Sample records for achieve improved accuracy

  1. Improving Speaking Accuracy through Awareness

    ERIC Educational Resources Information Center

    Dormer, Jan Edwards

    2013-01-01

    Increased English learner accuracy can be achieved by leading students through six stages of awareness. The first three awareness stages build up students' motivation to improve, and the second three provide learners with crucial input for change. The final result is "sustained language awareness," resulting in ongoing…

  2. Preliminary study of GPS orbit determination accuracy achievable from worldwide tracking data

    NASA Technical Reports Server (NTRS)

    Larden, D. R.; Bender, P. L.

    1982-01-01

    The improvement in the orbit accuracy if high accuracy tracking data from a substantially larger number of ground stations is available was investigated. Observations from 20 ground stations indicate that 20 cm or better accuracy can be achieved for the horizontal coordinates of the GPS satellites. With this accuracy, the contribution to the error budget for determining 1000 km baselines by GPS geodetic receivers would be only about 1 cm.

  3. Preliminary study of GPS orbit determination accuracy achievable from worldwide tracking data

    NASA Technical Reports Server (NTRS)

    Larden, D. R.; Bender, P. L.

    1983-01-01

    The improvement in the orbit accuracy if high accuracy tracking data from a substantially larger number of ground stations is available was investigated. Observations from 20 ground stations indicate that 20 cm or better accuracy can be achieved for the horizontal coordinates of the GPS satellites. With this accuracy, the contribution to the error budget for determining 1000 km baselines by GPS geodetic receivers would be only about 1 cm. Previously announced in STAR as N83-14605

  4. Photon caliper to achieve submillimeter positioning accuracy

    NASA Astrophysics Data System (ADS)

    Gallagher, Kyle J.; Wong, Jennifer; Zhang, Junan

    2017-09-01

    The purpose of this study was to demonstrate the feasibility of using a commercial two-dimensional (2D) detector array with an inherent detector spacing of 5 mm to achieve submillimeter accuracy in localizing the radiation isocenter. This was accomplished by delivering the Vernier ‘dose’ caliper to a 2D detector array where the nominal scale was the 2D detector array and the non-nominal Vernier scale was the radiation dose strips produced by the high-definition (HD) multileaf collimators (MLCs) of the linear accelerator. Because the HD MLC sequence was similar to the picket fence test, we called this procedure the Vernier picket fence (VPF) test. We confirmed the accuracy of the VPF test by offsetting the HD MLC bank by known increments and comparing the known offset with the VPF test result. The VPF test was able to determine the known offset within 0.02 mm. We also cross-validated the accuracy of the VPF test in an evaluation of couch hysteresis. This was done by using both the VPF test and the ExacTrac optical tracking system to evaluate the couch position. We showed that the VPF test was in agreement with the ExacTrac optical tracking system within a root-mean-square value of 0.07 mm for both the lateral and longitudinal directions. In conclusion, we demonstrated the VPF test can determine the offset between a 2D detector array and the radiation isocenter with submillimeter accuracy. Until now, no method to locate the radiation isocenter using a 2D detector array has been able to achieve such accuracy.

  5. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration

    PubMed Central

    Deng, Mingjun; Li, Jiansong

    2017-01-01

    The Chinese Gaofen-3 (GF-3) mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR) sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts) using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method. PMID:29240675

  6. Improving IMES Localization Accuracy by Integrating Dead Reckoning Information

    PubMed Central

    Fujii, Kenjiro; Arie, Hiroaki; Wang, Wei; Kaneko, Yuto; Sakamoto, Yoshihiro; Schmitz, Alexander; Sugano, Shigeki

    2016-01-01

    Indoor positioning remains an open problem, because it is difficult to achieve satisfactory accuracy within an indoor environment using current radio-based localization technology. In this study, we investigate the use of Indoor Messaging System (IMES) radio for high-accuracy indoor positioning. A hybrid positioning method combining IMES radio strength information and pedestrian dead reckoning information is proposed in order to improve IMES localization accuracy. For understanding the carrier noise ratio versus distance relation for IMES radio, the signal propagation of IMES radio is modeled and identified. Then, trilateration and extended Kalman filtering methods using the radio propagation model are developed for position estimation. These methods are evaluated through robot localization and pedestrian localization experiments. The experimental results show that the proposed hybrid positioning method achieved average estimation errors of 217 and 1846 mm in robot localization and pedestrian localization, respectively. In addition, in order to examine the reason for the positioning accuracy of pedestrian localization being much lower than that of robot localization, the influence of the human body on the radio propagation is experimentally evaluated. The result suggests that the influence of the human body can be modeled. PMID:26828492

  7. Cadastral Database Positional Accuracy Improvement

    NASA Astrophysics Data System (ADS)

    Hashim, N. M.; Omar, A. H.; Ramli, S. N. M.; Omar, K. M.; Din, N.

    2017-10-01

    Positional Accuracy Improvement (PAI) is the refining process of the geometry feature in a geospatial dataset to improve its actual position. This actual position relates to the absolute position in specific coordinate system and the relation to the neighborhood features. With the growth of spatial based technology especially Geographical Information System (GIS) and Global Navigation Satellite System (GNSS), the PAI campaign is inevitable especially to the legacy cadastral database. Integration of legacy dataset and higher accuracy dataset like GNSS observation is a potential solution for improving the legacy dataset. However, by merely integrating both datasets will lead to a distortion of the relative geometry. The improved dataset should be further treated to minimize inherent errors and fitting to the new accurate dataset. The main focus of this study is to describe a method of angular based Least Square Adjustment (LSA) for PAI process of legacy dataset. The existing high accuracy dataset known as National Digital Cadastral Database (NDCDB) is then used as bench mark to validate the results. It was found that the propose technique is highly possible for positional accuracy improvement of legacy spatial datasets.

  8. Improvement on Timing Accuracy of LIDAR for Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Huang, W.; Zhou, X.; Huang, Y.; He, C.; Li, X.; Zhang, L.

    2018-05-01

    The traditional timing discrimination technique for laser rangefinding in remote sensing, which is lower in measurement performance and also has a larger error, has been unable to meet the high precision measurement and high definition lidar image. To solve this problem, an improvement of timing accuracy based on the improved leading-edge timing discrimination (LED) is proposed. Firstly, the method enables the corresponding timing point of the same threshold to move forward with the multiple amplifying of the received signal. Then, timing information is sampled, and fitted the timing points through algorithms in MATLAB software. Finally, the minimum timing error is calculated by the fitting function. Thereby, the timing error of the received signal from the lidar is compressed and the lidar data quality is improved. Experiments show that timing error can be significantly reduced by the multiple amplifying of the received signal and the algorithm of fitting the parameters, and a timing accuracy of 4.63 ps is achieved.

  9. "Battleship Numberline": A Digital Game for Improving Estimation Accuracy on Fraction Number Lines

    ERIC Educational Resources Information Center

    Lomas, Derek; Ching, Dixie; Stampfer, Eliane; Sandoval, Melanie; Koedinger, Ken

    2011-01-01

    Given the strong relationship between number line estimation accuracy and math achievement, might a computer-based number line game help improve math achievement? In one study by Rittle-Johnson, Siegler and Alibali (2001), a simple digital game called "Catch the Monster" provided practice in estimating the location of decimals on a…

  10. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  11. Feature instructions improve face-matching accuracy

    PubMed Central

    Bindemann, Markus

    2018-01-01

    Identity comparisons of photographs of unfamiliar faces are prone to error but important for applied settings, such as person identification at passport control. Finding techniques to improve face-matching accuracy is therefore an important contemporary research topic. This study investigated whether matching accuracy can be improved by instruction to attend to specific facial features. Experiment 1 showed that instruction to attend to the eyebrows enhanced matching accuracy for optimized same-day same-race face pairs but not for other-race faces. By contrast, accuracy was unaffected by instruction to attend to the eyes, and declined with instruction to attend to ears. Experiment 2 replicated the eyebrow-instruction improvement with a different set of same-race faces, comprising both optimized same-day and more challenging different-day face pairs. These findings suggest that instruction to attend to specific features can enhance face-matching accuracy, but feature selection is crucial and generalization across face sets may be limited. PMID:29543822

  12. Existing methods for improving the accuracy of digital-to-analog converters

    NASA Astrophysics Data System (ADS)

    Eielsen, Arnfinn A.; Fleming, Andrew J.

    2017-09-01

    The performance of digital-to-analog converters is principally limited by errors in the output voltage levels. Such errors are known as element mismatch and are quantified by the integral non-linearity. Element mismatch limits the achievable accuracy and resolution in high-precision applications as it causes gain and offset errors, as well as harmonic distortion. In this article, five existing methods for mitigating the effects of element mismatch are compared: physical level calibration, dynamic element matching, noise-shaping with digital calibration, large periodic high-frequency dithering, and large stochastic high-pass dithering. These methods are suitable for improving accuracy when using digital-to-analog converters that use multiple discrete output levels to reconstruct time-varying signals. The methods improve linearity and therefore reduce harmonic distortion and can be retrofitted to existing systems with minor hardware variations. The performance of each method is compared theoretically and confirmed by simulations and experiments. Experimental results demonstrate that three of the five methods provide significant improvements in the resolution and accuracy when applied to a general-purpose digital-to-analog converter. As such, these methods can directly improve performance in a wide range of applications including nanopositioning, metrology, and optics.

  13. Improving the Accuracy of the Chebyshev Rational Approximation Method Using Substeps

    DOE PAGES

    Isotalo, Aarno; Pusa, Maria

    2016-05-01

    The Chebyshev Rational Approximation Method (CRAM) for solving the decay and depletion of nuclides is shown to have a remarkable decrease in error when advancing the system with the same time step and microscopic reaction rates as the previous step. This property is exploited here to achieve high accuracy in any end-of-step solution by dividing a step into equidistant sub-steps. The computational cost of identical substeps can be reduced significantly below that of an equal number of regular steps, as the LU decompositions for the linear solves required in CRAM only need to be formed on the first substep. Themore » improved accuracy provided by substeps is most relevant in decay calculations, where there have previously been concerns about the accuracy and generality of CRAM. Lastly, with substeps, CRAM can solve any decay or depletion problem with constant microscopic reaction rates to an extremely high accuracy for all nuclides with concentrations above an arbitrary limit.« less

  14. Improving orbit prediction accuracy through supervised machine learning

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Bai, Xiaoli

    2018-05-01

    Due to the lack of information such as the space environment condition and resident space objects' (RSOs') body characteristics, current orbit predictions that are solely grounded on physics-based models may fail to achieve required accuracy for collision avoidance and have led to satellite collisions already. This paper presents a methodology to predict RSOs' trajectories with higher accuracy than that of the current methods. Inspired by the machine learning (ML) theory through which the models are learned based on large amounts of observed data and the prediction is conducted without explicitly modeling space objects and space environment, the proposed ML approach integrates physics-based orbit prediction algorithms with a learning-based process that focuses on reducing the prediction errors. Using a simulation-based space catalog environment as the test bed, the paper demonstrates three types of generalization capability for the proposed ML approach: (1) the ML model can be used to improve the same RSO's orbit information that is not available during the learning process but shares the same time interval as the training data; (2) the ML model can be used to improve predictions of the same RSO at future epochs; and (3) the ML model based on a RSO can be applied to other RSOs that share some common features.

  15. Accuracy improvement techniques in Precise Point Positioning method using multiple GNSS constellations

    NASA Astrophysics Data System (ADS)

    Vasileios Psychas, Dimitrios; Delikaraoglou, Demitris

    2016-04-01

    The future Global Navigation Satellite Systems (GNSS), including modernized GPS, GLONASS, Galileo and BeiDou, offer three or more signal carriers for civilian use and much more redundant observables. The additional frequencies can significantly improve the capabilities of the traditional geodetic techniques based on GPS signals at two frequencies, especially with regard to the availability, accuracy, interoperability and integrity of high-precision GNSS applications. Furthermore, highly redundant measurements can allow for robust simultaneous estimation of static or mobile user states including more parameters such as real-time tropospheric biases and more reliable ambiguity resolution estimates. This paper presents an investigation and analysis of accuracy improvement techniques in the Precise Point Positioning (PPP) method using signals from the fully operational (GPS and GLONASS), as well as the emerging (Galileo and BeiDou) GNSS systems. The main aim was to determine the improvement in both the positioning accuracy achieved and the time convergence it takes to achieve geodetic-level (10 cm or less) accuracy. To this end, freely available observation data from the recent Multi-GNSS Experiment (MGEX) of the International GNSS Service, as well as the open source program RTKLIB were used. Following a brief background of the PPP technique and the scope of MGEX, the paper outlines the various observational scenarios that were used in order to test various data processing aspects of PPP solutions with multi-frequency, multi-constellation GNSS systems. Results from the processing of multi-GNSS observation data from selected permanent MGEX stations are presented and useful conclusions and recommendations for further research are drawn. As shown, data fusion from GPS, GLONASS, Galileo and BeiDou systems is becoming increasingly significant nowadays resulting in a position accuracy increase (mostly in the less favorable East direction) and a large reduction of convergence

  16. Improving coding accuracy in an academic practice.

    PubMed

    Nguyen, Dana; O'Mara, Heather; Powell, Robert

    2017-01-01

    Practice management has become an increasingly important component of graduate medical education. This applies to every practice environment; private, academic, and military. One of the most critical aspects of practice management is documentation and coding for physician services, as they directly affect the financial success of any practice. Our quality improvement project aimed to implement a new and innovative method for teaching billing and coding in a longitudinal fashion in a family medicine residency. We hypothesized that implementation of a new teaching strategy would increase coding accuracy rates among residents and faculty. Design: single group, pretest-posttest. military family medicine residency clinic. Study populations: 7 faculty physicians and 18 resident physicians participated as learners in the project. Educational intervention: monthly structured coding learning sessions in the academic curriculum that involved learner-presented cases, small group case review, and large group discussion. overall coding accuracy (compliance) percentage and coding accuracy per year group for the subjects that were able to participate longitudinally. Statistical tests used: average coding accuracy for population; paired t test to assess improvement between 2 intervention periods, both aggregate and by year group. Overall coding accuracy rates remained stable over the course of time regardless of the modality of the educational intervention. A paired t test was conducted to compare coding accuracy rates at baseline (mean (M)=26.4%, SD=10%) to accuracy rates after all educational interventions were complete (M=26.8%, SD=12%); t24=-0.127, P=.90. Didactic teaching and small group discussion sessions did not improve overall coding accuracy in a residency practice. Future interventions could focus on educating providers at the individual level.

  17. Perceptual experience and posttest improvements in perceptual accuracy and consistency.

    PubMed

    Wagman, Jeffrey B; McBride, Dawn M; Trefzger, Amanda J

    2008-08-01

    Two experiments investigated the relationship between perceptual experience (during practice) and posttest improvements in perceptual accuracy and consistency. Experiment 1 investigated the potential relationship between how often knowledge of results (KR) is provided during a practice session and posttest improvements in perceptual accuracy. Experiment 2 investigated the potential relationship between how often practice (PR) is provided during a practice session and posttest improvements in perceptual consistency. The results of both experiments are consistent with previous findings that perceptual accuracy improves only when practice includes KR and that perceptual consistency improves regardless of whether practice includes KR. In addition, the results showed that although there is a relationship between how often KR is provided during a practice session and posttest improvements in perceptual accuracy, there is no relationship between how often PR is provided during a practice session and posttest improvements in consistency.

  18. Interactional Effects of Instructional Quality and Teacher Judgement Accuracy on Achievement.

    ERIC Educational Resources Information Center

    Helmke, Andreas; Schrader, Friedrich-Wilhelm

    1987-01-01

    Analysis of predictions of 32 teachers regarding 690 fifth-graders' scores on a mathematics achievement test found that the combination of high judgement accuracy with varied instructional techniques was particularly favorable to students in contrast to a combination of high diagnostic sensitivity with a low frequency of cues or individual…

  19. Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy.

    PubMed

    Guo, L B; Hao, Z Q; Shen, M; Xiong, W; He, X N; Xie, Z Q; Gao, M; Li, X Y; Zeng, X Y; Lu, Y F

    2013-07-29

    To improve the accuracy of quantitative analysis in laser-induced breakdown spectroscopy, the plasma produced by a Nd:YAG laser from steel targets was confined by a cavity. A number of elements with low concentrations, such as vanadium (V), chromium (Cr), and manganese (Mn), in the steel samples were investigated. After the optimization of the cavity dimension and laser fluence, significant enhancement factors of 4.2, 3.1, and 2.87 in the emission intensity of V, Cr, and Mn lines, respectively, were achieved at a laser fluence of 42.9 J/cm(2) using a hemispherical cavity (diameter: 5 mm). More importantly, the correlation coefficient of the V I 440.85/Fe I 438.35 nm was increased from 0.946 (without the cavity) to 0.981 (with the cavity); and similar results for Cr I 425.43/Fe I 425.08 nm and Mn I 476.64/Fe I 492.05 nm were also obtained. Therefore, it was demonstrated that the accuracy of quantitative analysis with low concentration elements in steel samples was improved, because the plasma became uniform with spatial confinement. The results of this study provide a new pathway for improving the accuracy of quantitative analysis of LIBS.

  20. Laser ranging with the MéO telescope to improve orbital accuracy of space debris

    NASA Astrophysics Data System (ADS)

    Hennegrave, L.; Pyanet, M.; Haag, H.; Blanchet, G.; Esmiller, B.; Vial, S.; Samain, E.; Paris, J.; Albanese, D.

    2013-05-01

    Improving orbital accuracy of space debris is one of the major prerequisite to performing reliable collision prediction in low earth orbit. The objective is to avoid false alarms and useless maneuvers for operational satellites. This paper shows how laser ranging on debris can improve the accuracy of orbit determination. In March 2012 a joint OCA-Astrium team had the first laser echoes from space debris using the MéO (Métrologie Optique) telescope of the Observatoire de la Côte d'Azur (OCA), upgraded with a nanosecond pulsed laser. The experiment was conducted in full compliance with the procedures dictated by the French Civil Aviation Authorities. To perform laser ranging measurement on space debris, the laser link budget needed to be improved. Related technical developments were supported by implementation of a 2J pulsed laser purchased by ASTRIUM and an adapted photo detection. To achieve acquisition of the target from low accuracy orbital data such as Two Lines Elements, a 2.3-degree field of view telescope was coupled to the original MéO telescope 3-arcmin narrow field of view. The wide field of view telescope aimed at pointing, adjusting and acquiring images of the space debris for astrometry measurement. The achieved set-up allowed performing laser ranging and angular measurements in parallel, on several rocket stages from past launches. After a brief description of the set-up, development issues and campaigns, the paper discusses added-value of laser ranging measurement when combined to angular measurement for accurate orbit determination. Comparison between different sets of experimental results as well as simulation results is given.

  1. Employment of sawtooth-shaped-function excitation signal and oversampling for improving resistance measurement accuracy

    NASA Astrophysics Data System (ADS)

    Lin, Ling; Li, Shujuan; Yan, Wenjuan; Li, Gang

    2016-10-01

    In order to achieve higher measurement accuracy of routine resistance without increasing the complexity and cost of the system circuit of existing methods, this paper presents a novel method that exploits a shaped-function excitation signal and oversampling technology. The excitation signal source for resistance measurement is modulated by the sawtooth-shaped-function signal, and oversampling technology is employed to increase the resolution and the accuracy of the measurement system. Compared with the traditional method of using constant amplitude excitation signal, this method can effectively enhance the measuring accuracy by almost one order of magnitude and reduce the root mean square error by 3.75 times under the same measurement conditions. The results of experiments show that the novel method can attain the aim of significantly improve the measurement accuracy of resistance on the premise of not increasing the system cost and complexity of the circuit, which is significantly valuable for applying in electronic instruments.

  2. Improving sub-grid scale accuracy of boundary features in regional finite-difference models

    USGS Publications Warehouse

    Panday, Sorab; Langevin, Christian D.

    2012-01-01

    As an alternative to grid refinement, the concept of a ghost node, which was developed for nested grid applications, has been extended towards improving sub-grid scale accuracy of flow to conduits, wells, rivers or other boundary features that interact with a finite-difference groundwater flow model. The formulation is presented for correcting the regular finite-difference groundwater flow equations for confined and unconfined cases, with or without Newton Raphson linearization of the nonlinearities, to include the Ghost Node Correction (GNC) for location displacement. The correction may be applied on the right-hand side vector for a symmetric finite-difference Picard implementation, or on the left-hand side matrix for an implicit but asymmetric implementation. The finite-difference matrix connectivity structure may be maintained for an implicit implementation by only selecting contributing nodes that are a part of the finite-difference connectivity. Proof of concept example problems are provided to demonstrate the improved accuracy that may be achieved through sub-grid scale corrections using the GNC schemes.

  3. Fusion with Language Models Improves Spelling Accuracy for ERP-based Brain Computer Interface Spellers

    PubMed Central

    Orhan, Umut; Erdogmus, Deniz; Roark, Brian; Purwar, Shalini; Hild, Kenneth E.; Oken, Barry; Nezamfar, Hooman; Fried-Oken, Melanie

    2013-01-01

    Event related potentials (ERP) corresponding to a stimulus in electroencephalography (EEG) can be used to detect the intent of a person for brain computer interfaces (BCI). This paradigm is widely utilized to build letter-by-letter text input systems using BCI. Nevertheless using a BCI-typewriter depending only on EEG responses will not be sufficiently accurate for single-trial operation in general, and existing systems utilize many-trial schemes to achieve accuracy at the cost of speed. Hence incorporation of a language model based prior or additional evidence is vital to improve accuracy and speed. In this paper, we study the effects of Bayesian fusion of an n-gram language model with a regularized discriminant analysis ERP detector for EEG-based BCIs. The letter classification accuracies are rigorously evaluated for varying language model orders as well as number of ERP-inducing trials. The results demonstrate that the language models contribute significantly to letter classification accuracy. Specifically, we find that a BCI-speller supported by a 4-gram language model may achieve the same performance using 3-trial ERP classification for the initial letters of the words and using single trial ERP classification for the subsequent ones. Overall, fusion of evidence from EEG and language models yields a significant opportunity to increase the word rate of a BCI based typing system. PMID:22255652

  4. Accuracy Improvement of Neutron Nuclear Data on Minor Actinides

    NASA Astrophysics Data System (ADS)

    Harada, Hideo; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Terada, Kazushi; Nakao, Taro; Nakamura, Shoji; Mizuyama, Kazuhito; Igashira, Masayuki; Katabuchi, Tatsuya; Sano, Tadafumi; Takahashi, Yoshiyuki; Takamiya, Koichi; Pyeon, Cheol Ho; Fukutani, Satoshi; Fujii, Toshiyuki; Hori, Jun-ichi; Yagi, Takahiro; Yashima, Hiroshi

    2015-05-01

    Improvement of accuracy of neutron nuclear data for minor actinides (MAs) and long-lived fission products (LLFPs) is required for developing innovative nuclear system transmuting these nuclei. In order to meet the requirement, the project entitled as "Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides (AIMAC)" has been started as one of the "Innovative Nuclear Research and Development Program" in Japan at October 2013. The AIMAC project team is composed of researchers in four different fields: differential nuclear data measurement, integral nuclear data measurement, nuclear chemistry, and nuclear data evaluation. By integrating all of the forefront knowledge and techniques in these fields, the team aims at improving the accuracy of the data. The background and research plan of the AIMAC project are presented.

  5. Improvement in Rayleigh Scattering Measurement Accuracy

    NASA Technical Reports Server (NTRS)

    Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.

    2012-01-01

    Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous velocity, density, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of an acousto-optic frequency shifting device to improve measurement accuracy in Rayleigh scattering experiments at the NASA Glenn Research Center. The frequency shifting device is used as a means of shifting the incident or reference laser frequency by 1100 MHz to avoid overlap of the Rayleigh and reference signal peaks in the interference pattern used to obtain the velocity, density, and temperature measurements, and also to calibrate the free spectral range of the Fabry-Perot etalon. The measurement accuracy improvement is evaluated by comparison of Rayleigh scattering measurements acquired with and without shifting of the reference signal frequency in a 10 mm diameter subsonic nozzle flow.

  6. Mutants of Cre recombinase with improved accuracy

    PubMed Central

    Eroshenko, Nikolai; Church, George M.

    2013-01-01

    Despite rapid advances in genome engineering technologies, inserting genes into precise locations in the human genome remains an outstanding problem. It has been suggested that site-specific recombinases can be adapted towards use as transgene delivery vectors. The specificity of recombinases can be altered either with directed evolution or via fusions to modular DNA-binding domains. Unfortunately, both wildtype and altered variants often have detectable activities at off-target sites. Here we use bacterial selections to identify mutations in the dimerization surface of Cre recombinase (R32V, R32M, and 303GVSdup) that improve the accuracy of recombination. The mutants are functional in bacteria, in human cells, and in vitro (except for 303GVSdup, which we did not purify), and have improved selectivity against both model off-target sites and the entire E. coli genome. We propose that destabilizing binding cooperativity may be a general strategy for improving the accuracy of dimeric DNA-binding proteins. PMID:24056590

  7. The relation between children's accuracy estimates of their physical competence and achievement-related characteristics.

    PubMed

    Weiss, M R; Horn, T S

    1990-09-01

    The relationship between perceptions of competence and control, achievement, and motivated behavior in youth sport has been a topic of considerable interest. The purpose of this study was to examine whether children who are under-, accurate, or overestimators of their physical competence differ in their achievement characteristics. Children (N = 133), 8 to 13 years of age, who were attending a summer sport program, completed a series of questionnaires designed to assess perceptions of competence and control, motivational orientation, and competitive trait anxiety. Measures of physical competence were obtained by teachers' ratings that paralleled the children's measure of perceived competence. Perceived competence and teachers' ratings were standardized by grade level, and an accuracy score was computed from the difference between these scores. Children were then categorized as underestimators, accurate raters, or overestimators according to upper and lower quartiles of this distribution. A 2 x 2 x 3 (age level by gender by accuracy) MANCOVA revealed a significant gender by accuracy interaction. Underestimating girls were lower in challenge motivation, higher in trait anxiety, and more external in their control perceptions than accurate or overestimators. Underestimating boys were higher in perceived unknown control than accurate and overestimating boys. It was concluded that children who seriously underestimate their perceived competence may be likely candidates for discontinuation of sport activities or low levels of physical achievement.

  8. Accuracy of Self-Reported College GPA: Gender-Moderated Differences by Achievement Level and Academic Self-Efficacy

    ERIC Educational Resources Information Center

    Caskie, Grace I. L.; Sutton, MaryAnn C.; Eckhardt, Amanda G.

    2014-01-01

    Assessments of college academic achievement tend to rely on self-reported GPA values, yet evidence is limited regarding the accuracy of those values. With a sample of 194 undergraduate college students, the present study examined whether accuracy of self-reported GPA differed based on level of academic performance or level of academic…

  9. Concept Mapping Improves Metacomprehension Accuracy among 7th Graders

    ERIC Educational Resources Information Center

    Redford, Joshua S.; Thiede, Keith W.; Wiley, Jennifer; Griffin, Thomas D.

    2012-01-01

    Two experiments explored concept map construction as a useful intervention to improve metacomprehension accuracy among 7th grade students. In the first experiment, metacomprehension was marginally better for a concept mapping group than for a rereading group. In the second experiment, metacomprehension accuracy was significantly greater for a…

  10. Position Accuracy Improvement by Implementing the DGNSS-CP Algorithm in Smartphones

    PubMed Central

    Yoon, Donghwan; Kee, Changdon; Seo, Jiwon; Park, Byungwoon

    2016-01-01

    The position accuracy of Global Navigation Satellite System (GNSS) modules is one of the most significant factors in determining the feasibility of new location-based services for smartphones. Considering the structure of current smartphones, it is impossible to apply the ordinary range-domain Differential GNSS (DGNSS) method. Therefore, this paper describes and applies a DGNSS-correction projection method to a commercial smartphone. First, the local line-of-sight unit vector is calculated using the elevation and azimuth angle provided in the position-related output of Android’s LocationManager, and this is transformed to Earth-centered, Earth-fixed coordinates for use. To achieve position-domain correction for satellite systems other than GPS, such as GLONASS and BeiDou, the relevant line-of-sight unit vectors are used to construct an observation matrix suitable for multiple constellations. The results of static and dynamic tests show that the standalone GNSS accuracy is improved by about 30%–60%, thereby reducing the existing error of 3–4 m to just 1 m. The proposed algorithm enables the position error to be directly corrected via software, without the need to alter the hardware and infrastructure of the smartphone. This method of implementation and the subsequent improvement in performance are expected to be highly effective to portability and cost saving. PMID:27322284

  11. Improved localization accuracy in stochastic super-resolution fluorescence microscopy by K-factor image deshadowing

    PubMed Central

    Ilovitsh, Tali; Meiri, Amihai; Ebeling, Carl G.; Menon, Rajesh; Gerton, Jordan M.; Jorgensen, Erik M.; Zalevsky, Zeev

    2013-01-01

    Localization of a single fluorescent particle with sub-diffraction-limit accuracy is a key merit in localization microscopy. Existing methods such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) achieve localization accuracies of single emitters that can reach an order of magnitude lower than the conventional resolving capabilities of optical microscopy. However, these techniques require a sparse distribution of simultaneously activated fluorophores in the field of view, resulting in larger time needed for the construction of the full image. In this paper we present the use of a nonlinear image decomposition algorithm termed K-factor, which reduces an image into a nonlinear set of contrast-ordered decompositions whose joint product reassembles the original image. The K-factor technique, when implemented on raw data prior to localization, can improve the localization accuracy of standard existing methods, and also enable the localization of overlapping particles, allowing the use of increased fluorophore activation density, and thereby increased data collection speed. Numerical simulations of fluorescence data with random probe positions, and especially at high densities of activated fluorophores, demonstrate an improvement of up to 85% in the localization precision compared to single fitting techniques. Implementing the proposed concept on experimental data of cellular structures yielded a 37% improvement in resolution for the same super-resolution image acquisition time, and a decrease of 42% in the collection time of super-resolution data with the same resolution. PMID:24466491

  12. Efficient full-chip SRAF placement using machine learning for best accuracy and improved consistency

    NASA Astrophysics Data System (ADS)

    Wang, Shibing; Baron, Stanislas; Kachwala, Nishrin; Kallingal, Chidam; Sun, Dezheng; Shu, Vincent; Fong, Weichun; Li, Zero; Elsaid, Ahmad; Gao, Jin-Wei; Su, Jing; Ser, Jung-Hoon; Zhang, Quan; Chen, Been-Der; Howell, Rafael; Hsu, Stephen; Luo, Larry; Zou, Yi; Zhang, Gary; Lu, Yen-Wen; Cao, Yu

    2018-03-01

    Various computational approaches from rule-based to model-based methods exist to place Sub-Resolution Assist Features (SRAF) in order to increase process window for lithography. Each method has its advantages and drawbacks, and typically requires the user to make a trade-off between time of development, accuracy, consistency and cycle time. Rule-based methods, used since the 90 nm node, require long development time and struggle to achieve good process window performance for complex patterns. Heuristically driven, their development is often iterative and involves significant engineering time from multiple disciplines (Litho, OPC and DTCO). Model-based approaches have been widely adopted since the 20 nm node. While the development of model-driven placement methods is relatively straightforward, they often become computationally expensive when high accuracy is required. Furthermore these methods tend to yield less consistent SRAFs due to the nature of the approach: they rely on a model which is sensitive to the pattern placement on the native simulation grid, and can be impacted by such related grid dependency effects. Those undesirable effects tend to become stronger when more iterations or complexity are needed in the algorithm to achieve required accuracy. ASML Brion has developed a new SRAF placement technique on the Tachyon platform that is assisted by machine learning and significantly improves the accuracy of full chip SRAF placement while keeping consistency and runtime under control. A Deep Convolutional Neural Network (DCNN) is trained using the target wafer layout and corresponding Continuous Transmission Mask (CTM) images. These CTM images have been fully optimized using the Tachyon inverse mask optimization engine. The neural network generated SRAF guidance map is then used to place SRAF on full-chip. This is different from our existing full-chip MB-SRAF approach which utilizes a SRAF guidance map (SGM) of mask sensitivity to improve the contrast of

  13. Pediatric Surgeon-Directed Wound Classification Improves Accuracy

    PubMed Central

    Zens, Tiffany J.; Rusy, Deborah A.; Gosain, Ankush

    2015-01-01

    Background Surgical wound classification (SWC) communicates the degree of contamination in the surgical field and is used to stratify risk of surgical site infection and compare outcomes amongst centers. We hypothesized that changing from nurse-directed to surgeon-directed SWC during a structured operative debrief we will improve accuracy of documentation. Methods An IRB-approved retrospective chart review was performed. Two time periods were defined: initially, SWC was determined and recorded by the circulating nurse (Pre-Debrief 6/2012-5/2013) and allowing six months for adoption and education, we implemented a structured operative debriefing including surgeon-directed SWC (Post-Debrief 1/2014-8/2014). Accuracy of SWC was determined for four commonly performed Pediatric General Surgery operations: inguinal hernia repair (clean), gastrostomy +/− Nissen fundoplication (clean-contaminated), appendectomy without perforation (contaminated), and appendectomy with perforation (dirty). Results 183 cases Pre-Debrief and 142 cases Post-Debrief met inclusion criteria. No differences between time periods were noted in regards to patient demographics, ASA class, or case mix. Accuracy of wound classification improved Post-Debrief (42% vs. 58.5%, p=0.003). Pre-Debrief, 26.8% of cases were overestimated or underestimated by more than one wound class, vs. 3.5% of cases Post-Debrief (p<0.001). Interestingly, the majority of Post-Debrief contaminated cases were incorrectly classified as clean-contaminated. Conclusions Implementation of a structured operative debrief including surgeon-directed SWC improves the percentage of correctly classified wounds and decreases the degree of inaccuracy in incorrectly classified cases. However, following implementation of the debriefing, we still observed a 41.5% rate of incorrect documentation, most notably in contaminated cases, indicating further education and process improvement is needed. PMID:27020829

  14. Statistical algorithms improve accuracy of gene fusion detection

    PubMed Central

    Hsieh, Gillian; Bierman, Rob; Szabo, Linda; Lee, Alex Gia; Freeman, Donald E.; Watson, Nathaniel; Sweet-Cordero, E. Alejandro

    2017-01-01

    Abstract Gene fusions are known to play critical roles in tumor pathogenesis. Yet, sensitive and specific algorithms to detect gene fusions in cancer do not currently exist. In this paper, we present a new statistical algorithm, MACHETE (Mismatched Alignment CHimEra Tracking Engine), which achieves highly sensitive and specific detection of gene fusions from RNA-Seq data, including the highest Positive Predictive Value (PPV) compared to the current state-of-the-art, as assessed in simulated data. We show that the best performing published algorithms either find large numbers of fusions in negative control data or suffer from low sensitivity detecting known driving fusions in gold standard settings, such as EWSR1-FLI1. As proof of principle that MACHETE discovers novel gene fusions with high accuracy in vivo, we mined public data to discover and subsequently PCR validate novel gene fusions missed by other algorithms in the ovarian cancer cell line OVCAR3. These results highlight the gains in accuracy achieved by introducing statistical models into fusion detection, and pave the way for unbiased discovery of potentially driving and druggable gene fusions in primary tumors. PMID:28541529

  15. Accuracy improvement of laser line scanning for feature measurements on CMM

    NASA Astrophysics Data System (ADS)

    Bešić, Igor; Van Gestel, Nick; Kruth, Jean-Pierre; Bleys, Philip; Hodolič, Janko

    2011-11-01

    Because of its high speed and high detail output, laser line scanning is increasingly included in coordinate metrology applications where its performance can satisfy specified tolerances. Increasing its accuracy will open the possibility to use it in other areas where contact methods are still dominant. Multi-sensor systems allow to select discrete probing or scanning methods to measure part elements. Decision is often based on the principle that tight toleranced elements should be measured by contact methods, while other more loose toleranced elements can be laser scanned. This paper aims to introduce a method for improving the output of a CMM mounted laser line scanner for metrology applications. This improvement is achieved by filtering of the scanner's random error and by combination with widely spread and reliable but slow touch trigger probing. The filtered point cloud is used to estimate the form deviation of the inspected element while few tactile obtained points were used to effectively compensate for errors in the point cloud position.

  16. The Effects of Direct Written Corrective Feedback on Improvement of Grammatical Accuracy of High-Proficient L2 Learners

    ERIC Educational Resources Information Center

    Farrokhi, Farahman; Sattarpour, Simin

    2012-01-01

    The present article reports the findings of a study that explored(1) whether direct written corrective feedback (CF) can help high-proficient L2 learners, who has already achieved a rather high level of accuracy in English, improve in the accurate use of two functions of English articles (the use of "a" for first mention and…

  17. Improving the accuracy of acetabular cup implantation using a bulls-eye spirit level.

    PubMed

    Macdonald, Duncan; Gupta, Sanjay; Ohly, Nicholas E; Patil, Sanjeev; Meek, R; Mohammed, Aslam

    2011-01-01

    Acetabular introducers have a built-in inclination of 45 degrees to the handle shaft. With patients in the lateral position, surgeons aim to align the introducer shaft vertical to the floor to implant the acetabulum at 45 degrees. We aimed to determine if a bulls-eye spirit level attached to an introducer improved the accuracy of implantation. A small circular bulls-eye spirit level was attached to the handle of an acetabular introducer. A saw bone hemipelvis was fixed to a horizontal, flat surface. A cement substitute was placed in the acetabulum and subjects were asked to implant a polyethylene cup, aiming to obtain an angle of inclination of 45 degrees. Two attempts were made with the spirit level masked and two with it unmasked. The distance of the air bubble from the spirit level's center was recorded by a single assessor. The angle of inclination of the acetabular component was then calculated. Subjects included both orthopedic consultants and trainees. Twenty-five subjects completed the study. Accuracy of acetabular implantation when using the unmasked spirit level improved significantly in all grades of surgeon. With the spirit level masked, 12 out of 50 attempts were accurate at 45 degrees inclination; 11 out of 50 attempts were "open," with greater than 45 degrees of inclination, and 27 were "closed," with less than 45 degrees. With the spirit level visible, all subjects achieved an inclination angle of exactly 45 degrees. A simple device attached to the handle of an acetabular introducer can significantly improve the accuracy of implantation of a cemented cup into a saw bone pelvis in the lateral position.

  18. Process improvement methods increase the efficiency, accuracy, and utility of a neurocritical care research repository.

    PubMed

    O'Connor, Sydney; Ayres, Alison; Cortellini, Lynelle; Rosand, Jonathan; Rosenthal, Eric; Kimberly, W Taylor

    2012-08-01

    Reliable and efficient data repositories are essential for the advancement of research in Neurocritical care. Various factors, such as the large volume of patients treated within the neuro ICU, their differing length and complexity of hospital stay, and the substantial amount of desired information can complicate the process of data collection. We adapted the tools of process improvement to the data collection and database design of a research repository for a Neuroscience intensive care unit. By the Shewhart-Deming method, we implemented an iterative approach to improve the process of data collection for each element. After an initial design phase, we re-evaluated all data fields that were challenging or time-consuming to collect. We then applied root-cause analysis to optimize the accuracy and ease of collection, and to determine the most efficient manner of collecting the maximal amount of data. During a 6-month period, we iteratively analyzed the process of data collection for various data elements. For example, the pre-admission medications were found to contain numerous inaccuracies after comparison with a gold standard (sensitivity 71% and specificity 94%). Also, our first method of tracking patient admissions and discharges contained higher than expected errors (sensitivity 94% and specificity 93%). In addition to increasing accuracy, we focused on improving efficiency. Through repeated incremental improvements, we reduced the number of subject records that required daily monitoring from 40 to 6 per day, and decreased daily effort from 4.5 to 1.5 h/day. By applying process improvement methods to the design of a Neuroscience ICU data repository, we achieved a threefold improvement in efficiency and increased accuracy. Although individual barriers to data collection will vary from institution to institution, a focus on process improvement is critical to overcoming these barriers.

  19. Improved Motor-Timing: Effects of Synchronized Metro-Nome Training on Golf Shot Accuracy

    PubMed Central

    Sommer, Marius; Rönnqvist, Louise

    2009-01-01

    This study investigates the effect of synchronized metronome training (SMT) on motor timing and how this training might affect golf shot accuracy. Twenty-six experienced male golfers participated (mean age 27 years; mean golf handicap 12.6) in this study. Pre- and post-test investigations of golf shots made by three different clubs were conducted by use of a golf simulator. The golfers were randomized into two groups: a SMT group and a Control group. After the pre-test, the golfers in the SMT group completed a 4-week SMT program designed to improve their motor timing, the golfers in the Control group were merely training their golf-swings during the same time period. No differences between the two groups were found from the pre-test outcomes, either for motor timing scores or for golf shot accuracy. However, the post-test results after the 4-weeks SMT showed evident motor timing improvements. Additionally, significant improvements for golf shot accuracy were found for the SMT group and with less variability in their performance. No such improvements were found for the golfers in the Control group. As with previous studies that used a SMT program, this study’s results provide further evidence that motor timing can be improved by SMT and that such timing improvement also improves golf accuracy. Key points This study investigates the effect of synchronized metronome training (SMT) on motor timing and how this training might affect golf shot accuracy. A randomized control group design was used. The 4 week SMT intervention showed significant improvements in motor timing, golf shot accuracy, and lead to less variability. We conclude that this study’s results provide further evidence that motor timing can be improved by SMT training and that such timing improvement also improves golf accuracy. PMID:24149608

  20. Statewide Quality Improvement Initiative to Reduce Early Elective Deliveries and Improve Birth Registry Accuracy.

    PubMed

    Kaplan, Heather C; King, Eileen; White, Beth E; Ford, Susan E; Fuller, Sandra; Krew, Michael A; Marcotte, Michael P; Iams, Jay D; Bailit, Jennifer L; Bouchard, Jo M; Friar, Kelly; Lannon, Carole M

    2018-04-01

    To evaluate the success of a quality improvement initiative to reduce early elective deliveries at less than 39 weeks of gestation and improve birth registry data accuracy rapidly and at scale in Ohio. Between February 2013 and March 2014, participating hospitals were involved in a quality improvement initiative to reduce early elective deliveries at less than 39 weeks of gestation and improve birth registry data. This initiative was designed as a learning collaborative model (group webinars and a single face-to-face meeting) and included individual quality improvement coaching. It was implemented using a stepped wedge design with hospitals divided into three balanced groups (waves) participating in the initiative sequentially. Birth registry data were used to assess hospital rates of nonmedically indicated inductions at less than 39 weeks of gestation. Comparisons were made between groups participating and those not participating in the initiative at two time points. To measure birth registry accuracy, hospitals conducted monthly audits comparing birth registry data with the medical record. Associations were assessed using generalized linear repeated measures models accounting for time effects. Seventy of 72 (97%) eligible hospitals participated. Based on birth registry data, nonmedically indicated inductions at less than 39 weeks of gestation declined in all groups with implementation (wave 1: 6.2-3.2%, P<.001; wave 2: 4.2-2.5%, P=.04; wave 3: 6.8-3.7%, P=.002). When waves 1 and 2 were participating in the initiative, they saw significant decreases in rates of early elective deliveries as compared with wave 3 (control; P=.018). All waves had significant improvement in birth registry accuracy (wave 1: 80-90%, P=.017; wave 2: 80-100%, P=.002; wave 3: 75-100%, P<.001). A quality improvement initiative enabled statewide spread of change strategies to decrease early elective deliveries and improve birth registry accuracy over 14 months and could be used for rapid

  1. Estimating Achievable Accuracy for Global Imaging Spectroscopy Measurement of Non-Photosynthetic Vegetation Cover

    NASA Astrophysics Data System (ADS)

    Dennison, P. E.; Kokaly, R. F.; Daughtry, C. S. T.; Roberts, D. A.; Thompson, D. R.; Chambers, J. Q.; Nagler, P. L.; Okin, G. S.; Scarth, P.

    2016-12-01

    Terrestrial vegetation is dynamic, expressing seasonal, annual, and long-term changes in response to climate and disturbance. Phenology and disturbance (e.g. drought, insect attack, and wildfire) can result in a transition from photosynthesizing "green" vegetation to non-photosynthetic vegetation (NPV). NPV cover can include dead and senescent vegetation, plant litter, agricultural residues, and non-photosynthesizing stem tissue. NPV cover is poorly captured by conventional remote sensing vegetation indices, but it is readily separable from substrate cover based on spectral absorption features in the shortwave infrared. We will present past research motivating the need for global NPV measurements, establishing that mapping seasonal NPV cover is critical for improving our understanding of ecosystem function and carbon dynamics. We will also present new research that helps determine a best achievable accuracy for NPV cover estimation. To test the sensitivity of different NPV cover estimation methods, we simulated satellite imaging spectrometer data using field spectra collected over mixtures of NPV, green vegetation, and soil substrate. We incorporated atmospheric transmittance and modeled sensor noise to create simulated spectra with spectral resolutions ranging from 10 to 30 nm. We applied multiple methods of NPV estimation to the simulated spectra, including spectral indices, spectral feature analysis, multiple endmember spectral mixture analysis, and partial least squares regression, and compared the accuracy and bias of each method. These results prescribe sensor characteristics for an imaging spectrometer mission with NPV measurement capabilities, as well as a "Quantified Earth Science Objective" for global measurement of NPV cover. Copyright 2016, all rights reserved.

  2. Improvements on the accuracy of beam bugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.J.; Fessenden, T.

    1998-08-17

    At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as ''beam bugs'', have been used throughoutmore » linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.« less

  3. Improvements on the accuracy of beam bugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y J; Fessenden, T

    1998-09-02

    At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as "beam bugs", have been used throughoutmore » linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.« less

  4. Improving LUC estimation accuracy with multiple classification system for studying impact of urbanization on watershed flood

    NASA Astrophysics Data System (ADS)

    Dou, P.

    2017-12-01

    Guangzhou has experienced a rapid urbanization period called "small change in three years and big change in five years" since the reform of China, resulting in significant land use/cover changes(LUC). To overcome the disadvantages of single classifier for remote sensing image classification accuracy, a multiple classifier system (MCS) is proposed to improve the quality of remote sensing image classification. The new method combines advantages of different learning algorithms, and achieves higher accuracy (88.12%) than any single classifier did. With the proposed MCS, land use/cover (LUC) on Landsat images from 1987 to 2015 was obtained, and the LUCs were used on three watersheds (Shijing river, Chebei stream, and Shahe stream) to estimate the impact of urbanization on water flood. The results show that with the high accuracy LUC, the uncertainty in flood simulations are reduced effectively (for Shijing river, Chebei stream, and Shahe stream, the uncertainty reduced 15.5%, 17.3% and 19.8% respectively).

  5. Improve accuracy for automatic acetabulum segmentation in CT images.

    PubMed

    Liu, Hao; Zhao, Jianning; Dai, Ning; Qian, Hongbo; Tang, Yuehong

    2014-01-01

    Separation of the femur head and acetabulum is one of main difficulties in the diseased hip joint due to deformed shapes and extreme narrowness of the joint space. To improve the segmentation accuracy is the key point of existing automatic or semi-automatic segmentation methods. In this paper, we propose a new method to improve the accuracy of the segmented acetabulum using surface fitting techniques, which essentially consists of three parts: (1) design a surface iterative process to obtain an optimization surface; (2) change the ellipsoid fitting to two-phase quadric surface fitting; (3) bring in a normal matching method and an optimization region method to capture edge points for the fitting quadric surface. Furthermore, this paper cited vivo CT data sets of 40 actual patients (with 79 hip joints). Test results for these clinical cases show that: (1) the average error of the quadric surface fitting method is 2.3 (mm); (2) the accuracy ratio of automatically recognized contours is larger than 89.4%; (3) the error ratio of section contours is less than 10% for acetabulums without severe malformation and less than 30% for acetabulums with severe malformation. Compared with similar methods, the accuracy of our method, which is applied in a software system, is significantly enhanced.

  6. Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers.

    PubMed

    Thompson, Clarissa A; Opfer, John E

    2016-01-01

    Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children's representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status). To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2). As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy.

  7. Massive metrology using fast e-beam technology improves OPC model accuracy by >2x at faster turnaround time

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Wang, Lei; Wang, Jazer; Wang, ChangAn; Shi, Hong-Fei; Guerrero, James; Feng, Mu; Zhang, Qiang; Liang, Jiao; Guo, Yunbo; Zhang, Chen; Wallow, Tom; Rio, David; Wang, Lester; Wang, Alvin; Wang, Jen-Shiang; Gronlund, Keith; Lang, Jun; Koh, Kar Kit; Zhang, Dong Qing; Zhang, Hongxin; Krishnamurthy, Subramanian; Fei, Ray; Lin, Chiawen; Fang, Wei; Wang, Fei

    2018-03-01

    Classical SEM metrology, CD-SEM, uses low data rate and extensive frame-averaging technique to achieve high-quality SEM imaging for high-precision metrology. The drawbacks include prolonged data collection time and larger photoresist shrinkage due to excess electron dosage. This paper will introduce a novel e-beam metrology system based on a high data rate, large probe current, and ultra-low noise electron optics design. At the same level of metrology precision, this high speed e-beam metrology system could significantly shorten data collection time and reduce electron dosage. In this work, the data collection speed is higher than 7,000 images per hr. Moreover, a novel large field of view (LFOV) capability at high resolution was enabled by an advanced electron deflection system design. The area coverage by LFOV is >100x larger than classical SEM. Superior metrology precision throughout the whole image has been achieved, and high quality metrology data could be extracted from full field. This new capability on metrology will further improve metrology data collection speed to support the need for large volume of metrology data from OPC model calibration of next generation technology. The shrinking EPE (Edge Placement Error) budget places more stringent requirement on OPC model accuracy, which is increasingly limited by metrology errors. In the current practice of metrology data collection and data processing to model calibration flow, CD-SEM throughput becomes a bottleneck that limits the amount of metrology measurements available for OPC model calibration, impacting pattern coverage and model accuracy especially for 2D pattern prediction. To address the trade-off in metrology sampling and model accuracy constrained by the cycle time requirement, this paper employs the high speed e-beam metrology system and a new computational software solution to take full advantage of the large volume data and significantly reduce both systematic and random metrology errors. The

  8. A promising tool to achieve chemical accuracy for density functional theory calculations on Y-NO homolysis bond dissociation energies.

    PubMed

    Li, Hong Zhi; Hu, Li Hong; Tao, Wei; Gao, Ting; Li, Hui; Lu, Ying Hua; Su, Zhong Min

    2012-01-01

    A DFT-SOFM-RBFNN method is proposed to improve the accuracy of DFT calculations on Y-NO (Y = C, N, O, S) homolysis bond dissociation energies (BDE) by combining density functional theory (DFT) and artificial intelligence/machine learning methods, which consist of self-organizing feature mapping neural networks (SOFMNN) and radial basis function neural networks (RBFNN). A descriptor refinement step including SOFMNN clustering analysis and correlation analysis is implemented. The SOFMNN clustering analysis is applied to classify descriptors, and the representative descriptors in the groups are selected as neural network inputs according to their closeness to the experimental values through correlation analysis. Redundant descriptors and intuitively biased choices of descriptors can be avoided by this newly introduced step. Using RBFNN calculation with the selected descriptors, chemical accuracy (≤1 kcal·mol(-1)) is achieved for all 92 calculated organic Y-NO homolysis BDE calculated by DFT-B3LYP, and the mean absolute deviations (MADs) of the B3LYP/6-31G(d) and B3LYP/STO-3G methods are reduced from 4.45 and 10.53 kcal·mol(-1) to 0.15 and 0.18 kcal·mol(-1), respectively. The improved results for the minimal basis set STO-3G reach the same accuracy as those of 6-31G(d), and thus B3LYP calculation with the minimal basis set is recommended to be used for minimizing the computational cost and to expand the applications to large molecular systems. Further extrapolation tests are performed with six molecules (two containing Si-NO bonds and two containing fluorine), and the accuracy of the tests was within 1 kcal·mol(-1). This study shows that DFT-SOFM-RBFNN is an efficient and highly accurate method for Y-NO homolysis BDE. The method may be used as a tool to design new NO carrier molecules.

  9. Improvement of Dimensional Accuracy of 3-D Printed Parts using an Additive/Subtractive Based Hybrid Prototyping Approach

    NASA Astrophysics Data System (ADS)

    Amanullah Tomal, A. N. M.; Saleh, Tanveer; Raisuddin Khan, Md.

    2017-11-01

    At present, two important processes, namely CNC machining and rapid prototyping (RP) are being used to create prototypes and functional products. Combining both additive and subtractive processes into a single platform would be advantageous. However, there are two important aspects need to be taken into consideration for this process hybridization. First is the integration of two different control systems for two processes and secondly maximizing workpiece alignment accuracy during the changeover step. Recently we have developed a new hybrid system which incorporates Fused Deposition Modelling (FDM) as RP Process and CNC grinding operation as subtractive manufacturing process into a single setup. Several objects were produced with different layer thickness for example 0.1 mm, 0.15 mm and 0.2 mm. It was observed that pure FDM method is unable to attain desired dimensional accuracy and can be improved by a considerable margin about 66% to 80%, if finishing operation by grinding is carried out. It was also observed layer thickness plays a role on the dimensional accuracy and best accuracy is achieved with the minimum layer thickness (0.1 mm).

  10. Explanation Generation, Not Explanation Expectancy, Improves Metacomprehension Accuracy

    ERIC Educational Resources Information Center

    Fukaya, Tatsushi

    2013-01-01

    The ability to monitor the status of one's own understanding is important to accomplish academic tasks proficiently. Previous studies have shown that comprehension monitoring (metacomprehension accuracy) is generally poor, but improves when readers engage in activities that access valid cues reflecting their situation model (activities such as…

  11. Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers

    PubMed Central

    Thompson, Clarissa A.; Opfer, John E.

    2016-01-01

    Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children’s representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status). To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2). As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy. PMID:26834688

  12. Accuracy of Genomic Prediction in Switchgrass (Panicum virgatum L.) Improved by Accounting for Linkage Disequilibrium

    PubMed Central

    Ramstein, Guillaume P.; Evans, Joseph; Kaeppler, Shawn M.; Mitchell, Robert B.; Vogel, Kenneth P.; Buell, C. Robin; Casler, Michael D.

    2016-01-01

    Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height, and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs. PMID:26869619

  13. Improved accuracy for finite element structural analysis via an integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Aiello, R. A.; Berke, L.

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  14. Improving Machining Accuracy of CNC Machines with Innovative Design Methods

    NASA Astrophysics Data System (ADS)

    Yemelyanov, N. V.; Yemelyanova, I. V.; Zubenko, V. L.

    2018-03-01

    The article considers achieving the machining accuracy of CNC machines by applying innovative methods in modelling and design of machining systems, drives and machine processes. The topological method of analysis involves visualizing the system as matrices of block graphs with a varying degree of detail between the upper and lower hierarchy levels. This approach combines the advantages of graph theory and the efficiency of decomposition methods, it also has visual clarity, which is inherent in both topological models and structural matrices, as well as the resiliency of linear algebra as part of the matrix-based research. The focus of the study is on the design of automated machine workstations, systems, machines and units, which can be broken into interrelated parts and presented as algebraic, topological and set-theoretical models. Every model can be transformed into a model of another type, and, as a result, can be interpreted as a system of linear and non-linear equations which solutions determine the system parameters. This paper analyses the dynamic parameters of the 1716PF4 machine at the stages of design and exploitation. Having researched the impact of the system dynamics on the component quality, the authors have developed a range of practical recommendations which have enabled one to reduce considerably the amplitude of relative motion, exclude some resonance zones within the spindle speed range of 0...6000 min-1 and improve machining accuracy.

  15. [Accuracy improvement of spectral classification of crop using microwave backscatter data].

    PubMed

    Jia, Kun; Li, Qiang-Zi; Tian, Yi-Chen; Wu, Bing-Fang; Zhang, Fei-Fei; Meng, Ji-Hua

    2011-02-01

    In the present study, VV polarization microwave backscatter data used for improving accuracies of spectral classification of crop is investigated. Classification accuracy using different classifiers based on the fusion data of HJ satellite multi-spectral and Envisat ASAR VV backscatter data are compared. The results indicate that fusion data can take full advantage of spectral information of HJ multi-spectral data and the structure sensitivity feature of ASAR VV polarization data. The fusion data enlarges the spectral difference among different classifications and improves crop classification accuracy. The classification accuracy using fusion data can be increased by 5 percent compared to the single HJ data. Furthermore, ASAR VV polarization data is sensitive to non-agrarian area of planted field, and VV polarization data joined classification can effectively distinguish the field border. VV polarization data associating with multi-spectral data used in crop classification enlarges the application of satellite data and has the potential of spread in the domain of agriculture.

  16. Improving accuracy of Plenoptic PIV using two light field cameras

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Fahringer, Timothy

    2017-11-01

    Plenoptic particle image velocimetry (PIV) has recently emerged as a viable technique for acquiring three-dimensional, three-component velocity field data using a single plenoptic, or light field, camera. The simplified experimental arrangement is advantageous in situations where optical access is limited and/or it is not possible to set-up the four or more cameras typically required in a tomographic PIV experiment. A significant disadvantage of a single camera plenoptic PIV experiment, however, is that the accuracy of the velocity measurement along the optical axis of the camera is significantly worse than in the two lateral directions. In this work, we explore the accuracy of plenoptic PIV when two plenoptic cameras are arranged in a stereo imaging configuration. It is found that the addition of a 2nd camera improves the accuracy in all three directions and nearly eliminates any differences between them. This improvement is illustrated using both synthetic and real experiments conducted on a vortex ring using both one and two plenoptic cameras.

  17. Techniques for improving the accuracy of cyrogenic temperature measurement in ground test programs

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Fabik, Richard H.

    1993-01-01

    The performance of a sensor is often evaluated by determining to what degree of accuracy a measurement can be made using this sensor. The absolute accuracy of a sensor is an important parameter considered when choosing the type of sensor to use in research experiments. Tests were performed to improve the accuracy of cryogenic temperature measurements by calibration of the temperature sensors when installed in their experimental operating environment. The calibration information was then used to correct for temperature sensor measurement errors by adjusting the data acquisition system software. This paper describes a method to improve the accuracy of cryogenic temperature measurements using corrections in the data acquisition system software such that the uncertainty of an individual temperature sensor is improved from plus or minus 0.90 deg R to plus or minus 0.20 deg R over a specified range.

  18. Using known map category marginal frequencies to improve estimates of thematic map accuracy

    NASA Technical Reports Server (NTRS)

    Card, D. H.

    1982-01-01

    By means of two simple sampling plans suggested in the accuracy-assessment literature, it is shown how one can use knowledge of map-category relative sizes to improve estimates of various probabilities. The fact that maximum likelihood estimates of cell probabilities for the simple random sampling and map category-stratified sampling were identical has permitted a unified treatment of the contingency-table analysis. A rigorous analysis of the effect of sampling independently within map categories is made possible by results for the stratified case. It is noted that such matters as optimal sample size selection for the achievement of a desired level of precision in various estimators are irrelevant, since the estimators derived are valid irrespective of how sample sizes are chosen.

  19. Improving CNN Performance Accuracies With Min-Max Objective.

    PubMed

    Shi, Weiwei; Gong, Yihong; Tao, Xiaoyu; Wang, Jinjun; Zheng, Nanning

    2017-06-09

    We propose a novel method for improving performance accuracies of convolutional neural network (CNN) without the need to increase the network complexity. We accomplish the goal by applying the proposed Min-Max objective to a layer below the output layer of a CNN model in the course of training. The Min-Max objective explicitly ensures that the feature maps learned by a CNN model have the minimum within-manifold distance for each object manifold and the maximum between-manifold distances among different object manifolds. The Min-Max objective is general and able to be applied to different CNNs with insignificant increases in computation cost. Moreover, an incremental minibatch training procedure is also proposed in conjunction with the Min-Max objective to enable the handling of large-scale training data. Comprehensive experimental evaluations on several benchmark data sets with both the image classification and face verification tasks reveal that employing the proposed Min-Max objective in the training process can remarkably improve performance accuracies of a CNN model in comparison with the same model trained without using this objective.

  20. Can Providing Rubrics for Writing Tasks Improve Developing Writers' Calibration Accuracy?

    ERIC Educational Resources Information Center

    Hawthorne, Katrice A.; Bol, Linda; Pribesh, Shana

    2017-01-01

    Rubric-referenced calibration and the interaction between writing achievement and calibration, a measure of the relationship between one's performance and the accuracy of one's judgments, were investigated. Undergraduate students (N = 596) were assigned to one of three calibration conditions: (a) global, (b) global and general criteria, or (c)…

  1. Dynamic sea surface topography, gravity and improved orbit accuracies from the direct evaluation of SEASAT altimeter data

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Lerch, F.; Koblinsky, C. J.; Klosko, S. M.; Robbins, J. W.; Williamson, R. G.; Patel, G. B.

    1989-01-01

    A method for the simultaneous solution of dynamic ocean topography, gravity and orbits using satellite altimeter data is described. A GEM-T1 based gravitational model called PGS-3337 that incorporates Seasat altimetry, surface gravimetry and satellite tracking data has been determined complete to degree and order 50. The altimeter data is utilized as a dynamic observation of the satellite's height above the sea surface with a degree 10 model of dynamic topography being recovered simultaneously with the orbit parameters, gravity and tidal terms in this model. PGS-3337 has a geoid uncertainty of 60 cm root-mean-square (RMS) globally, with the uncertainty over the altimeter tracked ocean being in the 25 cm range. Doppler determined orbits for Seasat, show large improvements, with the sub-30 cm radial accuracies being achieved. When altimeter data is used in orbit determination, radial orbital accuracies of 20 cm are achieved. The RMS of fit to the altimeter data directly gives 30 cm fits for Seasat when using PGS-3337 and its geoid and dynamic topography model. This performance level is two to three times better than that achieved with earlier Goddard earth models (GEM) using the dynamic topography from long-term oceanographic averages. The recovered dynamic topography reveals the global long wavelength circulation of the oceans with a resolution of 1500 km. The power in the dynamic topography recovery is now found to be closer to that of oceanographic studies than for previous satellite solutions. This is attributed primarily to the improved modeling of the geoid which has occurred. Study of the altimeter residuals reveals regions where tidal models are poor and sea state effects are major limitations.

  2. Two-step FEM-based Liver-CT registration: improving internal and external accuracy

    NASA Astrophysics Data System (ADS)

    Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan

    2014-03-01

    To know the exact location of the internal structures of the organs, especially the vasculature, is of great importance for the clinicians. This information allows them to know which structures/vessels will be affected by certain therapy and therefore to better treat the patients. However the use of internal structures for registration is often disregarded especially in physical based registration methods. In this paper we propose an algorithm that uses finite element methods to carry out a registration of liver volumes that will not only have accuracy in the boundaries of the organ but also in the interior. Therefore a graph matching algorithm is used to find correspondences between the vessel trees of the two livers to be registered. In addition to this an adaptive volumetric mesh is generated that contains nodes in the locations in which correspondences were found. The displacements derived from those correspondences are the input for the initial deformation of the model. The first deformation brings the internal structures to their final deformed positions and the surfaces close to it. Finally, thin plate splines are used to refine the solution at the boundaries of the organ achieving an improvement in the accuracy of 71%. The algorithm has been evaluated in CT clinical images of the abdomen.

  3. Accuracy of genomic prediction in switchgrass ( Panicum virgatum L.) improved by accounting for linkage disequilibrium

    DOE PAGES

    Ramstein, Guillaume P.; Evans, Joseph; Kaeppler, Shawn M.; ...

    2016-02-11

    Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height,more » and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Furthermore, some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs.« less

  4. Accuracy of genomic prediction in switchgrass ( Panicum virgatum L.) improved by accounting for linkage disequilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramstein, Guillaume P.; Evans, Joseph; Kaeppler, Shawn M.

    Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height,more » and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Furthermore, some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs.« less

  5. The availability of prior ECGs improves paramedic accuracy in recognizing ST-segment elevation myocardial infarction.

    PubMed

    O'Donnell, Daniel; Mancera, Mike; Savory, Eric; Christopher, Shawn; Schaffer, Jason; Roumpf, Steve

    2015-01-01

    Early and accurate identification of ST-elevation myocardial infarction (STEMI) by prehospital providers has been shown to significantly improve door to balloon times and improve patient outcomes. Previous studies have shown that paramedic accuracy in reading 12 lead ECGs can range from 86% to 94%. However, recent studies have demonstrated that accuracy diminishes for the more uncommon STEMI presentations (e.g. lateral). Unlike hospital physicians, paramedics rarely have the ability to review previous ECGs for comparison. Whether or not a prior ECG can improve paramedic accuracy is not known. The availability of prior ECGs improves paramedic accuracy in ECG interpretation. 130 paramedics were given a single clinical scenario. Then they were randomly assigned 12 computerized prehospital ECGs, 6 with and 6 without an accompanying prior ECG. All ECGs were obtained from a local STEMI registry. For each ECG paramedics were asked to determine whether or not there was a STEMI and to rate their confidence in their interpretation. To determine if the old ECGs improved accuracy we used a mixed effects logistic regression model to calculate p-values between the control and intervention. The addition of a previous ECG improved the accuracy of identifying STEMIs from 75.5% to 80.5% (p=0.015). A previous ECG also increased paramedic confidence in their interpretation (p=0.011). The availability of previous ECGs improves paramedic accuracy and enhances their confidence in interpreting STEMIs. Further studies are needed to evaluate this impact in a clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. High accuracy in short ISS missions

    NASA Astrophysics Data System (ADS)

    Rüeger, J. M.

    1986-06-01

    Traditionally Inertial Surveying Systems ( ISS) are used for missions of 30 km to 100 km length. Today, a new type of ISS application is emanating from an increased need for survey control densification in urban areas often in connection with land information systems or cadastral surveys. The accuracy requirements of urban surveys are usually high. The loss in accuracy caused by the coordinate transfer between IMU and ground marks is investigated and an offsetting system based on electronic tacheometers is proposed. An offsetting system based on a Hewlett-Packard HP 3820A electronic tacheometer has been tested in Sydney (Australia) in connection with a vehicle mounted LITTON Auto-Surveyor System II. On missions over 750 m ( 8 stations, 25 minutes duration, 3.5 minute ZUPT intervals, mean offset distances 9 metres) accuracies of 37 mm (one sigma) in position and 8 mm in elevation were achieved. Some improvements to the LITTON Auto-Surveyor System II are suggested which would improve the accuracies even further.

