Sample records for achieve optimal clinical

  1. Optimizing value utilizing Toyota Kata methodology in a multidisciplinary clinic.

    PubMed

    Merguerian, Paul A; Grady, Richard; Waldhausen, John; Libby, Arlene; Murphy, Whitney; Melzer, Lilah; Avansino, Jeffrey

    2015-08-01

    Value in healthcare is measured in terms of patient outcomes achieved per dollar expended. Outcomes and cost must be measured at the patient level to optimize value. Multidisciplinary clinics have been shown to be effective in providing coordinated and comprehensive care with improved outcomes, yet tend to have higher cost than typical clinics. We sought to lower individual patient cost and optimize value in a pediatric multidisciplinary reconstructive pelvic medicine (RPM) clinic. The RPM clinic is a multidisciplinary clinic that takes care of patients with anomalies of the pelvic organs. The specialties involved include Urology, General Surgery, Gynecology, and Gastroenterology/Motility. From May 2012 to November 2014 we performed time-driven activity-based costing (TDABC) analysis by measuring provider time for each step in the patient flow. Using observed time and the estimated hourly cost of each of the providers we calculated the final cost at the individual patient level, targeting clinic preparation. We utilized Toyota Kata methodology to enhance operational efficiency in an effort to optimize value. Variables measured included cost, time to perform a task, number of patients seen in clinic, percent value-added time (VAT) to patients (face to face time) and family experience scores (FES). At the beginning of the study period, clinic costs were $619 per patient. We reduced conference time from 6 min/patient to 1 min per patient, physician preparation time from 8 min to 6 min and increased Medical Assistant (MA) preparation time from 9.5 min to 20 min, achieving a cost reduction of 41% to $366 per patient. Continued improvements further reduced the MA preparation time to 14 min and the MD preparation time to 5 min with a further cost reduction to $194 (69%) (Figure). During this study period, we increased the number of appointments per clinic. We demonstrated sustained improvement in FES with regards to the families overall experience with their providers

  2. The influence of optimism and pessimism on student achievement in mathematics

    NASA Astrophysics Data System (ADS)

    Yates, Shirley M.

    2002-11-01

    Students' causal attributions are not only fundamental motivational variables but are also critical motivators of their persistence in learning. Optimism, pessimism, and achievement in mathematics were measured in a sample of primary and lower secondary students on two occasions. Although achievement in mathematics was most strongly related to prior achievement and grade level, optimism and pessimism were significant factors. In particular, students with a more generally pessimistic outlook on life had a lower level of achievement in mathematics over time. Gender was not a significant factor in achievement. The implications of these findings are discussed.

  3. Optimism versus Pessimism and Academic Achievement Evaluation

    ERIC Educational Resources Information Center

    Harpaz-Itay, Yifat; Kaniel, Shlomo

    2012-01-01

    This article integrates three central theories of optimism-pessimism (OP). The combination of the shared components of these theories--outcome expectancies, emotions, and behavioral intention--may produce an integrative academic achievement evaluation. Little has been written regarding the differentiation between general and domain-specific OP, a…

  4. Optimization of spatiotemporally fractionated radiotherapy treatments with bounds on the achievable benefit

    NASA Astrophysics Data System (ADS)

    Gaddy, Melissa R.; Yıldız, Sercan; Unkelbach, Jan; Papp, Dávid

    2018-01-01

    Spatiotemporal fractionation schemes, that is, treatments delivering different dose distributions in different fractions, can potentially lower treatment side effects without compromising tumor control. This can be achieved by hypofractionating parts of the tumor while delivering approximately uniformly fractionated doses to the surrounding tissue. Plan optimization for such treatments is based on biologically effective dose (BED); however, this leads to computationally challenging nonconvex optimization problems. Optimization methods that are in current use yield only locally optimal solutions, and it has hitherto been unclear whether these plans are close to the global optimum. We present an optimization framework to compute rigorous bounds on the maximum achievable normal tissue BED reduction for spatiotemporal plans. The approach is demonstrated on liver tumors, where the primary goal is to reduce mean liver BED without compromising any other treatment objective. The BED-based treatment plan optimization problems are formulated as quadratically constrained quadratic programming (QCQP) problems. First, a conventional, uniformly fractionated reference plan is computed using convex optimization. Then, a second, nonconvex, QCQP model is solved to local optimality to compute a spatiotemporally fractionated plan that minimizes mean liver BED, subject to the constraints that the plan is no worse than the reference plan with respect to all other planning goals. Finally, we derive a convex relaxation of the second model in the form of a semidefinite programming problem, which provides a rigorous lower bound on the lowest achievable mean liver BED. The method is presented on five cases with distinct geometries. The computed spatiotemporal plans achieve 12-35% mean liver BED reduction over the optimal uniformly fractionated plans. This reduction corresponds to 79-97% of the gap between the mean liver BED of the uniform reference plans and our lower bounds on the lowest

  5. The Effects of Academic Optimism on Elementary Reading Achievement

    ERIC Educational Resources Information Center

    Bevel, Raymona K.; Mitchell, Roxanne M.

    2012-01-01

    Purpose: The purpose of this paper is to explore the relationship between academic optimism (AO) and elementary reading achievement (RA). Design/methodology/approach: Using correlation and hierarchical linear regression, the authors examined school-level effects of AO on fifth grade reading achievement in 29 elementary schools in Alabama.…

  6. Inverse-optimized 3D conformal planning: Minimizing complexity while achieving equivalence with beamlet IMRT in multiple clinical sites

    PubMed Central

    Fraass, Benedick A.; Steers, Jennifer M.; Matuszak, Martha M.; McShan, Daniel L.

    2012-01-01

    user-controllable search strategies which optimize plans without beamlet or pencil beam approximations. IO-3D allows comparisons of beamlet, multisegment, and conformal plans optimized using the same cost functions, dose points, and plan evaluation metrics, so quantitative comparisons are straightforward. Here, comparisons of IO-3D and beamlet IMRT techniques are presented for breast, brain, liver, and lung plans. Results: IO-3D achieves high quality results comparable to beamlet IMRT, for many situations. Though the IO-3D plans have many fewer degrees of freedom for the optimization, this work finds that IO-3D plans with only one to two segments per beam are dosimetrically equivalent (or nearly so) to the beamlet IMRT plans, for several sites. IO-3D also reduces plan complexity significantly. Here, monitor units per fraction (MU/Fx) for IO-3D plans were 22%–68% less than that for the 1 cm × 1 cm beamlet IMRT plans and 72%–84% than the 0.5 cm × 0.5 cm beamlet IMRT plans. Conclusions: The unique IO-3D algorithm illustrates that inverse planning can achieve high quality 3D conformal plans equivalent (or nearly so) to unconstrained beamlet IMRT plans, for many sites. IO-3D thus provides the potential to optimize flat or few-segment 3DCRT plans, creating less complex optimized plans which are efficient and simple to deliver. The less complex IO-3D plans have operational advantages for scenarios including adaptive replanning, cases with interfraction and intrafraction motion, and pediatric patients. PMID:22755717

  7. Contribution of Clinical Archetypes, and the Challenges, towards Achieving Semantic Interoperability for EHRs.

    PubMed

    Tapuria, Archana; Kalra, Dipak; Kobayashi, Shinji

    2013-12-01

    The objective is to introduce 'clinical archetype' which is a formal and agreed way of representing clinical information to ensure interoperability across and within Electronic Health Records (EHRs). The paper also aims at presenting the challenges building quality labeled clinical archetypes and the challenges towards achieving semantic interoperability between EHRs. Twenty years of international research, various European healthcare informatics projects and the pioneering work of the openEHR Foundation have led to the following results. The requirements for EHR information architectures have been consolidated within ISO 18308 and adopted within the ISO 13606 EHR interoperability standard. However, a generic EHR architecture cannot ensure that the clinical meaning of information from heterogeneous sources can be reliably interpreted by receiving systems and services. Therefore, clinical models called 'clinical archetypes' are required to formalize the representation of clinical information within the EHR. Part 2 of ISO 13606 defines how archetypes should be formally represented. The current challenge is to grow clinical communities to build a library of clinical archetypes and to identify how evidence of best practice and multi-professional clinical consensus should best be combined to define archetypes at the optimal level of granularity and specificity and quality label them for wide adoption. Standardizing clinical terms within EHRs using clinical terminology like Systematized Nomenclature of Medicine Clinical Terms is also a challenge. Clinical archetypes would play an important role in achieving semantic interoperability within EHRs. Attempts are being made in exploring the design and adoption challenges for clinical archetypes.

  8. Optimizing point-of-care testing in clinical systems management.

    PubMed

    Kost, G J

    1998-01-01

    The goal of improving medical and economic outcomes calls for leadership based on fundamental principles. The manager of clinical systems works collaboratively within the acute care center to optimize point-of-care testing through systematic approaches such as integrative strategies, algorithms, and performance maps. These approaches are effective and efficacious for critically ill patients. Optimizing point-of-care testing throughout the entire health-care system is inherently more difficult. There is potential to achieve high-quality testing, integrated disease management, and equitable health-care delivery. Despite rapid change and economic uncertainty, a macro-strategic, information-integrated, feedback-systems, outcomes-oriented approach is timely, challenging, effective, and uplifting to the creative human spirit.

  9. Use of allopurinol with low-dose 6-mercaptopurine in inflammatory bowel disease to achieve optimal active metabolite levels: A review of four cases and the literature

    PubMed Central

    Witte, Todd N; Ginsberg, Allen L

    2008-01-01

    BACKGROUND: At least one-third of patients with inflammatory bowel disease do not respond or are intolerant to therapy with 6-mercaptopurine (6-MP). A subgroup fails to attain optimal levels of 6-thioguanine nucleotide (6-TGN) and instead shunts to 6-methylmercaptopurine nucleotide (6-MMPN). PATIENTS AND METHODS: A retrospective chart review was conducted, and four patients are described who had been previously unable to achieve optimal 6-TGN metabolite levels until allopurinol was added to their treatment. RESULTS: All four patients achieved optimal 6-TGN levels and undetectable 6-MMPN with a mean 6-MP dose of 0.49 mg/kg. Three achieved steroid-free clinical remission. Two of those three patients had normalization of liver enzymes; one patient had baseline normal liver enzymes despite an initial 6-MMPN level of 27,369 pmol/8×108 red blood cells. Two patients experienced reversible leukopenia. CONCLUSIONS: Combination allopurinol and low-dose 6-MP is an effective means to achieve optimal metabolite levels and steroid-free clinical remission in previously refractory patients. Caution is advised. PMID:18299738

  10. Contribution of Clinical Archetypes, and the Challenges, towards Achieving Semantic Interoperability for EHRs

    PubMed Central

    Kalra, Dipak; Kobayashi, Shinji

    2013-01-01

    Objectives The objective is to introduce 'clinical archetype' which is a formal and agreed way of representing clinical information to ensure interoperability across and within Electronic Health Records (EHRs). The paper also aims at presenting the challenges building quality labeled clinical archetypes and the challenges towards achieving semantic interoperability between EHRs. Methods Twenty years of international research, various European healthcare informatics projects and the pioneering work of the openEHR Foundation have led to the following results. Results The requirements for EHR information architectures have been consolidated within ISO 18308 and adopted within the ISO 13606 EHR interoperability standard. However, a generic EHR architecture cannot ensure that the clinical meaning of information from heterogeneous sources can be reliably interpreted by receiving systems and services. Therefore, clinical models called 'clinical archetypes' are required to formalize the representation of clinical information within the EHR. Part 2 of ISO 13606 defines how archetypes should be formally represented. The current challenge is to grow clinical communities to build a library of clinical archetypes and to identify how evidence of best practice and multi-professional clinical consensus should best be combined to define archetypes at the optimal level of granularity and specificity and quality label them for wide adoption. Standardizing clinical terms within EHRs using clinical terminology like Systematized Nomenclature of Medicine Clinical Terms is also a challenge. Conclusions Clinical archetypes would play an important role in achieving semantic interoperability within EHRs. Attempts are being made in exploring the design and adoption challenges for clinical archetypes. PMID:24523993

  11. Improving the performance of surgery-based clinical pathways: a simulation-optimization approach.

    PubMed

    Ozcan, Yasar A; Tànfani, Elena; Testi, Angela

    2017-03-01

    This paper aims to improve the performance of clinical processes using clinical pathways (CPs). The specific goal of this research is to develop a decision support tool, based on a simulation-optimization approach, which identify the proper adjustment and alignment of resources to achieve better performance for both the patients and the health-care facility. When multiple perspectives are present in a decision problem, critical issues arise and often require the balancing of goals. In our approach, meeting patients' clinical needs in a timely manner, and to avoid worsening of clinical conditions, we assess the level of appropriate resources. The simulation-optimization model seeks and evaluates alternative resource configurations aimed at balancing the two main objectives-meeting patient needs and optimal utilization of beds and operating rooms.Using primary data collected at a Department of Surgery of a public hospital located in Genoa, Italy. The simulation-optimization modelling approach in this study has been applied to evaluate the thyroid surgical treatment together with the other surgery-based CPs. The low rate of bed utilization and the long elective waiting lists of the specialty under study indicates that the wards were oversized while the operating room capacity was the bottleneck of the system. The model enables hospital managers determine which objective has to be given priority, as well as the corresponding opportunity costs.

  12. Collective Responsibility, Academic Optimism, and Student Achievement in Taiwan Elementary Schools

    ERIC Educational Resources Information Center

    Wu, Hsin-Chieh

    2012-01-01

    Previous research indicates that collective efficacy, faculty trust in students and parents, and academic emphasis together formed a single latent school construct, called academic optimism. In the U.S., academic optimism has been proven to be a powerful construct that could effectively predict student achievement even after controlling for…

  13. Selective robust optimization: A new intensity-modulated proton therapy optimization strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yupeng; Niemela, Perttu; Siljamaki, Sami

    2015-08-15

    Purpose: To develop a new robust optimization strategy for intensity-modulated proton therapy as an important step in translating robust proton treatment planning from research to clinical applications. Methods: In selective robust optimization, a worst-case-based robust optimization algorithm is extended, and terms of the objective function are selectively computed from either the worst-case dose or the nominal dose. Two lung cancer cases and one head and neck cancer case were used to demonstrate the practical significance of the proposed robust planning strategy. The lung cancer cases had minimal tumor motion less than 5 mm, and, for the demonstration of the methodology,more » are assumed to be static. Results: Selective robust optimization achieved robust clinical target volume (CTV) coverage and at the same time increased nominal planning target volume coverage to 95.8%, compared to the 84.6% coverage achieved with CTV-based robust optimization in one of the lung cases. In the other lung case, the maximum dose in selective robust optimization was lowered from a dose of 131.3% in the CTV-based robust optimization to 113.6%. Selective robust optimization provided robust CTV coverage in the head and neck case, and at the same time improved controls over isodose distribution so that clinical requirements may be readily met. Conclusions: Selective robust optimization may provide the flexibility and capability necessary for meeting various clinical requirements in addition to achieving the required plan robustness in practical proton treatment planning settings.« less

  14. Enablers and barriers for women with gestational diabetes mellitus to achieve optimal glycaemic control - a qualitative study using the theoretical domains framework.

    PubMed

    Martis, Ruth; Brown, Julie; McAra-Couper, Judith; Crowther, Caroline A

    2018-04-11

    Glycaemic target recommendations vary widely between international professional organisations for women with gestational diabetes mellitus (GDM). Some studies have reported women's experiences of having GDM, but little is known how this relates to their glycaemic targets. The aim of this study was to identify enablers and barriers for women with GDM to achieve optimal glycaemic control. Women with GDM were recruited from two large, geographically different, hospitals in New Zealand to participate in a semi-structured interview to explore their views and experiences focusing on enablers and barriers to achieving optimal glycaemic control. Final thematic analysis was performed using the Theoretical Domains Framework. Sixty women participated in the study. Women reported a shift from their initial negative response to accepting their diagnosis but disliked the constant focus on numbers. Enablers and barriers were categorised into ten domains across the three study questions. Enablers included: the ability to attend group teaching sessions with family and hear from women who have had GDM; easy access to a diabetes dietitian with diet recommendations tailored to a woman's context including ethnic food and financial considerations; free capillary blood glucose (CBG) monitoring equipment, health shuttles to take women to appointments; child care when attending clinic appointments; and being taught CBG testing by a community pharmacist. Barriers included: lack of health information, teaching sessions, consultations, and food diaries in a woman's first language; long waiting times at clinic appointments; seeing a different health professional every clinic visit; inconsistent advice; no tailored physical activities assessments; not knowing where to access appropriate information on the internet; unsupportive partners, families, and workplaces; and unavailability of social media or support groups for women with GDM. Perceived judgement by others led some women only to share

  15. Achieving optimal growth: lessons from simple metabolic modules

    NASA Astrophysics Data System (ADS)

    Goyal, Sidhartha; Chen, Thomas; Wingreen, Ned

    2009-03-01

    Metabolism is a universal property of living organisms. While the metabolic network itself has been well characterized, the logic of its regulation remains largely mysterious. Recent work has shown that growth rates of microorganisms, including the bacterium Escherichia coli, correlate well with optimal growth rates predicted by flux-balance analysis (FBA), a constraint-based computational method. How difficult is it for cells to achieve optimal growth? Our analysis of representative metabolic modules drawn from real metabolism shows that, in all cases, simple feedback inhibition allows nearly optimal growth. Indeed, product-feedback inhibition is found in every biosynthetic pathway and constitutes about 80% of metabolic regulation. However, we find that product-feedback systems designed to approach optimal growth necessarily produce large pool sizes of metabolites, with potentially detrimental effects on cells via toxicity and osmotic imbalance. Interestingly, the sizes of metabolite pools can be strongly restricted if the feedback inhibition is ultrasensitive (i.e. with high Hill coefficient). The need for ultrasensitive mechanisms to limit pool sizes may therefore explain some of the ubiquitous, puzzling complexity found in metabolic feedback regulation at both the transcriptional and post-transcriptional levels.

  16. Achieving quality assurance through clinical audit.

    PubMed

    Patel, Seraphim

    2010-06-01

    Audit is a crucial component of improvements to the quality of patient care. Clinical audits are undertaken to help ensure that patients can be given safe, reliable and dignified care, and to encourage them to self-direct their recovery. Such audits are undertaken also to help reduce lengths of patient stay in hospital, readmission rates and delays in discharge. This article describes the stages of clinical audit and the support required to achieve organisational core values.

