation. Under realisticpower and signal-to-noise ratio constraints, optimum designs based onthe Gaussian propagation model achieve a capacity of 2.91 x10(15) bits s(-1) m(-2), while therectangular model offers a smaller capacity of 1.91 x10(13) bits s(-1) m(-2). We alsostudy the use of error-correction codes (ECC) within FSOIsystems. We present optimal Reed-Solomon codes of various length, and their use is shown to facilitate an increase in both spatialdensity and data rate, resulting in FSOI capacity gains in excess of8.2 for the rectangular model and 3.7 for the Gaussian case. Atolerancing study of FSOI systems shows that ECC can provide toleranceto implementational error sources. We find that optimally codedFSOI systems can fail when system errors become large, and we present acompromise solution that results in a balanced design in time, space, and error-correction resources. PMID:18268585
1998-09-01
Global access to HIV/AIDS treatment was the universal theme at the 12th World AIDS Conference. However, 90 percent of people with AIDS do not have access to available therapy. Special attention is needed in dealing with HIV infected persons who are incarcerated and do not have access to the same level of care as the rest of the population. Although perinatal AIDS is now regarded as a preventable disease in the United States, many pregnant women also do not have access to prevention or treatment information. In many parts of the world, women do not have the ability to negotiate safer sexual practices and therefore, remain vulnerable to HIV infection. Partnerships are needed between the fields of prevention, treatment, biomedical research, and behavioral science in order to possibly achieve global access to treatment. PMID:11367485
Nugget hardfacing toughens roller cone bits
1996-11-25
A new hardfacing material made of pure sintered tungsten carbide nuggets has improved roller cone rock bit performance in extremely hard lithologies, increasing penetration rates and extending bit life through multiple formations. In a recent test run in the Shushufindi 95 wells in Ecuador, a Security DBS 9 7/8-in. MPSF IADC 117M (International Association of Drilling Contractors bit code) bit with this new hardfacing drilled out the float equipment, cement, and show and then 3,309 ft of hard formations. The bit drilled through the Orteguaza claystone/shale/sand and chert formations and then to total depth at 6,309 ft in the Tiyuyacu shale/sand. The 3,309-ft interval was drilled at an average penetration rate (ROP) of 52.5 ft/hr. The proprietary nugget material was tested according to the American Society for Testing Materials (ASTM) G65 wear test method, a standard industry method of measuring wear resistance. The nugget material had ASTM wear test resistance more than twice that of standard hardfacing from conventional tungsten carbide.
Using magnetic permeability bits to store information
NASA Astrophysics Data System (ADS)
Timmerwilke, John; Petrie, J. R.; Wieland, K. A.; Mencia, Raymond; Liou, Sy-Hwang; Cress, C. D.; Newburgh, G. A.; Edelstein, A. S.
2015-10-01
Steps are described in the development of a new magnetic memory technology, based on states with different magnetic permeability, with the capability to reliably store large amounts of information in a high-density form for decades. The advantages of using the permeability to store information include an insensitivity to accidental exposure to magnetic fields or temperature changes, both of which are known to corrupt memory approaches that rely on remanent magnetization. The high permeability media investigated consists of either films of Metglas 2826 MB (Fe40Ni38Mo4B18) or bilayers of permalloy (Ni78Fe22)/Cu. Regions of films of the high permeability media were converted thermally to low permeability regions by laser or ohmic heating. The permeability of the bits was read by detecting changes of an external 32 Oe probe field using a magnetic tunnel junction 10 μm away from the media. Metglas bits were written with 100 μs laser pulses and arrays of 300 nm diameter bits were read. The high and low permeability bits written using bilayers of permalloy/Cu are not affected by 10 Mrad(Si) of gamma radiation from a 60Co source. An economical route for writing and reading bits as small at 20 nm using a variation of heat assisted magnetic recording is discussed.
A Ku band 5 bit MEMS phase shifter for active electronically steerable phased array applications
NASA Astrophysics Data System (ADS)
Sharma, Anesh K.; Gautam, Ashu K.; Farinelli, Paola; Dutta, Asudeb; Singh, S. G.