  7. A Promising Tool to Achieve Chemical Accuracy for Density Functional Theory Calculations on Y-NO Homolysis Bond Dissociation Energies

    PubMed Central

    Li, Hong Zhi; Hu, Li Hong; Tao, Wei; Gao, Ting; Li, Hui; Lu, Ying Hua; Su, Zhong Min

    2012-01-01

    A DFT-SOFM-RBFNN method is proposed to improve the accuracy of DFT calculations on Y-NO (Y = C, N, O, S) homolysis bond dissociation energies (BDE) by combining density functional theory (DFT) and artificial intelligence/machine learning methods, which consist of self-organizing feature mapping neural networks (SOFMNN) and radial basis function neural networks (RBFNN). A descriptor refinement step including SOFMNN clustering analysis and correlation analysis is implemented. The SOFMNN clustering analysis is applied to classify descriptors, and the representative descriptors in the groups are selected as neural network inputs according to their closeness to the experimental values through correlation analysis. Redundant descriptors and intuitively biased choices of descriptors can be avoided by this newly introduced step. Using RBFNN calculation with the selected descriptors, chemical accuracy (≤1 kcal·mol−1) is achieved for all 92 calculated organic Y-NO homolysis BDE calculated by DFT-B3LYP, and the mean absolute deviations (MADs) of the B3LYP/6-31G(d) and B3LYP/STO-3G methods are reduced from 4.45 and 10.53 kcal·mol−1 to 0.15 and 0.18 kcal·mol−1, respectively. The improved results for the minimal basis set STO-3G reach the same accuracy as those of 6-31G(d), and thus B3LYP calculation with the minimal basis set is recommended to be used for minimizing the computational cost and to expand the applications to large molecular systems. Further extrapolation tests are performed with six molecules (two containing Si-NO bonds and two containing fluorine), and the accuracy of the tests was within 1 kcal·mol−1. This study shows that DFT-SOFM-RBFNN is an efficient and highly accurate method for Y-NO homolysis BDE. The method may be used as a tool to design new NO carrier molecules. PMID:22942689

  8. Improving the Accuracy of Software-Based Energy Analysis for Residential Buildings (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polly, B.

    2011-09-01

    This presentation describes the basic components of software-based energy analysis for residential buildings, explores the concepts of 'error' and 'accuracy' when analysis predictions are compared to measured data, and explains how NREL is working to continuously improve the accuracy of energy analysis methods.

  9. Improved accuracy for finite element structural analysis via a new integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Aiello, Robert A.; Berke, Laszlo

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  10. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    NASA Technical Reports Server (NTRS)

    Wick, Gary A.; Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work was performed in two different major areas. The first centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. The second involved a modeling and data analysis effort whereby modeled near-surface temperature profiles were integrated into the retrieval of bulk SST estimates from existing satellite data. Under the first work area, two different seagoing infrared radiometers were designed and fabricated and the first of these was deployed on research ships during two major experiments. Analyses of these data contributed significantly to the Ph.D. thesis of one graduate student and these results are currently being converted into a journal publication. The results of the second portion of work demonstrated that, with presently available models and heat flux estimates, accuracy improvements in SST retrievals associated with better physical treatment of the near-surface layer were partially balanced by uncertainties in the models and extra required input data. While no significant accuracy improvement was observed in this experiment, the results are very encouraging for future applications where improved models and coincident environmental data will be available. These results are included in a manuscript undergoing final review with the Journal of Atmospheric and Oceanic Technology.

  11. Accuracy improvement of multimodal measurement of speed of sound based on image processing

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Kaya, Akio; Misawa, Masaki; Hyodo, Koji; Numano, Tomokazu

    2017-07-01

    Since the speed of sound (SOS) reflects tissue characteristics and is expected as an evaluation index of elasticity and water content, the noninvasive measurement of SOS is eagerly anticipated. However, it is difficult to measure the SOS by using an ultrasound device alone. Therefore, we have presented a noninvasive measurement method of SOS using ultrasound (US) and magnetic resonance (MR) images. By this method, we determine the longitudinal SOS based on the thickness measurement using the MR image and the time of flight (TOF) measurement using the US image. The accuracy of SOS measurement is affected by the accuracy of image registration and the accuracy of thickness measurements in the MR and US images. In this study, we address the accuracy improvement in the latter thickness measurement, and present an image-processing-based method for improving the accuracy of thickness measurement. The method was investigated by using in vivo data obtained from a tissue-engineered cartilage implanted in the back of a rat, with an unclear boundary.

  12. The Upper and Lower Bounds of the Prediction Accuracies of Ensemble Methods for Binary Classification

    PubMed Central

    Wang, Xueyi; Davidson, Nicholas J.

    2011-01-01

    Ensemble methods have been widely used to improve prediction accuracy over individual classifiers. In this paper, we achieve a few results about the prediction accuracies of ensemble methods for binary classification that are missed or misinterpreted in previous literature. First we show the upper and lower bounds of the prediction accuracies (i.e. the best and worst possible prediction accuracies) of ensemble methods. Next we show that an ensemble method can achieve > 0.5 prediction accuracy, while individual classifiers have < 0.5 prediction accuracies. Furthermore, for individual classifiers with different prediction accuracies, the average of the individual accuracies determines the upper and lower bounds. We perform two experiments to verify the results and show that it is hard to achieve the upper and lower bounds accuracies by random individual classifiers and better algorithms need to be developed. PMID:21853162

  13. Integrated Strategy Improves the Prediction Accuracy of miRNA in Large Dataset

    PubMed Central

    Lipps, David; Devineni, Sree

    2016-01-01

    MiRNAs are short non-coding RNAs of about 22 nucleotides, which play critical roles in gene expression regulation. The biogenesis of miRNAs is largely determined by the sequence and structural features of their parental RNA molecules. Based on these features, multiple computational tools have been developed to predict if RNA transcripts contain miRNAs or not. Although being very successful, these predictors started to face multiple challenges in recent years. Many predictors were optimized using datasets of hundreds of miRNA samples. The sizes of these datasets are much smaller than the number of known miRNAs. Consequently, the prediction accuracy of these predictors in large dataset becomes unknown and needs to be re-tested. In addition, many predictors were optimized for either high sensitivity or high specificity. These optimization strategies may bring in serious limitations in applications. Moreover, to meet continuously raised expectations on these computational tools, improving the prediction accuracy becomes extremely important. In this study, a meta-predictor mirMeta was developed by integrating a set of non-linear transformations with meta-strategy. More specifically, the outputs of five individual predictors were first preprocessed using non-linear transformations, and then fed into an artificial neural network to make the meta-prediction. The prediction accuracy of meta-predictor was validated using both multi-fold cross-validation and independent dataset. The final accuracy of meta-predictor in newly-designed large dataset is improved by 7% to 93%. The meta-predictor is also proved to be less dependent on datasets, as well as has refined balance between sensitivity and specificity. This study has two folds of importance: First, it shows that the combination of non-linear transformations and artificial neural networks improves the prediction accuracy of individual predictors. Second, a new miRNA predictor with significantly improved prediction accuracy

  14. An improved method for determining force balance calibration accuracy

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T.

    1993-01-01

    The results of an improved statistical method used at Langley Research Center for determining and stating the accuracy of a force balance calibration are presented. The application of the method for initial loads, initial load determination, auxiliary loads, primary loads, and proof loads is described. The data analysis is briefly addressed.

  15. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images.

    PubMed

    Knauer, Uwe; Matros, Andrea; Petrovic, Tijana; Zanker, Timothy; Scott, Eileen S; Seiffert, Udo

    2017-01-01

    Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise processing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selection and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels (disease severity) of intact Chardonnay grape bunches shortly before veraison. Instead of calculating texture features (spatial features) for the huge number of spectral bands independently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective extraction of texture parameters from the integral image representation of the image bands generated. Dimensionality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up to [Formula: see text] for detached berries used as a reference sample (training dataset). Our approach was validated by predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visually healthy and infected bunches proved to be challenging for a few samples

  16. Application of Mensuration Technology to Improve the Accuracy of Field Artillery Firing Unit Location

    DTIC Science & Technology

    2013-12-13

    8 U.S. Army Field Artillery Operations ............................................................................ 8 Geodesy ...Experts in this field of study have a full working knowledge of geodesy and the theory that allows mensuration to surpass the level of accuracy achieved...desired. (2) Fire that is intended to achieve the desired result on target.”6 Geodesy : “that branch of applied mathematics which determines by observation

  17. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE PAGES

    Gao, Kai; Huang, Lianjie

    2017-08-31

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  18. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Huang, Lianjie

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  19. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine.

    PubMed

    Castaneda, Christian; Nalley, Kip; Mannion, Ciaran; Bhattacharyya, Pritish; Blake, Patrick; Pecora, Andrew; Goy, Andre; Suh, K Stephen

    2015-01-01

    As research laboratories and clinics collaborate to achieve precision medicine, both communities are required to understand mandated electronic health/medical record (EHR/EMR) initiatives that will be fully implemented in all clinics in the United States by 2015. Stakeholders will need to evaluate current record keeping practices and optimize and standardize methodologies to capture nearly all information in digital format. Collaborative efforts from academic and industry sectors are crucial to achieving higher efficacy in patient care while minimizing costs. Currently existing digitized data and information are present in multiple formats and are largely unstructured. In the absence of a universally accepted management system, departments and institutions continue to generate silos of information. As a result, invaluable and newly discovered knowledge is difficult to access. To accelerate biomedical research and reduce healthcare costs, clinical and bioinformatics systems must employ common data elements to create structured annotation forms enabling laboratories and clinics to capture sharable data in real time. Conversion of these datasets to knowable information should be a routine institutionalized process. New scientific knowledge and clinical discoveries can be shared via integrated knowledge environments defined by flexible data models and extensive use of standards, ontologies, vocabularies, and thesauri. In the clinical setting, aggregated knowledge must be displayed in user-friendly formats so that physicians, non-technical laboratory personnel, nurses, data/research coordinators, and end-users can enter data, access information, and understand the output. The effort to connect astronomical numbers of data points, including '-omics'-based molecular data, individual genome sequences, experimental data, patient clinical phenotypes, and follow-up data is a monumental task. Roadblocks to this vision of integration and interoperability include ethical, legal

  20. Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron

    NASA Astrophysics Data System (ADS)

    Dragoni, Daniele; Daff, Thomas D.; Csányi, Gábor; Marzari, Nicola

    2018-01-01

    We show that the Gaussian Approximation Potential (GAP) machine-learning framework can describe complex magnetic potential energy surfaces, taking ferromagnetic iron as a paradigmatic challenging case. The training database includes total energies, forces, and stresses obtained from density-functional theory in the generalized-gradient approximation, and comprises approximately 150,000 local atomic environments, ranging from pristine and defected bulk configurations to surfaces and generalized stacking faults with different crystallographic orientations. We find the structural, vibrational, and thermodynamic properties of the GAP model to be in excellent agreement with those obtained directly from first-principles electronic-structure calculations. There is good transferability to quantities, such as Peierls energy barriers, which are determined to a large extent by atomic configurations that were not part of the training set. We observe the benefit and the need of using highly converged electronic-structure calculations to sample a target potential energy surface. The end result is a systematically improvable potential that can achieve the same accuracy of density-functional theory calculations, but at a fraction of the computational cost.

  1. A geospatial framework for improving the vertical accuracy of elevation models in Florida's coastal Everglades

    NASA Astrophysics Data System (ADS)

    Cooper, H.; Zhang, C.; Sirianni, M.

    2016-12-01

    South Florida relies upon the health of the Everglades, the largest subtropical wetland in North America, as a vital source of water. Since the late 1800's, this imperiled ecosystem has been highly engineered to meet human needs of flood control and water use. The Comprehensive Everglades Restoration Plan (CERP) was initiated in 2000 to restore original water flows to the Everglades and improve overall ecosystem health, while also aiming to achieve balance with human water usage. Due to subtle changes in the Everglades terrain, better vertical accuracy elevation data are needed to model groundwater and surface water levels that are integral to monitoring the effects of restoration under impacts such as sea-level rise. The current best available elevation datasets for the coastal Everglades include High Accuracy Elevation Data (HAED) and Florida Department of Emergency Management (FDEM) Light Detection and Ranging (LiDAR). However, the horizontal resolution of the HAED data is too coarse ( 400 m) for fine scale mapping, and the LiDAR data does not contain an accuracy assessment for coastal Everglades' vegetation communities. The purpose of this study is to develop a framework for generating better vertical accuracy and horizontal resolution Digital Elevation Models in the Flamingo District of Everglades National Park. In the framework, field work is conducted to collect RTK GPS and total station elevation measurements for mangrove swamp, coastal prairies, and freshwater marsh, and the proposed accuracy assessment and elevation modeling methodology is integrated with a Geographical Information System (GIS). It is anticipated that this study will provide more accurate models of the soil substrate elevation that can be used by restoration planners to better predict the future state of the Everglades ecosystem.

  2. Accuracy improvements of gyro-based measurement-while-drilling surveying instruments by a laser testing method

    NASA Astrophysics Data System (ADS)

    Li, Rong; Zhao, Jianhui; Li, Fan

    2009-07-01

    Gyroscope used as surveying sensor in the oil industry has been proposed as a good technique for measurement-whiledrilling (MWD) to provide real-time monitoring of the position and the orientation of the bottom hole assembly (BHA).However, drifts in the measurements provided by gyroscope might be prohibitive for the long-term utilization of the sensor. Some usual methods such as zero velocity update procedure (ZUPT) introduced to limit these drifts seem to be time-consuming and with limited effect. This study explored an in-drilling dynamic -alignment (IDA) method for MWD which utilizes gyroscope. During a directional drilling process, there are some minutes in the rotary drilling mode when the drill bit combined with drill pipe are rotated about the spin axis in a certain speed. This speed can be measured and used to determine and limit some drifts of the gyroscope which pay great effort to the deterioration in the long-term performance. A novel laser assembly is designed on the wellhead to count the rotating cycles of the drill pipe. With this provided angular velocity of the drill pipe, drifts of gyroscope measurements are translated into another form that can be easy tested and compensated. That allows better and faster alignment and limited drifts during the navigation process both of which can reduce long-term navigation errors, thus improving the overall accuracy in INS-based MWD system. This article concretely explores the novel device on the wellhead designed to test the rotation of the drill pipe. It is based on laser testing which is simple and not expensive by adding a laser emitter to the existing drilling equipment. Theoretical simulations and analytical approximations exploring the IDA idea have shown improvement in the accuracy of overall navigation and reduction in the time required to achieve convergence. Gyroscope accuracy along the axis is mainly improved. It is suggested to use the IDA idea in the rotary mode for alignment. Several other

  3. Bio-knowledge based filters improve residue-residue contact prediction accuracy.

    PubMed

    Wozniak, P P; Pelc, J; Skrzypecki, M; Vriend, G; Kotulska, M

    2018-05-29

    Residue-residue contact prediction through direct coupling analysis has reached impressive accuracy, but yet higher accuracy will be needed to allow for routine modelling of protein structures. One way to improve the prediction accuracy is to filter predicted contacts using knowledge about the particular protein of interest or knowledge about protein structures in general. We focus on the latter and discuss a set of filters that can be used to remove false positive contact predictions. Each filter depends on one or a few cut-off parameters for which the filter performance was investigated. Combining all filters while using default parameters resulted for a test-set of 851 protein domains in the removal of 29% of the predictions of which 92% were indeed false positives. All data and scripts are available from http://comprec-lin.iiar.pwr.edu.pl/FPfilter/. malgorzata.kotulska@pwr.edu.pl. Supplementary data are available at Bioinformatics online.

  4. Derivation of an artificial gene to improve classification accuracy upon gene selection.

    PubMed

    Seo, Minseok; Oh, Sejong

    2012-02-01

    Classification analysis has been developed continuously since 1936. This research field has advanced as a result of development of classifiers such as KNN, ANN, and SVM, as well as through data preprocessing areas. Feature (gene) selection is required for very high dimensional data such as microarray before classification work. The goal of feature selection is to choose a subset of informative features that reduces processing time and provides higher classification accuracy. In this study, we devised a method of artificial gene making (AGM) for microarray data to improve classification accuracy. Our artificial gene was derived from a whole microarray dataset, and combined with a result of gene selection for classification analysis. We experimentally confirmed a clear improvement of classification accuracy after inserting artificial gene. Our artificial gene worked well for popular feature (gene) selection algorithms and classifiers. The proposed approach can be applied to any type of high dimensional dataset. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Improved accuracies for satellite tracking

    NASA Technical Reports Server (NTRS)

    Kammeyer, P. C.; Fiala, A. D.; Seidelmann, P. K.

    1991-01-01

    A charge coupled device (CCD) camera on an optical telescope which follows the stars can be used to provide high accuracy comparisons between the line of sight to a satellite, over a large range of satellite altitudes, and lines of sight to nearby stars. The CCD camera can be rotated so the motion of the satellite is down columns of the CCD chip, and charge can be moved from row to row of the chip at a rate which matches the motion of the optical image of the satellite across the chip. Measurement of satellite and star images, together with accurate timing of charge motion, provides accurate comparisons of lines of sight. Given lines of sight to stars near the satellite, the satellite line of sight may be determined. Initial experiments with this technique, using an 18 cm telescope, have produced TDRS-4 observations which have an rms error of 0.5 arc second, 100 m at synchronous altitude. Use of a mosaic of CCD chips, each having its own rate of charge motion, in the focal place of a telescope would allow point images of a geosynchronous satellite and of stars to be formed simultaneously in the same telescope. The line of sight of such a satellite could be measured relative to nearby star lines of sight with an accuracy of approximately 0.03 arc second. Development of a star catalog with 0.04 arc second rms accuracy and perhaps ten stars per square degree would allow determination of satellite lines of sight with 0.05 arc second rms absolute accuracy, corresponding to 10 m at synchronous altitude. Multiple station time transfers through a communications satellite can provide accurate distances from the satellite to the ground stations. Such observations can, if calibrated for delays, determine satellite orbits to an accuracy approaching 10 m rms.

  6. Exemplar pediatric collaborative improvement networks: achieving results.

    PubMed

    Billett, Amy L; Colletti, Richard B; Mandel, Keith E; Miller, Marlene; Muething, Stephen E; Sharek, Paul J; Lannon, Carole M

    2013-06-01

    A number of pediatric collaborative improvement networks have demonstrated improved care and outcomes for children. Regionally, Cincinnati Children's Hospital Medical Center Physician Hospital Organization has sustained key asthma processes, substantially increased the percentage of their asthma population receiving "perfect care," and implemented an innovative pay-for-performance program with a large commercial payor based on asthma performance measures. The California Perinatal Quality Care Collaborative uses its outcomes database to improve care for infants in California NICUs. It has achieved reductions in central line-associated blood stream infections (CLABSI), increased breast-milk feeding rates at hospital discharge, and is now working to improve delivery room management. Solutions for Patient Safety (SPS) has achieved significant improvements in adverse drug events and surgical site infections across all 8 Ohio children's hospitals, with 7700 fewer children harmed and >$11.8 million in avoided costs. SPS is now expanding nationally, aiming to eliminate all events of serious harm at children's hospitals. National collaborative networks include ImproveCareNow, which aims to improve care and outcomes for children with inflammatory bowel disease. Reliable adherence to Model Care Guidelines has produced improved remission rates without using new medications and a significant increase in the proportion of Crohn disease patients not taking prednisone. Data-driven collaboratives of the Children's Hospital Association Quality Transformation Network initially focused on CLABSI in PICUs. By September 2011, they had prevented an estimated 2964 CLABSI, saving 355 lives and $103,722,423. Subsequent improvement efforts include CLABSI reductions in additional settings and populations.

  7. Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel.

    PubMed

    Mitt, Mario; Kals, Mart; Pärn, Kalle; Gabriel, Stacey B; Lander, Eric S; Palotie, Aarno; Ripatti, Samuli; Morris, Andrew P; Metspalu, Andres; Esko, Tõnu; Mägi, Reedik; Palta, Priit

    2017-06-01

    Genetic imputation is a cost-efficient way to improve the power and resolution of genome-wide association (GWA) studies. Current publicly accessible imputation reference panels accurately predict genotypes for common variants with minor allele frequency (MAF)≥5% and low-frequency variants (0.5≤MAF<5%) across diverse populations, but the imputation of rare variation (MAF<0.5%) is still rather limited. In the current study, we evaluate imputation accuracy achieved with reference panels from diverse populations with a population-specific high-coverage (30 ×) whole-genome sequencing (WGS) based reference panel, comprising of 2244 Estonian individuals (0.25% of adult Estonians). Although the Estonian-specific panel contains fewer haplotypes and variants, the imputation confidence and accuracy of imputed low-frequency and rare variants was significantly higher. The results indicate the utility of population-specific reference panels for human genetic studies.

  8. Improving the accuracy and usability of Iowa falling weight deflectometer data.

    DOT National Transportation Integrated Search

    2013-05-01

    This study aims to improve the accuracy and usability of Iowa Falling Weight Deflectometer (FWD) data by incorporating significant : enhancements into the fully-automated software system for rapid processing of the FWD data. These enhancements includ...

  9. Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation

    PubMed Central

    Parsons, Helen M; Ludwig, Christian; Günther, Ulrich L; Viant, Mark R

    2007-01-01

    Background Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample preparation and analytical measurements, and thereby maximise any contribution from wanted biological variance between different classes. The generalised logarithm (glog) transform was developed to stabilise the variance in DNA microarray datasets, but has rarely been applied to metabolomics data. In particular, it has not been rigorously evaluated against other scaling techniques used in metabolomics, nor tested on all forms of NMR spectra including 1-dimensional (1D) 1H, projections of 2D 1H, 1H J-resolved (pJRES), and intact 2D J-resolved (JRES). Results Here, the effects of the glog transform are compared against two commonly used variance stabilising techniques, autoscaling and Pareto scaling, as well as unscaled data. The four methods are evaluated in terms of the effects on the variance of NMR metabolomics data and on the classification accuracy following multivariate analysis, the latter achieved using principal component analysis followed by linear discriminant analysis. For two of three datasets analysed, classification accuracies were highest following glog transformation: 100% accuracy for discriminating 1D NMR spectra of hypoxic and normoxic invertebrate muscle, and 100% accuracy for discriminating 2D JRES spectra of fish livers sampled from two rivers. For the third dataset, pJRES spectra of urine from two breeds of dog, the glog transform and autoscaling achieved equal highest accuracies. Additionally we extended the glog algorithm to effectively suppress noise, which proved critical for the analysis of 2D JRES spectra. Conclusion We have demonstrated that the glog and extended glog transforms stabilise the technical variance in NMR metabolomics

  10. Improving CID, HCD, and ETD FT MS/MS degradome-peptidome identifications using high accuracy mass information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yufeng; Tolic, Nikola; Purvine, Samuel O.

    2011-11-07

    The peptidome (i.e. processed and degraded forms of proteins) of e.g. blood can potentially provide insights into disease processes, as well as a source of candidate biomarkers that are unobtainable using conventional bottom-up proteomics approaches. MS dissociation methods, including CID, HCD, and ETD, can each contribute distinct identifications using conventional peptide identification methods (Shen et al. J. Proteome Res. 2011), but such samples still pose significant analysis and informatics challenges. In this work, we explored a simple approach for better utilization of high accuracy fragment ion mass measurements provided e.g. by FT MS/MS and demonstrate significant improvements relative to conventionalmore » descriptive and probabilistic scores methods. For example, at the same FDR level we identified 20-40% more peptides than SEQUEST and Mascot scoring methods using high accuracy fragment ion information (e.g., <10 mass errors) from CID, HCD, and ETD spectra. Species identified covered >90% of all those identified from SEQUEST, Mascot, and MS-GF scoring methods. Additionally, we found that the merging the different fragment spectra provided >60% more species using the UStags method than achieved previously, and enabled >1000 peptidome components to be identified from a single human blood plasma sample with a 0.6% peptide-level FDR, and providing an improved basis for investigation of potentially disease-related peptidome components.« less

  11. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    NASA Technical Reports Server (NTRS)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  12. Investigation of the interpolation method to improve the distributed strain measurement accuracy in optical frequency domain reflectometry systems.

    PubMed

    Cui, Jiwen; Zhao, Shiyuan; Yang, Di; Ding, Zhenyang

    2018-02-20

    We use a spectrum interpolation technique to improve the distributed strain measurement accuracy in a Rayleigh-scatter-based optical frequency domain reflectometry sensing system. We demonstrate that strain accuracy is not limited by the "uncertainty principle" that exists in the time-frequency analysis. Different interpolation methods are investigated and used to improve the accuracy of peak position of the cross-correlation and, therefore, improve the accuracy of the strain. Interpolation implemented by padding zeros on one side of the windowed data in the spatial domain, before the inverse fast Fourier transform, is found to have the best accuracy. Using this method, the strain accuracy and resolution are both improved without decreasing the spatial resolution. The strain of 3 μϵ within the spatial resolution of 1 cm at the position of 21.4 m is distinguished, and the measurement uncertainty is 3.3 μϵ.

  13. Critical thinking and accuracy of nurses' diagnoses.

    PubMed

    Lunney, Margaret

    2003-01-01

    Interpretations of patient data are complex and diverse, contributing to a risk of low accuracy nursing diagnoses. This risk is confirmed in research findings that accuracy of nurses' diagnoses varied widely from high to low. Highly accurate diagnoses are essential, however, to guide nursing interventions for the achievement of positive health outcomes. Development of critical thinking abilities is likely to improve accuracy of nurses' diagnoses. New views of critical thinking serve as a basis for critical thinking in nursing. Seven cognitive skills and ten habits of mind are identified as dimensions of critical thinking for use in the diagnostic process. Application of the cognitive skills of critical thinking illustrates the importance of using critical thinking for accuracy of nurses' diagnoses. Ten strategies are proposed for self-development of critical thinking abilities.

  14. Contrast-enhanced spectral mammography improves diagnostic accuracy in the symptomatic setting.

    PubMed

    Tennant, S L; James, J J; Cornford, E J; Chen, Y; Burrell, H C; Hamilton, L J; Girio-Fragkoulakis, C

    2016-11-01

    To assess the diagnostic accuracy of contrast-enhanced spectral mammography (CESM), and gauge its "added value" in the symptomatic setting. A retrospective multi-reader review of 100 consecutive CESM examinations was performed. Anonymised low-energy (LE) images were reviewed and given a score for malignancy. At least 3 weeks later, the entire examination (LE and recombined images) was reviewed. Histopathology data were obtained for all cases. Differences in performance were assessed using receiver operator characteristic (ROC) analysis. Sensitivity, specificity, and lesion size (versus MRI or histopathology) differences were calculated. Seventy-three percent of cases were malignant at final histology, 27% were benign following standard triple assessment. ROC analysis showed improved overall performance of CESM over LE alone, with area under the curve of 0.93 versus 0.83 (p<0.025). CESM showed increased sensitivity (95% versus 84%, p<0.025) and specificity (81% versus 63%, p<0.025) compared to LE alone, with all five readers showing improved accuracy. Tumour size estimation at CESM was significantly more accurate than LE alone, the latter tending to undersize lesions. In 75% of cases, CESM was deemed a useful or significant aid to diagnosis. CESM provides immediately available, clinically useful information in the symptomatic clinic in patients with suspicious palpable abnormalities. Radiologist sensitivity, specificity, and size accuracy for breast cancer detection and staging are all improved using CESM as the primary mammographic investigation. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  15. The Effects of Individual or Group Guidelines on the Calibration Accuracy and Achievement of High School Biology Students

    ERIC Educational Resources Information Center

    Bol, Linda; Hacker, Douglas J.; Walck, Camilla C.; Nunnery, John A.

    2012-01-01

    A 2 x 2 factorial design was employed in a quasi-experiment to investigate the effects of guidelines in group or individual settings on the calibration accuracy and achievement of 82 high school biology students. Significant main effects indicated that calibration practice with guidelines and practice in group settings increased prediction and…

  16. Multicategory reclassification statistics for assessing improvements in diagnostic accuracy

    PubMed Central

    Li, Jialiang; Jiang, Binyan; Fine, Jason P.

    2013-01-01

    In this paper, we extend the definitions of the net reclassification improvement (NRI) and the integrated discrimination improvement (IDI) in the context of multicategory classification. Both measures were proposed in Pencina and others (2008. Evaluating the added predictive ability of a new marker: from area under the receiver operating characteristic (ROC) curve to reclassification and beyond. Statistics in Medicine 27, 157–172) as numeric characterizations of accuracy improvement for binary diagnostic tests and were shown to have certain advantage over analyses based on ROC curves or other regression approaches. Estimation and inference procedures for the multiclass NRI and IDI are provided in this paper along with necessary asymptotic distributional results. Simulations are conducted to study the finite-sample properties of the proposed estimators. Two medical examples are considered to illustrate our methodology. PMID:23197381

  17. Integrated multi-ISE arrays with improved sensitivity, accuracy and precision

    NASA Astrophysics Data System (ADS)

    Wang, Chunling; Yuan, Hongyan; Duan, Zhijuan; Xiao, Dan

    2017-03-01

    Increasing use of ion-selective electrodes (ISEs) in the biological and environmental fields has generated demand for high-sensitivity ISEs. However, improving the sensitivities of ISEs remains a challenge because of the limit of the Nernstian slope (59.2/n mV). Here, we present a universal ion detection method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian slope limit of 59.2/n mV, thereby enabling substantial enhancement of the sensitivity of ISEs. The results reveal that the response slope is greatly increased from 57.2 to 1711.3 mV, 57.3 to 564.7 mV and 57.7 to 576.2 mV by electronic integrated 30 Cl- electrodes, 10 F- electrodes and 10 glass pH electrodes, respectively. Thus, a tiny change in the ion concentration can be monitored, and correspondingly, the accuracy and precision are substantially improved. The EIMES is suited for all types of potentiometric sensors and may pave the way for monitoring of various ions with high accuracy and precision because of its high sensitivity.

  18. Improving substructure identification accuracy of shear structures using virtual control system

    NASA Astrophysics Data System (ADS)

    Zhang, Dongyu; Yang, Yang; Wang, Tingqiang; Li, Hui

    2018-02-01

    Substructure identification is a powerful tool to identify the parameters of a complex structure. Previously, the authors developed an inductive substructure identification method for shear structures. The identification error analysis showed that the identification accuracy of this method is significantly influenced by the magnitudes of two key structural responses near a certain frequency; if these responses are unfavorable, the method cannot provide accurate estimation results. In this paper, a novel method is proposed to improve the substructure identification accuracy by introducing a virtual control system (VCS) into the structure. A virtual control system is a self-balanced system, which consists of some control devices and a set of self-balanced forces. The self-balanced forces counterbalance the forces that the control devices apply on the structure. The control devices are combined with the structure to form a controlled structure used to replace the original structure in the substructure identification; and the self-balance forces are treated as known external excitations to the controlled structure. By optimally tuning the VCS’s parameters, the dynamic characteristics of the controlled structure can be changed such that the original structural responses become more favorable for the substructure identification and, thus, the identification accuracy is improved. A numerical example of 6-story shear structure is utilized to verify the effectiveness of the VCS based controlled substructure identification method. Finally, shake table tests are conducted on a 3-story structural model to verify the efficacy of the VCS to enhance the identification accuracy of the structural parameters.

  19. How social information can improve estimation accuracy in human groups.

    PubMed

    Jayles, Bertrand; Kim, Hye-Rin; Escobedo, Ramón; Cezera, Stéphane; Blanchet, Adrien; Kameda, Tatsuya; Sire, Clément; Theraulaz, Guy

    2017-11-21

    In our digital and connected societies, the development of social networks, online shopping, and reputation systems raises the questions of how individuals use social information and how it affects their decisions. We report experiments performed in France and Japan, in which subjects could update their estimates after having received information from other subjects. We measure and model the impact of this social information at individual and collective scales. We observe and justify that, when individuals have little prior knowledge about a quantity, the distribution of the logarithm of their estimates is close to a Cauchy distribution. We find that social influence helps the group improve its properly defined collective accuracy. We quantify the improvement of the group estimation when additional controlled and reliable information is provided, unbeknownst to the subjects. We show that subjects' sensitivity to social influence permits us to define five robust behavioral traits and increases with the difference between personal and group estimates. We then use our data to build and calibrate a model of collective estimation to analyze the impact on the group performance of the quantity and quality of information received by individuals. The model quantitatively reproduces the distributions of estimates and the improvement of collective performance and accuracy observed in our experiments. Finally, our model predicts that providing a moderate amount of incorrect information to individuals can counterbalance the human cognitive bias to systematically underestimate quantities and thereby improve collective performance. Copyright © 2017 the Author(s). Published by PNAS.

  20. How social information can improve estimation accuracy in human groups

    PubMed Central

    Jayles, Bertrand; Kim, Hye-rin; Cezera, Stéphane; Blanchet, Adrien; Kameda, Tatsuya; Sire, Clément; Theraulaz, Guy

    2017-01-01

    In our digital and connected societies, the development of social networks, online shopping, and reputation systems raises the questions of how individuals use social information and how it affects their decisions. We report experiments performed in France and Japan, in which subjects could update their estimates after having received information from other subjects. We measure and model the impact of this social information at individual and collective scales. We observe and justify that, when individuals have little prior knowledge about a quantity, the distribution of the logarithm of their estimates is close to a Cauchy distribution. We find that social influence helps the group improve its properly defined collective accuracy. We quantify the improvement of the group estimation when additional controlled and reliable information is provided, unbeknownst to the subjects. We show that subjects’ sensitivity to social influence permits us to define five robust behavioral traits and increases with the difference between personal and group estimates. We then use our data to build and calibrate a model of collective estimation to analyze the impact on the group performance of the quantity and quality of information received by individuals. The model quantitatively reproduces the distributions of estimates and the improvement of collective performance and accuracy observed in our experiments. Finally, our model predicts that providing a moderate amount of incorrect information to individuals can counterbalance the human cognitive bias to systematically underestimate quantities and thereby improve collective performance. PMID:29118142

  1. Student Achievement Goal Setting: Using Data to Improve Teaching and Learning

    ERIC Educational Resources Information Center

    Stronge, James H.; Grant, Leslie W.

    2009-01-01

    The first book in the James H. Stronge Research-to-Practice series focuses on improving student achievement through academic goal setting. It offers the tools and plan of action to use performance data to improve instructional practice and increase student achievement. The book is divided into three parts: (1) How Student Achievement Data Can Be…

  2. Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel

    PubMed Central

    Mitt, Mario; Kals, Mart; Pärn, Kalle; Gabriel, Stacey B; Lander, Eric S; Palotie, Aarno; Ripatti, Samuli; Morris, Andrew P; Metspalu, Andres; Esko, Tõnu; Mägi, Reedik; Palta, Priit

    2017-01-01

    Genetic imputation is a cost-efficient way to improve the power and resolution of genome-wide association (GWA) studies. Current publicly accessible imputation reference panels accurately predict genotypes for common variants with minor allele frequency (MAF)≥5% and low-frequency variants (0.5≤MAF<5%) across diverse populations, but the imputation of rare variation (MAF<0.5%) is still rather limited. In the current study, we evaluate imputation accuracy achieved with reference panels from diverse populations with a population-specific high-coverage (30 ×) whole-genome sequencing (WGS) based reference panel, comprising of 2244 Estonian individuals (0.25% of adult Estonians). Although the Estonian-specific panel contains fewer haplotypes and variants, the imputation confidence and accuracy of imputed low-frequency and rare variants was significantly higher. The results indicate the utility of population-specific reference panels for human genetic studies. PMID:28401899

  3. Continuous Glucose Monitoring in Subjects with Type 1 Diabetes: Improvement in Accuracy by Correcting for Background Current

    PubMed Central

    Youssef, Joseph El; Engle, Julia M.; Massoud, Ryan G.; Ward, W. Kenneth

    2010-01-01

    Abstract Background A cause of suboptimal accuracy in amperometric glucose sensors is the presence of a background current (current produced in the absence of glucose) that is not accounted for. We hypothesized that a mathematical correction for the estimated background current of a commercially available sensor would lead to greater accuracy compared to a situation in which we assumed the background current to be zero. We also tested whether increasing the frequency of sensor calibration would improve sensor accuracy. Methods This report includes analysis of 20 sensor datasets from seven human subjects with type 1 diabetes. Data were divided into a training set for algorithm development and a validation set on which the algorithm was tested. A range of potential background currents was tested. Results Use of the background current correction of 4 nA led to a substantial improvement in accuracy (improvement of absolute relative difference or absolute difference of 3.5–5.5 units). An increase in calibration frequency led to a modest accuracy improvement, with an optimum at every 4 h. Conclusions Compared to no correction, a correction for the estimated background current of a commercially available glucose sensor led to greater accuracy and better detection of hypoglycemia and hyperglycemia. The accuracy-optimizing scheme presented here can be implemented in real time. PMID:20879968

  4. Improved Snow Mapping Accuracy with Revised MODIS Snow Algorithm

    NASA Technical Reports Server (NTRS)

    Riggs, George; Hall, Dorothy K.

    2012-01-01

    The MODIS snow cover products have been used in over 225 published studies. From those reports, and our ongoing analysis, we have learned about the accuracy and errors in the snow products. Revisions have been made in the algorithms to improve the accuracy of snow cover detection in Collection 6 (C6), the next processing/reprocessing of the MODIS data archive planned to start in September 2012. Our objective in the C6 revision of the MODIS snow-cover algorithms and products is to maximize the capability to detect snow cover while minimizing snow detection errors of commission and omission. While the basic snow detection algorithm will not change, new screens will be applied to alleviate snow detection commission and omission errors, and only the fractional snow cover (FSC) will be output (the binary snow cover area (SCA) map will no longer be included).

  5. The use of imprecise processing to improve accuracy in weather & climate prediction

    NASA Astrophysics Data System (ADS)

    Düben, Peter D.; McNamara, Hugh; Palmer, T. N.

    2014-08-01

    The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing bit-reproducibility and precision in exchange for improvements in performance and potentially accuracy of forecasts, due to a reduction in power consumption that could allow higher resolution. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud-resolving atmospheric modelling. The impact of both hardware induced faults and low precision arithmetic is tested using the Lorenz '96 model and the dynamical core of a global atmosphere model. In the Lorenz '96 model there is a natural scale separation; the spectral discretisation used in the dynamical core also allows large and small scale dynamics to be treated separately within the code. Such scale separation allows the impact of lower-accuracy arithmetic to be restricted to components close to the truncation scales and hence close to the necessarily inexact parametrised representations of unresolved processes. By contrast, the larger scales are calculated using high precision deterministic arithmetic. Hardware faults from stochastic processors are emulated using a bit-flip model with different fault rates. Our simulations show that both approaches to inexact calculations do not substantially affect the large scale behaviour, provided they are restricted to act only on smaller scales. By contrast, results from the Lorenz '96 simulations are superior when small scales are calculated on an emulated stochastic processor than when those small scales are parametrised. This suggests that inexact calculations at the small scale could reduce computation and

  6. Improving the accuracy of camber predictions for precast pretensioned concrete beams : [tech transfer summary].

    DOT National Transportation Integrated Search

    2015-07-01

    Implementing the recommendations of this study is expected to significantly : improve the accuracy of camber measurements and predictions and to : ultimately help reduce construction delays, improve bridge serviceability, : and decrease costs.

  7. Time needed to achieve completeness and accuracy in bedside lung ultrasound reporting in intensive care unit.

    PubMed

    Tutino, Lorenzo; Cianchi, Giovanni; Barbani, Francesco; Batacchi, Stefano; Cammelli, Rita; Peris, Adriano

    2010-08-12

    The use of lung ultrasound (LUS) in ICU is increasing but ultrasonographic patterns of lung are often difficult to quantify by different operators. The aim of this study was to evaluate the accuracy and quality of LUS reporting after the introduction of a standardized electronic recording sheet. Intensivists were trained for LUS following a teaching programme. From April 2008, an electronic sheet was designed and introduced in ICU database in order to uniform LUS examination reporting. A mark from 0 to 24 has been given for each exam by two senior intensivists not involved in the survey. The mark assigned was based on completeness of a precise reporting scheme, concerning the main finding of LUS. A cut off of 15 was considered sufficiency. The study comprehended 12 months of observations and a total of 637 LUS. Initially, although some improvement in the reports completeness, still the accuracy and precision of examination reporting was below 15. The time required to reach a sufficient quality was 7 months. A linear trend in physicians progress was observed. The uniformity in teaching programme and examinations reporting system permits to improve the level of completeness and accuracy of LUS reporting, helping physicians in following lung pathology evolution.

  8. Using precise word timing information improves decoding accuracy in a multiband-accelerated multimodal reading experiment.

    PubMed

    Vu, An T; Phillips, Jeffrey S; Kay, Kendrick; Phillips, Matthew E; Johnson, Matthew R; Shinkareva, Svetlana V; Tubridy, Shannon; Millin, Rachel; Grossman, Murray; Gureckis, Todd; Bhattacharyya, Rajan; Yacoub, Essa

    2016-01-01

    The blood-oxygen-level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments is generally regarded as sluggish and poorly suited for probing neural function at the rapid timescales involved in sentence comprehension. However, recent studies have shown the value of acquiring data with very short repetition times (TRs), not merely in terms of improvements in contrast to noise ratio (CNR) through averaging, but also in terms of additional fine-grained temporal information. Using multiband-accelerated fMRI, we achieved whole-brain scans at 3-mm resolution with a TR of just 500 ms at both 3T and 7T field strengths. By taking advantage of word timing information, we found that word decoding accuracy across two separate sets of scan sessions improved significantly, with better overall performance at 7T than at 3T. The effect of TR was also investigated; we found that substantial word timing information can be extracted using fast TRs, with diminishing benefits beyond TRs of 1000 ms.

  9. Attitude-correlated frames approach for a star sensor to improve attitude accuracy under highly dynamic conditions.

    PubMed

    Ma, Liheng; Zhan, Dejun; Jiang, Guangwen; Fu, Sihua; Jia, Hui; Wang, Xingshu; Huang, Zongsheng; Zheng, Jiaxing; Hu, Feng; Wu, Wei; Qin, Shiqiao

    2015-09-01

    The attitude accuracy of a star sensor decreases rapidly when star images become motion-blurred under dynamic conditions. Existing techniques concentrate on a single frame of star images to solve this problem and improvements are obtained to a certain extent. An attitude-correlated frames (ACF) approach, which concentrates on the features of the attitude transforms of the adjacent star image frames, is proposed to improve upon the existing techniques. The attitude transforms between different star image frames are measured by the strap-down gyro unit precisely. With the ACF method, a much larger star image frame is obtained through the combination of adjacent frames. As a result, the degradation of attitude accuracy caused by motion-blurring are compensated for. The improvement of the attitude accuracy is approximately proportional to the square root of the number of correlated star image frames. Simulations and experimental results indicate that the ACF approach is effective in removing random noises and improving the attitude determination accuracy of the star sensor under highly dynamic conditions.

  10. Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept

    PubMed Central

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion. PMID:25097873

  11. Accuracy improvement capability of advanced projectile based on course correction fuze concept.

    PubMed

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  12. Improving the Accuracy of Cloud Detection Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Craddock, M. E.; Alliss, R. J.; Mason, M.

    2017-12-01

    show 97% accuracy during the daytime, 94% accuracy at night, and 95% accuracy for all times. The total time to train, tune and test was approximately one week. The improved performance and reduced time to produce results is testament to improved computer technology and the use of machine learning as a more efficient and accurate methodology of cloud detection.

  13. Improving mental health outcomes: achieving equity through quality improvement.

    PubMed

    Poots, Alan J; Green, Stuart A; Honeybourne, Emmi; Green, John; Woodcock, Thomas; Barnes, Ruth; Bell, Derek

    2014-04-01

    To investigate equity of patient outcomes in a psychological therapy service, following increased access achieved by a quality improvement (QI) initiative. Retrospective service evaluation of health outcomes; data analysed by ANOVA, chi-squared and Statistical Process Control. A psychological therapy service in Westminster, London, UK. People living in the Borough of Westminster, London, attending the service (from either healthcare professional or self-referral) between February 2009 and May 2012. s) Social marketing interventions were used to increase referrals, including the promotion of the service through local media and through existing social networks. s) (i) Severity of depression on entry using Patient Health Questionnaire-9 (PHQ9). (ii) Changes to severity of depression following treatment (ΔPHQ9). (iii) Changes in attainment of a meaningful improvement in condition assessed by a key performance indicator. Patients from areas of high deprivation entered the service with more severe depression (M = 15.47, SD = 6.75), compared with patients from areas of low (M = 13.20, SD = 6.75) and medium (M = 14.44, SD = 6.64) deprivation. Patients in low, medium and high deprivation areas attained similar changes in depression score (ΔPHQ9: M = -6.60, SD = 6.41). Similar proportions of patients achieved the key performance indicator across initiative phase and deprivation categories. QI methods improved access to mental health services; this paper finds no evidence for differences in clinical outcomes in patients, regardless of level of deprivation, interpreted as no evidence of inequity in the service with respect to this outcome.

  14. Occupational exposure decisions: can limited data interpretation training help improve accuracy?

    PubMed

    Logan, Perry; Ramachandran, Gurumurthy; Mulhausen, John; Hewett, Paul

    2009-06-01

    Accurate exposure assessments are critical for ensuring that potentially hazardous exposures are properly identified and controlled. The availability and accuracy of exposure assessments can determine whether resources are appropriately allocated to engineering and administrative controls, medical surveillance, personal protective equipment and other programs designed to protect workers. A desktop study was performed using videos, task information and sampling data to evaluate the accuracy and potential bias of participants' exposure judgments. Desktop exposure judgments were obtained from occupational hygienists for material handling jobs with small air sampling data sets (0-8 samples) and without the aid of computers. In addition, data interpretation tests (DITs) were administered to participants where they were asked to estimate the 95th percentile of an underlying log-normal exposure distribution from small data sets. Participants were presented with an exposure data interpretation or rule of thumb training which included a simple set of rules for estimating 95th percentiles for small data sets from a log-normal population. DIT was given to each participant before and after the rule of thumb training. Results of each DIT and qualitative and quantitative exposure judgments were compared with a reference judgment obtained through a Bayesian probabilistic analysis of the sampling data to investigate overall judgment accuracy and bias. There were a total of 4386 participant-task-chemical judgments for all data collections: 552 qualitative judgments made without sampling data and 3834 quantitative judgments with sampling data. The DITs and quantitative judgments were significantly better than random chance and much improved by the rule of thumb training. In addition, the rule of thumb training reduced the amount of bias in the DITs and quantitative judgments. The mean DIT % correct scores increased from 47 to 64% after the rule of thumb training (P < 0.001). The

  15. On-board error correction improves IR earth sensor accuracy

    NASA Astrophysics Data System (ADS)

    Alex, T. K.; Kasturirangan, K.; Shrivastava, S. K.

    1989-10-01

    Infra-red earth sensors are used in satellites for attitude sensing. Their accuracy is limited by systematic and random errors. The sources of errors in a scanning infra-red earth sensor are analyzed in this paper. The systematic errors arising from seasonal variation of infra-red radiation, oblate shape of the earth, ambient temperature of sensor, changes in scan/spin rates have been analyzed. Simple relations are derived using least square curve fitting for on-board correction of these errors. Random errors arising out of noise from detector and amplifiers, instability of alignment and localized radiance anomalies are analyzed and possible correction methods are suggested. Sun and Moon interference on earth sensor performance has seriously affected a number of missions. The on-board processor detects Sun/Moon interference and corrects the errors on-board. It is possible to obtain eight times improvement in sensing accuracy, which will be comparable with ground based post facto attitude refinement.

  16. Improving geolocation and spatial accuracies with the modular integrated avionics group (MIAG)

    NASA Astrophysics Data System (ADS)

    Johnson, Einar; Souter, Keith

    1996-05-01

    The modular integrated avionics group (MIAG) is a single unit approach to combining position, inertial and baro-altitude/air data sensors to provide optimized navigation, guidance and control performance. Lear Astronics Corporation is currently working within the navigation community to upgrade existing MIAG performance with precise GPS positioning mechanization tightly integrated with inertial, baro and other sensors. Among the immediate benefits are the following: (1) accurate target location in dynamic conditions; (2) autonomous launch and recovery using airborne avionics only; (3) precise flight path guidance; and (4) improved aircraft and payload stability information. This paper will focus on the impact of using the MIAG with its multimode navigation accuracies on the UAV targeting mission. Gimbaled electro-optical sensors mounted on a UAV can be used to determine ground coordinates of a target at the center of the field of view by a series of vector rotation and scaling computations. The accuracy of the computed target coordinates is dependent on knowing the UAV position and the UAV-to-target offset computation. Astronics performed a series of simulations to evaluate the effects that the improved angular and position data available from the MIAG have on target coordinate accuracy.

  17. Accuracy improvement in laser stripe extraction for large-scale triangulation scanning measurement system

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Wei; Li, Xiaodong; Yang, Fan; Gao, Peng; Jia, Zhenyuan

    2015-10-01

    Large-scale triangulation scanning measurement systems are widely used to measure the three-dimensional profile of large-scale components and parts. The accuracy and speed of the laser stripe center extraction are essential for guaranteeing the accuracy and efficiency of the measuring system. However, in the process of large-scale measurement, multiple factors can cause deviation of the laser stripe center, including the spatial light intensity distribution, material reflectivity characteristics, and spatial transmission characteristics. A center extraction method is proposed for improving the accuracy of the laser stripe center extraction based on image evaluation of Gaussian fitting structural similarity and analysis of the multiple source factors. First, according to the features of the gray distribution of the laser stripe, evaluation of the Gaussian fitting structural similarity is estimated to provide a threshold value for center compensation. Then using the relationships between the gray distribution of the laser stripe and the multiple source factors, a compensation method of center extraction is presented. Finally, measurement experiments for a large-scale aviation composite component are carried out. The experimental results for this specific implementation verify the feasibility of the proposed center extraction method and the improved accuracy for large-scale triangulation scanning measurements.

  18. Improving z-tracking accuracy in the two-photon single-particle tracking microscope.

    PubMed

    Liu, C; Liu, Y-L; Perillo, E P; Jiang, N; Dunn, A K; Yeh, H-C

    2015-10-12

    Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we have precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico . Our method can be generally applied to other 3D single-particle tracking techniques.

  19. Optical vector network analyzer with improved accuracy based on polarization modulation and polarization pulling.

    PubMed

    Li, Wei; Liu, Jian Guo; Zhu, Ning Hua

    2015-04-15

    We report a novel optical vector network analyzer (OVNA) with improved accuracy based on polarization modulation and stimulated Brillouin scattering (SBS) assisted polarization pulling. The beating between adjacent higher-order optical sidebands which are generated because of the nonlinearity of an electro-optic modulator (EOM) introduces considerable error to the OVNA. In our scheme, the measurement error is significantly reduced by removing the even-order optical sidebands using polarization discrimination. The proposed approach is theoretically analyzed and experimentally verified. The experimental results show that the accuracy of the OVNA is greatly improved compared to a conventional OVNA.

  20. Prediction of soil properties using imaging spectroscopy: Considering fractional vegetation cover to improve accuracy

    NASA Astrophysics Data System (ADS)

    Franceschini, M. H. D.; Demattê, J. A. M.; da Silva Terra, F.; Vicente, L. E.; Bartholomeus, H.; de Souza Filho, C. R.

    2015-06-01

    Spectroscopic techniques have become attractive to assess soil properties because they are fast, require little labor and may reduce the amount of laboratory waste produced when compared to conventional methods. Imaging spectroscopy (IS) can have further advantages compared to laboratory or field proximal spectroscopic approaches such as providing spatially continuous information with a high density. However, the accuracy of IS derived predictions decreases when the spectral mixture of soil with other targets occurs. This paper evaluates the use of spectral data obtained by an airborne hyperspectral sensor (ProSpecTIR-VS - Aisa dual sensor) for prediction of physical and chemical properties of Brazilian highly weathered soils (i.e., Oxisols). A methodology to assess the soil spectral mixture is adapted and a progressive spectral dataset selection procedure, based on bare soil fractional cover, is proposed and tested. Satisfactory performances are obtained specially for the quantification of clay, sand and CEC using airborne sensor data (R2 of 0.77, 0.79 and 0.54; RPD of 2.14, 2.22 and 1.50, respectively), after spectral data selection is performed; although results obtained for laboratory data are more accurate (R2 of 0.92, 0.85 and 0.75; RPD of 3.52, 2.62 and 2.04, for clay, sand and CEC, respectively). Most importantly, predictions based on airborne-derived spectra for which the bare soil fractional cover is not taken into account show considerable lower accuracy, for example for clay, sand and CEC (RPD of 1.52, 1.64 and 1.16, respectively). Therefore, hyperspectral remotely sensed data can be used to predict topsoil properties of highly weathered soils, although spectral mixture of bare soil with vegetation must be considered in order to achieve an improved prediction accuracy.

  1. Post-processing for improving hyperspectral anomaly detection accuracy

    NASA Astrophysics Data System (ADS)

    Wu, Jee-Cheng; Jiang, Chi-Ming; Huang, Chen-Liang

    2015-10-01

    Anomaly detection is an important topic in the exploitation of hyperspectral data. Based on the Reed-Xiaoli (RX) detector and a morphology operator, this research proposes a novel technique for improving the accuracy of hyperspectral anomaly detection. Firstly, the RX-based detector is used to process a given input scene. Then, a post-processing scheme using morphology operator is employed to detect those pixels around high-scoring anomaly pixels. Tests were conducted using two real hyperspectral images with ground truth information and the results based on receiver operating characteristic curves, illustrated that the proposed method reduced the false alarm rates of the RXbased detector.

  2. Professional Learning Communities That Initiate Improvement in Student Achievement

    ERIC Educational Resources Information Center

    Royer, Suzanne M.

    2012-01-01

    Quality teaching requires a strong practice of collaboration, an essential building block for educators to improve student achievement. Researchers have theorized that the implementation of a professional learning community (PLC) with resultant collaborative practices among teachers sustains academic improvement. The problem addressed specifically…

  3. Gravity compensation in a Strapdown Inertial Navigation System to improve the attitude accuracy

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Wang, Jun; Wang, Xingshu; Yang, Shuai

    2017-10-01

    Attitude errors in a strapdown inertial navigation system due to gravity disturbances and system noises can be relatively large, although they are bound within the Schuler and the Earth rotation period. The principal objective of the investigation is to determine to what extent accurate gravity data can improve the attitude accuracy. The way the gravity disturbances affect the attitude were analyzed and compared with system noises by the analytic solution and simulation. The gravity disturbances affect the attitude accuracy by introducing the initial attitude error and the equivalent accelerometer bias. With the development of the high precision inertial devices and the application of the rotation modulation technology, the gravity disturbance cannot be neglected anymore. The gravity compensation was performed using the EGM2008 and simulations with and without accurate gravity compensation under varying navigation conditions were carried out. The results show that the gravity compensation improves the horizontal components of attitude accuracy evidently while the yaw angle is badly affected by the uncompensated gyro bias in vertical channel.

  4. Improvement of the accuracy of noise measurements by the two-amplifier correlation method.

    PubMed

    Pellegrini, B; Basso, G; Fiori, G; Macucci, M; Maione, I A; Marconcini, P

    2013-10-01

    We present a novel method for device noise measurement, based on a two-channel cross-correlation technique and a direct "in situ" measurement of the transimpedance of the device under test (DUT), which allows improved accuracy with respect to what is available in the literature, in particular when the DUT is a nonlinear device. Detailed analytical expressions for the total residual noise are derived, and an experimental investigation of the increased accuracy provided by the method is performed.

  5. Improving the accuracy of Laplacian estimation with novel multipolar concentric ring electrodes

    PubMed Central

    Ding, Quan; Besio, Walter G.

    2015-01-01

    Conventional electroencephalography with disc electrodes has major drawbacks including poor spatial resolution, selectivity and low signal-to-noise ratio that are critically limiting its use. Concentric ring electrodes, consisting of several elements including the central disc and a number of concentric rings, are a promising alternative with potential to improve all of the aforementioned aspects significantly. In our previous work, the tripolar concentric ring electrode was successfully used in a wide range of applications demonstrating its superiority to conventional disc electrode, in particular, in accuracy of Laplacian estimation. This paper takes the next step toward further improving the Laplacian estimation with novel multipolar concentric ring electrodes by completing and validating a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2 that allows cancellation of all the truncation terms up to the order of 2n. An explicit formula based on inversion of a square Vandermonde matrix is derived to make computation of multipolar Laplacian more efficient. To confirm the analytic result of the accuracy of Laplacian estimate increasing with the increase of n and to assess the significance of this gain in accuracy for practical applications finite element method model analysis has been performed. Multipolar concentric ring electrode configurations with n ranging from 1 ring (bipolar electrode configuration) to 6 rings (septapolar electrode configuration) were directly compared and obtained results suggest the significance of the increase in Laplacian accuracy caused by increase of n. PMID:26693200

  6. Improving the accuracy of Laplacian estimation with novel multipolar concentric ring electrodes.

    PubMed

    Makeyev, Oleksandr; Ding, Quan; Besio, Walter G

    2016-02-01

    Conventional electroencephalography with disc electrodes has major drawbacks including poor spatial resolution, selectivity and low signal-to-noise ratio that are critically limiting its use. Concentric ring electrodes, consisting of several elements including the central disc and a number of concentric rings, are a promising alternative with potential to improve all of the aforementioned aspects significantly. In our previous work, the tripolar concentric ring electrode was successfully used in a wide range of applications demonstrating its superiority to conventional disc electrode, in particular, in accuracy of Laplacian estimation. This paper takes the next step toward further improving the Laplacian estimation with novel multipolar concentric ring electrodes by completing and validating a general approach to estimation of the Laplacian for an ( n + 1)-polar electrode with n rings using the (4 n + 1)-point method for n ≥ 2 that allows cancellation of all the truncation terms up to the order of 2 n . An explicit formula based on inversion of a square Vandermonde matrix is derived to make computation of multipolar Laplacian more efficient. To confirm the analytic result of the accuracy of Laplacian estimate increasing with the increase of n and to assess the significance of this gain in accuracy for practical applications finite element method model analysis has been performed. Multipolar concentric ring electrode configurations with n ranging from 1 ring (bipolar electrode configuration) to 6 rings (septapolar electrode configuration) were directly compared and obtained results suggest the significance of the increase in Laplacian accuracy caused by increase of n .

  7. Improving z-tracking accuracy in the two-photon single-particle tracking microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Liu, Y.-L.; Perillo, E. P.

    Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we havemore » precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico. Our method can be generally applied to other 3D single-particle tracking techniques.« less

  8. Using commodity accelerometers and gyroscopes to improve speed and accuracy of JanusVF

    NASA Astrophysics Data System (ADS)

    Hutson, Malcolm; Reiners, Dirk

    2010-01-01

    Several critical limitations exist in the currently available commercial tracking technologies for fully-enclosed virtual reality (VR) systems. While several 6DOF solutions can be adapted to work in fully-enclosed spaces, they still include elements of hardware that can interfere with the user's visual experience. JanusVF introduced a tracking solution for fully-enclosed VR displays that achieves comparable performance to available commercial solutions but without artifacts that can obscure the user's view. JanusVF employs a small, high-resolution camera that is worn on the user's head, but faces backwards. The VR rendering software draws specific fiducial markers with known size and absolute position inside the VR scene behind the user but in view of the camera. These fiducials are tracked by ARToolkitPlus and integrated by a single-constraint-at-a-time (SCAAT) filter to update the head pose. In this paper we investigate the addition of low-cost accelerometers and gyroscopes such as those in Nintendo Wii remotes, the Wii Motion Plus, and the Sony Sixaxis controller to improve the precision and accuracy of JanusVF. Several enthusiast projects have implemented these units as basic trackers or for gesture recognition, but none so far have created true 6DOF trackers using only the accelerometers and gyroscopes. Our original experiments were repeated after adding the low-cost inertial sensors, showing considerable improvements and noise reduction.

  9. Does Children's Academic Achievement Improve when Single Mothers Marry?

    ERIC Educational Resources Information Center

    Wagmiller, Robert L., Jr.; Gershoff, Elizabeth; Veliz, Philip; Clements, Margaret

    2010-01-01

    Promoting marriage, especially among low-income single mothers with children, is increasingly viewed as a promising public policy strategy for improving developmental outcomes for disadvantaged children. Previous research suggests, however, that children's academic achievement either does not improve or declines when single mothers marry. In this…

  10. The study of vehicle classification equipment with solutions to improve accuracy in Oklahoma.

    DOT National Transportation Integrated Search

    2014-12-01

    The accuracy of vehicle counting and classification data is vital for appropriate future highway and road : design, including determining pavement characteristics, eliminating traffic jams, and improving safety. : Organizations relying on vehicle cla...

  11. Improvement of Accuracy in Environmental Dosimetry by TLD Cards Using Three-dimensional Calibration Method.

    PubMed

    HosseiniAliabadi, S J; Hosseini Pooya, S M; Afarideh, H; Mianji, F

    2015-06-01

    The angular dependency of response for TLD cards may cause deviation from its true value on the results of environmental dosimetry, since TLDs may be exposed to radiation at different angles of incidence from the surrounding area. A 3D setting of TLD cards has been calibrated isotropically in a standard radiation field to evaluate the improvement of the accuracy of measurement for environmental dosimetry. Three personal TLD cards were rectangularly placed in a cylindrical holder, and calibrated using 1D and 3D calibration methods. Then, the dosimeter has been used simultaneously with a reference instrument in a real radiation field measuring the accumulated dose within a time interval. The results show that the accuracy of measurement has been improved by 6.5% using 3D calibration factor in comparison with that of normal 1D calibration method. This system can be utilized in large scale environmental monitoring with a higher accuracy.

  12. Improvement of Accuracy in Environmental Dosimetry by TLD Cards Using Three-dimensional Calibration Method

    PubMed Central

    HosseiniAliabadi, S. J.; Hosseini Pooya, S. M.; Afarideh, H.; Mianji, F.

    2015-01-01

    Introduction The angular dependency of response for TLD cards may cause deviation from its true value on the results of environmental dosimetry, since TLDs may be exposed to radiation at different angles of incidence from the surrounding area. Objective A 3D setting of TLD cards has been calibrated isotropically in a standard radiation field to evaluate the improvement of the accuracy of measurement for environmental dosimetry. Method Three personal TLD cards were rectangularly placed in a cylindrical holder, and calibrated using 1D and 3D calibration methods. Then, the dosimeter has been used simultaneously with a reference instrument in a real radiation field measuring the accumulated dose within a time interval. Result The results show that the accuracy of measurement has been improved by 6.5% using 3D calibration factor in comparison with that of normal 1D calibration method. Conclusion This system can be utilized in large scale environmental monitoring with a higher accuracy. PMID:26157729

  13. Leveraging Improvements in Precipitation Measuring from GPM Mission to Achieve Prediction Improvements in Climate, Weather and Hydrometeorology

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2002-01-01

    the way for what ultimately is expected to become an internationally-organized operational global precipitation observing system. Notably, the broad societal applications of GPM are reflected in the United Nation s identification of this mission as a foremost candidate for its Peaceful Uses of Space Program. In this presentation, an overview of the GPM mission design will be presented, followed by an explanation of its scientific agenda as an outgrowth of making improvements in rain retrieval accuracy, microphysics dexterity, sampling frequency, and global coverage. All of these improvements offer new means to observe variability in precipitation and water cycle fluxes and to achieve improved predictability of weather, climate, and hydrometeorology. Specifically, the scientific agenda of GPM has been designed to leverage the measurement improvements to improve prognostic model performance, particularly quantitative precipitation forecasting and its linked phenomena at short, intermediate, and extended time scales. The talk will address how GPM measurements will enable better detection of accelerations and decelerations in regional and global water cycle processes and their relationship to climate variability, better impacts of precipitation data assimilation on numerical weather prediction and global climate reanalysis, and better performance from basin scale hydrometeorological models for short and long term flood-drought forecasting and seasonal fresh water resource assessment. Improved hydrometeorological forecasting will be possible by using continuous global precipitation observations to obtain better closure in water budgets and to generate more realistic forcing of the models themselves to achieve more accurate estimates of interception, infiltration, evaporation/transpiration fluxes, storage, and runoff.

  14. Eight-Week Battle Rope Training Improves Multiple Physical Fitness Dimensions and Shooting Accuracy in Collegiate Basketball Players.

    PubMed

    Chen, Wei-Han; Wu, Huey-June; Lo, Shin-Liang; Chen, Hui; Yang, Wen-Wen; Huang, Chen-Fu; Liu, Chiang

    2018-05-28

    Chen, WH, Wu, HJ, Lo, SL, Chen, H, Yang, WW, Huang, CF, and Liu, C. Eight-week battle rope training improves multiple physical fitness dimensions and shooting accuracy in collegiate basketball players. J Strength Cond Res XX(X): 000-000, 2018-Basketball players must possess optimally developed physical fitness in multiple dimensions and shooting accuracy. This study investigated whether (battle rope [BR]) training enhances multiple physical fitness dimensions, including aerobic capacity (AC), upper-body anaerobic power (AnP), upper-body and lower-body power, agility, and core muscle endurance, and shooting accuracy in basketball players and compared its effects with those of regular training (shuttle run [SR]). Thirty male collegiate basketball players were randomly assigned to the BR or SR groups (n = 15 per group). Both groups received 8-week interval training for 3 sessions per week; the protocol consisted of the same number of sets, exercise time, and rest interval time. The BR group exhibited significant improvements in AC (Progressive Aerobic Cardiovascular Endurance Run laps: 17.6%), upper-body AnP (mean power: 7.3%), upper-body power (basketball chest pass speed: 4.8%), lower-body power (jump height: 2.6%), core muscle endurance (flexion: 37.0%, extension: 22.8%, and right side bridge: 23.0%), and shooting accuracy (free throw: 14.0% and dynamic shooting: 36.2%). However, the SR group exhibited improvements in only AC (12.0%) and upper-body power (3.8%) (p < 0.05). The BR group demonstrated larger pre-post improvements in upper-body AnP (fatigue index) and dynamic shooting accuracy than the SR group did (p < 0.05). The BR group showed higher post-training performance in upper-body AnP (mean power and fatigue index) than the SR group did (p < 0.05). Thus, BR training effectively improves multiple physical fitness dimensions and shooting accuracy in collegiate basketball players.