  17. Combining clinical variables to optimize prediction of antidepressant treatment outcomes.

    PubMed

    Iniesta, Raquel; Malki, Karim; Maier, Wolfgang; Rietschel, Marcella; Mors, Ole; Hauser, Joanna; Henigsberg, Neven; Dernovsek, Mojca Zvezdana; Souery, Daniel; Stahl, Daniel; Dobson, Richard; Aitchison, Katherine J; Farmer, Anne; Lewis, Cathryn M; McGuffin, Peter; Uher, Rudolf

    2016-07-01

    The outcome of treatment with antidepressants varies markedly across people with the same diagnosis. A clinically significant prediction of outcomes could spare the frustration of trial and error approach and improve the outcomes of major depressive disorder through individualized treatment selection. It is likely that a combination of multiple predictors is needed to achieve such prediction. We used elastic net regularized regression to optimize prediction of symptom improvement and remission during treatment with escitalopram or nortriptyline and to identify contributing predictors from a range of demographic and clinical variables in 793 adults with major depressive disorder. A combination of demographic and clinical variables, with strong contributions from symptoms of depressed mood, reduced interest, decreased activity, indecisiveness, pessimism and anxiety significantly predicted treatment outcomes, explaining 5-10% of variance in symptom improvement with escitalopram. Similar combinations of variables predicted remission with area under the curve 0.72, explaining approximately 15% of variance (pseudo R(2)) in who achieves remission, with strong contributions from body mass index, appetite, interest-activity symptom dimension and anxious-somatizing depression subtype. Escitalopram-specific outcome prediction was more accurate than generic outcome prediction, and reached effect sizes that were near or above a previously established benchmark for clinical significance. Outcome prediction on the nortriptyline arm did not significantly differ from chance. These results suggest that easily obtained demographic and clinical variables can predict therapeutic response to escitalopram with clinically meaningful accuracy, suggesting a potential for individualized prescription of this antidepressant drug. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Variability in Clinical Integration Achieved by Athletic Training Students across Different Clinical Sport Assignments

    ERIC Educational Resources Information Center

    Dodge, Thomas M.; Mazerolle, Stephanie M.; Bowman, Thomas G.

    2015-01-01

    Context: Clinical integration impacts athletic training students' (ATSs) motivation and persistence. Research has yet to elucidate the manner in which different clinical placements can influence clinical integration. Objective: To examine differences in the levels of clinical integration achieved by ATSs across various clinical sport assignments.…

  19. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine.

    PubMed

    Castaneda, Christian; Nalley, Kip; Mannion, Ciaran; Bhattacharyya, Pritish; Blake, Patrick; Pecora, Andrew; Goy, Andre; Suh, K Stephen

    2015-01-01

    As research laboratories and clinics collaborate to achieve precision medicine, both communities are required to understand mandated electronic health/medical record (EHR/EMR) initiatives that will be fully implemented in all clinics in the United States by 2015. Stakeholders will need to evaluate current record keeping practices and optimize and standardize methodologies to capture nearly all information in digital format. Collaborative efforts from academic and industry sectors are crucial to achieving higher efficacy in patient care while minimizing costs. Currently existing digitized data and information are present in multiple formats and are largely unstructured. In the absence of a universally accepted management system, departments and institutions continue to generate silos of information. As a result, invaluable and newly discovered knowledge is difficult to access. To accelerate biomedical research and reduce healthcare costs, clinical and bioinformatics systems must employ common data elements to create structured annotation forms enabling laboratories and clinics to capture sharable data in real time. Conversion of these datasets to knowable information should be a routine institutionalized process. New scientific knowledge and clinical discoveries can be shared via integrated knowledge environments defined by flexible data models and extensive use of standards, ontologies, vocabularies, and thesauri. In the clinical setting, aggregated knowledge must be displayed in user-friendly formats so that physicians, non-technical laboratory personnel, nurses, data/research coordinators, and end-users can enter data, access information, and understand the output. The effort to connect astronomical numbers of data points, including '-omics'-based molecular data, individual genome sequences, experimental data, patient clinical phenotypes, and follow-up data is a monumental task. Roadblocks to this vision of integration and interoperability include ethical, legal

  20. Impact of Clinical Factors on the Achievement of Target Blood Pressure in Hypertensive Patients from Ivanovo Region of Russia: Data of 2015.

    PubMed

    Kiselev, A R; Posnenkova, O M; Belova, O A; Romanchuk, S V; Popova, Y V; Prokhorov, M D; Gridnev, V I

    2017-12-01

    In Russia, blood pressure (BP) control is below the optimal. The little is known about regional features and barriers to adequate BP control in Russian primary care. To evaluate the impact of clinical factors on achieving the target BP in hypertensive patients in one region of Russia. Retrospective medical data of 2015 on 11,129 patients (31.4% male) with hypertension (Htn) from Ivanovo region of Russia were examined. Achievement of target BP was assessed in all patients. We study association between BP control and clinical factors. 45.9% of studied patients with Htn had controlled BP. The frequency of achieving the target BP in subsets of hypertensive patients was 37.8% in patients with diabetes, 39.5% in patients with coronary artery disease, and 29.9% in patients with chronic heart failure. The main clinical factors associated with achieving the target BP in studied hypertensive patients were the advice on alcohol consumption, advice on smoking cessation, and advice on weight reduction. Therapy with main antihypertensive drugs (in particular, beta-blockers and thiazide diuretics) were also factors of optimal BP control in these patients. Comorbidities (chronic heart failure and cardiovascular diseases requiring the prescription of aspirin and statins) and family history of coronary artery disease were associated with inadequate BP control. A negative effect of some antihypertensive drugs (potassium sparing diuretics, ARBs, ACE-Is, and dihydropyridine CCBs) on BP control that was found out in our study requires further investigation. Other studied factors had no influence on BP control in patients with Htn from Ivanovo region. We identified regional factors of BP control in hypertensive patients from Ivanovo region of Russia. It is shown that individual medical education (in particular, medical advices) is the most important factor of optimal BP control. The intervention with antihypertensive therapy (beta-blockers and thiazide diuretics) facilitates the

  1. The biopharmaceutics risk assessment roadmap for optimizing clinical drug product performance.

    PubMed

    Selen, Arzu; Dickinson, Paul A; Müllertz, Anette; Crison, John R; Mistry, Hitesh B; Cruañes, Maria T; Martinez, Marilyn N; Lennernäs, Hans; Wigal, Tim L; Swinney, David C; Polli, James E; Serajuddin, Abu T M; Cook, Jack A; Dressman, Jennifer B

    2014-11-01

    The biopharmaceutics risk assessment roadmap (BioRAM) optimizes drug product development and performance by using therapy-driven target drug delivery profiles as a framework to achieve the desired therapeutic outcome. Hence, clinical relevance is directly built into early formulation development. Biopharmaceutics tools are used to identify and address potential challenges to optimize the drug product for patient benefit. For illustration, BioRAM is applied to four relatively common therapy-driven drug delivery scenarios: rapid therapeutic onset, multiphasic delivery, delayed therapeutic onset, and maintenance of target exposure. BioRAM considers the therapeutic target with the drug substance characteristics and enables collection of critical knowledge for development of a dosage form that can perform consistently for meeting the patient's needs. Accordingly, the key factors are identified and in vitro, in vivo, and in silico modeling and simulation techniques are used to elucidate the optimal drug delivery rate and pattern. BioRAM enables (1) feasibility assessment for the dosage form, (2) development and conduct of appropriate "learning and confirming" studies, (3) transparency in decision-making, (4) assurance of drug product quality during lifecycle management, and (5) development of robust linkages between the desired clinical outcome and the necessary product quality attributes for inclusion in the quality target product profile. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Optimal dietary patterns designed from local foods to achieve maternal nutritional goals.

    PubMed

    Raymond, Jofrey; Kassim, Neema; Rose, Jerman W; Agaba, Morris

    2018-04-04

    Achieving nutritional requirements for pregnant and lactating mothers in rural households while maintaining the intake of local and culture-specific foods can be a difficult task. Deploying a linear goal programming approach can effectively generate optimal dietary patterns that incorporate local and culturally acceptable diets. The primary objective of this study was to determine whether a realistic and affordable diet that achieves nutritional goals for rural pregnant and lactating women can be formulated from locally available foods in Tanzania. A cross sectional study was conducted to assess dietary intakes of 150 pregnant and lactating women using a weighed dietary record (WDR), 24 h dietary recalls and a 7-days food record. A market survey was also carried out to estimate the cost per 100 g of edible portion of foods that are frequently consumed in the study population. Dietary survey and market data were then used to define linear programming (LP) model parameters for diet optimisation. All LP analyses were done using linear program solver to generate optimal dietary patterns. Our findings showed that optimal dietary patterns designed from locally available foods would improve dietary adequacy for 15 and 19 selected nutrients in pregnant and lactating women, respectively, but inadequacies remained for iron, zinc, folate, pantothenic acid, and vitamin E, indicating that these are problem nutrients (nutrients that did not achieve 100% of their RNIs in optimised diets) in the study population. These findings suggest that optimal use of local foods can improve dietary adequacy for rural pregnant and lactating women aged 19-50 years. However, additional cost-effective interventions are needed to ensure adequate intakes for the identified problem nutrients.

  3. Academic Optimism, Organizational Citizenship Behaviors, and Student Achievement at Charter Schools

    ERIC Educational Resources Information Center

    Guvercin, Mustafa

    2013-01-01

    The purpose of this study was to examine the relationship among academic optimism, Organizational Citizenship Behaviors (OCBs), and student achievement in college preparatory charter schools. A purposeful sample of elementary school teachers from college preparatory charter schools (N = 226) in southeast Texas was solicited to complete the…

  4. Designing optimal food intake patterns to achieve nutritional goals for Japanese adults through the use of linear programming optimization models.

    PubMed

    Okubo, Hitomi; Sasaki, Satoshi; Murakami, Kentaro; Yokoyama, Tetsuji; Hirota, Naoko; Notsu, Akiko; Fukui, Mitsuru; Date, Chigusa

    2015-06-06

    Simultaneous dietary achievement of a full set of nutritional recommendations is difficult. Diet optimization model using linear programming is a useful mathematical means of translating nutrient-based recommendations into realistic nutritionally-optimal food combinations incorporating local and culture-specific foods. We used this approach to explore optimal food intake patterns that meet the nutrient recommendations of the Dietary Reference Intakes (DRIs) while incorporating typical Japanese food selections. As observed intake values, we used the food and nutrient intake data of 92 women aged 31-69 years and 82 men aged 32-69 years living in three regions of Japan. Dietary data were collected with semi-weighed dietary record on four non-consecutive days in each season of the year (16 days total). The linear programming models were constructed to minimize the differences between observed and optimized food intake patterns while also meeting the DRIs for a set of 28 nutrients, setting energy equal to estimated requirements, and not exceeding typical quantities of each food consumed by each age (30-49 or 50-69 years) and gender group. We successfully developed mathematically optimized food intake patterns that met the DRIs for all 28 nutrients studied in each sex and age group. Achieving nutritional goals required minor modifications of existing diets in older groups, particularly women, while major modifications were required to increase intake of fruit and vegetables in younger groups of both sexes. Across all sex and age groups, optimized food intake patterns demanded greatly increased intake of whole grains and reduced-fat dairy products in place of intake of refined grains and full-fat dairy products. Salt intake goals were the most difficult to achieve, requiring marked reduction of salt-containing seasoning (65-80%) in all sex and age groups. Using a linear programming model, we identified optimal food intake patterns providing practical food choices and

  5. Achieving consensus for clinical trials

    PubMed Central

    Blakeley, Jaishri O.; Dombi, Eva; Fisher, Michael J.; Hanemann, C. Oliver; Walsh, Karin S.; Wolters, Pamela L.; Widemann, Brigitte C.

    2013-01-01

    The neurofibromatoses (NF)—including neurofibromatosis 1 (NF1), neurofibromatosis 2 (NF2), and schwannomatosis—are related tumor-suppressor syndromes characterized by a predisposition to multiple tumor types and other disease manifestations, which often result in functional disability, reduced quality of life, pain, and, in some cases, malignancy. With increasing knowledge of the biology and pathogenesis of NF, clinical trials with targeted agents directed at NF tumors have become available. Most clinical trials for patients with NF have used designs and endpoints similar to oncology trials. However, differences in the disease manifestations and natural history of NF (compared to cancers) require the development of new designs and endpoints to perform meaningful NF clinical trials. The Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) International Collaboration was established in 2011 at the Children's Tumor Foundation meeting to achieve consensus within the NF community about the design of future clinical trials, with a specific emphasis on endpoints. The REiNS Collaboration includes 7 working groups that focus on imaging of tumor response; functional, visual, patient-reported, and neurocognitive outcomes; whole-body MRI; and disease biomarkers. This supplement includes the first series of recommendations by the REiNS Collaboration. The hope is that these recommendations will be used by members of the group and by researchers outside of the REiNS International Collaboration to standardize the measurement of outcomes and thus improve clinical trials for patients with NF. Ultimately, we plan to engage industry partners and national regulatory agencies in this process to facilitate the approval of drugs for patients with NF. PMID:24249801

  6. SU-E-T-175: Clinical Evaluations of Monte Carlo-Based Inverse Treatment Plan Optimization for Intensity Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Y; Li, Y; Tian, Z

    2015-06-15

    Purpose: Pencil-beam or superposition-convolution type dose calculation algorithms are routinely used in inverse plan optimization for intensity modulated radiation therapy (IMRT). However, due to their limited accuracy in some challenging cases, e.g. lung, the resulting dose may lose its optimality after being recomputed using an accurate algorithm, e.g. Monte Carlo (MC). It is the objective of this study to evaluate the feasibility and advantages of a new method to include MC in the treatment planning process. Methods: We developed a scheme to iteratively perform MC-based beamlet dose calculations and plan optimization. In the MC stage, a GPU-based dose engine wasmore » used and the particle number sampled from a beamlet was proportional to its optimized fluence from the previous step. We tested this scheme in four lung cancer IMRT cases. For each case, the original plan dose, plan dose re-computed by MC, and dose optimized by our scheme were obtained. Clinically relevant dosimetric quantities in these three plans were compared. Results: Although the original plan achieved a satisfactory PDV dose coverage, after re-computing doses using MC method, it was found that the PTV D95% were reduced by 4.60%–6.67%. After re-optimizing these cases with our scheme, the PTV coverage was improved to the same level as in the original plan, while the critical OAR coverages were maintained to clinically acceptable levels. Regarding the computation time, it took on average 144 sec per case using only one GPU card, including both MC-based beamlet dose calculation and treatment plan optimization. Conclusion: The achieved dosimetric gains and high computational efficiency indicate the feasibility and advantages of the proposed MC-based IMRT optimization method. Comprehensive validations in more patient cases are in progress.« less

  7. Optimal design in pediatric pharmacokinetic and pharmacodynamic clinical studies.

    PubMed

    Roberts, Jessica K; Stockmann, Chris; Balch, Alfred; Yu, Tian; Ward, Robert M; Spigarelli, Michael G; Sherwin, Catherine M T

    2015-03-01

    It is not trivial to conduct clinical trials with pediatric participants. Ethical, logistical, and financial considerations add to the complexity of pediatric studies. Optimal design theory allows investigators the opportunity to apply mathematical optimization algorithms to define how to structure their data collection to answer focused research questions. These techniques can be used to determine an optimal sample size, optimal sample times, and the number of samples required for pharmacokinetic and pharmacodynamic studies. The aim of this review is to demonstrate how to determine optimal sample size, optimal sample times, and the number of samples required from each patient by presenting specific examples using optimal design tools. Additionally, this review aims to discuss the relative usefulness of sparse vs rich data. This review is intended to educate the clinician, as well as the basic research scientist, whom plan on conducting a pharmacokinetic/pharmacodynamic clinical trial in pediatric patients. © 2015 John Wiley & Sons Ltd.

  8. Optimizer convergence and local minima errors and their clinical importance

    NASA Astrophysics Data System (ADS)

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R.

    2003-09-01

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization.

  9. Optimizer convergence and local minima errors and their clinical importance.

    PubMed

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R

    2003-09-07

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization.