2015-03-01
The design, fabrication and measurement of a 5 bit Ku band MEMS phase shifter in different configurations, i.e. a coplanar waveguide and microstrip, are presented in this work. The development architecture is based on the hybrid approach of switched and loaded line topologies. All the switches are monolithically manufactured on a 200 µm high resistivity silicon substrate using 4 inch diameter wafers. The first three bits (180°, 90° and 45°) are realized using switched microstrip lines and series ohmic MEMS switches whereas the fourth and fifth bits (22.5° and 11.25°) consist of microstrip line sections loaded by shunt ohmic MEMS devices. Individual bits are fabricated and evaluated for performance and the monolithic device is a 5 bit Ku band (16-18 GHz) phase shifter with very low average insertion loss of the order of 3.3 dB and a return loss better than 15 dB over the 32 states with a chip area of 44 mm2. A total phase shift of 348.75° with phase accuracy within 3° is achieved over all of the states. The performance of individual bits has been optimized in order to achieve an integrated performance so that they can be implemented into active electronically steerable antennas for phased array applications.
Quantum key distribution using qudits that each encode one bit of raw key
NASA Astrophysics Data System (ADS)
Chau, H. F.
2015-12-01
All known qudit-based prepare-and-measure quantum key distribution (PMQKD) schemes are more error resilient than their qubit-based counterparts. Their high error resiliency comes partly from the careful encoding of multiple bits of signals used to generate the raw key in each transmitted qudit so that the same eavesdropping attempt causes a higher bit error rate (BER) in the raw key. Here I show that highly-error-tolerant PMQKD schemes can be constructed simply by encoding one bit of classical information in each transmitted qudit in the form (|i > ±|j >) /√{2 } , where |i > 's form an orthonormal basis of the 2n-dimensional Hilbert space. Moreover, I prove that these schemes can tolerate up to the theoretical maximum of a 50% BER for n ≥2 provided the raw key is generated under a certain technical condition, making them extremely-error-tolerant PMQKD schemes involving the transmission of unentangled finite-dimensional qudits. This shows the potential of processing quantum information using lower-dimensional quantum signals encoded in a higher-dimensional quantum state.
Bit Storage by 360 (°) Domain Walls in Ferromagnetic Nanorings
NASA Astrophysics Data System (ADS)
Muratov, Cyrill B.; Osipov, Viatcheslav V.
2009-08-01
We propose a design for the magnetic memory cell which allows an efficient storage, recording, and readout of information on the basis of thin film ferromagnetic nanorings. The information bit is represented by the polarity of a stable 360$^\\circ$ domain wall introduced into the ring. Switching between the two magnetization states is achieved by the current applied to a wire passing through the ring, whereby the $360^\\circ$ domain wall splits into two charged $180^\\circ$ walls, which then move to the opposite extreme of the ring to recombine into a $360^\\circ$ wall of the opposite polarity.
Managing the number of tag bits transmitted in a bit-tracking RFID collision resolution protocol.
Landaluce, Hugo; Perallos, Asier; Angulo, Ignacio
2014-01-01
Radio Frequency Identification (RFID) technology faces the problem of message collisions. The coexistence of tags sharing the communication channel degrades bandwidth, and increases the number of bits transmitted. The window methodology, which controls the number of bits transmitted by the tags, is applied to the collision tree (CT) protocol to solve the tag collision problem. The combination of this methodology with the bit-tracking technology, used in CT, improves the performance of the window and produces a new protocol which decreases the number of bits transmitted. The aim of this paper is to show how the CT bit-tracking protocol is influenced by the proposed window, and how the performance of the novel protocol improves under different conditions of the scenario. Therefore, we have performed a fair comparison of the CT protocol, which uses bit-tracking to identify the first collided bit, and the new proposed protocol with the window methodology. Simulations results show that the proposed window positively decreases the total number of bits that are transmitted by the tags, and outperforms the CT protocol latency in slow tag data rate scenarios. PMID:24406861
Managing the Number of Tag Bits Transmitted in a Bit-Tracking RFID Collision Resolution Protocol
Landaluce, Hugo; Perallos, Asier; Angulo, Ignacio
2014-01-01
Radio Frequency Identification (RFID) technology faces the problem of message collisions. The coexistence of tags sharing the communication channel degrades bandwidth, and increases the number of bits transmitted. The window methodology, which controls the number of bits transmitted by the tags, is applied to the collision tree (CT) protocol to solve the tag collision problem. The combination of this methodology with the bit-tracking technology, used in CT, improves the performance of the window and produces a new protocol which decreases the number of bits transmitted. The aim of this paper is to show how the CT bit-tracking protocol is influenced by the proposed window, and how the performance of the novel protocol improves under different conditions of the scenario. Therefore, we have performed a fair comparison of the CT protocol, which uses bit-tracking to identify the first collided bit, and the new proposed protocol with the window methodology. Simulations results show that the proposed window positively decreases the total number of bits that are transmitted by the tags, and outperforms the CT protocol latency in slow tag data rate scenarios. PMID:24406861
Evaluations of bit sleeve and twisted-body bit designs for controlling roof bolter dust
Beck, T.W.