  15. Improving the accuracy of livestock distribution estimates through spatial interpolation.

    PubMed

    Bryssinckx, Ward; Ducheyne, Els; Muhwezi, Bernard; Godfrey, Sunday; Mintiens, Koen; Leirs, Herwig; Hendrickx, Guy

    2012-11-01

    Animal distribution maps serve many purposes such as estimating transmission risk of zoonotic pathogens to both animals and humans. The reliability and usability of such maps is highly dependent on the quality of the input data. However, decisions on how to perform livestock surveys are often based on previous work without considering possible consequences. A better understanding of the impact of using different sample designs and processing steps on the accuracy of livestock distribution estimates was acquired through iterative experiments using detailed survey. The importance of sample size, sample design and aggregation is demonstrated and spatial interpolation is presented as a potential way to improve cattle number estimates. As expected, results show that an increasing sample size increased the precision of cattle number estimates but these improvements were mainly seen when the initial sample size was relatively low (e.g. a median relative error decrease of 0.04% per sampled parish for sample sizes below 500 parishes). For higher sample sizes, the added value of further increasing the number of samples declined rapidly (e.g. a median relative error decrease of 0.01% per sampled parish for sample sizes above 500 parishes. When a two-stage stratified sample design was applied to yield more evenly distributed samples, accuracy levels were higher for low sample densities and stabilised at lower sample sizes compared to one-stage stratified sampling. Aggregating the resulting cattle number estimates yielded significantly more accurate results because of averaging under- and over-estimates (e.g. when aggregating cattle number estimates from subcounty to district level, P <0.009 based on a sample of 2,077 parishes using one-stage stratified samples). During aggregation, area-weighted mean values were assigned to higher administrative unit levels. However, when this step is preceded by a spatial interpolation to fill in missing values in non-sampled areas, accuracy

  16. [Ways to improve measurement accuracy of blood glucose sensing by mid-infrared spectroscopy].

    PubMed

    Wang, Yan; Li, Ning; Xu, Kexin

    2006-06-01

    Mid-infrared (MIR) spectroscopy is applicable to blood glucose sensing without using any reagent, however, due to a result of inadequate accuracy, till now this method has not been used in clinical detection. The principle and key technologies of blood glucose sensing by MIR spectroscopy are presented in this paper. Along with our experimental results, the paper analyzes ways to enhance measurement accuracy and prediction accuracy by the following four methods: selection of optimized spectral region; application of spectra data processing method; elimination of the interference with other components in the blood, and promotion in system hardware. According to these four improving methods, we designed four experiments, i.e., strict determination of the region where glucose concentration changes most sensitively in MIR, application of genetic algorithm for wavelength selection, normalization of spectra for the purpose of enhancing measuring reproduction, and utilization of CO2 laser as light source. The results show that the measurement accuracy of blood glucose concentration is enhanced almost to a clinical detection level.

  17. Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster.

    PubMed

    Olsen, Thomas

    2007-02-01

    This study aimed to demonstrate how the level of accuracy in intraocular lens (IOL) power calculation can be improved with optical biometry using partial optical coherence interferometry (PCI) (Zeiss IOLMaster) and current anterior chamber depth (ACD) prediction algorithms. Intraocular lens power in 461 consecutive cataract operations was calculated using both PCI and ultrasound and the accuracy of the results of each technique were compared. To illustrate the importance of ACD prediction per se, predictions were calculated using both a recently published 5-variable method and the Haigis 2-variable method and the results compared. All calculations were optimized in retrospect to account for systematic errors, including IOL constants and other off-set errors. The average absolute IOL prediction error (observed minus expected refraction) was 0.65 dioptres with ultrasound and 0.43 D with PCI using the 5-variable ACD prediction method (p < 0.00001). The number of predictions within +/- 0.5 D, +/- 1.0 D and +/- 2.0 D of the expected outcome was 62.5%, 92.4% and 99.9% with PCI, compared with 45.5%, 77.3% and 98.4% with ultrasound, respectively (p < 0.00001). The 2-variable ACD method resulted in an average error in PCI predictions of 0.46 D, which was significantly higher than the error in the 5-variable method (p < 0.001). The accuracy of IOL power calculation can be significantly improved using calibrated axial length readings obtained with PCI and modern IOL power calculation formulas incorporating the latest generation ACD prediction algorithms.

  18. Evaluation of scanning 2D barcoded vaccines to improve data accuracy of vaccines administered.

    PubMed

    Daily, Ashley; Kennedy, Erin D; Fierro, Leslie A; Reed, Jenica Huddleston; Greene, Michael; Williams, Warren W; Evanson, Heather V; Cox, Regina; Koeppl, Patrick; Gerlach, Ken

    2016-11-11

    Accurately recording vaccine lot number, expiration date, and product identifiers, in patient records is an important step in improving supply chain management and patient safety in the event of a recall. These data are being encoded on two-dimensional (2D) barcodes on most vaccine vials and syringes. Using electronic vaccine administration records, we evaluated the accuracy of lot number and expiration date entered using 2D barcode scanning compared to traditional manual or drop-down list entry methods. We analyzed 128,573 electronic records of vaccines administered at 32 facilities. We compared the accuracy of records entered using 2D barcode scanning with those entered using traditional methods using chi-square tests and multilevel logistic regression. When 2D barcodes were scanned, lot number data accuracy was 1.8 percentage points higher (94.3-96.1%, P<0.001) and expiration date data accuracy was 11 percentage points higher (84.8-95.8%, P<0.001) compared with traditional methods. In multivariate analysis, lot number was more likely to be accurate (aOR=1.75; 99% CI, 1.57-1.96) as was expiration date (aOR=2.39; 99% CI, 2.12-2.68). When controlling for scanning and other factors, manufacturer, month vaccine was administered, and vaccine type were associated with variation in accuracy for both lot number and expiration date. Two-dimensional barcode scanning shows promise for improving data accuracy of vaccine lot number and expiration date records. Adapting systems to further integrate with 2D barcoding could help increase adoption of 2D barcode scanning technology. Published by Elsevier Ltd.

  19. a New Approach for Accuracy Improvement of Pulsed LIDAR Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Huang, W.; Zhou, X.; He, C.; Li, X.; Huang, Y.; Zhang, L.

    2018-05-01

    In remote sensing applications, the accuracy of time interval measurement is one of the most important parameters that affect the quality of pulsed lidar data. The traditional time interval measurement technique has the disadvantages of low measurement accuracy, complicated circuit structure and large error. A high-precision time interval data cannot be obtained in these traditional methods. In order to obtain higher quality of remote sensing cloud images based on the time interval measurement, a higher accuracy time interval measurement method is proposed. The method is based on charging the capacitance and sampling the change of capacitor voltage at the same time. Firstly, the approximate model of the capacitance voltage curve in the time of flight of pulse is fitted based on the sampled data. Then, the whole charging time is obtained with the fitting function. In this method, only a high-speed A/D sampler and capacitor are required in a single receiving channel, and the collected data is processed directly in the main control unit. The experimental results show that the proposed method can get error less than 3 ps. Compared with other methods, the proposed method improves the time interval accuracy by at least 20 %.

  20. Accuracy assessment of fluoroscopy-transesophageal echocardiography registration

    NASA Astrophysics Data System (ADS)

    Lang, Pencilla; Seslija, Petar; Bainbridge, Daniel; Guiraudon, Gerard M.; Jones, Doug L.; Chu, Michael W.; Holdsworth, David W.; Peters, Terry M.

    2011-03-01

    This study assesses the accuracy of a new transesophageal (TEE) ultrasound (US) fluoroscopy registration technique designed to guide percutaneous aortic valve replacement. In this minimally invasive procedure, a valve is inserted into the aortic annulus via a catheter. Navigation and positioning of the valve is guided primarily by intra-operative fluoroscopy. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to heart valve embolization, obstruction of the coronary ostia and acute kidney injury. The use of TEE US images to augment intra-operative fluoroscopy provides significant improvements to image-guidance. Registration is achieved using an image-based TEE probe tracking technique and US calibration. TEE probe tracking is accomplished using a single-perspective pose estimation algorithm. Pose estimation from a single image allows registration to be achieved using only images collected in standard OR workflow. Accuracy of this registration technique is assessed using three models: a point target phantom, a cadaveric porcine heart with implanted fiducials, and in-vivo porcine images. Results demonstrate that registration can be achieved with an RMS error of less than 1.5mm, which is within the clinical accuracy requirements of 5mm. US-fluoroscopy registration based on single-perspective pose estimation demonstrates promise as a method for providing guidance to percutaneous aortic valve replacement procedures. Future work will focus on real-time implementation and a visualization system that can be used in the operating room.

  1. Improved Accuracy of the Inherent Shrinkage Method for Fast and More Reliable Welding Distortion Calculations

    NASA Astrophysics Data System (ADS)

    Mendizabal, A.; González-Díaz, J. B.; San Sebastián, M.; Echeverría, A.

    2016-07-01

    This paper describes the implementation of a simple strategy adopted for the inherent shrinkage method (ISM) to predict welding-induced distortion. This strategy not only makes it possible for the ISM to reach accuracy levels similar to the detailed transient analysis method (considered the most reliable technique for calculating welding distortion) but also significantly reduces the time required for these types of calculations. This strategy is based on the sequential activation of welding blocks to account for welding direction and transient movement of the heat source. As a result, a significant improvement in distortion prediction is achieved. This is demonstrated by experimentally measuring and numerically analyzing distortions in two case studies: a vane segment subassembly of an aero-engine, represented with 3D-solid elements, and a car body component, represented with 3D-shell elements. The proposed strategy proves to be a good alternative for quickly estimating the correct behaviors of large welded components and may have important practical applications in the manufacturing industry.

  2. High-accuracy user identification using EEG biometrics.

    PubMed

    Koike-Akino, Toshiaki; Mahajan, Ruhi; Marks, Tim K; Ye Wang; Watanabe, Shinji; Tuzel, Oncel; Orlik, Philip

    2016-08-01

    We analyze brain waves acquired through a consumer-grade EEG device to investigate its capabilities for user identification and authentication. First, we show the statistical significance of the P300 component in event-related potential (ERP) data from 14-channel EEGs across 25 subjects. We then apply a variety of machine learning techniques, comparing the user identification performance of various different combinations of a dimensionality reduction technique followed by a classification algorithm. Experimental results show that an identification accuracy of 72% can be achieved using only a single 800 ms ERP epoch. In addition, we demonstrate that the user identification accuracy can be significantly improved to more than 96.7% by joint classification of multiple epochs.

  3. Geometrical accuracy improvement in flexible roll forming lines

    NASA Astrophysics Data System (ADS)

    Larrañaga, J.; Berner, S.; Galdos, L.; Groche, P.

    2011-01-01

    The general interest to produce profiles with variable cross section in a cost-effective way has increased in the last few years. The flexible roll forming process allows producing profiles with variable cross section lengthwise in a continuous way. Until now, only a few flexible roll forming lines were developed and built up. Apart from the flange wrinkling along the transition zone of u-profiles with variable cross section, the process limits have not been investigated and solutions for shape deviations are unknown. During the PROFOM project a flexible roll forming machine has been developed with the objective of producing high technological components for automotive body structures. In order to investigate the limits of the process, different profile geometries and steel grades including high strength steels have been applied. During the first experimental tests, several errors have been identified, as a result of the complex stress states generated during the forming process. In order to improve the accuracy of the target profiles and to meet the tolerance demands of the automotive industry, a thermo-mechanical solution has been proposed. Additional mechanical devices, supporting flexible the roll forming process, have been implemented in the roll forming line together with local heating techniques. The combination of both methods shows a significant increase of the accuracy. In the present investigation, the experimental results of the validation process are presented.

  4. Accuracy requirements and uncertainties in radiotherapy: a report of the International Atomic Energy Agency.

    PubMed

    van der Merwe, Debbie; Van Dyk, Jacob; Healy, Brendan; Zubizarreta, Eduardo; Izewska, Joanna; Mijnheer, Ben; Meghzifene, Ahmed

    2017-01-01

    Radiotherapy technology continues to advance and the expectation of improved outcomes requires greater accuracy in various radiotherapy steps. Different factors affect the overall accuracy of dose delivery. Institutional comprehensive quality assurance (QA) programs should ensure that uncertainties are maintained at acceptable levels. The International Atomic Energy Agency has recently developed a report summarizing the accuracy achievable and the suggested action levels, for each step in the radiotherapy process. Overview of the report: The report seeks to promote awareness and encourage quantification of uncertainties in order to promote safer and more effective patient treatments. The radiotherapy process and the radiobiological and clinical frameworks that define the need for accuracy are depicted. Factors that influence uncertainty are described for a range of techniques, technologies and systems. Methodologies for determining and combining uncertainties are presented, and strategies for reducing uncertainties through QA programs are suggested. The role of quality audits in providing international benchmarking of achievable accuracy and realistic action levels is also discussed. The report concludes with nine general recommendations: (1) Radiotherapy should be applied as accurately as reasonably achievable, technical and biological factors being taken into account. (2) For consistency in prescribing, reporting and recording, recommendations of the International Commission on Radiation Units and Measurements should be implemented. (3) Each institution should determine uncertainties for their treatment procedures. Sample data are tabulated for typical clinical scenarios with estimates of the levels of accuracy that are practically achievable and suggested action levels. (4) Independent dosimetry audits should be performed regularly. (5) Comprehensive quality assurance programs should be in place. (6) Professional staff should be appropriately

  5. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    NASA Astrophysics Data System (ADS)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  6. Experimental studies of high-accuracy RFID localization with channel impairments

    NASA Astrophysics Data System (ADS)

    Pauls, Eric; Zhang, Yimin D.

    2015-05-01

    Radio frequency identification (RFID) systems present an incredibly cost-effective and easy-to-implement solution to close-range localization. One of the important applications of a passive RFID system is to determine the reader position through multilateration based on the estimated distances between the reader and multiple distributed reference tags obtained from, e.g., the received signal strength indicator (RSSI) readings. In practice, the achievable accuracy of passive RFID reader localization suffers from many factors, such as the distorted RSSI reading due to channel impairments in terms of the susceptibility to reader antenna patterns and multipath propagation. Previous studies have shown that the accuracy of passive RFID localization can be significantly improved by properly modeling and compensating for such channel impairments. The objective of this paper is to report experimental study results that validate the effectiveness of such approaches for high-accuracy RFID localization. We also examine a number of practical issues arising in the underlying problem that limit the accuracy of reader-tag distance measurements and, therefore, the estimated reader localization. These issues include the variations in tag radiation characteristics for similar tags, effects of tag orientations, and reader RSS quantization and measurement errors. As such, this paper reveals valuable insights of the issues and solutions toward achieving high-accuracy passive RFID localization.

  7. Kinematic Visual Biofeedback Improves Accuracy of Learning a Swallowing Maneuver and Accuracy of Clinician Cues During Training.

    PubMed

    Azola, Alba M; Sunday, Kirstyn L; Humbert, Ianessa A

    2017-02-01

    Submental surface electromyography (ssEMG) visual biofeedback is widely used to train swallowing maneuvers. This study compares the effect of ssEMG and videofluoroscopy (VF) visual biofeedback on hyo-laryngeal accuracy when training a swallowing maneuver. Furthermore, it examines the clinician's ability to provide accurate verbal cues during swallowing maneuver training. Thirty healthy adults performed the volitional laryngeal vestibule closure maneuver (vLVC), which involves swallowing and sustaining closure of the laryngeal vestibule for 2 s. The study included two stages: (1) first accurate demonstration of the vLVC maneuver, followed by (2) training-20 vLVC training swallows. Participants were randomized into three groups: (a) ssEMG biofeedback only, (b) VF biofeedback only, and (c) mixed biofeedback (VF for the first accurate demonstration achieving stage and ssEMG for the training stage). Participants' performances were verbally critiqued or reinforced in real time while both the clinician and participant were observing the assigned visual biofeedback. VF and ssEMG were continuously recorded for all participants. Results show that accuracy of both vLVC performance and clinician cues was greater with VF biofeedback than with either ssEMG or mixed biofeedback (p < 0.001). Using ssEMG for providing real-time biofeedback during training could lead to errors while learning and training a swallowing maneuver.

  8. Cadastral Positioning Accuracy Improvement: a Case Study in Malaysia

    NASA Astrophysics Data System (ADS)

    Hashim, N. M.; Omar, A. H.; Omar, K. M.; Abdullah, N. M.; Yatim, M. H. M.

    2016-09-01

    Cadastral map is a parcel-based information which is specifically designed to define the limitation of boundaries. In Malaysia, the cadastral map is under authority of the Department of Surveying and Mapping Malaysia (DSMM). With the growth of spatial based technology especially Geographical Information System (GIS), DSMM decided to modernize and reform its cadastral legacy datasets by generating an accurate digital based representation of cadastral parcels. These legacy databases usually are derived from paper parcel maps known as certified plan. The cadastral modernization will result in the new cadastral database no longer being based on single and static parcel paper maps, but on a global digital map. Despite the strict process of the cadastral modernization, this reform has raised unexpected queries that remain essential to be addressed. The main focus of this study is to review the issues that have been generated by this transition. The transformed cadastral database should be additionally treated to minimize inherent errors and to fit them to the new satellite based coordinate system with high positional accuracy. This review result will be applied as a foundation for investigation to study the systematic and effectiveness method for Positional Accuracy Improvement (PAI) in cadastral database modernization.

  9. An analytically linearized helicopter model with improved modeling accuracy

    NASA Technical Reports Server (NTRS)

    Jensen, Patrick T.; Curtiss, H. C., Jr.; Mckillip, Robert M., Jr.

    1991-01-01

    An analytically linearized model for helicopter flight response including rotor blade dynamics and dynamic inflow, that was recently developed, was studied with the objective of increasing the understanding, the ease of use, and the accuracy of the model. The mathematical model is described along with a description of the UH-60A Black Hawk helicopter and flight test used to validate the model. To aid in utilization of the model for sensitivity analysis, a new, faster, and more efficient implementation of the model was developed. It is shown that several errors in the mathematical modeling of the system caused a reduction in accuracy. These errors in rotor force resolution, trim force and moment calculation, and rotor inertia terms were corrected along with improvements to the programming style and documentation. Use of a trim input file to drive the model is examined. Trim file errors in blade twist, control input phase angle, coning and lag angles, main and tail rotor pitch, and uniform induced velocity, were corrected. Finally, through direct comparison of the original and corrected model responses to flight test data, the effect of the corrections on overall model output is shown.

  10. Improving the spectral measurement accuracy based on temperature distribution and spectra-temperature relationship

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Feng, Jinchao; Liu, Pengyu; Sun, Zhonghua; Li, Gang; Jia, Kebin

    2018-05-01

    Temperature is usually considered as a fluctuation in near-infrared spectral measurement. Chemometric methods were extensively studied to correct the effect of temperature variations. However, temperature can be considered as a constructive parameter that provides detailed chemical information when systematically changed during the measurement. Our group has researched the relationship between temperature-induced spectral variation (TSVC) and normalized squared temperature. In this study, we focused on the influence of temperature distribution in calibration set. Multi-temperature calibration set selection (MTCS) method was proposed to improve the prediction accuracy by considering the temperature distribution of calibration samples. Furthermore, double-temperature calibration set selection (DTCS) method was proposed based on MTCS method and the relationship between TSVC and normalized squared temperature. We compare the prediction performance of PLS models based on random sampling method and proposed methods. The results from experimental studies showed that the prediction performance was improved by using proposed methods. Therefore, MTCS method and DTCS method will be the alternative methods to improve prediction accuracy in near-infrared spectral measurement.

  11. 13 Years of TOPEX/POSEIDON Precision Orbit Determination and the 10-fold Improvement in Expected Orbit Accuracy

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Zelensky, N. P.; Luthcke, S. B.; Rowlands, D. D.; Beckley, B. D.; Klosko, S. M.

    2006-01-01

    Launched in the summer of 1992, TOPEX/POSEIDON (T/P) was a joint mission between NASA and the Centre National d Etudes Spatiales (CNES), the French Space Agency, to make precise radar altimeter measurements of the ocean surface. After the remarkably successful 13-years of mapping the ocean surface T/P lost its ability to maneuver and was de-commissioned January 2006. T/P revolutionized the study of the Earth s oceans by vastly exceeding pre-launch estimates of surface height accuracy recoverable from radar altimeter measurements. The precision orbit lies at the heart of the altimeter measurement providing the reference frame from which the radar altimeter measurements are made. The expected quality of orbit knowledge had limited the measurement accuracy expectations of past altimeter missions, and still remains a major component in the error budget of all altimeter missions. This paper describes critical improvements made to the T/P orbit time series over the 13-years of precise orbit determination (POD) provided by the GSFC Space Geodesy Laboratory. The POD improvements from the pre-launch T/P expectation of radial orbit accuracy and Mission requirement of 13-cm to an expected accuracy of about 1.5-cm with today s latest orbits will be discussed. The latest orbits with 1.5 cm RMS radial accuracy represent a significant improvement to the 2.0-cm accuracy orbits currently available on the T/P Geophysical Data Record (GDR) altimeter product.

  12. Improvements in Interval Time Tracking and Effects on Reading Achievement

    ERIC Educational Resources Information Center

    Taub, Gordon E.; McGrew, Kevin S.; Keith, Timothy Z.

    2007-01-01

    This study examined the effect of improvements in timing/rhythmicity on students' reading achievement. 86 participants completed pre- and post-test measures of reading achievement (i.e., Woodcock-Johnson III, Comprehensive Test of Phonological Processing, Test of Word Reading Efficiency, and Test of Silent Word Reading Fluency). Students in the…

  13. MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence.

    PubMed

    Liu, Ke; Peng, Shengwen; Wu, Junqiu; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2015-06-15

    Medical Subject Headings (MeSHs) are used by National Library of Medicine (NLM) to index almost all citations in MEDLINE, which greatly facilitates the applications of biomedical information retrieval and text mining. To reduce the time and financial cost of manual annotation, NLM has developed a software package, Medical Text Indexer (MTI), for assisting MeSH annotation, which uses k-nearest neighbors (KNN), pattern matching and indexing rules. Other types of information, such as prediction by MeSH classifiers (trained separately), can also be used for automatic MeSH annotation. However, existing methods cannot effectively integrate multiple evidence for MeSH annotation. We propose a novel framework, MeSHLabeler, to integrate multiple evidence for accurate MeSH annotation by using 'learning to rank'. Evidence includes numerous predictions from MeSH classifiers, KNN, pattern matching, MTI and the correlation between different MeSH terms, etc. Each MeSH classifier is trained independently, and thus prediction scores from different classifiers are incomparable. To address this issue, we have developed an effective score normalization procedure to improve the prediction accuracy. MeSHLabeler won the first place in Task 2A of 2014 BioASQ challenge, achieving the Micro F-measure of 0.6248 for 9,040 citations provided by the BioASQ challenge. Note that this accuracy is around 9.15% higher than 0.5724, obtained by MTI. The software is available upon request. © The Author 2015. Published by Oxford University Press.

  14. MeSHLabeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence

    PubMed Central

    Liu, Ke; Peng, Shengwen; Wu, Junqiu; Zhai, Chengxiang; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2015-01-01

    Motivation: Medical Subject Headings (MeSHs) are used by National Library of Medicine (NLM) to index almost all citations in MEDLINE, which greatly facilitates the applications of biomedical information retrieval and text mining. To reduce the time and financial cost of manual annotation, NLM has developed a software package, Medical Text Indexer (MTI), for assisting MeSH annotation, which uses k-nearest neighbors (KNN), pattern matching and indexing rules. Other types of information, such as prediction by MeSH classifiers (trained separately), can also be used for automatic MeSH annotation. However, existing methods cannot effectively integrate multiple evidence for MeSH annotation. Methods: We propose a novel framework, MeSHLabeler, to integrate multiple evidence for accurate MeSH annotation by using ‘learning to rank’. Evidence includes numerous predictions from MeSH classifiers, KNN, pattern matching, MTI and the correlation between different MeSH terms, etc. Each MeSH classifier is trained independently, and thus prediction scores from different classifiers are incomparable. To address this issue, we have developed an effective score normalization procedure to improve the prediction accuracy. Results: MeSHLabeler won the first place in Task 2A of 2014 BioASQ challenge, achieving the Micro F-measure of 0.6248 for 9,040 citations provided by the BioASQ challenge. Note that this accuracy is around 9.15% higher than 0.5724, obtained by MTI. Availability and implementation: The software is available upon request. Contact: zhusf@fudan.edu.cn PMID:26072501

  15. Effects of using the developing nurses' thinking model on nursing students' diagnostic accuracy.

    PubMed

    Tesoro, Mary Gay

    2012-08-01

    This quasi-experimental study tested the effectiveness of an educational model, Developing Nurses' Thinking (DNT), on nursing students' clinical reasoning to achieve patient safety. Teaching nursing students to develop effective thinking habits that promote positive patient outcomes and patient safety is a challenging endeavor. Positive patient outcomes and safety are achieved when nurses accurately interpret data and subsequently implement appropriate plans of care. This study's pretest-posttest design determined whether use of the DNT model during 2 weeks of clinical postconferences improved nursing students' (N = 83) diagnostic accuracy. The DNT model helps students to integrate four constructs-patient safety, domain knowledge, critical thinking processes, and repeated practice-to guide their thinking when interpreting patient data and developing effective plans of care. The posttest scores of students from the intervention group showed statistically significant improvement in accuracy. Copyright 2012, SLACK Incorporated.

  16. Two high accuracy digital integrators for Rogowski current transducers.

    PubMed

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.

  17. Two high accuracy digital integrators for Rogowski current transducers

    NASA Astrophysics Data System (ADS)

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.

  18. Use of collateral information to improve LANDSAT classification accuracies

    NASA Technical Reports Server (NTRS)

    Strahler, A. H. (Principal Investigator)

    1981-01-01

    Methods to improve LANDSAT classification accuracies were investigated including: (1) the use of prior probabilities in maximum likelihood classification as a methodology to integrate discrete collateral data with continuously measured image density variables; (2) the use of the logit classifier as an alternative to multivariate normal classification that permits mixing both continuous and categorical variables in a single model and fits empirical distributions of observations more closely than the multivariate normal density function; and (3) the use of collateral data in a geographic information system as exercised to model a desired output information layer as a function of input layers of raster format collateral and image data base layers.

  19. Improving decision speed, accuracy and group cohesion through early information gathering in house-hunting ants.

    PubMed

    Stroeymeyt, Nathalie; Giurfa, Martin; Franks, Nigel R

    2010-09-29

    Successful collective decision-making depends on groups of animals being able to make accurate choices while maintaining group cohesion. However, increasing accuracy and/or cohesion usually decreases decision speed and vice-versa. Such trade-offs are widespread in animal decision-making and result in various decision-making strategies that emphasize either speed or accuracy, depending on the context. Speed-accuracy trade-offs have been the object of many theoretical investigations, but these studies did not consider the possible effects of previous experience and/or knowledge of individuals on such trade-offs. In this study, we investigated how previous knowledge of their environment may affect emigration speed, nest choice and colony cohesion in emigrations of the house-hunting ant Temnothorax albipennis, a collective decision-making process subject to a classical speed-accuracy trade-off. Colonies allowed to explore a high quality nest site for one week before they were forced to emigrate found that nest and accepted it faster than emigrating naïve colonies. This resulted in increased speed in single choice emigrations and higher colony cohesion in binary choice emigrations. Additionally, colonies allowed to explore both high and low quality nest sites for one week prior to emigration remained more cohesive, made more accurate decisions and emigrated faster than emigrating naïve colonies. These results show that colonies gather and store information about available nest sites while their nest is still intact, and later retrieve and use this information when they need to emigrate. This improves colony performance. Early gathering of information for later use is therefore an effective strategy allowing T. albipennis colonies to improve simultaneously all aspects of the decision-making process--i.e. speed, accuracy and cohesion--and partly circumvent the speed-accuracy trade-off classically observed during emigrations. These findings should be taken into account

  20. Case studies on forecasting for innovative technologies: frequent revisions improve accuracy.

    PubMed

    Lerner, Jeffrey C; Robertson, Diane C; Goldstein, Sara M

    2015-02-01

    Health technology forecasting is designed to provide reliable predictions about costs, utilization, diffusion, and other market realities before the technologies enter routine clinical use. In this article we address three questions central to forecasting's usefulness: Are early forecasts sufficiently accurate to help providers acquire the most promising technology and payers to set effective coverage policies? What variables contribute to inaccurate forecasts? How can forecasters manage the variables to improve accuracy? We analyzed forecasts published between 2007 and 2010 by the ECRI Institute on four technologies: single-room proton beam radiation therapy for various cancers; digital breast tomosynthesis imaging technology for breast cancer screening; transcatheter aortic valve replacement for serious heart valve disease; and minimally invasive robot-assisted surgery for various cancers. We then examined revised ECRI forecasts published in 2013 (digital breast tomosynthesis) and 2014 (the other three topics) to identify inaccuracies in the earlier forecasts and explore why they occurred. We found that five of twenty early predictions were inaccurate when compared with the updated forecasts. The inaccuracies pertained to two technologies that had more time-sensitive variables to consider. The case studies suggest that frequent revision of forecasts could improve accuracy, especially for complex technologies whose eventual use is governed by multiple interactive factors. Project HOPE—The People-to-People Health Foundation, Inc.

  1. Hybrid Brain-Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review.

    PubMed

    Hong, Keum-Shik; Khan, Muhammad Jawad

    2017-01-01

    In this article, non-invasive hybrid brain-computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain-computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.

  2. Hybrid Brain–Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review

    PubMed Central

    Hong, Keum-Shik; Khan, Muhammad Jawad

    2017-01-01

    In this article, non-invasive hybrid brain–computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain–computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided. PMID:28790910

  3. Can use of an administrative database improve accuracy of hospital-reported readmission rates?

    PubMed

    Edgerton, James R; Herbert, Morley A; Hamman, Baron L; Ring, W Steves

    2018-05-01

    Readmission rates after cardiac surgery are being used as a quality indicator; they are also being collected by Medicare and are tied to reimbursement. Accurate knowledge of readmission rates may be difficult to achieve because patients may be readmitted to different hospitals. In our area, 81 hospitals share administrative claims data; 28 of these hospitals (from 5 different hospital systems) do cardiac surgery and share Society of Thoracic Surgeons (STS) clinical data. We used these 2 sources to compare the readmissions data for accuracy. A total of 45,539 STS records from January 2008 to December 2016 were matched with the hospital billing data records. Using the index visit as the start date, the billing records were queried for any subsequent in-patient visits for that patient. The billing records included date of readmission and hospital of readmission data and were compared with the data captured in the STS record. We found 1153 (2.5%) patients who had STS records that were marked "No" or "missing," but there were billing records that showed a readmission. The reported STS readmission rate of 4796 (10.5%) underreported the readmission rate by 2.5 actual percentage points. The true rate should have been 13.0%. Actual readmission rate was 23.8% higher than reported by the clinical database. Approximately 36% of readmissions were to a hospital that was a part of a different hospital system. It is important to know accurate readmission rates for quality improvement processes and institutional financial planning. Matching patient records to an administrative database showed that the clinical database may fail to capture many readmissions. Combining data with an administrative database can enhance accuracy of reporting. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  4. Improving the accuracy of effect-directed analysis: the role of bioavailability.

    PubMed

    You, Jing; Li, Huizhen

    2017-12-13

    Aquatic ecosystems have been suffering from contamination by multiple stressors. Traditional chemical-based risk assessment usually fails to explain the toxicity contributions from contaminants that are not regularly monitored or that have an unknown identity. Diagnosing the causes of noted adverse outcomes in the environment is of great importance in ecological risk assessment and in this regard effect-directed analysis (EDA) has been designed to fulfill this purpose. The EDA approach is now increasingly used in aquatic risk assessment owing to its specialty in achieving effect-directed nontarget analysis; however, a lack of environmental relevance makes conventional EDA less favorable. In particular, ignoring the bioavailability in EDA may cause a biased and even erroneous identification of causative toxicants in a mixture. Taking bioavailability into consideration is therefore of great importance to improve the accuracy of EDA diagnosis. The present article reviews the current status and applications of EDA practices that incorporate bioavailability. The use of biological samples is the most obvious way to include bioavailability into EDA applications, but its development is limited due to the small sample size and lack of evidence for metabolizable compounds. Bioavailability/bioaccessibility-based extraction (bioaccessibility-directed and partitioning-based extraction) and passive-dosing techniques are recommended to be used to integrate bioavailability into EDA diagnosis in abiotic samples. Lastly, the future perspectives of expanding and standardizing the use of biological samples and bioavailability-based techniques in EDA are discussed.

  5. Method to improve accuracy of positioning object by eLoran system with applying standard Kalman filter

    NASA Astrophysics Data System (ADS)

    Grunin, A. P.; Kalinov, G. A.; Bolokhovtsev, A. V.; Sai, S. V.

    2018-05-01

    This article reports on a novel method to improve the accuracy of positioning an object by a low frequency hyperbolic radio navigation system like an eLoran. This method is based on the application of the standard Kalman filter. Investigations of an affection of the filter parameters and the type of the movement on accuracy of the vehicle position estimation are carried out. Evaluation of the method accuracy was investigated by separating data from the semi-empirical movement model to different types of movements.

  6. Accuracy improvement in the TDR-based localization of water leaks

    NASA Astrophysics Data System (ADS)

    Cataldo, Andrea; De Benedetto, Egidio; Cannazza, Giuseppe; Monti, Giuseppina; Demitri, Christian

    A time domain reflectometry (TDR)-based system for the localization of water leaks has been recently developed by the authors. This system, which employs wire-like sensing elements to be installed along the underground pipes, has proven immune to the limitations that affect the traditional, acoustic leak-detection systems. Starting from the positive results obtained thus far, in this work, an improvement of this TDR-based system is proposed. More specifically, the possibility of employing a low-cost, water-absorbing sponge to be placed around the sensing element for enhancing the accuracy in the localization of the leak is addressed. To this purpose, laboratory experiments were carried out mimicking a water leakage condition, and two sensing elements (one embedded in a sponge and one without sponge) were comparatively used to identify the position of the leak through TDR measurements. Results showed that, thanks to the water retention capability of the sponge (which maintains the leaked water more localized), the sensing element embedded in the sponge leads to a higher accuracy in the evaluation of the position of the leak.

  7. Accuracy Feedback Improves Word Learning from Context: Evidence from a Meaning-Generation Task

    ERIC Educational Resources Information Center

    Frishkoff, Gwen A.; Collins-Thompson, Kevyn; Hodges, Leslie; Crossley, Scott

    2016-01-01

    The present study asked whether accuracy feedback on a meaning generation task would lead to improved contextual word learning (CWL). Active generation can facilitate learning by increasing task engagement and memory retrieval, which strengthens new word representations. However, forced generation results in increased errors, which can be…

  8. Alaska Case Study: Scientists Venturing Into Field with Journalists Improves Accuracy

    NASA Astrophysics Data System (ADS)

    Ekwurzel, B.; Detjen, J.; Hayes, R.; Nurnberger, L.; Pavangadkar, A.; Poulson, D.

    2008-12-01

    Issues such as climate change, stem cell research, public health vaccination, etc., can be fraught with public misunderstanding, myths, as well as deliberate distortions of the fundamental science. Journalists are adept at creating print, radio, and video content that can be both compelling and informative to the public. Yet most scientists have little time or training to devote to developing media content for the public and spend little time with journalists who cover science stories. We conducted a case study to examine whether the time and funding invested in exposing journalists to scientists in the field over several days would improve accuracy of media stories about complex scientific topics. Twelve journalists were selected from the 70 who applied for a four-day environmental journalism fellowship in Alaska. The final group achieved the goal of a broad geographic spectrum of the media outlets (small regional to large national organizations), medium (print, radio, online), and experience (early career to senior producers). Reporters met with a diverse group of scientists. The lessons learned and successful techniques will be presented. Initial results demonstrate that stories were highly accurate and rich with audio or visual content for lay audiences. The journalists have also maintained contact with the scientists, asking for leads on emerging stories and seeking new experts that can assist in their reporting. Science-based institutions should devote more funding to foster direct journalist-scientist interactions in the lab and field. These positive goals can be achieved: (1) more accurate dissemination of science information to the public; (2) a broader portion of the scientific community will become a resource to journalists instead of the same eloquent few in the community; (3) scientists will appreciate the skill and pressures of those who survive the media downsizing and provide media savvy content; and (4) the public may incorporate science evidence

  9. Achieving sub-pixel geolocation accuracy in support of MODIS land science

    USGS Publications Warehouse

    Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, David P.; Storey, James C.; Patt, F.S.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was launched in December 1999 on the polar orbiting Terra spacecraft and since February 2000 has been acquiring daily global data in 36 spectral bands—29 with 1 km, five with 500 m, and two with 250 m nadir pixel dimensions. The Terra satellite has on-board exterior orientation (position and attitude) measurement systems designed to enable geolocation of MODIS data to approximately 150 m (1σ) at nadir. A global network of ground control points is being used to determine biases and trends in the sensor orientation. Biases have been removed by updating models of the spacecraft and instrument orientation in the MODIS geolocation software several times since launch and have improved the MODIS geolocation to approximately 50 m (1σ) at nadir. This paper overviews the geolocation approach, summarizes the first year of geolocation analysis, and overviews future work. The approach allows an operational characterization of the MODIS geolocation errors and enables individual MODIS observations to be geolocated to the sub-pixel accuracies required for terrestrial global change applications.

  10. Improved accuracy and precision of tracer kinetic parameters by joint fitting to variable flip angle and dynamic contrast enhanced MRI data.

    PubMed

    Dickie, Ben R; Banerji, Anita; Kershaw, Lucy E; McPartlin, Andrew; Choudhury, Ananya; West, Catharine M; Rose, Chris J

    2016-10-01

    To improve the accuracy and precision of tracer kinetic model parameter estimates for use in dynamic contrast enhanced (DCE) MRI studies of solid tumors. Quantitative DCE-MRI requires an estimate of precontrast T1 , which is obtained prior to fitting a tracer kinetic model. As T1 mapping and tracer kinetic signal models are both a function of precontrast T1 it was hypothesized that its joint estimation would improve the accuracy and precision of both precontrast T1 and tracer kinetic model parameters. Accuracy and/or precision of two-compartment exchange model (2CXM) parameters were evaluated for standard and joint fitting methods in well-controlled synthetic data and for 36 bladder cancer patients. Methods were compared under a number of experimental conditions. In synthetic data, joint estimation led to statistically significant improvements in the accuracy of estimated parameters in 30 of 42 conditions (improvements between 1.8% and 49%). Reduced accuracy was observed in 7 of the remaining 12 conditions. Significant improvements in precision were observed in 35 of 42 conditions (between 4.7% and 50%). In clinical data, significant improvements in precision were observed in 18 of 21 conditions (between 4.6% and 38%). Accuracy and precision of DCE-MRI parameter estimates are improved when signal models are fit jointly rather than sequentially. Magn Reson Med 76:1270-1281, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. An Innovative Approach to Improving the Accuracy of Delirium Assessments Using the Confusion Assessment Method for the Intensive Care Unit.

    PubMed

    DiLibero, Justin; O'Donoghue, Sharon C; DeSanto-Madeya, Susan; Felix, Janice; Ninobla, Annalyn; Woods, Allison

    2016-01-01

    Delirium occurs in up to 80% of intensive care unit (ICU) patients. Despite its prevalence in this population, there continues to be inaccuracies in delirium assessments. In the absence of accurate delirium assessments, delirium in critically ill ICU patients will remain unrecognized and will lead to negative clinical and organizational outcomes. The goal of this quality improvement project was to facilitate sustained improvement in the accuracy of delirium assessments among all ICU patients including those who were sedate or agitated. A pretest-posttest design was used to evaluate the effectiveness of a program to improve the accuracy of delirium screenings among patients admitted to a medical ICU or coronary care unit. Two hundred thirty-six delirium assessment audits were completed during the baseline period and 535 during the postintervention period. Compliance with performing at least 1 delirium assessment every shift was 85% at baseline and improved to 99% during the postintervention period. Baseline assessment accuracy was 70.31% among all patients and 53.49% among sedate and agitated patients. Postintervention assessment accuracy improved to 95.51% for all patients and 89.23% among sedate and agitated patients. The results from this project suggest the effectiveness of the program in improving assessment accuracy among difficult-to-assess patients. Further research is needed to demonstrate the effectiveness of this model across other critical care units, patient populations, and organizations.

  12. An optical lattice clock with accuracy and stability at the 10(-18) level.

    PubMed

    Bloom, B J; Nicholson, T L; Williams, J R; Campbell, S L; Bishof, M; Zhang, X; Zhang, W; Bromley, S L; Ye, J

    2014-02-06

    Progress in atomic, optical and quantum science has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks, their accuracy has remained 16 times worse. Here we demonstrate a many-atom system that achieves an accuracy of 6.4 × 10(-18), which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard-stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units, the search for time variation of fundamental constants, clock-based geodesy and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering (such as spin squeezing) to advance measurement precision beyond the standard quantum limit.

  13. TotalReCaller: improved accuracy and performance via integrated alignment and base-calling.

    PubMed

    Menges, Fabian; Narzisi, Giuseppe; Mishra, Bud

    2011-09-01

    Currently, re-sequencing approaches use multiple modules serially to interpret raw sequencing data from next-generation sequencing platforms, while remaining oblivious to the genomic information until the final alignment step. Such approaches fail to exploit the full information from both raw sequencing data and the reference genome that can yield better quality sequence reads, SNP-calls, variant detection, as well as an alignment at the best possible location in the reference genome. Thus, there is a need for novel reference-guided bioinformatics algorithms for interpreting analog signals representing sequences of the bases ({A, C, G, T}), while simultaneously aligning possible sequence reads to a source reference genome whenever available. Here, we propose a new base-calling algorithm, TotalReCaller, to achieve improved performance. A linear error model for the raw intensity data and Burrows-Wheeler transform (BWT) based alignment are combined utilizing a Bayesian score function, which is then globally optimized over all possible genomic locations using an efficient branch-and-bound approach. The algorithm has been implemented in soft- and hardware [field-programmable gate array (FPGA)] to achieve real-time performance. Empirical results on real high-throughput Illumina data were used to evaluate TotalReCaller's performance relative to its peers-Bustard, BayesCall, Ibis and Rolexa-based on several criteria, particularly those important in clinical and scientific applications. Namely, it was evaluated for (i) its base-calling speed and throughput, (ii) its read accuracy and (iii) its specificity and sensitivity in variant calling. A software implementation of TotalReCaller as well as additional information, is available at: http://bioinformatics.nyu.edu/wordpress/projects/totalrecaller/ fabian.menges@nyu.edu.

  14. Improvement of SLR accuracy, a possible new step

    NASA Technical Reports Server (NTRS)

    Kasser, Michel

    1993-01-01

    The satellite laser ranging (SLR) technology experienced a large number of technical improvements since the early 1970's, leading now to a millimetric instrumental accuracy. Presently, it appears as useless to increase these instrumental performances as long as the atmospheric propagation delay suffers its actual imprecision. It has been proposed for many years to work in multiwavelength mode, but up to now the considerable technological difficulties of subpicosecond timing have seriously delayed such an approach. Then a new possibility is proposed, using a device which is not optimized now for SLR but has already given good results in the lower troposphere for wind measurement: the association of a radar and a sodar. While waiting for the 2-lambda methodology, this one could provide an atmospheric propagation delay at the millimeter level during a few years with only little technological investment.

  15. High accuracy switched-current circuits using an improved dynamic mirror

    NASA Technical Reports Server (NTRS)

    Zweigle, G.; Fiez, T.

    1991-01-01

    The switched-current technique, a recently developed circuit approach to analog signal processing, has emerged as an alternative/compliment to the well established switched-capacitor circuit technique. High speed switched-current circuits offer potential cost and power savings over slower switched-capacitor circuits. Accuracy improvements are a primary concern at this stage in the development of the switched-current technique. Use of the dynamic current mirror has produced circuits that are insensitive to transistor matching errors. The dynamic current mirror has been limited by other sources of error including clock-feedthrough and voltage transient errors. In this paper we present an improved switched-current building block using the dynamic current mirror. Utilizing current feedback the errors due to current imbalance in the dynamic current mirror are reduced. Simulations indicate that this feedback can reduce total harmonic distortion by as much as 9 dB. Additionally, we have developed a clock-feedthrough reduction scheme for which simulations reveal a potential 10 dB total harmonic distortion improvement. The clock-feedthrough reduction scheme also significantly reduces offset errors and allows for cancellation with a constant current source. Experimental results confirm the simulated improvements.

  16. IMPROVING THE ACCURACY OF HISTORIC SATELLITE IMAGE CLASSIFICATION BY COMBINING LOW-RESOLUTION MULTISPECTRAL DATA WITH HIGH-RESOLUTION PANCHROMATIC DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getman, Daniel J

    2008-01-01

    Many attempts to observe changes in terrestrial systems over time would be significantly enhanced if it were possible to improve the accuracy of classifications of low-resolution historic satellite data. In an effort to examine improving the accuracy of historic satellite image classification by combining satellite and air photo data, two experiments were undertaken in which low-resolution multispectral data and high-resolution panchromatic data were combined and then classified using the ECHO spectral-spatial image classification algorithm and the Maximum Likelihood technique. The multispectral data consisted of 6 multispectral channels (30-meter pixel resolution) from Landsat 7. These data were augmented with panchromatic datamore » (15m pixel resolution) from Landsat 7 in the first experiment, and with a mosaic of digital aerial photography (1m pixel resolution) in the second. The addition of the Landsat 7 panchromatic data provided a significant improvement in the accuracy of classifications made using the ECHO algorithm. Although the inclusion of aerial photography provided an improvement in accuracy, this improvement was only statistically significant at a 40-60% level. These results suggest that once error levels associated with combining aerial photography and multispectral satellite data are reduced, this approach has the potential to significantly enhance the precision and accuracy of classifications made using historic remotely sensed data, as a way to extend the time range of efforts to track temporal changes in terrestrial systems.« less

  17. Improving Low-Achieving Schools: Building State Capacity to Support School Improvement through Race to the Top

    ERIC Educational Resources Information Center

    Childs, Joshua; Russell, Jennifer Lin

    2017-01-01

    Improving low-achieving schools is a critical challenge facing urban education. Recent national policy shifts have pressed states to take an expanded role in school improvement efforts. In 2009, a federal grant competition called Race to the Top (RttT) compelled states to improve their capacity to implement ambitious education reform agendas.…

  18. An Action Plan for Improving Mediocre or Stagnant Student Achievement

    ERIC Educational Resources Information Center

    Redmond, Kimberley B.

    2013-01-01

    Although all of the schools in the target school system adhere to a school improvement process, achievement scores remain mediocre or stagnant within the overseas school in Italy that serves children of United States armed service members. To address this problem, this study explored the target school's improvement process to discover how…

  19. Real-Time Tropospheric Product Establishment and Accuracy Assessment in China

    NASA Astrophysics Data System (ADS)

    Chen, M.; Guo, J.; Wu, J.; Song, W.; Zhang, D.

    2018-04-01

    Tropospheric delay has always been an important issue in Global Navigation Satellite System (GNSS) processing. Empirical tropospheric delay models are difficult to simulate complex and volatile atmospheric environments, resulting in poor accuracy of the empirical model and difficulty in meeting precise positioning demand. In recent years, some scholars proposed to establish real-time tropospheric product by using real-time or near-real-time GNSS observations in a small region, and achieved some good results. This paper uses real-time observing data of 210 Chinese national GNSS reference stations to estimate the tropospheric delay, and establishes ZWD grid model in the country wide. In order to analyze the influence of tropospheric grid product on wide-area real-time PPP, this paper compares the method of taking ZWD grid product as a constraint with the model correction method. The results show that the ZWD grid product estimated based on the national reference stations can improve PPP accuracy and convergence speed. The accuracy in the north (N), east (E) and up (U) direction increase by 31.8 %,15.6 % and 38.3 %, respectively. As with the convergence speed, the accuracy of U direction experiences the most improvement.

  20. Enhancing Visual Perception and Motor Accuracy among School Children through a Mindfulness and Compassion Program

    PubMed Central

    Tarrasch, Ricardo; Margalit-Shalom, Lilach; Berger, Rony

    2017-01-01

    The present study assessed the effects of the mindfulness/compassion cultivating program: “Call to Care-Israel” on the performance in visual perception (VP) and motor accuracy, as well as on anxiety levels and self-reported mindfulness among 4th and 5th grade students. One hundred and thirty-eight children participated in the program for 24 weekly sessions, while 78 children served as controls. Repeated measures ANOVA’s yielded significant interactions between time of measurement and group for VP, motor accuracy, reported mindfulness, and anxiety. Post hoc tests revealed significant improvements in the four aforementioned measures in the experimental group only. In addition, significant correlations were obtained between the improvement in motor accuracy and the reduction in anxiety and the increase in mindfulness. Since VP and motor accuracy are basic skills associated with quantifiable academic characteristics, such as reading and mathematical abilities, the results may suggest that mindfulness practice has the ability to improve academic achievements. PMID:28286492

  1. Improved accuracy of component alignment with the implementation of image-free navigation in total knee arthroplasty.

    PubMed

    Rosenberger, Ralf E; Hoser, Christian; Quirbach, Sebastian; Attal, Rene; Hennerbichler, Alfred; Fink, Christian

    2008-03-01

    Accuracy of implant positioning and reconstruction of the mechanical leg axis are major requirements for achieving good long-term results in total knee arthroplasty (TKA). The purpose of the present study was to determine whether image-free computer navigation technology has the potential to improve the accuracy of component alignment in TKA cohorts of experienced surgeons immediately and constantly. One hundred patients with primary arthritis of the knee underwent the unilateral total knee arthroplasty. The cohort of 50 TKAs implanted with conventional instrumentation was directly followed by the cohort of the very first 50 computer-assisted TKAs. All surgeries were performed by two senior surgeons. All patients received the Zimmer NexGen total knee prosthesis (Zimmer Inc., Warsaw, IN, USA). There was no variability regarding surgeons or surgical technique, except for the use of the navigation system (StealthStation) Treon plus Medtronic Inc., Minnesota, MI, USA). Accuracy of implant positioning was measured on postoperative long-leg standing radiographs and standard lateral X-rays with regard to the valgus angle and the coronal and sagittal component angles. In addition, preoperative deformities of the mechanical leg axis, tourniquet time, age, and gender were correlated. Statistical analyses were performed using the SPSS 15.0 (SPSS Inc., Chicago, IL, USA) software package. Independent t-tests were used, with significance set at P < 0.05 (two-tailed) to compare differences in mean angular values and frontal mechanical alignment between the two cohorts. To compute the rate of optimally implanted prostheses between the two groups we used the chi(2) test. The average postoperative radiological frontal mechanical alignment was 1.88 degrees of varus (range 6.1 degrees of valgus-10.1 degrees of varus; SD 3.68 degrees ) in the conventional cohort and 0.28 degrees of varus (range 3.7 degrees -6.0 degrees of varus; SD 1.97 degrees ) in the navigated cohort. Including all

  2. Does Children’s Academic Achievement Improve when Single Mothers Marry?

    PubMed Central

    Wagmiller, Robert L.; Gershoff, Elizabeth; Veliz, Philip; Clements, Margaret

    2011-01-01

    Promoting marriage, especially among low-income single mothers with children, is increasingly viewed as a promising public policy strategy for improving developmental outcomes for disadvantaged children. Previous research suggests, however, that children’s academic achievement either does not improve or declines when single mothers marry. In this paper, we argue that previous research may understate the benefits of mothers’ marriages to children from single-parent families because (1) the short-term and long-term developmental consequences of marriage are not adequately distinguished and (2) child and family contexts in which marriage is likely to confer developmental advantages are not differentiated from those that do not. Using multiple waves of data from the ECLS-K, we find that single mothers’ marriages are associated with modest but statistically significant improvements in their children’s academic achievement trajectories. However, only children from more advantaged single-parent families benefit from their mothers’ marriage. PMID:21611134

  3. Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS

    DOE PAGES

    Isselhardt, B. H.; Savina, M. R.; Kucher, A.; ...

    2015-09-01

    Resonance ionization mass spectrometry (RIMS) holds the promise of rapid, isobar-free quantification of actinide isotope ratios in as-received materials (i.e. not chemically purified). Recent progress in achieving this potential using two Pu test materials is presented. RIMS measurements were conducted multiple times over a period of two months on two different Pu solutions deposited on metal surfaces. Measurements were bracketed with a Pu isotopic standard, and yielded absolute accuracies of the measured 240Pu/ 239Pu ratios of 0.7% and 0.58%, with precisions (95% confidence intervals) of 1.49% and 0.91%. In conclusion, the minor isotope 238Pu was also quantified despite the presencemore » of a significant quantity of 238U in the samples.« less

  4. Selecting fillers on emotional appearance improves lineup identification accuracy.

    PubMed

    Flowe, Heather D; Klatt, Thimna; Colloff, Melissa F

    2014-12-01

    Mock witnesses sometimes report using criminal stereotypes to identify a face from a lineup, a tendency known as criminal face bias. Faces are perceived as criminal-looking if they appear angry. We tested whether matching the emotional appearance of the fillers to an angry suspect can reduce criminal face bias. In Study 1, mock witnesses (n = 226) viewed lineups in which the suspect had an angry, happy, or neutral expression, and we varied whether the fillers matched the expression. An additional group of participants (n = 59) rated the faces on criminal and emotional appearance. As predicted, mock witnesses tended to identify suspects who appeared angrier and more criminal-looking than the fillers. This tendency was reduced when the lineup fillers matched the emotional appearance of the suspect. Study 2 extended the results, testing whether the emotional appearance of the suspect and fillers affects recognition memory. Participants (n = 1,983) studied faces and took a lineup test in which the emotional appearance of the target and fillers was varied between subjects. Discrimination accuracy was enhanced when the fillers matched an angry target's emotional appearance. We conclude that lineup member emotional appearance plays a critical role in the psychology of lineup identification. The fillers should match an angry suspect's emotional appearance to improve lineup identification accuracy. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  5. Improving Odometric Accuracy for an Autonomous Electric Cart.

    PubMed

    Toledo, Jonay; Piñeiro, Jose D; Arnay, Rafael; Acosta, Daniel; Acosta, Leopoldo

    2018-01-12

    In this paper, a study of the odometric system for the autonomous cart Verdino, which is an electric vehicle based on a golf cart, is presented. A mathematical model of the odometric system is derived from cart movement equations, and is used to compute the vehicle position and orientation. The inputs of the system are the odometry encoders, and the model uses the wheels diameter and distance between wheels as parameters. With this model, a least square minimization is made in order to get the nominal best parameters. This model is updated, including a real time wheel diameter measurement improving the accuracy of the results. A neural network model is used in order to learn the odometric model from data. Tests are made using this neural network in several configurations and the results are compared to the mathematical model, showing that the neural network can outperform the first proposed model.

  6. Improved Statistical Sampling and Accuracy with Accelerated Molecular Dynamics on Rotatable Torsions.

    PubMed

    Doshi, Urmi; Hamelberg, Donald

    2012-11-13

    In enhanced sampling techniques, the precision of the reweighted ensemble properties is often decreased due to large variation in statistical weights and reduction in the effective sampling size. To abate this reweighting problem, here, we propose a general accelerated molecular dynamics (aMD) approach in which only the rotatable dihedrals are subjected to aMD (RaMD), unlike the typical implementation wherein all dihedrals are boosted (all-aMD). Nonrotatable and improper dihedrals are marginally important to conformational changes or the different rotameric states. Not accelerating them avoids the sharp increases in the potential energies due to small deviations from their minimum energy conformations and leads to improvement in the precision of RaMD. We present benchmark studies on two model dipeptides, Ace-Ala-Nme and Ace-Trp-Nme, simulated with normal MD, all-aMD, and RaMD. We carry out a systematic comparison between the performances of both forms of aMD using a theory that allows quantitative estimation of the effective number of sampled points and the associated uncertainty. Our results indicate that, for the same level of acceleration and simulation length, as used in all-aMD, RaMD results in significantly less loss in the effective sample size and, hence, increased accuracy in the sampling of φ-ψ space. RaMD yields an accuracy comparable to that of all-aMD, from simulation lengths 5 to 1000 times shorter, depending on the peptide and the acceleration level. Such improvement in speed and accuracy over all-aMD is highly remarkable, suggesting RaMD as a promising method for sampling larger biomolecules.

  7. Analysis on accuracy improvement of rotor-stator rubbing localization based on acoustic emission beamforming method.

    PubMed

    He, Tian; Xiao, Denghong; Pan, Qiang; Liu, Xiandong; Shan, Yingchun

    2014-01-01

    This paper attempts to introduce an improved acoustic emission (AE) beamforming method to localize rotor-stator rubbing fault in rotating machinery. To investigate the propagation characteristics of acoustic emission signals in casing shell plate of rotating machinery, the plate wave theory is used in a thin plate. A simulation is conducted and its result shows the localization accuracy of beamforming depends on multi-mode, dispersion, velocity and array dimension. In order to reduce the effect of propagation characteristics on the source localization, an AE signal pre-process method is introduced by combining plate wave theory and wavelet packet transform. And the revised localization velocity to reduce effect of array size is presented. The accuracy of rubbing localization based on beamforming and the improved method of present paper are compared by the rubbing test carried on a test table of rotating machinery. The results indicate that the improved method can localize rub fault effectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Two Simple Rules for Improving the Accuracy of Empiric Treatment of Multidrug-Resistant Urinary Tract Infections.

    PubMed

    Linsenmeyer, Katherine; Strymish, Judith; Gupta, Kalpana

    2015-12-01

    The emergence of multidrug-resistant (MDR) uropathogens is making the treatment of urinary tract infections (UTIs) more challenging. We sought to evaluate the accuracy of empiric therapy for MDR UTIs and the utility of prior culture data in improving the accuracy of the therapy chosen. The electronic health records from three U.S. Department of Veterans Affairs facilities were retrospectively reviewed for the treatments used for MDR UTIs over 4 years. An MDR UTI was defined as an infection caused by a uropathogen resistant to three or more classes of drugs and identified by a clinician to require therapy. Previous data on culture results, antimicrobial use, and outcomes were captured from records from inpatient and outpatient settings. Among 126 patient episodes of MDR UTIs, the choices of empiric therapy against the index pathogen were accurate in 66 (52%) episodes. For the 95 patient episodes for which prior microbiologic data were available, when empiric therapy was concordant with the prior microbiologic data, the rate of accuracy of the treatment against the uropathogen improved from 32% to 76% (odds ratio, 6.9; 95% confidence interval, 2.7 to 17.1; P < 0.001). Genitourinary tract (GU)-directed agents (nitrofurantoin or sulfa agents) were equally as likely as broad-spectrum agents to be accurate (P = 0.3). Choosing an agent concordant with previous microbiologic data significantly increased the chance of accuracy of therapy for MDR UTIs, even if the previous uropathogen was a different species. Also, GU-directed or broad-spectrum therapy choices were equally likely to be accurate. The accuracy of empiric therapy could be improved by the use of these simple rules. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. A robot-aided visuo-motor training that improves proprioception and spatial accuracy of untrained movement.

    PubMed

    Elangovan, Naveen; Cappello, Leonardo; Masia, Lorenzo; Aman, Joshua; Konczak, Jürgen

    2017-12-06

    Proprioceptive function can become enhanced during motor learning. Yet, we have incomplete knowledge to what extent proprioceptive function is trainable and how a training that enhances proprioception may influence performance in untrained motor skills. To address this knowledge gap, healthy young adults (N = 14) trained in a visuomotor task that required learners to make increasingly accurate wrist movements. Using a robotic exoskeleton coupled with a virtual visual environment, participants tilted a virtual table through continuous wrist flexion/extension movements with the goal to position a rolling ball on table into a target. With learning progress, the level of difficulty increased by altering the virtual ball mechanics and the gain between joint movement and ball velocity. Before and after training, wrist position sense acuity and spatial movement accuracy in an untrained, discrete wrist-pointing task was assessed using the same robot. All participants showed evidence of proprioceptive-motor learning. Mean position sense discrimination threshold improved by 34%. Wrist movement accuracy in the untrained pointing task improved by 27% in 13/14 participants. This demonstrates that a short sensorimotor training challenging proprioception can a) effectively enhance proprioceptive acuity and b) improve the accuracy of untrained movement. These findings provide a scientific basis for applying such somatosensory-based motor training to clinical populations with known proprioceptive dysfunction to enhance sensorimotor performance.

  10. Phase noise in pulsed Doppler lidar and limitations on achievable single-shot velocity accuracy

    NASA Technical Reports Server (NTRS)

    Mcnicholl, P.; Alejandro, S.

    1992-01-01

    The smaller sampling volumes afforded by Doppler lidars compared to radars allows for spatial resolutions at and below some sheer and turbulence wind structure scale sizes. This has brought new emphasis on achieving the optimum product of wind velocity and range resolutions. Several recent studies have considered the effects of amplitude noise, reduction algorithms, and possible hardware related signal artifacts on obtainable velocity accuracy. We discuss here the limitation on this accuracy resulting from the incoherent nature and finite temporal extent of backscatter from aerosols. For a lidar return from a hard (or slab) target, the phase of the intermediate frequency (IF) signal is random and the total return energy fluctuates from shot to shot due to speckle; however, the offset from the transmitted frequency is determinable with an accuracy subject only to instrumental effects and the signal to noise ratio (SNR), the noise being determined by the LO power in the shot noise limited regime. This is not the case for a return from a media extending over a range on the order of or greater than the spatial extent of the transmitted pulse, such as from atmospheric aerosols. In this case, the phase of the IF signal will exhibit a temporal random walk like behavior. It will be uncorrelated over times greater than the pulse duration as the transmitted pulse samples non-overlapping volumes of scattering centers. Frequency analysis of the IF signal in a window similar to the transmitted pulse envelope will therefore show shot-to-shot frequency deviations on the order of the inverse pulse duration reflecting the random phase rate variations. Like speckle, these deviations arise from the incoherent nature of the scattering process and diminish if the IF signal is averaged over times greater than a single range resolution cell (here the pulse duration). Apart from limiting the high SNR performance of a Doppler lidar, this shot-to-shot variance in velocity estimates has a

  11. Improved DORIS accuracy for precise orbit determination and geodesy

    NASA Technical Reports Server (NTRS)

    Willis, Pascal; Jayles, Christian; Tavernier, Gilles

    2004-01-01

    In 2001 and 2002, 3 more DORIS satellites were launched. Since then, all DORIS results have been significantly improved. For precise orbit determination, 20 cm are now available in real-time with DIODE and 1.5 to 2 cm in post-processing. For geodesy, 1 cm precision can now be achieved regularly every week, making now DORIS an active part of a Global Observing System for Geodesy through the IDS.

  12. Combining functional and structural tests improves the diagnostic accuracy of relevance vector machine classifiers

    PubMed Central

    Racette, Lyne; Chiou, Christine Y.; Hao, Jiucang; Bowd, Christopher; Goldbaum, Michael H.; Zangwill, Linda M.; Lee, Te-Won; Weinreb, Robert N.; Sample, Pamela A.

    2009-01-01

    Purpose To investigate whether combining optic disc topography and short-wavelength automated perimetry (SWAP) data improves the diagnostic accuracy of relevance vector machine (RVM) classifiers for detecting glaucomatous eyes compared to using each test alone. Methods One eye of 144 glaucoma patients and 68 healthy controls from the Diagnostic Innovations in Glaucoma Study were included. RVM were trained and tested with cross-validation on optimized (backward elimination) SWAP features (thresholds plus age; pattern deviation (PD); total deviation (TD)) and on Heidelberg Retina Tomograph II (HRT) optic disc topography features, independently and in combination. RVM performance was also compared to two HRT linear discriminant functions (LDF) and to SWAP mean deviation (MD) and pattern standard deviation (PSD). Classifier performance was measured by the area under the receiver operating characteristic curves (AUROCs) generated for each feature set and by the sensitivities at set specificities of 75%, 90% and 96%. Results RVM trained on combined HRT and SWAP thresholds plus age had significantly higher AUROC (0.93) than RVM trained on HRT (0.88) and SWAP (0.76) alone. AUROCs for the SWAP global indices (MD: 0.68; PSD: 0.72) offered no advantage over SWAP thresholds plus age, while the LDF AUROCs were significantly lower than RVM trained on the combined SWAP and HRT feature set and on HRT alone feature set. Conclusions Training RVM on combined optimized HRT and SWAP data improved diagnostic accuracy compared to training on SWAP and HRT parameters alone. Future research may identify other combinations of tests and classifiers that can also improve diagnostic accuracy. PMID:19528827

  13. Finite element analysis of transonic flows in cascades: Importance of computational grids in improving accuracy and convergence

    NASA Technical Reports Server (NTRS)

    Ecer, A.; Akay, H. U.

    1981-01-01

    The finite element method is applied for the solution of transonic potential flows through a cascade of airfoils. Convergence characteristics of the solution scheme are discussed. Accuracy of the numerical solutions is investigated for various flow regions in the transonic flow configuration. The design of an efficient finite element computational grid is discussed for improving accuracy and convergence.

  14. Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA.

    PubMed

    Ng, Vincent Y; DeClaire, Jeffrey H; Berend, Keith R; Gulick, Bethany C; Lombardi, Adolph V

    2012-01-01

    Coronal malalignment occurs frequently in TKA and may affect implant durability and knee function. Designed to improve alignment accuracy and precision, the patient-specific positioning guide is predicated on restoration of the overall mechanical axis and is a multifaceted new tool in achieving traditional goals of TKA. We compared the effectiveness of patient-specific positioning guides to manual instrumentation with intramedullary femoral and extramedullary tibial guides in restoring the mechanical axis of the extremity and achieving neutral coronal alignment of the femoral and tibial components. We retrospectively reviewed 569 TKAs performed with patient-specific positioning guides and 155 with manual instrumentation by two surgeons using postoperative long-leg radiographs. For all patients, we assessed the zone in which the overall mechanical axis passed through the knee, and for one surgeon's cases (105 patient-specific positioning guide, 55 manual instrumentation), we also measured the hip-knee-ankle angle and the individual component angles with respect to their mechanical axes. The overall mechanical axis passed through the central third of the knee more often with patient-specific positioning guides (88%) than with manual instrumentation (78%). The overall mean hip-knee-ankle angle for patient-specific positioning guides (180.6°) was similar to manual instrumentation (181.1°), but there were fewer ± 3° hip-knee-ankle angle outliers with patient-specific positioning guides (9%) than with manual instrumentation (22%). The overall mean tibial (89.9° versus 90.4°) and femoral (90.7° versus 91.3°) component angles were closer to neutral with patient-specific positioning guides than with manual instrumentation, but the rate of ± 2° outliers was similar for both the tibia (10% versus 7%) and femur (22% versus 18%). Patient-specific positioning guides can assist in achieving a neutral mechanical axis with reduction in outliers.