  10. Translational Geroscience: Emphasizing function to achieve optimal longevity

    PubMed Central

    Seals, Douglas R.; Melov, Simon

    2014-01-01

    Among individuals, biological aging leads to cellular and organismal dysfunction and an increased risk of chronic degenerative diseases and disability. This sequence of events in combination with the projected increases in the number of older adults will result in a worldwide healthcare burden with dire consequences. Superimposed on this setting are the adults now reaching traditional retirement ages--the baby boomers--a group that wishes to remain active, productive and physically and cognitively fit as they grow older. Together, these conditions are producing an unprecedented demand for increased healthspan or what might be termed “optimal longevity”—to live long, but well. To meet this demand, investigators with interests in the biological aspects of aging from model organisms to human epidemiology (population aging) must work together within an interactive process that we describe as translational geroscience. An essential goal of this new investigational platform should be the optimization and preservation of physiological function throughout the lifespan, including integrative physical and cognitive function, which would serve to increase healthspan, compress morbidity and disability into a shorter period of late-life, and help achieve optimal longevity. To most effectively utilize this new approach, we must rethink how investigators and administrators working at different levels of the translational research continuum communicate and collaborate with each other, how best to train the next generation of scientists in this new field, and how contemporary biological-biomedical aging research should be organized and funded. PMID:25324468

  11. Optimized Delivery System Achieves Enhanced Endomyocardial Stem Cell Retention

    PubMed Central

    Behfar, Atta; Latere, Jean-Pierre; Bartunek, Jozef; Homsy, Christian; Daro, Dorothee; Crespo-Diaz, Ruben J.; Stalboerger, Paul G.; Steenwinckel, Valerie; Seron, Aymeric; Redfield, Margaret M.; Terzic, Andre

    2014-01-01

    Background Regenerative cell-based therapies are associated with limited myocardial retention of delivered stem cells. The objective of this study is to develop an endocardial delivery system for enhanced cell retention. Methods and Results Stem cell retention was simulated in silico using one and three-dimensional models of tissue distortion and compliance associated with delivery. Needle designs, predicted to be optimal, were accordingly engineered using nitinol – a nickel and titanium alloy displaying shape memory and super-elasticity. Biocompatibility was tested with human mesenchymal stem cells. Experimental validation was performed with species-matched cells directly delivered into Langendorff-perfused porcine hearts or administered percutaneously into the endocardium of infarcted pigs. Cell retention was quantified by flow cytometry and real time quantitative polymerase chain reaction methodology. Models, computing optimal distribution of distortion calibrated to favor tissue compliance, predicted that a 75°-curved needle featuring small-to-large graded side holes would ensure the highest cell retention profile. In isolated hearts, the nitinol curved needle catheter (C-Cath) design ensured 3-fold superior stem cell retention compared to a standard needle. In the setting of chronic infarction, percutaneous delivery of stem cells with C-Cath yielded a 37.7±7.1% versus 10.0±2.8% retention achieved with a traditional needle, without impact on biocompatibility or safety. Conclusions Modeling guided development of a nitinol-based curved needle delivery system with incremental side holes achieved enhanced myocardial stem cell retention. PMID:24326777

  12. SU-D-206-01: Employing a Novel Consensus Optimization Strategy to Achieve Iterative Cone Beam CT Reconstruction On a Multi-GPU Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B; Southern Medical University, Guangzhou, Guangdong; Tian, Z

    Purpose: While compressed sensing-based cone-beam CT (CBCT) iterative reconstruction techniques have demonstrated tremendous capability of reconstructing high-quality images from undersampled noisy data, its long computation time still hinders wide application in routine clinic. The purpose of this study is to develop a reconstruction framework that employs modern consensus optimization techniques to achieve CBCT reconstruction on a multi-GPU platform for improved computational efficiency. Methods: Total projection data were evenly distributed to multiple GPUs. Each GPU performed reconstruction using its own projection data with a conventional total variation regularization approach to ensure image quality. In addition, the solutions from GPUs were subjectmore » to a consistency constraint that they should be identical. We solved the optimization problem with all the constraints considered rigorously using an alternating direction method of multipliers (ADMM) algorithm. The reconstruction framework was implemented using OpenCL on a platform with two Nvidia GTX590 GPU cards, each with two GPUs. We studied the performance of our method and demonstrated its advantages through a simulation case with a NCAT phantom and an experimental case with a Catphan phantom. Result: Compared with the CBCT images reconstructed using conventional FDK method with full projection datasets, our proposed method achieved comparable image quality with about one third projection numbers. The computation time on the multi-GPU platform was ∼55 s and ∼ 35 s in the two cases respectively, achieving a speedup factor of ∼ 3.0 compared with single GPU reconstruction. Conclusion: We have developed a consensus ADMM-based CBCT reconstruction method which enabled performing reconstruction on a multi-GPU platform. The achieved efficiency made this method clinically attractive.« less

  13. Achieving Optimal Best: Instructional Efficiency and the Use of Cognitive Load Theory in Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Phan, Huy P.; Ngu, Bing H.; Yeung, Alexander S.

    2017-01-01

    We recently developed the "Framework of Achievement Bests" to explain the importance of effective functioning, personal growth, and enrichment of well-being experiences. This framework postulates a concept known as "optimal achievement best," which stipulates the idea that individuals may, in general, strive to achieve personal…

  14. Faculty Sense of Academic Optimism and Its Relationship to Students' Achievement in Well Performing High Schools

    ERIC Educational Resources Information Center

    Cromartie, Michael Tyrone

    2013-01-01

    The aim of this study was to determine the organizational characteristics and behaviors that contribute to sustaining a culture of academic optimism as a mechanism of student achievement. While there is a developing research base identifying both the individual elements of academic optimism as well as the academic optimism construct itself as…

  15. Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annesley, Thomas M.; Cooks, Robert G.; Herold, David A.

    Each year the journal Clinical Chemistry publishes a January special issue on a topic that is relevant to the laboratory medicine community. In January 2016 the topic is mass spectrometry, and the issue is entitled “Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine”. One popular feature in our issues is a Q&A on a topic, clearly in this case mass spectrometry. The journal is assembling a panel of 5-6 experts from various areas of mass spectrometry ranging from instrument manufacturing to practicing clinical chemists. Dick Smith is one of the scientist requested to participate in this special issue Q&A onmore » Mass Spectrometry. The Q&A Transcript is attached« less

  16. A systematic model to compare nurses' optimal and actual competencies in the clinical setting.

    PubMed

    Meretoja, Riitta; Koponen, Leena

    2012-02-01

    This paper is a report of a study to develop a model to compare nurses' optimal and actual competencies in the clinical setting.   Although future challenge is to focus the developmental and educational targets in health care, limited information is available on methods for how to predict optimal competencies. A multidisciplinary group of 24 experts on perioperative care were recruited to this study. They anticipated the effects of future challenges on perioperative care and specified the level of optimal competencies by using the Nurse Competence Scale before and after group discussions. The expert group consensus discussions were held to achieve the highest possible agreement on the overall level of optimal competencies. Registered Nurses (n = 87) and their nurse managers from five different units conducted assessments of the actual level of nurse competence with the Nurse Competence Scale instrument. Data were collected in 2006-2007. Group consensus discussions solidified experts' anticipations about the optimal competence level. This optimal competence level was significantly higher than the nurses' self-reported actual or nurse managers' assessed level of actual competence. The study revealed some competence items that were seen as key challenges for future education of professional nursing practice. It is important that the multidisciplinary experts in a particular care context develop a share understanding of the future competency requirements of patient care. Combining optimal competence profiles to systematic competence assessments contribute to targeted continual learning and educational interventions. © 2011 Blackwell Publishing Ltd.

  17. Regulating thrombus growth and stability to achieve an optimal response to injury

    PubMed Central

    Brass, Lawrence F.; Wannemacher, Kenneth M.; Ma, Peisong; Stalker, Timothy J.

    2012-01-01

    An optimal platelet response to injury can be defined as one in which blood loss is restrained and haemostasis is achieved without the penalty of further tissue damage caused by unwarranted vascular occlusion. This brief review considers some of the ways in which thrombus growth and stability can be regulated so that an optimal platelet response can be achieved in vivo. Three related topics are considered. The first focuses on intracellular mechanisms that regulate the early events of platelet activation downstream of G protein coupled receptors for agonists such as thrombin, thromboxane A2 and ADP. The second considers the ways in which signalling events that are dependent on stable contacts between platelets can influence the state of platelet activation and thus affect thrombus growth and stability. The third focuses on the changes that are experienced by platelets as they move from their normal environment in freely-flowing plasma to a very different environment within the growing haemostatic plug, an environment in which the narrowing gaps and junctions between platelets not only facilitate communication, but also increasingly limit both the penetration of plasma and the exodus of platelet-derived bioactive molecules. PMID:21781243

  18. Methylphenidate dose optimization for ADHD treatment: review of safety, efficacy, and clinical necessity

    PubMed Central

    Huss, Michael; Duhan, Praveen; Gandhi, Preetam; Chen, Chien-Wei; Spannhuth, Carsten; Kumar, Vinod

    2017-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a chronic psychiatric disorder characterized by hyperactivity and/or inattention and is often associated with a substantial impact on psychosocial functioning. Methylphenidate (MPH), a central nervous system stimulant, is commonly used for pharmacological treatment of adults and children with ADHD. Current practice guidelines recommend optimizing MPH dosage to individual patient needs; however, the clinical benefits of individual dose optimization compared with fixed-dose regimens remain unclear. Here we review the available literature on MPH dose optimization from clinical trials and real-world experience on ADHD management. In addition, we report safety and efficacy data from the largest MPH modified-release long-acting Phase III clinical trial conducted to examine benefits of dose optimization in adults with ADHD. Overall, MPH is an effective ADHD treatment with a good safety profile; data suggest that dose optimization may enhance the safety and efficacy of treatment. Further research is required to establish the extent to which short-term clinical benefits of MPH dose optimization translate into improved long-term outcomes for patients with ADHD. PMID:28740389

  19. Methylphenidate dose optimization for ADHD treatment: review of safety, efficacy, and clinical necessity.

    PubMed

    Huss, Michael; Duhan, Praveen; Gandhi, Preetam; Chen, Chien-Wei; Spannhuth, Carsten; Kumar, Vinod

    2017-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a chronic psychiatric disorder characterized by hyperactivity and/or inattention and is often associated with a substantial impact on psychosocial functioning. Methylphenidate (MPH), a central nervous system stimulant, is commonly used for pharmacological treatment of adults and children with ADHD. Current practice guidelines recommend optimizing MPH dosage to individual patient needs; however, the clinical benefits of individual dose optimization compared with fixed-dose regimens remain unclear. Here we review the available literature on MPH dose optimization from clinical trials and real-world experience on ADHD management. In addition, we report safety and efficacy data from the largest MPH modified-release long-acting Phase III clinical trial conducted to examine benefits of dose optimization in adults with ADHD. Overall, MPH is an effective ADHD treatment with a good safety profile; data suggest that dose optimization may enhance the safety and efficacy of treatment. Further research is required to establish the extent to which short-term clinical benefits of MPH dose optimization translate into improved long-term outcomes for patients with ADHD.

  20. Optimism and Recovery After Acute Coronary Syndrome: A Clinical Cohort Study

    PubMed Central

    Ronaldson, Amy; Molloy, Gerard J.; Wikman, Anna; Poole, Lydia; Kaski, Juan-Carlos; Steptoe, Andrew

    2015-01-01

    ABSTRACT Objective Optimism is associated with reduced cardiovascular mortality, but its impact on recovery after acute coronary syndrome (ACS) is poorly understood. We hypothesized that greater optimism would lead to more effective physical and emotional adaptation after ACS and would buffer the impact of persistent depressive symptoms on clinical outcomes. Methods This prospective observational clinical study took place in an urban general hospital and involved 369 patients admitted with a documented ACS. Optimism was assessed with a standardized questionnaire. The main outcomes were physical health status, depressive symptoms, smoking, physical activity, and fruit and vegetable consumption measured 12 months after ACS, and composite major adverse cardiac events (cardiovascular death, readmission with reinfarction or unstable angina, and coronary artery bypass graft surgery) assessed over an average of 45.7 months. Results We found that optimism predicted better physical health status 12 months after ACS independently of baseline physical health, age, sex, ethnicity, social deprivation, and clinical risk factors (B = 0.65, 95% confidence interval [CI] = 0.10–1.20). Greater optimism also predicted reduced risk of depressive symptoms (odds ratio = 0.82, 95% CI = 0.74–0.90), more smoking cessation, and more fruit and vegetable consumption at 12 months. Persistent depressive symptoms 12 months after ACS predicted major adverse cardiac events over subsequent years (odds ratio = 2.56, 95% CI = 1.16–5.67), but only among individuals low in optimism (optimism × depression interaction; p = .014). Conclusions Optimism predicts better physical and emotional health after ACS. Measuring optimism may help identify individuals at risk. Pessimistic outlooks can be modified, potentially leading to improved recovery after major cardiac events. PMID:25738438

  1. Optimism and recovery after acute coronary syndrome: a clinical cohort study.

    PubMed

    Ronaldson, Amy; Molloy, Gerard J; Wikman, Anna; Poole, Lydia; Kaski, Juan-Carlos; Steptoe, Andrew

    2015-04-01

    Optimism is associated with reduced cardiovascular mortality, but its impact on recovery after acute coronary syndrome (ACS) is poorly understood. We hypothesized that greater optimism would lead to more effective physical and emotional adaptation after ACS and would buffer the impact of persistent depressive symptoms on clinical outcomes. This prospective observational clinical study took place in an urban general hospital and involved 369 patients admitted with a documented ACS. Optimism was assessed with a standardized questionnaire. The main outcomes were physical health status, depressive symptoms, smoking, physical activity, and fruit and vegetable consumption measured 12 months after ACS, and composite major adverse cardiac events (cardiovascular death, readmission with reinfarction or unstable angina, and coronary artery bypass graft surgery) assessed over an average of 45.7 months. We found that optimism predicted better physical health status 12 months after ACS independently of baseline physical health, age, sex, ethnicity, social deprivation, and clinical risk factors (B = 0.65, 95% confidence interval [CI] = 0.10-1.20). Greater optimism also predicted reduced risk of depressive symptoms (odds ratio = 0.82, 95% CI = 0.74-0.90), more smoking cessation, and more fruit and vegetable consumption at 12 months. Persistent depressive symptoms 12 months after ACS predicted major adverse cardiac events over subsequent years (odds ratio = 2.56, 95% CI = 1.16-5.67), but only among individuals low in optimism (optimism × depression interaction; p = .014). Optimism predicts better physical and emotional health after ACS. Measuring optimism may help identify individuals at risk. Pessimistic outlooks can be modified, potentially leading to improved recovery after major cardiac events.

  2. Using tailored methodical approaches to achieve optimal science outcomes

    NASA Astrophysics Data System (ADS)

    Wingate, Lory M.

    2016-08-01

    The science community is actively engaged in research, development, and construction of instrumentation projects that they anticipate will lead to new science discoveries. There appears to be very strong link between the quality of the activities used to complete these projects, and having a fully functioning science instrument that will facilitate these investigations.[2] The combination of using internationally recognized standards within the disciplines of project management (PM) and systems engineering (SE) has been demonstrated to lead to achievement of positive net effects and optimal project outcomes. Conversely, unstructured, poorly managed projects will lead to unpredictable, suboptimal project outcomes ultimately affecting the quality of the science that can be done with the new instruments. The proposed application of these two specific methodical approaches, implemented as a tailorable suite of processes, are presented in this paper. Project management (PM) is accepted worldwide as an effective methodology used to control project cost, schedule, and scope. Systems engineering (SE) is an accepted method that is used to ensure that the outcomes of a project match the intent of the stakeholders, or if they diverge, that the changes are understood, captured, and controlled. An appropriate application, or tailoring, of these disciplines can be the foundation upon which success in projects that support science can be optimized.

  3. Optimal design of clinical trials with biologics using dose-time-response models.

    PubMed

    Lange, Markus R; Schmidli, Heinz

    2014-12-30

    Biologics, in particular monoclonal antibodies, are important therapies in serious diseases such as cancer, psoriasis, multiple sclerosis, or rheumatoid arthritis. While most conventional drugs are given daily, the effect of monoclonal antibodies often lasts for months, and hence, these biologics require less frequent dosing. A good understanding of the time-changing effect of the biologic for different doses is needed to determine both an adequate dose and an appropriate time-interval between doses. Clinical trials provide data to estimate the dose-time-response relationship with semi-mechanistic nonlinear regression models. We investigate how to best choose the doses and corresponding sample size allocations in such clinical trials, so that the nonlinear dose-time-response model can be precisely estimated. We consider both local and conservative Bayesian D-optimality criteria for the design of clinical trials with biologics. For determining the optimal designs, computer-intensive numerical methods are needed, and we focus here on the particle swarm optimization algorithm. This metaheuristic optimizer has been successfully used in various areas but has only recently been applied in the optimal design context. The equivalence theorem is used to verify the optimality of the designs. The methodology is illustrated based on results from a clinical study in patients with gout, treated by a monoclonal antibody. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Optimal achieved blood pressure in acute intracerebral hemorrhage: INTERACT2.

    PubMed

    Arima, Hisatomi; Heeley, Emma; Delcourt, Candice; Hirakawa, Yoichiro; Wang, Xia; Woodward, Mark; Robinson, Thompson; Stapf, Christian; Parsons, Mark; Lavados, Pablo M; Huang, Yining; Wang, Jiguang; Chalmers, John; Anderson, Craig S

    2015-02-03

    To investigate the effects of intensive blood pressure (BP) lowering according to baseline BP levels and optimal achieved BP levels in patients with acute intracerebral hemorrhage (ICH). INTERACT2 was an open, blinded endpoint, randomized controlled trial in 2,839 patients with ICH within 6 hours of onset and elevated systolic BP (SBP) (150-220 mm Hg) who were allocated to receive intensive (target SBP <140 mm Hg within 1 hour, with lower limit of 130 mm Hg for treatment cessation) or guideline-recommended (target SBP <180 mm Hg) BP-lowering treatment. Outcome was physical function across all 7 levels of the modified Rankin Scale at 90 days. Analysis of the randomized comparisons showed that intensive BP lowering produced comparable benefits on physical function at 90 days in 5 subgroups defined by baseline SBP of <160, 160-169, 170-179, 180-189, and ≥190 mm Hg (p homogeneity = 0.790). Analyses of achieved BP showed linear increases in the risk of physical dysfunction for achieved SBP above 130 mm Hg for both hyperacute (1-24 hours) and acute (2-7 days) phases while modest increases were also observed for achieved SBP below 130 mm Hg. Intensive BP lowering appears beneficial across a wide range of baseline SBP levels, and target SBP level of 130-139 mm Hg is likely to provide maximum benefit in acute ICH. This study provides Class I evidence that the effect of intensive BP lowering on physical function is not influenced by baseline BP. © 2014 American Academy of Neurology.

  5. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials.

    PubMed

    Gdowski, Andrew; Johnson, Kaitlyn; Shah, Sunil; Gryczynski, Ignacy; Vishwanatha, Jamboor; Ranjan, Amalendu

    2018-02-12

    The process of optimization and fabrication of nanoparticle synthesis for preclinical studies can be challenging and time consuming. Traditional small scale laboratory synthesis techniques suffer from batch to batch variability. Additionally, the parameters used in the original formulation must be re-optimized due to differences in fabrication techniques for clinical production. Several low flow microfluidic synthesis processes have been reported in recent years for developing nanoparticles that are a hybrid between polymeric nanoparticles and liposomes. However, use of high flow microfluidic synthetic techniques has not been described for this type of nanoparticle system, which we will term as nanolipomer. In this manuscript, we describe the successful optimization and functional assessment of nanolipomers fabricated using a microfluidic synthesis method under high flow parameters. The optimal total flow rate for synthesis of these nanolipomers was found to be 12 ml/min and flow rate ratio 1:1 (organic phase: aqueous phase). The PLGA polymer concentration of 10 mg/ml and a DSPE-PEG lipid concentration of 10% w/v provided optimal size, PDI and stability. Drug loading and encapsulation of a representative hydrophobic small molecule drug, curcumin, was optimized and found that high encapsulation efficiency of 58.8% and drug loading of 4.4% was achieved at 7.5% w/w initial concentration of curcumin/PLGA polymer. The final size and polydispersity index of the optimized nanolipomer was 102.11 nm and 0.126, respectively. Functional assessment of uptake of the nanolipomers in C4-2B prostate cancer cells showed uptake at 1 h and increased uptake at 24 h. The nanolipomer was more effective in the cell viability assay compared to free drug. Finally, assessment of in vivo retention in mice of these nanolipomers revealed retention for up to 2 h and were completely cleared at 24 h. In this study, we have demonstrated that a nanolipomer formulation can be successfully

  6. [Clinical economics: a concept to optimize healthcare services].