2015-01-01
Drilling into coal mine roof strata to install roof bolts has the potential to release substantial quantities of respirable dust. Due to the proximity of drill holes to the breathing zone of roof bolting personnel, dust escaping the holes and avoiding capture by the dust collection system pose a potential respiratory health risk. Controls are available to complement the typical dry vacuum collection system and minimize harmful exposures during the initial phase of drilling. This paper examines the use of a bit sleeve in combination with a dust-hog-type bit to improve dust extraction during the critical initial phase of drilling. A twisted-body drill bit is also evaluated to determine the quantity of dust liberated in comparison with the dust-hog-type bit. Based on the results of our laboratory tests, the bit sleeve may reduce dust emissions by one-half during the initial phase of drilling before the drill bit is fully enclosed by the drill hole. Because collaring is responsible for the largest dust liberations, overall dust emission can also be substantially reduced. The use of a twisted-body bit has minimal improvement on dust capture compared with the commonly used dust-hog-type bit. PMID:26257435
Designing an efficient LT-code with unequal error protection for image transmission
NASA Astrophysics Data System (ADS)
S. Marques, F.; Schwartz, C.; Pinho, M. S.; Finamore, W. A.
2015-10-01
The use of images from earth observation satellites is spread over different applications, such as a car navigation systems and a disaster monitoring. In general, those images are captured by on board imaging devices and must be transmitted to the Earth using a communication system. Even though a high resolution image can produce a better Quality of Service, it leads to transmitters with high bit rate which require a large bandwidth and expend a large amount of energy. Therefore, it is very important to design efficient communication systems. From communication theory, it is well known that a source encoder is crucial in an efficient system. In a remote sensing satellite image transmission, this efficiency is achieved by using an image compressor, to reduce the amount of data which must be transmitted. The Consultative Committee for Space Data Systems (CCSDS), a multinational forum for the development of communications and data system standards for space flight, establishes a recommended standard for a data compression algorithm for images from space systems. Unfortunately, in the satellite communication channel, the transmitted signal is corrupted by the presence of noise, interference signals, etc. Therefore, the receiver of a digital communication system may fail to recover the transmitted bit. Actually, a channel code can be used to reduce the effect of this failure. In 2002, the Luby Transform code (LT-code) was introduced and it was shown that it was very efficient when the binary erasure channel model was used. Since the effect of the bit recovery failure depends on the position of the bit in the compressed image stream, in the last decade many e orts have been made to develop LT-code with unequal error protection. In 2012, Arslan et al. showed improvements when LT-codes with unequal error protection were used in images compressed by SPIHT algorithm. The techniques presented by Arslan et al. can be adapted to work with the algorithm for image compression
Audio and video bit-rate reduction
NASA Astrophysics Data System (ADS)
Haskell, B. G.; Steele, R.
1981-02-01
The problem of estimating limits of bit-rate reduction for audio and video information is addressed. It is noted that binary encoding of such signals is performed by a variety of techniques, which are classified here into two categories (waveform and parameter). Encoders are compared on the basis of bits per Nyquist sample. Since minimizing the Nyquist sample requires a use of source signal statistics and human perception, audio and video sources and their statistics are discussed, as are the salient properties of hearing and vision and subjective assessments of quality. The present state of waveform and parameter encoding is assessed. It is predicted that waveform encoders will be refined to the point where bit rates will be nearly optimum but also highly variable. It is concluded that dramatic reductions will come about only through sophisticated parameter encoding.
... to reduce the risk of medication errors to industry and others at FDA. Additionally, DMEPA prospectively reviews ... List of Abbreviations Regulations and Guidances Guidance for Industry: Safety Considerations for Product Design to Minimize Medication ...
Medicines cure infectious diseases, prevent problems from chronic diseases, and ease pain. But medicines can also cause harmful reactions if not used ... You can help prevent errors by Knowing your medicines. Keep a list of the names of your ...