  15. Accuracy Improvement for Light-Emitting-Diode-Based Colorimeter by Iterative Algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Pao-Keng

    2011-09-01

    We present a simple algorithm, combining an interpolating method with an iterative calculation, to enhance the resolution of spectral reflectance by removing the spectral broadening effect due to the finite bandwidth of the light-emitting diode (LED) from it. The proposed algorithm can be used to improve the accuracy of a reflective colorimeter using multicolor LEDs as probing light sources and is also applicable to the case when the probing LEDs have different bandwidths in different spectral ranges, to which the powerful deconvolution method cannot be applied.

  16. Does NASA SMAP Improve the Accuracy of Power Outage Models?

    NASA Astrophysics Data System (ADS)

    Quiring, S. M.; McRoberts, D. B.; Toy, B.; Alvarado, B.

    2016-12-01

    Electric power utilities make critical decisions in the days prior to hurricane landfall that are primarily based on the estimated impact to their service area. For example, utilities must determine how many repair crews to request from other utilities, the amount of material and equipment they will need to make repairs, and where in their geographically expansive service area to station crews and materials. Accurate forecasts of the impact of an approaching hurricane within their service area are critical for utilities in balancing the costs and benefits of different levels of resources. The Hurricane Outage Prediction Model (HOPM) are a family of statistical models that utilize predictions of tropical cyclone windspeed and duration of strong winds, along with power system and environmental variables (e.g., soil moisture, long-term precipitation), to forecast the number and location of power outages. This project assesses whether using NASA SMAP soil moisture improves the accuracy of power outage forecasts as compared to using model-derived soil moisture from NLDAS-2. A sensitivity analysis is employed since there have been very few tropical cyclones making landfall in the United States since SMAP was launched. The HOPM is used to predict power outages for 13 historical tropical cyclones and the model is run using twice, once with NLDAS soil moisture and once with SMAP soil moisture. Our results demonstrate that using SMAP soil moisture can have a significant impact on power outage predictions. SMAP has the potential to enhance the accuracy of power outage forecasts. Improved outage forecasts reduce the duration of power outages which reduces economic losses and accelerates recovery.

  17. Overlay accuracy fundamentals

    NASA Astrophysics Data System (ADS)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to < 0.5nm, it becomes crucial to include also systematic error contributions which affect the accuracy of the metrology. Here we discuss fundamental aspects of overlay accuracy and a methodology to improve accuracy significantly. We identify overlay mark imperfections and their interaction with the metrology technology, as the main source of overlay inaccuracy. The most important type of mark imperfection is mark asymmetry. Overlay mark asymmetry leads to a geometrical ambiguity in the definition of overlay, which can be ~1nm or less. It is shown theoretically and in simulations that the metrology may enhance the effect of overlay mark asymmetry significantly and lead to metrology inaccuracy ~10nm, much larger than the geometrical ambiguity. The analysis is carried out for two different overlay metrology technologies: Imaging overlay and DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  18. Improving protein–protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model

    PubMed Central

    An, Ji‐Yong; Meng, Fan‐Rong; Chen, Xing; Yan, Gui‐Ying; Hu, Ji‐Pu

    2016-01-01

    Abstract Predicting protein–protein interactions (PPIs) is a challenging task and essential to construct the protein interaction networks, which is important for facilitating our understanding of the mechanisms of biological systems. Although a number of high‐throughput technologies have been proposed to predict PPIs, there are unavoidable shortcomings, including high cost, time intensity, and inherently high false positive rates. For these reasons, many computational methods have been proposed for predicting PPIs. However, the problem is still far from being solved. In this article, we propose a novel computational method called RVM‐BiGP that combines the relevance vector machine (RVM) model and Bi‐gram Probabilities (BiGP) for PPIs detection from protein sequences. The major improvement includes (1) Protein sequences are represented using the Bi‐gram probabilities (BiGP) feature representation on a Position Specific Scoring Matrix (PSSM), in which the protein evolutionary information is contained; (2) For reducing the influence of noise, the Principal Component Analysis (PCA) method is used to reduce the dimension of BiGP vector; (3) The powerful and robust Relevance Vector Machine (RVM) algorithm is used for classification. Five‐fold cross‐validation experiments executed on yeast and Helicobacter pylori datasets, which achieved very high accuracies of 94.57 and 90.57%, respectively. Experimental results are significantly better than previous methods. To further evaluate the proposed method, we compare it with the state‐of‐the‐art support vector machine (SVM) classifier on the yeast dataset. The experimental results demonstrate that our RVM‐BiGP method is significantly better than the SVM‐based method. In addition, we achieved 97.15% accuracy on imbalance yeast dataset, which is higher than that of balance yeast dataset. The promising experimental results show the efficiency and robust of the proposed method, which can be an automatic

  19. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model.

    PubMed

    An, Ji-Yong; Meng, Fan-Rong; You, Zhu-Hong; Chen, Xing; Yan, Gui-Ying; Hu, Ji-Pu

    2016-10-01

    Predicting protein-protein interactions (PPIs) is a challenging task and essential to construct the protein interaction networks, which is important for facilitating our understanding of the mechanisms of biological systems. Although a number of high-throughput technologies have been proposed to predict PPIs, there are unavoidable shortcomings, including high cost, time intensity, and inherently high false positive rates. For these reasons, many computational methods have been proposed for predicting PPIs. However, the problem is still far from being solved. In this article, we propose a novel computational method called RVM-BiGP that combines the relevance vector machine (RVM) model and Bi-gram Probabilities (BiGP) for PPIs detection from protein sequences. The major improvement includes (1) Protein sequences are represented using the Bi-gram probabilities (BiGP) feature representation on a Position Specific Scoring Matrix (PSSM), in which the protein evolutionary information is contained; (2) For reducing the influence of noise, the Principal Component Analysis (PCA) method is used to reduce the dimension of BiGP vector; (3) The powerful and robust Relevance Vector Machine (RVM) algorithm is used for classification. Five-fold cross-validation experiments executed on yeast and Helicobacter pylori datasets, which achieved very high accuracies of 94.57 and 90.57%, respectively. Experimental results are significantly better than previous methods. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the yeast dataset. The experimental results demonstrate that our RVM-BiGP method is significantly better than the SVM-based method. In addition, we achieved 97.15% accuracy on imbalance yeast dataset, which is higher than that of balance yeast dataset. The promising experimental results show the efficiency and robust of the proposed method, which can be an automatic decision support tool for future

  20. Quantitative phase imaging to improve the diagnostic accuracy of urine cytology.

    PubMed

    Pham, Hoa V; Pantanowitz, Liron; Liu, Yang

    2016-09-01

    A definitive diagnosis of urothelial carcinoma in urine cytology is often challenging and subjective. Many urine cytology samples receive an indeterminate diagnosis. Ancillary techniques such as fluorescence in situ hybridization (FISH) have been used to improve the diagnostic sensitivity, but FISH is not approved as a routine screening test, and the complex fluorescent staining protocol also limits its widespread clinical use. Quantitative phase imaging (QPI) is an emerging technology allowing accurate measurements of the single-cell dry mass. This study was undertaken to explore the ability of QPI to improve the diagnostic accuracy of urine cytology for malignancy. QPI was performed on unstained, ThinPrep-prepared urine cytology slides from 28 patients with 4 categories of cytological diagnoses (negative, atypical, suspicious, and positive for malignancy). The nuclear/cell dry mass, the entropy, and the nucleus-to-cell mass ratio were calculated for several hundred cells for each patient, and they were then correlated with the follow-up diagnoses. The nuclear mass and nuclear mass entropy of urothelial cells showed significant differences between negative and positive groups. These data showed a progressive increase from patients with negative diagnosis, to patients with atypical/suspicious and positive cytologic diagnosis. Most importantly, among the patients in the atypical and suspicious diagnosis, the nuclear mass and its entropy were significantly higher for those patients with a follow-up diagnosis of malignancy than those patients without a subsequent follow-up diagnosis of malignancy. QPI shows potential for improving the diagnostic accuracy of urine cytology, especially for indeterminate cases, and should be further evaluated as an ancillary test for urine cytology. Cancer Cytopathol 2016;124:641-50. © 2016 American Cancer Society. © 2016 American Cancer Society.

  1. Improvement of Accuracy for Background Noise Estimation Method Based on TPE-AE

    NASA Astrophysics Data System (ADS)

    Itai, Akitoshi; Yasukawa, Hiroshi

    This paper proposes a method of a background noise estimation based on the tensor product expansion with a median and a Monte carlo simulation. We have shown that a tensor product expansion with absolute error method is effective to estimate a background noise, however, a background noise might not be estimated by using conventional method properly. In this paper, it is shown that the estimate accuracy can be improved by using proposed methods.

  2. Stratified computed tomography findings improve diagnostic accuracy for appendicitis

    PubMed Central

    Park, Geon; Lee, Sang Chul; Choi, Byung-Jo; Kim, Say-June

    2014-01-01

    AIM: To improve the diagnostic accuracy in patients with symptoms and signs of appendicitis, but without confirmative computed tomography (CT) findings. METHODS: We retrospectively reviewed the database of 224 patients who had been operated on for the suspicion of appendicitis, but whose CT findings were negative or equivocal for appendicitis. The patient population was divided into two groups: a pathologically proven appendicitis group (n = 177) and a non-appendicitis group (n = 47). The CT images of these patients were re-evaluated according to the characteristic CT features as described in the literature. The re-evaluations and baseline characteristics of the two groups were compared. RESULTS: The two groups showed significant differences with respect to appendiceal diameter, and the presence of periappendiceal fat stranding and intraluminal air in the appendix. A larger proportion of patients in the appendicitis group showed distended appendices larger than 6.0 mm (66.3% vs 37.0%; P < 0.001), periappendiceal fat stranding (34.1% vs 8.9%; P = 0.001), and the absence of intraluminal air (67.6% vs 48.9%; P = 0.024) compared to the non-appendicitis group. Furthermore, the presence of two or more of these factors increased the odds ratio to 6.8 times higher than baseline (95%CI: 3.013-15.454; P < 0.001). CONCLUSION: Appendiceal diameter and wall thickening, fat stranding, and absence of intraluminal air can be used to increased diagnostic accuracy for appendicitis with equivocal CT findings. PMID:25320531

  3. A Method for Improving the Pose Accuracy of a Robot Manipulator Based on Multi-Sensor Combined Measurement and Data Fusion

    PubMed Central

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua

    2015-01-01

    An improvement method for the pose accuracy of a robot manipulator by using a multiple-sensor combination measuring system (MCMS) is presented. It is composed of a visual sensor, an angle sensor and a series robot. The visual sensor is utilized to measure the position of the manipulator in real time, and the angle sensor is rigidly attached to the manipulator to obtain its orientation. Due to the higher accuracy of the multi-sensor, two efficient data fusion approaches, the Kalman filter (KF) and multi-sensor optimal information fusion algorithm (MOIFA), are used to fuse the position and orientation of the manipulator. The simulation and experimental results show that the pose accuracy of the robot manipulator is improved dramatically by 38%∼78% with the multi-sensor data fusion. Comparing with reported pose accuracy improvement methods, the primary advantage of this method is that it does not require the complex solution of the kinematics parameter equations, increase of the motion constraints and the complicated procedures of the traditional vision-based methods. It makes the robot processing more autonomous and accurate. To improve the reliability and accuracy of the pose measurements of MCMS, the visual sensor repeatability is experimentally studied. An optimal range of 1 × 0.8 × 1 ∼ 2 × 0.8 × 1 m in the field of view (FOV) is indicated by the experimental results. PMID:25850067

  4. Improved classification accuracy by feature extraction using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.

    2003-05-01

    A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.

  5. Spatially distributed modeling of soil organic carbon across China with improved accuracy

    NASA Astrophysics Data System (ADS)

    Li, Qi-quan; Zhang, Hao; Jiang, Xin-ye; Luo, Youlin; Wang, Chang-quan; Yue, Tian-xiang; Li, Bing; Gao, Xue-song

    2017-06-01

    There is a need for more detailed spatial information on soil organic carbon (SOC) for the accurate estimation of SOC stock and earth system models. As it is effective to use environmental factors as auxiliary variables to improve the prediction accuracy of spatially distributed modeling, a combined method (HASM_EF) was developed to predict the spatial pattern of SOC across China using high accuracy surface modeling (HASM), artificial neural network (ANN), and principal component analysis (PCA) to introduce land uses, soil types, climatic factors, topographic attributes, and vegetation cover as predictors. The performance of HASM_EF was compared with ordinary kriging (OK), OK, and HASM combined, respectively, with land uses and soil types (OK_LS and HASM_LS), and regression kriging combined with land uses and soil types (RK_LS). Results showed that HASM_EF obtained the lowest prediction errors and the ratio of performance to deviation (RPD) presented the relative improvements of 89.91%, 63.77%, 55.86%, and 42.14%, respectively, compared to the other four methods. Furthermore, HASM_EF generated more details and more realistic spatial information on SOC. The improved performance of HASM_EF can be attributed to the introduction of more environmental factors, to explicit consideration of the multicollinearity of selected factors and the spatial nonstationarity and nonlinearity of relationships between SOC and selected factors, and to the performance of HASM and ANN. This method may play a useful tool in providing more precise spatial information on soil parameters for global modeling across large areas.

  6. The design of visible system for improving the measurement accuracy of imaging points

    NASA Astrophysics Data System (ADS)

    Shan, Qiu-sha; Li, Gang; Zeng, Luan; Liu, Kai; Yan, Pei-pei; Duan, Jing; Jiang, Kai

    2018-02-01

    It has a widely applications in robot vision and 3D measurement for binocular stereoscopic measurement technology. And the measure precision is an very important factor, especially in 3D coordination measurement, high measurement accuracy is more stringent to the distortion of the optical system. In order to improving the measurement accuracy of imaging points, to reducing the distortion of the imaging points, the optical system must be satisfied the requirement of extra low distortion value less than 0.1#65285;, a transmission visible optical lens was design, which has characteristic of telecentric beam path in image space, adopted the imaging model of binocular stereo vision, and imaged the drone at the finity distance. The optical system was adopted complex double Gauss structure, and put the pupil stop on the focal plane of the latter groups, maked the system exit pupil on the infinity distance, and realized telecentric beam path in image space. The system mainly optical parameter as follows: the system spectrum rangement is visible light wave band, the optical effective length is f '=30mm, the relative aperture is 1/3, and the fields of view is 21°. The final design results show that the RMS value of the spread spots of the optical lens in the maximum fields of view is 2.3μm, which is less than one pixel(3.45μm) the distortion value is less than 0.1%, the system has the advantage of extra low distortion value and avoids the latter image distortion correction; the proposed modulation transfer function of the optical lens is 0.58(@145 lp/mm), the imaging quality of the system is closed to the diffraction limited; the system has simply structure, and can satisfies the requirements of the optical indexes. Ultimately, based on the imaging model of binocular stereo vision was achieved to measuring the drone at the finity distance.

  7. Motion correction for improving the accuracy of dual-energy myocardial perfusion CT imaging

    NASA Astrophysics Data System (ADS)

    Pack, Jed D.; Yin, Zhye; Xiong, Guanglei; Mittal, Priya; Dunham, Simon; Elmore, Kimberly; Edic, Peter M.; Min, James K.

    2016-03-01

    Coronary Artery Disease (CAD) is the leading cause of death globally [1]. Modern cardiac computed tomography angiography (CCTA) is highly effective at identifying and assessing coronary blockages associated with CAD. The diagnostic value of this anatomical information can be substantially increased in combination with a non-invasive, low-dose, correlative, quantitative measure of blood supply to the myocardium. While CT perfusion has shown promise of providing such indications of ischemia, artifacts due to motion, beam hardening, and other factors confound clinical findings and can limit quantitative accuracy. In this paper, we investigate the impact of applying a novel motion correction algorithm to correct for motion in the myocardium. This motion compensation algorithm (originally designed to correct for the motion of the coronary arteries in order to improve CCTA images) has been shown to provide substantial improvements in both overall image quality and diagnostic accuracy of CCTA. We have adapted this technique for application beyond the coronary arteries and present an assessment of its impact on image quality and quantitative accuracy within the context of dual-energy CT perfusion imaging. We conclude that motion correction is a promising technique that can help foster the routine clinical use of dual-energy CT perfusion. When combined, the anatomical information of CCTA and the hemodynamic information from dual-energy CT perfusion should facilitate better clinical decisions about which patients would benefit from treatments such as stent placement, drug therapy, or surgery and help other patients avoid the risks and costs associated with unnecessary, invasive, diagnostic coronary angiography procedures.

  8. Improving Elementary Students' Spelling Achievement Using High-Frequency Words.

    ERIC Educational Resources Information Center

    Durnil, Christina; And Others

    An action research study detailed a program for improving spelling achievement across the curriculum. The targeted population is composed of second and third grade students from a growing, middle class community located in a suburb of Chicago, Illinois. The problem of misspelled words in the students' writing was documented through students'…

  9. The important to growing self-efficacy to improve achievement motivation

    NASA Astrophysics Data System (ADS)

    Benawa, Arcadius

    2018-03-01

    The long-term goal of this research is to accommodate the students’ perceptions of the influence of the lecturer’s leadership in teaching and learning activities and the students’ self-efficacy to the students’ achievement motivation. This research used questionnaires which distributed to the respondents and the data obtained were processed quantitatively with path analysis. The results showed that the significance influence of leadership on the lecturer only accounted for 1.4%, while the effect of self-efficacy of the student is very significant on the students’ achievement motivation, which amounted to 84.5%. The conclusions are that the lecturer leadership has no significant effect on the students’ achievement motivation, but self-efficacy has a great effect. The implication of this conclusion is that important to growing self-efficacy’s students to improve the students’ achievement motivation.

  10. High-accuracy Aspheric X-ray Mirror Metrology Using Software Configurable Optical Test System/deflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Run; Su, Peng; Burge, James H.

    The Software Configurable Optical Test System (SCOTS) uses deflectometry to measure surface slopes of general optical shapes without the need for additional null optics. Careful alignment of test geometry and calibration of inherent system error improve the accuracy of SCOTS to a level where it competes with interferometry. We report a SCOTS surface measurement of an off-axis superpolished elliptical x-ray mirror that achieves <1 nm<1 nm root-mean-square accuracy for the surface measurement with low-order term included.

  11. Effects of accuracy motivation and anchoring on metacomprehension judgment and accuracy.

    PubMed

    Zhao, Qin

    2012-01-01

    The current research investigates how accuracy motivation impacts anchoring and adjustment in metacomprehension judgment and how accuracy motivation and anchoring affect metacomprehension accuracy. Participants were randomly assigned to one of six conditions produced by the between-subjects factorial design involving accuracy motivation (incentive or no) and peer performance anchor (95%, 55%, or no). Two studies showed that accuracy motivation did not impact anchoring bias, but the adjustment-from-anchor process occurred. Accuracy incentive increased anchor-judgment gap for the 95% anchor but not for the 55% anchor, which induced less certainty about the direction of adjustment. The findings offer support to the integrative theory of anchoring. Additionally, the two studies revealed a "power struggle" between accuracy motivation and anchoring in influencing metacomprehension accuracy. Accuracy motivation could improve metacomprehension accuracy in spite of anchoring effect, but if anchoring effect is too strong, it could overpower the motivation effect. The implications of the findings were discussed.

  12. The Effect of Written Corrective Feedback on Grammatical Accuracy of EFL Students: An Improvement over Previous Unfocused Designs

    ERIC Educational Resources Information Center

    Khanlarzadeh, Mobin; Nemati, Majid

    2016-01-01

    The effectiveness of written corrective feedback (WCF) in the improvement of language learners' grammatical accuracy has been a topic of interest in SLA studies for the past couple of decades. The present study reports the findings of a three-month study investigating the effect of direct unfocused WCF on the grammatical accuracy of elementary…

  13. Accuracy and impact of spatial aids based upon satellite enumeration to improve indoor residual spraying spatial coverage.

    PubMed

    Bridges, Daniel J; Pollard, Derek; Winters, Anna M; Winters, Benjamin; Sikaala, Chadwick; Renn, Silvia; Larsen, David A

    2018-02-23

    Indoor residual spraying (IRS) is a key tool in the fight to control, eliminate and ultimately eradicate malaria. IRS protection is based on a communal effect such that an individual's protection primarily relies on the community-level coverage of IRS with limited protection being provided by household-level coverage. To ensure a communal effect is achieved through IRS, achieving high and uniform community-level coverage should be the ultimate priority of an IRS campaign. Ensuring high community-level coverage of IRS in malaria-endemic areas is challenging given the lack of information available about both the location and number of households needing IRS in any given area. A process termed 'mSpray' has been developed and implemented and involves use of satellite imagery for enumeration for planning IRS and a mobile application to guide IRS implementation. This study assessed (1) the accuracy of the satellite enumeration and (2) how various degrees of spatial aid provided through the mSpray process affected community-level IRS coverage during the 2015 spray campaign in Zambia. A 2-stage sampling process was applied to assess accuracy of satellite enumeration to determine number and location of sprayable structures. Results indicated an overall sensitivity of 94% for satellite enumeration compared to finding structures on the ground. After adjusting for structure size, roof, and wall type, households in Nchelenge District where all types of satellite-based spatial aids (paper-based maps plus use of the mobile mSpray application) were used were more likely to have received IRS than Kasama district where maps used were not based on satellite enumeration. The probability of a household being sprayed in Nchelenge district where tablet-based maps were used, did not differ statistically from that of a household in Samfya District, where detailed paper-based spatial aids based on satellite enumeration were provided. IRS coverage from the 2015 spray season benefited from

  14. Research on the method of improving the accuracy of CMM (coordinate measuring machine) testing aspheric surface

    NASA Astrophysics Data System (ADS)

    Cong, Wang; Xu, Lingdi; Li, Ang

    2017-10-01

    Large aspheric surface which have the deviation with spherical surface are being used widely in various of optical systems. Compared with spherical surface, Large aspheric surfaces have lots of advantages, such as improving image quality, correcting aberration, expanding field of view, increasing the effective distance and make the optical system compact, lightweight. Especially, with the rapid development of space optics, space sensor resolution is required higher and viewing angle is requred larger. Aspheric surface will become one of the essential components in the optical system. After finishing Aspheric coarse Grinding surface profile error is about Tens of microns[1].In order to achieve the final requirement of surface accuracy,the aspheric surface must be quickly modified, high precision testing is the basement of rapid convergence of the surface error . There many methods on aspheric surface detection[2], Geometric ray detection, hartmann detection, ronchi text, knifeedge method, direct profile test, interferometry, while all of them have their disadvantage[6]. In recent years the measure of the aspheric surface become one of the import factors which are restricting the aspheric surface processing development. A two meter caliber industrial CMM coordinate measuring machine is avaiable, but it has many drawbacks such as large detection error and low repeatability precision in the measurement of aspheric surface coarse grinding , which seriously affects the convergence efficiency during the aspherical mirror processing. To solve those problems, this paper presents an effective error control, calibration and removal method by calibration mirror position of the real-time monitoring and other effective means of error control, calibration and removal by probe correction and the measurement mode selection method to measure the point distribution program development. This method verified by real engineer examples, this method increases the original industrial

  15. Camera pose estimation to improve accuracy and reliability of joint angles assessed with attitude and heading reference systems.

    PubMed

    Lebel, Karina; Hamel, Mathieu; Duval, Christian; Nguyen, Hung; Boissy, Patrick

    2018-01-01

    Joint kinematics can be assessed using orientation estimates from Attitude and Heading Reference Systems (AHRS). However, magnetically-perturbed environments affect the accuracy of the estimated orientations. This study investigates, both in controlled and human mobility conditions, a trial calibration technic based on a 2D photograph with a pose estimation algorithm to correct initial difference in AHRS Inertial reference frames and improve joint angle accuracy. In controlled conditions, two AHRS were solidly affixed onto a wooden stick and a series of static and dynamic trials were performed in varying environments. Mean accuracy of relative orientation between the two AHRS was improved from 24.4° to 2.9° using the proposed correction method. In human conditions, AHRS were placed on the shank and the foot of a participant who performed repeated trials of straight walking and walking while turning, varying the level of magnetic perturbation in the starting environment and the walking speed. Mean joint orientation accuracy went from 6.7° to 2.8° using the correction algorithm. The impact of starting environment was also greatly reduced, up to a point where one could consider it as non-significant from a clinical point of view (maximum mean difference went from 8° to 0.6°). The results obtained demonstrate that the proposed method improves significantly the mean accuracy of AHRS joint orientation estimations in magnetically-perturbed environments and can be implemented in post processing of AHRS data collected during biomechanical evaluation of motion. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Early-Onset Neonatal Sepsis: Still Room for Improvement in Procalcitonin Diagnostic Accuracy Studies

    PubMed Central

    Chiesa, Claudio; Pacifico, Lucia; Osborn, John F.; Bonci, Enea; Hofer, Nora; Resch, Bernhard

    2015-01-01

    Abstract To perform a systematic review assessing accuracy and completeness of diagnostic studies of procalcitonin (PCT) for early-onset neonatal sepsis (EONS) using the Standards for Reporting of Diagnostic Accuracy (STARD) initiative. EONS, diagnosed during the first 3 days of life, remains a common and serious problem. Increased PCT is a potentially useful diagnostic marker of EONS, but reports in the literature are contradictory. There are several possible explanations for the divergent results including the quality of studies reporting the clinical usefulness of PCT in ruling in or ruling out EONS. We systematically reviewed PubMed, Scopus, and the Cochrane Library databases up to October 1, 2014. Studies were eligible for inclusion in our review if they provided measures of PCT accuracy for diagnosing EONS. A data extraction form based on the STARD checklist and adapted for neonates with EONS was used to appraise the quality of the reporting of included studies. We found 18 articles (1998–2014) fulfilling our eligibility criteria which were included in the final analysis. Overall, the results of our analysis showed that the quality of studies reporting diagnostic accuracy of PCT for EONS was suboptimal leaving ample room for improvement. Information on key elements of design, analysis, and interpretation of test accuracy were frequently missing. Authors should be aware of the STARD criteria before starting a study in this field. We welcome stricter adherence to this guideline. Well-reported studies with appropriate designs will provide more reliable information to guide decisions on the use and interpretations of PCT test results in the management of neonates with EONS. PMID:26222858

  17. Achieving Coherence in District Improvement: Managing the Relationship between the Central Office and Schools

    ERIC Educational Resources Information Center

    Johnson, Susan Moore; Marietta, Geoff; Higgins, Monica C.; Mapp, Karen L.; Grossman, Allen

    2015-01-01

    "Achieving Coherence in District Improvement" focuses on a problem of practice faced by educational leaders across the nation: how to effectively manage the relationship between the central office and schools. The book is based on a study of five large urban districts that have demonstrated improvement in student achievement. The…

  18. Pairwise adaptive thermostats for improved accuracy and stability in dissipative particle dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leimkuhler, Benedict, E-mail: b.leimkuhler@ed.ac.uk; Shang, Xiaocheng, E-mail: x.shang@brown.edu

    2016-11-01

    We examine the formulation and numerical treatment of dissipative particle dynamics (DPD) and momentum-conserving molecular dynamics. We show that it is possible to improve both the accuracy and the stability of DPD by employing a pairwise adaptive Langevin thermostat that precisely matches the dynamical characteristics of DPD simulations (e.g., autocorrelation functions) while automatically correcting thermodynamic averages using a negative feedback loop. In the low friction regime, it is possible to replace DPD by a simpler momentum-conserving variant of the Nosé–Hoover–Langevin method based on thermostatting only pairwise interactions; we show that this method has an extra order of accuracy for anmore » important class of observables (a superconvergence result), while also allowing larger timesteps than alternatives. All the methods mentioned in the article are easily implemented. Numerical experiments are performed in both equilibrium and nonequilibrium settings; using Lees–Edwards boundary conditions to induce shear flow.« less

  19. Improving Kinematic Accuracy of Soft Wearable Data Gloves by Optimizing Sensor Locations

    PubMed Central

    Kim, Dong Hyun; Lee, Sang Wook; Park, Hyung-Soon

    2016-01-01

    Bending sensors enable compact, wearable designs when used for measuring hand configurations in data gloves. While existing data gloves can accurately measure angular displacement of the finger and distal thumb joints, accurate measurement of thumb carpometacarpal (CMC) joint movements remains challenging due to crosstalk between the multi-sensor outputs required to measure the degrees of freedom (DOF). To properly measure CMC-joint configurations, sensor locations that minimize sensor crosstalk must be identified. This paper presents a novel approach to identifying optimal sensor locations. Three-dimensional hand surface data from ten subjects was collected in multiple thumb postures with varied CMC-joint flexion and abduction angles. For each posture, scanned CMC-joint contours were used to estimate CMC-joint flexion and abduction angles by varying the positions and orientations of two bending sensors. Optimal sensor locations were estimated by the least squares method, which minimized the difference between the true CMC-joint angles and the joint angle estimates. Finally, the resultant optimal sensor locations were experimentally validated. Placing sensors at the optimal locations, CMC-joint angle measurement accuracies improved (flexion, 2.8° ± 1.9°; abduction, 1.9° ± 1.2°). The proposed method for improving the accuracy of the sensing system can be extended to other types of soft wearable measurement devices. PMID:27240364

  20. Improved spatial accuracy of functional maps in the rat olfactory bulb using supervised machine learning approach.

    PubMed

    Murphy, Matthew C; Poplawsky, Alexander J; Vazquez, Alberto L; Chan, Kevin C; Kim, Seong-Gi; Fukuda, Mitsuhiro

    2016-08-15

    Functional MRI (fMRI) is a popular and important tool for noninvasive mapping of neural activity. As fMRI measures the hemodynamic response, the resulting activation maps do not perfectly reflect the underlying neural activity. The purpose of this work was to design a data-driven model to improve the spatial accuracy of fMRI maps in the rat olfactory bulb. This system is an ideal choice for this investigation since the bulb circuit is well characterized, allowing for an accurate definition of activity patterns in order to train the model. We generated models for both cerebral blood volume weighted (CBVw) and blood oxygen level dependent (BOLD) fMRI data. The results indicate that the spatial accuracy of the activation maps is either significantly improved or at worst not significantly different when using the learned models compared to a conventional general linear model approach, particularly for BOLD images and activity patterns involving deep layers of the bulb. Furthermore, the activation maps computed by CBVw and BOLD data show increased agreement when using the learned models, lending more confidence to their accuracy. The models presented here could have an immediate impact on studies of the olfactory bulb, but perhaps more importantly, demonstrate the potential for similar flexible, data-driven models to improve the quality of activation maps calculated using fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. An Initial Study of Airport Arrival Heinz Capacity Benefits Due to Improved Scheduling Accuracy

    NASA Technical Reports Server (NTRS)

    Meyn, Larry; Erzberger, Heinz

    2005-01-01

    The long-term growth rate in air-traffic demand leads to future air-traffic densities that are unmanageable by today's air-traffic control system. I n order to accommodate such growth, new technology and operational methods will be needed in the next generation air-traffic control system. One proposal for such a system is the Automated Airspace Concept (AAC). One of the precepts of AAC is to direct aircraft using trajectories that are sent via an air-ground data link. This greatly improves the accuracy in directing aircraft to specific waypoints at specific times. Studies of the Center-TRACON Automation System (CTAS) have shown that increased scheduling accuracy enables increased arrival capacity at CTAS equipped airports.

  2. Accuracy analysis of the space shuttle solid rocket motor profile measuring device

    NASA Technical Reports Server (NTRS)

    Estler, W. Tyler

    1989-01-01

    The Profile Measuring Device (PMD) was developed at the George C. Marshall Space Flight Center following the loss of the Space Shuttle Challenger. It is a rotating gauge used to measure the absolute diameters of mating features of redesigned Solid Rocket Motor field joints. Diameter tolerance of these features are typically + or - 0.005 inches and it is required that the PMD absolute measurement uncertainty be within this tolerance. In this analysis, the absolute accuracy of these measurements were found to be + or - 0.00375 inches, worst case, with a potential accuracy of + or - 0.0021 inches achievable by improved temperature control.

  3. Diagnostic accuracy of routine blood examinations and CSF lactate level for post-neurosurgical bacterial meningitis.

    PubMed

    Zhang, Yang; Xiao, Xiong; Zhang, Junting; Gao, Zhixian; Ji, Nan; Zhang, Liwei

    2017-06-01

    To evaluate the diagnostic accuracy of routine blood examinations and Cerebrospinal Fluid (CSF) lactate level for Post-neurosurgical Bacterial Meningitis (PBM) at a large sample-size of post-neurosurgical patients. The diagnostic accuracies of routine blood examinations and CSF lactate level to distinguish between PAM and PBM were evaluated with the values of the Area Under the Curve of the Receiver Operating Characteristic (AUC -ROC ) by retrospectively analyzing the datasets of post-neurosurgical patients in the clinical information databases. The diagnostic accuracy of routine blood examinations was relatively low (AUC -ROC <0.7). The CSF lactate level achieved rather high diagnostic accuracy (AUC -ROC =0.891; CI 95%, 0.852-0.922). The variables of patient age, operation duration, surgical diagnosis and postoperative days (the interval days between the neurosurgery and examinations) were shown to affect the diagnostic accuracy of these examinations. The variables were integrated with routine blood examinations and CSF lactate level by Fisher discriminant analysis to improve their diagnostic accuracy. As a result, the diagnostic accuracy of blood examinations and CSF lactate level was significantly improved with an AUC -ROC value=0.760 (CI 95%, 0.737-0.782) and 0.921 (CI 95%, 0.887-0.948) respectively. The PBM diagnostic accuracy of routine blood examinations was relatively low, whereas the accuracy of CSF lactate level was high. Some variables that are involved in the incidence of PBM can also affect the diagnostic accuracy for PBM. Taking into account the effects of these variables significantly improves the diagnostic accuracies of routine blood examinations and CSF lactate level. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Improving the Academic Achievement of Third and Fourth Grade Underachievers as a Result of Improved Self-Esteem.

    ERIC Educational Resources Information Center

    Coakley, Barbara Fairfax

    This study was designed to improve the academic achievement of 35 third- and fourth-grade underachievers through improved self-esteem. Specific goals included focusing on self-concept and learning skills reinforcement, with the ultimate goal of increasing academic performance and motivation. Large group sessions with students focused on…

  5. Improving Accuracy of Influenza-Associated Hospitalization Rate Estimates

    PubMed Central

    Reed, Carrie; Kirley, Pam Daily; Aragon, Deborah; Meek, James; Farley, Monica M.; Ryan, Patricia; Collins, Jim; Lynfield, Ruth; Baumbach, Joan; Zansky, Shelley; Bennett, Nancy M.; Fowler, Brian; Thomas, Ann; Lindegren, Mary L.; Atkinson, Annette; Finelli, Lyn; Chaves, Sandra S.

    2015-01-01

    Diagnostic test sensitivity affects rate estimates for laboratory-confirmed influenza–associated hospitalizations. We used data from FluSurv-NET, a national population-based surveillance system for laboratory-confirmed influenza hospitalizations, to capture diagnostic test type by patient age and influenza season. We calculated observed rates by age group and adjusted rates by test sensitivity. Test sensitivity was lowest in adults >65 years of age. For all ages, reverse transcription PCR was the most sensitive test, and use increased from <10% during 2003–2008 to ≈70% during 2009–2013. Observed hospitalization rates per 100,000 persons varied by season: 7.3–50.5 for children <18 years of age, 3.0–30.3 for adults 18–64 years, and 13.6–181.8 for adults >65 years. After 2009, hospitalization rates adjusted by test sensitivity were ≈15% higher for children <18 years, ≈20% higher for adults 18–64 years, and ≈55% for adults >65 years of age. Test sensitivity adjustments improve the accuracy of hospitalization rate estimates. PMID:26292017

  6. Gene masking - a technique to improve accuracy for cancer classification with high dimensionality in microarray data.

    PubMed

    Saini, Harsh; Lal, Sunil Pranit; Naidu, Vimal Vikash; Pickering, Vincel Wince; Singh, Gurmeet; Tsunoda, Tatsuhiko; Sharma, Alok

    2016-12-05

    High dimensional feature space generally degrades classification in several applications. In this paper, we propose a strategy called gene masking, in which non-contributing dimensions are heuristically removed from the data to improve classification accuracy. Gene masking is implemented via a binary encoded genetic algorithm that can be integrated seamlessly with classifiers during the training phase of classification to perform feature selection. It can also be used to discriminate between features that contribute most to the classification, thereby, allowing researchers to isolate features that may have special significance. This technique was applied on publicly available datasets whereby it substantially reduced the number of features used for classification while maintaining high accuracies. The proposed technique can be extremely useful in feature selection as it heuristically removes non-contributing features to improve the performance of classifiers.

  7. An efficient optimization method to improve the measuring accuracy of oxygen saturation by using triangular wave optical signal

    NASA Astrophysics Data System (ADS)

    Li, Gang; Yu, Yue; Zhang, Cui; Lin, Ling

    2017-09-01

    The oxygen saturation is one of the important parameters to evaluate human health. This paper presents an efficient optimization method that can improve the accuracy of oxygen saturation measurement, which employs an optical frequency division triangular wave signal as the excitation signal to obtain dynamic spectrum and calculate oxygen saturation. In comparison to the traditional method measured RMSE (root mean square error) of SpO2 which is 0.1705, this proposed method significantly reduced the measured RMSE which is 0.0965. It is notable that the accuracy of oxygen saturation measurement has been improved significantly. The method can simplify the circuit and bring down the demand of elements. Furthermore, it has a great reference value on improving the signal to noise ratio of other physiological signals.

  8. Spacecraft attitude determination accuracy from mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, D.; Hashmall, J.

    1994-01-01

    This paper summarizes a compilation of attitude determination accuracies attained by a number of satellites supported by the Goddard Space Flight Center Flight Dynamics Facility. The compilation is designed to assist future mission planners in choosing and placing attitude hardware and selecting the attitude determination algorithms needed to achieve given accuracy requirements. The major goal of the compilation is to indicate realistic accuracies achievable using a given sensor complement based on mission experience. It is expected that the use of actual spacecraft experience will make the study especially useful for mission design. A general description of factors influencing spacecraft attitude accuracy is presented. These factors include determination algorithms, inertial reference unit characteristics, and error sources that can affect measurement accuracy. Possible techniques for mitigating errors are also included. Brief mission descriptions are presented with the attitude accuracies attained, grouped by the sensor pairs used in attitude determination. The accuracies for inactive missions represent a compendium of missions report results, and those for active missions represent measurements of attitude residuals. Both three-axis and spin stabilized missions are included. Special emphasis is given to high-accuracy sensor pairs, such as two fixed-head star trackers (FHST's) and fine Sun sensor plus FHST. Brief descriptions of sensor design and mode of operation are included. Also included are brief mission descriptions and plots summarizing the attitude accuracy attained using various sensor complements.

  9. Size at emergence improves accuracy of age estimates in forensically-useful beetle Creophilus maxillosus L. (Staphylinidae).

    PubMed

    Matuszewski, Szymon; Frątczak-Łagiewska, Katarzyna

    2018-02-05

    Insects colonizing human or animal cadavers may be used to estimate post-mortem interval (PMI) usually by aging larvae or pupae sampled on a crime scene. The accuracy of insect age estimates in a forensic context is reduced by large intraspecific variation in insect development time. Here we test the concept that insect size at emergence may be used to predict insect physiological age and accordingly to improve the accuracy of age estimates in forensic entomology. Using results of laboratory study on development of forensically-useful beetle Creophilus maxillosus (Linnaeus, 1758) (Staphylinidae) we demonstrate that its physiological age at emergence [i.e. thermal summation value (K) needed for emergence] fall with an increase of beetle size. In the validation study it was found that K estimated based on the adult insect size was significantly closer to the true K as compared to K from the general thermal summation model. Using beetle length at emergence as a predictor variable and male or female specific model regressing K against beetle length gave the most accurate predictions of age. These results demonstrate that size of C. maxillosus at emergence improves accuracy of age estimates in a forensic context.

  10. Improving registration accuracy.

    PubMed

    Murphy, J Patrick; Shorrosh, Paul

    2008-04-01

    A registration quality assurance initiative--whether manual or automated--can result in benefits such as: Cleaner claims, Reduced cost to collect, Enhanced revenue, Decreased registration, error rates, Improved staff morale, Fewer customer complaints

  11. The Sustainability of Superintendent-Led Reforms to Improve Student Achievement

    ERIC Educational Resources Information Center

    Bagley, Rick Edward

    2012-01-01

    The purpose of this research was threefold. First, the study explored the possible relationship between the tenure of public school district superintendents and the sustainability of their reform efforts to improve student achievement. Second, the study compared superintendents' perceptions of factors supporting or impeding sustainability of their…

  12. Improving accuracy of unbound resilient modulus testing

    DOT National Transportation Integrated Search

    1997-07-01

    The P46 Laboratory Startup and Quality Control Procedure was developed to ensure the accuracy and reliability of the resilient modulus data produced while testing soil and aggregate materials using closed-loop servo-hydraulic systems. It was develope...

  13. New Directions in Social Psychological Interventions to Improve Academic Achievement

    ERIC Educational Resources Information Center

    Wilson, Timothy D.; Buttrick, Nicholas R.

    2016-01-01

    Attempts to improve student achievement typically focus on changing the educational environment (e.g., better schools, better teachers) or on personal characteristics of students (e.g., intelligence, self-control). The 6 articles in this special issue showcase an additional approach, emanating from social psychology, which focuses on students'…

  14. Improving the accuracy in detection of clustered microcalcifications with a context-sensitive classification model.

    PubMed

    Wang, Juan; Nishikawa, Robert M; Yang, Yongyi

    2016-01-01

    cases) and a set of 188 full-field digital mammogram (FFDM) images (95 cases). The FROC analysis results show that the proposed unified classification approach can significantly improve the detection accuracy of two MC detectors on both SFM and FFDM images. Despite the difference in performance between the two detectors, the unified classifiers can reduce their FP rate to a similar level in the output of the two detectors. In particular, with true-positive rate at 85%, the FP rate on SFM images for the DoG detector was reduced from 1.16 to 0.33 clusters/image (unified SVM) and 0.36 clusters/image (unified Adaboost), respectively; similarly, for the SVM detector, the FP rate was reduced from 0.45 clusters/image to 0.30 clusters/image (unified SVM) and 0.25 clusters/image (unified Adaboost), respectively. Similar FP reduction results were also achieved on FFDM images for the two MC detectors. The proposed unified classification approach can be effective for discriminating MCs from FPs caused by different factors (such as MC-like noise patterns and linear structures) in MC detection. The framework is general and can be applicable for further improving the detection accuracy of existing MC detectors.

  15. Color camera computed tomography imaging spectrometer for improved spatial-spectral image accuracy

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W. (Inventor); Bearman, Gregory H. (Inventor); Johnson, William R. (Inventor)

    2011-01-01

    Computed tomography imaging spectrometers ("CTIS"s) having color focal plane array detectors are provided. The color FPA detector may comprise a digital color camera including a digital image sensor, such as a Foveon X3.RTM. digital image sensor or a Bayer color filter mosaic. In another embodiment, the CTIS includes a pattern imposed either directly on the object scene being imaged or at the field stop aperture. The use of a color FPA detector and the pattern improves the accuracy of the captured spatial and spectral information.

  16. A District-Wide High School Formative Experiment Designed to Improve Student Achievement

    ERIC Educational Resources Information Center

    Frey, Nancy; Fisher, Douglas

    2013-01-01

    This study focuses on district leadership designed to improve student achievement. We employed a formative experiment design methodology, a type of design study, to investigate the leadership efforts to improve student and teacher learning. The findings suggest that leadership through professional development and an instructional framework led to…

  17. Four Reasons to Question the Accuracy of a Biotic Index; the Risk of Metric Bias and the Scope to Improve Accuracy

    PubMed Central

    Monaghan, Kieran A.

    2016-01-01

    Natural ecological variability and analytical design can bias the derived value of a biotic index through the variable influence of indicator body-size, abundance, richness, and ascribed tolerance scores. Descriptive statistics highlight this risk for 26 aquatic indicator systems; detailed analysis is provided for contrasting weighted-average indices applying the example of the BMWP, which has the best supporting data. Differences in body size between taxa from respective tolerance classes is a common feature of indicator systems; in some it represents a trend ranging from comparatively small pollution tolerant to larger intolerant organisms. Under this scenario, the propensity to collect a greater proportion of smaller organisms is associated with negative bias however, positive bias may occur when equipment (e.g. mesh-size) selectively samples larger organisms. Biotic indices are often derived from systems where indicator taxa are unevenly distributed along the gradient of tolerance classes. Such skews in indicator richness can distort index values in the direction of taxonomically rich indicator classes with the subsequent degree of bias related to the treatment of abundance data. The misclassification of indicator taxa causes bias that varies with the magnitude of the misclassification, the relative abundance of misclassified taxa and the treatment of abundance data. These artifacts of assessment design can compromise the ability to monitor biological quality. The statistical treatment of abundance data and the manipulation of indicator assignment and class richness can be used to improve index accuracy. While advances in methods of data collection (i.e. DNA barcoding) may facilitate improvement, the scope to reduce systematic bias is ultimately limited to a strategy of optimal compromise. The shortfall in accuracy must be addressed by statistical pragmatism. At any particular site, the net bias is a probabilistic function of the sample data, resulting in an

  18. An adaptive grid to improve the efficiency and accuracy of modelling underwater noise from shipping

    NASA Astrophysics Data System (ADS)

    Trigg, Leah; Chen, Feng; Shapiro, Georgy; Ingram, Simon; Embling, Clare

    2017-04-01

    Underwater noise from shipping is becoming a significant concern and has been listed as a pollutant under Descriptor 11 of the Marine Strategy Framework Directive. Underwater noise models are an essential tool to assess and predict noise levels for regulatory procedures such as environmental impact assessments and ship noise monitoring. There are generally two approaches to noise modelling. The first is based on simplified energy flux models, assuming either spherical or cylindrical propagation of sound energy. These models are very quick but they ignore important water column and seabed properties, and produce significant errors in the areas subject to temperature stratification (Shapiro et al., 2014). The second type of model (e.g. ray-tracing and parabolic equation) is based on an advanced physical representation of sound propagation. However, these acoustic propagation models are computationally expensive to execute. Shipping noise modelling requires spatial discretization in order to group noise sources together using a grid. A uniform grid size is often selected to achieve either the greatest efficiency (i.e. speed of computations) or the greatest accuracy. In contrast, this work aims to produce efficient and accurate noise level predictions by presenting an adaptive grid where cell size varies with distance from the receiver. The spatial range over which a certain cell size is suitable was determined by calculating the distance from the receiver at which propagation loss becomes uniform across a grid cell. The computational efficiency and accuracy of the resulting adaptive grid was tested by comparing it to uniform 1 km and 5 km grids. These represent an accurate and computationally efficient grid respectively. For a case study of the Celtic Sea, an application of the adaptive grid over an area of 160×160 km reduced the number of model executions required from 25600 for a 1 km grid to 5356 in December and to between 5056 and 13132 in August, which

  19. DOD SCHOOLS: Additional Reporting Could Improve Accountability for Academic Achievement of Students with Dyslexia

    DTIC Science & Technology

    2007-12-01

    Representatives DOD SCHOOLS Additional Reporting Could Improve Accountability for Academic Achievement of Students with Dyslexia December...Could Improve Accountability for Academic Achievement of Students with Dyslexia 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Students with Dyslexia Highlights of GAO-08-70, a report to the Chairman, Committee on Science and Technology, House of Representatives Many of our

  20. Leadership to Improve Student Achievement: Focus the Culture on Learning

    ERIC Educational Resources Information Center

    Taylor, Rosemarye T.

    2010-01-01

    This study on leadership for second order change and improved student achievement represents interview and observational research with 62 leaders at the district and school levels in 10 states. Seven consistent leader action themes emerged across all participants regardless of demographics of the school, demographics of the leader, or position…

  1. Understanding the Change Styles of Teachers to Improve Student Achievement

    ERIC Educational Resources Information Center

    Bigby, Arlene May Green

    2009-01-01

    The topic of this dissertation is the understanding of teacher change styles to improve student achievement. Teachers from public schools in a state located in the northern plains were surveyed regarding their Change Styles (preferred approaches to change) and flexibility scores. The results were statistically analyzed to determine if there were…

  2. An index with improved diagnostic accuracy for the diagnosis of Crohn's disease derived from the Lennard-Jones criteria.

    PubMed

    Reinisch, S; Schweiger, K; Pablik, E; Collet-Fenetrier, B; Peyrin-Biroulet, L; Alfaro, I; Panés, J; Moayyedi, P; Reinisch, W

    2016-09-01

    The Lennard-Jones criteria are considered the gold standard for diagnosing Crohn's disease (CD) and include the items granuloma, macroscopic discontinuity, transmural inflammation, fibrosis, lymphoid aggregates and discontinuous inflammation on histology. The criteria have never been subjected to a formal validation process. To develop a validated and improved diagnostic index based on the items of Lennard-Jones criteria. Included were 328 adult patients with long-standing CD (median disease duration 10 years) from three centres and classified as 'established', 'probable' or 'non-CD' by Lennard-Jones criteria at time of diagnosis. Controls were patients with ulcerative colitis (n = 170). The performance of each of the six diagnostic items of Lennard-Jones criteria was modelled by logistic regression and a new index based on stepwise backward selection and cut-offs was developed. The diagnostic value of the new index was analysed by comparing sensitivity, specificity and accuracy vs. Lennard-Jones criteria. By Lennard-Jones criteria 49% (n = 162) of CD patients would have been diagnosed as 'non-CD' at time of diagnosis (sensitivity/specificity/accuracy, 'established' CD: 0.34/0.99/0.67; 'probable' CD: 0.51/0.95/0.73). A new index was derived from granuloma, fibrosis, transmural inflammation and macroscopic discontinuity, but excluded lymphoid aggregates and discontinuous inflammation on histology. Our index provided improved diagnostic accuracy for 'established' and 'probable' CD (sensitivity/specificity/accuracy, 'established' CD: 0.45/1/0.72; 'probable' CD: 0.8/0.85/0.82), including the subgroup isolated colonic CD ('probable' CD, new index: 0.73/0.85/0.79; Lennard-Jones criteria: 0.43/0.95/0.69). We developed an index based on items of Lennard-Jones criteria providing improved diagnostic accuracy for the differential diagnosis between CD and UC. © 2016 John Wiley & Sons Ltd.

  3. Modeling of Geometric Error in Linear Guide Way to Improved the vertical three-axis CNC Milling machine’s accuracy

    NASA Astrophysics Data System (ADS)

    Kwintarini, Widiyanti; Wibowo, Agung; Arthaya, Bagus M.; Yuwana Martawirya, Yatna

    2018-03-01

    The purpose of this study was to improve the accuracy of three-axis CNC Milling Vertical engines with a general approach by using mathematical modeling methods of machine tool geometric errors. The inaccuracy of CNC machines can be caused by geometric errors that are an important factor during the manufacturing process and during the assembly phase, and are factors for being able to build machines with high-accuracy. To improve the accuracy of the three-axis vertical milling machine, by knowing geometric errors and identifying the error position parameters in the machine tool by arranging the mathematical modeling. The geometric error in the machine tool consists of twenty-one error parameters consisting of nine linear error parameters, nine angle error parameters and three perpendicular error parameters. The mathematical modeling approach of geometric error with the calculated alignment error and angle error in the supporting components of the machine motion is linear guide way and linear motion. The purpose of using this mathematical modeling approach is the identification of geometric errors that can be helpful as reference during the design, assembly and maintenance stages to improve the accuracy of CNC machines. Mathematically modeling geometric errors in CNC machine tools can illustrate the relationship between alignment error, position and angle on a linear guide way of three-axis vertical milling machines.

  4. Improving preschoolers' mathematics achievement with tablets: a randomized controlled trial

    NASA Astrophysics Data System (ADS)

    Schacter, John; Jo, Booil

    2017-09-01

    With a randomized field experiment of 433 preschoolers, we tested a tablet mathematics program designed to increase young children's mathematics learning. Intervention students played Math Shelf, a comprehensive iPad preschool and year 1 mathematics app, while comparison children received research-based hands-on mathematics instruction delivered by their classroom teachers. After 22 weeks, there was a large and statistically significant effect on mathematics achievement for Math Shelf students (Cohen's d = .94). Moderator analyses demonstrated an even larger effect for low achieving children (Cohen's d = 1.27). These results suggest that early education teachers can improve their students' mathematics outcomes by integrating experimentally proven tablet software into their daily routines.

  5. Effects of Improvements in Interval Timing on the Mathematics Achievement of Elementary School Students

    ERIC Educational Resources Information Center

    Taub, Gordon E.; McGrew, Kevin S.; Keith, Timothy Z.

    2015-01-01

    This article examines the effect of improvements in timing/rhythmicity on mathematics achievement. A total of 86 participants attending 1st through 4th grades completed pre- and posttest measures of mathematics achievement from the Woodcock-Johnson III Tests of Achievement. Students in the experimental group participated in a 4-week intervention…

  6. Using spectrotemporal indices to improve the fruit-tree crop classification accuracy

    NASA Astrophysics Data System (ADS)

    Peña, M. A.; Liao, R.; Brenning, A.

    2017-06-01

    This study assesses the potential of spectrotemporal indices derived from satellite image time series (SITS) to improve the classification accuracy of fruit-tree crops. Six major fruit-tree crop types in the Aconcagua Valley, Chile, were classified by applying various linear discriminant analysis (LDA) techniques on a Landsat-8 time series of nine images corresponding to the 2014-15 growing season. As features we not only used the complete spectral resolution of the SITS, but also all possible normalized difference indices (NDIs) that can be constructed from any two bands of the time series, a novel approach to derive features from SITS. Due to the high dimensionality of this "enhanced" feature set we used the lasso and ridge penalized variants of LDA (PLDA). Although classification accuracies yielded by the standard LDA applied on the full-band SITS were good (misclassification error rate, MER = 0.13), they were further improved by 23% (MER = 0.10) with ridge PLDA using the enhanced feature set. The most important bands to discriminate the crops of interest were mainly concentrated on the first two image dates of the time series, corresponding to the crops' greenup stage. Despite the high predictor weights provided by the red and near infrared bands, typically used to construct greenness spectral indices, other spectral regions were also found important for the discrimination, such as the shortwave infrared band at 2.11-2.19 μm, sensitive to foliar water changes. These findings support the usefulness of spectrotemporal indices in the context of SITS-based crop type classifications, which until now have been mainly constructed by the arithmetic combination of two bands of the same image date in order to derive greenness temporal profiles like those from the normalized difference vegetation index.

  7. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    USGS Publications Warehouse

    Anderson, Ryan; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott M.; Morris, Richard V.; Ehlmann, Bethany L.; Dyar, M. Darby

    2017-01-01

    Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.

  8. Improving Prediction Accuracy for WSN Data Reduction by Applying Multivariate Spatio-Temporal Correlation

    PubMed Central

    Carvalho, Carlos; Gomes, Danielo G.; Agoulmine, Nazim; de Souza, José Neuman

    2011-01-01

    This paper proposes a method based on multivariate spatial and temporal correlation to improve prediction accuracy in data reduction for Wireless Sensor Networks (WSN). Prediction of data not sent to the sink node is a technique used to save energy in WSNs by reducing the amount of data traffic. However, it may not be very accurate. Simulations were made involving simple linear regression and multiple linear regression functions to assess the performance of the proposed method. The results show a higher correlation between gathered inputs when compared to time, which is an independent variable widely used for prediction and forecasting. Prediction accuracy is lower when simple linear regression is used, whereas multiple linear regression is the most accurate one. In addition to that, our proposal outperforms some current solutions by about 50% in humidity prediction and 21% in light prediction. To the best of our knowledge, we believe that we are probably the first to address prediction based on multivariate correlation for WSN data reduction. PMID:22346626

  9. Techniques to improve the accuracy of noise power spectrum measurements in digital x-ray imaging based on background trends removal.

    PubMed

    Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin

    2011-03-01

    Noise characterization through estimation of the noise power spectrum (NPS) is a central component of the evaluation of digital x-ray systems. Extensive works have been conducted to achieve accurate and precise measurement of NPS. One approach to improve the accuracy of the NPS measurement is to reduce the statistical variance of the NPS results by involving more data samples. However, this method is based on the assumption that the noise in a radiographic image is arising from stochastic processes. In the practical data, the artifactuals always superimpose on the stochastic noise as low-frequency background trends and prevent us from achieving accurate NPS. The purpose of this study was to investigate an appropriate background detrending technique to improve the accuracy of NPS estimation for digital x-ray systems. In order to achieve the optimal background detrending technique for NPS estimate, four methods for artifactuals removal were quantitatively studied and compared: (1) Subtraction of a low-pass-filtered version of the image, (2) subtraction of a 2-D first-order fit to the image, (3) subtraction of a 2-D second-order polynomial fit to the image, and (4) subtracting two uniform exposure images. In addition, background trend removal was separately applied within original region of interest or its partitioned sub-blocks for all four methods. The performance of background detrending techniques was compared according to the statistical variance of the NPS results and low-frequency systematic rise suppression. Among four methods, subtraction of a 2-D second-order polynomial fit to the image was most effective in low-frequency systematic rise suppression and variances reduction for NPS estimate according to the authors' digital x-ray system. Subtraction of a low-pass-filtered version of the image led to NPS variance increment above low-frequency components because of the side lobe effects of frequency response of the boxcar filtering function. Subtracting two

  10. Achieving quality improvement in the nursing home: influence of nursing leadership on communication and teamwork.

    PubMed

    Vogelsmeier, Amy; Scott-Cawiezell, Jill

    2011-01-01

    Leadership, communication, and teamwork are essential elements of organizational capacity and are linked to organizational performance. How those organizations actually achieve improved performance, however, is not clearly understood. In this comparative case study, nursing leadership who facilitated open communication and teamwork achieved improvement while nursing leadership who impeded open communication and teamwork did not.

  11. PCA based feature reduction to improve the accuracy of decision tree c4.5 classification

    NASA Astrophysics Data System (ADS)

    Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.

    2018-03-01

    Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.

  12. Accuracy testing of steel and electric groundwater-level measuring tapes: Test method and in-service tape accuracy

    USGS Publications Warehouse

    Fulford, Janice M.; Clayton, Christopher S.

    2015-10-09

    The calibration device and proposed method were used to calibrate a sample of in-service USGS steel and electric groundwater tapes. The sample of in-service groundwater steel tapes were in relatively good condition. All steel tapes, except one, were accurate to ±0.01 ft per 100 ft over their entire length. One steel tape, which had obvious damage in the first hundred feet, was marginally outside the accuracy of ±0.01 ft per 100 ft by 0.001 ft. The sample of in-service groundwater-level electric tapes were in a range of conditions—from like new, with cosmetic damage, to nonfunctional. The in-service electric tapes did not meet the USGS accuracy recommendation of ±0.01 ft. In-service electric tapes, except for the nonfunctional tape, were accurate to about ±0.03 ft per 100 ft. A comparison of new with in-service electric tapes found that steel-core electric tapes maintained their length and accuracy better than electric tapes without a steel core. The in-service steel tapes could be used as is and achieve USGS accuracy recommendations for groundwater-level measurements. The in-service electric tapes require tape corrections to achieve USGS accuracy recommendations for groundwater-level measurement.

  13. Enhanced CT images by the wavelet transform improving diagnostic accuracy of chest nodules.

    PubMed

    Guo, Xiuhua; Liu, Xiangye; Wang, Huan; Liang, Zhigang; Wu, Wei; He, Qian; Li, Kuncheng; Wang, Wei

    2011-02-01

    The objective of this study was to compare the diagnostic accuracy in the interpretation of chest nodules using original CT images versus enhanced CT images based on the wavelet transform. The CT images of 118 patients with cancers and 60 with benign nodules were used in this study. All images were enhanced through an algorithm based on the wavelet transform. Two experienced radiologists interpreted all the images in two reading sessions. The reading sessions were separated by a minimum of 1 month in order to minimize the effect of observer's recall. The Mann-Whitney U nonparametric test was used to analyze the interpretation results between original and enhanced images. The Kruskal-Wallis H nonparametric test of K independent samples was used to investigate the related factors which could affect the diagnostic accuracy of observers. The area under the ROC curves for the original and enhanced images was 0.681 and 0.736, respectively. There is significant difference in diagnosing the malignant nodules between the original and enhanced images (z = 7.122, P < 0.001), whereas there is no significant difference in diagnosing the benign nodules (z = 0.894, P = 0.371). The results showed that there is significant difference between original and enhancement images when the size of nodules was larger than 2 cm (Z = -2.509, P = 0.012, indicating the size of the nodules is a critical evaluating factor of the diagnostic accuracy of observers). This study indicated that the image enhancement based on wavelet transform could improve the diagnostic accuracy of radiologists for the malignant chest nodules.

  14. Improvement in the accuracy of flux measurement of radio sources by exploiting an arithmetic pattern in photon bunching noise

    NASA Astrophysics Data System (ADS)

    Lieu, Richard

    2018-01-01

    A hierarchy of statistics of increasing sophistication and accuracy is proposed, to exploit an interesting and fundamental arithmetic structure in the photon bunching noise of incoherent light of large photon occupation number, with the purpose of suppressing the noise and rendering a more reliable and unbiased measurement of the light intensity. The method does not require any new hardware, rather it operates at the software level, with the help of high precision computers, to reprocess the intensity time series of the incident light to create a new series with smaller bunching noise coherence length. The ultimate accuracy improvement of this method of flux measurement is limited by the timing resolution of the detector and the photon occupation number of the beam (the higher the photon number the better the performance). The principal application is accuracy improvement in the bolometric flux measurement of a radio source.

  15. MRI-Based Computed Tomography Metal Artifact Correction Method for Improving Proton Range Calculation Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Peter C.; Schreibmann, Eduard; Roper, Justin

    2015-03-15

    Purpose: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations. Methods and Materials: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI. MRI and CT volumetric images were registered with use of 3-dimensional (3D) deformable image registration (DIR). The registration was fine-tuned on a slice-by-slice basis by using 2D DIR.more » Based on the intensity of paired MRI pixel values and HU from an artifact-free slice, we performed a comprehensive analysis to predict the correct HU for the corrupted region. For a proof-of-concept validation, metal artifacts were simulated on a reference data set. Proton range was calculated using reference, artifactual, and corrected images to quantify the reduction in proton range error. The correction method was applied to 4 unique clinical cases. Results: The correction method resulted in substantial artifact reduction, both quantitatively and qualitatively. On respective simulated brain and head and neck CT images, the mean error was reduced from 495 and 370 HU to 108 and 92 HU after correction. Correspondingly, the absolute mean proton range errors of 2.4 cm and 1.7 cm were reduced to less than 2 mm in both cases. Conclusions: Our MRI-based CT artifact correction method can improve CT image quality and proton range calculation accuracy for patients with severe CT artifacts.« less

  16. Improving Precision, Maintaining Accuracy, and Reducing Acquisition Time for Trace Elements in EPMA

    NASA Astrophysics Data System (ADS)

    Donovan, J.; Singer, J.; Armstrong, J. T.

    2016-12-01

    Trace element precision in electron probe micro analysis (EPMA) is limited by intrinsic random variation in the x-ray continuum. Traditionally we characterize background intensity by measuring on either side of the emission line and interpolating the intensity underneath the peak to obtain the net intensity. Alternatively, we can measure the background intensity at the on-peak spectrometer position using a number of standard materials that do not contain the element of interest. This so-called mean atomic number (MAN) background calibration (Donovan, et al., 2016) uses a set of standard measurements, covering an appropriate range of average atomic number, to iteratively estimate the continuum intensity for the unknown composition (and hence average atomic number). We will demonstrate that, at least for materials with a relatively simple matrix such as SiO2, TiO2, ZrSiO4, etc. where one may obtain a matrix matched standard for use in the so called "blank correction", we can obtain trace element accuracy comparable to traditional off-peak methods, and with improved precision, in about half the time. Donovan, Singer and Armstrong, A New EPMA Method for Fast Trace Element Analysis in Simple Matrices ", American Mineralogist, v101, p1839-1853, 2016 Figure 1. Uranium concentration line profiles from quantitative x-ray maps (20 keV, 100 nA, 5 um beam size and 4000 msec per pixel), for both off-peak and MAN background methods without (a), and with (b), the blank correction applied. We see precision significantly improved compared with traditional off-peak measurements while, in this case, the blank correction provides a small but discernable improvement in accuracy.

  17. How to achieve and prove performance improvement - 15 years of experience in German wastewater benchmarking.

    PubMed

    Bertzbach, F; Franz, T; Möller, K

    2012-01-01

    This paper shows the results of performance improvement, which have been achieved in benchmarking projects in the wastewater industry in Germany over the last 15 years. A huge number of changes in operational practice and also in achieved annual savings can be shown, induced in particular by benchmarking at process level. Investigation of this question produces some general findings for the inclusion of performance improvement in a benchmarking project and for the communication of its results. Thus, we elaborate on the concept of benchmarking at both utility and process level, which is still a necessary distinction for the integration of performance improvement into our benchmarking approach. To achieve performance improvement via benchmarking it should be made quite clear that this outcome depends, on one hand, on a well conducted benchmarking programme and, on the other, on the individual situation within each participating utility.

  18. Systematic review of discharge coding accuracy

    PubMed Central

    Burns, E.M.; Rigby, E.; Mamidanna, R.; Bottle, A.; Aylin, P.; Ziprin, P.; Faiz, O.D.