    PubMed

    Porzsolt, F; Bauer, K; Henne-Bruns, D

    2012-03-01

    Clinical economics strives to support healthcare decisions by economic considerations. Making economic decisions does not mean saving costs but rather comparing the gained added value with the burden which has to be accepted. The necessary rules are offered in various disciplines, such as economy, epidemiology and ethics. Medical doctors have recognized these rules but are not applying them in daily clinical practice. This lacking orientation leads to preventable errors. Examples of these errors are shown for diagnosis, screening, prognosis and therapy. As these errors can be prevented by application of clinical economic principles the possible consequences for optimization of healthcare are discussed.

  7. Achieving Core Indicators for HIV Clinical Care Among New Patients at an Urban HIV Clinic.

    PubMed

    Greer, Gillian A; Tamhane, Ashutosh; Malhotra, Rakhi; Burkholder, Greer A; Mugavero, Michael J; Raper, James L; Zinski, Anne

    2015-09-01

    Following the release of the 2010 National HIV/AIDS Strategy for the United States, the Institute of Medicine (IOM) issued core clinical indicators for measuring health outcomes in HIV-positive persons. As early retention in HIV primary care is associated with improved long-term health outcomes, we employed IOM indicators as a guide to examine a cohort of persons initiating HIV outpatient medical care at a university-affiliated HIV clinic in the Southern United States (January 2007-July 2012). Using indicators for visit attendance, CD4 and viral load laboratory testing frequency, and antiretroviral therapy initiation, we evaluated factors associated with achieving IOM core indicators among care- and treatment-naïve patients during the first year of HIV care. Of 448 patients (mean age = 35 years, 35.7% white, 79.0% male, 58.4% education beyond high school, 35.9% monthly income > $1,000 US, 47.3% uninsured), 84.6% achieved at least four of five IOM indicators. In multivariable analyses, persons with monthly income > $1,000 (ORadj. = 3.71; 95% CI: 1.68-8.19; p = 0.001) and depressive symptoms (ORadj. = 2.13; 95% CI: 1.02-4.45; p = 0.04) were significantly more likely to achieve at least four of the five core indicators, while patients with anxiety symptoms were significantly less likely to achieve these indicators (ORadj. = 0.50; 95% CI: 0.26-0.97; p = 0.04). Age, sex, race, education, insurance status, transportation barriers, alcohol use, and HIV status disclosure to family were not associated with achieving core indicators. Evaluating and addressing financial barriers and anxiety symptoms during the first year of HIV outpatient care may improve individual health outcomes and subsequent achievement of the National HIV/AIDS Strategy.

  8. In Silico Evaluation of Pharmacokinetic Optimization for Antimitogram-Based Clinical Trials.

    PubMed

    Haviari, Skerdi; You, Benoît; Tod, Michel

    2018-04-01

    Antimitograms are prototype in vitro tests for evaluating chemotherapeutic efficacy using patient-derived primary cancer cells. These tests might help optimize treatment from a pharmacodynamic standpoint by guiding treatment selection. However, they are technically challenging and require refinements and trials to demonstrate benefit to be widely used. In this study, we performed simulations aimed at exploring how to validate antimitograms and how to complement them by pharmacokinetic optimization. A generic model of advanced cancer, including pharmacokinetic-pharmacodynamic monitoring, was used to link dosing schedules with progression-free survival (PFS), as built from previously validated modules. This model was used to explore different possible situations in terms of pharmacokinetic variability, pharmacodynamic variability, and antimitogram performance. The model recapitulated tumor dynamics and standalone therapeutic drug monitoring efficacy consistent with published clinical results. Simulations showed that combining pharmacokinetic and pharmacodynamic optimization should increase PFS in a synergistic fashion. Simulated data were then used to compute required clinical trial sizes, which were 30% to 90% smaller when pharmacokinetic optimization was added to pharmacodynamic optimization. This improvement was observed even when pharmacokinetic optimization alone exhibited only modest benefit. Overall, our work illustrates the synergy derived from combining antimitograms with therapeutic drug monitoring, permitting a disproportionate reduction of the trial size required to prove a benefit on PFS. Accordingly, we suggest that strategies with benefits too small for standalone clinical trials could be validated in combination in a similar manner. Significance: This work offers a method to reduce the number of patients needed for a clinical trial to prove the hypothesized benefit of a drug to progression-free survival, possibly easing opportunities to evaluate

  9. Optimal methotrexate dose is associated with better clinical outcomes than non-optimal dose in daily practice: results from the ESPOIR early arthritis cohort.

    PubMed

    Gaujoux-Viala, Cécile; Rincheval, Nathalie; Dougados, Maxime; Combe, Bernard; Fautrel, Bruno

    2017-12-01

    Although methotrexate (MTX) is the consensual first-line disease-modifying antirheumatic drug (DMARD) for rheumatoid arthritis (RA), substantial heterogeneity remains with its prescription and dosage, which are often not optimal. To evaluate the symptomatic and structural impact of optimal MTX dose in patients with early RA in daily clinical practice over 2 years. Patients included in the early arthritis ESPOIR cohort who fulfilled the ACR-EULAR (American College of Rheumatology/European League against Rheumatism) criteria for RA and received MTX as a first DMARD were assessed. Optimal MTX dose was defined as ≥10 mg/week during the first 3 months, with escalation to ≥20 mg/week or 0.3 mg/kg/week at 6 months without Disease Activity Score in 28 joints remission. Symptomatic and structural efficacy with and without optimal MTX dose was assessed by generalised logistic regression with adjustment for appropriate variables. Within the first year of follow-up, 314 patients (53%) with RA received MTX as a first DMARD (mean dose 12.2±3.8 mg/week). Only 26.4% (n=76) had optimal MTX dose. After adjustment, optimal versus non-optimal MTX dose was more efficient in achieving ACR-EULAR remission at 1 year (OR 4.28 (95% CI 1.86 to 9.86)) and normal functioning (Health Assessment Questionnaire ≤0.5; OR at 1 year 4.36 (95% CI 2.03 to 9.39)), with no effect on radiological progression. Results were similar during the second year. Optimal MTX dose is more efficacious than non-optimal dose for remission and function in early arthritis in daily practice, with no impact on radiological progression over 2 years. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. A novel suction/coagulation integrated probe for achieving better hemostasis: development and clinical use.

    PubMed

    Takahashi, Hidekazu; Haraguchi, Naotsugu; Nishimura, Junichi; Hata, Taishi; Matsuda, Chu; Yamamoto, Hirofumi; Mizushima, Tsunekazu; Mori, Masaki; Doki, Yuichiro; Nakajima, Kiyokazu

    2018-06-01

    Modern electrosurgical tools have a specific coagulation mode called "soft coagulation". However, soft coagulation has not been widely accepted for surgical operations. To optimize the soft coagulation environment, we developed a novel suction device integrated with an electrosurgical probe, called the "Suction ball coagulator" (SBC). In this study, we aimed to optimize the SBC design with a prototyping process involving a bench test and preclinical study; then, we aimed to demonstrate the feasibility, safety, and potential effectiveness of the SBC for laparoscopic surgery in clinical settings. SBC prototyping was performed with a bench test. Device optimization was performed in a preclinical study with a domestic swine bleeding model. Then, SBC was tested in a clinical setting during 17 clinical laparoscopic colorectal surgeries. In the bench tests, two tip hole sizes and patterns showed a good suction capacity. The preclinical study indicated the best tip shape for accuracy. In clinical use, no device-related adverse event was observed. Moreover, the SBC was feasible for prompt hemostasis and blunt dissections. In addition, SBC could evacuate vapors generated by tissue ablation using electroprobe during laparoscopic surgery. We successfully developed a novel, integrated suction/coagulation probe for hemostasis and commercialized it.

  11. Digital mammography--DQE versus optimized image quality in clinical environment: an on site study

    NASA Astrophysics Data System (ADS)

    Oberhofer, Nadia; Fracchetti, Alessandro; Springeth, Margareth; Moroder, Ehrenfried

    2010-04-01

    The intrinsic quality of the detection system of 7 different digital mammography units (5 direct radiography DR; 2 computed radiography CR), expressed by DQE, has been compared with their image quality/dose performances in clinical use. DQE measurements followed IEC 62220-1-2 using a tungsten test object for MTF determination. For image quality assessment two different methods have been applied: 1) measurement of contrast to noise ratio (CNR) according to the European guidelines and 2) contrast-detail (CD) evaluation. The latter was carried out with the phantom CDMAM ver. 3.4 and the commercial software CDMAM Analyser ver. 1.1 (both Artinis) for automated image analysis. The overall image quality index IQFinv proposed by the software has been validated. Correspondence between the two methods has been shown figuring out a linear correlation between CNR and IQFinv. All systems were optimized with respect to image quality and average glandular dose (AGD) within the constraints of automatic exposure control (AEC). For each equipment, a good image quality level was defined by means of CD analysis, and the corresponding CNR value considered as target value. The goal was to achieve for different PMMA-phantom thicknesses constant image quality, that means the CNR target value, at minimum dose. All DR systems exhibited higher DQE and significantly better image quality compared to CR systems. Generally switching, where available, to a target/filter combination with an x-ray spectrum of higher mean energy permitted dose savings at equal image quality. However, several systems did not allow to modify the AEC in order to apply optimal radiographic technique in clinical use. The best ratio image quality/dose was achieved by a unit with a-Se detector and W anode only recently available on the market.

  12. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy

    PubMed Central

    Zhao, Yongxin; Bucur, Octavian; Irshad, Humayun; Chen, Fei; Weins, Astrid; Stancu, Andreea L.; Oh, Eun-Young; DiStasio, Marcello; Torous, Vanda; Glass, Benjamin; Stillman, Isaac E.; Schnitt, Stuart J.; Beck, Andrew H.; Boyden, Edward S.

    2017-01-01

    Expansion microscopy (ExM), a method for improving the resolution of light microscopy by physically expanding the specimen, has not been applied to clinical tissue samples. Here we report a clinically optimized form of ExM that supports nanoscale imaging of human tissue specimens that have been fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin (H&E), and/or fresh frozen. The method, which we call expansion pathology (ExPath), converts clinical samples into an ExM-compatible state, then applies an ExM protocol with protein anchoring and mechanical homogenization steps optimized for clinical samples. ExPath enables ~70 nm resolution imaging of diverse biomolecules in intact tissues using conventional diffraction-limited microscopes, and standard antibody and fluorescent DNA in situ hybridization reagents. We use ExPath for optical diagnosis of kidney minimal-change disease, which previously required electron microscopy (EM), and demonstrate high-fidelity computational discrimination between early breast neoplastic lesions that to date have challenged human judgment. ExPath may enable the routine use of nanoscale imaging in pathology and clinical research. PMID:28714966

  13. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy.

    PubMed

    Zhao, Yongxin; Bucur, Octavian; Irshad, Humayun; Chen, Fei; Weins, Astrid; Stancu, Andreea L; Oh, Eun-Young; DiStasio, Marcello; Torous, Vanda; Glass, Benjamin; Stillman, Isaac E; Schnitt, Stuart J; Beck, Andrew H; Boyden, Edward S

    2017-08-01

    Expansion microscopy (ExM), a method for improving the resolution of light microscopy by physically expanding a specimen, has not been applied to clinical tissue samples. Here we report a clinically optimized form of ExM that supports nanoscale imaging of human tissue specimens that have been fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin, and/or fresh frozen. The method, which we call expansion pathology (ExPath), converts clinical samples into an ExM-compatible state, then applies an ExM protocol with protein anchoring and mechanical homogenization steps optimized for clinical samples. ExPath enables ∼70-nm-resolution imaging of diverse biomolecules in intact tissues using conventional diffraction-limited microscopes and standard antibody and fluorescent DNA in situ hybridization reagents. We use ExPath for optical diagnosis of kidney minimal-change disease, a process that previously required electron microscopy, and we demonstrate high-fidelity computational discrimination between early breast neoplastic lesions for which pathologists often disagree in classification. ExPath may enable the routine use of nanoscale imaging in pathology and clinical research.

  14. Knowledge Visualizations: A Tool to Achieve Optimized Operational Decision Making and Data Integration

    DTIC Science & Technology

    2015-06-01

    Hadoop Distributed File System (HDFS) without any integration with Accumulo-based Knowledge Stores based on OWL/RDF. 4. Cloud Based The Apache Software...BTW, 7(12), pp. 227–241. Godin, A. & Akins, D. (2014). Extending DCGS-N naval tactical clouds from in-storage to in-memory for the integrated fires...VISUALIZATIONS: A TOOL TO ACHIEVE OPTIMIZED OPERATIONAL DECISION MAKING AND DATA INTEGRATION by Paul C. Hudson Jeffrey A. Rzasa June 2015 Thesis

  15. Optimization of contrast-enhanced spectral mammography depending on clinical indication.

    PubMed

    Dromain, Clarisse; Canale, Sandra; Saab-Puong, Sylvie; Carton, Ann-Katherine; Muller, Serge; Fallenberg, Eva Maria

    2014-10-01

    The objective is to optimize low-energy (LE) and high-energy (HE) exposure parameters of contrast-enhanced spectral mammography (CESM) examinations in four different clinical applications for which different levels of average glandular dose (AGD) and ratios between LE and total doses are required. The optimization was performed on a Senographe DS with a SenoBright® upgrade. Simulations were performed to find the optima by maximizing the contrast-to-noise ratio (CNR) on the recombined CESM image using different targeted doses and LE image quality. The linearity between iodine concentration and CNR as well as the minimal detectable iodine concentration was assessed. The image quality of the LE image was assessed on the CDMAM contrast-detail phantom. Experiments confirmed the optima found on simulation. The CNR was higher for each clinical indication than for SenoBright®, including the screening indication for which the total AGD was 22% lower. Minimal iodine concentrations detectable in the case of a 3-mm-diameter round tumor were 12.5% lower than those obtained for the same dose in the clinical routine. LE image quality satisfied EUREF acceptable limits for threshold contrast. This newly optimized set of acquisition parameters allows increased contrast detectability compared to parameters currently used without a significant loss in LE image quality.

  16. Optimal Clinical Doses of Faropenem, Linezolid, and Moxifloxacin in Children With Disseminated Tuberculosis: Goldilocks

    PubMed Central

    Srivastava, Shashikant; Deshpande, Devyani; Pasipanodya, Jotam; Nuermberger, Eric; Swaminathan, Soumya; Gumbo, Tawanda

    2016-01-01

    Background. When treated with the same antibiotic dose, children achieve different 0- to 24-hour area under the concentration-time curves (AUC0–24) because of maturation and between-child physiological variability on drug clearance. Children are also infected by Mycobacterium tuberculosis isolates with different antibiotic minimum inhibitory concentrations (MICs). Thus, each child will achieve different AUC0–24/MIC ratios when treated with the same dose. Methods. We used 10 000-subject Monte Carlo experiments to identify the oral doses of linezolid, moxifloxacin, and faropenem that would achieve optimal target exposures associated with optimal efficacy in children with disseminated tuberculosis. The linezolid and moxifloxacin exposure targets were AUC0–24/MIC ratios of 62 and 122, and a faropenem percentage of time above MIC >60%, in combination therapy. A linezolid AUC0–24 of 93.4 mg × hour/L was target for toxicity. Population pharmacokinetic parameters of each drug and between-child variability, as well as MIC distribution, were used, and the cumulative fraction of response (CFR) was calculated. We also considered drug penetration indices into meninges, bone, and peritoneum. Results. The linezolid dose of 15 mg/kg in full-term neonates and infants aged up to 3 months and 10 mg/kg in toddlers, administered once daily, achieved CFR ≥ 90%, with <10% achieving linezolid AUC0–24 associated with toxicity. The moxifloxacin dose of 25 mg/kg/day achieved a CFR > 90% in infants, but the optimal dose was 20 mg/kg/day in older children. The faropenem medoxomil optimal dosage was 30 mg/kg 3–4 times daily. Conclusions. The regimen and doses of linezolid, moxifloxacin, and faropenem identified are proposed to be adequate for all disseminated tuberculosis syndromes, whether drug-resistant or -susceptible. PMID:27742641

  17. Cross-Sectional Assessment of Achievement of Therapeutic Goals in a Canadian Multidisciplinary Clinic for Patients With Advanced Chronic Kidney Disease.

    PubMed

    Rinfret, Félix; Lambert, France; Youmbissi, Joseph Tchetagni; Arcand, Jean-François; Turcot, Richard; Bessette, Maral Alimardani; Bourque, Solange; Moreau, Vincent; Tousignant, Karine; Deschênes, Diane; Cloutier, Lyne

    2018-01-01

    The implementation of advanced chronic kidney disease (CKD) multidisciplinary clinics has now demonstrated their effectiveness in delaying and even avoiding dialysis for patients with CKD. However, very little has been documented on the management and achievement of targets for a number of parameters in this context. Our goal was to assess our multidisciplinary clinic therapy performance in relation to the targets for hypertension, anemia, and calcium phosphate assessment. A cross-sectional descriptive study was conducted with a cohort including all patients followed up in our multidisciplinary clinic in July 2014. Comorbidity, laboratory, and clinical data were collected and compared with the recommendations of scientific organizations. The cohort included 128 patients, 37.5% of whom were women. Mean follow-up time was 26.6 ± 25.1 months and mean estimated glomerular filtration rate (eGFR) was 14.0 ± 4.7 mL/min/1.73 m 2 . A total of 24.2% of patients with diabetes achieved blood pressure targets of <130/80 mm Hg, while 56.5% of patients without diabetes achieved targets of <140/90 mm Hg. Hemoglobin of patients treated with erythropoiesis-stimulating agents was 100 to 110 g/L in 36.2% of the patients, below 100 for 39.7% of them, and above 110 for 24.1%, whereas 67.2% were within the acceptable limits of 95 to 115 g/L. In addition, 63.4% of patients had a serum phosphate of <1.5 mmol/L, and 90.9% of patients had total serum calcium <2.5 mmol/L. Our study is a single center study with the majority of our patients being Caucasian. This limits the generalizability of our findings. The control rates of various parameters were satisfactory given the difficult clinical context, but could be optimized. We publish these data in the hope that they are helpful to others engaged in quality improvement in their own programs or more generally.