Friction of drill bits under Martian pressure
NASA Astrophysics Data System (ADS)
Zacny, K. A.; Cooper, G. A.
2007-03-01
Frictional behavior was investigated for two materials that are good candidates for Mars drill bits: Diamond Impregnated Segments and Polycrystalline Diamond Compacts (PDC). The bits were sliding against dry sandstone and basalt rocks under both Earth and Mars atmospheric pressures and also at temperatures ranging from subzero to over 400 °C. It was found that the friction coefficient dropped from approximately 0.16 to 0.1 as the pressure was lowered from the Earth's pressure to Mars' pressure, at room temperature. This is thought to be a result of the loss of weakly bound water on the sliding surfaces. Holding the pressure at 5 torr and increasing the temperature to approximately 200°C caused a sudden increase in the friction coefficient by approximately 50%. This is attributed to the loss of surface oxides. If no indication of the bit temperature is available, an increase in drilling torque could be misinterpreted as being caused by an increase in auger torque (due to accumulation of cuttings) rather than being the result of a loss of oxide layers due to elevated bit temperatures. An increase in rotational speed (to allow for clearing of cuttings) would then cause greater frictional heating and would increase the drilling torque further. Therefore it would be advisable to monitor the bit temperature or, if that is not possible, to include pauses in drilling to allow the heat to dissipate. Higher friction would also accelerate the wear of the drill bit and in turn reduce the depth of the hole.
A simple model of bit whirl for deep drilling applications
NASA Astrophysics Data System (ADS)
Kovalyshen, Yevhen
2013-11-01
A simple analytical model of bit whirl is presented. In contrast to the previous works, which consider bottom hole assembly mass imbalance to model bit whirl, the model here takes into account the history-dependent boundary conditions at the bit-rock interface as well as the bit geometry. In particular, an analytical expression for the bit-rock interaction is derived. It is shown that the bit geometry affects the bit-rock interaction only through three dimensionless parameters. Depending on the value of these parameters the system can be stable or undergo forward or backward whirl.
Model for the bit-rock interaction analysis
NASA Astrophysics Data System (ADS)
Palmov, Vladimir A.; Vetyukov, Yury M.
2002-02-01
In this report a model for drilling response of the so- called drag bits (or PDC bits) is presented. Forces acting on a single cutter are supposed to be known. Discrete and continuous cutters distribution over the bit surface are considered. Both lead to similar relations between the bit kinematics characteristics and the force factors acting on it. While the bit penetration rate into the rock is small, the force and the torque are shown to depend linearly on the ratio between the bit transitional and rotational velocities (the depth of cut per revolution). Particular cases of the bit shape are compared.
Anti-incendive coal cutter bits
Cheng, L.; Liebman, I.
1981-11-09
The invention is an improved cutter bit, useable with a material cutting mining machine, wherein the bit has an elongated shank portion which retains a cutting tip portion. The tip portion is enlarged in cross-section at its junction with the shank to partially mask the adjacent interface shank surface and thereby protect the shank from exposure at the point of impact. Two basic designs embody the invention. One is a mushroom shaped tip and the other is a dovetail tip/shank design.
Shaft drill bit with overlapping cutter arrangement
Cunningham, R.A.; Pessier, R.C.
1981-02-03
An earth boring drill bit for large diameter shafts has an improved cutter arrangement. The drill bit has a cutter support member with a number of cutters mounted to it for disintegrating the earth formation face. At least one inner cutter is mounted near the center for cutting the center area. A number of gage cutters are mounted at the periphery to cut the gage area of the shaft. A number of intermediate cutters are spaced between the inner and gage cutters. Each intermediate cutter overlaps onehalf of its width with an adjacent intermediate cutter.
Quantum bit commitment under Gaussian constraints
NASA Astrophysics Data System (ADS)
Mandilara, Aikaterini; Cerf, Nicolas J.
2012-06-01
Quantum bit commitment has long been known to be impossible. Nevertheless, just as in the classical case, imposing certain constraints on the power of the parties may enable the construction of asymptotically secure protocols. Here, we introduce a quantum bit commitment protocol and prove that it is asymptotically secure if cheating is restricted to Gaussian operations. This protocol exploits continuous-variable quantum optical carriers, for which such a Gaussian constraint is experimentally relevant as the high optical nonlinearity needed to effect deterministic non-Gaussian cheating is inaccessible.