    2012-01-01

    Introduction Routinely collected data sets are increasingly used for research, financial reimbursement and health service planning. High quality data are necessary for reliable analysis. This study aims to assess the published accuracy of routinely collected data sets in Great Britain. Methods Systematic searches of the EMBASE, PUBMED, OVID and Cochrane databases were performed from 1989 to present using defined search terms. Included studies were those that compared routinely collected data sets with case or operative note review and those that compared routinely collected data with clinical registries. Results Thirty-two studies were included. Twenty-five studies compared routinely collected data with case or operation notes. Seven studies compared routinely collected data with clinical registries. The overall median accuracy (routinely collected data sets versus case notes) was 83.2% (IQR: 67.3–92.1%). The median diagnostic accuracy was 80.3% (IQR: 63.3–94.1%) with a median procedure accuracy of 84.2% (IQR: 68.7–88.7%). There was considerable variation in accuracy rates between studies (50.5–97.8%). Since the 2002 introduction of Payment by Results, accuracy has improved in some respects, for example primary diagnoses accuracy has improved from 73.8% (IQR: 59.3–92.1%) to 96.0% (IQR: 89.3–96.3), P= 0.020. Conclusion Accuracy rates are improving. Current levels of reported accuracy suggest that routinely collected data are sufficiently robust to support their use for research and managerial decision-making. PMID:21795302

  19. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat

    PubMed Central

    Rutkoski, Jessica; Poland, Jesse; Mondal, Suchismita; Autrique, Enrique; Pérez, Lorena González; Crossa, José; Reynolds, Matthew; Singh, Ravi

    2016-01-01

    Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial measurements of canopy temperature, and green and red normalized difference vegetation index as secondary traits in pedigree and genomic best linear unbiased prediction models could increase accuracy for grain yield in wheat, Triticum aestivum L., using 557 lines in five environments. Secondary traits on training and test sets, and grain yield on the training set were modeled as multivariate, and compared to univariate models with grain yield on the training set only. Cross validation accuracies were estimated within and across-environment, with and without replication, and with and without correcting for days to heading. We observed that, within environment, with unreplicated secondary trait data, and without correcting for days to heading, secondary traits increased accuracies for grain yield by 56% in pedigree, and 70% in genomic prediction models, on average. Secondary traits increased accuracy slightly more when replicated, and considerably less when models corrected for days to heading. In across-environment prediction, trends were similar but less consistent. These results show that secondary traits measured in high-throughput could be used in pedigree and genomic prediction to improve accuracy. This approach could improve selection in wheat during early stages if validated in early-generation breeding plots. PMID:27402362

  20. New technology in dietary assessment: a review of digital methods in improving food record accuracy.

    PubMed

    Stumbo, Phyllis J

    2013-02-01

    Methods for conducting dietary assessment in the United States date back to the early twentieth century. Methods of assessment encompassed dietary records, written and spoken dietary recalls, FFQ using pencil and paper and more recently computer and internet applications. Emerging innovations involve camera and mobile telephone technology to capture food and meal images. This paper describes six projects sponsored by the United States National Institutes of Health that use digital methods to improve food records and two mobile phone applications using crowdsourcing. The techniques under development show promise for improving accuracy of food records.

  1. Improved Accuracy Using Recursive Bayesian Estimation Based Language Model Fusion in ERP-Based BCI Typing Systems

    PubMed Central

    Orhan, U.; Erdogmus, D.; Roark, B.; Oken, B.; Purwar, S.; Hild, K. E.; Fowler, A.; Fried-Oken, M.

    2013-01-01

    RSVP Keyboard™ is an electroencephalography (EEG) based brain computer interface (BCI) typing system, designed as an assistive technology for the communication needs of people with locked-in syndrome (LIS). It relies on rapid serial visual presentation (RSVP) and does not require precise eye gaze control. Existing BCI typing systems which uses event related potentials (ERP) in EEG suffer from low accuracy due to low signal-to-noise ratio. Henceforth, RSVP Keyboard™ utilizes a context based decision making via incorporating a language model, to improve the accuracy of letter decisions. To further improve the contributions of the language model, we propose recursive Bayesian estimation, which relies on non-committing string decisions, and conduct an offline analysis, which compares it with the existing naïve Bayesian fusion approach. The results indicate the superiority of the recursive Bayesian fusion and in the next generation of RSVP Keyboard™ we plan to incorporate this new approach. PMID:23366432

  2. Back to Anatomy: Improving Landmarking Accuracy of Clinical Procedures Using a Novel Approach to Procedural Teaching.

    PubMed

    Zeller, Michelle; Cristancho, Sayra; Mangel, Joy; Goldszmidt, Mark

    2015-06-01

    Many believe that knowledge of anatomy is essential for performing clinical procedures; however, unlike their surgical counterparts, internal medicine (IM) programs rarely incorporate anatomy review into procedural teaching. This study tested the hypothesis that an educational intervention focused on teaching relevant surface and underlying anatomy would result in improved bone marrow procedure landmarking accuracy. This was a preintervention-postintervention prospective study on landmarking accuracy of consenting IM residents attending their mandatory academic half-day. The intervention included an interactive video and visualization exercise; the video was developed specifically to teach the relevant underlying anatomy and includes views of live volunteers, cadavers, and skeletons. Thirty-one IM residents participated. At pretest, 48% (15/31) of residents landmarked accurately. Inaccuracy of pretest landmarking varied widely (n = 16, mean 20.06 mm; standard deviation 30.03 mm). At posttest, 74% (23/31) of residents accurately performed the procedure. McNemar test revealed a nonsignificant trend toward increased performance at posttest (P = 0.076; unadjusted odds for discordant pairs 3; 95% confidence interval 0.97-9.3). The Wilcoxon signed rank test demonstrated a significant difference between pre- and posttest accuracy in the 16 residents who were inaccurate at pretest (P = 0.004). No association was detected between participant baseline characteristics and pretest accuracy. This study demonstrates that residents who were initially inaccurate were able to significantly improve their landmarking skills by interacting with an educational tool emphasizing the relation between the surface and underlying anatomy. Our results support the use of basic anatomy in teaching bone marrow procedures. Results also support the proper use of video as an effective means for incorporating anatomy teaching around procedural skills.

  3. Improving the accuracy of macromolecular structure refinement at 7 Å resolution.

    PubMed

    Brunger, Axel T; Adams, Paul D; Fromme, Petra; Fromme, Raimund; Levitt, Michael; Schröder, Gunnar F

    2012-06-06

    In X-ray crystallography, molecular replacement and subsequent refinement is challenging at low resolution. We compared refinement methods using synchrotron diffraction data of photosystem I at 7.4 Å resolution, starting from different initial models with increasing deviations from the known high-resolution structure. Standard refinement spoiled the initial models, moving them further away from the true structure and leading to high R(free)-values. In contrast, DEN refinement improved even the most distant starting model as judged by R(free), atomic root-mean-square differences to the true structure, significance of features not included in the initial model, and connectivity of electron density. The best protocol was DEN refinement with initial segmented rigid-body refinement. For the most distant initial model, the fraction of atoms within 2 Å of the true structure improved from 24% to 60%. We also found a significant correlation between R(free) values and the accuracy of the model, suggesting that R(free) is useful even at low resolution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Instructional Leadership Influence on Collective Teacher Efficacy to Improve School Achievement

    ERIC Educational Resources Information Center

    Fancera, Samuel F.; Bliss, James R.

    2011-01-01

    The purpose of this study was to examine whether instructional leadership functions, as defined in Hallinger's Principal Instructional Management Rating Scale, positively influence collective teacher efficacy to improve school achievement. Teachers from sample schools provided data for measures of collective teacher efficacy and instructional…

  5. Improvement in the Accuracy of Flux Measurement of Radio Sources by Exploiting an Arithmetic Pattern in Photon Bunching Noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieu, Richard

    A hierarchy of statistics of increasing sophistication and accuracy is proposed to exploit an interesting and fundamental arithmetic structure in the photon bunching noise of incoherent light of large photon occupation number, with the purpose of suppressing the noise and rendering a more reliable and unbiased measurement of the light intensity. The method does not require any new hardware, rather it operates at the software level with the help of high-precision computers to reprocess the intensity time series of the incident light to create a new series with smaller bunching noise coherence length. The ultimate accuracy improvement of this methodmore » of flux measurement is limited by the timing resolution of the detector and the photon occupation number of the beam (the higher the photon number the better the performance). The principal application is accuracy improvement in the signal-limited bolometric flux measurement of a radio source.« less

  6. Content in Context Improves Deception Detection Accuracy

    ERIC Educational Resources Information Center

    Blair, J. Pete; Levine, Timothy R.; Shaw, Allison S.

    2010-01-01

    Past research has shown that people are only slightly better than chance at distinguishing truths from lies. Higher accuracy rates, however, are possible when contextual knowledge is used to judge the veracity of situated message content. The utility of content in context was shown in a series of experiments with students (N = 26, 45, 51, 25, 127)…

  7. Breaking through barriers: using technology to address executive function weaknesses and improve student achievement.

    PubMed

    Schwartz, David M

    2014-01-01

    Assistive technologies provide significant capabilities for improving student achievement. Improved accessibility, cost, and diversity of applications make integration of technology a powerful tool to compensate for executive function weaknesses and deficits and their impact on student performance, learning, and achievement. These tools can be used to compensate for decreased working memory, poor time management, poor planning and organization, poor initiation, and decreased memory. Assistive technology provides mechanisms to assist students with diverse strengths and weaknesses in mastering core curricular concepts.

  8. Achieving accuracy in first-principles calculations at extreme temperature and pressure

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann; Wills, John

    2013-06-01

    First-principles calculations are increasingly used to provide EOS data at pressures and temperatures where experimental data is difficult or impossible to obtain. The lack of experimental data, however, also precludes validation of the calculations in those regimes. Factors influencing the accuracy of first-principles data include theoretical approximations, and computational approximations used in implementing and solving the underlying equations. The first category includes approximate exchange-correlation functionals and wave equations simplifying the Dirac equation. In the second category are, e.g., basis completeness and pseudo-potentials. While the first category is extremely hard to assess without experimental data, inaccuracies of the second type should be well controlled. We are using two rather different electronic structure methods (VASP and RSPt) to make explicit the requirements for accuracy of the second type. We will discuss the VASP Projector Augmented Wave potentials, with examples for Li and Mo. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens

    We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less

  10. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    DOE PAGES

    Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens; ...

    2016-12-15

    We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less

  11. Dynamic Geometry Software Improves Mathematical Achievement: Systematic Review and Meta-Analysis

    ERIC Educational Resources Information Center

    Chan, Kan Kan; Leung, Siu Wai

    2014-01-01

    Dynamic geometry software (DGS) aims to enhance mathematics education. This systematic review and meta-analysis evaluated the quasi-experimental studies on the effectiveness of DGS-based instruction in improving students' mathematical achievement. Research articles published between 1990 and 2013 were identified from major databases according to a…

  12. The Effectiveness of the SSHA in Improving Prediction of Academic Achievement.

    ERIC Educational Resources Information Center

    Wikoff, Richard L.; Kafka, Gene F.

    1981-01-01

    Investigated the effectiveness of the Survey of Study Habits (SSHA) in improving prediction of achievement. The American College Testing Program English and mathematics subtests were good predictors of gradepoint average. The SSHA subtests accounted for an additional 3 percent of the variance. Sex differences were noted. (Author)

  13. Improving the accuracy of energy baseline models for commercial buildings with occupancy data

    DOE PAGES

    Liang, Xin; Hong, Tianzhen; Shen, Geoffrey Qiping

    2016-07-07

    More than 80% of energy is consumed during operation phase of a building's life cycle, so energy efficiency retrofit for existing buildings is considered a promising way to reduce energy use in buildings. The investment strategies of retrofit depend on the ability to quantify energy savings by “measurement and verification” (M&V), which compares actual energy consumption to how much energy would have been used without retrofit (called the “baseline” of energy use). Although numerous models exist for predicting baseline of energy use, a critical limitation is that occupancy has not been included as a variable. However, occupancy rate is essentialmore » for energy consumption and was emphasized by previous studies. This study develops a new baseline model which is built upon the Lawrence Berkeley National Laboratory (LBNL) model but includes the use of building occupancy data. The study also proposes metrics to quantify the accuracy of prediction and the impacts of variables. However, the results show that including occupancy data does not significantly improve the accuracy of the baseline model, especially for HVAC load. The reasons are discussed further. In addition, sensitivity analysis is conducted to show the influence of parameters in baseline models. To conclude, the results from this study can help us understand the influence of occupancy on energy use, improve energy baseline prediction by including the occupancy factor, reduce risks of M&V and facilitate investment strategies of energy efficiency retrofit.« less

  14. Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods?

    PubMed Central

    Austin, Peter C; Lee, Douglas S; Steyerberg, Ewout W; Tu, Jack V

    2012-01-01

    In biomedical research, the logistic regression model is the most commonly used method for predicting the probability of a binary outcome. While many clinical researchers have expressed an enthusiasm for regression trees, this method may have limited accuracy for predicting health outcomes. We aimed to evaluate the improvement that is achieved by using ensemble-based methods, including bootstrap aggregation (bagging) of regression trees, random forests, and boosted regression trees. We analyzed 30-day mortality in two large cohorts of patients hospitalized with either acute myocardial infarction (N = 16,230) or congestive heart failure (N = 15,848) in two distinct eras (1999–2001 and 2004–2005). We found that both the in-sample and out-of-sample prediction of ensemble methods offered substantial improvement in predicting cardiovascular mortality compared to conventional regression trees. However, conventional logistic regression models that incorporated restricted cubic smoothing splines had even better performance. We conclude that ensemble methods from the data mining and machine learning literature increase the predictive performance of regression trees, but may not lead to clear advantages over conventional logistic regression models for predicting short-term mortality in population-based samples of subjects with cardiovascular disease. PMID:22777999

  15. Three Decades of Precision Orbit Determination Progress, Achievements, Future Challenges and its Vital Contribution to Oceanography and Climate Research

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott; Rowlands, David; Lemoine, Frank; Zelensky, Nikita; Beckley, Brian; Klosko, Steve; Chinn, Doug

    2006-01-01

    Although satellite altimetry has been around for thirty years, the last fifteen beginning with the launch of TOPEX/Poseidon (TP) have yielded an abundance of significant results including: monitoring of ENS0 events, detection of internal tides, determination of accurate global tides, unambiguous delineation of Rossby waves and their propagation characteristics, accurate determination of geostrophic currents, and a multi-decadal time series of mean sea level trend and dynamic ocean topography variability. While the high level of accuracy being achieved is a result of both instrument maturity and the quality of models and correction algorithms applied to the data, improving the quality of the Climate Data Records produced from altimetry is highly dependent on concurrent progress being made in fields such as orbit determination. The precision orbits form the reference frame from which the radar altimeter observations are made. Therefore, the accuracy of the altimetric mapping is limited to a great extent by the accuracy to which a satellite orbit can be computed. The TP mission represents the first time that the radial component of an altimeter orbit was routinely computed with an accuracy of 2-cm. Recently it has been demonstrated that it is possible to compute the radial component of Jason orbits with an accuracy of better than 1-cm. Additionally, still further improvements in TP orbits are being achieved with new techniques and algorithms largely developed from combined Jason and TP data analysis. While these recent POD achievements are impressive, the new accuracies are now revealing subtle systematic orbit error that manifest as both intra and inter annual ocean topography errors. Additionally the construction of inter-decadal time series of climate data records requires the removal of systematic differences across multiple missions. Current and future efforts must focus on the understanding and reduction of these errors in order to generate a complete and

  16. The methodological quality of diagnostic test accuracy studies for musculoskeletal conditions can be improved.

    PubMed

    Henschke, Nicholas; Keuerleber, Julia; Ferreira, Manuela; Maher, Christopher G; Verhagen, Arianne P

    2014-04-01

    To provide an overview of reporting and methodological quality in diagnostic test accuracy (DTA) studies in the musculoskeletal field and evaluate the use of the QUality Assessment of Diagnostic Accuracy Studies (QUADAS) checklist. A literature review identified all systematic reviews that evaluated the accuracy of clinical tests to diagnose musculoskeletal conditions and used the QUADAS checklist. Two authors screened all identified reviews and extracted data on the target condition, index tests, reference standard, included studies, and QUADAS items. A descriptive analysis of the QUADAS checklist was performed, along with Rasch analysis to examine the construct validity and internal reliability. A total of 19 systematic reviews were included, which provided data on individual items of the QUADAS checklist for 392 DTA studies. In the musculoskeletal field, uninterpretable or intermediate test results are commonly not reported, with 175 (45%) studies scoring "no" to this item. The proportion of studies fulfilling certain items varied from 22% (item 11) to 91% (item 3). The interrater reliability of the QUADAS checklist was good and Rasch analysis showed excellent construct validity and internal consistency. This overview identified areas where the reporting and performance of diagnostic studies within the musculoskeletal field can be improved. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Teachers' Perception of Their Principal's Leadership Style and the Effects on Student Achievement in Improving and Non-Improving Schools

    ERIC Educational Resources Information Center

    Hardman, Brenda Kay

    2011-01-01

    Teachers' perceptions of their school leaders influence student achievement in their schools. The extent of this influence is examined in this study. This quantitative study examined teachers' perceptions of the leadership style of their principals as transformational, transactional or passive-avoidant in improving and non-improving schools in…

  18. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    PubMed Central

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  19. How 3D patient-specific instruments improve accuracy of pelvic bone tumour resection in a cadaveric study.

    PubMed

    Sallent, A; Vicente, M; Reverté, M M; Lopez, A; Rodríguez-Baeza, A; Pérez-Domínguez, M; Velez, R

    2017-10-01

    To assess the accuracy of patient-specific instruments (PSIs) versus standard manual technique and the precision of computer-assisted planning and PSI-guided osteotomies in pelvic tumour resection. CT scans were obtained from five female cadaveric pelvises. Five osteotomies were designed using Mimics software: sacroiliac, biplanar supra-acetabular, two parallel iliopubic and ischial. For cases of the left hemipelvis, PSIs were designed to guide standard oscillating saw osteotomies and later manufactured using 3D printing. Osteotomies were performed using the standard manual technique in cases of the right hemipelvis. Post-resection CT scans were quantitatively analysed. Student's t -test and Mann-Whitney U test were used. Compared with the manual technique, PSI-guided osteotomies improved accuracy by a mean 9.6 mm (p < 0.008) in the sacroiliac osteotomies, 6.2 mm (p < 0.008) and 5.8 mm (p < 0.032) in the biplanar supra-acetabular, 3 mm (p < 0.016) in the ischial and 2.2 mm (p < 0.032) and 2.6 mm (p < 0.008) in the parallel iliopubic osteotomies, with a mean linear deviation of 4.9 mm (p < 0.001) for all osteotomies. Of the manual osteotomies, 53% (n = 16) had a linear deviation > 5 mm and 27% (n = 8) were > 10 mm. In the PSI cases, deviations were 10% (n = 3) and 0 % (n = 0), respectively. For angular deviation from pre-operative plans, we observed a mean improvement of 7.06° (p < 0.001) in pitch and 2.94° (p < 0.001) in roll, comparing PSI and the standard manual technique. In an experimental study, computer-assisted planning and PSIs improved accuracy in pelvic tumour resections, bringing osteotomy results closer to the parameters set in pre-operative planning, as compared with standard manual techniques. Cite this article : A. Sallent, M. Vicente, M. M. Reverté, A. Lopez, A. Rodríguez-Baeza, M. Pérez-Domínguez, R. Velez. How 3D patient-specific instruments improve accuracy of pelvic bone tumour resection in a cadaveric study. Bone Joint Res 2017

  20. Enhanced Positioning Algorithm of ARPS for Improving Accuracy and Expanding Service Coverage

    PubMed Central

    Lee, Kyuman; Baek, Hoki; Lim, Jaesung

    2016-01-01

    The airborne relay-based positioning system (ARPS), which employs the relaying of navigation signals, was proposed as an alternative positioning system. However, the ARPS has limitations, such as relatively large vertical error and service restrictions, because firstly, the user position is estimated based on airborne relays that are located in one direction, and secondly, the positioning is processed using only relayed navigation signals. In this paper, we propose an enhanced positioning algorithm to improve the performance of the ARPS. The main idea of the enhanced algorithm is the adaptable use of either virtual or direct measurements of reference stations in the calculation process based on the structural features of the ARPS. Unlike the existing two-step algorithm for airborne relay and user positioning, the enhanced algorithm is divided into two cases based on whether the required number of navigation signals for user positioning is met. In the first case, where the number of signals is greater than four, the user first estimates the positions of the airborne relays and its own initial position. Then, the user position is re-estimated by integrating a virtual measurement of a reference station that is calculated using the initial estimated user position and known reference positions. To prevent performance degradation, the re-estimation is performed after determining its requirement through comparing the expected position errors. If the navigation signals are insufficient, such as when the user is outside of airborne relay coverage, the user position is estimated by additionally using direct signal measurements of the reference stations in place of absent relayed signals. The simulation results demonstrate that a higher accuracy level can be achieved because the user position is estimated based on the measurements of airborne relays and a ground station. Furthermore, the service coverage is expanded by using direct measurements of reference stations for user

  1. Enhanced Positioning Algorithm of ARPS for Improving Accuracy and Expanding Service Coverage.

    PubMed

    Lee, Kyuman; Baek, Hoki; Lim, Jaesung

    2016-08-12

    The airborne relay-based positioning system (ARPS), which employs the relaying of navigation signals, was proposed as an alternative positioning system. However, the ARPS has limitations, such as relatively large vertical error and service restrictions, because firstly, the user position is estimated based on airborne relays that are located in one direction, and secondly, the positioning is processed using only relayed navigation signals. In this paper, we propose an enhanced positioning algorithm to improve the performance of the ARPS. The main idea of the enhanced algorithm is the adaptable use of either virtual or direct measurements of reference stations in the calculation process based on the structural features of the ARPS. Unlike the existing two-step algorithm for airborne relay and user positioning, the enhanced algorithm is divided into two cases based on whether the required number of navigation signals for user positioning is met. In the first case, where the number of signals is greater than four, the user first estimates the positions of the airborne relays and its own initial position. Then, the user position is re-estimated by integrating a virtual measurement of a reference station that is calculated using the initial estimated user position and known reference positions. To prevent performance degradation, the re-estimation is performed after determining its requirement through comparing the expected position errors. If the navigation signals are insufficient, such as when the user is outside of airborne relay coverage, the user position is estimated by additionally using direct signal measurements of the reference stations in place of absent relayed signals. The simulation results demonstrate that a higher accuracy level can be achieved because the user position is estimated based on the measurements of airborne relays and a ground station. Furthermore, the service coverage is expanded by using direct measurements of reference stations for user

  2. Structural reanalysis via a mixed method. [using Taylor series for accuracy improvement

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1975-01-01

    A study is made of the approximate structural reanalysis technique based on the use of Taylor series expansion of response variables in terms of design variables in conjunction with the mixed method. In addition, comparisons are made with two reanalysis techniques based on the displacement method. These techniques are the Taylor series expansion and the modified reduced basis. It is shown that the use of the reciprocals of the sizing variables as design variables (which is the natural choice in the mixed method) can result in a substantial improvement in the accuracy of the reanalysis technique. Numerical results are presented for a space truss structure.

  3. Assessing and Ensuring GOES-R Magnetometer Accuracy

    NASA Technical Reports Server (NTRS)

    Kronenwetter, Jeffrey; Carter, Delano R.; Todirita, Monica; Chu, Donald

    2016-01-01

    The GOES-R magnetometer accuracy requirement is 1.7 nanoteslas (nT). During quiet times (100 nT), accuracy is defined as absolute mean plus 3 sigma. During storms (300 nT), accuracy is defined as absolute mean plus 2 sigma. To achieve this, the sensor itself has better than 1 nT accuracy. Because zero offset and scale factor drift over time, it is also necessary to perform annual calibration maneuvers. To predict performance, we used covariance analysis and attempted to corroborate it with simulations. Although not perfect, the two generally agree and show the expected behaviors. With the annual calibration regimen, these predictions suggest that the magnetometers will meet their accuracy requirements.

  4. Improving Achievement in Low-Performing Schools: Key Results for School Leaders

    ERIC Educational Resources Information Center

    Ward, Randolph E.; Burke, Mary Ann

    2004-01-01

    As accountability in schools becomes more crucial, educators are looking for comprehensive and innovative management practices that respond to challenges and realities of student academic achievement. In order to improve academic performance and the quality of instruction, the entire school community needs to be involved. This book provides six…

  5. Improved numerical methods for turbulent viscous recirculating flows

    NASA Technical Reports Server (NTRS)

    Turan, A.; Vandoormaal, J. P.

    1988-01-01

    The performance of discrete methods for the prediction of fluid flows can be enhanced by improving the convergence rate of solvers and by increasing the accuracy of the discrete representation of the equations of motion. This report evaluates the gains in solver performance that are available when various acceleration methods are applied. Various discretizations are also examined and two are recommended because of their accuracy and robustness. Insertion of the improved discretization and solver accelerator into a TEACH mode, that has been widely applied to combustor flows, illustrates the substantial gains to be achieved.

  6. Improved accuracy of co-morbidity coding over time after the introduction of ICD-10 administrative data

    PubMed Central

    2011-01-01

    Background Co-morbidity information derived from administrative data needs to be validated to allow its regular use. We assessed evolution in the accuracy of coding for Charlson and Elixhauser co-morbidities at three time points over a 5-year period, following the introduction of the International Classification of Diseases, 10th Revision (ICD-10), coding of hospital discharges. Methods Cross-sectional time trend evaluation study of coding accuracy using hospital chart data of 3'499 randomly selected patients who were discharged in 1999, 2001 and 2003, from two teaching and one non-teaching hospital in Switzerland. We measured sensitivity, positive predictive and Kappa values for agreement between administrative data coded with ICD-10 and chart data as the 'reference standard' for recording 36 co-morbidities. Results For the 17 the Charlson co-morbidities, the sensitivity - median (min-max) - was 36.5% (17.4-64.1) in 1999, 42.5% (22.2-64.6) in 2001 and 42.8% (8.4-75.6) in 2003. For the 29 Elixhauser co-morbidities, the sensitivity was 34.2% (1.9-64.1) in 1999, 38.6% (10.5-66.5) in 2001 and 41.6% (5.1-76.5) in 2003. Between 1999 and 2003, sensitivity estimates increased for 30 co-morbidities and decreased for 6 co-morbidities. The increase in sensitivities was statistically significant for six conditions and the decrease significant for one. Kappa values were increased for 29 co-morbidities and decreased for seven. Conclusions Accuracy of administrative data in recording clinical conditions improved slightly between 1999 and 2003. These findings are of relevance to all jurisdictions introducing new coding systems, because they demonstrate a phenomenon of improved administrative data accuracy that may relate to a coding 'learning curve' with the new coding system. PMID:21849089

  7. Improved accuracy of co-morbidity coding over time after the introduction of ICD-10 administrative data.

    PubMed

    Januel, Jean-Marie; Luthi, Jean-Christophe; Quan, Hude; Borst, François; Taffé, Patrick; Ghali, William A; Burnand, Bernard

    2011-08-18

    Co-morbidity information derived from administrative data needs to be validated to allow its regular use. We assessed evolution in the accuracy of coding for Charlson and Elixhauser co-morbidities at three time points over a 5-year period, following the introduction of the International Classification of Diseases, 10th Revision (ICD-10), coding of hospital discharges. Cross-sectional time trend evaluation study of coding accuracy using hospital chart data of 3'499 randomly selected patients who were discharged in 1999, 2001 and 2003, from two teaching and one non-teaching hospital in Switzerland. We measured sensitivity, positive predictive and Kappa values for agreement between administrative data coded with ICD-10 and chart data as the 'reference standard' for recording 36 co-morbidities. For the 17 the Charlson co-morbidities, the sensitivity - median (min-max) - was 36.5% (17.4-64.1) in 1999, 42.5% (22.2-64.6) in 2001 and 42.8% (8.4-75.6) in 2003. For the 29 Elixhauser co-morbidities, the sensitivity was 34.2% (1.9-64.1) in 1999, 38.6% (10.5-66.5) in 2001 and 41.6% (5.1-76.5) in 2003. Between 1999 and 2003, sensitivity estimates increased for 30 co-morbidities and decreased for 6 co-morbidities. The increase in sensitivities was statistically significant for six conditions and the decrease significant for one. Kappa values were increased for 29 co-morbidities and decreased for seven. Accuracy of administrative data in recording clinical conditions improved slightly between 1999 and 2003. These findings are of relevance to all jurisdictions introducing new coding systems, because they demonstrate a phenomenon of improved administrative data accuracy that may relate to a coding 'learning curve' with the new coding system.

  8. Does probabilistic modelling of linkage disequilibrium evolution improve the accuracy of QTL location in animal pedigree?

    PubMed

    Cierco-Ayrolles, Christine; Dejean, Sébastien; Legarra, Andrés; Gilbert, Hélène; Druet, Tom; Ytournel, Florence; Estivals, Delphine; Oumouhou, Naïma; Mangin, Brigitte

    2010-10-22

    Since 2001, the use of more and more dense maps has made researchers aware that combining linkage and linkage disequilibrium enhances the feasibility of fine-mapping genes of interest. So, various method types have been derived to include concepts of population genetics in the analyses. One major drawback of many of these methods is their computational cost, which is very significant when many markers are considered. Recent advances in technology, such as SNP genotyping, have made it possible to deal with huge amount of data. Thus the challenge that remains is to find accurate and efficient methods that are not too time consuming. The study reported here specifically focuses on the half-sib family animal design. Our objective was to determine whether modelling of linkage disequilibrium evolution improved the mapping accuracy of a quantitative trait locus of agricultural interest in these populations. We compared two methods of fine-mapping. The first one was an association analysis. In this method, we did not model linkage disequilibrium evolution. Therefore, the modelling of the evolution of linkage disequilibrium was a deterministic process; it was complete at time 0 and remained complete during the following generations. In the second method, the modelling of the evolution of population allele frequencies was derived from a Wright-Fisher model. We simulated a wide range of scenarios adapted to animal populations and compared these two methods for each scenario. Our results indicated that the improvement produced by probabilistic modelling of linkage disequilibrium evolution was not significant. Both methods led to similar results concerning the location accuracy of quantitative trait loci which appeared to be mainly improved by using four flanking markers instead of two. Therefore, in animal half-sib designs, modelling linkage disequilibrium evolution using a Wright-Fisher model does not significantly improve the accuracy of the QTL location when compared to a

  9. Silver Coating for High-Mass-Accuracy Imaging Mass Spectrometry of Fingerprints on Nanostructured Silicon.

    PubMed

    Guinan, Taryn M; Gustafsson, Ove J R; McPhee, Gordon; Kobus, Hilton; Voelcker, Nicolas H

    2015-11-17

    Nanostructure imaging mass spectrometry (NIMS) using porous silicon (pSi) is a key technique for molecular imaging of exogenous and endogenous low molecular weight compounds from fingerprints. However, high-mass-accuracy NIMS can be difficult to achieve as time-of-flight (ToF) mass analyzers, which dominate the field, cannot sufficiently compensate for shifts in measured m/z values. Here, we show internal recalibration using a thin layer of silver (Ag) sputter-coated onto functionalized pSi substrates. NIMS peaks for several previously reported fingerprint components were selected and mass accuracy was compared to theoretical values. Mass accuracy was improved by more than an order of magnitude in several cases. This straightforward method should form part of the standard guidelines for NIMS studies for spatial characterization of small molecules.

  10. An improved semi-implicit method for structural dynamics analysis

    NASA Technical Reports Server (NTRS)

    Park, K. C.

    1982-01-01

    A semi-implicit algorithm is presented for direct time integration of the structural dynamics equations. The algorithm avoids the factoring of the implicit difference solution matrix and mitigates the unacceptable accuracy losses which plagued previous semi-implicit algorithms. This substantial accuracy improvement is achieved by augmenting the solution matrix with two simple diagonal matrices of the order of the integration truncation error.

  11. Effective Strategies Urban Superintendents Utilize That Improve the Academic Achievement for African American Males

    ERIC Educational Resources Information Center

    Prioleau, Lushandra

    2013-01-01

    This study examined the effective strategies, resources, and programs urban superintendents utilize to improve the academic achievement for African-American males. This study employed a mixed-methods approach to answer the following research questions regarding urban superintendents and the academic achievement for African-American males: What…

  12. SU-E-J-133: Autosegmentation of Linac CBCT: Improved Accuracy Via Penalized Likelihood Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y

    2015-06-15

    Purpose: To improve the quality of kV X-ray cone beam CT (CBCT) for use in radiotherapy delivery assessment and re-planning by using penalized likelihood (PL) iterative reconstruction and auto-segmentation accuracy of the resulting CBCTs as an image quality metric. Methods: Present filtered backprojection (FBP) CBCT reconstructions can be improved upon by PL reconstruction with image formation models and appropriate regularization constraints. We use two constraints: 1) image smoothing via an edge preserving filter, and 2) a constraint minimizing the differences between the reconstruction and a registered prior image. Reconstructions of prostate therapy CBCTs were computed with constraint 1 alone andmore » with both constraints. The prior images were planning CTs(pCT) deformable-registered to the FBP reconstructions. Anatomy segmentations were done using atlas-based auto-segmentation (Elekta ADMIRE). Results: We observed small but consistent improvements in the Dice similarity coefficients of PL reconstructions over the FBP results, and additional small improvements with the added prior image constraint. For a CBCT with anatomy very similar in appearance to the pCT, we observed these changes in the Dice metric: +2.9% (prostate), +8.6% (rectum), −1.9% (bladder). For a second CBCT with a very different rectum configuration, we observed +0.8% (prostate), +8.9% (rectum), −1.2% (bladder). For a third case with significant lateral truncation of the field of view, we observed: +0.8% (prostate), +8.9% (rectum), −1.2% (bladder). Adding the prior image constraint raised Dice measures by about 1%. Conclusion: Efficient and practical adaptive radiotherapy requires accurate deformable registration and accurate anatomy delineation. We show here small and consistent patterns of improved contour accuracy using PL iterative reconstruction compared with FBP reconstruction. However, the modest extent of these results and the pattern of differences across CBCT cases suggest

  13. Cognitive accuracy and intelligent executive function in the brain and in business.

    PubMed

    Bailey, Charles E

    2007-11-01

    This article reviews research on cognition, language, organizational culture, brain, behavior, and evolution to posit the value of operating with a stable reference point based on cognitive accuracy and a rational bias. Drawing on rational-emotive behavioral science, social neuroscience, and cognitive organizational science on the one hand and a general model of brain and frontal lobe executive function on the other, I suggest implications for organizational success. Cognitive thought processes depend on specific brain structures functioning as effectively as possible under conditions of cognitive accuracy. However, typical cognitive processes in hierarchical business structures promote the adoption and application of subjective organizational beliefs and, thus, cognitive inaccuracies. Applying informed frontal lobe executive functioning to cognition, emotion, and organizational behavior helps minimize the negative effects of indiscriminate application of personal and cultural belief systems to business. Doing so enhances cognitive accuracy and improves communication and cooperation. Organizations operating with cognitive accuracy will tend to respond more nimbly to market pressures and achieve an overall higher level of performance and employee satisfaction.

  14. Improving Student Achievement in Math and Science

    NASA Technical Reports Server (NTRS)

    Sullivan, Nancy G.; Hamsa, Irene Schulz; Heath, Panagiota; Perry, Robert; White, Stacy J.

    1998-01-01

    As the new millennium approaches, a long anticipated reckoning for the education system of the United States is forthcoming, Years of school reform initiatives have not yielded the anticipated results. A particularly perplexing problem involves the lack of significant improvement of student achievement in math and science. Three "Partnership" projects represent collaborative efforts between Xavier University (XU) of Louisiana, Southern University of New Orleans (SUNO), Mississippi Valley State University (MVSU), and the National Aeronautics and Space Administration (NASA), Stennis Space Center (SSC), to enhance student achievement in math and science. These "Partnerships" are focused on students and teachers in federally designated rural and urban empowerment zones and enterprise communities. The major goals of the "Partnerships" include: (1) The identification and dissemination of key indices of success that account for high performance in math and science; (2) The education of pre-service and in-service secondary teachers in knowledge, skills, and competencies that enhance the instruction of high school math and science; (3) The development of faculty to enhance the quality of math and science courses in institutions of higher education; and (4) The incorporation of technology-based instruction in institutions of higher education. These goals will be achieved by the accomplishment of the following objectives: (1) Delineate significant ?best practices? that are responsible for enhancing student outcomes in math and science; (2) Recruit and retain pre-service teachers with undergraduate degrees in Biology, Math, Chemistry, or Physics in a graduate program, culminating with a Master of Arts in Curriculum and Instruction; (3) Provide faculty workshops and opportunities for travel to professional meetings for dissemination of NASA resources information; (4) Implement methodologies and assessment procedures utilizing performance-based applications of higher order

  15. Training Theory of Mind and Executive Control: A Tool for Improving School Achievement?

    ERIC Educational Resources Information Center

    Kloo, Daniela; Perner, Josef

    2008-01-01

    In the preschool years, there are marked improvements in theory of mind (ToM) and executive functions. And, children's competence in these two core cognitive domains is associated with their academic achievement. Therefore, training ToM and executive control could be a valuable tool for improving children's success in school. This article reviews…

  16. Improvement of shallow landslide prediction accuracy using soil parameterisation for a granite area in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Onda, Y.; Kim, J. K.

    2015-01-01

    SHALSTAB model applied to shallow landslides induced by rainfall to evaluate soil properties related with the effect of soil depth for a granite area in Jinbu region, Republic of Korea. Soil depth measured by a knocking pole test and two soil parameters from direct shear test (a and b) as well as one soil parameters from a triaxial compression test (c) were collected to determine the input parameters for the model. Experimental soil data were used for the first simulation (Case I) and, soil data represented the effect of measured soil depth and average soil depth from soil data of Case I were used in the second (Case II) and third simulations (Case III), respectively. All simulations were analysed using receiver operating characteristic (ROC) analysis to determine the accuracy of prediction. ROC analysis results for first simulation showed the low ROC values under 0.75 may be due to the internal friction angle and particularly the cohesion value. Soil parameters calculated from a stochastic hydro-geomorphological model were applied to the SHALSTAB model. The accuracy of Case II and Case III using ROC analysis showed higher accuracy values rather than first simulation. Our results clearly demonstrate that the accuracy of shallow landslide prediction can be improved when soil parameters represented the effect of soil thickness.

  17. Effects of Simulated Interventions to Improve School Entry Academic Skills on Socioeconomic Inequalities in Educational Achievement

    PubMed Central

    Chittleborough, Catherine R; Mittinty, Murthy N; Lawlor, Debbie A; Lynch, John W

    2014-01-01

    Randomized controlled trial evidence shows that interventions before age 5 can improve skills necessary for educational success; the effect of these interventions on socioeconomic inequalities is unknown. Using trial effect estimates, and marginal structural models with data from the Avon Longitudinal Study of Parents and Children (n = 11,764, imputed), simulated effects of plausible interventions to improve school entry academic skills on socioeconomic inequality in educational achievement at age 16 were examined. Progressive universal interventions (i.e., more intense intervention for those with greater need) to improve school entry academic skills could raise population levels of educational achievement by 5% and reduce absolute socioeconomic inequality in poor educational achievement by 15%. PMID:25327718

  18. Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Perkins, Timothy; Adler-Golden, Steven; Matthew, Michael W.; Berk, Alexander; Bernstein, Lawrence S.; Lee, Jamine; Fox, Marsha

    2012-11-01

    Remotely sensed spectral imagery of the earth's surface can be used to fullest advantage when the influence of the atmosphere has been removed and the measurements are reduced to units of reflectance. Here, we provide a comprehensive summary of the latest version of the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes atmospheric correction algorithm. We also report some new code improvements for speed and accuracy. These include the re-working of the original algorithm in C-language code parallelized with message passing interface and containing a new radiative transfer look-up table option, which replaces executions of the MODTRAN model. With computation times now as low as ~10 s per image per computer processor, automated, real-time, on-board atmospheric correction of hyper- and multi-spectral imagery is within reach.

  19. Improving the accuracy of walking piezo motors.

    PubMed

    den Heijer, M; Fokkema, V; Saedi, A; Schakel, P; Rost, M J

    2014-05-01

    Many application areas require ultraprecise, stiff, and compact actuator systems with a high positioning resolution in combination with a large range as well as a high holding and pushing force. One promising solution to meet these conflicting requirements is a walking piezo motor that works with two pairs of piezo elements such that the movement is taken over by one pair, once the other pair reaches its maximum travel distance. A resolution in the pm-range can be achieved, if operating the motor within the travel range of one piezo pair. However, applying the typical walking drive signals, we measure jumps in the displacement up to 2.4 μm, when the movement is given over from one piezo pair to the other. We analyze the reason for these large jumps and propose improved drive signals. The implementation of our new drive signals reduces the jumps to less than 42 nm and makes the motor ideally suitable to operate as a coarse approach motor in an ultra-high vacuum scanning tunneling microscope. The rigidity of the motor is reflected in its high pushing force of 6.4 N.

  20. High accuracy position response calibration method for a micro-channel plate ion detector

    NASA Astrophysics Data System (ADS)

    Hong, R.; Leredde, A.; Bagdasarova, Y.; Fléchard, X.; García, A.; Müller, P.; Knecht, A.; Liénard, E.; Kossin, M.; Sternberg, M. G.; Swanson, H. E.; Zumwalt, D. W.

    2016-11-01

    We have developed a position response calibration method for a micro-channel plate (MCP) detector with a delay-line anode position readout scheme. Using an in situ calibration mask, an accuracy of 8 μm and a resolution of 85 μm (FWHM) have been achieved for MeV-scale α particles and ions with energies of ∼10 keV. At this level of accuracy, the difference between the MCP position responses to high-energy α particles and low-energy ions is significant. The improved performance of the MCP detector can find applications in many fields of AMO and nuclear physics. In our case, it helps reducing systematic uncertainties in a high-precision nuclear β-decay experiment.

  1. A study on low-cost, high-accuracy, and real-time stereo vision algorithms for UAV power line inspection

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Zhang, Baomin; Zhao, Xun; Li, Cong; Lu, Cunyue

    2018-04-01

    Conventional stereo vision algorithms suffer from high levels of hardware resource utilization due to algorithm complexity, or poor levels of accuracy caused by inadequacies in the matching algorithm. To address these issues, we have proposed a stereo range-finding technique that produces an excellent balance between cost, matching accuracy and real-time performance, for power line inspection using UAV. This was achieved through the introduction of a special image preprocessing algorithm and a weighted local stereo matching algorithm, as well as the design of a corresponding hardware architecture. Stereo vision systems based on this technique have a lower level of resource usage and also a higher level of matching accuracy following hardware acceleration. To validate the effectiveness of our technique, a stereo vision system based on our improved algorithms were implemented using the Spartan 6 FPGA. In comparative experiments, it was shown that the system using the improved algorithms outperformed the system based on the unimproved algorithms, in terms of resource utilization and matching accuracy. In particular, Block RAM usage was reduced by 19%, and the improved system was also able to output range-finding data in real time.

  2. School Improvements and Student Achievement: Teachers' Conceptions and Practices in an Urban School Community

    ERIC Educational Resources Information Center

    Gardner, Jendayi Johari

    2012-01-01

    This mixed-methods study is represented by three articles that examine student achievement. The articles were developed based on the following purposes: (1) to examine teachers' conceptions about student achievement; (2) to examine teacher practices for school improvement that reflects elements of a reform model; and (3) to examine teachers'…

  3. What Districts Can Do To Improve Instruction and Achievement in All Schools.

    ERIC Educational Resources Information Center

    Togneri, Wendy

    2003-01-01

    A study of five high-poverty districts making strides in improving student achievement revealed that these districts focused on systemwide strategies including new approaches to professional development; making decisions based on data, not instinct; and redefining leadership roles. (MLF)

  4. Application of round grating angle measurement composite error amendment in the online measurement accuracy improvement of large diameter

    NASA Astrophysics Data System (ADS)

    Wang, Biao; Yu, Xiaofen; Li, Qinzhao; Zheng, Yu

    2008-10-01

    The paper aiming at the influence factor of round grating dividing error, rolling-wheel produce eccentricity and surface shape errors provides an amendment method based on rolling-wheel to get the composite error model which includes all influence factors above, and then corrects the non-circle measurement angle error of the rolling-wheel. We make soft simulation verification and have experiment; the result indicates that the composite error amendment method can improve the diameter measurement accuracy with rolling-wheel theory. It has wide application prospect for the measurement accuracy higher than 5 μm/m.

  5. Accuracy Analysis of a Low-Cost Platform for Positioning and Navigation

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Kuntzsch, C.; Schulze, M. J.; Eggert, D.; Sester, M.

    2012-07-01

    This paper presents an accuracy analysis of a platform based on low-cost components for landmark-based navigation intended for research and teaching purposes. The proposed platform includes a LEGO MINDSTORMS NXT 2.0 kit, an Android-based Smartphone as well as a compact laser scanner Hokuyo URG-04LX. The robot is used in a small indoor environment, where GNSS is not available. Therefore, a landmark map was produced in advance, with the landmark positions provided to the robot. All steps of procedure to set up the platform are shown. The main focus of this paper is the reachable positioning accuracy, which was analyzed in this type of scenario depending on the accuracy of the reference landmarks and the directional and distance measuring accuracy of the laser scanner. Several experiments were carried out, demonstrating the practically achievable positioning accuracy. To evaluate the accuracy, ground truth was acquired using a total station. These results are compared to the theoretically achievable accuracies and the laser scanner's characteristics.

  6. Design Optimization for the Measurement Accuracy Improvement of a Large Range Nanopositioning Stage

    PubMed Central

    Torralba, Marta; Yagüe-Fabra, José Antonio; Albajez, José Antonio; Aguilar, Juan José

    2016-01-01

    Both an accurate machine design and an adequate metrology loop definition are critical factors when precision positioning represents a key issue for the final system performance. This article discusses the error budget methodology as an advantageous technique to improve the measurement accuracy of a 2D-long range stage during its design phase. The nanopositioning platform NanoPla is here presented. Its specifications, e.g., XY-travel range of 50 mm × 50 mm and sub-micrometric accuracy; and some novel designed solutions, e.g., a three-layer and two-stage architecture are described. Once defined the prototype, an error analysis is performed to propose improvement design features. Then, the metrology loop of the system is mathematically modelled to define the propagation of the different sources. Several simplifications and design hypothesis are justified and validated, including the assumption of rigid body behavior, which is demonstrated after a finite element analysis verification. The different error sources and their estimated contributions are enumerated in order to conclude with the final error values obtained from the error budget. The measurement deviations obtained demonstrate the important influence of the working environmental conditions, the flatness error of the plane mirror reflectors and the accurate manufacture and assembly of the components forming the metrological loop. Thus, a temperature control of ±0.1 °C results in an acceptable maximum positioning error for the developed NanoPla stage, i.e., 41 nm, 36 nm and 48 nm in X-, Y- and Z-axis, respectively. PMID:26761014

  7. Improving stamping simulation accuracy by accounting for realistic friction and lubrication conditions: Application to the door-outer of the Mercedes-Benz C-class Coupé

    NASA Astrophysics Data System (ADS)

    Hol, J.; Wiebenga, J. H.; Stock, J.; Wied, J.; Wiegand, K.; Carleer, B.

    2016-08-01

    In the stamping of automotive parts, friction and lubrication play a key role in achieving high quality products. In the development process of new automotive parts, it is therefore crucial to accurately account for these effects in sheet metal forming simulations. Only then, one can obtain reliable and realistic simulation results that correspond to the actual try-out and mass production conditions. In this work, the TriboForm software is used to accurately account for tribology-, friction-, and lubrication conditions in stamping simulations. The enhanced stamping simulations are applied and validated for the door-outer of the Mercedes- Benz C-Class Coupe. The project results demonstrate the improved prediction accuracy of stamping simulations with respect to both part quality and actual stamping process conditions.

  8. Direct position determination for digital modulation signals based on improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Wan-Ting; Yu, Hong-yi; Du, Jian-Ping; Wang, Ding

    2018-04-01

    The Direct Position Determination (DPD) algorithm has been demonstrated to achieve a better accuracy with known signal waveforms. However, the signal waveform is difficult to be completely known in the actual positioning process. To solve the problem, we proposed a DPD method for digital modulation signals based on improved particle swarm optimization algorithm. First, a DPD model is established for known modulation signals and a cost function is obtained on symbol estimation. Second, as the optimization of the cost function is a nonlinear integer optimization problem, an improved Particle Swarm Optimization (PSO) algorithm is considered for the optimal symbol search. Simulations are carried out to show the higher position accuracy of the proposed DPD method and the convergence of the fitness function under different inertia weight and population size. On the one hand, the proposed algorithm can take full advantage of the signal feature to improve the positioning accuracy. On the other hand, the improved PSO algorithm can improve the efficiency of symbol search by nearly one hundred times to achieve a global optimal solution.

  9. Post-operative 3D CT feedback improves accuracy and precision in the learning curve of anatomic ACL femoral tunnel placement.

    PubMed

    Sirleo, Luigi; Innocenti, Massimo; Innocenti, Matteo; Civinini, Roberto; Carulli, Christian; Matassi, Fabrizio

    2018-02-01

    To evaluate the feedback from post-operative three-dimensional computed tomography (3D-CT) on femoral tunnel placement in the learning process, to obtain an anatomic anterior cruciate ligament (ACL) reconstruction. A series of 60 consecutive patients undergoing primary ACL reconstruction using autologous hamstrings single-bundle outside-in technique were prospectively included in the study. ACL reconstructions were performed by the same trainee-surgeon during his learning phase of anatomic ACL femoral tunnel placement. A CT scan with dedicated tunnel study was performed in all patients within 48 h after surgery. The data obtained from the CT scan were processed into a three-dimensional surface model, and a true medial view of the lateral femoral condyle was used for the femoral tunnel placement analysis. Two independent examiners analysed the tunnel placements. The centre of femoral tunnel was measured using a quadrant method as described by Bernard and Hertel. The coordinates measured were compared with anatomic coordinates values described in the literature [deep-to-shallow distance (X-axis) 28.5%; high-to-low distance (Y-axis) 35.2%]. Tunnel placement was evaluated in terms of accuracy and precision. After each ACL reconstruction, results were shown to the surgeon to receive an instant feedback in order to achieve accurate correction and improve tunnel placement for the next surgery. Complications and arthroscopic time were also recorded. Results were divided into three consecutive series (1, 2, 3) of 20 patients each. A trend to placing femoral tunnel slightly shallow in deep-to-shallow distance and slightly high in high-to-low distance was observed in the first and the second series. A progressive improvement in tunnel position was recorded from the first to second series and from the second to the third series. Both accuracy (+52.4%) and precision (+55.7%) increased from the first to the third series (p < 0.001). Arthroscopic time decreased from a mean of

  10. A novel method for improving the accuracy of coordinate transformation in multiple measurement systems

    NASA Astrophysics Data System (ADS)

    Liu, W. L.; Li, Y. W.

    2017-09-01

    Large-scale dimensional metrology usually requires a combination of multiple measurement systems, such as laser tracking, total station, laser scanning, coordinate measuring arm and video photogrammetry, etc. Often, the results from different measurement systems must be combined to provide useful results. The coordinate transformation is used to unify coordinate frames in combination; however, coordinate transformation uncertainties directly affect the accuracy of the final measurement results. In this paper, a novel method is proposed for improving the accuracy of coordinate transformation, combining the advantages of the best-fit least-square and radial basis function (RBF) neural networks. First of all, the configuration of coordinate transformation is introduced and a transformation matrix containing seven variables is obtained. Second, the 3D uncertainty of the transformation model and the residual error variable vector are established based on the best-fit least-square. Finally, in order to optimize the uncertainty of the developed seven-variable transformation model, we used the RBF neural network to identify the uncertainty of the dynamic, and unstructured, owing to its great ability to approximate any nonlinear function to the designed accuracy. Intensive experimental studies were conducted to check the validity of the theoretical results. The results show that the mean error of coordinate transformation decreased from 0.078 mm to 0.054 mm after using this method in contrast with the GUM method.

  11. Assessment of neuropsychiatric symptoms in dementia: toward improving accuracy

    PubMed Central

    Stella, Florindo

    2013-01-01

    The issue of this article concerned the discussion about tools frequently used tools for assessing neuropsychiatric symptoms of patients with dementia, particularly Alzheimer's disease. The aims were to discuss the main tools for evaluating behavioral disturbances, and particularly the accuracy of the Neuropsychiatric Inventory – Clinician Rating Scale (NPI-C). The clinical approach to and diagnosis of neuropsychiatric syndromes in dementia require suitable accuracy. Advances in the recognition and early accurate diagnosis of psychopathological symptoms help guide appropriate pharmacological and non-pharmacological interventions. In addition, recommended standardized and validated measurements contribute to both scientific research and clinical practice. Emotional distress, caregiver burden, and cognitive impairment often experienced by elderly caregivers, may affect the quality of caregiver reports. The clinician rating approach helps attenuate these misinterpretations. In this scenario, the NPI-C is a promising and versatile tool for assessing neuropsychiatric syndromes in dementia, offering good accuracy and high reliability, mainly based on the diagnostic impression of the clinician. This tool can provide both strategies: a comprehensive assessment of neuropsychiatric symptoms in dementia or the investigation of specific psychopathological syndromes such as agitation, depression, anxiety, apathy, sleep disorders, and aberrant motor disorders, among others. PMID:29213846

  12. CT reconstruction techniques for improved accuracy of lung CT airway measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, A.; Ranallo, F. N.; Judy, P. F.

    than STD FBP. Veo reconstructions showed slight improvement over STD FBP reconstructions (4%–9% increase in accuracy). The most improved ID and WA% measures were for the smaller airways, especially for low dose scans reconstructed at half DFOV (18 cm) with the EDGE algorithm in combination with 100% ASIR to mitigate noise. Using the BONE + ASIR at half BONE technique, measures improved by a factor of 2 over STD FBP even at a quarter of the x-ray dose. Conclusions: The flexibility of ASIR in combination with higher frequency algorithms, such as BONE, provided the greatest accuracy for conventional and low x-ray dose relative to FBP. Veo provided more modest improvement in qCT measures, likely due to its compatibility only with the smoother STD kernel.« less

  13. Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes

    PubMed Central

    Makeyev, Oleksandr; Besio, Walter G.

    2016-01-01

    Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected. PMID:27294933

  14. Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes.

    PubMed

    Makeyev, Oleksandr; Besio, Walter G

    2016-06-10

    Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected.

  15. Achievable accuracy of hip screw holding power estimation by insertion torque measurement.

    PubMed

    Erani, Paolo; Baleani, Massimiliano

    2018-02-01

    To ensure stability of proximal femoral fractures, the hip screw must firmly engage into the femoral head. Some studies suggested that screw holding power into trabecular bone could be evaluated, intraoperatively, through measurement of screw insertion torque. However, those studies used synthetic bone, instead of trabecular bone, as host material or they did not evaluate accuracy of predictions. We determined prediction accuracy, also assessing the impact of screw design and host material. We measured, under highly-repeatable experimental conditions, disregarding clinical procedure complexities, insertion torque and pullout strength of four screw designs, both in 120 synthetic and 80 trabecular bone specimens of variable density. For both host materials, we calculated the root-mean-square error and the mean-absolute-percentage error of predictions based on the best fitting model of torque-pullout data, in both single-screw and merged dataset. Predictions based on screw-specific regression models were the most accurate. Host material impacts on prediction accuracy: the replacement of synthetic with trabecular bone decreased both root-mean-square errors, from 0.54 ÷ 0.76 kN to 0.21 ÷ 0.40 kN, and mean-absolute-percentage errors, from 14 ÷ 21% to 10 ÷ 12%. However, holding power predicted on low insertion torque remained inaccurate, with errors up to 40% for torques below 1 Nm. In poor-quality trabecular bone, tissue inhomogeneities likely affect pullout strength and insertion torque to different extents, limiting the predictive power of the latter. This bias decreases when the screw engages good-quality bone. Under this condition, predictions become more accurate although this result must be confirmed by close in-vitro simulation of the clinical procedure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Linear combination methods to improve diagnostic/prognostic accuracy on future observations

    PubMed Central

    Kang, Le; Liu, Aiyi; Tian, Lili

    2014-01-01

    Multiple diagnostic tests or biomarkers can be combined to improve diagnostic accuracy. The problem of finding the optimal linear combinations of biomarkers to maximise the area under the receiver operating characteristic curve has been extensively addressed in the literature. The purpose of this article is threefold: (1) to provide an extensive review of the existing methods for biomarker combination; (2) to propose a new combination method, namely, the nonparametric stepwise approach; (3) to use leave-one-pair-out cross-validation method, instead of re-substitution method, which is overoptimistic and hence might lead to wrong conclusion, to empirically evaluate and compare the performance of different linear combination methods in yielding the largest area under receiver operating characteristic curve. A data set of Duchenne muscular dystrophy was analysed to illustrate the applications of the discussed combination methods. PMID:23592714

  17. Tracking accuracy assessment for concentrator photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Norton, Matthew S. H.; Anstey, Ben; Bentley, Roger W.; Georghiou, George E.

    2010-10-01

    The accuracy to which a concentrator photovoltaic (CPV) system can track the sun is an important parameter that influences a number of measurements that indicate the performance efficiency of the system. This paper presents work carried out into determining the tracking accuracy of a CPV system, and illustrates the steps involved in gaining an understanding of the tracking accuracy. A Trac-Stat SL1 accuracy monitor has been used in the determination of pointing accuracy and has been integrated into the outdoor CPV module test facility at the Photovoltaic Technology Laboratories in Nicosia, Cyprus. Results from this work are provided to demonstrate how important performance indicators may be presented, and how the reliability of results is improved through the deployment of such accuracy monitors. Finally, recommendations on the use of such sensors are provided as a means to improve the interpretation of real outdoor performance.

  18. Multi-Sensor Fusion with Interacting Multiple Model Filter for Improved Aircraft Position Accuracy

    PubMed Central

    Cho, Taehwan; Lee, Changho; Choi, Sangbang

    2013-01-01

    The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter. PMID:23535715

  19. Multi-sensor fusion with interacting multiple model filter for improved aircraft position accuracy.

    PubMed

    Cho, Taehwan; Lee, Changho; Choi, Sangbang

    2013-03-27

    The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter.

  20. Improving multi-GNSS ultra-rapid orbit determination for real-time precise point positioning

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Chen, Xinghan; Ge, Maorong; Schuh, Harald

    2018-03-01

    Currently, with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSS), the real-time positioning and navigation are undergoing dramatic changes with potential for a better performance. To provide more precise and reliable ultra-rapid orbits is critical for multi-GNSS real-time positioning, especially for the three merging constellations Beidou, Galileo and QZSS which are still under construction. In this contribution, we present a five-system precise orbit determination (POD) strategy to fully exploit the GPS + GLONASS + BDS + Galileo + QZSS observations from CDDIS + IGN + BKG archives for the realization of hourly five-constellation ultra-rapid orbit update. After adopting the optimized 2-day POD solution (updated every hour), the predicted orbit accuracy can be obviously improved for all the five satellite systems in comparison to the conventional 1-day POD solution (updated every 3 h). The orbit accuracy for the BDS IGSO satellites can be improved by about 80, 45 and 50% in the radial, cross and along directions, respectively, while the corresponding accuracy improvement for the BDS MEO satellites reaches about 50, 20 and 50% in the three directions, respectively. Furthermore, the multi-GNSS real-time precise point positioning (PPP) ambiguity resolution has been performed by using the improved precise satellite orbits. Numerous results indicate that combined GPS + BDS + GLONASS + Galileo (GCRE) kinematic PPP ambiguity resolution (AR) solutions can achieve the shortest time to first fix (TTFF) and highest positioning accuracy in all coordinate components. With the addition of the BDS, GLONASS and Galileo observations to the GPS-only processing, the GCRE PPP AR solution achieves the shortest average TTFF of 11 min with 7{°} cutoff elevation, while the TTFF of GPS-only, GR, GE and GC PPP AR solution is 28, 15, 20 and 17 min, respectively. As the cutoff elevation increases, the reliability and accuracy of GPS-only PPP AR solutions

  1. Inclusion of Population-specific Reference Panel from India to the 1000 Genomes Phase 3 Panel Improves Imputation Accuracy.

    PubMed

    Ahmad, Meraj; Sinha, Anubhav; Ghosh, Sreya; Kumar, Vikrant; Davila, Sonia; Yajnik, Chittaranjan S; Chandak, Giriraj R

    2017-07-27

    Imputation is a computational method based on the principle of haplotype sharing allowing enrichment of genome-wide association study datasets. It depends on the haplotype structure of the population and density of the genotype data. The 1000 Genomes Project led to the generation of imputation reference panels which have been used globally. However, recent studies have shown that population-specific panels provide better enrichment of genome-wide variants. We compared the imputation accuracy using 1000 Genomes phase 3 reference panel and a panel generated from genome-wide data on 407 individuals from Western India (WIP). The concordance of imputed variants was cross-checked with next-generation re-sequencing data on a subset of genomic regions. Further, using the genome-wide data from 1880 individuals, we demonstrate that WIP works better than the 1000 Genomes phase 3 panel and when merged with it, significantly improves the imputation accuracy throughout the minor allele frequency range. We also show that imputation using only South Asian component of the 1000 Genomes phase 3 panel works as good as the merged panel, making it computationally less intensive job. Thus, our study stresses that imputation accuracy using 1000 Genomes phase 3 panel can be further improved by including population-specific reference panels from South Asia.

  2. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels.

    PubMed

    Erbe, M; Hayes, B J; Matukumalli, L K; Goswami, S; Bowman, P J; Reich, C M; Mason, B A; Goddard, M E

    2012-07-01

    Achieving accurate genomic estimated breeding values for dairy cattle requires a very large reference population of genotyped and phenotyped individuals. Assembling such reference populations has been achieved for breeds such as Holstein, but is challenging for breeds with fewer individuals. An alternative is to use a multi-breed reference population, such that smaller breeds gain some advantage in accuracy of genomic estimated breeding values (GEBV) from information from larger breeds. However, this requires that marker-quantitative trait loci associations persist across breeds. Here, we assessed the gain in accuracy of GEBV in Jersey cattle as a result of using a combined Holstein and Jersey reference population, with either 39,745 or 624,213 single nucleotide polymorphism (SNP) markers. The surrogate used for accuracy was the correlation of GEBV with daughter trait deviations in a validation population. Two methods were used to predict breeding values, either a genomic BLUP (GBLUP_mod), or a new method, BayesR, which used a mixture of normal distributions as the prior for SNP effects, including one distribution that set SNP effects to zero. The GBLUP_mod method scaled both the genomic relationship matrix and the additive relationship matrix to a base at the time the breeds diverged, and regressed the genomic relationship matrix to account for sampling errors in estimating relationship coefficients due to a finite number of markers, before combining the 2 matrices. Although these modifications did result in less biased breeding values for Jerseys compared with an unmodified genomic relationship matrix, BayesR gave the highest accuracies of GEBV for the 3 traits investigated (milk yield, fat yield, and protein yield), with an average increase in accuracy compared with GBLUP_mod across the 3 traits of 0.05 for both Jerseys and Holsteins. The advantage was limited for either Jerseys or Holsteins in using 624,213 SNP rather than 39,745 SNP (0.01 for Holsteins and 0

  3. On the Accuracy of Language Trees

    PubMed Central

    Pompei, Simone; Loreto, Vittorio; Tria, Francesca

    2011-01-01

    Historical linguistics aims at inferring the most likely language phylogenetic tree starting from information concerning the evolutionary relatedness of languages. The available information are typically lists of homologous (lexical, phonological, syntactic) features or characters for many different languages: a set of parallel corpora whose compilation represents a paramount achievement in linguistics. From this perspective the reconstruction of language trees is an example of inverse problems: starting from present, incomplete and often noisy, information, one aims at inferring the most likely past evolutionary history. A fundamental issue in inverse problems is the evaluation of the inference made. A standard way of dealing with this question is to generate data with artificial models in order to have full access to the evolutionary process one is going to infer. This procedure presents an intrinsic limitation: when dealing with real data sets, one typically does not know which model of evolution is the most suitable for them. A possible way out is to compare algorithmic inference with expert classifications. This is the point of view we take here by conducting a thorough survey of the accuracy of reconstruction methods as compared with the Ethnologue expert classifications. We focus in particular on state-of-the-art distance-based methods for phylogeny reconstruction using worldwide linguistic databases. In order to assess the accuracy of the inferred trees we introduce and characterize two generalizations of standard definitions of distances between trees. Based on these scores we quantify the relative performances of the distance-based algorithms considered. Further we quantify how the completeness and the coverage of the available databases affect the accuracy of the reconstruction. Finally we draw some conclusions about where the accuracy of the reconstructions in historical linguistics stands and about the leading directions to improve it. PMID:21674034

  4. Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy.

    PubMed

    Sutherland, Jeffrey J; Nandigam, Ravi K; Erickson, Jon A; Vieth, Michal

    2007-01-01

    Docking methods are used to predict the manner in which a ligand binds to a protein receptor. Many studies have assessed the success rate of programs in self-docking tests, whereby a ligand is docked into the protein structure from which it was extracted. Cross-docking, or using a protein structure from a complex containing a different ligand, provides a more realistic assessment of a docking program's ability to reproduce X-ray results. In this work, cross-docking was performed with CDocker, Fred, and Rocs using multiple X-ray structures for eight proteins (two kinases, one nuclear hormone receptor, one serine protease, two metalloproteases, and two phosphodiesterases). While average cross-docking accuracy is not encouraging, it is shown that using the protein structure from the complex that contains the bound ligand most similar to the docked ligand increases docking accuracy for all methods ("similarity selection"). Identifying the most successful protein conformer ("best selection") and similarity selection substantially reduce the difference between self-docking and average cross-docking accuracy. We identify universal predictors of docking accuracy (i.e., showing consistent behavior across most protein-method combinations), and show that models for predicting docking accuracy built using these parameters can be used to select the most appropriate docking method.

  5. Physician involvement enhances coding accuracy to ensure national standards: an initiative to improve awareness among new junior trainees.

    PubMed

    Nallasivan, S; Gillott, T; Kamath, S; Blow, L; Goddard, V

    2011-06-01

    Record Keeping Standards is a development led by the Royal College of Physicians of London (RCP) Health Informatics Unit and funded by the National Health Service (NHS) Connecting for Health. A supplementary report produced by the RCP makes a number of recommendations based on a study held at an acute hospital trust. We audited the medical notes and coding to assess the accuracy, documentation by the junior doctors and also to correlate our findings with the RCP audit. Northern Lincolnshire & Goole Hospitals NHS Foundation Trust has 114,000 'finished consultant episodes' per year. A total of 100 consecutive medical (50) and rheumatology (50) discharges from Diana Princess of Wales Hospital from August-October 2009 were reviewed. The results showed an improvement in coding accuracy (10% errors), comparable to the RCP audit but with 5% documentation errors. Physician involvement needs enhancing to improve the effectiveness and to ensure clinical safety.

  6. Correcting Memory Improves Accuracy of Predicted Task Duration

    ERIC Educational Resources Information Center

    Roy, Michael M.; Mitten, Scott T.; Christenfeld, Nicholas J. S.

    2008-01-01

    People are often inaccurate in predicting task duration. The memory bias explanation holds that this error is due to people having incorrect memories of how long previous tasks have taken, and these biased memories cause biased predictions. Therefore, the authors examined the effect on increasing predictive accuracy of correcting memory through…

  7. Test Expectancy Affects Metacomprehension Accuracy

    ERIC Educational Resources Information Center

    Thiede, Keith W.; Wiley, Jennifer; Griffin, Thomas D.