  18. Optimization of contrast-enhanced spectral mammography depending on clinical indication

    PubMed Central

    Dromain, Clarisse; Canale, Sandra; Saab-Puong, Sylvie; Carton, Ann-Katherine; Muller, Serge; Fallenberg, Eva Maria

    2014-01-01

    Abstract. The objective is to optimize low-energy (LE) and high-energy (HE) exposure parameters of contrast-enhanced spectral mammography (CESM) examinations in four different clinical applications for which different levels of average glandular dose (AGD) and ratios between LE and total doses are required. The optimization was performed on a Senographe DS with a SenoBright® upgrade. Simulations were performed to find the optima by maximizing the contrast-to-noise ratio (CNR) on the recombined CESM image using different targeted doses and LE image quality. The linearity between iodine concentration and CNR as well as the minimal detectable iodine concentration was assessed. The image quality of the LE image was assessed on the CDMAM contrast-detail phantom. Experiments confirmed the optima found on simulation. The CNR was higher for each clinical indication than for SenoBright®, including the screening indication for which the total AGD was 22% lower. Minimal iodine concentrations detectable in the case of a 3-mm-diameter round tumor were 12.5% lower than those obtained for the same dose in the clinical routine. LE image quality satisfied EUREF acceptable limits for threshold contrast. This newly optimized set of acquisition parameters allows increased contrast detectability compared to parameters currently used without a significant loss in LE image quality. PMID:26158058

  19. Analysis of effectiveness, safety and optimization of tocilizumab in a cohort of patients with rheumatoid arthritis in clinical practice.

    PubMed

    Mena-Vázquez, Natalia; Manrique-Arija, Sara; Rojas-Giménez, Marta; Ureña-Garnica, Inmaculada; Jiménez-Núñez, Francisco G; Fernández-Nebro, Antonio

    2017-07-01

    To evaluate the effectiveness and safety of tocilizumab (TCZ) in patients with rheumatoid arthritis (RA) in clinical practice, establishing the optimized regimen and switching from intravenous (IV) to subcutaneous (SC) therapy. Retrospective observational study. We included 53 RA patients treated with TCZ. The main outcome was TCZ effectiveness at week 24. Secondary outcome variables included effectiveness at week 52, therapeutic maintenance, physical function and safety. The effectiveness of optimization and the switch from IV to SC was evaluated at 3 and 6 months. The efficacy was measured with the Disease Activity Score. Paired t-tests or Wilcoxon were used to evaluate effectiveness and survival time using Kaplan-Meier. The proportion of patients who achieved remission or low disease activity at weeks 24 and 52 was 75.5% and 87.3%, respectively. The mean retention time (95% confidence interval [95% CI] was 81.7 months [76.6-86.7]). Twenty-one of 53 patients (39.6%) optimized the TCZ dose and 35 patients switched from IV TCZ to SC, with no changes in effectiveness. The adverse event rate was 13.6 events/100 patient-years. Tocilizumab appears to be effective and safe in RA in clinical practice. The optimized regimen appears to be effective in most patients in remission, even when they change from IV to SC. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  20. Women are less likely than men to achieve optimal glycemic control after 1 year of treatment: A multi-level analysis of a Korean primary care cohort.

    PubMed

    Choe, Seung-Ah; Kim, Joo Yeong; Ro, Young Sun; Cho, Sung-Il

    2018-01-01

    We investigated differences in the achievement of glycemic control among newly diagnosed type-2 diabetes patients according to gender using a multi-clinic retrospective cohort study. Optimal glycemic control was defined as hemoglobin A1c (HbA1c) of less than 6.5% after 1 year of diabetes management. A generalized linear mixed model, which controlled for the fixed effects of baseline characteristics and prescribed oral hypoglycemic agent (OHA), was used to calculate the probability of achieving the target HbA1c. The study included 2,253 newly diagnosed type-2 diabetes patients who completed 1 year of diabetic management, including OHA, in the 36 participating primary clinics. Within the study population, the women had an older average age, were less likely to smoke or drink alcohol, and showed lower levels of fasting blood glucose and HbA1c at the time of diagnosis. There were no significant differences by sex in prescribed OHA or median number of visits. After 1 year of diabetes management, 38.9% of women and 40.6% of men achieved the target HbA1c-a small but significant difference. This suggests that type-2 diabetes is managed less well in women than in men.

  1. Optimizing the Anti-VEGF Treatment Strategy for Neovascular Age-Related Macular Degeneration: From Clinical Trials to Real-Life Requirements.

    PubMed

    Mantel, Irmela

    2015-06-01

    This Perspective discusses the pertinence of variable dosing regimens with anti-vascular endothelial growth factor (VEGF) for neovascular age-related macular degeneration (nAMD) with regard to real-life requirements. After the initial pivotal trials of anti-VEGF therapy, the variable dosing regimens pro re nata (PRN), Treat-and-Extend, and Observe-and-Plan, a recently introduced regimen, aimed to optimize the anti-VEGF treatment strategy for nAMD. The PRN regimen showed good visual results but requires monthly monitoring visits and can therefore be difficult to implement. Moreover, application of the PRN regimen revealed inferior results in real-life circumstances due to problems with resource allocation. The Treat-and-Extend regimen uses an interval based approach and has become widely accepted for its ease of preplanning and the reduced number of office visits required. The parallel development of the Observe-and-Plan regimen demonstrated that the future need for retreatment (interval) could be reliably predicted. Studies investigating the observe-and-plan regimen also showed that this could be used in individualized fixed treatment plans, allowing for dramatically reduced clinical burden and good outcomes, thus meeting the real life requirements. This progressive development of variable dosing regimens is a response to the real-life circumstances of limited human, technical, and financial resources. This includes an individualized treatment approach, optimization of the number of retreatments, a minimal number of monitoring visits, and ease of planning ahead. The Observe-and-Plan regimen achieves this goal with good functional results. Translational Relevance: This perspective reviews the process from the pivotal clinical trials to the development of treatment regimens which are adjusted to real life requirements. The article discusses this translational process which- although not the classical interpretation of translation from fundamental to clinical research

  2. Paving the critical path: how can clinical pharmacology help achieve the vision?

    PubMed

    Lesko, L J

    2007-02-01

    It has been almost 3 years since the launch of the FDA critical path initiative following the publication of the paper "Innovation or Stagnation: Challenges and Opportunities on the Critical Path of New Medical Product Development." The initiative was intended to create an urgency with the drug development enterprise to address the so-called "productivity problem" in modern drug development. Clinical pharmacologists are strategically aligned with solutions designed to reduce late phase clinical trial failures to show adequate efficacy and/or safety. This article reviews some of the ways that clinical pharmacologists can lead and implement change in the drug development process. It includes a discussion of model-based, semi-mechanistic drug development, drug/disease models that facilitate informed clinical trial designs and optimal dosing, the qualification process and criteria for new biomarkers and surrogate endpoints, approaches to streamlining clinical trials and new types of interaction between industry and FDA such as the end-of-phase 2A and voluntary genomic data submission meetings respectively.

  3. Moving Beyond Maximum Tolerated Dose for Targeted Oncology Drugs: Use of Clinical Utility Index to Optimize Venetoclax Dosage in Multiple Myeloma Patients.

    PubMed

    Freise, K J; Jones, A K; Verdugo, M E; Menon, R M; Maciag, P C; Salem, A H

    2017-12-01

    Exposure-response analyses of venetoclax in combination with bortezomib and dexamethasone in previously treated patients with multiple myeloma (MM) were performed on a phase Ib venetoclax dose-ranging study. Logistic regression models were utilized to determine relationships, identify subpopulations with different responses, and optimize the venetoclax dosage that balanced both efficacy and safety. Bortezomib refractory status and number of prior treatments were identified to impact the efficacy response to venetoclax treatment. Higher venetoclax exposures were estimated to increase the probability of achieving a very good partial response (VGPR) or better through venetoclax doses of 1,200 mg. However, the probability of neutropenia (grade ≥3) was estimated to increase at doses >800 mg. Using a clinical utility index, a venetoclax dosage of 800 mg daily was selected to optimally balance the VGPR or better rates and neutropenia rates in MM patients administered 1-3 prior lines of therapy and nonrefractory to bortezomib. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  4. Optimal formulations of local foods to achieve nutritional adequacy for 6–23-month-old rural Tanzanian children

    PubMed Central

    Raymond, Jofrey; Kassim, Neema; Rose, Jerman W.; Agaba, Morris

    2017-01-01

    ABSTRACT Background: Achieving nutritional goals of infants and young children while maintaining the intake of local and culture-specific foods can be a daunting task. Diet optimisation using linear goal programming (LP) can effectively generate optimal formulations incorporating local and culturally acceptable foods. Objective: The primary objective of this study was to determine whether a realistic and affordable diet that achieves dietary recommended intakes (DRIs) for 22 selected nutrients can be formulated for rural 6–23-month-old children in Tanzania. Design: Dietary intakes of 400 children aged 6–23 months were assessed using a weighed dietary record (WDR), 24-hour dietary recalls and a 7-days food record. A market survey was also carried out to estimate the cost per 100 g of edible portion of foods that are commonly consumed in the study area. Dietary and market survey data were then used to define LP model parameters for diet optimisation. All LP analyses were done using linear program solver (LiPS) version 1.9.4 to generate optimal food formulations. Results: Optimal formulations that achieved DRIs for 20 nutrients for children aged 6–11 months and all selected nutrients for children aged 12–23 months were successfully developed at a twofold cost of the observed food purchase across age groups. Optimal formulations contained a mixture of ingredients such as wholegrain cereals, Irish potatoes, pulses and seeds, fish and poultry meat as well as fruits and vegetables that can be sourced locally. Conclusions: Our findings revealed that given the available food choices, it is possible to develop optimal formulations that can improve dietary adequacy for rural 6–23-month-old children if food budget for the child’s diets is doubled. These findings suggest the need for setting alternative interventions which can help households increase access to nutrient-dense foods that can fill the identified nutrient gaps. PMID:28814951

  5. Undergraduate Nurse Variables that Predict Academic Achievement and Clinical Competence in Nursing

    ERIC Educational Resources Information Center

    Blackman, Ian; Hall, Margaret; Darmawan, I Gusti Ngurah.

    2007-01-01

    A hypothetical model was formulated to explore factors that influenced academic and clinical achievement for undergraduate nursing students. Sixteen latent variables were considered including the students' background, gender, type of first language, age, their previous successes with their undergraduate nursing studies and status given for…

  6. Perspectives on optimizing care of patients in multidisciplinary chronic kidney disease clinics.

    PubMed

    Collister, David; Russell, Randall; Verdon, Josee; Beaulieu, Monica; Levin, Adeera

    2016-01-01

    To summarize a jointly held symposium by the Canadian Society of Nephrology (CSN), the Canadian Association of Nephrology Administrators (CANA), and the Canadian Kidney Knowledge Translation and Generation Network (CANN-NET) entitled "Perspectives on Optimizing Care of Patients in Multidisciplinary Chronic Kidney Disease (CKD) Clinics" that was held on April 24, 2015, in Montreal, Quebec. The panel consisted of a variety of members from across Canada including a multidisciplinary CKD clinic patient (Randall Russell), nephrology fellow (Dr. David Collister), geriatrician (Dr. Josee Verdon), and nephrologists (Dr. Monica Beaulieu, Dr. Adeera Levin). The objectives of the symposium were (1) to gain an understanding of the goals of care for CKD patients, (2) to gain an appreciation of different perspectives regarding optimal care for patients with CKD, (3) to examine the components required for optimal care including education strategies, structures, and tools, and (4) to describe a framework and metrics for CKD care which respect patient and system needs. This article summarizes the key concepts discussed at the symposium from a patient and physician perspectives. Key messages include (1) understanding patient values and preferences is important as it provides a framework as to what to prioritize in multidisciplinary CKD clinic and provincial renal program models, (2) barriers to effective communication and education are common in the elderly, and adaptive strategies to limit their influence are critical to improve adherence and facilitate shared decision-making, (3) the use of standardized operating procedures (SOPs) improves efficiency and minimizes practice variability among health care practitioners, and (4) CKD scorecards with standardized system processes are useful in approaching variability as well as measuring and improving patient outcomes. The perspectives provided may not be applicable across centers given the differences in patient populations including

  7. Green Infrastructure Simulation and Optimization to Achieve Combined Sewer Overflow Reductions in Philadelphia's Mill Creek Sewershed

    NASA Astrophysics Data System (ADS)

    Cohen, J. S.; McGarity, A. E.

    2017-12-01

    The ability for mass deployment of green stormwater infrastructure (GSI) to intercept significant amounts of urban runoff has the potential to reduce the frequency of a city's combined sewer overflows (CSOs). This study was performed to aid in the Overbrook Environmental Education Center's vision of applying this concept to create a Green Commercial Corridor in Philadelphia's Overbrook Neighborhood, which lies in the Mill Creek Sewershed. In an attempt to further implement physical and social reality into previous work using simulation-optimization techniques to produce GSI deployment strategies (McGarity, et al., 2016), this study's models incorporated land use types and a specific neighborhood in the sewershed. The low impact development (LID) feature in EPA's Storm Water Management Model (SWMM) was used to simulate various geographic configurations of GSI in Overbrook. The results from these simulations were used to obtain formulas describing the annual CSO reduction in the sewershed based on the deployed GSI practices. These non-linear hydrologic response formulas were then implemented into the Storm Water Investment Strategy Evaluation (StormWISE) model (McGarity, 2012), a constrained optimization model used to develop optimal stormwater management practices on the watershed scale. By saturating the avenue with GSI, not only will CSOs from the sewershed into the Schuylkill River be reduced, but ancillary social and economic benefits of GSI will also be achieved. The effectiveness of these ancillary benefits changes based on the type of GSI practice and the type of land use in which the GSI is implemented. Thus, the simulation and optimization processes were repeated while delimiting GSI deployment by land use (residential, commercial, industrial, and transportation). The results give a GSI deployment strategy that achieves desired annual CSO reductions at a minimum cost based on the locations of tree trenches, rain gardens, and rain barrels in specified land

  8. Intelligent ensemble T-S fuzzy neural networks with RCDPSO_DM optimization for effective handling of complex clinical pathway variances.

    PubMed

    Du, Gang; Jiang, Zhibin; Diao, Xiaodi; Yao, Yang

    2013-07-01

    Takagi-Sugeno (T-S) fuzzy neural networks (FNNs) can be used to handle complex, fuzzy, uncertain clinical pathway (CP) variances. However, there are many drawbacks, such as slow training rate, propensity to become trapped in a local minimum and poor ability to perform a global search. In order to improve overall performance of variance handling by T-S FNNs, a new CP variance handling method is proposed in this study. It is based on random cooperative decomposing particle swarm optimization with double mutation mechanism (RCDPSO_DM) for T-S FNNs. Moreover, the proposed integrated learning algorithm, combining the RCDPSO_DM algorithm with a Kalman filtering algorithm, is applied to optimize antecedent and consequent parameters of constructed T-S FNNs. Then, a multi-swarm cooperative immigrating particle swarm algorithm ensemble method is used for intelligent ensemble T-S FNNs with RCDPSO_DM optimization to further improve stability and accuracy of CP variance handling. Finally, two case studies on liver and kidney poisoning variances in osteosarcoma preoperative chemotherapy are used to validate the proposed method. The result demonstrates that intelligent ensemble T-S FNNs based on the RCDPSO_DM achieves superior performances, in terms of stability, efficiency, precision and generalizability, over PSO ensemble of all T-S FNNs with RCDPSO_DM optimization, single T-S FNNs with RCDPSO_DM optimization, standard T-S FNNs, standard Mamdani FNNs and T-S FNNs based on other algorithms (cooperative particle swarm optimization and particle swarm optimization) for CP variance handling. Therefore, it makes CP variance handling more effective. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Comparison of different strategies of referral to a fall clinic: how to achieve an optimal casemix?

    PubMed

    Schoon, Y; Hoogsteen-Ossewaarde, M E; Scheffer, A C; Van Rooij, F J M; Rikkert, M G M Olde; De Rooij, S E

    2011-02-01

    OBJECTIVE To study the potential differences in patient characteristics between two referral methods to a fall clinic, specifically: case-finding of patients admitted to an emergency department because of a fall, compared to direct referral to the fall clinic via the general practitioner. Cross-sectional study. Fall clinics in two university teaching hospitals in the Netherlands. Three hundred community-dwelling older people aged 65 years or over currently attending the fall clinics in Nijmegen (Group 1, n=154) and in Amsterdam (Group 2, n=146). Patients were referred by a general practitioner (Group 1) or were selected using the Carefall Triage Instrument (CTI) after visiting the emergency department (Group 2). In all patients, modifiable risk factors for recurrent falls were assessed. Group 1 had less modifiable risk factors for falling (a mean of 4 (SD 1.6) vs. a mean of 5 (SD 1.5) in Group 2, p < 0.001). Compared to Group 2, Group 1 had more prevalent " recurrent falling (≥ 2 falls)" (p=0.001) and "assisted living in homes for the aged" (p=0.037). "Fear of falling", "mobility and balance problems", "home hazards" and "osteoporosis" were significantly less prevalent in Group 1. This study suggests that patients referred to a multidisciplinary fall prevention clinic by their general practitioner have a different risk profile than those selected by case finding using the CTI. These differences have consequences for the reach of secondary care for fall-preventive interventions and will probably influence the effectiveness and efficiency of a fall prevention program.

  10. Reconstruction after complex facial trauma: achieving optimal outcome through multiple contemporary surgeries.

    PubMed

    Jaiswal, Rohit; Pu, Lee L Q

    2013-04-01

    Major facial trauma injuries often require complex repair. Traditionally, the reconstruction of such injuries has primarily utilized only free tissue transfer. However, the advent of newer, contemporary procedures may lead to potential reconstructive improvement through the use of complementary procedures after free flap reconstruction. An 18-year-old male patient suffered a major left facial degloving injury resulting in soft-tissue defect with exposed zygoma, and parietal bone. Multiple operations were undertaken in a staged manner for reconstruction. A state-of-the-art free anterolateral thigh (ALT) perforator flap and Medpor implant reconstruction of the midface were initially performed, followed by flap debulking, lateral canthopexy, midface lift with redo canthopexy, scalp tissue expansion for hairline reconstruction, and epidermal skin grafting for optimal skin color matching. Over a follow-up period of 2 years, a good and impressive reconstructive result was achieved through the use of multiple contemporary reconstructive procedures following an excellent free ALT flap reconstruction. Multiple staged reconstructions are essential in producing an optimal outcome in this complex facial injury that would likely not have been produced through a 1-stage traditional free flap reconstruction. Utilizing multiple, sequential contemporary surgeries may substantially improve outcome through the enhancement and refinement of results based on possibly the best initial soft-tissue reconstruction.