    2011-01-01

    Background: Theory suggests that the accuracy of metacognitive monitoring is affected by the cues used to judge learning. Researchers have improved monitoring accuracy by directing attention to more appropriate cues; however, this is the first study to more directly point students to more appropriate cues using instructions regarding tests and…

  8. Improving the sensitivity and accuracy of gamma activation analysis for the rapid determination of gold in mineral ores.

    PubMed

    Tickner, James; Ganly, Brianna; Lovric, Bojan; O'Dwyer, Joel

    2017-04-01

    Mining companies rely on chemical analysis methods to determine concentrations of gold in mineral ore samples. As gold is often mined commercially at concentrations around 1 part-per-million, it is necessary for any analysis method to provide good sensitivity as well as high absolute accuracy. We describe work to improve both the sensitivity and accuracy of the gamma activation analysis (GAA) method for gold. We present analysis results for several suites of ore samples and discuss the design of a GAA facility designed to replace conventional chemical assay in industrial applications. Copyright © 2017. Published by Elsevier Ltd.

  9. Firmware Development Improves System Efficiency

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Most manufacturing processes require physical pointwise positioning of the components or tools from one location to another. Typical mechanical systems utilize either stop-and-go or fixed feed-rate procession to accomplish the task. The first approach achieves positional accuracy but prolongs overall time and increases wear on the mechanical system. The second approach sustains the throughput but compromises positional accuracy. A computer firmware approach has been developed to optimize this point wise mechanism by utilizing programmable interrupt controls to synchronize engineering processes 'on the fly'. This principle has been implemented in an eddy current imaging system to demonstrate the improvement. Software programs were developed that enable a mechanical controller card to transmit interrupts to a system controller as a trigger signal to initiate an eddy current data acquisition routine. The advantages are: (1) optimized manufacturing processes, (2) increased throughput of the system, (3) improved positional accuracy, and (4) reduced wear and tear on the mechanical system.

  10. Approximate Algorithms for Computing Spatial Distance Histograms with Accuracy Guarantees

    PubMed Central

    Grupcev, Vladimir; Yuan, Yongke; Tu, Yi-Cheng; Huang, Jin; Chen, Shaoping; Pandit, Sagar; Weng, Michael

    2014-01-01

    Particle simulation has become an important research tool in many scientific and engineering fields. Data generated by such simulations impose great challenges to database storage and query processing. One of the queries against particle simulation data, the spatial distance histogram (SDH) query, is the building block of many high-level analytics, and requires quadratic time to compute using a straightforward algorithm. Previous work has developed efficient algorithms that compute exact SDHs. While beating the naive solution, such algorithms are still not practical in processing SDH queries against large-scale simulation data. In this paper, we take a different path to tackle this problem by focusing on approximate algorithms with provable error bounds. We first present a solution derived from the aforementioned exact SDH algorithm, and this solution has running time that is unrelated to the system size N. We also develop a mathematical model to analyze the mechanism that leads to errors in the basic approximate algorithm. Our model provides insights on how the algorithm can be improved to achieve higher accuracy and efficiency. Such insights give rise to a new approximate algorithm with improved time/accuracy tradeoff. Experimental results confirm our analysis. PMID:24693210

  11. Geoid undulation accuracy

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.

    1993-01-01

    The determination of the geoid and equipotential surface of the Earth's gravity field, has long been of interest to geodesists and oceanographers. The geoid provides a surface to which the actual ocean surface can be compared with the differences implying information on the circulation patterns of the oceans. For use in oceanographic applications the geoid is ideally needed to a high accuracy and to a high resolution. There are applications that require geoid undulation information to an accuracy of +/- 10 cm with a resolution of 50 km. We are far from this goal today but substantial improvement in geoid determination has been made. In 1979 the cumulative geoid undulation error to spherical harmonic degree 20 was +/- 1.4 m for the GEM10 potential coefficient model. Today the corresponding value has been reduced to +/- 25 cm for GEM-T3 or +/- 11 cm for the OSU91A model. Similar improvements are noted by harmonic degree (wave-length) and in resolution. Potential coefficient models now exist to degree 360 based on a combination of data types. This paper discusses the accuracy changes that have taken place in the past 12 years in the determination of geoid undulations.

  12. Contrast and harmonic imaging improves accuracy and efficiency of novice readers for dobutamine stress echocardiography

    NASA Technical Reports Server (NTRS)

    Vlassak, Irmien; Rubin, David N.; Odabashian, Jill A.; Garcia, Mario J.; King, Lisa M.; Lin, Steve S.; Drinko, Jeanne K.; Morehead, Annitta J.; Prior, David L.; Asher, Craig R.; hide

    2002-01-01

    BACKGROUND: Newer contrast agents as well as tissue harmonic imaging enhance left ventricular (LV) endocardial border delineation, and therefore, improve LV wall-motion analysis. Interpretation of dobutamine stress echocardiography is observer-dependent and requires experience. This study was performed to evaluate whether these new imaging modalities would improve endocardial visualization and enhance accuracy and efficiency of the inexperienced reader interpreting dobutamine stress echocardiography. METHODS AND RESULTS: Twenty-nine consecutive patients with known or suspected coronary artery disease underwent dobutamine stress echocardiography. Both fundamental (2.5 MHZ) and harmonic (1.7 and 3.5 MHZ) mode images were obtained in four standard views at rest and at peak stress during a standard dobutamine infusion stress protocol. Following the noncontrast images, Optison was administered intravenously in bolus (0.5-3.0 ml), and fundamental and harmonic images were obtained. The dobutamine echocardiography studies were reviewed by one experienced and one inexperienced echocardiographer. LV segments were graded for image quality and function. Time for interpretation also was recorded. Contrast with harmonic imaging improved the diagnostic concordance of the novice reader to the expert reader by 7.1%, 7.5%, and 12.6% (P < 0.001) as compared with harmonic imaging, fundamental imaging, and fundamental imaging with contrast, respectively. For the novice reader, reading time was reduced by 47%, 55%, and 58% (P < 0.005) as compared with the time needed for fundamental, fundamental contrast, and harmonic modes, respectively. With harmonic imaging, the image quality score was 4.6% higher (P < 0.001) than for fundamental imaging. Image quality scores were not significantly different for noncontrast and contrast images. CONCLUSION: Harmonic imaging with contrast significantly improves the accuracy and efficiency of the novice dobutamine stress echocardiography reader. The use

  13. Accuracy analysis and design of A3 parallel spindle head

    NASA Astrophysics Data System (ADS)

    Ni, Yanbing; Zhang, Biao; Sun, Yupeng; Zhang, Yuan

    2016-03-01

    As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.

  14. Accuracy evaluation of 3D lidar data from small UAV

    NASA Astrophysics Data System (ADS)

    Tulldahl, H. M.; Bissmarck, Fredrik; Larsson, Hâkan; Grönwall, Christina; Tolt, Gustav

    2015-10-01

    A UAV (Unmanned Aerial Vehicle) with an integrated lidar can be an efficient system for collection of high-resolution and accurate three-dimensional (3D) data. In this paper we evaluate the accuracy of a system consisting of a lidar sensor on a small UAV. High geometric accuracy in the produced point cloud is a fundamental qualification for detection and recognition of objects in a single-flight dataset as well as for change detection using two or several data collections over the same scene. Our work presented here has two purposes: first to relate the point cloud accuracy to data processing parameters and second, to examine the influence on accuracy from the UAV platform parameters. In our work, the accuracy is numerically quantified as local surface smoothness on planar surfaces, and as distance and relative height accuracy using data from a terrestrial laser scanner as reference. The UAV lidar system used is the Velodyne HDL-32E lidar on a multirotor UAV with a total weight of 7 kg. For processing of data into a geographically referenced point cloud, positioning and orientation of the lidar sensor is based on inertial navigation system (INS) data combined with lidar data. The combination of INS and lidar data is achieved in a dynamic calibration process that minimizes the navigation errors in six degrees of freedom, namely the errors of the absolute position (x, y, z) and the orientation (pitch, roll, yaw) measured by GPS/INS. Our results show that low-cost and light-weight MEMS based (microelectromechanical systems) INS equipment with a dynamic calibration process can obtain significantly improved accuracy compared to processing based solely on INS data.

  15. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  16. An Improved BLE Indoor Localization with Kalman-Based Fusion: An Experimental Study

    PubMed Central

    Röbesaat, Jenny; Zhang, Peilin; Abdelaal, Mohamed; Theel, Oliver

    2017-01-01

    Indoor positioning has grasped great attention in recent years. A number of efforts have been exerted to achieve high positioning accuracy. However, there exists no technology that proves its efficacy in various situations. In this paper, we propose a novel positioning method based on fusing trilateration and dead reckoning. We employ Kalman filtering as a position fusion algorithm. Moreover, we adopt an Android device with Bluetooth Low Energy modules as the communication platform to avoid excessive energy consumption and to improve the stability of the received signal strength. To further improve the positioning accuracy, we take the environmental context information into account while generating the position fixes. Extensive experiments in a testbed are conducted to examine the performance of three approaches: trilateration, dead reckoning and the fusion method. Additionally, the influence of the knowledge of the environmental context is also examined. Finally, our proposed fusion method outperforms both trilateration and dead reckoning in terms of accuracy: experimental results show that the Kalman-based fusion, for our settings, achieves a positioning accuracy of less than one meter. PMID:28445421

  17. Digital image analysis: improving accuracy and reproducibility of radiographic measurement.

    PubMed

    Bould, M; Barnard, S; Learmonth, I D; Cunningham, J L; Hardy, J R

    1999-07-01

    To assess the accuracy and reproducibility of a digital image analyser and the human eye, in measuring radiographic dimensions. We experimentally compared radiographic measurement using either an image analyser system or the human eye with digital caliper. The assessment of total hip arthroplasty wear from radiographs relies on both the accuracy of radiographic images and the accuracy of radiographic measurement. Radiographs were taken of a slip gauge (30+/-0.00036 mm) and slip gauge with a femoral stem. The projected dimensions of the radiographic images were calculated by trigonometry. The radiographic dimensions were then measured by blinded observers using both techniques. For a single radiograph, the human eye was accurate to 0.26 mm and reproducible to +/-0.1 mm. In comparison the digital image analyser system was accurate to 0.01 mm with a reproducibility of +/-0.08 mm. In an arthroplasty model, where the dimensions of an object were corrected for magnification by the known dimensions of a femoral head, the human eye was accurate to 0.19 mm, whereas the image analyser system was accurate to 0.04 mm. The digital image analysis system is up to 20 times more accurate than the human eye, and in an arthroplasty model the accuracy of measurement increases four-fold. We believe such image analysis may allow more accurate and reproducible measurement of wear from standard follow-up radiographs.

  18. The implementation of assessment model based on character building to improve students’ discipline and achievement

    NASA Astrophysics Data System (ADS)

    Rusijono; Khotimah, K.

    2018-01-01

    The purpose of this research was to investigate the effect of implementing the assessment model based on character building to improve discipline and student’s achievement. Assessment model based on character building includes three components, which are the behaviour of students, the efforts, and student’s achievement. This assessment model based on the character building is implemented in science philosophy and educational assessment courses, in Graduate Program of Educational Technology Department, Educational Faculty, Universitas Negeri Surabaya. This research used control group pre-test and post-test design. Data collection method used in this research were observation and test. The observation was used to collect the data about the disciplines of the student in the instructional process, while the test was used to collect the data about student’s achievement. Moreover, the study applied t-test to the analysis of data. The result of this research showed that assessment model based on character building improved discipline and student’s achievement.

  19. The Role of Incidental Unfocused Prompts and Recasts in Improving English as a Foreign Language Learners' Accuracy

    ERIC Educational Resources Information Center

    Rahimi, Muhammad; Zhang, Lawrence Jun

    2016-01-01

    This study was designed to investigate the effects of incidental unfocused prompts and recasts on improving English as a foreign language (EFL) learners' grammatical accuracy as measured in students' oral interviews and the Test of English as a Foreign Language (TOEFL) grammar test. The design of the study was quasi-experimental with pre-tests,…

  20. Simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) for dynamic contrast-enhanced MRI of liver.

    PubMed

    Ning, Jia; Sun, Yongliang; Xie, Sheng; Zhang, Bida; Huang, Feng; Koken, Peter; Smink, Jouke; Yuan, Chun; Chen, Huijun

    2018-05-01

    To propose a simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) method for liver dynamic contrast-enhanced MRI. The proposed SAHA simultaneously acquired high temporal-resolution 2D images for vascular input function extraction using Cartesian sampling and 3D large-coverage high spatial-resolution liver dynamic contrast-enhanced images using golden angle stack-of-stars acquisition in an interleaved way. Simulations were conducted to investigate the accuracy of SAHA in pharmacokinetic analysis. A healthy volunteer and three patients with cirrhosis or hepatocellular carcinoma were included in the study to investigate the feasibility of SAHA in vivo. Simulation studies showed that SAHA can provide closer results to the true values and lower root mean square error of estimated pharmacokinetic parameters in all of the tested scenarios. The in vivo scans of subjects provided fair image quality of both 2D images for arterial input function and portal venous input function and 3D whole liver images. The in vivo fitting results showed that the perfusion parameters of healthy liver were significantly different from those of cirrhotic liver and HCC. The proposed SAHA can provide improved accuracy in pharmacokinetic modeling and is feasible in human liver dynamic contrast-enhanced MRI, suggesting that SAHA is a potential tool for liver dynamic contrast-enhanced MRI. Magn Reson Med 79:2629-2641, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. [Expectations from the TraumaNetwork DGU®: Which goals have been achieved? What can be improved?].

    PubMed

    Debus, F; Mand, C; Geraedts, M; Kühne, C A; Frink, M; Siebert, H; Ruchholtz, S

    2016-04-01

    Following the establishment of the first trauma networks in 2009 an almost nationwide certification could be achieved. Despite the impressive number of 46 certified networks, little is known about the actual improvements and the satisfaction of the participating hospitals. This article aims to give a first representative overview of the expectations and actual achievements. An online survey with a total of 36 questions was conducted in 884 hospitals. The questionnaire could be filled out online, sent by post or fax to the AKUT- Office. Descriptive statistical analyses were performed with Microsoft Excel. With 326 responses, a response rate of 48.9% of all active hospitals was achieved. Of the participating hospitals 64.1% (209) were certified and had taken part in the project for an average of 3.9 years. The average score for satisfaction was 2.3, 72.4% (236) felt that there was a need for improvement in the care of severely injured patients and 46.6% (152) in the transfer of patients. In 47.2% (142) no improvement in cooperation with the ambulance service could be determined, 25.2% (82) documented an increase in the number of severely injured patients since participating in the trauma network (TNW-DGU) and 93.9% (306) of all hospitals wanted to participate in the trauma network in the future. It could be shown that important goals, such as simplification of patient transfer or general improvement in cooperation have been achieved. Overall there was a high level of satisfaction among the participating hospitals; however, the survey has identified some points which need to be improved by further intensive work.

  2. Achieving Accuracy Requirements for Forest Biomass Mapping: A Data Fusion Method for Estimating Forest Biomass and LiDAR Sampling Error with Spaceborne Data

    NASA Technical Reports Server (NTRS)

    Montesano, P. M.; Cook, B. D.; Sun, G.; Simard, M.; Zhang, Z.; Nelson, R. F.; Ranson, K. J.; Lutchke, S.; Blair, J. B.

    2012-01-01

    The synergistic use of active and passive remote sensing (i.e., data fusion) demonstrates the ability of spaceborne light detection and ranging (LiDAR), synthetic aperture radar (SAR) and multispectral imagery for achieving the accuracy requirements of a global forest biomass mapping mission. This data fusion approach also provides a means to extend 3D information from discrete spaceborne LiDAR measurements of forest structure across scales much larger than that of the LiDAR footprint. For estimating biomass, these measurements mix a number of errors including those associated with LiDAR footprint sampling over regional - global extents. A general framework for mapping above ground live forest biomass (AGB) with a data fusion approach is presented and verified using data from NASA field campaigns near Howland, ME, USA, to assess AGB and LiDAR sampling errors across a regionally representative landscape. We combined SAR and Landsat-derived optical (passive optical) image data to identify forest patches, and used image and simulated spaceborne LiDAR data to compute AGB and estimate LiDAR sampling error for forest patches and 100m, 250m, 500m, and 1km grid cells. Forest patches were delineated with Landsat-derived data and airborne SAR imagery, and simulated spaceborne LiDAR (SSL) data were derived from orbit and cloud cover simulations and airborne data from NASA's Laser Vegetation Imaging Sensor (L VIS). At both the patch and grid scales, we evaluated differences in AGB estimation and sampling error from the combined use of LiDAR with both SAR and passive optical and with either SAR or passive optical alone. This data fusion approach demonstrates that incorporating forest patches into the AGB mapping framework can provide sub-grid forest information for coarser grid-level AGB reporting, and that combining simulated spaceborne LiDAR with SAR and passive optical data are most useful for estimating AGB when measurements from LiDAR are limited because they minimized

  3. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy

    PubMed Central

    2017-01-01

    Unique Molecular Identifiers (UMIs) are random oligonucleotide barcodes that are increasingly used in high-throughput sequencing experiments. Through a UMI, identical copies arising from distinct molecules can be distinguished from those arising through PCR amplification of the same molecule. However, bioinformatic methods to leverage the information from UMIs have yet to be formalized. In particular, sequencing errors in the UMI sequence are often ignored or else resolved in an ad hoc manner. We show that errors in the UMI sequence are common and introduce network-based methods to account for these errors when identifying PCR duplicates. Using these methods, we demonstrate improved quantification accuracy both under simulated conditions and real iCLIP and single-cell RNA-seq data sets. Reproducibility between iCLIP replicates and single-cell RNA-seq clustering are both improved using our proposed network-based method, demonstrating the value of properly accounting for errors in UMIs. These methods are implemented in the open source UMI-tools software package. PMID:28100584

  4. Teachers' Judgements of Students' Foreign-Language Achievement

    ERIC Educational Resources Information Center

    Zhu, Mingjing; Urhahne, Detlef

    2015-01-01

    Numerous studies have been conducted on the accuracy of teacher judgement in different educational areas such as mathematics, language arts and reading. Teacher judgement of students' foreign-language achievement, however, has been rarely investigated. The study aimed to examine the accuracy of teacher judgement of students' foreign-language…

  5. Improving Student Science Achievement in Grades 4-6 through Hands-On Materials and Concept Verbalization.

    ERIC Educational Resources Information Center

    Brooks, Roger C.

    This report describes a program designed to improve science achievement among students in grades 4-6 in a New Hampshire school. The areas of improvement included physical, earth, and life sciences. Analysis of the problem indicated a need for improved teaching techniques and for additional materials related to the instructional strategies. The…

  6. Improving accuracy of breast cancer biomarker testing in India

    PubMed Central

    Shet, Tanuja

    2017-01-01

    There is a global mandate even in countries with low resources to improve the accuracy of testing biomarkers in breast cancer viz. oestrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2neu) given their critical impact in the management of patients. The steps taken include compulsory participation in an external quality assurance (EQA) programme, centralized testing, and regular performance audits for laboratories. This review addresses the status of ER/PR and HER2neu testing in India and possible reasons for the delay in development of guidelines and mandate for testing in the country. The chief cause of erroneous ER and PR testing in India continues to be easily correctable issues such as fixation and antigen retrieval, while for HER2neu testing, it is the use of low-cost non-validated antibodies and interpretative errors. These deficiencies can however, be rectified by (i) distributing the accountability and responsibility to surgeons and oncologist, (ii) certification of centres for testing in oncology, and (iii) initiation of a national EQA system (EQAS) programme that will help with economical solutions and identifying the centres of excellence and instill a system for reprimand of poorly performing laboratories. PMID:29434058

  7. Boosted classification trees result in minor to modest improvement in the accuracy in classifying cardiovascular outcomes compared to conventional classification trees

    PubMed Central

    Austin, Peter C; Lee, Douglas S

    2011-01-01

    Purpose: Classification trees are increasingly being used to classifying patients according to the presence or absence of a disease or health outcome. A limitation of classification trees is their limited predictive accuracy. In the data-mining and machine learning literature, boosting has been developed to improve classification. Boosting with classification trees iteratively grows classification trees in a sequence of reweighted datasets. In a given iteration, subjects that were misclassified in the previous iteration are weighted more highly than subjects that were correctly classified. Classifications from each of the classification trees in the sequence are combined through a weighted majority vote to produce a final classification. The authors' objective was to examine whether boosting improved the accuracy of classification trees for predicting outcomes in cardiovascular patients. Methods: We examined the utility of boosting classification trees for classifying 30-day mortality outcomes in patients hospitalized with either acute myocardial infarction or congestive heart failure. Results: Improvements in the misclassification rate using boosted classification trees were at best minor compared to when conventional classification trees were used. Minor to modest improvements to sensitivity were observed, with only a negligible reduction in specificity. For predicting cardiovascular mortality, boosted classification trees had high specificity, but low sensitivity. Conclusions: Gains in predictive accuracy for predicting cardiovascular outcomes were less impressive than gains in performance observed in the data mining literature. PMID:22254181

  8. PAIR Comparison between Two Within-Group Conditions of Resting-State fMRI Improves Classification Accuracy

    PubMed Central

    Zhou, Zhen; Wang, Jian-Bao; Zang, Yu-Feng; Pan, Gang

    2018-01-01

    Classification approaches have been increasingly applied to differentiate patients and normal controls using resting-state functional magnetic resonance imaging data (RS-fMRI). Although most previous classification studies have reported promising accuracy within individual datasets, achieving high levels of accuracy with multiple datasets remains challenging for two main reasons: high dimensionality, and high variability across subjects. We used two independent RS-fMRI datasets (n = 31, 46, respectively) both with eyes closed (EC) and eyes open (EO) conditions. For each dataset, we first reduced the number of features to a small number of brain regions with paired t-tests, using the amplitude of low frequency fluctuation (ALFF) as a metric. Second, we employed a new method for feature extraction, named the PAIR method, examining EC and EO as paired conditions rather than independent conditions. Specifically, for each dataset, we obtained EC minus EO (EC—EO) maps of ALFF from half of subjects (n = 15 for dataset-1, n = 23 for dataset-2) and obtained EO—EC maps from the other half (n = 16 for dataset-1, n = 23 for dataset-2). A support vector machine (SVM) method was used for classification of EC RS-fMRI mapping and EO mapping. The mean classification accuracy of the PAIR method was 91.40% for dataset-1, and 92.75% for dataset-2 in the conventional frequency band of 0.01–0.08 Hz. For cross-dataset validation, we applied the classifier from dataset-1 directly to dataset-2, and vice versa. The mean accuracy of cross-dataset validation was 94.93% for dataset-1 to dataset-2 and 90.32% for dataset-2 to dataset-1 in the 0.01–0.08 Hz range. For the UNPAIR method, classification accuracy was substantially lower (mean 69.89% for dataset-1 and 82.97% for dataset-2), and was much lower for cross-dataset validation (64.69% for dataset-1 to dataset-2 and 64.98% for dataset-2 to dataset-1) in the 0.01–0.08 Hz range. In conclusion, for within-group design studies (e

  9. Improved assessment of accuracy and performance using a rotational paper-based device for multiplexed detection of heavy metals.

    PubMed

    Sun, Xiange; Li, Bowei; Qi, Anjin; Tian, Chongguo; Han, Jinglong; Shi, Yajun; Lin, Bingcheng; Chen, Lingxin

    2018-02-01

    In this work, a novel rotational microfluidic paper-based device was developed to improve the accuracy and performance of the multiplexed colorimetric detection by effectively avoiding the diffusion of colorimetric reagent on the detection zone. The integrated paper-based rotational valves were used to control the connection or disconnection between detection zones and fluid channels. Based on the manipulation of the rotational valves, this rotational paper-based device could prevent the random diffusion of colorimetric reagent and reduce the error of quantitative analysis considerably. The multiplexed colorimetric detection of heavy metals Ni(II), Cu(II) and Cr(VI) were implemented on the rotational device and the detection limits could be found to be 4.8, 1.6, and 0.18mg/L, respectively. The developed rotational device showed the great advantage in improving the detection accuracy and was expected to be a low-cost, portable analytical platform for the on-site detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A New Multi-Sensor Fusion Scheme to Improve the Accuracy of Knee Flexion Kinematics for Functional Rehabilitation Movements.

    PubMed

    Tannous, Halim; Istrate, Dan; Benlarbi-Delai, Aziz; Sarrazin, Julien; Gamet, Didier; Ho Ba Tho, Marie Christine; Dao, Tien Tuan

    2016-11-15

    Exergames have been proposed as a potential tool to improve the current practice of musculoskeletal rehabilitation. Inertial or optical motion capture sensors are commonly used to track the subject's movements. However, the use of these motion capture tools suffers from the lack of accuracy in estimating joint angles, which could lead to wrong data interpretation. In this study, we proposed a real time quaternion-based fusion scheme, based on the extended Kalman filter, between inertial and visual motion capture sensors, to improve the estimation accuracy of joint angles. The fusion outcome was compared to angles measured using a goniometer. The fusion output shows a better estimation, when compared to inertial measurement units and Kinect outputs. We noted a smaller error (3.96°) compared to the one obtained using inertial sensors (5.04°). The proposed multi-sensor fusion system is therefore accurate enough to be applied, in future works, to our serious game for musculoskeletal rehabilitation.

  11. Accuracy of subcutaneous continuous glucose monitoring in critically ill adults: improved sensor performance with enhanced calibrations.

    PubMed

    Leelarathna, Lalantha; English, Shane W; Thabit, Hood; Caldwell, Karen; Allen, Janet M; Kumareswaran, Kavita; Wilinska, Malgorzata E; Nodale, Marianna; Haidar, Ahmad; Evans, Mark L; Burnstein, Rowan; Hovorka, Roman

    2014-02-01

    Accurate real-time continuous glucose measurements may improve glucose control in the critical care unit. We evaluated the accuracy of the FreeStyle(®) Navigator(®) (Abbott Diabetes Care, Alameda, CA) subcutaneous continuous glucose monitoring (CGM) device in critically ill adults using two methods of calibration. In a randomized trial, paired CGM and reference glucose (hourly arterial blood glucose [ABG]) were collected over a 48-h period from 24 adults with critical illness (mean±SD age, 60±14 years; mean±SD body mass index, 29.6±9.3 kg/m(2); mean±SD Acute Physiology and Chronic Health Evaluation score, 12±4 [range, 6-19]) and hyperglycemia. In 12 subjects, the CGM device was calibrated at variable intervals of 1-6 h using ABG. In the other 12 subjects, the sensor was calibrated according to the manufacturer's instructions (1, 2, 10, and 24 h) using arterial blood and the built-in point-of-care glucometer. In total, 1,060 CGM-ABG pairs were analyzed over the glucose range from 4.3 to 18.8 mmol/L. Using enhanced calibration median (interquartile range) every 169 (122-213) min, the absolute relative deviation was lower (7.0% [3.5, 13.0] vs. 12.8% [6.3, 21.8], P<0.001), and the percentage of points in the Clarke error grid Zone A was higher (87.8% vs. 70.2%). Accuracy of the Navigator CGM device during critical illness was comparable to that observed in non-critical care settings. Further significant improvements in accuracy may be obtained by frequent calibrations with ABG measurements.

  12. Evaluating the accuracy of SHAPE-directed RNA secondary structure predictions

    PubMed Central

    Sükösd, Zsuzsanna; Swenson, M. Shel; Kjems, Jørgen; Heitsch, Christine E.

    2013-01-01

    Recent advances in RNA structure determination include using data from high-throughput probing experiments to improve thermodynamic prediction accuracy. We evaluate the extent and nature of improvements in data-directed predictions for a diverse set of 16S/18S ribosomal sequences using a stochastic model of experimental SHAPE data. The average accuracy for 1000 data-directed predictions always improves over the original minimum free energy (MFE) structure. However, the amount of improvement varies with the sequence, exhibiting a correlation with MFE accuracy. Further analysis of this correlation shows that accurate MFE base pairs are typically preserved in a data-directed prediction, whereas inaccurate ones are not. Thus, the positive predictive value of common base pairs is consistently higher than the directed prediction accuracy. Finally, we confirm sequence dependencies in the directability of thermodynamic predictions and investigate the potential for greater accuracy improvements in the worst performing test sequence. PMID:23325843

  13. A calibration procedure for load cells to improve accuracy of mini-lysimeters in monitoring evapotranspiration

    NASA Astrophysics Data System (ADS)

    Misra, R. K.; Padhi, J.; Payero, J. O.

    2011-08-01

    SummaryWe used twelve load cells (20 kg capacity) in a mini-lysimeter system to measure evapotranspiration simultaneously from twelve plants growing in separate pots in a glasshouse. A data logger combined with a multiplexer was used to connect all load cells with the full-bridge excitation mode to acquire load-cell signal. Each load cell was calibrated using fixed load within the range of 0-0.8 times the full load capacity of load cells. Performance of all load cells was assessed on the basis of signal settling time, excitation compensation, hysteresis and temperature. Final calibration of load cells included statistical consideration of these effects to allow prediction of lysimeter weights and evapotranspiration over short-time intervals for improved accuracy and sustained performance. Analysis of the costs for the mini-lysimeter system indicates that evapotranspiration can be measured economically at a reasonable accuracy and sufficient resolution with robust method of load-cell calibration.

  14. Improving the accuracy of ionization chamber dosimetry in small megavoltage x-ray fields

    NASA Astrophysics Data System (ADS)

    McNiven, Andrea L.

    The dosimetry of small x-ray fields is difficult, but important, in many radiation therapy delivery methods. The accuracy of ion chambers for small field applications, however, is limited due to the relatively large size of the chamber with respect to the field size, leading to partial volume effects, lateral electronic disequilibrium and calibration difficulties. The goal of this dissertation was to investigate the use of ionization chambers for the purpose of dosimetry in small megavoltage photon beams with the aim of improving clinical dose measurements in stereotactic radiotherapy and helical tomotherapy. A new method for the direct determination of the sensitive volume of small-volume ion chambers using micro computed tomography (muCT) was investigated using four nominally identical small-volume (0.56 cm3) cylindrical ion chambers. Agreement between their measured relative volume and ionization measurements (within 2%) demonstrated the feasibility of volume determination through muCT. Cavity-gas calibration coefficients were also determined, demonstrating the promise for accurate ion chamber calibration based partially on muCT. The accuracy of relative dose factor measurements in 6MV stereotactic x-ray fields (5 to 40mm diameter) was investigated using a set of prototype plane-parallel ionization chambers (diameters of 2, 4, 10 and 20mm). Chamber and field size specific correction factors ( CSFQ ), that account for perturbation of the secondary electron fluence, were calculated using Monte Carlo simulation methods (BEAM/EGSnrc simulations). These correction factors (e.g. CSFQ = 1.76 (2mm chamber, 5mm field) allow for accurate relative dose factor (RDF) measurement when applied to ionization readings, under conditions of electronic disequilibrium. With respect to the dosimetry of helical tomotherapy, a novel application of the ion chambers was developed to characterize the fan beam size and effective dose rate. Characterization was based on an adaptation of the

  15. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

    DOE PAGES

    Rosewater, David; Ferreira, Summer; Schoenwald, David; ...

    2018-01-25

    Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less

  16. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewater, David; Ferreira, Summer; Schoenwald, David

    Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less

  17. Improving Reading Achievement Through Increased Motivation, Specific Skill Enhancement, and Practice Time for Elementary Students

    ERIC Educational Resources Information Center

    Ecklund, Britt K.; Lamon, Kathryn M.

    2008-01-01

    The action research project report began when the teacher researchers determined that students at Sites A and B struggled with reading achievement. The purpose of the project was to improve students' reading achievement through increased motivation, specific skill instruction, and additional practice time. The project involved 26 students: 17…

  18. Structuring Out-of-School Time to Improve Academic Achievement. IES Practice Guide. NCEE 2009-012

    ERIC Educational Resources Information Center

    Beckett, Megan; Borman, Geoffrey; Capizzano, Jeffrey; Parsley, Danette; Ross, Steven; Schirm, Allen; Taylor, Jessica

    2009-01-01

    Out-of-school time programs can enhance academic achievement by helping students learn outside the classroom. The purpose of this practice guide is to provide recommendations for organizing and delivering school-based out-of-school time (OST) programs to improve the academic achievement of student participants. The five recommendations in this…

  19. Improving the accuracy of Møller-Plesset perturbation theory with neural networks

    NASA Astrophysics Data System (ADS)

    McGibbon, Robert T.; Taube, Andrew G.; Donchev, Alexander G.; Siva, Karthik; Hernández, Felipe; Hargus, Cory; Law, Ka-Hei; Klepeis, John L.; Shaw, David E.

    2017-10-01

    Noncovalent interactions are of fundamental importance across the disciplines of chemistry, materials science, and biology. Quantum chemical calculations on noncovalently bound complexes, which allow for the quantification of properties such as binding energies and geometries, play an essential role in advancing our understanding of, and building models for, a vast array of complex processes involving molecular association or self-assembly. Because of its relatively modest computational cost, second-order Møller-Plesset perturbation (MP2) theory is one of the most widely used methods in quantum chemistry for studying noncovalent interactions. MP2 is, however, plagued by serious errors due to its incomplete treatment of electron correlation, especially when modeling van der Waals interactions and π-stacked complexes. Here we present spin-network-scaled MP2 (SNS-MP2), a new semi-empirical MP2-based method for dimer interaction-energy calculations. To correct for errors in MP2, SNS-MP2 uses quantum chemical features of the complex under study in conjunction with a neural network to reweight terms appearing in the total MP2 interaction energy. The method has been trained on a new data set consisting of over 200 000 complete basis set (CBS)-extrapolated coupled-cluster interaction energies, which are considered the gold standard for chemical accuracy. SNS-MP2 predicts gold-standard binding energies of unseen test compounds with a mean absolute error of 0.04 kcal mol-1 (root-mean-square error 0.09 kcal mol-1), a 6- to 7-fold improvement over MP2. To the best of our knowledge, its accuracy exceeds that of all extant density functional theory- and wavefunction-based methods of similar computational cost, and is very close to the intrinsic accuracy of our benchmark coupled-cluster methodology itself. Furthermore, SNS-MP2 provides reliable per-conformation confidence intervals on the predicted interaction energies, a feature not available from any alternative method.

  20. Improving the accuracy of Møller-Plesset perturbation theory with neural networks.

    PubMed

    McGibbon, Robert T; Taube, Andrew G; Donchev, Alexander G; Siva, Karthik; Hernández, Felipe; Hargus, Cory; Law, Ka-Hei; Klepeis, John L; Shaw, David E

    2017-10-28

    Noncovalent interactions are of fundamental importance across the disciplines of chemistry, materials science, and biology. Quantum chemical calculations on noncovalently bound complexes, which allow for the quantification of properties such as binding energies and geometries, play an essential role in advancing our understanding of, and building models for, a vast array of complex processes involving molecular association or self-assembly. Because of its relatively modest computational cost, second-order Møller-Plesset perturbation (MP2) theory is one of the most widely used methods in quantum chemistry for studying noncovalent interactions. MP2 is, however, plagued by serious errors due to its incomplete treatment of electron correlation, especially when modeling van der Waals interactions and π-stacked complexes. Here we present spin-network-scaled MP2 (SNS-MP2), a new semi-empirical MP2-based method for dimer interaction-energy calculations. To correct for errors in MP2, SNS-MP2 uses quantum chemical features of the complex under study in conjunction with a neural network to reweight terms appearing in the total MP2 interaction energy. The method has been trained on a new data set consisting of over 200 000 complete basis set (CBS)-extrapolated coupled-cluster interaction energies, which are considered the gold standard for chemical accuracy. SNS-MP2 predicts gold-standard binding energies of unseen test compounds with a mean absolute error of 0.04 kcal mol -1 (root-mean-square error 0.09 kcal mol -1 ), a 6- to 7-fold improvement over MP2. To the best of our knowledge, its accuracy exceeds that of all extant density functional theory- and wavefunction-based methods of similar computational cost, and is very close to the intrinsic accuracy of our benchmark coupled-cluster methodology itself. Furthermore, SNS-MP2 provides reliable per-conformation confidence intervals on the predicted interaction energies, a feature not available from any alternative method.

  1. Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations

    NASA Astrophysics Data System (ADS)

    Chiron, L.; Oger, G.; de Leffe, M.; Le Touzé, D.

    2018-02-01

    While smoothed-particle hydrodynamics (SPH) simulations are usually performed using uniform particle distributions, local particle refinement techniques have been developed to concentrate fine spatial resolutions in identified areas of interest. Although the formalism of this method is relatively easy to implement, its robustness at coarse/fine interfaces can be problematic. Analysis performed in [16] shows that the radius of refined particles should be greater than half the radius of unrefined particles to ensure robustness. In this article, the basics of an Adaptive Particle Refinement (APR) technique, inspired by AMR in mesh-based methods, are presented. This approach ensures robustness with alleviated constraints. Simulations applying the new formalism proposed achieve accuracy comparable to fully refined spatial resolutions, together with robustness, low CPU times and maintained parallel efficiency.

  2. Understanding the delayed-keyword effect on metacomprehension accuracy.

    PubMed

    Thiede, Keith W; Dunlosky, John; Griffin, Thomas D; Wiley, Jennifer

    2005-11-01

    The typical finding from research on metacomprehension is that accuracy is quite low. However, recent studies have shown robust accuracy improvements when judgments follow certain generation tasks (summarizing or keyword listing) but only when these tasks are performed at a delay rather than immediately after reading (K. W. Thiede & M. C. M. Anderson, 2003; K. W. Thiede, M. C. M. Anderson, & D. Therriault, 2003). The delayed and immediate conditions in these studies confounded the delay between reading and generation tasks with other task lags, including the lag between multiple generation tasks and the lag between generation tasks and judgments. The first 2 experiments disentangle these confounded manipulations and provide clear evidence that the delay between reading and keyword generation is the only lag critical to improving metacomprehension accuracy. The 3rd and 4th experiments show that not all delayed tasks produce improvements and suggest that delayed generative tasks provide necessary diagnostic cues about comprehension for improving metacomprehension accuracy.

  3. METACOGNITIVE SCAFFOLDS IMPROVE SELF-JUDGMENTS OF ACCURACY IN A MEDICAL INTELLIGENT TUTORING SYSTEM

    PubMed Central

    Feyzi-Behnagh, Reza; Azevedo, Roger; Legowski, Elizabeth; Reitmeyer, Kayse; Tseytlin, Eugene; Crowley, Rebecca S.

    2013-01-01

    In this study, we examined the effect of two metacognitive scaffolds on the accuracy of confidence judgments made while diagnosing dermatopathology slides in SlideTutor. Thirty-one (N = 31) first- to fourth-year pathology and dermatology residents were randomly assigned to one of the two scaffolding conditions. The cases used in this study were selected from the domain of Nodular and Diffuse Dermatitides. Both groups worked with a version of SlideTutor that provided immediate feedback on their actions for two hours before proceeding to solve cases in either the Considering Alternatives or Playback condition. No immediate feedback was provided on actions performed by participants in the scaffolding mode. Measurements included learning gains (pre-test and post-test), as well as metacognitive performance, including Goodman-Kruskal Gamma correlation, bias, and discrimination. Results showed that participants in both conditions improved significantly in terms of their diagnostic scores from pre-test to post-test. More importantly, participants in the Considering Alternatives condition outperformed those in the Playback condition in the accuracy of their confidence judgments and the discrimination of the correctness of their assertions while solving cases. The results suggested that presenting participants with their diagnostic decision paths and highlighting correct and incorrect paths helps them to become more metacognitively accurate in their confidence judgments. PMID:24532850

  4. METACOGNITIVE SCAFFOLDS IMPROVE SELF-JUDGMENTS OF ACCURACY IN A MEDICAL INTELLIGENT TUTORING SYSTEM.

    PubMed

    Feyzi-Behnagh, Reza; Azevedo, Roger; Legowski, Elizabeth; Reitmeyer, Kayse; Tseytlin, Eugene; Crowley, Rebecca S

    2014-03-01

    In this study, we examined the effect of two metacognitive scaffolds on the accuracy of confidence judgments made while diagnosing dermatopathology slides in SlideTutor. Thirty-one ( N = 31) first- to fourth-year pathology and dermatology residents were randomly assigned to one of the two scaffolding conditions. The cases used in this study were selected from the domain of Nodular and Diffuse Dermatitides. Both groups worked with a version of SlideTutor that provided immediate feedback on their actions for two hours before proceeding to solve cases in either the Considering Alternatives or Playback condition. No immediate feedback was provided on actions performed by participants in the scaffolding mode. Measurements included learning gains (pre-test and post-test), as well as metacognitive performance, including Goodman-Kruskal Gamma correlation, bias, and discrimination. Results showed that participants in both conditions improved significantly in terms of their diagnostic scores from pre-test to post-test. More importantly, participants in the Considering Alternatives condition outperformed those in the Playback condition in the accuracy of their confidence judgments and the discrimination of the correctness of their assertions while solving cases. The results suggested that presenting participants with their diagnostic decision paths and highlighting correct and incorrect paths helps them to become more metacognitively accurate in their confidence judgments.

  5. Improving CSF biomarker accuracy in predicting prevalent and incident Alzheimer disease

    PubMed Central

    Fagan, A.M.; Williams, M.M.; Ghoshal, N.; Aeschleman, M.; Grant, E.A.; Marcus, D.S.; Mintun, M.A.; Holtzman, D.M.; Morris, J.C.

    2011-01-01

    Objective: To investigate factors, including cognitive and brain reserve, which may independently predict prevalent and incident dementia of the Alzheimer type (DAT) and to determine whether inclusion of identified factors increases the predictive accuracy of the CSF biomarkers Aβ42, tau, ptau181, tau/Aβ42, and ptau181/Aβ42. Methods: Logistic regression identified variables that predicted prevalent DAT when considered together with each CSF biomarker in a cross-sectional sample of 201 participants with normal cognition and 46 with DAT. The area under the receiver operating characteristic curve (AUC) from the resulting model was compared with the AUC generated using the biomarker alone. In a second sample with normal cognition at baseline and longitudinal data available (n = 213), Cox proportional hazards models identified variables that predicted incident DAT together with each biomarker, and the models' concordance probability estimate (CPE), which was compared to the CPE generated using the biomarker alone. Results: APOE genotype including an ε4 allele, male gender, and smaller normalized whole brain volumes (nWBV) were cross-sectionally associated with DAT when considered together with every biomarker. In the longitudinal sample (mean follow-up = 3.2 years), 14 participants (6.6%) developed DAT. Older age predicted a faster time to DAT in every model, and greater education predicted a slower time in 4 of 5 models. Inclusion of ancillary variables resulted in better cross-sectional prediction of DAT for all biomarkers (p < 0.0021), and better longitudinal prediction for 4 of 5 biomarkers (p < 0.0022). Conclusions: The predictive accuracy of CSF biomarkers is improved by including age, education, and nWBV in analyses. PMID:21228296

  6. Multiple calibrator measurements improve accuracy and stability estimates of automated assays.

    PubMed

    Akbas, Neval; Budd, Jeffrey R; Klee, George G

    2016-01-01

    The effects of combining multiple calibrations on assay accuracy (bias) and measurement of calibration stability were investigated for total triiodothyronine (TT3), vitamin B12 and luteinizing hormone (LH) using Beckman Coulter's Access 2 analyzer. Three calibration procedures (CC1, CC2 and CC3) combined 12, 34 and 56 calibrator measurements over 1, 2, and 3 days. Bias was calculated between target values and average measured value over 3 consecutive days after calibration. Using regression analysis of calibrator measurements versus measurement date, calibration stability was determined as the maximum number of days before a calibrator measurement exceeded 5% tolerance limits. Competitive assays (TT3, vitamin B12) had positive time regression slopes, while sandwich assay (LH) had a negative slope. Bias values for TT3 were -2.49%, 1.49%, and -0.50% using CC1, CC2 and CC3 respectively, with calibrator stability of 32, 20, and 30 days. Bias values for vitamin B12 were 2.44%, 0.91%, and -0.50%, with calibrator stability of 4, 9, and 12 days. Bias values for LH were 2.26%, 1.44% and -0.29% with calibrator stability of >43, 39 and 36 days. Measured stability was more consistent across calibration procedures using percent change rather than difference from target: 26 days for TT3, 12 days for B12 and 31 days for LH. Averaging over multiple calibrations produced smaller bias, consistent with improved accuracy. Time regression slopes in percent change were unaffected by number of calibration measurements but calibrator stability measured from the target value was highly affected by the calibrator value at time zero.

  7. Accuracy improvement of the H-drive air-levitating wafer inspection stage based on error analysis and compensation

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Liu, Pinkuan

    2018-04-01

    In order to improve the inspection precision of the H-drive air-bearing stage for wafer inspection, in this paper the geometric error of the stage is analyzed and compensated. The relationship between the positioning errors and error sources are initially modeled, and seven error components are identified that are closely related to the inspection accuracy. The most effective factor that affects the geometric error is identified by error sensitivity analysis. Then, the Spearman rank correlation method is applied to find the correlation between different error components, aiming at guiding the accuracy design and error compensation of the stage. Finally, different compensation methods, including the three-error curve interpolation method, the polynomial interpolation method, the Chebyshev polynomial interpolation method, and the B-spline interpolation method, are employed within the full range of the stage, and their results are compared. Simulation and experiment show that the B-spline interpolation method based on the error model has better compensation results. In addition, the research result is valuable for promoting wafer inspection accuracy and will greatly benefit the semiconductor industry.

  8. Dermoscopy improves accuracy of primary care physicians to triage lesions suggestive of skin cancer.

    PubMed

    Argenziano, Giuseppe; Puig, Susana; Zalaudek, Iris; Sera, Francesco; Corona, Rosamaria; Alsina, Mercè; Barbato, Filomena; Carrera, Cristina; Ferrara, Gerardo; Guilabert, Antonio; Massi, Daniela; Moreno-Romero, Juan A; Muñoz-Santos, Carlos; Petrillo, Gianluca; Segura, Sonia; Soyer, H Peter; Zanchini, Renato; Malvehy, Josep

    2006-04-20

    Primary care physicians (PCPs) constitute an appropriate target for new interventions and educational campaigns designed to increase skin cancer screening and prevention. The aim of this randomized study was to determine whether the adjunct of dermoscopy to the standard clinical examination improves the accuracy of PCPs to triage lesions suggestive of skin cancer. PCPs in Barcelona, Spain, and Naples, Italy, were given a 1-day training course in skin cancer detection and dermoscopic evaluation, and were randomly assigned to the dermoscopy evaluation arm or naked-eye evaluation arm. During a 16-month period, 73 physicians evaluated 2,522 patients with skin lesions who attended their clinics and scored individual lesions as benign or suggestive of skin cancer. All patients were re-evaluated by expert dermatologists at clinics for pigmented lesions. Referral accuracy of both PCP groups was calculated by their scores, which were compared to those tabulated for dermatologists. Referral sensitivity, specificity, and positive and negative predictive values were 54.1%, 71.3%, 11.3%, and 95.8%, respectively, in the naked-eye arm, and 79.2%, 71.8%, 16.1%, and 98.1%, respectively, in the dermoscopy arm. Significant differences were found in terms of sensitivity and negative predictive value (P = .002 and P = .004, respectively). Histopathologic examination of equivocal lesions revealed 23 malignant skin tumors missed by PCPs performing naked-eye observation and only six by PCPs using dermoscopy (P = .002). The use of dermoscopy improves the ability of PCPs to triage lesions suggestive of skin cancer without increasing the number of unnecessary expert consultations.

  9. Improving Dose Determination Accuracy in Nonstandard Fields of the Varian TrueBeam Accelerator

    NASA Astrophysics Data System (ADS)

    Hyun, Megan A.

    In recent years, the use of flattening-filter-free (FFF) linear accelerators in radiation-based cancer therapy has gained popularity, especially for hypofractionated treatments (high doses of radiation given in few sessions). However, significant challenges to accurate radiation dose determination remain. If physicists cannot accurately determine radiation dose in a clinical setting, cancer patients treated with these new machines will not receive safe, accurate and effective treatment. In this study, an extensive characterization of two commonly used clinical radiation detectors (ionization chambers and diodes) and several potential reference detectors (thermoluminescent dosimeters, plastic scintillation detectors, and alanine pellets) has been performed to investigate their use in these challenging, nonstandard fields. From this characterization, reference detectors were identified for multiple beam sizes, and correction factors were determined to improve dosimetric accuracy for ionization chambers and diodes. A validated computational (Monte Carlo) model of the TrueBeam(TM) accelerator, including FFF beam modes, was also used to calculate these correction factors, which compared favorably to measured results. Small-field corrections of up to 18 % were shown to be necessary for clinical detectors such as microionization chambers. Because the impact of these large effects on treatment delivery is not well known, a treatment planning study was completed using actual hypofractionated brain, spine, and lung treatments that were delivered at the UW Carbone Cancer Center. This study demonstrated that improperly applying these detector correction factors can have a substantial impact on patient treatments. This thesis work has taken important steps toward improving the accuracy of FFF dosimetry through rigorous experimentally and Monte-Carlo-determined correction factors, the validation of an important published protocol (TG-51) for use with FFF reference fields, and a

  10. A robust data scaling algorithm to improve classification accuracies in biomedical data.

    PubMed

    Cao, Xi Hang; Stojkovic, Ivan; Obradovic, Zoran

    2016-09-09

    Machine learning models have been adapted in biomedical research and practice for knowledge discovery and decision support. While mainstream biomedical informatics research focuses on developing more accurate models, the importance of data preprocessing draws less attention. We propose the Generalized Logistic (GL) algorithm that scales data uniformly to an appropriate interval by learning a generalized logistic function to fit the empirical cumulative distribution function of the data. The GL algorithm is simple yet effective; it is intrinsically robust to outliers, so it is particularly suitable for diagnostic/classification models in clinical/medical applications where the number of samples is usually small; it scales the data in a nonlinear fashion, which leads to potential improvement in accuracy. To evaluate the effectiveness of the proposed algorithm, we conducted experiments on 16 binary classification tasks with different variable types and cover a wide range of applications. The resultant performance in terms of area under the receiver operation characteristic curve (AUROC) and percentage of correct classification showed that models learned using data scaled by the GL algorithm outperform the ones using data scaled by the Min-max and the Z-score algorithm, which are the most commonly used data scaling algorithms. The proposed GL algorithm is simple and effective. It is robust to outliers, so no additional denoising or outlier detection step is needed in data preprocessing. Empirical results also show models learned from data scaled by the GL algorithm have higher accuracy compared to the commonly used data scaling algorithms.

  11. A multidisciplinary approach to vascular surgery procedure coding improves coding accuracy, work relative value unit assignment, and reimbursement.

    PubMed

    Aiello, Francesco A; Judelson, Dejah R; Messina, Louis M; Indes, Jeffrey; FitzGerald, Gordon; Doucet, Danielle R; Simons, Jessica P; Schanzer, Andres

    2016-08-01

    Vascular surgery procedural reimbursement depends on accurate procedural coding and documentation. Despite the critical importance of correct coding, there has been a paucity of research focused on the effect of direct physician involvement. We hypothesize that direct physician involvement in procedural coding will lead to improved coding accuracy, increased work relative value unit (wRVU) assignment, and increased physician reimbursement. This prospective observational cohort study evaluated procedural coding accuracy of fistulograms at an academic medical institution (January-June 2014). All fistulograms were coded by institutional coders (traditional coding) and by a single vascular surgeon whose codes were verified by two institution coders (multidisciplinary coding). The coding methods were compared, and differences were translated into revenue and wRVUs using the Medicare Physician Fee Schedule. Comparison between traditional and multidisciplinary coding was performed for three discrete study periods: baseline (period 1), after a coding education session for physicians and coders (period 2), and after a coding education session with implementation of an operative dictation template (period 3). The accuracy of surgeon operative dictations during each study period was also assessed. An external validation at a second academic institution was performed during period 1 to assess and compare coding accuracy. During period 1, traditional coding resulted in a 4.4% (P = .004) loss in reimbursement and a 5.4% (P = .01) loss in wRVUs compared with multidisciplinary coding. During period 2, no significant difference was found between traditional and multidisciplinary coding in reimbursement (1.3% loss; P = .24) or wRVUs (1.8% loss; P = .20). During period 3, traditional coding yielded a higher overall reimbursement (1.3% gain; P = .26) than multidisciplinary coding. This increase, however, was due to errors by institution coders, with six inappropriately used codes

  12. Improving Surveying Accuracy and Efficiency in Connecticut: An Accuracy Assessment of GEOID03 and GEOID09

    DOT National Transportation Integrated Search

    2010-03-01

    Comparing published NAVD 88 Helmert orthometric heights of First-Order bench marks against GPS-determined orthometric heights showed that GEOID03 and GEOID09 perform at their reported accuracy in Connecticut. GPS-determined orthometric heights were d...

  13. A methodology to ensure and improve accuracy of Ki67 labelling index estimation by automated digital image analysis in breast cancer tissue.

    PubMed

    Laurinavicius, Arvydas; Plancoulaine, Benoit; Laurinaviciene, Aida; Herlin, Paulette; Meskauskas, Raimundas; Baltrusaityte, Indra; Besusparis, Justinas; Dasevicius, Darius; Elie, Nicolas; Iqbal, Yasir; Bor, Catherine

    2014-01-01

    Immunohistochemical Ki67 labelling index (Ki67 LI) reflects proliferative activity and is a potential prognostic/predictive marker of breast cancer. However, its clinical utility is hindered by the lack of standardized measurement methodologies. Besides tissue heterogeneity aspects, the key element of methodology remains accurate estimation of Ki67-stained/counterstained tumour cell profiles. We aimed to develop a methodology to ensure and improve accuracy of the digital image analysis (DIA) approach. Tissue microarrays (one 1-mm spot per patient, n = 164) from invasive ductal breast carcinoma were stained for Ki67 and scanned. Criterion standard (Ki67-Count) was obtained by counting positive and negative tumour cell profiles using a stereology grid overlaid on a spot image. DIA was performed with Aperio Genie/Nuclear algorithms. A bias was estimated by ANOVA, correlation and regression analyses. Calibration steps of the DIA by adjusting the algorithm settings were performed: first, by subjective DIA quality assessment (DIA-1), and second, to compensate the bias established (DIA-2). Visual estimate (Ki67-VE) on the same images was performed by five pathologists independently. ANOVA revealed significant underestimation bias (P < 0.05) for DIA-0, DIA-1 and two pathologists' VE, while DIA-2, VE-median and three other VEs were within the same range. Regression analyses revealed best accuracy for the DIA-2 (R-square = 0.90) exceeding that of VE-median, individual VEs and other DIA settings. Bidirectional bias for the DIA-2 with overestimation at low, and underestimation at high ends of the scale was detected. Measurement error correction by inverse regression was applied to improve DIA-2-based prediction of the Ki67-Count, in particularfor the clinically relevant interval of Ki67-Count < 40%. Potential clinical impact of the prediction was tested by dichotomising the cases at the cut-off values of 10, 15, and 20%. Misclassification rate of 5-7% was achieved, compared to

  14. A methodology to ensure and improve accuracy of Ki67 labelling index estimation by automated digital image analysis in breast cancer tissue

    PubMed Central

    2014-01-01

    Introduction Immunohistochemical Ki67 labelling index (Ki67 LI) reflects proliferative activity and is a potential prognostic/predictive marker of breast cancer. However, its clinical utility is hindered by the lack of standardized measurement methodologies. Besides tissue heterogeneity aspects, the key element of methodology remains accurate estimation of Ki67-stained/counterstained tumour cell profiles. We aimed to develop a methodology to ensure and improve accuracy of the digital image analysis (DIA) approach. Methods Tissue microarrays (one 1-mm spot per patient, n = 164) from invasive ductal breast carcinoma were stained for Ki67 and scanned. Criterion standard (Ki67-Count) was obtained by counting positive and negative tumour cell profiles using a stereology grid overlaid on a spot image. DIA was performed with Aperio Genie/Nuclear algorithms. A bias was estimated by ANOVA, correlation and regression analyses. Calibration steps of the DIA by adjusting the algorithm settings were performed: first, by subjective DIA quality assessment (DIA-1), and second, to compensate the bias established (DIA-2). Visual estimate (Ki67-VE) on the same images was performed by five pathologists independently. Results ANOVA revealed significant underestimation bias (P < 0.05) for DIA-0, DIA-1 and two pathologists’ VE, while DIA-2, VE-median and three other VEs were within the same range. Regression analyses revealed best accuracy for the DIA-2 (R-square = 0.90) exceeding that of VE-median, individual VEs and other DIA settings. Bidirectional bias for the DIA-2 with overestimation at low, and underestimation at high ends of the scale was detected. Measurement error correction by inverse regression was applied to improve DIA-2-based prediction of the Ki67-Count, in particular for the clinically relevant interval of Ki67-Count < 40%. Potential clinical impact of the prediction was tested by dichotomising the cases at the cut-off values of 10, 15, and 20

  15. Student Achievement: Improving Our Focus.

    ERIC Educational Resources Information Center

    Hawkins, Amber

    An efficient way to help students achieve academically is to maximize the consistent attendance of permanent teachers in the classroom. Students nationwide are spending increased amounts of time with instructors other than their permanent teachers. A large contributor to the problem of teacher absenteeism is mandatory leave for professional…

  16. Improving the Achievement on Writing Narrative Text through Discussion Starter Story Technique

    ERIC Educational Resources Information Center

    Purba, Rodearta

    2018-01-01

    The objective of this study is to find out whether discussion starter story significantly improves the achievement on narrative text of the first grade students of Senior High School. This study was conducted by applying Classroom Action Research (CAR). The subject of this study is the first grade students of SMA Negeri 2 Pangururan in academic…

  17. Cumulative detection probabilities and range accuracy of a pulsed Geiger-mode avalanche photodiode laser ranging system

    NASA Astrophysics Data System (ADS)

    Luo, Hanjun; Ouyang, Zhengbiao; Liu, Qiang; Chen, Zhiliang; Lu, Hualan

    2017-10-01

    Cumulative pulses detection with appropriate cumulative pulses number and threshold has the ability to improve the detection performance of the pulsed laser ranging system with GM-APD. In this paper, based on Poisson statistics and multi-pulses cumulative process, the cumulative detection probabilities and their influence factors are investigated. With the normalized probability distribution of each time bin, the theoretical model of the range accuracy and precision is established, and the factors limiting the range accuracy and precision are discussed. The results show that the cumulative pulses detection can produce higher target detection probability and lower false alarm probability. However, for a heavy noise level and extremely weak echo intensity, the false alarm suppression performance of the cumulative pulses detection deteriorates quickly. The range accuracy and precision is another important parameter evaluating the detection performance, the echo intensity and pulse width are main influence factors on the range accuracy and precision, and higher range accuracy and precision is acquired with stronger echo intensity and narrower echo pulse width, for 5-ns echo pulse width, when the echo intensity is larger than 10, the range accuracy and precision lower than 7.5 cm can be achieved.

  18. A metrological approach to improve accuracy and reliability of ammonia measurements in ambient air

    NASA Astrophysics Data System (ADS)

    Pogány, Andrea; Balslev-Harder, David; Braban, Christine F.; Cassidy, Nathan; Ebert, Volker; Ferracci, Valerio; Hieta, Tuomas; Leuenberger, Daiana; Martin, Nicholas A.; Pascale, Céline; Peltola, Jari; Persijn, Stefan; Tiebe, Carlo; Twigg, Marsailidh M.; Vaittinen, Olavi; van Wijk, Janneke; Wirtz, Klaus; Niederhauser, Bernhard

    2016-11-01

    The environmental impacts of ammonia (NH3) in ambient air have become more evident in the recent decades, leading to intensifying research in this field. A number of novel analytical techniques and monitoring instruments have been developed, and the quality and availability of reference gas mixtures used for the calibration of measuring instruments has also increased significantly. However, recent inter-comparison measurements show significant discrepancies, indicating that the majority of the newly developed devices and reference materials require further thorough validation. There is a clear need for more intensive metrological research focusing on quality assurance, intercomparability and validations. MetNH3 (Metrology for ammonia in ambient air) is a three-year project within the framework of the European Metrology Research Programme (EMRP), which aims to bring metrological traceability to ambient ammonia measurements in the 0.5-500 nmol mol-1 amount fraction range. This is addressed by working in three areas: (1) improving accuracy and stability of static and dynamic reference gas mixtures, (2) developing an optical transfer standard and (3) establishing the link between high-accuracy metrological standards and field measurements. In this article we describe the concept, aims and first results of the project.

  19. Accuracy of Subcutaneous Continuous Glucose Monitoring in Critically Ill Adults: Improved Sensor Performance with Enhanced Calibrations

    PubMed Central

    Leelarathna, Lalantha; English, Shane W.; Thabit, Hood; Caldwell, Karen; Allen, Janet M.; Kumareswaran, Kavita; Wilinska, Malgorzata E.; Nodale, Marianna; Haidar, Ahmad; Evans, Mark L.; Burnstein, Rowan

    2014-01-01

    Abstract Objective: Accurate real-time continuous glucose measurements may improve glucose control in the critical care unit. We evaluated the accuracy of the FreeStyle® Navigator® (Abbott Diabetes Care, Alameda, CA) subcutaneous continuous glucose monitoring (CGM) device in critically ill adults using two methods of calibration. Subjects and Methods: In a randomized trial, paired CGM and reference glucose (hourly arterial blood glucose [ABG]) were collected over a 48-h period from 24 adults with critical illness (mean±SD age, 60±14 years; mean±SD body mass index, 29.6±9.3 kg/m2; mean±SD Acute Physiology and Chronic Health Evaluation score, 12±4 [range, 6–19]) and hyperglycemia. In 12 subjects, the CGM device was calibrated at variable intervals of 1–6 h using ABG. In the other 12 subjects, the sensor was calibrated according to the manufacturer's instructions (1, 2, 10, and 24 h) using arterial blood and the built-in point-of-care glucometer. Results: In total, 1,060 CGM–ABG pairs were analyzed over the glucose range from 4.3 to 18.8 mmol/L. Using enhanced calibration median (interquartile range) every 169 (122–213) min, the absolute relative deviation was lower (7.0% [3.5, 13.0] vs. 12.8% [6.3, 21.8], P<0.001), and the percentage of points in the Clarke error grid Zone A was higher (87.8% vs. 70.2%). Conclusions: Accuracy of the Navigator CGM device during critical illness was comparable to that observed in non–critical care settings. Further significant improvements in accuracy may be obtained by frequent calibrations with ABG measurements. PMID:24180327

  20. Contrast-enhanced small-animal PET/CT in cancer research: strong improvement of diagnostic accuracy without significant alteration of quantitative accuracy and NEMA NU 4-2008 image quality parameters.

    PubMed

    Lasnon, Charline; Quak, Elske; Briand, Mélanie; Gu, Zheng; Louis, Marie-Hélène; Aide, Nicolas

    2013-01-17

    The use of iodinated contrast media in small-animal positron emission tomography (PET)/computed tomography (CT) could improve anatomic referencing and tumor delineation but may introduce inaccuracies in the attenuation correction of the PET images. This study evaluated the diagnostic performance and accuracy of quantitative values in contrast-enhanced small-animal PET/CT (CEPET/CT) as compared to unenhanced small animal PET/CT (UEPET/CT). Firstly, a NEMA NU 4-2008 phantom (filled with 18F-FDG or 18F-FDG plus contrast media) and a homemade phantom, mimicking an abdominal tumor surrounded by water or contrast media, were used to evaluate the impact of iodinated contrast media on the image quality parameters and accuracy of quantitative values for a pertinent-sized target. Secondly, two studies in 22 abdominal tumor-bearing mice and rats were performed. The first animal experiment studied the impact of a dual-contrast media protocol, comprising the intravenous injection of a long-lasting contrast agent mixed with 18F-FDG and the intraperitoneal injection of contrast media, on tumor delineation and the accuracy of quantitative values. The second animal experiment compared the diagnostic performance and quantitative values of CEPET/CT versus UEPET/CT by sacrificing the animals after the tracer uptake period and imaging them before and after intraperitoneal injection of contrast media. There was minimal impact on IQ parameters (%SDunif and spillover ratios in air and water) when the NEMA NU 4-2008 phantom was filled with 18F-FDG plus contrast media. In the homemade phantom, measured activity was similar to true activity (-0.02%) and overestimated by 10.30% when vials were surrounded by water or by an iodine solution, respectively. The first animal experiment showed excellent tumor delineation and a good correlation between small-animal (SA)-PET and ex vivo quantification (r2 = 0.87, P < 0.0001). The second animal experiment showed a good correlation between CEPET/CT and

  1. High-accuracy reference standards for two-photon absorption in the 680–1050 nm wavelength range

    PubMed Central

    de Reguardati, Sophie; Pahapill, Juri; Mikhailov, Alexander; Stepanenko, Yuriy; Rebane, Aleksander

    2016-01-01

    Degenerate two-photon absorption (2PA) of a series of organic fluorophores is measured using femtosecond fluorescence excitation method in the wavelength range, λ2PA = 680–1050 nm, and ~100 MHz pulse repetition rate. The function of relative 2PA spectral shape is obtained with estimated accuracy 5%, and the absolute 2PA cross section is measured at selected wavelengths with the accuracy 8%. Significant improvement of the accuracy is achieved by means of rigorous evaluation of the quadratic dependence of the fluorescence signal on the incident photon flux in the whole wavelength range, by comparing results obtained from two independent experiments, as well as due to meticulous evaluation of critical experimental parameters, including the excitation spatial- and temporal pulse shape, laser power and sample geometry. Application of the reference standards in nonlinear transmittance measurements is discussed. PMID:27137334

  2. Promoting Student Achievement through Improved Health Policy. Policy Update. Vol. 22, No. 11

    ERIC Educational Resources Information Center

    Fobbs, Erima

    2015-01-01

    "Promoting Student Achievement through Improved Health Policy" is a quick primer of the [Centers for Disease Control and Prevention] CDC's "Whole School, Whole Community, Whole Child" model, which highlights 10 important areas for connecting health and learning: health education; physical education and physical activity;…

  3. Improve threshold segmentation using features extraction to automatic lung delimitation.

    PubMed

    França, Cleunio; Vasconcelos, Germano; Diniz, Paula; Melo, Pedro; Diniz, Jéssica; Novaes, Magdala

    2013-01-01

    With the consolidation of PACS and RIS systems, the development of algorithms for tissue segmentation and diseases detection have intensely evolved in recent years. These algorithms have advanced to improve its accuracy and specificity, however, there is still some way until these algorithms achieved satisfactory error rates and reduced processing time to be used in daily diagnosis. The objective of this study is to propose a algorithm for lung segmentation in x-ray computed tomography images using features extraction, as Centroid and orientation measures, to improve the basic threshold segmentation. As result we found a accuracy of 85.5%.

  4. Improving Student Attitude and Achievement in Reading through Daily Reading Practice and Teacher Intervention Strategies.

    ERIC Educational Resources Information Center

    Barrett, Karen; Kreiser, Diane

    This report describes a program designed to develop positive attitudes toward reading and to improve achievement in third and fourth grade students in two Midwestern communities. Teachers' observations and conversations with parents and students indicated students did not receive essential reading practice time to improve skills. Analysis of…

  5. Making High Accuracy Null Depth Measurements for the LBTI Exozodi Survey

    NASA Technical Reports Server (NTRS)

    Mennesson, Bertrand; Defrere, Denis; Nowak, Matthias; Hinz, Philip; Millan-Gabet, Rafael; Absil, Oliver; Bailey, Vanessa; Bryden, Geoffrey; Danchi, William C.; Kennedy, Grant M.; hide

    2016-01-01

    The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass planets in the habitable zone of nearby main sequence stars. The Large Binocular Telescope Interferometer (LBTI) exozodi survey aims at providing a ten-fold improvement over current state of the art, measuring dust emission levels down to a typical accuracy of 12 zodis per star, for a representative ensemble of 30+ high priority targets. Such measurements promise to yield a final accuracy of about 2 zodis on the median exozodi level of the targets sample. Reaching a 1 sigma measurement uncertainty of 12 zodis per star corresponds to measuring interferometric cancellation (null) levels, i.e visibilities at the few 100 ppm uncertainty level. We discuss here the challenges posed by making such high accuracy mid-infrared visibility measurements from the ground and present the methodology we developed for achieving current best levels of 500 ppm or so. We also discuss current limitations and plans for enhanced exozodi observations over the next few years at LBTI.

  6. Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.

    2000-01-01

    This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.

  7. The mathematical model accuracy estimation of the oil storage tank foundation soil moistening

    NASA Astrophysics Data System (ADS)

    Gildebrandt, M. I.; Ivanov, R. N.; Gruzin, AV; Antropova, L. B.; Kononov, S. A.

    2018-04-01

    The oil storage tanks foundations preparation technologies improvement is the relevant objective which achievement will make possible to reduce the material costs and spent time for the foundation preparing while providing the required operational reliability. The laboratory research revealed the nature of sandy soil layer watering with a given amount of water. The obtained data made possible developing the sandy soil layer moistening mathematical model. The performed estimation of the oil storage tank foundation soil moistening mathematical model accuracy showed the experimental and theoretical results acceptable convergence.

  8. Travel-time source-specific station correction improves location accuracy

    NASA Astrophysics Data System (ADS)

    Giuntini, Alessandra; Materni, Valerio; Chiappini, Stefano; Carluccio, Roberto; Console, Rodolfo; Chiappini, Massimo

    2013-04-01

    Accurate earthquake locations are crucial for investigating seismogenic processes, as well as for applications like verifying compliance to the Comprehensive Test Ban Treaty (CTBT). Earthquake location accuracy is related to the degree of knowledge about the 3-D structure of seismic wave velocity in the Earth. It is well known that modeling errors of calculated travel times may have the effect of shifting the computed epicenters far from the real locations by a distance even larger than the size of the statistical error ellipses, regardless of the accuracy in picking seismic phase arrivals. The consequences of large mislocations of seismic events in the context of the CTBT verification is particularly critical in order to trigger a possible On Site Inspection (OSI). In fact, the Treaty establishes that an OSI area cannot be larger than 1000 km2, and its larger linear dimension cannot be larger than 50 km. Moreover, depth accuracy is crucial for the application of the depth event screening criterion. In the present study, we develop a method of source-specific travel times corrections based on a set of well located events recorded by dense national seismic networks in seismically active regions. The applications concern seismic sequences recorded in Japan, Iran and Italy. We show that mislocations of the order of 10-20 km affecting the epicenters, as well as larger mislocations in hypocentral depths, calculated from a global seismic network and using the standard IASPEI91 travel times can be effectively removed by applying source-specific station corrections.

  9. Achieving accuracy in first-principles calculations for EOS: basis completeness at high temperatures

    NASA Astrophysics Data System (ADS)

    Wills, John; Mattsson, Ann

    2013-06-01

    First-principles electronic structure calculations can provide EOS data in regimes of pressure and temperature where accurate experimental data is difficult or impossible to obtain. This lack, however, also precludes validation of calculations in those regimes. Factors that influence the accuracy of first-principles data include (1) theoretical approximations and (2) computational approximations used in implementing and solving the underlying equations. In the first category are the approximate exchange/correlation functionals and approximate wave equations approximating the Dirac equation; in the second are basis completeness, series convergence, and truncation errors. We are using two rather different electronic structure methods (VASP and RSPt) to make definitive the requirements for accuracy of the second type, common to both. In this talk, we discuss requirements for converged calculation at high temperature and moderated pressure. At convergence we show that both methods give identical results. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. VA Health Care: Improvements Needed in Monitoring Antidepressant Use for Major Depressive Disorder and in Increasing Accuracy of Suicide Data

    DTIC Science & Technology

    2014-11-01

    VA HEALTH CARE Improvements Needed in Monitoring Antidepressant Use for Major Depressive Disorder and in Increasing...00-2014 4. TITLE AND SUBTITLE VA Health Care: Improvements Needed in Monitoring Antidepressant Use for Major Depressive Disorder and in Increasing...Use for Major Depressive Disorder and in Increasing Accuracy of Suicide Data Why GAO Did This Study In 2013, VA estimated that about 1.5 million

  11. Microbiogical data, but not procalcitonin improve the accuracy of the clinical pulmonary infection score.

    PubMed

    Jung, Boris; Embriaco, Nathalie; Roux, François; Forel, Jean-Marie; Demory, Didier; Allardet-Servent, Jérôme; Jaber, Samir; La Scola, Bernard; Papazian, Laurent

    2010-05-01

    Early and adequate treatment of ventilator-associated pneumonia (VAP) is mandatory to improve the outcome. The aim of this study was to evaluate, in medical ICU patients, the respective and combined impact of the Clinical Pulmonary Infection Score (CPIS), broncho-alveolar lavage (BAL) gram staining, endotracheal aspirate and a biomarker (procalcitonin) for the early diagnosis of VAP. Prospective, observational study A medical intensive care unit in a teaching hospital. Over an 8-month period, we prospectively included 57 patients suspected of having 86 episodes of VAP. The day of suspicion, a BAL as well as alveolar and serum procalcitonin determinations and evaluation of CPIS were performed. Of 86 BAL performed, 48 were considered positive (cutoff of 10(4) cfu ml(-1)). We found no differences in alveolar or serum procalcitonin between VAP and non-VAP patients. Including procalcitonin in the CPIS score did not increase its accuracy (55%) for the diagnosis of VAP. The best tests to predict VAP were modified CPIS (threshold at 6) combined with microbiological data. Indeed, both routinely twice weekly performed endotracheal aspiration at a threshold of 10(5) cfu ml(-1) and BAL gram staining improved pre-test diagnostic accuracy of VAP (77 and 66%, respectively). This study showed that alveolar procalcitonin performed by BAL does not help the clinician to identify VAP. It confirmed that serum procalcitonin is not an accurate marker of VAP. In contrast, microbiological resources available at the time of VAP suspicion (BAL gram staining, last available endotracheal aspirate) combined or not with CPIS are helpful in distinguishing VAP diagnosed by BAL from patients with a negative BAL.

  12. Improving the accuracy of birth notification data: lessons from the Birth to Ten study

    PubMed Central

    Ellison, GTH; Richter, LM; de Wet, T; Harris, HE; Griesel, RD; McIntyre, JA

    2007-01-01

    .4 weeks and 165 g, respectively. When these extremes of error were applied to data for all 539 children, the proportion classified as premature or post-term varied by up to 25.7%, while those classified as macrosomic, low or very low birth weight varied by 10.5%. This analysis illustrates the potential consequences of imprecise birth notification data on the apparent prevalence of premature and low birth weight babies, both of which are key indicators in maternal and child health. Improving the process of birth notification and standardising the format of birth notification forms would increase the consistency of birth notification data. Selecting variables that are established indicators of health status, and can be reliably measured, would help improve the utility and accuracy of birth notification data. PMID:19330041

  13. Secondary Signs May Improve the Diagnostic Accuracy of Equivocal Ultrasounds for Suspected Appendicitis in Children

    PubMed Central

    Partain, Kristin N.; Patel, Adarsh; Travers, Curtis; McCracken, Courtney; Loewen, Jonathan; Braithwaite, Kiery; Heiss, Kurt F.; Raval, Mehul V.

    2016-01-01

    Introduction Ultrasound (US) is the preferred imaging modality for evaluating appendicitis. Our purpose was to determine if including secondary signs (SS) improves diagnostic accuracy in equivocal US studies. Methods Retrospective review identified 825 children presenting with concern for appendicitis and with a right lower quadrant (RLQ) US. Regression models identified which SS were associated with appendicitis. Test characteristics were demonstrated. Results 530 patients (64%) had equivocal US reports. Of 114 (22%) patients with equivocal US undergoing CT, those with SS were more likely to have appendicitis (48.6% vs 14.6%, p<0.001). Of 172 (32%) patients with equivocal US admitted for observation, those with SS were more likely to have appendicitis (61.0% vs 33.6%, p<0.001). SS associated with appendicitis included fluid collection (adjusted odds ratio (OR) 13.3, 95% Confidence Interval (CI) 2.1–82.8), hyperemia (OR=2.0, 95%CI 1.5–95.5), free fluid (OR=9.8, 95%CI 3.8–25.4), and appendicolith (OR=7.9, 95%CI 1.7–37.2). Wall thickness, bowel peristalsis, and echogenic fat were not associated with appendicitis. Equivocal US that included hyperemia, a fluid collection, or an appendicolith had 96% specificity and 88% accuracy. Conclusion Use of SS in RLQ US assists in the diagnostic accuracy of appendicitis. SS may guide clinicians and reduce unnecessary CT and admissions. PMID:27039121

  14. Improving Prediction Accuracy of “Central Line-Associated Blood Stream Infections” Using Data Mining Models

    PubMed Central

    Noaman, Amin Y.; Jamjoom, Arwa; Al-Abdullah, Nabeela; Nasir, Mahreen; Ali, Anser G.

    2017-01-01

    Prediction of nosocomial infections among patients is an important part of clinical surveillance programs to enable the related personnel to take preventive actions in advance. Designing a clinical surveillance program with capability of predicting nosocomial infections is a challenging task due to several reasons, including high dimensionality of medical data, heterogenous data representation, and special knowledge required to extract patterns for prediction. In this paper, we present details of six data mining methods implemented using cross industry standard process for data mining to predict central line-associated blood stream infections. For our study, we selected datasets of healthcare-associated infections from US National Healthcare Safety Network and consumer survey data from Hospital Consumer Assessment of Healthcare Providers and Systems. Our experiments show that central line-associated blood stream infections (CLABSIs) can be successfully predicted using AdaBoost method with an accuracy up to 89.7%. This will help in implementing effective clinical surveillance programs for infection control, as well as improving the accuracy detection of CLABSIs. Also, this reduces patients' hospital stay cost and maintains patients' safety. PMID:29085836

  15. Limits on the Accuracy of Linking. Research Report. ETS RR-10-22

    ERIC Educational Resources Information Center

    Haberman, Shelby J.

    2010-01-01

    Sampling errors limit the accuracy with which forms can be linked. Limitations on accuracy are especially important in testing programs in which a very large number of forms are employed. Standard inequalities in mathematical statistics may be used to establish lower bounds on the achievable inking accuracy. To illustrate results, a variety of…

  16. Climate Change Accuracy: Requirements and Economic Value

    NASA Astrophysics Data System (ADS)

    Wielicki, B. A.; Cooke, R.; Mlynczak, M. G.; Lukashin, C.; Thome, K. J.; Baize, R. R.

    2014-12-01

    Higher than normal accuracy is required to rigorously observe decadal climate change. But what level is needed? How can this be quantified? This presentation will summarize a new more rigorous and quantitative approach to determining the required accuracy for climate change observations (Wielicki et al., 2013, BAMS). Most current global satellite observations cannot meet this accuracy level. A proposed new satellite mission to resolve this challenge is CLARREO (Climate Absolute Radiance and Refractivity Observatory). CLARREO is designed to achieve advances of a factor of 10 for reflected solar spectra and a factor of 3 to 5 for thermal infrared spectra (Wielicki et al., Oct. 2013 BAMS). The CLARREO spectrometers are designed to serve as SI traceable benchmarks for the Global Satellite Intercalibration System (GSICS) and to greatly improve the utility of a wide range of LEO and GEO infrared and reflected solar passive satellite sensors for climate change observations (e.g. CERES, MODIS, VIIIRS, CrIS, IASI, Landsat, SPOT, etc). Providing more accurate decadal change trends can in turn lead to more rapid narrowing of key climate science uncertainties such as cloud feedback and climate sensitivity. A study has been carried out to quantify the economic benefits of such an advance as part of a rigorous and complete climate observing system. The study concludes that the economic value is $12 Trillion U.S. dollars in Net Present Value for a nominal discount rate of 3% (Cooke et al. 2013, J. Env. Sys. Dec.). A brief summary of these two studies and their implications for the future of climate science will be presented.

  17. Weight Multispectral Reconstruction Strategy for Enhanced Reconstruction Accuracy and Stability With Cerenkov Luminescence Tomography.

    PubMed

    Hongbo Guo; Xiaowei He; Muhan Liu; Zeyu Zhang; Zhenhua Hu; Jie Tian

    2017-06-01

    Cerenkov luminescence tomography (CLT) provides a novel technique for 3-D noninvasive detection of radiopharmaceuticals in living subjects. However, because of the severe scattering of Cerenkov light, the reconstruction accuracy and stability of CLT is still unsatisfied. In this paper, a modified weight multispectral CLT (wmCLT) reconstruction strategy was developed which split the Cerenkov radiation spectrum into several sub-spectral bands and weighted the sub-spectral results to obtain the final result. To better evaluate the property of the wmCLT reconstruction strategy in terms of accuracy, stability and practicability, several numerical simulation experiments and in vivo experiments were conducted and the results obtained were compared with the traditional multispectral CLT (mCLT) and hybrid-spectral CLT (hCLT) reconstruction strategies. The numerical simulation results indicated that wmCLT strategy significantly improved the accuracy of Cerenkov source localization and intensity quantitation and exhibited good stability in suppressing noise in numerical simulation experiments. And the comparison of the results achieved from different in vivo experiments further indicated significant improvement of the wmCLT strategy in terms of the shape recovery of the bladder and the spatial resolution of imaging xenograft tumors. Overall the strategy reported here will facilitate the development of nuclear and optical molecular tomography in theoretical study.

  18. A cross-sectional study of mathematics achievement, estimation skills, and academic self-perception in students of varying ability.

    PubMed

    Montague, Marjorie; van Garderen, Delinda

    2003-01-01

    This study investigated students' mathematics achievement, estimation ability, use of estimation strategies, and academic self-perception. Students with learning disabilities (LD), average achievers, and intellectually gifted students (N = 135) in fourth, sixth, and eighth grade participated in the study. They were assessed to determine their mathematics achievement, ability to estimate discrete quantities, knowledge and use of estimation strategies, and perception of academic competence. The results indicated that the students with LD performed significantly lower than their peers on the math achievement measures, as expected, but viewed themselves to be as academically competent as the average achievers did. Students with LD and average achievers scored significantly lower than gifted students on all estimation measures, but they differed significantly from one another only on the estimation strategy use measure. Interestingly, even gifted students did not seem to have a well-developed understanding of estimation and, like the other students, did poorly on the first estimation measure. The accuracy of their estimates seemed to improve, however, when students were asked open-ended questions about the strategies they used to arrive at their estimates. Although students with LD did not differ from average achievers in their estimation accuracy, they used significantly fewer effective estimation strategies. Implications for instruction are discussed.

  19. Robust sub-millihertz-level offset locking for transferring optical frequency accuracy and for atomic two-photon spectroscopy.

    PubMed

    Cheng, Wang-Yau; Chen, Ting-Ju; Lin, Chia-Wei; Chen, Bo-Wei; Yang, Ya-Po; Hsu, Hung Yi

    2017-02-06

    Robust sub-millihertz-level offset locking was achieved with a simple scheme, by which we were able to transfer the laser frequency stability and accuracy from either cesium-stabilized diode laser or comb laser to the other diode lasers who had serious frequency jitter previously. The offset lock developed in this paper played an important role in atomic two-photon spectroscopy with which record resolution and new determination on the hyperfine constants of cesium atom were achieved. A quantum-interference experiment was performed to show the improvement of light coherence as an extended design was implemented.

  20. Increasing Accuracy in Computed Inviscid Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Dyson, Roger

    2004-01-01

    A technique has been devised to increase the accuracy of computational simulations of flows of inviscid fluids by increasing the accuracy with which surface boundary conditions are represented. This technique is expected to be especially beneficial for computational aeroacoustics, wherein it enables proper accounting, not only for acoustic waves, but also for vorticity and entropy waves, at surfaces. Heretofore, inviscid nonlinear surface boundary conditions have been limited to third-order accuracy in time for stationary surfaces and to first-order accuracy in time for moving surfaces. For steady-state calculations, it may be possible to achieve higher accuracy in space, but high accuracy in time is needed for efficient simulation of multiscale unsteady flow phenomena. The present technique is the first surface treatment that provides the needed high accuracy through proper accounting of higher-order time derivatives. The present technique is founded on a method known in art as the Hermitian modified solution approximation (MESA) scheme. This is because high time accuracy at a surface depends upon, among other things, correction of the spatial cross-derivatives of flow variables, and many of these cross-derivatives are included explicitly on the computational grid in the MESA scheme. (Alternatively, a related method other than the MESA scheme could be used, as long as the method involves consistent application of the effects of the cross-derivatives.) While the mathematical derivation of the present technique is too lengthy and complex to fit within the space available for this article, the technique itself can be characterized in relatively simple terms: The technique involves correction of surface-normal spatial pressure derivatives at a boundary surface to satisfy the governing equations and the boundary conditions and thereby achieve arbitrarily high orders of time accuracy in special cases. The boundary conditions can now include a potentially infinite number

  1. "Score the Core" Web-based pathologist training tool improves the accuracy of breast cancer IHC4 scoring.

    PubMed

    Engelberg, Jesse A; Retallack, Hanna; Balassanian, Ronald; Dowsett, Mitchell; Zabaglo, Lila; Ram, Arishneel A; Apple, Sophia K; Bishop, John W; Borowsky, Alexander D; Carpenter, Philip M; Chen, Yunn-Yi; Datnow, Brian; Elson, Sarah; Hasteh, Farnaz; Lin, Fritz; Moatamed, Neda A; Zhang, Yanhong; Cardiff, Robert D

    2015-11-01

    Hormone receptor status is an integral component of decision-making in breast cancer management. IHC4 score is an algorithm that combines hormone receptor, HER2, and Ki-67 status to provide a semiquantitative prognostic score for breast cancer. High accuracy and low interobserver variance are important to ensure the score is accurately calculated; however, few previous efforts have been made to measure or decrease interobserver variance. We developed a Web-based training tool, called "Score the Core" (STC) using tissue microarrays to train pathologists to visually score estrogen receptor (using the 300-point H score), progesterone receptor (percent positive), and Ki-67 (percent positive). STC used a reference score calculated from a reproducible manual counting method. Pathologists in the Athena Breast Health Network and pathology residents at associated institutions completed the exercise. By using STC, pathologists improved their estrogen receptor H score and progesterone receptor and Ki-67 proportion assessment and demonstrated a good correlation between pathologist and reference scores. In addition, we collected information about pathologist performance that allowed us to compare individual pathologists and measures of agreement. Pathologists' assessment of the proportion of positive cells was closer to the reference than their assessment of the relative intensity of positive cells. Careful training and assessment should be used to ensure the accuracy of breast biomarkers. This is particularly important as breast cancer diagnostics become increasingly quantitative and reproducible. Our training tool is a novel approach for pathologist training that can serve as an important component of ongoing quality assessment and can improve the accuracy of breast cancer prognostic biomarkers. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Patient-specific instrument can achieve same accuracy with less resection time than navigation assistance in periacetabular pelvic tumor surgery: a cadaveric study.

    PubMed

    Wong, Kwok-Chuen; Sze, Kwan-Yik; Wong, Irene Oi-Ling; Wong, Chung-Ming; Kumta, Shekhar-Madhukar

    2016-02-01

    Inaccurate resection in pelvic tumors can result in compromised margins with increase local recurrence. Navigation-assisted and patient-specific instrument (PSI) techniques have recently been reported in assisting pelvic tumor surgery with the tendency of improving surgical accuracy. We examined and compared the accuracy of transferring a virtual pelvic resection plan to actual surgery using navigation-assisted or PSI technique in a cadaver study. We performed CT scan in twelve cadaveric bodies including whole pelvic bones. Either supraacetabular or partial acetabular resection was virtually planned in a hemipelvis using engineering software. The virtual resection plan was transferred to a CT-based navigation system or was used for design and fabrication of PSI. Pelvic resections were performed using navigation assistance in six cadavers and PSI in another six. Post-resection images were co-registered with preoperative planning for comparative analysis of resection accuracy in the two techniques. The mean average deviation error from the planned resection was no different ([Formula: see text]) for the navigation and the PSI groups: 1.9 versus 1.4 mm, respectively. The mean time required for the bone resection was greater ([Formula: see text]) for the navigation group than for the PSI group: 16.2 versus 1.1 min, respectively. In simulated periacetabular pelvic tumor resections, PSI technique enabled surgeons to reproduce the virtual surgical plan with similar accuracy but with less bone resection time when compared with navigation assistance. Further studies are required to investigate the clinical benefits of PSI technique in pelvic tumor surgery.

  3. The use of video in standardized patient training to improve portrayal accuracy: A randomized post-test control group study.

    PubMed

    Schlegel, Claudia; Bonvin, Raphael; Rethans, Jan Joost; van der Vleuten, Cees

    2014-10-14

    Abstract Introduction: High-stake objective structured clinical examinations (OSCEs) with standardized patients (SPs) should offer the same conditions to all candidates throughout the exam. SP performance should therefore be as close to the original role script as possible during all encounters. In this study, we examined the impact of video in SP training on SPs' role accuracy, investigating how the use of different types of video during SP training improves the accuracy of SP portrayal. Methods: In a randomized post-test, control group design three groups of 12 SPs each with different types of video training and one control group of 12 SPs without video use in SP training were compared. The three intervention groups used role-modeling video, performance-feedback video, or a combination of both. Each SP from each group had four students encounter. Two blinded faculty members rated the 192 video-recorded encounters, using a case-specific rating instrument to assess SPs' role accuracy. Results: SPs trained by video showed significantly (p < 0.001) better role accuracy than SPs trained without video over the four sequential portrayals. There was no difference between the three types of video training. Discussion: Use of video during SP training enhances the accuracy of SP portrayal compared with no video, regardless of the type of video intervention used.

  4. Prognostic accuracy of five simple scales in childhood bacterial meningitis.

    PubMed

    Pelkonen, Tuula; Roine, Irmeli; Monteiro, Lurdes; Cruzeiro, Manuel Leite; Pitkäranta, Anne; Kataja, Matti; Peltola, Heikki

    2012-08-01

    In childhood acute bacterial meningitis, the level of consciousness, measured with the Glasgow coma scale (GCS) or the Blantyre coma scale (BCS), is the most important predictor of outcome. The Herson-Todd scale (HTS) was developed for Haemophilus influenzae meningitis. Our objective was to identify prognostic factors, to form a simple scale, and to compare the predictive accuracy of these scales. Seven hundred and twenty-three children with bacterial meningitis in Luanda were scored by GCS, BCS, and HTS. The simple Luanda scale (SLS), based on our entire database, comprised domestic electricity, days of illness, convulsions, consciousness, and dyspnoea at presentation. The Bayesian Luanda scale (BLS) added blood glucose concentration. The accuracy of the 5 scales was determined for 491 children without an underlying condition, against the outcomes of death, severe neurological sequelae or death, or a poor outcome (severe neurological sequelae, death, or deafness), at hospital discharge. The highest accuracy was achieved with the BLS, whose area under the curve (AUC) for death was 0.83, for severe neurological sequelae or death was 0.84, and for poor outcome was 0.82. Overall, the AUCs for SLS were ≥0.79, for GCS were ≥0.76, for BCS were ≥0.74, and for HTS were ≥0.68. Adding laboratory parameters to a simple scoring system, such as the SLS, improves the prognostic accuracy only little in bacterial meningitis.

  5. Audiovisual communication of object-names improves the spatial accuracy of recalled object-locations in topographic maps.

    PubMed

    Lammert-Siepmann, Nils; Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank

    2017-01-01

    Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory.

  6. Audiovisual communication of object-names improves the spatial accuracy of recalled object-locations in topographic maps

    PubMed Central

    Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank

    2017-01-01

    Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory. PMID:29059237

  7. The effect of clock, media, and station location errors on Doppler measurement accuracy

    NASA Technical Reports Server (NTRS)

    Miller, J. K.

    1993-01-01

    Doppler tracking by the Deep Space Network (DSN) is the primary radio metric data type used by navigation to determine the orbit of a spacecraft. The accuracy normally attributed to orbits determined exclusively with Doppler data is about 0.5 microradians in geocentric angle. Recently, the Doppler measurement system has evolved to a high degree of precision primarily because of tracking at X-band frequencies (7.2 to 8.5 GHz). However, the orbit determination system has not been able to fully utilize this improved measurement accuracy because of calibration errors associated with transmission media, the location of tracking stations on the Earth's surface, the orientation of the Earth as an observing platform, and timekeeping. With the introduction of Global Positioning System (GPS) data, it may be possible to remove a significant error associated with the troposphere. In this article, the effect of various calibration errors associated with transmission media, Earth platform parameters, and clocks are examined. With the introduction of GPS calibrations, it is predicted that a Doppler tracking accuracy of 0.05 microradians is achievable.

  8. A method which can enhance the optical-centering accuracy

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-min; Zhang, Xue-jun; Dai, Yi-dan; Yu, Tao; Duan, Jia-you; Li, Hua

    2014-09-01

    Optical alignment machining is an effective method to ensure the co-axiality of optical system. The co-axiality accuracy is determined by optical-centering accuracy of single optical unit, which is determined by the rotating accuracy of lathe and the optical-centering judgment accuracy. When the rotating accuracy of 0.2um can be achieved, the leading error can be ignored. An axis-determination tool which is based on the principle of auto-collimation can be used to determine the only position of centerscope is designed. The only position is the position where the optical axis of centerscope is coincided with the rotating axis of the lathe. Also a new optical-centering judgment method is presented. A system which includes the axis-determination tool and the new optical-centering judgment method can enhance the optical-centering accuracy to 0.003mm.

  9. Deconvolution improves the accuracy and depth sensitivity of time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Diop, Mamadou; St. Lawrence, Keith

    2013-03-01

    Time-resolved (TR) techniques have the potential to distinguish early- from late-arriving photons. Since light travelling through superficial tissue is detected earlier than photons that penetrate the deeper layers, time-windowing can in principle be used to improve the depth sensitivity of TR measurements. However, TR measurements also contain instrument contributions - referred to as the instrument-response-function (IRF) - which cause temporal broadening of the measured temporal-point-spread-function (TPSF). In this report, we investigate the influence of the IRF on pathlength-resolved absorption changes (Δμa) retrieved from TR measurements using the microscopic Beer-Lambert law (MBLL). TPSFs were acquired on homogeneous and two-layer tissue-mimicking phantoms with varying optical properties. The measured IRF and TPSFs were deconvolved to recover the distribution of time-of-flights (DTOFs) of the detected photons. The microscopic Beer-Lambert law was applied to early and late time-windows of the TPSFs and DTOFs to access the effects of the IRF on pathlength-resolved Δμa. The analysis showed that the late part of the TPSFs contains substantial contributions from early-arriving photons, due to the smearing effects of the IRF, which reduced its sensitivity to absorption changes occurring in deep layers. We also demonstrated that the effects of the IRF can be efficiently eliminated by applying a robust deconvolution technique, thereby improving the accuracy and sensitivity of TR measurements to deep-tissue absorption changes.

  10. Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms.

    PubMed

    Phillips, P Jonathon; Yates, Amy N; Hu, Ying; Hahn, Carina A; Noyes, Eilidh; Jackson, Kelsey; Cavazos, Jacqueline G; Jeckeln, Géraldine; Ranjan, Rajeev; Sankaranarayanan, Swami; Chen, Jun-Cheng; Castillo, Carlos D; Chellappa, Rama; White, David; O'Toole, Alice J

    2018-06-12

    Achieving the upper limits of face identification accuracy in forensic applications can minimize errors that have profound social and personal consequences. Although forensic examiners identify faces in these applications, systematic tests of their accuracy are rare. How can we achieve the most accurate face identification: using people and/or machines working alone or in collaboration? In a comprehensive comparison of face identification by humans and computers, we found that forensic facial examiners, facial reviewers, and superrecognizers were more accurate than fingerprint examiners and students on a challenging face identification test. Individual performance on the test varied widely. On the same test, four deep convolutional neural networks (DCNNs), developed between 2015 and 2017, identified faces within the range of human accuracy. Accuracy of the algorithms increased steadily over time, with the most recent DCNN scoring above the median of the forensic facial examiners. Using crowd-sourcing methods, we fused the judgments of multiple forensic facial examiners by averaging their rating-based identity judgments. Accuracy was substantially better for fused judgments than for individuals working alone. Fusion also served to stabilize performance, boosting the scores of lower-performing individuals and decreasing variability. Single forensic facial examiners fused with the best algorithm were more accurate than the combination of two examiners. Therefore, collaboration among humans and between humans and machines offers tangible benefits to face identification accuracy in important applications. These results offer an evidence-based roadmap for achieving the most accurate face identification possible. Copyright © 2018 the Author(s). Published by PNAS.

  11. HIV-1 tropism testing in subjects achieving undetectable HIV-1 RNA: diagnostic accuracy, viral evolution and compartmentalization.

    PubMed

    Pou, Christian; Codoñer, Francisco M; Thielen, Alexander; Bellido, Rocío; Pérez-Álvarez, Susana; Cabrera, Cecilia; Dalmau, Judith; Curriu, Marta; Lie, Yolanda; Noguera-Julian, Marc; Puig, Jordi; Martínez-Picado, Javier; Blanco, Julià; Coakley, Eoin; Däumer, Martin; Clotet, Bonaventura; Paredes, Roger

    2013-01-01

    Technically, HIV-1 tropism can be evaluated in plasma or peripheral blood mononuclear cells (PBMCs). However, only tropism testing of plasma HIV-1 has been validated as a tool to predict virological response to CCR5 antagonists in clinical trials. The preferable tropism testing strategy in subjects with undetectable HIV-1 viremia, in whom plasma tropism testing is not feasible, remains uncertain. We designed a proof-of-concept study including 30 chronically HIV-1-infected individuals who achieved HIV-1 RNA <50 copies/mL during at least 2 years after first-line ART initiation. First, we determined the diagnostic accuracy of 454 and population sequencing of gp120 V3-loops in plasma and PBMCs, as well as of MT-2 assays before ART initiation. The Enhanced Sensitivity Trofile Assay (ESTA) was used as the technical reference standard. 454 sequencing of plasma viruses provided the highest agreement with ESTA. The accuracy of 454 sequencing decreased in PBMCs due to reduced specificity. Population sequencing in plasma and PBMCs was slightly less accurate than plasma 454 sequencing, being less sensitive but more specific. MT-2 assays had low sensitivity but 100% specificity. Then, we used optimized 454 sequence data to investigate viral evolution in PBMCs during viremia suppression and only found evolution of R5 viruses in one subject. No de novo CXCR4-using HIV-1 production was observed over time. Finally, Slatkin-Maddison tests suggested that plasma and cell-associated V3 forms were sometimes compartmentalized. The absence of tropism shifts during viremia suppression suggests that, when available, testing of stored plasma samples is generally safe and informative, provided that HIV-1 suppression is maintained. Tropism testing in PBMCs may not necessarily produce equivalent biological results to plasma, because the structure of viral populations and the diagnostic performance of tropism assays may sometimes vary between compartments. Thereby, proviral DNA tropism testing

  12. Linear Discriminant Analysis Achieves High Classification Accuracy for the BOLD fMRI Response to Naturalistic Movie Stimuli

    PubMed Central

    Mandelkow, Hendrik; de Zwart, Jacco A.; Duyn, Jeff H.

    2016-01-01

    Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these

  13. Comparative Diagnostic Accuracy of the ACE-III, MIS, MMSE, MoCA, and RUDAS for Screening of Alzheimer Disease.

    PubMed

    Matías-Guiu, Jordi A; Valles-Salgado, María; Rognoni, Teresa; Hamre-Gil, Frank; Moreno-Ramos, Teresa; Matías-Guiu, Jorge

    2017-01-01

    Our aim was to evaluate and compare the diagnostic properties of 5 screening tests for the diagnosis of mild Alzheimer disease (AD). We conducted a prospective and cross-sectional study of 92 patients with mild AD and of 68 healthy controls from our Department of Neurology. The diagnostic properties of the following tests were compared: Mini-Mental State Examination (MMSE), Addenbrooke's Cognitive Examination III (ACE-III), Memory Impairment Screen (MIS), Montreal Cognitive Assessment (MoCA), and Rowland Universal Dementia Assessment Scale (RUDAS). All tests yielded high diagnostic accuracy, with the ACE-III achieving the best diagnostic properties. The area under the curve was 0.897 for the ACE-III, 0.889 for the RUDAS, 0.874 for the MMSE, 0.866 for the MIS, and 0.856 for the MoCA. The Mini-ACE score from the ACE-III showed the highest diagnostic capacity (area under the curve 0.939). Memory scores of the ACE-III and of the RUDAS showed a better diagnostic accuracy than those of the MMSE and of the MoCA. All tests, especially the ACE-III, conveyed a higher diagnostic accuracy in patients with full primary education than in the less educated group. Implementing normative data improved the diagnostic accuracy of the ACE-III but not that of the other tests. The ACE-III achieved the highest diagnostic accuracy. This better discrimination was more evident in the more educated group. © 2017 S. Karger AG, Basel.

  14. Improving Mathematics Achievement of Indonesian 5th Grade Students through Guided Discovery Learning

    ERIC Educational Resources Information Center

    Yurniwati; Hanum, Latipa

    2017-01-01

    This research aims to find information about the improvement of mathematics achievement of grade five student through guided discovery learning. This research method is classroom action research using Kemmis and Taggart model consists of three cycles. Data used in this study is learning process and learning results. Learning process data is…

  15. Achieving and Validating the 1-centimeter Orbit: JASON-1 Precision Orbit Determination Using GPS, SLR, DORIS and Altimeter data

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott B.; Zelensky, Nikita P.; Rowlands, David D.; Lemoine, Frank G.; Williams, Teresa A.

    2003-01-01

    Jason-1, launched on December 7, 2001, is continuing the time series of centimeter level ocean topography observations as the follow-on to the highly successful TOPEX/POSEIDON (T/P) radar altimeter satellite. The precision orbit determination (POD) is a critical component to meeting the ocean topography goals of the mission. Jason-1 is no exception and has set a 1 cm radial orbit accuracy goal, which represents a factor of two improvement over what is currently being achieved for T/P. The challenge to precision orbit determination (POD) is both achieving the 1 cm radial orbit accuracy and evaluating and validating the performance of the 1 cm orbit. Fortunately, Jason-1 POD can rely on four independent tracking data types including near continuous tracking data from the dual frequency codeless BlackJack GPS receiver. In addition, to the enhanced GPS receiver, Jason-1 carries significantly improved SLR and DORIS tracking systems along with the altimeter itself. We demonstrate the 1 cm radial orbit accuracy goal has been achieved using GPS data alone in a reduced dynamic solution. It is also shown that adding SLR data to the GPS-based solutions improves the orbits even further. In order to assess the performance of these orbits it is necessary to process all of the available tracking data (GPS, SLR, DORIS and altimeter crossover differences) as either dependent or independent of the orbit solutions. It was also necessary to compute orbit solutions using various combinations of the four available tracking data in order to independently assess the orbit performance. Towards this end, we have greatly improved orbits determined solely from SLR+DORIS data by applying the reduced dynamic solution strategy. In addition, we have computed reduced dynamic orbits based on SLR, DORIS and crossover data that are a significant improvement over the SLR and DORIS based dynamic solutions. These solutions provide the best performing orbits for independent validation of the GPS

  16. Performance measures for improving the prevention of venous thromboembolism: achievement in clinical practice.

    PubMed

    Wilson, Kenneth C; Merli, Geno J

    2011-10-01

    Venous thromboembolism (VTE) is a common complication during and after hospitalization for acute medical illness or surgery. Despite the existence of evidence-based guidelines for VTE prevention, real-world prescribing practices are frequently suboptimal. Specific performance measures relating to VTE prevention and treatment have been developed by US health care organizations to increase adherence with best-practice recommendations and ultimately reduce the number of preventable VTE events. Two measures developed by the Surgical Care Improvement Project have been endorsed by the National Quality Forum (NQF) and focus on VTE prevention. In addition, six measures have been developed recently by The Joint Commission in collaboration with the NQF; three measures relate to VTE prevention and three focus on treatment. To attain widespread achievement of these performance goals, it is essential to raise awareness of their existence and specifications. It is also imperative that hospitals develop and implement effective VTE protocols. The use of multiple, active strategies, such as computer decision support systems with regular audit and feedback, may be particularly valuable approaches to improve current practices within an integrated quality improvement program. During practical implementation of VTE protocols at Norton Healthcare (Kentucky's largest healthcare system), strong leadership, physician engagement, and caregiver accountability were identified as key factors influencing the process. As such, more hospitals may be able to increase adherence with guidelines, improve achievement of quality goals, and help to reduce the substantial burden associated with avoidable VTE.

  17. Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks.

    PubMed

    Chai, Rifai; Ling, Sai Ho; San, Phyo Phyo; Naik, Ganesh R; Nguyen, Tuan N; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T

    2017-01-01

    This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN), and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively.

  18. Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks

    PubMed Central

    Chai, Rifai; Ling, Sai Ho; San, Phyo Phyo; Naik, Ganesh R.; Nguyen, Tuan N.; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T.

    2017-01-01

    This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN), and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively. PMID:28326009

  19. Forecasting space weather: Can new econometric methods improve accuracy?

    NASA Astrophysics Data System (ADS)

    Reikard, Gordon

    2011-06-01

    Space weather forecasts are currently used in areas ranging from navigation and communication to electric power system operations. The relevant forecast horizons can range from as little as 24 h to several days. This paper analyzes the predictability of two major space weather measures using new time series methods, many of them derived from econometrics. The data sets are the A p geomagnetic index and the solar radio flux at 10.7 cm. The methods tested include nonlinear regressions, neural networks, frequency domain algorithms, GARCH models (which utilize the residual variance), state transition models, and models that combine elements of several techniques. While combined models are complex, they can be programmed using modern statistical software. The data frequency is daily, and forecasting experiments are run over horizons ranging from 1 to 7 days. Two major conclusions stand out. First, the frequency domain method forecasts the A p index more accurately than any time domain model, including both regressions and neural networks. This finding is very robust, and holds for all forecast horizons. Combining the frequency domain method with other techniques yields a further small improvement in accuracy. Second, the neural network forecasts the solar flux more accurately than any other method, although at short horizons (2 days or less) the regression and net yield similar results. The neural net does best when it includes measures of the long-term component in the data.

  20. Improving the accuracy of CT dimensional metrology by a novel beam hardening correction method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Li, Lei; Zhang, Feng; Xi, Xiaoqi; Deng, Lin; Yan, Bin

    2015-01-01

    Its powerful nondestructive characteristics are attracting more and more research into the study of computed tomography (CT) for dimensional metrology, which offers a practical alternative to the common measurement methods. However, the inaccuracy and uncertainty severely limit the further utilization of CT for dimensional metrology due to many factors, among which the beam hardening (BH) effect plays a vital role. This paper mainly focuses on eliminating the influence of the BH effect in the accuracy of CT dimensional metrology. To correct the BH effect, a novel exponential correction model is proposed. The parameters of the model are determined by minimizing the gray entropy of the reconstructed volume. In order to maintain the consistency and contrast of the corrected volume, a punishment term is added to the cost function, enabling more accurate measurement results to be obtained by the simple global threshold method. The proposed method is efficient, and especially suited to the case where there is a large difference in gray value between material and background. Different spheres with known diameters are used to verify the accuracy of dimensional measurement. Both simulation and real experimental results demonstrate the improvement in measurement precision. Moreover, a more complex workpiece is also tested to show that the proposed method is of general feasibility.

  1. Leading Standards-Based Education Reform: Improving Implementation of Standards to Increase Student Achievement

    ERIC Educational Resources Information Center

    Vogel, Linda R.

    2010-01-01

    Standards-based education (SBE) has been the dominant educational reform movement since the early 1980s, reinforced by federal and state accountability systems. This book examines the efforts of educational leaders in implementing SBE to improve student achievement in a variety of demographic contexts but with common challenges. Four stages of SBE…

  2. Improving Student Interest and Achievement in Social Studies Using a Multiple Intelligence Approach.

    ERIC Educational Resources Information Center

    Hanley, Chris; Hermiz, Carmen; Lagioia-Peddy, Jennifer; Levine-Albuck, Valerie

    This action research paper describes a program initiated by teacher researchers to improve academic achievement and interest in social studies. The targeted group consisted of fifth graders in a lower middle class community in the Midwest. Analysis of the problem-causes data show three main factors: curriculum, attitude, and effect. In regard to…

  3. COMPASS time synchronization and dissemination—Toward centimetre positioning accuracy

    NASA Astrophysics Data System (ADS)

    Wang, ZhengBo; Zhao, Lu; Wang, ShiGuang; Zhang, JianWei; Wang, Bo; Wang, LiJun

    2014-09-01

    In this paper we investigate methods to achieve highly accurate time synchronization among the satellites of the COMPASS global navigation satellite system (GNSS). Owing to the special design of COMPASS which implements several geo-stationary satellites (GEO), time synchronization can be highly accurate via microwave links between ground stations to the GEO satellites. Serving as space-borne relay stations, the GEO satellites can further disseminate time and frequency signals to other satellites such as the inclined geo-synchronous (IGSO) and mid-earth orbit (MEO) satellites within the system. It is shown that, because of the accuracy in clock synchronization, the theoretical accuracy of COMPASS positioning and navigation will surpass that of the GPS. In addition, the COMPASS system can function with its entire positioning, navigation, and time-dissemination services even without the ground link, thus making it much more robust and secure. We further show that time dissemination using the COMPASS-GEO satellites to earth-fixed stations can achieve very high accuracy, to reach 100 ps in time dissemination and 3 cm in positioning accuracy, respectively. In this paper, we also analyze two feasible synchronization plans. All special and general relativistic effects related to COMPASS clocks frequency and time shifts are given. We conclude that COMPASS can reach centimeter-level positioning accuracy and discuss potential applications.

  4. Optimizing care of ventilated infants by improving weighing accuracy on incubator scales.

    PubMed

    El-Kafrawy, Ula; Taylor, R J

    2016-01-01

    To determine the accuracy of weighing ventilated infants on incubator scales and whether the accuracy can be improved by the addition of a ventilator tube compensator (VTC) device to counterbalance the force exerted by the ventilator tubing. Body weights on integral incubator scales were compared in ventilated infants (with and without a VTC), with body weights on standalone electronic scales (true weight). Individual and series of trend weights were obtained on the infants. The method of Bland and Altman was used to assess the introduced bias. The study included 60 ventilated infants; 66% of them weighed <1000 g. A total of 102 paired-weight datasets for 30 infants undergoing conventional ventilation and 30 undergoing high frequency oscillator ventilation (HFOV) supported by a SensorMedics oscillator, (with and without a VTC) were obtained. The mean differences and (95% CI for the bias) between the integral and true scale weighing methods was 60.8 g (49.1 g to 72.5 g) without and -2.8 g (-8.9 g to 3.3 g) with a VTC in HFOV infants; 41.0 g (32.1 g to 50.0 g) without and -5.1 g (-9.3 g to -0.8 g) with a VTC for conventionally ventilated infants. Differences of greater than 2% were considered clinically relevant and occurred in 93.8% without and 20.8% with a VTC in HFOV infants and 81.5% without and 27.8% with VTC in conventionally ventilated infants. The use of the VTC device represents a substantial improvement on the current practice for weighing ventilated infants, particularly in the extreme preterm infants where an over- or underestimated weight can have important clinical implications for treatment. A large-scale clinical trial to validate these findings is needed.

  5. Improving Accuracy of Sleep Self-Reports through Correspondence Training

    ERIC Educational Resources Information Center

    St. Peter, Claire C.; Montgomery-Downs, Hawley E.; Massullo, Joel P.

    2012-01-01

    Sleep insufficiency is a major public health concern, yet the accuracy of self-reported sleep measures is often poor. Self-report may be useful when direct measurement of nonverbal behavior is impossible, infeasible, or undesirable, as it may be with sleep measurement. We used feedback and positive reinforcement within a small-n multiple-baseline…

  6. Improved imputation accuracy in Hispanic/Latino populations with larger and more diverse reference panels: applications in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL)

    PubMed Central

    Nelson, Sarah C.; Stilp, Adrienne M.; Papanicolaou, George J.; Taylor, Kent D.; Rotter, Jerome I.; Thornton, Timothy A.; Laurie, Cathy C.

    2016-01-01

    Imputation is commonly used in genome-wide association studies to expand the set of genetic variants available for analysis. Larger and more diverse reference panels, such as the final Phase 3 of the 1000 Genomes Project, hold promise for improving imputation accuracy in genetically diverse populations such as Hispanics/Latinos in the USA. Here, we sought to empirically evaluate imputation accuracy when imputing to a 1000 Genomes Phase 3 versus a Phase 1 reference, using participants from the Hispanic Community Health Study/Study of Latinos. Our assessments included calculating the correlation between imputed and observed allelic dosage in a subset of samples genotyped on a supplemental array. We observed that the Phase 3 reference yielded higher accuracy at rare variants, but that the two reference panels were comparable at common variants. At a sample level, the Phase 3 reference improved imputation accuracy in Hispanic/Latino samples from the Caribbean more than for Mainland samples, which we attribute primarily to the additional reference panel samples available in Phase 3. We conclude that a 1000 Genomes Project Phase 3 reference panel can yield improved imputation accuracy compared with Phase 1, particularly for rare variants and for samples of certain genetic ancestry compositions. Our findings can inform imputation design for other genome-wide association studies of participants with diverse ancestries, especially as larger and more diverse reference panels continue to become available. PMID:27346520

  7. Design of interpolation functions for subpixel-accuracy stereo-vision systems.

    PubMed

    Haller, Istvan; Nedevschi, Sergiu

    2012-02-01

    Traditionally, subpixel interpolation in stereo-vision systems was designed for the block-matching algorithm. During the evaluation of different interpolation strategies, a strong correlation was observed between the type of the stereo algorithm and the subpixel accuracy of the different solutions. Subpixel interpolation should be adapted to each stereo algorithm to achieve maximum accuracy. In consequence, it is more important to propose methodologies for interpolation function generation than specific function shapes. We propose two such methodologies based on data generated by the stereo algorithms. The first proposal uses a histogram to model the environment and applies histogram equalization to an existing solution adapting it to the data. The second proposal employs synthetic images of a known environment and applies function fitting to the resulted data. The resulting function matches the algorithm and the data as best as possible. An extensive evaluation set is used to validate the findings. Both real and synthetic test cases were employed in different scenarios. The test results are consistent and show significant improvements compared with traditional solutions. © 2011 IEEE

  8. Improved accuracy in Wigner-Ville distribution-based sizing of rod-shaped particle using flip and replication technique

    NASA Astrophysics Data System (ADS)

    Chuamchaitrakool, Porntip; Widjaja, Joewono; Yoshimura, Hiroyuki

    2018-01-01

    A method for improving accuracy in Wigner-Ville distribution (WVD)-based particle size measurements from inline holograms using flip and replication technique (FRT) is proposed. The FRT extends the length of hologram signals being analyzed, yielding better spatial-frequency resolution of the WVD output. Experimental results verify reduction in measurement error as the length of the hologram signals increases. The proposed method is suitable for particle sizing from holograms recorded using small-sized image sensors.

  9. Making High Accuracy Null Depth Measurements for the LBTI ExoZodi Survey

    NASA Technical Reports Server (NTRS)

    Mennesson, Bertrand; Defrere, Denis; Nowak, Matthew; Hinz, Philip; Millan-Gabet, Rafael; Absil, Olivier; Bailey, Vanessa; Bryden, Geoffrey; Danchi, William; Kennedy, Grant M.; hide

    2016-01-01

    The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass planets in the habitable zone of nearby main sequence stars. The Large Binocular Telescope Interferometer (LBTI) exozodi survey aims at providing a ten-fold improvement over current state of the art, measuring dust emission levels down to a typical accuracy of approximately 12 zodis per star, for a representative ensemble of approximately 30+ high priority targets. Such measurements promise to yield a final accuracy of about 2 zodis on the median exozodi level of the targets sample. Reaching a 1 sigma measurement uncertainty of 12 zodis per star corresponds to measuring interferometric cancellation (null) levels, i.e visibilities at the few 100 ppm uncertainty level. We discuss here the challenges posed by making such high accuracy mid-infrared visibility measurements from the ground and present the methodology we developed for achieving current best levels of 500 ppm or so. We also discuss current limitations and plans for enhanced exozodi observations over the next few years at LBTI.

  10. The power of timing: Adding a time-to-completion cutoff to the Word Choice Test and Recognition Memory Test improves classification accuracy.

    PubMed

    Erdodi, Laszlo A; Tyson, Bradley T; Shahein, Ayman G; Lichtenstein, Jonathan D; Abeare, Christopher A; Pelletier, Chantalle L; Zuccato, Brandon G; Kucharski, Brittany; Roth, Robert M

    2017-05-01

    The Recognition Memory Test (RMT) and Word Choice Test (WCT) are structurally similar, but psychometrically different. Previous research demonstrated that adding a time-to-completion cutoff improved the classification accuracy of the RMT. However, the contribution of WCT time-cutoffs to improve the detection of invalid responding has not been investigated. The present study was designed to evaluate the classification accuracy of time-to-completion on the WCT compared to the accuracy score and the RMT. Both tests were administered to 202 adults (M age  = 45.3 years, SD = 16.8; 54.5% female) clinically referred for neuropsychological assessment in counterbalanced order as part of a larger battery of cognitive tests. Participants obtained lower and more variable scores on the RMT (M = 44.1, SD = 7.6) than on the WCT (M = 46.9, SD = 5.7). Similarly, they took longer to complete the recognition trial on the RMT (M = 157.2 s,SD = 71.8) than the WCT (M = 137.2 s, SD = 75.7). The optimal cutoff on the RMT (≤43) produced .60 sensitivity at .87 specificity. The optimal cutoff on the WCT (≤47) produced .57 sensitivity at .87 specificity. Time-cutoffs produced comparable classification accuracies for both RMT (≥192 s; .48 sensitivity at .88 specificity) and WCT (≥171 s; .49 sensitivity at .91 specificity). They also identified an additional 6-10% of the invalid profiles missed by accuracy score cutoffs, while maintaining good specificity (.93-.95). Functional equivalence was reached at accuracy scores ≤43 (RMT) and ≤47 (WCT) or time-to-completion ≥192 s (RMT) and ≥171 s (WCT). Time-to-completion cutoffs are valuable additions to both tests. They can function as independent validity indicators or enhance the sensitivity of accuracy scores without requiring additional measures or extending standard administration time.

  11. Accuracy of refractive outcomes in myopic and hyperopic laser in situ keratomileusis: Manifest versus aberrometric refraction.

    PubMed

    Reinstein, Dan Z; Morral, Merce; Gobbe, Marine; Archer, Timothy J

    2012-11-01

    To compare the achieved refractive accuracy of laser in situ keratomileusis (LASIK) performed based on manifest refraction with the predicted accuracy that would have been achieved using WASCA aberrometric refraction with and without Seidel correction factor for sphere. London Vision Clinic, London, United Kingdom. Comparative case series. Myopic eyes and hyperopic eyes had LASIK based on manifest refraction. Two aberrometric refractions were obtained preoperatively: Seidel, which includes spherical aberration in the sphere calculation, and non-Seidel. Bland-Altman plots were used to show the agreement between aberrometric and manifest refractions. Predicted LASIK outcomes had aberrometric refraction been used were modeled by shifting the postoperative manifest refraction by the vector difference between the preoperative manifest and aberrometric refractions. This study included 869 myopic eyes and 413 hyperopic eyes. The mean differences (manifest minus aberrometric) in spherical equivalent were +0.03 diopters (D) ± 0.48 (SD) (Seidel aberrometric) and +0.45 ± 0.42 D (non-Seidel aberrometric) for myopia and -0.20 ± 0.39 D and +0.39 ± 0.34 D, respectively, for hyperopia. The mean differences in cylinder magnitude were -0.10 ± 0.27 D and 0.00 ± 0.25 D, respectively. The percentage of eyes within ±0.50 D of the attempted correction was 81% (manifest), 70% (Seidel), and 67% (non-Seidel) for myopia and 71% (manifest), 61% (Seidel), and 64% (non-Seidel) for hyperopia. The achieved refractive accuracy by manifest refraction was better than the predicted accuracy had Seidel or non-Seidel aberrometric refractions been used for surgical planning. Using the Seidel method improved the accuracy in myopic eyes but not in hyperopic eyes. Dr. Reinstein is a consultant to Carl Zeiss Meditec AG and has a proprietary interest in the Artemis technology (Arcscan Inc., Morrison, Colorado, USA) through patents administered by the Cornell Center for Technology Enterprise and

  12. Optimizing Tsunami Forecast Model Accuracy

    NASA Astrophysics Data System (ADS)

    Whitmore, P.; Nyland, D. L.; Huang, P. Y.

    2015-12-01

    Recent tsunamis provide a means to determine the accuracy that can be expected of real-time tsunami forecast models. Forecast accuracy using two different tsunami forecast models are compared for seven events since 2006 based on both real-time application and optimized, after-the-fact "forecasts". Lessons learned by comparing the forecast accuracy determined during an event to modified applications of the models after-the-fact provide improved methods for real-time forecasting for future events. Variables such as source definition, data assimilation, and model scaling factors are examined to optimize forecast accuracy. Forecast accuracy is also compared for direct forward modeling based on earthquake source parameters versus accuracy obtained by assimilating sea level data into the forecast model. Results show that including assimilated sea level data into the models increases accuracy by approximately 15% for the events examined.

  13. The Effects of Alcohol Intoxication on Accuracy and the Confidence–Accuracy Relationship in Photographic Simultaneous Line‐ups

    PubMed Central

    Colloff, Melissa F.; Karoğlu, Nilda; Zelek, Katarzyna; Ryder, Hannah; Humphries, Joyce E.; Takarangi, Melanie K.T.

    2017-01-01

    Summary Acute alcohol intoxication during encoding can impair subsequent identification accuracy, but results across studies have been inconsistent, with studies often finding no effect. Little is also known about how alcohol intoxication affects the identification confidence–accuracy relationship. We randomly assigned women (N = 153) to consume alcohol (dosed to achieve a 0.08% blood alcohol content) or tonic water, controlling for alcohol expectancy. Women then participated in an interactive hypothetical sexual assault scenario and, 24 hours or 7 days later, attempted to identify the assailant from a perpetrator present or a perpetrator absent simultaneous line‐up and reported their decision confidence. Overall, levels of identification accuracy were similar across the alcohol and tonic water groups. However, women who had consumed tonic water as opposed to alcohol identified the assailant with higher confidence on average. Further, calibration analyses suggested that confidence is predictive of accuracy regardless of alcohol consumption. The theoretical and applied implications of our results are discussed.© 2017 The Authors Applied Cognitive Psychology Published by John Wiley & Sons Ltd. PMID:28781426

  14. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    PubMed

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  15. Improving the Accuracy of Mapping Urban Vegetation Carbon Density by Combining Shadow Remove, Spectral Unmixing Analysis and Spatial Modeling

    NASA Astrophysics Data System (ADS)

    Qie, G.; Wang, G.; Wang, M.

    2016-12-01

    Mixed pixels and shadows due to buildings in urban areas impede accurate estimation and mapping of city vegetation carbon density. In most of previous studies, these factors are often ignored, which thus result in underestimation of city vegetation carbon density. In this study we presented an integrated methodology to improve the accuracy of mapping city vegetation carbon density. Firstly, we applied a linear shadow remove analysis (LSRA) on remotely sensed Landsat 8 images to reduce the shadow effects on carbon estimation. Secondly, we integrated a linear spectral unmixing analysis (LSUA) with a linear stepwise regression (LSR), a logistic model-based stepwise regression (LMSR) and k-Nearest Neighbors (kNN), and utilized and compared the integrated models on shadow-removed images to map vegetation carbon density. This methodology was examined in Shenzhen City of Southeast China. A data set from a total of 175 sample plots measured in 2013 and 2014 was used to train the models. The independent variables statistically significantly contributing to improving the fit of the models to the data and reducing the sum of squared errors were selected from a total of 608 variables derived from different image band combinations and transformations. The vegetation fraction from LSUA was then added into the models as an important independent variable. The estimates obtained were evaluated using a cross-validation method. Our results showed that higher accuracies were obtained from the integrated models compared with the ones using traditional methods which ignore the effects of mixed pixels and shadows. This study indicates that the integrated method has great potential on improving the accuracy of urban vegetation carbon density estimation. Key words: Urban vegetation carbon, shadow, spectral unmixing, spatial modeling, Landsat 8 images

  16. High-accuracy drilling with an image guided light weight robot: autonomous versus intuitive feed control.

    PubMed

    Tauscher, Sebastian; Fuchs, Alexander; Baier, Fabian; Kahrs, Lüder A; Ortmaier, Tobias

    2017-10-01

    Assistance of robotic systems in the operating room promises higher accuracy and, hence, demanding surgical interventions become realisable (e.g. the direct cochlear access). Additionally, an intuitive user interface is crucial for the use of robots in surgery. Torque sensors in the joints can be employed for intuitive interaction concepts. Regarding the accuracy, they lead to a lower structural stiffness and, thus, to an additional error source. The aim of this contribution is to examine, if an accuracy needed for demanding interventions can be achieved by such a system or not. Feasible accuracy results of the robot-assisted process depend on each work-flow step. This work focuses on the determination of the tool coordinate frame. A method for drill axis definition is implemented and analysed. Furthermore, a concept of admittance feed control is developed. This allows the user to control feeding along the planned path by applying a force to the robots structure. The accuracy is researched by drilling experiments with a PMMA phantom and artificial bone blocks. The described drill axis estimation process results in a high angular repeatability ([Formula: see text]). In the first set of drilling results, an accuracy of [Formula: see text] at entrance and [Formula: see text] at target point excluding imaging was achieved. With admittance feed control an accuracy of [Formula: see text] at target point was realised. In a third set twelve holes were drilled in artificial temporal bone phantoms including imaging. In this set-up an error of [Formula: see text] and [Formula: see text] was achieved. The results of conducted experiments show that accuracy requirements for demanding procedures such as the direct cochlear access can be fulfilled with compliant systems. Furthermore, it was shown that with the presented admittance feed control an accuracy of less then [Formula: see text] is achievable.

  17. Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.).

    PubMed

    Auinger, Hans-Jürgen; Schönleben, Manfred; Lehermeier, Christina; Schmidt, Malthe; Korzun, Viktor; Geiger, Hartwig H; Piepho, Hans-Peter; Gordillo, Andres; Wilde, Peer; Bauer, Eva; Schön, Chris-Carolin

    2016-11-01

    Genomic prediction accuracy can be significantly increased by model calibration across multiple breeding cycles as long as selection cycles are connected by common ancestors. In hybrid rye breeding, application of genome-based prediction is expected to increase selection gain because of long selection cycles in population improvement and development of hybrid components. Essentially two prediction scenarios arise: (1) prediction of the genetic value of lines from the same breeding cycle in which model training is performed and (2) prediction of lines from subsequent cycles. It is the latter from which a reduction in cycle length and consequently the strongest impact on selection gain is expected. We empirically investigated genome-based prediction of grain yield, plant height and thousand kernel weight within and across four selection cycles of a hybrid rye breeding program. Prediction performance was assessed using genomic and pedigree-based best linear unbiased prediction (GBLUP and PBLUP). A total of 1040 S 2 lines were genotyped with 16 k SNPs and each year testcrosses of 260 S 2 lines were phenotyped in seven or eight locations. The performance gap between GBLUP and PBLUP increased significantly for all traits when model calibration was performed on aggregated data from several cycles. Prediction accuracies obtained from cross-validation were in the order of 0.70 for all traits when data from all cycles (N CS  = 832) were used for model training and exceeded within-cycle accuracies in all cases. As long as selection cycles are connected by a sufficient number of common ancestors and prediction accuracy has not reached a plateau when increasing sample size, aggregating data from several preceding cycles is recommended for predicting genetic values in subsequent cycles despite decreasing relatedness over time.

  18. School Improvement Plans and Student Achievement: Preliminary Evidence from the Quality and Merit Project in Italy

    ERIC Educational Resources Information Center

    Caputo, Andrea; Rastelli, Valentina

    2014-01-01

    This study provides preliminary evidence from an Italian in-service training program addressed to lower secondary school teachers which supports school improvement plans (SIPs). It aims at exploring the association between characteristics/contents of SIPs and student improvement in math achievement. Pre-post standardized tests and text analysis of…

  19. Voxel inversion of airborne electromagnetic data for improved groundwater model construction and prediction accuracy

    NASA Astrophysics Data System (ADS)

    Kruse Christensen, Nikolaj; Ferre, Ty Paul A.; Fiandaca, Gianluca; Christensen, Steen

    2017-03-01

    smoothness constraint. This is true for predictions of recharge area, head change, and stream discharge, while we find no improvement for prediction of groundwater age. Furthermore, we show that the model prediction accuracy improves with AEM data quality for predictions of recharge area, head change, and stream discharge, while there appears to be no accuracy improvement for the prediction of groundwater age.

  20. Application of Sensor Fusion to Improve Uav Image Classification

    NASA Astrophysics Data System (ADS)

    Jabari, S.; Fathollahi, F.; Zhang, Y.

    2017-08-01

    Image classification is one of the most important tasks of remote sensing projects including the ones that are based on using UAV images. Improving the quality of UAV images directly affects the classification results and can save a huge amount of time and effort in this area. In this study, we show that sensor fusion can improve image quality which results in increasing the accuracy of image classification. Here, we tested two sensor fusion configurations by using a Panchromatic (Pan) camera along with either a colour camera or a four-band multi-spectral (MS) camera. We use the Pan camera to benefit from its higher sensitivity and the colour or MS camera to benefit from its spectral properties. The resulting images are then compared to the ones acquired by a high resolution single Bayer-pattern colour camera (here referred to as HRC). We assessed the quality of the output images by performing image classification tests. The outputs prove that the proposed sensor fusion configurations can achieve higher accuracies compared to the images of the single Bayer-pattern colour camera. Therefore, incorporating a Pan camera on-board in the UAV missions and performing image fusion can help achieving higher quality images and accordingly higher accuracy classification results.

  1. 4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers

    NASA Astrophysics Data System (ADS)

    Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Todorich, Bozho; Shieh, Christine; Kuo, Anthony; Toth, Cynthia; Izatt, Joseph A.

    2016-03-01

    Ophthalmic surgeons manipulate micron-scale tissues using stereopsis through an operating microscope and instrument shadowing for depth perception. While ophthalmic microsurgery has benefitted from rapid advances in instrumentation and techniques, the basic principles of the stereo operating microscope have not changed since the 1930's. Optical Coherence Tomography (OCT) has revolutionized ophthalmic imaging and is now the gold standard for preoperative and postoperative evaluation of most retinal and many corneal procedures. We and others have developed initial microscope-integrated OCT (MIOCT) systems for concurrent OCT and operating microscope imaging, but these are limited to 2D real-time imaging and require offline post-processing for 3D rendering and visualization. Our previously presented 4D MIOCT system can record and display the 3D surgical field stereoscopically through the microscope oculars using a dual-channel heads-up display (HUD) at up to 10 micron-scale volumes per second. In this work, we show that 4D MIOCT guidance improves the accuracy of depth-based microsurgical maneuvers (with statistical significance) in mock surgery trials in a wet lab environment. Additionally, 4D MIOCT was successfully performed in 38/45 (84%) posterior and 14/14 (100%) anterior eye human surgeries, and revealed previously unrecognized lesions that were invisible through the operating microscope. These lesions, such as residual and potentially damaging retinal deformation during pathologic membrane peeling, were visualized in real-time by the surgeon. Our integrated system provides an enhanced 4D surgical visualization platform that can improve current ophthalmic surgical practice and may help develop and refine future microsurgical techniques.

  2. Field Accuracy Test of Rpas Photogrammetry

    NASA Astrophysics Data System (ADS)

    Barry, P.; Coakley, R.

    2013-08-01

    Baseline Surveys Ltd is a company which specialises in the supply of accurate geospatial data, such as cadastral, topographic and engineering survey data to commercial and government bodies. Baseline Surveys Ltd invested in aerial drone photogrammetric technology and had a requirement to establish the spatial accuracy of the geographic data derived from our unmanned aerial vehicle (UAV) photogrammetry before marketing our new aerial mapping service. Having supplied the construction industry with survey data for over 20 years, we felt that is was crucial for our clients to clearly understand the accuracy of our photogrammetry so they can safely make informed spatial decisions, within the known accuracy limitations of our data. This information would also inform us on how and where UAV photogrammetry can be utilised. What we wanted to find out was the actual accuracy that can be reliably achieved using a UAV to collect data under field conditions throughout a 2 Ha site. We flew a UAV over the test area in a "lawnmower track" pattern with an 80% front and 80% side overlap; we placed 45 ground markers as check points and surveyed them in using network Real Time Kinematic Global Positioning System (RTK GPS). We specifically designed the ground markers to meet our accuracy needs. We established 10 separate ground markers as control points and inputted these into our photo modelling software, Agisoft PhotoScan. The remaining GPS coordinated check point data were added later in ArcMap to the completed orthomosaic and digital elevation model so we could accurately compare the UAV photogrammetry XYZ data with the RTK GPS XYZ data at highly reliable common points. The accuracy we achieved throughout the 45 check points was 95% reliably within 41 mm horizontally and 68 mm vertically and with an 11.7 mm ground sample distance taken from a flight altitude above ground level of 90 m.The area covered by one image was 70.2 m × 46.4 m, which equals 0.325 Ha. This finding has shown

  3. MUSCLE: multiple sequence alignment with high accuracy and high throughput.

    PubMed

    Edgar, Robert C

    2004-01-01

    We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.