  11. Application of optimal design methodologies in clinical pharmacology experiments.

    PubMed

    Ogungbenro, Kayode; Dokoumetzidis, Aristides; Aarons, Leon

    2009-01-01

    Pharmacokinetics and pharmacodynamics data are often analysed by mixed-effects modelling techniques (also known as population analysis), which has become a standard tool in the pharmaceutical industries for drug development. The last 10 years has witnessed considerable interest in the application of experimental design theories to population pharmacokinetic and pharmacodynamic experiments. Design of population pharmacokinetic experiments involves selection and a careful balance of a number of design factors. Optimal design theory uses prior information about the model and parameter estimates to optimize a function of the Fisher information matrix to obtain the best combination of the design factors. This paper provides a review of the different approaches that have been described in the literature for optimal design of population pharmacokinetic and pharmacodynamic experiments. It describes options that are available and highlights some of the issues that could be of concern as regards practical application. It also discusses areas of application of optimal design theories in clinical pharmacology experiments. It is expected that as the awareness about the benefits of this approach increases, more people will embrace it and ultimately will lead to more efficient population pharmacokinetic and pharmacodynamic experiments and can also help to reduce both cost and time during drug development. Copyright (c) 2008 John Wiley & Sons, Ltd.

  12. A Swarm Optimization approach for clinical knowledge mining.

    PubMed

    Christopher, J Jabez; Nehemiah, H Khanna; Kannan, A

    2015-10-01

    Rule-based classification is a typical data mining task that is being used in several medical diagnosis and decision support systems. The rules stored in the rule base have an impact on classification efficiency. Rule sets that are extracted with data mining tools and techniques are optimized using heuristic or meta-heuristic approaches in order to improve the quality of the rule base. In this work, a meta-heuristic approach called Wind-driven Swarm Optimization (WSO) is used. The uniqueness of this work lies in the biological inspiration that underlies the algorithm. WSO uses Jval, a new metric, to evaluate the efficiency of a rule-based classifier. Rules are extracted from decision trees. WSO is used to obtain different permutations and combinations of rules whereby the optimal ruleset that satisfies the requirement of the developer is used for predicting the test data. The performance of various extensions of decision trees, namely, RIPPER, PART, FURIA and Decision Tables are analyzed. The efficiency of WSO is also compared with the traditional Particle Swarm Optimization. Experiments were carried out with six benchmark medical datasets. The traditional C4.5 algorithm yields 62.89% accuracy with 43 rules for liver disorders dataset where as WSO yields 64.60% with 19 rules. For Heart disease dataset, C4.5 is 68.64% accurate with 98 rules where as WSO is 77.8% accurate with 34 rules. The normalized standard deviation for accuracy of PSO and WSO are 0.5921 and 0.5846 respectively. WSO provides accurate and concise rulesets. PSO yields results similar to that of WSO but the novelty of WSO lies in its biological motivation and it is customization for rule base optimization. The trade-off between the prediction accuracy and the size of the rule base is optimized during the design and development of rule-based clinical decision support system. The efficiency of a decision support system relies on the content of the rule base and classification accuracy. Copyright

  13. Academic training and clinical placement problems to achieve nursing competency

    PubMed Central

    RAHMATI SHARGHI, NARJES; ALAMI, ALI; KHOSRAVAN, SHAHLA; MANSOORIAN, MOHAMMAD REZA; EKRAMI, ALI

    2015-01-01

    Introduction: High quality of care is one of the requirements of nursing which depends on the nursing competency. In this connection, the aim of this research was to determine the problems related to the academic training (nursing' educational program) and clinical practice to achieve competency from the viewpoint of nurses, faculty members, and nursing students. Methods: the study was an analytical cross-sectional one. The sample consisted of the academic staff, the third and the fourth year nursing students and nurses in practice. The instrument of the study was a two-part researcher-made questionnaire with 22 questions in the theoretical- clinical realm to assess  problems related to the theoretical and clinical teaching in nursing, and 23 questions to assess the clinical functions. The questionnaire was validated in terms of both face and content validity. Its reliability, using Cronbach's Alpha coefficient, was 0.72 in the theoretical-clinical and 0.73 in the clinical realm. Both descriptive and analytical statistics were used to analyze the data, using SPSS software. Results: The results of this study indicated that from the participants’ viewpoints, the most important problems in the academic education for nursea to acquire competency were as follows: lack of academic research the clinical period (88.9%), no application of theoretical aspects of the nursing process in practice (85.6%), insufficient knowledgeable and professional educators (81.1%), the use of traditional routine-oriented methods on the wards (75.6%); also insufficient time for performance based on knowledge in relation to  the nurse's workload (86.5%), weakness and usefulness of scientific function encouragement systems in clinic (85.2%), and learnt theoretical subjects not coming into practice in clinical fields after graduation (75.6%). Conclusion: Efforts to reduce the gap between the theoretical and practical (clinical function) knowledge in educational and work environment are

  14. Proof of concept demonstration of optimal composite MRI endpoints for clinical trials.

    PubMed

    Edland, Steven D; Ard, M Colin; Sridhar, Jaiashre; Cobia, Derin; Martersteck, Adam; Mesulam, M Marsel; Rogalski, Emily J

    2016-09-01

    Atrophy measures derived from structural MRI are promising outcome measures for early phase clinical trials, especially for rare diseases such as primary progressive aphasia (PPA), where the small available subject pool limits our ability to perform meaningfully powered trials with traditional cognitive and functional outcome measures. We investigated a composite atrophy index in 26 PPA participants with longitudinal MRIs separated by two years. Rogalski et al . [ Neurology 2014;83:1184-1191] previously demonstrated that atrophy of the left perisylvian temporal cortex (PSTC) is a highly sensitive measure of disease progression in this population and a promising endpoint for clinical trials. Using methods described by Ard et al . [ Pharmaceutical Statistics 2015;14:418-426], we constructed a composite atrophy index composed of a weighted sum of volumetric measures of 10 regions of interest within the left perisylvian cortex using weights that maximize signal-to-noise and minimize sample size required of trials using the resulting score. Sample size required to detect a fixed percentage slowing in atrophy in a two-year clinical trial with equal allocation of subjects across arms and 90% power was calculated for the PSTC and optimal composite surrogate biomarker endpoints. The optimal composite endpoint required 38% fewer subjects to detect the same percent slowing in atrophy than required by the left PSTC endpoint. Optimal composites can increase the power of clinical trials and increase the probability that smaller trials are informative, an observation especially relevant for PPA, but also for related neurodegenerative disorders including Alzheimer's disease.

  15. A Study of the Relationships between Distributed Leadership, Teacher Academic Optimism and Student Achievement in Taiwanese Elementary Schools

    ERIC Educational Resources Information Center

    Chang, I-Hua

    2011-01-01

    The purpose of this study was to explore the relationships between distributed leadership, teachers' academic optimism and student achievement in learning. The study targeted public elementary schools in Taiwan and adopted stratified random sampling to investigate 1500 teachers. Teachers' perceptions were collected by a self-report scale. In…

  16. Achieving progress through clinical governance? A national study of health care managers' perceptions in the NHS in England

    PubMed Central

    Freeman, T; Walshe, K

    2004-01-01

    Background: A national cross sectional study was undertaken to explore the perceptions concerning the importance of, and progress in, aspects of clinical governance among board level and directorate managers in English acute, ambulance, and mental health/learning disabilities (MH/LD) trusts. Participants: A stratified sample of acute, ambulance, and mental health/learning disabilities trusts in England (n = 100), from each of which up to 10 board level and 10 directorate level managers were randomly sampled. Methods: Fieldwork was undertaken between April and July 2002 using the Organisational Progress in Clinical Governance (OPCG) schedule to explore managers' perceptions of the importance of, and organisational achievement in, 54 clinical governance competency items in five aggregated domains: improving quality; managing risks; improving staff performance; corporate accountability; and leadership and collaboration. The difference between ratings of importance and achievement was termed a shortfall. Results: Of 1916 individuals surveyed, 1177 (61.4%) responded. The competency items considered most important and recording highest perceived achievement related to corporate accountability structures and clinical risks. The highest shortfalls between perceived importance and perceived achievement were reported in joint working across local health communities, feedback of performance data, and user involvement. When aggregated into domains, greatest achievement was perceived in the assurance related areas of corporate accountability and risk management, with considerably less perceived achievement and consequently higher shortfalls in quality improvement and leadership and collaboration. Directorate level managers' perceptions of achievement were found to be significantly lower than those of their board level colleagues on all domains other than improving performance. No differences were found in perceptions of achievement between different types of trusts, or between

  17. Achieving progress through clinical governance? A national study of health care managers' perceptions in the NHS in England.

    PubMed

    Freeman, T; Walshe, K

    2004-10-01

    A national cross sectional study was undertaken to explore the perceptions concerning the importance of, and progress in, aspects of clinical governance among board level and directorate managers in English acute, ambulance, and mental health/learning disabilities (MH/LD) trusts. A stratified sample of acute, ambulance, and mental health/learning disabilities trusts in England (n = 100), from each of which up to 10 board level and 10 directorate level managers were randomly sampled. Fieldwork was undertaken between April and July 2002 using the Organisational Progress in Clinical Governance (OPCG) schedule to explore managers' perceptions of the importance of, and organisational achievement in, 54 clinical governance competency items in five aggregated domains: improving quality; managing risks; improving staff performance; corporate accountability; and leadership and collaboration. The difference between ratings of importance and achievement was termed a shortfall. Of 1916 individuals surveyed, 1177 (61.4%) responded. The competency items considered most important and recording highest perceived achievement related to corporate accountability structures and clinical risks. The highest shortfalls between perceived importance and perceived achievement were reported in joint working across local health communities, feedback of performance data, and user involvement. When aggregated into domains, greatest achievement was perceived in the assurance related areas of corporate accountability and risk management, with considerably less perceived achievement and consequently higher shortfalls in quality improvement and leadership and collaboration. Directorate level managers' perceptions of achievement were found to be significantly lower than those of their board level colleagues on all domains other than improving performance. No differences were found in perceptions of achievement between different types of trusts, or between trusts at different stages in the Commission

  18. Optimizing the patient transport function at Mayo Clinic.

    PubMed

    Kuchera, Dustin; Rohleder, Thomas R

    2011-01-01

    In this article, we report on the implementation of a computerized scheduling tool to optimize staffing for patient transport at the Mayo Clinic. The tool was developed and implemented in Microsoft Excel and Visual Basic for Applications and includes an easy-to-use interface. The tool allows transport management to consider the trade-offs between patient waiting time and staffing levels. While improved staffing efficiency was a desire of the project, it was important that patient service quality was also maintained. The results show that staffing could be reduced while maintaining historical patient service levels.

  19. A system dynamics optimization framework to achieve population desired of average weight target

    NASA Astrophysics Data System (ADS)

    Abidin, Norhaslinda Zainal; Zulkepli, Jafri Haji; Zaibidi, Nerda Zura

    2017-11-01

    Obesity is becoming a serious problem in Malaysia as it has been rated as the highest among Asian countries. The aim of the paper is to propose a system dynamics (SD) optimization framework to achieve population desired weight target based on the changes in physical activity behavior and its association to weight and obesity. The system dynamics approach of stocks and flows diagram was used to quantitatively model the impact of both behavior on the population's weight and obesity trends. This work seems to bring this idea together and highlighting the interdependence of the various aspects of eating and physical activity behavior on the complex of human weight regulation system. The model was used as an experimentation vehicle to investigate the impacts of changes in physical activity on weight and prevalence of obesity implications. This framework paper provides evidence on the usefulness of SD optimization as a strategic decision making approach to assist in decision making related to obesity prevention. SD applied in this research is relatively new in Malaysia and has a high potential to apply to any feedback models that address the behavior cause to obesity.

  20. The Relationship of Mental Pressure with Optimism and Academic Achievement Motivation among Second Grade Male High School Students

    ERIC Educational Resources Information Center

    Sarouni, Ali Sedigh; Jenaabadi, Hossein; Pourghaz, Abdulwahab

    2016-01-01

    The present study aimed to examine the relationship of mental pressure with optimism and academic achievement motivation among second grade second period male high school students. This study followed a descriptive-correlational method. The sample included 200 second grade second period male high school students in Sooran. Data collection tools in…

  1. Periodic Application of Stochastic Cost Optimization Methodology to Achieve Remediation Objectives with Minimized Life Cycle Cost

    NASA Astrophysics Data System (ADS)

    Kim, U.; Parker, J.

    2016-12-01

    Many dense non-aqueous phase liquid (DNAPL) contaminated sites in the U.S. are reported as "remediation in progress" (RIP). However, the cost to complete (CTC) remediation at these sites is highly uncertain and in many cases, the current remediation plan may need to be modified or replaced to achieve remediation objectives. This study evaluates the effectiveness of iterative stochastic cost optimization that incorporates new field data for periodic parameter recalibration to incrementally reduce prediction uncertainty and implement remediation design modifications as needed to minimize the life cycle cost (i.e., CTC). This systematic approach, using the Stochastic Cost Optimization Toolkit (SCOToolkit), enables early identification and correction of problems to stay on track for completion while minimizing the expected (i.e., probability-weighted average) CTC. This study considers a hypothetical site involving multiple DNAPL sources in an unconfined aquifer using thermal treatment for source reduction and electron donor injection for dissolved plume control. The initial design is based on stochastic optimization using model parameters and their joint uncertainty based on calibration to site characterization data. The model is periodically recalibrated using new monitoring data and performance data for the operating remediation systems. Projected future performance using the current remediation plan is assessed and reoptimization of operational variables for the current system or consideration of alternative designs are considered depending on the assessment results. We compare remediation duration and cost for the stepwise re-optimization approach with single stage optimization as well as with a non-optimized design based on typical engineering practice.

  2. Using Technology, Clinical Workflow Redesign, and Team Solutions to Achieve the Patient Centered Medical Home

    DTIC Science & Technology

    2011-01-01

    The Quadruple Aim: Working Together, Achieving Success 2011 Military Health System Conference TMA and Services Using Technology, Clinical Workflow...Redesign, and Team Solutions to Achieve the Patient Centered Medical Home LTC Nicole Kerkenbush, MHA, MN Army Medical Department, Office of the...Surgeon General Chief Medical Information Officer 1 Military Health System Conference Report Documentation Page Form ApprovedOMB No. 0704-0188 Public

  3. Self-regulated learning strategies used in surgical clerkship and the relationship with clinical achievement.

    PubMed

    Turan, Sevgi; Konan, Ali

    2012-01-01

    Self-regulated learning indicates students' skills in controlling their own learning. Self-regulated learning, which a context-specific process, emphasizes autonomy and control. Students gain more autonomy with respect to learning in the clinical years. Examining the self-regulated learning skills of students in this period will provide important clues about the level at which students are ready to use these skills in real-life conditions. The self-regulated learning strategies used by medical students in surgical clerkship were investigated in this study and their relation with clinical achievement was analyzed. The study was conducted during the surgery clerkship of medical students. The participation rate was 94% (309 students). Motivated Strategies for Learning Questionnaire (MSLQ), a case-based examination, Objective Structured Clinical Examination (OSCE), and tutor evaluations for assessing achievement were used. The relationship between the Motivated Strategies for Learning Questionnaire scores of the students and clinical achievement was analyzed with multilinear regression analysis. The findings showed that students use self-regulated learning skills at medium levels during their surgery clerkship. A relationship between these skills and OSCE scores and tutor evaluations was determined. OSCE scores of the students were observed to increase in conjunction with increased self-efficacy levels. However, as students' beliefs regarding control over learning increased, OSCE scores decreased. No significant relationship was defined between self-regulated learning skills and case-based examination scores. We observed that a greater self-efficacy for learning resulted in higher OSCE scores. Conversely, students who believe that learning is a result of their own effort had lower OSCE scores. Copyright © 2012 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  4. Academic achievement and primary care specialty selection of volunteers at a student-run free clinic.

    PubMed

    Vaikunth, Sumeet S; Cesari, Whitney A; Norwood, Kimberlee V; Satterfield, Suzanne; Shreve, Robert G; Ryan, J Patrick; Lewis, James B

    2014-01-01

    Previous studies have reached conflicting conclusions about the associations between service and academic achievement and service and primary care specialty choice. This study examines the associations between service at a student-run clinic and academic achievement and primary care specialty choice. Retrospective review of medical student service and statistical analysis of grade point average (GPA), Step 1 and Step 2 Clinical Knowledge (CK) scores, and specialty choice were conducted, as approved by our Institutional Review Board. Volunteers, compared to nonvolunteers, had higher GPA (3.59 ± 0.33 vs. 3.40 ± 0.39, p < .001), Step 1 (229 ± 19 vs. 220 ± 21, p < .001), and Step 2 CK (240 ± 18 vs. 230 ± 21, p < .001) scores, but did not pursue primary care specialties at a significantly higher percentage (52% vs. 51%, χ² = .051, p = .82). Further exploration of the associations between service and academic achievement and primary care specialty choice is warranted.

  5. Effective utilization of clinical laboratories.

    PubMed

    Murphy, J; Henry, J B

    1978-11-01

    Effective utilization of clinical laboratories requires that underutilization, overutilization, and malutilization be appreciated and eliminated or reduced. Optimal patient care service, although subjective to a major extent, is reflected in terms of outcome and cost. Increased per diem charges, reduced hospital stay, and increased laboratory workload over the past decade all require each laboratory to examine its internal operations to achieve economy and efficiency as well as maximal effectiveness. Increased research and development, an active managerial role on the part of pathologists, internal self-assessment, and an aggressive response to sophisticated scientific and clinical laboratory data base requirements are not only desirable but essential. The importance of undergraduate and graduate medical education in laboratory medicine to insure understanding as well as effective utilization is stressed. The costs and limitations as well as the accuracy, precision, sensitivity, specificity, and pitfalls of measurements and examinations must also be fully appreciated. Medical malpractice and defensive medicine and the use of critical values, emergency and routine services, and an active clinical role by the pathologist are of the utmost value in assuring effective utilization of the laboratory. A model for the optimal use of the laboratory including economy and efficiency has been achieved in the blood bank in regard to optimal hemotherapy for elective surgery, assuring superior patient care in a cost effective and safe manner.

  6. Clinical importance of achieving biochemical control with medical therapy in adult patients with acromegaly

    PubMed Central

    Christofides, Elena A

    2016-01-01

    In acromegaly, achieving biochemical control (growth hormone [GH] level <1.0 ng/mL and age- and sex-normalized levels of insulin-like growth factor 1 [IGF-1]) through timely diagnosis and appropriate treatment provides an opportunity to improve patient outcomes. Diagnosis of acromegaly is challenging because it is rooted in observing subtle clinical manifestations, and it is typical for acromegaly to evolve for up to 10 years before it is recognized. This results in chronic exposure to elevated levels of GH and IGF-1 and delay in patients receiving appropriate treatment, which consequently increases mortality risk. In this review, the clinical impact of elevated GH and IGF-1 levels, the effectiveness of current therapies, and the potential role of novel treatments for acromegaly will be discussed. Clinical burden of acromegaly and benefits associated with management of GH and IGF-1 levels will be reviewed. Major treatment paradigms in acromegaly include surgery, medical therapy, and radiotherapy. With medical therapies, such as somatostatin analogs, dopamine agonists, and GH receptor antagonists, a substantial proportion of patients achieve reduced GH and normalized IGF-1 levels. In addition, signs and symptoms, quality of life, and comorbidities have also been reported to improve to varying degrees in patients who achieve biochemical control. Currently, there are several innovative therapies in development to improve patient outcomes, patient use, and access. Timely biochemical control of acromegaly ensures that the patient can ultimately improve morbidity and mortality from this disease and its extensive consequences. PMID:27471378

  7. Association between frequent cardiac resynchronization therapy optimization and long-term clinical response: a post hoc analysis of the Clinical Evaluation on Advanced Resynchronization (CLEAR) pilot study.

    PubMed

    Delnoy, Peter Paul; Ritter, Philippe; Naegele, Herbert; Orazi, Serafino; Szwed, Hanna; Zupan, Igor; Goscinska-Bis, Kinga; Anselme, Frederic; Martino, Maria; Padeletti, Luigi

    2013-08-01

    The long-term clinical value of the optimization of atrioventricular (AVD) and interventricular (VVD) delays in cardiac resynchronization therapy (CRT) remains controversial. We studied retrospectively the association between the frequency of AVD and VVD optimization and 1-year clinical outcomes in the 199 CRT patients who completed the Clinical Evaluation on Advanced Resynchronization study. From the 199 patients assigned to CRT-pacemaker (CRT-P) (New York Heart Association, NYHA, class III/IV, left ventricular ejection fraction <35%), two groups were retrospectively composed a posteriori on the basis of the frequency of their AVD and VVD optimization: Group 1 (n = 66) was composed of patients 'systematically' optimized at implant, at 3 and 6 months; Group 2 (n = 133) was composed of all other patients optimized 'non-systematically' (less than three times) during the 1 year study. The primary endpoint was a composite of all-cause mortality, heart failure-related hospitalization, NYHA functional class, and Quality of Life score, at 1 year. Systematic CRT optimization was associated with a higher percentage of improved patients based on the composite endpoint (85% in Group 1 vs. 61% in Group 2, P < 0.001), with fewer deaths (3% in Group 1 vs. 14% in Group 2, P = 0.014) and fewer hospitalizations (8% in Group 1 vs. 23% in Group 2, P = 0.007), at 1 year. These results further suggest that AVD and VVD frequent optimization (at implant, at 3 and 6 months) is associated with improved long-term clinical response in CRT-P patients.

  8. Optimization of Synergistic Combination Regimens against Carbapenem- and Aminoglycoside-Resistant Clinical Pseudomonas aeruginosa Isolates via Mechanism-Based Pharmacokinetic/Pharmacodynamic Modeling

    PubMed Central

    Yadav, Rajbharan; Nation, Roger L.

    2016-01-01

    ABSTRACT Optimizing antibiotic combinations is promising to combat multidrug-resistant Pseudomonas aeruginosa. This study aimed to systematically evaluate synergistic bacterial killing and prevention of resistance by carbapenem and aminoglycoside combinations and to rationally optimize combination dosage regimens via a mechanism-based mathematical model (MBM). We studied monotherapies and combinations of imipenem with tobramycin or amikacin against three difficult-to-treat double-resistant clinical P. aeruginosa isolates. Viable-count profiles of total and resistant populations were quantified in 48-h static-concentration time-kill studies (inoculum, 107.5 CFU/ml). We rationally optimized combination dosage regimens via MBM and Monte Carlo simulations against isolate FADDI-PA088 (MIC of imipenem [MICimipenem] of 16 mg/liter and MICtobramycin of 32 mg/liter, i.e., both 98th percentiles according to the EUCAST database). Against this isolate, imipenem (1.5× MIC) combined with 1 to 2 mg/liter tobramycin (MIC, 32 mg/liter) or amikacin (MIC, 4 mg/liter) yielded ≥2-log10 more killing than the most active monotherapy at 48 h and prevented resistance. For all three strains, synergistic killing without resistance was achieved by ≥0.88× MICimipenem in combination with a median of 0.75× MICtobramycin (range, 0.032× to 2.0× MICtobramycin) or 0.50× MICamikacin (range, 0.25× to 0.50× MICamikacin). The MBM indicated that aminoglycosides significantly enhanced the imipenem target site concentration up to 3-fold; achieving 50% of this synergistic effect required aminoglycoside concentrations of 1.34 mg/liter (if the aminoglycoside MIC was 4 mg/liter) and 4.88 mg/liter (for MICs of 8 to 32 mg/liter). An optimized combination regimen (continuous infusion of imipenem at 5 g/day plus a 0.5-h infusion with 7 mg/kg of body weight tobramycin) was predicted to achieve >2.0-log10 killing and prevent regrowth at 48 h in 90.3% of patients (median bacterial killing, >4.0 log10 CFU

  9. Optimal allocation of land and water resources to achieve Water, Energy and Food Security in the upper Blue Nile basin

    NASA Astrophysics Data System (ADS)

    Allam, M.; Eltahir, E. A. B.

    2017-12-01

    Rapid population growth, hunger problems, increasing energy demands, persistent conflicts between the Nile basin riparian countries and the potential impacts of climate change highlight the urgent need for the conscious stewardship of the upper Blue Nile (UBN) basin resources. This study develops a framework for the optimal allocation of land and water resources to agriculture and hydropower production in the UBN basin. The framework consists of three optimization models that aim to: (a) provide accurate estimates of the basin water budget, (b) allocate land and water resources optimally to agriculture, and (c) allocate water to agriculture and hydropower production, and investigate trade-offs between them. First, a data assimilation procedure for data-scarce basins is proposed to deal with data limitations and produce estimates of the hydrologic components that are consistent with the principles of mass and energy conservation. Second, the most representative topography and soil properties datasets are objectively identified and used to delineate the agricultural potential in the basin. The agricultural potential is incorporated into a land-water allocation model that maximizes the net economic benefits from rain-fed agriculture while allowing for enhancing the soils from one suitability class to another to increase agricultural productivity in return for an investment in soil inputs. The optimal agricultural expansion is expected to reduce the basin flow by 7.6 cubic kilometres, impacting downstream countries. The optimization framework is expanded to include hydropower production. This study finds that allocating water to grow rain-fed teff in the basin is more profitable than allocating water for hydropower production. Optimal operation rules for the Grand Ethiopian Renaissance dam (GERD) are identified to maximize annual hydropower generation while achieving a relatively uniform monthly production rate. Trade-offs between agricultural expansion and hydropower

  10. Optimized multi-electrode stimulation increases focality and intensity at target

    NASA Astrophysics Data System (ADS)

    Dmochowski, Jacek P.; Datta, Abhishek; Bikson, Marom; Su, Yuzhuo; Parra, Lucas C.

    2011-08-01

    Transcranial direct current stimulation (tDCS) provides a non-invasive tool to elicit neuromodulation by delivering current through electrodes placed on the scalp. The present clinical paradigm uses two relatively large electrodes to inject current through the head resulting in electric fields that are broadly distributed over large regions of the brain. In this paper, we present a method that uses multiple small electrodes (i.e. 1.2 cm diameter) and systematically optimize the applied currents to achieve effective and targeted stimulation while ensuring safety of stimulation. We found a fundamental trade-off between achievable intensity (at the target) and focality, and algorithms to optimize both measures are presented. When compared with large pad-electrodes (approximated here by a set of small electrodes covering 25cm2), the proposed approach achieves electric fields which exhibit simultaneously greater focality (80% improvement) and higher target intensity (98% improvement) at cortical targets using the same total current applied. These improvements illustrate the previously unrecognized and non-trivial dependence of the optimal electrode configuration on the desired electric field orientation and the maximum total current (due to safety). Similarly, by exploiting idiosyncratic details of brain anatomy, the optimization approach significantly improves upon prior un-optimized approaches using small electrodes. The analysis also reveals the optimal use of conventional bipolar montages: maximally intense tangential fields are attained with the two electrodes placed at a considerable distance from the target along the direction of the desired field; when radial fields are desired, the maximum-intensity configuration consists of an electrode placed directly over the target with a distant return electrode. To summarize, if a target location and stimulation orientation can be defined by the clinician, then the proposed technique is superior in terms of both focality

  11. WFH: closing the global gap--achieving optimal care.

    PubMed

    Skinner, Mark W

    2012-07-01

    For 50 years, the World Federation of Hemophilia (WFH) has been working globally to close the gap in care and to achieve Treatment for All patients, men and women, with haemophilia and other inherited bleeding disorders, regardless of where they might live. The WFH estimates that more than one in 1000 men and women has a bleeding disorder equating to 6,900,000 worldwide. To close the gap in care between developed and developing nations a continued focus on the successful strategies deployed heretofore will be required. However, in response to the rapid advances in treatment and emerging therapeutic advances on the horizon it will also require fresh approaches and renewed strategic thinking. It is difficult to predict what each therapeutic advance on the horizon will mean for the future, but there is no doubt that we are in a golden age of research and development, which has the prospect of revolutionizing treatment once again. An improved understanding of "optimal" treatment is fundamental to the continued evolution of global care. The challenges of answering government and payer demands for evidence-based medicine, and cost justification for the introduction and enhancement of treatment, are ever-present and growing. To sustain and improve care it is critical to build the body of outcome data for individual patients, within haemophilia treatment centers (HTCs), nationally, regionally and globally. Emerging therapeutic advances (longer half-life therapies and gene transfer) should not be justified or brought to market based only on the notion that they will be economically more affordable, although that may be the case, but rather more importantly that they will be therapeutically more advantageous. Improvements in treatment adherence, reductions in bleeding frequency (including microhemorrhages), better management of trough levels, and improved health outcomes (including quality of life) should be the foremost considerations. As part of a new WFH strategic plan

  12. Optimizing dual-energy x-ray parameters for the ExacTrac clinical stereoscopic imaging system to enhance soft-tissue imaging.

    PubMed

    Bowman, Wesley A; Robar, James L; Sattarivand, Mike

    2017-03-01

    Stereoscopic x-ray image guided radiotherapy for lung tumors is often hindered by bone overlap and limited soft-tissue contrast. This study aims to evaluate the feasibility of dual-energy imaging techniques and to optimize parameters of the ExacTrac stereoscopic imaging system to enhance soft-tissue imaging for application to lung stereotactic body radiation therapy. Simulated spectra and a physical lung phantom were used to optimize filter material, thickness, tube potentials, and weighting factors to obtain bone subtracted dual-energy images. Spektr simulations were used to identify material in the atomic number range (3-83) based on a metric defined to separate spectra of high and low-energies. Both energies used the same filter due to time constraints of imaging in the presence of respiratory motion. The lung phantom contained bone, soft tissue, and tumor mimicking materials, and it was imaged with a filter thickness in the range of (0-0.7) mm and a kVp range of (60-80) for low energy and (120,140) for high energy. Optimal dual-energy weighting factors were obtained when the bone to soft-tissue contrast-to-noise ratio (CNR) was minimized. Optimal filter thickness and tube potential were achieved by maximizing tumor-to-background CNR. Using the optimized parameters, dual-energy images of an anthropomorphic Rando phantom with a spherical tumor mimicking material inserted in his lung were acquired and evaluated for bone subtraction and tumor contrast. Imaging dose was measured using the dual-energy technique with and without beam filtration and matched to that of a clinical conventional single energy technique. Tin was the material of choice for beam filtering providing the best energy separation, non-toxicity, and non-reactiveness. The best soft-tissue-weighted image in the lung phantom was obtained using 0.2 mm tin and (140, 60) kVp pair. Dual-energy images of the Rando phantom with the tin filter had noticeable improvement in bone elimination, tumor contrast

  13. Optimization of radiotherapy. Some notes on the principles and practice of optimization in cancer treatment and implications for clinical research.

    PubMed

    Andrews, J R

    1981-01-01

    Two methods dominate cancer treatment--one, the traditional best practice, individualized treatment method and two, the a priori determined decision method of the interinstitutional, cooperative, clinical trial. In the first, choices are infinite and can be made at the time of treatment; in the second, choices are finite and are made in advance of treatment on a random basis. Neither method systematically selects, identifies, or formalizes the optimum level of effect in the treatment chosen. Of the two, it can be argued that the first, other things being equal, is more likely to select the optimum treatment. The determination of level of effect for the optimization of cancer treatment requires the generation of dose-response relationships for both benefit and risk and the introduction of benefit and risk considerations and judgements. The clinical trial, as presently constituted, doses not yield this kind of information, it being, generally, of the binary yes or no, better or worse type. The best practice, individualized treatment method can yield, when adequately documented, both a range of dose-response relationships and a variety of benefit and risk considerations. The presentation will be limited to a consideration of a single modality of cancer treatment, radiation therapy, but an analogy with other modalities of cancer treatment will be inferred. Criteria for optimization will be developed and graphic means for its identification and formalization will be demonstrated with examples taken from the radiotherapy literature. The general problem of optimization theory and practice will be discussed; the necessity for its exploration in relation to the increasing complexity of cancer treatment will be developed; and recommendations for clinical research will be made including a proposal for the support of clinics as an alternative to the support of programs.

  14. Optimizing Aesthetic Outcomes in Delayed Breast Reconstruction

    PubMed Central

    2017-01-01

    Background: The need to restore both the missing breast volume and breast surface area makes achieving excellent aesthetic outcomes in delayed breast reconstruction especially challenging. Autologous breast reconstruction can be used to achieve both goals. The aim of this study was to identify surgical maneuvers that can optimize aesthetic outcomes in delayed breast reconstruction. Methods: This is a retrospective review of operative and clinical records of all patients who underwent unilateral or bilateral delayed breast reconstruction with autologous tissue between April 2014 and January 2017. Three groups of delayed breast reconstruction patients were identified based on patient characteristics. Results: A total of 26 flaps were successfully performed in 17 patients. Key surgical maneuvers for achieving aesthetically optimal results were identified. A statistically significant difference for volume requirements was identified in cases where a delayed breast reconstruction and a contralateral immediate breast reconstruction were performed simultaneously. Conclusions: Optimal aesthetic results can be achieved with: (1) restoration of breast skin envelope with tissue expansion when possible, (2) optimal positioning of a small skin paddle to be later incorporated entirely into a nipple areola reconstruction when adequate breast skin surface area is present, (3) limiting the reconstructed breast mound to 2 skin tones when large area skin resurfacing is required, (4) increasing breast volume by deepithelializing, not discarding, the inferior mastectomy flap skin, (5) eccentric division of abdominal flaps when an immediate and delayed bilateral breast reconstructions are performed simultaneously; and (6) performing second-stage breast reconstruction revisions and fat grafting. PMID:28894666

  15. Treatment of chronic myeloid leukemia: assessing risk, monitoring response, and optimizing outcome.

    PubMed

    Shanmuganathan, Naranie; Hiwase, Devendra Keshaorao; Ross, David Morrall

    2017-12-01

    Over the past two decades, tyrosine kinase inhibitors have become the foundation of chronic myeloid leukemia (CML) treatment. The choice between imatinib and newer tyrosine kinase inhibitors (TKIs) needs to be balanced against the known toxicity and efficacy data for each drug, the therapeutic goal being to maximize molecular response assessed by BCR-ABL RQ-PCR assay. There is accumulating evidence that the early achievement of molecular targets is a strong predictor of superior long-term outcomes. Early response assessment provides the opportunity to intervene early with the aim of ensuring an optimal response. Failure to achieve milestones or loss of response can have diverse causes. We describe how clinical and laboratory monitoring can be used to ensure that each patient is achieving an optimal response and, in patients who do not reach optimal response milestones, how the monitoring results can be used to detect resistance and understand its origins.

  16. Strategies to optimize lithium-ion supercapacitors achieving high-performance: Cathode configurations, lithium loadings on anode, and types of separator

    NASA Astrophysics Data System (ADS)

    Cao, Wanjun; Li, Yangxing; Fitch, Brian; Shih, Jonathan; Doung, Tien; Zheng, Jim

    2014-12-01

    The Li-ion capacitor (LIC) is composed of a lithium-doped carbon anode and an activated carbon cathode, which is a half Li-ion battery (LIB) and a half electrochemical double-layer capacitor (EDLC). LICs can achieve much more energy density than EDLC without sacrificing the high power performance advantage of capacitors over batteries. LIC pouch cells were assembled using activated carbon (AC) cathode and hard carbon (HC) + stabilized lithium metal power (SLMP®) anode. Different cathode configurations, various SLMP loadings on HC anode, and two types of separators were investigated to achieve the optimal electrochemical performance of the LIC. Firstly, the cathode binders study suggests that the PTFE binder offers improved energy and power performances for LIC in comparison to PVDF. Secondly, the mass ratio of SLMP to HC is at 1:7 to obtain the optimized electrochemical performance for LIC among all the various studied mass ratios between lithium loading amounts and active anode material. Finally, compared to the separator Celgard PP 3501, cellulose based TF40-30 is proven to be a preferred separator for LIC.

  17. Optimizing Clinical Trial Enrollment Methods Through "Goal Programming"

    PubMed Central

    Davis, J.M.; Sandgren, A.J.; Manley, A.R.; Daleo, M.A.; Smith, S.S.