  4. Using a divided-attention stepping accuracy task to improve balance and functional outcomes in an individual with incomplete spinal cord injury: A case report.

    PubMed

    Leach, Susan J; Magill, Richard A; Maring, Joyce R

    2017-01-01

    A spinal cord injury (SCI) frequently results in impaired balance, endurance, and strength with subsequent limitations in functional mobility and community participation. The purpose of this case report was to implement a training program for an individual with a chronic incomplete SCI using a novel divided-attention stepping accuracy task (DASAT) to determine if improvements could be made in impairments, activities, and participation. The client was a 51-year-old male with a motor incomplete C4 SCI sustained 4 years prior. He presented with decreased quality of life (QOL) and functional independence, and deficits in balance, endurance, and strength consistent with central cord syndrome. The client completed the DASAT intervention 3 times per week for 6 weeks. Each session incorporated 96 multi-directional steps to randomly-assigned targets in response to 3-step verbal commands. QOL, measured using the SF-36, was generally enhanced but fluctuated. Community mobility progressed from close supervision to independence. Significant improvement was achieved in all balance scores: Berg Balance Scale by 9 points [Minimal Detectable Change (MDC) = 4.9 in elderly]; Functional Reach Test by 7.62 cm (MDC = 5.16 in C5/C6 SCI); and Timed Up-and-Go by 0.53 s (MDC not established). Endurance increased on the 6-Minute Walk Test, with the client achieving an additional 47 m (MDC = 45.8 m). Lower extremity isokinetic peak torque strength measures were mostly unchanged. Six minutes of DASAT training per session provided an efficient, low-cost intervention utilizing multiple trials of variable practice, and resulted in better performance in activities, balance, and endurance in this client.

  5. caCORRECT2: Improving the accuracy and reliability of microarray data in the presence of artifacts

    PubMed Central

    2011-01-01

    Background In previous work, we reported the development of caCORRECT, a novel microarray quality control system built to identify and correct spatial artifacts commonly found on Affymetrix arrays. We have made recent improvements to caCORRECT, including the development of a model-based data-replacement strategy and integration with typical microarray workflows via caCORRECT's web portal and caBIG grid services. In this report, we demonstrate that caCORRECT improves the reproducibility and reliability of experimental results across several common Affymetrix microarray platforms. caCORRECT represents an advance over state-of-art quality control methods such as Harshlighting, and acts to improve gene expression calculation techniques such as PLIER, RMA and MAS5.0, because it incorporates spatial information into outlier detection as well as outlier information into probe normalization. The ability of caCORRECT to recover accurate gene expressions from low quality probe intensity data is assessed using a combination of real and synthetic artifacts with PCR follow-up confirmation and the affycomp spike in data. The caCORRECT tool can be accessed at the website: http://cacorrect.bme.gatech.edu. Results We demonstrate that (1) caCORRECT's artifact-aware normalization avoids the undesirable global data warping that happens when any damaged chips are processed without caCORRECT; (2) When used upstream of RMA, PLIER, or MAS5.0, the data imputation of caCORRECT generally improves the accuracy of microarray gene expression in the presence of artifacts more than using Harshlighting or not using any quality control; (3) Biomarkers selected from artifactual microarray data which have undergone the quality control procedures of caCORRECT are more likely to be reliable, as shown by both spike in and PCR validation experiments. Finally, we present a case study of the use of caCORRECT to reliably identify biomarkers for renal cell carcinoma, yielding two diagnostic biomarkers with

  6. Research to improve the accuracy of determining the stroke volume of an artificial ventricle using the wavelet transform

    NASA Astrophysics Data System (ADS)

    Grad, Leszek; Murawski, Krzysztof; Sulej, Wojciech

    2017-08-01

    In the article we presented results obtained during research, which are the continuation of work on the use of artificial neural networks to determine the relationship between the view of the membrane and the stroke volume of the blood chamber of the mechanical prosthetic heart. The purpose of the research was to increase the accuracy of determining the blood chamber volume. Therefore, the study was focused on the technique of the features that the image extraction gives. During research we used the wavelet transform. The achieved results were compared to the results obtained by other previous methods. Tests were conducted on the same mechanical prosthetic heart model used in previous experiments.

  7. SU-E-J-101: Improved CT to CBCT Deformable Registration Accuracy by Incorporating Multiple CBCTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godley, A; Stephans, K; Olsen, L Sheplan

    2015-06-15

    Purpose: Combining prior day CBCT contours with STAPLE was previously shown to improve automated prostate contouring. These accurate STAPLE contours are now used to guide the planning CT to pre-treatment CBCT deformable registration. Methods: Six IGRT prostate patients with daily kilovoltage CBCT had their original planning CT and 9 CBCTs contoured by the same physician. These physician contours for the planning CT and each prior CBCT are deformed to match the current CBCT anatomy, producing multiple contour sets. These sets are then combined using STAPLE into one optimal set (e.g. for day 3 CBCT, combine contours produced using the planmore » plus day 1 and 2 CBCTs). STAPLE computes a probabilistic estimate of the true contour from this collection of contours by maximizing sensitivity and specificity. The deformation field from planning CT to CBCT registration is then refined by matching its deformed contours to the STAPLE contours. ADMIRE (Elekta Inc.) was used for this. The refinement does not force perfect agreement of the contours, typically Dice’s Coefficient (DC) of > 0.9 is obtained, and the image difference metric remains in the optimization of the deformable registration. Results: The average DC between physician delineated CBCT contours and deformed planning CT contours for the bladder, rectum and prostate was 0.80, 0.79 and 0.75, respectively. The accuracy significantly improved to 0.89, 0.84 and 0.84 (P<0.001 for all) when using the refined deformation field. The average time to run STAPLE with five scans and refine the planning CT deformation was 66 seconds on a Telsa K20c GPU. Conclusion: Accurate contours generated from multiple CBCTs provided guidance for CT to CBCT deformable registration, significantly improving registration accuracy as measured by contour DC. A more accurate deformation field is now available for transferring dose or electron density to the CBCT for adaptive planning. Research grant from Elekta.« less

  8. Improving the Achievement of Second Year Natural Resource Management Students of Madawalabu University through Cooperative Learning

    ERIC Educational Resources Information Center

    Abdulahi, Mohammed Mussa; Hashim, Hakim; Kawo, Mohammed

    2017-01-01

    The purpose of this action research is to improve the achievement of students in general and, to examine the perception of students and teachers about cooperative learning, to identify major factors affecting the implementation of cooperative learning and to identify the possible strategies used to improve cooperative learning in Madawalabu…

  9. Effect of conductance linearity and multi-level cell characteristics of TaOx-based synapse device on pattern recognition accuracy of neuromorphic system

    NASA Astrophysics Data System (ADS)

    Sung, Changhyuck; Lim, Seokjae; Kim, Hyungjun; Kim, Taesu; Moon, Kibong; Song, Jeonghwan; Kim, Jae-Joon; Hwang, Hyunsang

    2018-03-01

    To improve the classification accuracy of an image data set (CIFAR-10) by using analog input voltage, synapse devices with excellent conductance linearity (CL) and multi-level cell (MLC) characteristics are required. We analyze the CL and MLC characteristics of TaOx-based filamentary resistive random access memory (RRAM) to implement the synapse device in neural network hardware. Our findings show that the number of oxygen vacancies in the filament constriction region of the RRAM directly controls the CL and MLC characteristics. By adopting a Ta electrode (instead of Ti) and the hot-forming step, we could form a dense conductive filament. As a result, a wide range of conductance levels with CL is achieved and significantly improved image classification accuracy is confirmed.

  10. The Effects of Student Characteristics on Teachers' Judgment Accuracy: Disentangling Ethnicity, Minority Status, and Achievement

    ERIC Educational Resources Information Center

    Kaiser, Johanna; Südkamp, Anna; Möller, Jens

    2017-01-01

    Teachers' judgments of students' academic achievement are not only affected by the achievement themselves but also by several other characteristics such as ethnicity, gender, and minority status. In real-life classrooms, achievement and further characteristics are often confounded. We disentangled achievement, ethnicity and minority status and…

  11. Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points - A Review.

    PubMed

    Zou, Weibao; Li, Yan; Li, Zhilin; Ding, Xiaoli

    2009-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram.

  12. A systematic review of the PTSD Checklist's diagnostic accuracy studies using QUADAS.

    PubMed

    McDonald, Scott D; Brown, Whitney L; Benesek, John P; Calhoun, Patrick S

    2015-09-01

    Despite the popularity of the PTSD Checklist (PCL) as a clinical screening test, there has been no comprehensive quality review of studies evaluating its diagnostic accuracy. A systematic quality assessment of 22 diagnostic accuracy studies of the English-language PCL using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) assessment tool was conducted to examine (a) the quality of diagnostic accuracy studies of the PCL, and (b) whether quality has improved since the 2003 STAndards for the Reporting of Diagnostic accuracy studies (STARD) initiative regarding reporting guidelines for diagnostic accuracy studies. Three raters independently applied the QUADAS tool to each study, and a consensus among the 4 authors is reported. Findings indicated that although studies generally met standards in several quality areas, there is still room for improvement. Areas for improvement include establishing representativeness, adequately describing clinical and demographic characteristics of the sample, and presenting better descriptions of important aspects of test and reference standard execution. Only 2 studies met each of the 14 quality criteria. In addition, study quality has not appreciably improved since the publication of the STARD Statement in 2003. Recommendations for the improvement of diagnostic accuracy studies of the PCL are discussed. (c) 2015 APA, all rights reserved).

  13. Multi-scale hippocampal parcellation improves atlas-based segmentation accuracy

    NASA Astrophysics Data System (ADS)

    Plassard, Andrew J.; McHugo, Maureen; Heckers, Stephan; Landman, Bennett A.

    2017-02-01

    Known for its distinct role in memory, the hippocampus is one of the most studied regions of the brain. Recent advances in magnetic resonance imaging have allowed for high-contrast, reproducible imaging of the hippocampus. Typically, a trained rater takes 45 minutes to manually trace the hippocampus and delineate the anterior from the posterior segment at millimeter resolution. As a result, there has been a significant desire for automated and robust segmentation of the hippocampus. In this work we use a population of 195 atlases based on T1-weighted MR images with the left and right hippocampus delineated into the head and body. We initialize the multi-atlas segmentation to a region directly around each lateralized hippocampus to both speed up and improve the accuracy of registration. This initialization allows for incorporation of nearly 200 atlases, an accomplishment which would typically involve hundreds of hours of computation per target image. The proposed segmentation results in a Dice similiarity coefficient over 0.9 for the full hippocampus. This result outperforms a multi-atlas segmentation using the BrainCOLOR atlases (Dice 0.85) and FreeSurfer (Dice 0.75). Furthermore, the head and body delineation resulted in a Dice coefficient over 0.87 for both structures. The head and body volume measurements also show high reproducibility on the Kirby 21 reproducibility population (R2 greater than 0.95, p < 0.05 for all structures). This work signifies the first result in an ongoing work to develop a robust tool for measurement of the hippocampus and other temporal lobe structures.

  14. Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy (IGRT)

    NASA Astrophysics Data System (ADS)

    Tanaka, Rie; Sanada, Shigeru; Sakuta, Keita; Kawashima, Hiroki

    2015-05-01

    The bone suppression technique based on advanced image processing can suppress the conspicuity of bones on chest radiographs, creating soft tissue images obtained by the dual-energy subtraction technique. This study was performed to evaluate the usefulness of bone suppression image processing in image-guided radiation therapy. We demonstrated the improved accuracy of markerless motion tracking on bone suppression images. Chest fluoroscopic images of nine patients with lung nodules during respiration were obtained using a flat-panel detector system (120 kV, 0.1 mAs/pulse, 5 fps). Commercial bone suppression image processing software was applied to the fluoroscopic images to create corresponding bone suppression images. Regions of interest were manually located on lung nodules and automatic target tracking was conducted based on the template matching technique. To evaluate the accuracy of target tracking, the maximum tracking error in the resulting images was compared with that of conventional fluoroscopic images. The tracking errors were decreased by half in eight of nine cases. The average maximum tracking errors in bone suppression and conventional fluoroscopic images were 1.3   ±   1.0 and 3.3   ±   3.3 mm, respectively. The bone suppression technique was especially effective in the lower lung area where pulmonary vessels, bronchi, and ribs showed complex movements. The bone suppression technique improved tracking accuracy without special equipment and implantation of fiducial markers, and with only additional small dose to the patient. Bone suppression fluoroscopy is a potential measure for respiratory displacement of the target. This paper was presented at RSNA 2013 and was carried out at Kanazawa University, JAPAN.

  15. What Matters for Elementary Literacy Coaching? Guiding Principles for Instructional Improvement and Student Achievement

    ERIC Educational Resources Information Center

    L'Allier, Susan; Elish-Piper, Laurie; Bean, Rita M.

    2010-01-01

    Literacy coaches provide job-embedded professional development for teachers, and the number of literacy coaches in elementary schools is increasing. Although literacy coaching offers promise in terms of improving teacher practice and student achievement, guidance is needed regarding the qualifications, activities, and roles of literacy coaches.…

  16. Geometry-Related Children's Literature Improves the Geometry Achievement and Attitudes of Second-Grade Students

    ERIC Educational Resources Information Center

    McAndrew, Erica M.; Morris, Wendy L.; Fennell, Francis

    2017-01-01

    Use of mathematics-related literature can engage students' interest and increase their understanding of mathematical concepts. A quasi-experimental study of two second-grade classrooms assessed whether daily inclusion of geometry-related literature in the classroom improved attitudes toward geometry and achievement in geometry. Consistent with the…

  17. The accuracy of Genomic Selection in Norwegian red cattle assessed by cross-validation.

    PubMed

    Luan, Tu; Woolliams, John A; Lien, Sigbjørn; Kent, Matthew; Svendsen, Morten; Meuwissen, Theo H E

    2009-11-01

    Genomic Selection (GS) is a newly developed tool for the estimation of breeding values for quantitative traits through the use of dense markers covering the whole genome. For a successful application of GS, accuracy of the prediction of genomewide breeding value (GW-EBV) is a key issue to consider. Here we investigated the accuracy and possible bias of GW-EBV prediction, using real bovine SNP genotyping (18,991 SNPs) and phenotypic data of 500 Norwegian Red bulls. The study was performed on milk yield, fat yield, protein yield, first lactation mastitis traits, and calving ease. Three methods, best linear unbiased prediction (G-BLUP), Bayesian statistics (BayesB), and a mixture model approach (MIXTURE), were used to estimate marker effects, and their accuracy and bias were estimated by using cross-validation. The accuracies of the GW-EBV prediction were found to vary widely between 0.12 and 0.62. G-BLUP gave overall the highest accuracy. We observed a strong relationship between the accuracy of the prediction and the heritability of the trait. GW-EBV prediction for production traits with high heritability achieved higher accuracy and also lower bias than health traits with low heritability. To achieve a similar accuracy for the health traits probably more records will be needed.

  18. Improving the Accuracy of Quadrature Method Solutions of Fredholm Integral Equations That Arise from Nonlinear Two-Point Boundary Value Problems

    NASA Technical Reports Server (NTRS)

    Sidi, Avram; Pennline, James A.

    1999-01-01

    In this paper we are concerned with high-accuracy quadrature method solutions of nonlinear Fredholm integral equations of the form y(x) = r(x) + definite integral of g(x, t)F(t,y(t))dt with limits between 0 and 1,0 less than or equal to x les than or equal to 1, where the kernel function g(x,t) is continuous, but its partial derivatives have finite jump discontinuities across x = t. Such integral equations arise, e.g., when one applied Green's function techniques to nonlinear two-point boundary value problems of the form y "(x) =f(x,y(x)), 0 less than or equal to x less than or equal to 1, with y(0) = y(sub 0) and y(l) = y(sub l), or other linear boundary conditions. A quadrature method that is especially suitable and that has been employed for such equations is one based on the trepezoidal rule that has a low accuracy. By analyzing the corresponding Euler-Maclaurin expansion, we derive suitable correction terms that we add to the trapezoidal rule, thus obtaining new numerical quadrature formulas of arbitrarily high accuracy that we also use in defining quadrature methods for the integral equations above. We prove an existence and uniqueness theorem for the quadrature method solutions, and show that their accuracy is the same as that of the underlying quadrature formula. The solution of the nonlinear systems resulting from the quadrature methods is achieved through successive approximations whose convergence is also proved. The results are demonstrated with numerical examples.

  19. Improving the Accuracy of Quadrature Method Solutions of Fredholm Integral Equations that Arise from Nonlinear Two-Point Boundary Value Problems

    NASA Technical Reports Server (NTRS)

    Sidi, Avram; Pennline, James A.

    1999-01-01

    In this paper we are concerned with high-accuracy quadrature method solutions of nonlinear Fredholm integral equations of the form y(x) = r(x) + integral(0 to 1) g(x,t) F(t, y(t)) dt, 0 less than or equal to x less than or equal to 1, where the kernel function g(x,t) is continuous, but its partial derivatives have finite jump discontinuities across x = t. Such integrals equations arise, e.g., when one applies Green's function techniques to nonlinear two-point boundary value problems of the form U''(x) = f(x,y(x)), 0 less than or equal to x less than or equal to 1, with y(0) = y(sub 0) and g(l) = y(sub 1), or other linear boundary conditions. A quadrature method that is especially suitable and that has been employed for such equations is one based on the trapezoidal rule that has a low accuracy. By analyzing the corresponding Euler-Maclaurin expansion, we derive suitable correction terms that we add to the trapezoidal thus obtaining new numerical quadrature formulas of arbitrarily high accuracy that we also use in defining quadrature methods for the integral equations above. We prove an existence and uniqueness theorem for the quadrature method solutions, and show that their accuracy is the same as that of the underlying quadrature formula. The solution of the nonlinear systems resulting from the quadrature methods is achieved through successive approximations whose convergence is also proved. The results are demonstrated with numerical examples.

  20. Improving risk prediction accuracy for new soldiers in the U.S. Army by adding self-report survey data to administrative data.

    PubMed

    Bernecker, Samantha L; Rosellini, Anthony J; Nock, Matthew K; Chiu, Wai Tat; Gutierrez, Peter M; Hwang, Irving; Joiner, Thomas E; Naifeh, James A; Sampson, Nancy A; Zaslavsky, Alan M; Stein, Murray B; Ursano, Robert J; Kessler, Ronald C

    2018-04-03

    High rates of mental disorders, suicidality, and interpersonal violence early in the military career have raised interest in implementing preventive interventions with high-risk new enlistees. The Army Study to Assess Risk and Resilience in Servicemembers (STARRS) developed risk-targeting systems for these outcomes based on machine learning methods using administrative data predictors. However, administrative data omit many risk factors, raising the question whether risk targeting could be improved by adding self-report survey data to prediction models. If so, the Army may gain from routinely administering surveys that assess additional risk factors. The STARRS New Soldier Survey was administered to 21,790 Regular Army soldiers who agreed to have survey data linked to administrative records. As reported previously, machine learning models using administrative data as predictors found that small proportions of high-risk soldiers accounted for high proportions of negative outcomes. Other machine learning models using self-report survey data as predictors were developed previously for three of these outcomes: major physical violence and sexual violence perpetration among men and sexual violence victimization among women. Here we examined the extent to which this survey information increases prediction accuracy, over models based solely on administrative data, for those three outcomes. We used discrete-time survival analysis to estimate a series of models predicting first occurrence, assessing how model fit improved and concentration of risk increased when adding the predicted risk score based on survey data to the predicted risk score based on administrative data. The addition of survey data improved prediction significantly for all outcomes. In the most extreme case, the percentage of reported sexual violence victimization among the 5% of female soldiers with highest predicted risk increased from 17.5% using only administrative predictors to 29.4% adding survey

  1. Use of disposable graduated biopsy forceps improves accuracy of polyp size measurements during endoscopy.

    PubMed

    Jin, Hei-Ying; Leng, Qiang

    2015-01-14

    To determine the accuracy of endoscopic polyp size measurements using disposable graduated biopsy forceps (DGBF). Gradations accurate to 1 mm were assessed with the wire of disposable graduated biopsy forceps. When a polyp was noted, endoscopists determined the width of the polyp; then, the graduated biopsy forceps was inserted and the largest diameter of the tumor was measured. After excision, during surgery or endoscopy, the polyp was measured using the vernier caliper. One hundred and thirty-three colorectal polyps from 119 patients were studied. The mean diameter, by post-polypectomy measurement, was 0.92 ± 0.69 cm; 83 were < 1 cm, 36 were between 1 and 2 cm, and 14 were > 2 cm. The mean diameter, by visual estimation, was 1.15 ± 0.88 cm; compared to the actual size measured using vernier calipers, the difference was statistically significant. The mean diameter measured using the DGBF was 0.93 ± 0.68 cm; compared to the actual size measured using vernier calipers, this difference was not statistically significant. The ratio between the mean size estimated by visual estimation and the actual size was significantly different from that between the mean size estimated using the DGBF and the actual size (1.26 ± 0.30 vs 1.02 ± 0.11). The accuracy of polyp size estimation was low by visual assessment; however, it improved when the DGBF was used.

  2. Accuracy of genomic breeding values for meat tenderness in Polled Nellore cattle.

    PubMed

    Magnabosco, C U; Lopes, F B; Fragoso, R C; Eifert, E C; Valente, B D; Rosa, G J M; Sainz, R D

    2016-07-01

    Zebu () cattle, mostly of the Nellore breed, comprise more than 80% of the beef cattle in Brazil, given their tolerance of the tropical climate and high resistance to ectoparasites. Despite their advantages for production in tropical environments, zebu cattle tend to produce tougher meat than Bos taurus breeds. Traditional genetic selection to improve meat tenderness is constrained by the difficulty and cost of phenotypic evaluation for meat quality. Therefore, genomic selection may be the best strategy to improve meat quality traits. This study was performed to compare the accuracies of different Bayesian regression models in predicting molecular breeding values for meat tenderness in Polled Nellore cattle. The data set was composed of Warner-Bratzler shear force (WBSF) of longissimus muscle from 205, 141, and 81 animals slaughtered in 2005, 2010, and 2012, respectively, which were selected and mated so as to create extreme segregation for WBSF. The animals were genotyped with either the Illumina BovineHD (HD; 777,000 from 90 samples) chip or the GeneSeek Genomic Profiler (GGP Indicus HD; 77,000 from 337 samples). The quality controls of SNP were Hard-Weinberg Proportion -value ≥ 0.1%, minor allele frequency > 1%, and call rate > 90%. The FImpute program was used for imputation from the GGP Indicus HD chip to the HD chip. The effect of each SNP was estimated using ridge regression, least absolute shrinkage and selection operator (LASSO), Bayes A, Bayes B, and Bayes Cπ methods. Different numbers of SNP were used, with 1, 2, 3, 4, 5, 7, 10, 20, 40, 60, 80, or 100% of the markers preselected based on their significance test (-value from genomewide association studies [GWAS]) or randomly sampled. The prediction accuracy was assessed by the correlation between genomic breeding value and the observed WBSF phenotype, using a leave-one-out cross-validation methodology. The prediction accuracies using all markers were all very similar for all models, ranging from 0

  3. Child Effortful Control, Teacher-student Relationships, and Achievement in Academically At-risk Children: Additive and Interactive Effects

    PubMed Central

    Liew, Jeffrey; Chen, Qi; Hughes, Jan N.

    2009-01-01

    The joint contributions of child effortful control (using inhibitory control and task accuracy as behavioral indices) and positive teacher-student relationships at first grade on reading and mathematics achievement at second grade were examined in 761 children who were predominantly from low-income and ethnic minority backgrounds and assessed to be academically at-risk at entry to first grade. Analyses accounted for clustering effects, covariates, baselines of effortful control measures, and prior levels of achievement. Even with such conservative statistical controls, interactive effects were found for task accuracy and positive teacher-student relationships on future achievement. Results suggest that task accuracy served as a protective factor so that children with high task accuracy performed well academically despite not having positive teacher-student relationships. Further, positive teacher-student relationships served as a compensatory factor so that children with low task accuracy performed just as well as those with high task accuracy if they were paired with a positive and supportive teacher. Importantly, results indicate that the influence of positive teacher-student relationships on future achievement was most pronounced for students with low effortful control on tasks that require fine motor skills, accuracy, and attention-related skills. Study results have implications for narrowing achievement disparities for academically at-risk children. PMID:20161421

  4. Child Effortful Control, Teacher-student Relationships, and Achievement in Academically At-risk Children: Additive and Interactive Effects.

    PubMed

    Liew, Jeffrey; Chen, Qi; Hughes, Jan N

    2010-01-01

    The joint contributions of child effortful control (using inhibitory control and task accuracy as behavioral indices) and positive teacher-student relationships at first grade on reading and mathematics achievement at second grade were examined in 761 children who were predominantly from low-income and ethnic minority backgrounds and assessed to be academically at-risk at entry to first grade. Analyses accounted for clustering effects, covariates, baselines of effortful control measures, and prior levels of achievement. Even with such conservative statistical controls, interactive effects were found for task accuracy and positive teacher-student relationships on future achievement. Results suggest that task accuracy served as a protective factor so that children with high task accuracy performed well academically despite not having positive teacher-student relationships. Further, positive teacher-student relationships served as a compensatory factor so that children with low task accuracy performed just as well as those with high task accuracy if they were paired with a positive and supportive teacher. Importantly, results indicate that the influence of positive teacher-student relationships on future achievement was most pronounced for students with low effortful control on tasks that require fine motor skills, accuracy, and attention-related skills. Study results have implications for narrowing achievement disparities for academically at-risk children.

  5. Processing data, for improved, accuracy, from device for measuring speed of sound in a gas

    DOEpatents

    Owen, Thomas E.

    2006-09-19

    A method, used in connection with a pulse-echo type sensor for determining the speed of sound in a gas, for improving the accuracy of speed of sound measurements. The sensor operates on the principle that speed of sound can be derived from the difference between the two-way travel time of signals reflected from two different target faces of the sensor. This time difference is derived by computing the cross correlation between the two reflections. The cross correlation function may be fitted to a parabola whose vertex represents the optimum time coordinate of the coherence peak, thereby providing an accurate measure of the two-way time diffference.

  6. Improving accuracy of portion-size estimations through a stimulus equivalence paradigm.

    PubMed

    Hausman, Nicole L; Borrero, John C; Fisher, Alyssa; Kahng, SungWoo

    2014-01-01

    The prevalence of obesity continues to increase in the United States (Gordon-Larsen, The, & Adair, 2010). Obesity can be attributed, in part, to overconsumption of energy-dense foods. Given that overeating plays a role in the development of obesity, interventions that teach individuals to identify and consume appropriate portion sizes are warranted. Specifically, interventions that teach individuals to estimate portion sizes correctly without the use of aids may be critical to the success of nutrition education programs. The current study evaluated the use of a stimulus equivalence paradigm to teach 9 undergraduate students to estimate portion size accurately. Results suggested that the stimulus equivalence paradigm was effective in teaching participants to make accurate portion size estimations without aids, and improved accuracy was observed in maintenance sessions that were conducted 1 week after training. Furthermore, 5 of 7 participants estimated the target portion size of novel foods during extension sessions. These data extend existing research on teaching accurate portion-size estimations and may be applicable to populations who seek treatment (e.g., overweight or obese children and adults) to teach healthier eating habits. © Society for the Experimental Analysis of Behavior.

  7. Sensitivity and Specificity of Emergency Physicians and Trainees for Identifying Internally Concealed Drug Packages on Abdominal Computed Tomography Scan: Do Lung Windows Improve Accuracy?

    PubMed

    Asha, Stephen Edward; Cooke, Andrew

    2015-09-01

    Suspected body packers may be brought to emergency departments (EDs) close to international airports for abdominal computed tomography (CT) scanning. Senior emergency clinicians may be asked to interpret these CT scans. Missing concealed drug packages have important clinical and forensic implications. The accuracy of emergency clinician interpretation of abdominal CT scans for concealed drugs is not known. Limited evidence suggests that accuracy for identification of concealed packages can be increased by viewing CT images on "lung window" settings. To determine the accuracy of senior emergency clinicians in interpreting abdominal CT scans for concealed drugs, and to determine if this accuracy was improved by viewing scans on both abdominal and lung window settings. Emergency clinicians blinded to all patient identifiers and the radiology report interpreted CT scans of suspected body packers using standard abdominal window settings and then with the addition of lung window settings. The reference standard was the radiologist's report. Fifty-five emergency clinicians reported 235 CT scans. The sensitivity, specificity, and accuracy of interpretation using abdominal windows was 89.9% (95% confidence interval [CI] 83.0-94.7), 81.9% (95% CI 73.7-88.4), and 86.0% (95% CI 81.5-90.4), respectively, and with both window settings was 94.1% (95% CI 88.3-97.6), 76.7% (95% CI 68.0-84.1), 85.5% (95% CI 81.0-90.0), respectively. Diagnostic accuracy was similar regardless of the clinician's experience. Interrater reliability was moderate (kappa 0.46). The accuracy of interpretation of abdominal CT scans performed for the purpose of detecting concealed drug packages by emergency clinicians is not high enough to safely discharge these patients from the ED. The use of lung windows improved sensitivity, but at the expense of specificity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  8. Dual-energy imaging method to improve the image quality and the accuracy of dose calculation for cone-beam computed tomography.

    PubMed

    Men, Kuo; Dai, Jianrong; Chen, Xinyuan; Li, Minghui; Zhang, Ke; Huang, Peng

    2017-04-01

    analyses of the 3D dose distribution with criteria of 1%/1mm showed a pass rate of 99.0-100% and 85.3-97.6% for DE-CBCT and 73.5-99.1% and 80.4-92.7% for SE-CBCT. The average gamma values were reduced significantly by DE-CBCT (p< 0.05). Gamma index maps showed that matching of the dose distribution between CBCT-based and reference was improved by DE-CBCT. DE-CBCT can achieve both better image quality and higher accuracy of dose calculation, and could be applied to adaptive radiotherapy. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Employee Perceptions of Progress with Implementing a Student-Centered Model of Institutional Improvement: An Achieving the Dream Case Study

    ERIC Educational Resources Information Center

    Cheek, Annesa LeShawn

    2011-01-01

    Achieving the Dream is a national initiative focused on helping more community college students succeed, particularly students of color and low-income students. Achieving the Dream's student-centered model of institutional improvement focuses on eliminating gaps and raising student achievement by helping institutions build a culture of evidence…

  10. Vocal Accuracy and Neural Plasticity Following Micromelody-Discrimination Training

    PubMed Central

    Zarate, Jean Mary; Delhommeau, Karine; Wood, Sean; Zatorre, Robert J.

    2010-01-01

    Background Recent behavioral studies report correlational evidence to suggest that non-musicians with good pitch discrimination sing more accurately than those with poorer auditory skills. However, other studies have reported a dissociation between perceptual and vocal production skills. In order to elucidate the relationship between auditory discrimination skills and vocal accuracy, we administered an auditory-discrimination training paradigm to a group of non-musicians to determine whether training-enhanced auditory discrimination would specifically result in improved vocal accuracy. Methodology/Principal Findings We utilized micromelodies (i.e., melodies with seven different interval scales, each smaller than a semitone) as the main stimuli for auditory discrimination training and testing, and we used single-note and melodic singing tasks to assess vocal accuracy in two groups of non-musicians (experimental and control). To determine if any training-induced improvements in vocal accuracy would be accompanied by related modulations in cortical activity during singing, the experimental group of non-musicians also performed the singing tasks while undergoing functional magnetic resonance imaging (fMRI). Following training, the experimental group exhibited significant enhancements in micromelody discrimination compared to controls. However, we did not observe a correlated improvement in vocal accuracy during single-note or melodic singing, nor did we detect any training-induced changes in activity within brain regions associated with singing. Conclusions/Significance Given the observations from our auditory training regimen, we therefore conclude that perceptual discrimination training alone is not sufficient to improve vocal accuracy in non-musicians, supporting the suggested dissociation between auditory perception and vocal production. PMID:20567521

  11. Improved solution accuracy for Landsat-4 (TDRSS-user) orbit determination

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Niklewski, D. J.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    1994-01-01

    This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft, Landsat-4, obtained using a Prototype Filter Smoother (PFS), with the accuracy of an established batch-least-squares system, the Goddard Trajectory Determination System (GTDS). The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the January 17-23, 1991, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. Independent assessments were made of the consistencies (overlap comparisons for the batch case and convariances for the sequential case) of solutions produced by the batch and sequential methods. The filtered and smoothed PFS orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were generally less than 15 meters.

  12. Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants.

    PubMed

    Yousef, Malik; Saçar Demirci, Müşerref Duygu; Khalifa, Waleed; Allmer, Jens

    2016-01-01

    MicroRNAs (miRNAs) are short RNA sequences involved in posttranscriptional gene regulation. Their experimental analysis is complicated and, therefore, needs to be supplemented with computational miRNA detection. Currently computational miRNA detection is mainly performed using machine learning and in particular two-class classification. For machine learning, the miRNAs need to be parametrized and more than 700 features have been described. Positive training examples for machine learning are readily available, but negative data is hard to come by. Therefore, it seems prerogative to use one-class classification instead of two-class classification. Previously, we were able to almost reach two-class classification accuracy using one-class classifiers. In this work, we employ feature selection procedures in conjunction with one-class classification and show that there is up to 36% difference in accuracy among these feature selection methods. The best feature set allowed the training of a one-class classifier which achieved an average accuracy of ~95.6% thereby outperforming previous two-class-based plant miRNA detection approaches by about 0.5%. We believe that this can be improved upon in the future by rigorous filtering of the positive training examples and by improving current feature clustering algorithms to better target pre-miRNA feature selection.

  13. Improved P300 speller performance using electrocorticography, spectral features, and natural language processing.

    PubMed

    Speier, William; Fried, Itzhak; Pouratian, Nader

    2013-07-01

    The P300 speller is a system designed to restore communication to patients with advanced neuromuscular disorders. This study was designed to explore the potential improvement from using electrocorticography (ECoG) compared to the more traditional usage of electroencephalography (EEG). We tested the P300 speller on two epilepsy patients with temporary subdural electrode arrays over the occipital and temporal lobes respectively. We then performed offline analysis to determine the accuracy and bit rate of the system and integrated spectral features into the classifier and used a natural language processing (NLP) algorithm to further improve the results. The subject with the occipital grid achieved an accuracy of 82.77% and a bit rate of 41.02, which improved to 96.31% and 49.47 respectively using a language model and spectral features. The temporal grid patient achieved an accuracy of 59.03% and a bit rate of 18.26 with an improvement to 75.81% and 27.05 respectively using a language model and spectral features. Spatial analysis of the individual electrodes showed best performance using signals generated and recorded near the occipital pole. Using ECoG and integrating language information and spectral features can improve the bit rate of a P300 speller system. This improvement is sensitive to the electrode placement and likely depends on visually evoked potentials. This study shows that there can be an improvement in BCI performance when using ECoG, but that it is sensitive to the electrode location. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Controlled Substance Reconciliation Accuracy Improvement Using Near Real-Time Drug Transaction Capture from Automated Dispensing Cabinets.

    PubMed

    Epstein, Richard H; Dexter, Franklin; Gratch, David M; Perino, Michael; Magrann, Jerry

    2016-06-01

    Accurate accounting of controlled drug transactions by inpatient hospital pharmacies is a requirement in the United States under the Controlled Substances Act. At many hospitals, manual distribution of controlled substances from pharmacies is being replaced by automated dispensing cabinets (ADCs) at the point of care. Despite the promise of improved accountability, a high prevalence (15%) of controlled substance discrepancies between ADC records and anesthesia information management systems (AIMS) has been published, with a similar incidence (15.8%; 95% confidence interval [CI], 15.3% to 16.2%) noted at our institution. Most reconciliation errors are clerical. In this study, we describe a method to capture drug transactions in near real-time from our ADCs, compare them with documentation in our AIMS, and evaluate subsequent improvement in reconciliation accuracy. ADC-controlled substance transactions are transmitted to a hospital interface server, parsed, reformatted, and sent to a software script written in Perl. The script extracts the data and writes them to a SQL Server database. Concurrently, controlled drug totals for each patient having care are documented in the AIMS and compared with the balance of the ADC transactions (i.e., vending, transferring, wasting, and returning drug). Every minute, a reconciliation report is available to anesthesia providers over the hospital Intranet from AIMS workstations. The report lists all patients, the current provider, the balance of ADC transactions, the totals from the AIMS, the difference, and whether the case is still ongoing or had concluded. Accuracy and latency of the ADC transaction capture process were assessed via simulation and by comparison with pharmacy database records, maintained by the vendor on a central server located remotely from the hospital network. For assessment of reconciliation accuracy over time, data were collected from our AIMS from January 2012 to June 2013 (Baseline), July 2013 to April 2014

  15. Standardized pivot shift test improves measurement accuracy.

    PubMed

    Hoshino, Yuichi; Araujo, Paulo; Ahlden, Mattias; Moore, Charity G; Kuroda, Ryosuke; Zaffagnini, Stefano; Karlsson, Jon; Fu, Freddie H; Musahl, Volker

    2012-04-01

    The variability of the pivot shift test techniques greatly interferes with achieving a quantitative and generally comparable measurement. The purpose of this study was to compare the variation of the quantitative pivot shift measurements with different surgeons' preferred techniques to a standardized technique. The hypothesis was that standardizing the pivot shift test would improve consistency in the quantitative evaluation when compared with surgeon-specific techniques. A whole lower body cadaveric specimen was prepared to have a low-grade pivot shift on one side and high-grade pivot shift on the other side. Twelve expert surgeons performed the pivot shift test using (1) their preferred technique and (2) a standardized technique. Electromagnetic tracking was utilized to measure anterior tibial translation and acceleration of the reduction during the pivot shift test. The variation of the measurement was compared between the surgeons' preferred technique and the standardized technique. The anterior tibial translation during pivot shift test was similar between using surgeons' preferred technique (left 24.0 ± 4.3 mm; right 15.5 ± 3.8 mm) and using standardized technique (left 25.1 ± 3.2 mm; right 15.6 ± 4.0 mm; n.s.). However, the variation in acceleration was significantly smaller with the standardized technique (left 3.0 ± 1.3 mm/s(2); right 2.5 ± 0.7 mm/s(2)) compared with the surgeons' preferred technique (left 4.3 ± 3.3 mm/s(2); right 3.4 ± 2.3 mm/s(2); both P < 0.01). Standardizing the pivot shift test maneuver provides a more consistent quantitative evaluation and may be helpful in designing future multicenter clinical outcome trials. Diagnostic study, Level I.

  16. Improving the Accuracy of Outdoor Educators' Teaching Self-Efficacy Beliefs through Metacognitive Monitoring

    ERIC Educational Resources Information Center

    Schumann, Scott; Sibthorp, Jim

    2016-01-01

    Accuracy in emerging outdoor educators' teaching self-efficacy beliefs is critical to student safety and learning. Overinflated self-efficacy beliefs can result in delayed skilled development or inappropriate acceptance of risk. In an outdoor education context, neglecting the accuracy of teaching self-efficacy beliefs early in an educator's…

  17. Test expectancy affects metacomprehension accuracy.

    PubMed

    Thiede, Keith W; Wiley, Jennifer; Griffin, Thomas D

    2011-06-01

    Theory suggests that the accuracy of metacognitive monitoring is affected by the cues used to judge learning. Researchers have improved monitoring accuracy by directing attention to more appropriate cues; however, this is the first study to more directly point students to more appropriate cues using instructions regarding tests and practice tests. The purpose of the present study was to examine whether the accuracy metacognitive monitoring was affected by the nature of the test expected. Students (N= 59) were randomly assigned to one of two test expectancy groups (memory vs. inference). Then after reading texts, judging learning, completed both memory and inference tests. Test performance and monitoring accuracy were superior when students received the kind of test they had been led to expect rather than the unexpected test. Tests influence students' perceptions of what constitutes learning. Our findings suggest that this could affect how students prepare for tests and how they monitoring their own learning. ©2010 The British Psychological Society.

  18. A Study of Single-Gender Grouping for Sixth Grade Math as a Strategy for Improving Student Achievement

    ERIC Educational Resources Information Center

    Van Zyl, Douglas G.

    2011-01-01

    Purpose of the study. The purpose of this study was to examine single-gender groupings for sixth grade mathematics classes as a strategy to improve student achievement. The method of research was quantitative, with MAP mathematics test data being used to determine if any relationship exists between the strategy and student achievement. Findings.…

  19. Segmentation editing improves efficiency while reducing inter-expert variation and maintaining accuracy for normal brain tissues in the presence of space-occupying lesions

    PubMed Central

    Deeley, MA; Chen, A; Datteri, R; Noble, J; Cmelak, A; Donnelly, EF; Malcolm, A; Moretti, L; Jaboin, J; Niermann, K; Yang, Eddy S; Yu, David S; Dawant, BM

    2013-01-01

    Image segmentation has become a vital and often rate limiting step in modern radiotherapy treatment planning. In recent years the pace and scope of algorithm development, and even introduction into the clinic, have far exceeded evaluative studies. In this work we build upon our previous evaluation of a registration driven segmentation algorithm in the context of 8 expert raters and 20 patients who underwent radiotherapy for large space-occupying tumors in the brain. In this work we tested four hypotheses concerning the impact of manual segmentation editing in a randomized single-blinded study. We tested these hypotheses on the normal structures of the brainstem, optic chiasm, eyes and optic nerves using the Dice similarity coefficient, volume, and signed Euclidean distance error to evaluate the impact of editing on inter-rater variance and accuracy. Accuracy analyses relied on two simulated ground truth estimation methods: STAPLE and a novel implementation of probability maps. The experts were presented with automatic, their own, and their peers’ segmentations from our previous study to edit. We found, independent of source, editing reduced inter-rater variance while maintaining or improving accuracy and improving efficiency with at least 60% reduction in contouring time. In areas where raters performed poorly contouring from scratch, editing of the automatic segmentations reduced the prevalence of total anatomical miss from approximately 16% to 8% of the total slices contained within the ground truth estimations. These findings suggest that contour editing could be useful for consensus building such as in developing delineation standards, and that both automated methods and even perhaps less sophisticated atlases could improve efficiency, inter-rater variance, and accuracy. PMID:23685866

  20. Closing Schools to Improve Student Achievement: What the Research and Researchers Say. Research Summary

    ERIC Educational Resources Information Center

    American Federation of Teachers (NJ), 2012

    2012-01-01

    School districts close schools for many appropriate reasons. School closure has now evolved into a school improvement strategy. Sometimes the strategy is to close the lowest-performing schools rather than low-enrollment schools and move the students into higher-achieving neighborhood schools. School closure also has become a common strategy to…

  1. Improving Student Achievement and Teacher Effectiveness through Scientifically Based Practices. NCREL Viewpoints, Number 11

    ERIC Educational Resources Information Center

    Schuch, Linda, Ed.

    2004-01-01

    "Viewpoints" is a multimedia package containing two audio CDs and a short, informative booklet. This volume of "Viewpoints" focuses on using scientifically based practices to improve student achievement and teacher effectiveness. The audio CDs provide the voices, or viewpoints, of various leaders from the education field who have worked closely…

  2. Coval: Improving Alignment Quality and Variant Calling Accuracy for Next-Generation Sequencing Data

    PubMed Central

    Kosugi, Shunichi; Natsume, Satoshi; Yoshida, Kentaro; MacLean, Daniel; Cano, Liliana; Kamoun, Sophien; Terauchi, Ryohei

    2013-01-01

    Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in ‘targeted’ alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/. PMID:24116042

  3. ShinyGPAS: interactive genomic prediction accuracy simulator based on deterministic formulas.

    PubMed

    Morota, Gota

    2017-12-20

    Deterministic formulas for the accuracy of genomic predictions highlight the relationships among prediction accuracy and potential factors influencing prediction accuracy prior to performing computationally intensive cross-validation. Visualizing such deterministic formulas in an interactive manner may lead to a better understanding of how genetic factors control prediction accuracy. The software to simulate deterministic formulas for genomic prediction accuracy was implemented in R and encapsulated as a web-based Shiny application. Shiny genomic prediction accuracy simulator (ShinyGPAS) simulates various deterministic formulas and delivers dynamic scatter plots of prediction accuracy versus genetic factors impacting prediction accuracy, while requiring only mouse navigation in a web browser. ShinyGPAS is available at: https://chikudaisei.shinyapps.io/shinygpas/ . ShinyGPAS is a shiny-based interactive genomic prediction accuracy simulator using deterministic formulas. It can be used for interactively exploring potential factors that influence prediction accuracy in genome-enabled prediction, simulating achievable prediction accuracy prior to genotyping individuals, or supporting in-class teaching. ShinyGPAS is open source software and it is hosted online as a freely available web-based resource with an intuitive graphical user interface.

  4. The Credibility of Children's Testimony: Can Children Control the Accuracy of Their Memory Reports?

    ERIC Educational Resources Information Center

    Koriat, Asher; Goldsmith, Morris; Schneider, Wolfgang; Nakash-Dura, Michal

    2001-01-01

    Three experiments examined children's strategic regulation of memory accuracy. Found that younger (7 to 9 years) and older (10 to 12 years) children could enhance the accuracy of their testimony by screening out wrong answers under free-report conditions. Findings suggest a developmental trend in level of memory accuracy actually achieved.…

  5. Merits of using color and shape differentiation to improve the speed and accuracy of drug strength identification on over-the-counter medicines by laypeople.

    PubMed

    Hellier, Elizabeth; Tucker, Mike; Kenny, Natalie; Rowntree, Anna; Edworthy, Judy

    2010-09-01

    This study aimed to examine the utility of using color and shape to differentiate drug strength information on over-the-counter medicine packages. Medication errors are an important threat to patient safety, and confusions between drug strengths are a significant source of medication error. A visual search paradigm required laypeople to search for medicine packages of a particular strength from among distracter packages of different strengths, and measures of reaction time and error were recorded. Using color to differentiate drug strength information conferred an advantage on search times and accuracy. Shape differentiation did not improve search times and had only a weak effect on search accuracy. Using color to differentiate drug strength information improves drug strength identification performance. Color differentiation of drug strength information may be a useful way of reducing medication errors and improving patient safety.

  6. Accuracy in inference of nursing diagnoses in heart failure patients.

    PubMed

    Pereira, Juliana de Melo Vellozo; Cavalcanti, Ana Carla Dantas; Lopes, Marcos Venícios de Oliveira; da Silva, Valéria Gonçalves; de Souza, Rosana Oliveira; Gonçalves, Ludmila Cuzatis

    2015-01-01

    Heart failure (HF) is a common cause of hospitalization and requires accuracy in clinical judgment and appropriate nursing diagnoses. to determine the accuracy of nursing diagnoses of fatigue, intolerance to activity and decreased cardiac output in hospitalized HF patients. descriptive study applied to nurses with experience in NANDA-I and/or HF nursing diagnoses. Evaluation and accuracy were determined by calculating efficacy (E), false negative (FN), false positive (FP) and trend (T) measures. Nurses who showed acceptable inspection for two diagnoses were selected. the nursing diagnosis of fatigue was the most commonly mistaken diagnosis identified by the nursing evaluators. the search for improving diagnostic accuracy reaffirms the need for continuous and specific training to improve the diagnosis capability of nurses. the training allowed the exercise of clinical judgment and better accuracy of nurses.

  7. Improving the accuracy of k-nearest neighbor using local mean based and distance weight

    NASA Astrophysics Data System (ADS)

    Syaliman, K. U.; Nababan, E. B.; Sitompul, O. S.

    2018-03-01

    In k-nearest neighbor (kNN), the determination of classes for new data is normally performed by a simple majority vote system, which may ignore the similarities among data, as well as allowing the occurrence of a double majority class that can lead to misclassification. In this research, we propose an approach to resolve the majority vote issues by calculating the distance weight using a combination of local mean based k-nearest neighbor (LMKNN) and distance weight k-nearest neighbor (DWKNN). The accuracy of results is compared to the accuracy acquired from the original k-NN method using several datasets from the UCI Machine Learning repository, Kaggle and Keel, such as ionosphare, iris, voice genre, lower back pain, and thyroid. In addition, the proposed method is also tested using real data from a public senior high school in city of Tualang, Indonesia. Results shows that the combination of LMKNN and DWKNN was able to increase the classification accuracy of kNN, whereby the average accuracy on test data is 2.45% with the highest increase in accuracy of 3.71% occurring on the lower back pain symptoms dataset. For the real data, the increase in accuracy is obtained as high as 5.16%.

  8. Does an Adolescent’s Accuracy of Recall Improve with a Second 24-h Dietary Recall?

    PubMed Central

    Kerr, Deborah A.; Wright, Janine L.; Dhaliwal, Satvinder S.; Boushey, Carol J.

    2015-01-01

    The multiple-pass 24-h dietary recall is used in most national dietary surveys. Our purpose was to assess if adolescents’ accuracy of recall improved when a 5-step multiple-pass 24-h recall was repeated. Participants (n = 24), were Chinese-American youths aged between 11 and 15 years and lived in a supervised environment as part of a metabolic feeding study. The 24-h recalls were conducted on two occasions during the first five days of the study. The four steps (quick list; forgotten foods; time and eating occasion; detailed description of the food/beverage) of the 24-h recall were assessed for matches by category. Differences were observed in the matching for the time and occasion step (p < 0.01), detailed description (p < 0.05) and portion size matching (p < 0.05). Omission rates were higher for the second recall (p < 0.05 quick list; p < 0.01 forgotten foods). The adolescents over-estimated energy intake on the first (11.3% ± 22.5%; p < 0.05) and second recall (10.1% ± 20.8%) compared with the known food and beverage items. These results suggest that the adolescents’ accuracy to recall food items declined with a second 24-h recall when repeated over two non-consecutive days. PMID:25984743

  9. Privacy-Preserving Accountable Accuracy Management Systems (PAAMS)

    NASA Astrophysics Data System (ADS)

    Thomas, Roshan K.; Sandhu, Ravi; Bertino, Elisa; Arpinar, Budak; Xu, Shouhuai

    We argue for the design of “Privacy-preserving Accountable Accuracy Management Systems (PAAMS)”. The designs of such systems recognize from the onset that accuracy, accountability, and privacy management are intertwined. As such, these systems have to dynamically manage the tradeoffs between these (often conflicting) objectives. For example, accuracy in such systems can be improved by providing better accountability links between structured and unstructured information. Further, accuracy may be enhanced if access to private information is allowed in controllable and accountable ways. Our proposed approach involves three key elements. First, a model to link unstructured information such as that found in email, image and document repositories with structured information such as that in traditional databases. Second, a model for accuracy management and entity disambiguation by proactively preventing, detecting and tracing errors in information bases. Third, a model to provide privacy-governed operation as accountability and accuracy are managed.

  10. Improving the Accuracy and Training Speed of Motor Imagery Brain-Computer Interfaces Using Wavelet-Based Combined Feature Vectors and Gaussian Mixture Model-Supervectors.

    PubMed

    Lee, David; Park, Sang-Hoon; Lee, Sang-Goog

    2017-10-07

    In this paper, we propose a set of wavelet-based combined feature vectors and a Gaussian mixture model (GMM)-supervector to enhance training speed and classification accuracy in motor imagery brain-computer interfaces. The proposed method is configured as follows: first, wavelet transforms are applied to extract the feature vectors for identification of motor imagery electroencephalography (EEG) and principal component analyses are used to reduce the dimensionality of the feature vectors and linearly combine them. Subsequently, the GMM universal background model is trained by the expectation-maximization (EM) algorithm to purify the training data and reduce its size. Finally, a purified and reduced GMM-supervector is used to train the support vector machine classifier. The performance of the proposed method was evaluated for three different motor imagery datasets in terms of accuracy, kappa, mutual information, and computation time, and compared with the state-of-the-art algorithms. The results from the study indicate that the proposed method achieves high accuracy with a small amount of training data compared with the state-of-the-art algorithms in motor imagery EEG classification.

  11. Introducing radiology report checklists among residents: adherence rates when suggesting versus requiring their use and early experience in improving accuracy.

    PubMed

    Powell, Daniel K; Lin, Eaton; Silberzweig, James E; Kagetsu, Nolan J

    2014-03-01

    To retrospectively compare resident adherence to checklist-style structured reporting for maxillofacial computed tomography (CT) from the emergency department (when required vs. suggested between two programs). To compare radiology resident reporting accuracy before and after introduction of the structured report and assess its ability to decrease the rate of undetected pathology. We introduced a reporting checklist for maxillofacial CT into our dictation software without specific training, requiring it at one program and suggesting it at another. We quantified usage among residents and compared reporting accuracy, before and after counting and categorizing faculty addenda. There was no significant change in resident accuracy in the first few months, with residents acting as their own controls (directly comparing performance with and without the checklist). Adherence to the checklist at program A (where it originated and was required) was 85% of reports compared to 9% of reports at program B (where it was suggested). When using program B as a secondary control, there was no significant difference in resident accuracy with or without using the checklist (comparing different residents using the checklist to those not using the checklist). Our results suggest that there is no automatic value of checklists for improving radiology resident reporting accuracy. They also suggest the importance of focused training, checklist flexibility, and a period of adjustment to a new reporting style. Mandatory checklists were readily adopted by residents but not when simply suggested. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  12. STTR Phase I: Low-Cost, High-Accuracy, Whole-Building Carbon Dioxide Monitoring for Demand Control Ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallstrom, Jason O.; Ni, Zheng Richard

    This STTR Phase I project assessed the feasibility of a new CO 2 sensing system optimized for low-cost, high-accuracy, whole-building monitoring for use in demand control ventilation. The focus was on the development of a wireless networking platform and associated firmware to provide signal conditioning and conversion, fault- and disruptiontolerant networking, and multi-hop routing at building scales to avoid wiring costs. Early exploration of a bridge (or “gateway”) to direct digital control services was also explored. Results of the project contributed to an improved understanding of a new electrochemical sensor for monitoring indoor CO 2 concentrations, as well as themore » electronics and networking infrastructure required to deploy those sensors at building scales. New knowledge was acquired concerning the sensor’s accuracy, environmental response, and failure modes, and the acquisition electronics required to achieve accuracy over a wide range of CO 2 concentrations. The project demonstrated that the new sensor offers repeatable correspondence with commercial optical sensors, with supporting electronics that offer gain accuracy within 0.5%, and acquisition accuracy within 1.5% across three orders of magnitude variation in generated current. Considering production, installation, and maintenance costs, the technology presents a foundation for achieving whole-building CO 2 sensing at a price point below $0.066 / sq-ft – meeting economic feasibility criteria established by the Department of Energy. The technology developed under this award addresses obstacles on the critical path to enabling whole-building CO 2 sensing and demand control ventilation in commercial retrofits, small commercial buildings, residential complexes, and other highpotential structures that have been slow to adopt these technologies. It presents an opportunity to significantly reduce energy use throughout the United States.« less

  13. DNA variant databases improve test accuracy and phenotype prediction in Alport syndrome.

    PubMed

    Savige, Judy; Ars, Elisabet; Cotton, Richard G H; Crockett, David; Dagher, Hayat; Deltas, Constantinos; Ding, Jie; Flinter, Frances; Pont-Kingdon, Genevieve; Smaoui, Nizar; Torra, Roser; Storey, Helen

    2014-06-01

    X-linked Alport syndrome is a form of progressive renal failure caused by pathogenic variants in the COL4A5 gene. More than 700 variants have been described and a further 400 are estimated to be known to individual laboratories but are unpublished. The major genetic testing laboratories for X-linked Alport syndrome worldwide have established a Web-based database for published and unpublished COL4A5 variants ( https://grenada.lumc.nl/LOVD2/COL4A/home.php?select_db=COL4A5 ). This conforms with the recommendations of the Human Variome Project: it uses the Leiden Open Variation Database (LOVD) format, describes variants according to the human reference sequence with standardized nomenclature, indicates likely pathogenicity and associated clinical features, and credits the submitting laboratory. The database includes non-pathogenic and recurrent variants, and is linked to another COL4A5 mutation database and relevant bioinformatics sites. Access is free. Increasing the number of COL4A5 variants in the public domain helps patients, diagnostic laboratories, clinicians, and researchers. The database improves the accuracy and efficiency of genetic testing because its variants are already categorized for pathogenicity. The description of further COL4A5 variants and clinical associations will improve our ability to predict phenotype and our understanding of collagen IV biochemistry. The database for X-linked Alport syndrome represents a model for databases in other inherited renal diseases.

  14. Sampling strategies for improving tree accuracy and phylogenetic analyses: a case study in ciliate protists, with notes on the genus Paramecium.

    PubMed

    Yi, Zhenzhen; Strüder-Kypke, Michaela; Hu, Xiaozhong; Lin, Xiaofeng; Song, Weibo

    2014-02-01

    In order to assess how dataset-selection for multi-gene analyses affects the accuracy of inferred phylogenetic trees in ciliates, we chose five genes and the genus Paramecium, one of the most widely used model protist genera, and compared tree topologies of the single- and multi-gene analyses. Our empirical study shows that: (1) Using multiple genes improves phylogenetic accuracy, even when their one-gene topologies are in conflict with each other. (2) The impact of missing data on phylogenetic accuracy is ambiguous: resolution power and topological similarity, but not number of represented taxa, are the most important criteria of a dataset for inclusion in concatenated analyses. (3) As an example, we tested the three classification models of the genus Paramecium with a multi-gene based approach, and only the monophyly of the subgenus Paramecium is supported. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Improving Accuracy in Arrhenius Models of Cell Death: Adding a Temperature-Dependent Time Delay.

    PubMed

    Pearce, John A

    2015-12-01

    The Arrhenius formulation for single-step irreversible unimolecular reactions has been used for many decades to describe the thermal damage and cell death processes. Arrhenius predictions are acceptably accurate for structural proteins, for some cell death assays, and for cell death at higher temperatures in most cell lines, above about 55 °C. However, in many cases--and particularly at hyperthermic temperatures, between about 43 and 55 °C--the particular intrinsic cell death or damage process under study exhibits a significant "shoulder" region that constant-rate Arrhenius models are unable to represent with acceptable accuracy. The primary limitation is that Arrhenius calculations always overestimate the cell death fraction, which leads to severely overoptimistic predictions of heating effectiveness in tumor treatment. Several more sophisticated mathematical model approaches have been suggested and show much-improved performance. But simpler models that have adequate accuracy would provide useful and practical alternatives to intricate biochemical analyses. Typical transient intrinsic cell death processes at hyperthermic temperatures consist of a slowly developing shoulder region followed by an essentially constant-rate region. The shoulder regions have been demonstrated to arise chiefly from complex functional protein signaling cascades that generate delays in the onset of the constant-rate region, but may involve heat shock protein activity as well. This paper shows that acceptably accurate and much-improved predictions in the simpler Arrhenius models can be obtained by adding a temperature-dependent time delay. Kinetic coefficients and the appropriate time delay are obtained from the constant-rate regions of the measured survival curves. The resulting predictions are seen to provide acceptably accurate results while not overestimating cell death. The method can be relatively easily incorporated into numerical models. Additionally, evidence is presented

  16. Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy.

    PubMed

    Walder, Robert; Van Patten, William J; Adhikari, Ayush; Perkins, Thomas T

    2018-01-23

    Single-molecule force spectroscopy (SMFS) is a powerful technique to characterize the energy landscape of individual proteins, the mechanical properties of nucleic acids, and the strength of receptor-ligand interactions. Atomic force microscopy (AFM)-based SMFS benefits from ongoing progress in improving the precision and stability of cantilevers and the AFM itself. Underappreciated is that the accuracy of such AFM studies remains hindered by inadvertently stretching molecules at an angle while measuring only the vertical component of the force and extension, degrading both measurements. This inaccuracy is particularly problematic in AFM studies using double-stranded DNA and RNA due to their large persistence length (p ≈ 50 nm), often limiting such studies to other SMFS platforms (e.g., custom-built optical and magnetic tweezers). Here, we developed an automated algorithm that aligns the AFM tip above the DNA's attachment point to a coverslip. Importantly, this algorithm was performed at low force (10-20 pN) and relatively fast (15-25 s), preserving the connection between the tip and the target molecule. Our data revealed large uncorrected lateral offsets for 100 and 650 nm DNA molecules [24 ± 18 nm (mean ± standard deviation) and 180 ± 110 nm, respectively]. Correcting this offset yielded a 3-fold improvement in accuracy and precision when characterizing DNA's overstretching transition. We also demonstrated high throughput by acquiring 88 geometrically corrected force-extension curves of a single individual 100 nm DNA molecule in ∼40 min and versatility by aligning polyprotein- and PEG-based protein-ligand assays. Importantly, our software-based algorithm was implemented on a commercial AFM, so it can be broadly adopted. More generally, this work illustrates how to enhance AFM-based SMFS by developing more sophisticated data-acquisition protocols.

  17. Improvement of CD-SEM mark position measurement accuracy

    NASA Astrophysics Data System (ADS)

    Kasa, Kentaro; Fukuhara, Kazuya

    2014-04-01

    CD-SEM is now attracting attention as a tool that can accurately measure positional error of device patterns. However, the measurement accuracy can get worse due to pattern asymmetry as in the case of image based overlay (IBO) and diffraction based overlay (DBO). For IBO and DBO, a way of correcting the inaccuracy arising from measurement patterns was suggested. For CD-SEM, although a way of correcting CD bias was proposed, it has not been argued how to correct the inaccuracy arising from pattern asymmetry using CD-SEM. In this study we will propose how to quantify and correct the measurement inaccuracy affected by pattern asymmetry.

  18. Improving BeiDou real-time precise point positioning with numerical weather models

    NASA Astrophysics Data System (ADS)

    Lu, Cuixian; Li, Xingxing; Zus, Florian; Heinkelmann, Robert; Dick, Galina; Ge, Maorong; Wickert, Jens; Schuh, Harald

    2017-09-01

    Precise positioning with the current Chinese BeiDou Navigation Satellite System is proven to be of comparable accuracy to the Global Positioning System, which is at centimeter level for the horizontal components and sub-decimeter level for the vertical component. But the BeiDou precise point positioning (PPP) shows its limitation in requiring a relatively long convergence time. In this study, we develop a numerical weather model (NWM) augmented PPP processing algorithm to improve BeiDou precise positioning. Tropospheric delay parameters, i.e., zenith delays, mapping functions, and horizontal delay gradients, derived from short-range forecasts from the Global Forecast System of the National Centers for Environmental Prediction (NCEP) are applied into BeiDou real-time PPP. Observational data from stations that are capable of tracking the BeiDou constellation from the International GNSS Service (IGS) Multi-GNSS Experiments network are processed, with the introduced NWM-augmented PPP and the standard PPP processing. The accuracy of tropospheric delays derived from NCEP is assessed against with the IGS final tropospheric delay products. The positioning results show that an improvement in convergence time up to 60.0 and 66.7% for the east and vertical components, respectively, can be achieved with the NWM-augmented PPP solution compared to the standard PPP solutions, while only slight improvement in the solution convergence can be found for the north component. A positioning accuracy of 5.7 and 5.9 cm for the east component is achieved with the standard PPP that estimates gradients and the one that estimates no gradients, respectively, in comparison to 3.5 cm of the NWM-augmented PPP, showing an improvement of 38.6 and 40.1%. Compared to the accuracy of 3.7 and 4.1 cm for the north component derived from the two standard PPP solutions, the one of the NWM-augmented PPP solution is improved to 2.0 cm, by about 45.9 and 51.2%. The positioning accuracy for the up component

  19. Ultra-deep mutant spectrum profiling: improving sequencing accuracy using overlapping read pairs.

    PubMed

    Chen-Harris, Haiyin; Borucki, Monica K; Torres, Clinton; Slezak, Tom R; Allen, Jonathan E

    2013-02-12

    High throughput sequencing is beginning to make a transformative impact in the area of viral evolution. Deep sequencing has the potential to reveal the mutant spectrum within a viral sample at high resolution, thus enabling the close examination of viral mutational dynamics both within- and between-hosts. The challenge however, is to accurately model the errors in the sequencing data and differentiate real viral mutations, particularly those that exist at low frequencies, from sequencing errors. We demonstrate that overlapping read pairs (ORP) -- generated by combining short fragment sequencing libraries and longer sequencing reads -- significantly reduce sequencing error rates and improve rare variant detection accuracy. Using this sequencing protocol and an error model optimized for variant detection, we are able to capture a large number of genetic mutations present within a viral population at ultra-low frequency levels (<0.05%). Our rare variant detection strategies have important implications beyond viral evolution and can be applied to any basic and clinical research area that requires the identification of rare mutations.

  20. Evaluation of accuracy in implant site preparation performed in single- or multi-step drilling procedures.

    PubMed

    Marheineke, Nadine; Scherer, Uta; Rücker, Martin; von See, Constantin; Rahlf, Björn; Gellrich, Nils-Claudius; Stoetzer, Marcus

    2018-06-01

    Dental implant failure and insufficient osseointegration are proven results of mechanical and thermal damage during the surgery process. We herein performed a comparative study of a less invasive single-step drilling preparation protocol and a conventional multiple drilling sequence. Accuracy of drilling holes was precisely analyzed and the influence of different levels of expertise of the handlers and additional use of drill template guidance was evaluated. Six experimental groups, deployed in an osseous study model, were representing template-guided and freehanded drilling actions in a stepwise drilling procedure in comparison to a single-drill protocol. Each experimental condition was studied by the drilling actions of respectively three persons without surgical knowledge as well as three highly experienced oral surgeons. Drilling actions were performed and diameters were recorded with a precision measuring instrument. Less experienced operators were able to significantly increase the drilling accuracy using a guiding template, especially when multi-step preparations are performed. Improved accuracy without template guidance was observed when experienced operators were executing single-step versus multi-step technique. Single-step drilling protocols have shown to produce more accurate results than multi-step procedures. The outcome of any protocol can be further improved by use of guiding templates. Operator experience can be a contributing factor. Single-step preparations are less invasive and are promoting osseointegration. Even highly experienced surgeons are achieving higher levels of accuracy by combining this technique with template guidance. Hereby template guidance enables a reduction of hands-on time and side effects during surgery and lead to a more predictable clinical diameter.