    2014-01-01

    Introduction Clinical trials often fail to reach desired goals due to poor recruitment outcomes, including low participant turnout, high recruitment cost, or poor representation of minorities. At present, there is limited literature available to guide recruitment methodology. This study, conducted by researchers at the University of Wisconsin Center for Tobacco Research and Intervention (UW-CTRI), provides an example of how iterative analysis of recruitment data may be used to optimize recruitment outcomes during ongoing recruitment. Study methodology UW-CTRI’s research team provided a description of methods used to recruit smokers in two randomized trials (n = 196 and n = 175). The trials targeted low socioeconomic status (SES) smokers and involved time-intensive smoking cessation interventions. Primary recruitment goals were to meet required sample size and provide representative diversity while working with limited funds and limited time. Recruitment data was analyzed repeatedly throughout each study to optimize recruitment outcomes. Results Estimates of recruitment outcomes based on prior studies on smoking cessation suggested that researchers would be able to recruit 240 low SES smokers within 30 months at a cost of $72,000. With employment of methods described herein, researchers were able to recruit 374 low SES smokers over 30 months at a cost of $36,260. Discussion Each human subjects study presents unique recruitment challenges with time and cost of recruitment dependent on the sample population and study methodology. Nonetheless, researchers may be able to improve recruitment outcomes though iterative analysis of recruitment data and optimization of recruitment methods throughout the recruitment period. PMID:25642125

  18. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application.

    PubMed

    Karakatsanis, Nicolas A; Lodge, Martin A; Tahari, Abdel K; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ~15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ~45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically

  19. Dynamic whole body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    PubMed Central

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-01-01

    Static whole body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single bed-coverage limiting the axial field-of-view to ~15–20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole body PET acquisition protocol of ~45min total length is presented, composed of (i) an initial 6-min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (6 passes x 7 bed positions, each scanned for 45sec). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares (OLS) Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of 10 different clinically

  20. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ˜15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ˜45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically

  1. Engineering of Fc Fragments with Optimized Physicochemical Properties Implying Improvement of Clinical Potentials for Fc-Based Therapeutics.

    PubMed

    Yang, Chunpeng; Gao, Xinyu; Gong, Rui

    2017-01-01

    Therapeutic monoclonal antibodies and Fc-fusion proteins are successfully used in treatment of various diseases mainly including cancer, immune disease, and viral infection, which belong to the Fc-based therapeutics. In recent years, engineered Fc-derived antibody domains have also shown potential for Fc-based therapeutics. To increase the druggability of Fc-based therapeutic candidates, many efforts have been made in optimizing physicochemical properties and functions mediated by Fc fragment. The desired result is that we can simultaneously obtain Fc variants with increased physicochemical properties in vitro and capacity of mediating appropriate functions in vivo . However, changes of physicochemical properties of Fc may result in alternation of Fc-mediated functions and vice versa , which leads to undesired outcomes for further development of Fc-based therapeutics. Therefore, whether modified Fc fragments are suitable for achievement of expected clinical results or not needs to be seriously considered. Now, this question comes to be noticed and should be figured out to make better translation from the results of laboratory into clinical applications. In this review, we summarize different strategies on engineering physicochemical properties of Fc, and preliminarily elucidate the relationships between modified Fc in vitro and the subsequent therapeutic influence in vivo .

  2. Therapeutic risk management of clinical-legal dilemmas: should it be a core competency?

    PubMed

    Simon, Robert I; Shuman, Daniel W

    2009-01-01

    Therapeutic risk management of clinical-legal dilemmas achieves an optimal alignment between clinical competence and an understanding of legal concerns applicable to psychiatric practice. Understanding how psychiatry and law interact in frequently occurring clinical situations is essential for effective patient care. Successful management of clinical-legal dilemmas also avoids unnecessary, counterproductive defensive practices.

  3. Should Schools Be Optimistic? An Investigation of the Association between Academic Optimism of Schools and Student Achievement in Primary Education

    ERIC Educational Resources Information Center

    Boonen, Tinneke; Pinxten, Maarten; Van Damme, Jan; Onghena, Patrick

    2014-01-01

    Academic emphasis, collective efficacy, and faculty trust in students and parents (3 school characteristics positively associated with student achievement) are assumed to form a higher order latent construct, "academic optimism" (Hoy, Tarter, & Woolfolk Hoy, 2006a, 2006b). The aim of the present study is to corroborate the latent…

  4. Clinical Performance of an Ultrahigh Resolution Chromosomal Microarray Optimized for Neurodevelopmental Disorders.

    PubMed

    Ho, Karen S; Twede, Hope; Vanzo, Rena; Harward, Erin; Hensel, Charles H; Martin, Megan M; Page, Stephanie; Peiffer, Andreas; Mowery-Rushton, Patricia; Serrano, Moises; Wassman, E Robert

    2016-01-01

    Copy number variants (CNVs) as detected by chromosomal microarray analysis (CMA) significantly contribute to the etiology of neurodevelopmental disorders, such as developmental delay (DD), intellectual disability (ID), and autism spectrum disorder (ASD). This study summarizes the results of 3.5 years of CMA testing by a CLIA-certified clinical testing laboratory 5487 patients with neurodevelopmental conditions were clinically evaluated for rare copy number variants using a 2.8-million probe custom CMA optimized for the detection of CNVs associated with neurodevelopmental disorders. We report an overall detection rate of 29.4% in our neurodevelopmental cohort, which rises to nearly 33% when cases with DD/ID and/or MCA only are considered. The detection rate for the ASD cohort is also significant, at 25%. Additionally, we find that detection rate and pathogenic yield of CMA vary significantly depending on the primary indications for testing, the age of the individuals tested, and the specialty of the ordering doctor. We also report a significant difference between the detection rate on the ultrahigh resolution optimized array in comparison to the array from which it originated. This increase in detection can significantly contribute to the efficient and effective medical management of neurodevelopmental conditions in the clinic.

  5. Implementation of a pharmacist-managed heart failure medication titration clinic.

    PubMed

    Martinez, Amanda S; Saef, Jerold; Paszczuk, Anna; Bhatt-Chugani, Hetal

    2013-06-15

    The development, implementation, and initial results of a pharmacist-managed heart failure (HF) medication titration clinic are described. In a quality-improvement initiative at a Veterans Affairs health care system, clinical pharmacists were incorporated into the hospital system's interprofessional outpatient HF clinic. In addition, a separate pharmacist-managed HF medication titration clinic was established, in which pharmacists were granted an advanced scope of practice and prescribing privileges, enabling them to initiate and adjust medication dosages under specific protocols jointly established by cardiology and pharmacy staff. Pharmacists involved in the titration clinic tracked patients' daily body weight, vital signs, and volume status using telephone-monitoring technology and via patient interviews. A retrospective chart review comparing achievement of target doses of angiotensin-converting enzyme inhibitor (ACEI), angiotensin-receptor blocker (ARB), and β-blocker therapies in a group of patients (n = 28) whose dosage titrations were carried out by nurses or physicians prior to implementation of the pharmacist-managed HF medication titration clinic and a group of patients (n = 27) enrolled in the medication titration clinic during its first six months of operation indicated that target ACEI and ARB doses were achieved in a significantly higher percentage of pharmacist-managed titration clinic enrollees (52.9% versus 31%, p = 0.007). Patients enrolled in the pharmacist-managed HF medication titration clinic also had a significantly higher rate of attainment of optimal β-blocker doses (49% versus 24.7%, p = 0.012). Implementation of a pharmacist-managed HF medication titration clinic increased the percentage of patients achieving optimal ACEI, ARB, and β-blocker dosages.

  6. Optimized cell survival and seeding efficiency for craniofacial tissue engineering using clinical stem cell therapy.

    PubMed

    Rajan, Archana; Eubanks, Emily; Edwards, Sean; Aronovich, Sharon; Travan, Suncica; Rudek, Ivan; Wang, Feng; Lanis, Alejandro; Kaigler, Darnell

    2014-12-01

    Traumatic injuries involving the face are very common, yet the clinical management of the resulting craniofacial deficiencies is challenging. These injuries are commonly associated with missing teeth, for which replacement is compromised due to inadequate jawbone support. Using cell therapy, we report the upper jaw reconstruction of a patient who lost teeth and 75% of the supporting jawbone following injury. A mixed population of bone marrow-derived autologous stem and progenitor cells was seeded onto β-tricalcium phosphate (β-TCP), which served as a scaffold to deliver cells directly to the defect. Conditions (temperature, incubation time) to achieve the highest cell survival and seeding efficiency were optimized. Four months after cell therapy, cone beam computed tomography and a bone biopsy were performed, and oral implants were placed to support an engineered dental prosthesis. Cell seeding efficiency (>81%) of the β-TCP and survival during the seeding process (94%) were highest when cells were incubated with β-TCP for 30 minutes, regardless of incubation temperature; however, at 1 hour, cell survival was highest when incubated at 4°C. Clinical, radiographic, and histological analyses confirmed that by 4 months, the cell therapy regenerated 80% of the original jawbone deficiency with vascularized, mineralized bone sufficient to stably place oral implants. Functional and aesthetic rehabilitation of the patient was successfully completed with installation of a dental prosthesis 6 months following implant placement. This proof-of-concept clinical report used an evidence-based approach for the cell transplantation protocol used and is the first to describe a cell therapy for craniofacial trauma reconstruction. ©AlphaMed Press.

  7. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity

    PubMed Central

    Justice, Jamie N.; LaRocca, Thomas J.

    2015-01-01

    Abstract Most nations of the world are undergoing rapid and dramatic population ageing, which presents great socio‐economic challenges, as well as opportunities, for individuals, families, governments and societies. The prevailing biomedical strategy for reducing the healthcare impact of population ageing has been ‘compression of morbidity’ and, more recently, to increase healthspan, both of which seek to extend the healthy period of life and delay the development of chronic diseases and disability until a brief period at the end of life. Indeed, a recently established field within biological ageing research, ‘geroscience’, is focused on healthspan extension. Superimposed on this background are new attitudes and demand for ‘optimal longevity’ – living long, but with good health and quality of life. A key obstacle to achieving optimal longevity is the progressive decline in physiological function that occurs with ageing, which causes functional limitations (e.g. reduced mobility) and increases the risk of chronic diseases, disability and mortality. Current efforts to increase healthspan centre on slowing the fundamental biological processes of ageing such as inflammation/oxidative stress, increased senescence, mitochondrial dysfunction, impaired proteostasis and reduced stress resistance. We propose that optimization of physiological function throughout the lifespan should be a major emphasis of any contemporary biomedical policy addressing global ageing. Effective strategies should delay, reduce in magnitude or abolish reductions in function with ageing (primary prevention) and/or improve function or slow further declines in older adults with already impaired function (secondary prevention). Healthy lifestyle practices featuring regular physical activity and ideal energy intake/diet composition represent first‐line function‐preserving strategies, with pharmacological agents, including existing and new pharmaceuticals and novel

  8. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity.

    PubMed

    Seals, Douglas R; Justice, Jamie N; LaRocca, Thomas J

    2016-04-15

    Most nations of the world are undergoing rapid and dramatic population ageing, which presents great socio-economic challenges, as well as opportunities, for individuals, families, governments and societies. The prevailing biomedical strategy for reducing the healthcare impact of population ageing has been 'compression of morbidity' and, more recently, to increase healthspan, both of which seek to extend the healthy period of life and delay the development of chronic diseases and disability until a brief period at the end of life. Indeed, a recently established field within biological ageing research, 'geroscience', is focused on healthspan extension. Superimposed on this background are new attitudes and demand for 'optimal longevity' - living long, but with good health and quality of life. A key obstacle to achieving optimal longevity is the progressive decline in physiological function that occurs with ageing, which causes functional limitations (e.g. reduced mobility) and increases the risk of chronic diseases, disability and mortality. Current efforts to increase healthspan centre on slowing the fundamental biological processes of ageing such as inflammation/oxidative stress, increased senescence, mitochondrial dysfunction, impaired proteostasis and reduced stress resistance. We propose that optimization of physiological function throughout the lifespan should be a major emphasis of any contemporary biomedical policy addressing global ageing. Effective strategies should delay, reduce in magnitude or abolish reductions in function with ageing (primary prevention) and/or improve function or slow further declines in older adults with already impaired function (secondary prevention). Healthy lifestyle practices featuring regular physical activity and ideal energy intake/diet composition represent first-line function-preserving strategies, with pharmacological agents, including existing and new pharmaceuticals and novel 'nutraceutical' compounds, serving as potential

  9. Optimizing oncology therapeutics through quantitative translational and clinical pharmacology: challenges and opportunities.

    PubMed

    Venkatakrishnan, K; Friberg, L E; Ouellet, D; Mettetal, J T; Stein, A; Trocóniz, I F; Bruno, R; Mehrotra, N; Gobburu, J; Mould, D R

    2015-01-01

    Despite advances in biomedical research that have deepened our understanding of cancer hallmarks, resulting in the discovery and development of targeted therapies, the success rates of oncology drug development remain low. Opportunities remain for objective dose selection informed by exposure-response understanding to optimize the benefit-risk balance of novel therapies for cancer patients. This review article discusses the principles and applications of modeling and simulation approaches across the lifecycle of development of oncology therapeutics. Illustrative examples are used to convey the value gained from integration of quantitative clinical pharmacology strategies from the preclinical-translational phase through confirmatory clinical evaluation of efficacy and safety. © 2014 American Society for Clinical Pharmacology and Therapeutics.

  10. Navy Strategy for Achieving Information Dominance, 2013-2017. Optimizing Navy’s Primacy in the Maritime and Information Domains

    DTIC Science & Technology

    2013-01-01

    and resources to optimize decision making and maximize warfighting effects, Navy Information Dominance has become a leading Service priority. In 2009...This Strategy for Achieving Information Dominance provides the framework through which the Navy s information capabilities will be mainstreamed into...the Navy s culture as a distinct warfighting discipline. The strategy focuses on the three fundamental Information Dominance capabilities of Assured

  11. Inverse optimization of objective function weights for treatment planning using clinical dose-volume histograms

    NASA Astrophysics Data System (ADS)

    Babier, Aaron; Boutilier, Justin J.; Sharpe, Michael B.; McNiven, Andrea L.; Chan, Timothy C. Y.

    2018-05-01

    We developed and evaluated a novel inverse optimization (IO) model to estimate objective function weights from clinical dose-volume histograms (DVHs). These weights were used to solve a treatment planning problem to generate ‘inverse plans’ that had similar DVHs to the original clinical DVHs. Our methodology was applied to 217 clinical head and neck cancer treatment plans that were previously delivered at Princess Margaret Cancer Centre in Canada. Inverse plan DVHs were compared to the clinical DVHs using objective function values, dose-volume differences, and frequency of clinical planning criteria satisfaction. Median differences between the clinical and inverse DVHs were within 1.1 Gy. For most structures, the difference in clinical planning criteria satisfaction between the clinical and inverse plans was at most 1.4%. For structures where the two plans differed by more than 1.4% in planning criteria satisfaction, the difference in average criterion violation was less than 0.5 Gy. Overall, the inverse plans were very similar to the clinical plans. Compared with a previous inverse optimization method from the literature, our new inverse plans typically satisfied the same or more clinical criteria, and had consistently lower fluence heterogeneity. Overall, this paper demonstrates that DVHs, which are essentially summary statistics, provide sufficient information to estimate objective function weights that result in high quality treatment plans. However, as with any summary statistic that compresses three-dimensional dose information, care must be taken to avoid generating plans with undesirable features such as hotspots; our computational results suggest that such undesirable spatial features were uncommon. Our IO-based approach can be integrated into the current clinical planning paradigm to better initialize the planning process and improve planning efficiency. It could also be embedded in a knowledge-based planning or adaptive radiation therapy framework to

  12. Inverse optimization of objective function weights for treatment planning using clinical dose-volume histograms.

    PubMed

    Babier, Aaron; Boutilier, Justin J; Sharpe, Michael B; McNiven, Andrea L; Chan, Timothy C Y

    2018-05-10

    We developed and evaluated a novel inverse optimization (IO) model to estimate objective function weights from clinical dose-volume histograms (DVHs). These weights were used to solve a treatment planning problem to generate 'inverse plans' that had similar DVHs to the original clinical DVHs. Our methodology was applied to 217 clinical head and neck cancer treatment plans that were previously delivered at Princess Margaret Cancer Centre in Canada. Inverse plan DVHs were compared to the clinical DVHs using objective function values, dose-volume differences, and frequency of clinical planning criteria satisfaction. Median differences between the clinical and inverse DVHs were within 1.1 Gy. For most structures, the difference in clinical planning criteria satisfaction between the clinical and inverse plans was at most 1.4%. For structures where the two plans differed by more than 1.4% in planning criteria satisfaction, the difference in average criterion violation was less than 0.5 Gy. Overall, the inverse plans were very similar to the clinical plans. Compared with a previous inverse optimization method from the literature, our new inverse plans typically satisfied the same or more clinical criteria, and had consistently lower fluence heterogeneity. Overall, this paper demonstrates that DVHs, which are essentially summary statistics, provide sufficient information to estimate objective function weights that result in high quality treatment plans. However, as with any summary statistic that compresses three-dimensional dose information, care must be taken to avoid generating plans with undesirable features such as hotspots; our computational results suggest that such undesirable spatial features were uncommon. Our IO-based approach can be integrated into the current clinical planning paradigm to better initialize the planning process and improve planning efficiency. It could also be embedded in a knowledge-based planning or adaptive radiation therapy framework to

  13. Optimal data systems: the future of clinical predictions and decision support.

    PubMed

    Celi, Leo A; Csete, Marie; Stone, David

    2014-10-01

    The purpose of the review is to describe the evolving concept and role of data as it relates to clinical predictions and decision-making. Critical care medicine is, as an especially data-rich specialty, becoming acutely cognizant not only of its historic deficits in data utilization but also of its enormous potential for capturing, mining, and leveraging such data into well-designed decision support modalities as well as the formulation of robust best practices. Modern electronic medical records create an opportunity to design complete and functional data systems that can support clinical care to a degree never seen before. Such systems are often referred to as 'data-driven,' but a better term is 'optimal data systems' (ODS). Here we discuss basic features of an ODS and its benefits, including the potential to transform clinical prediction and decision support.

  14. Optimizing Perioperative Decision Making: Improved Information for Clinical Workflow Planning

    PubMed Central

    Doebbeling, Bradley N.; Burton, Matthew M.; Wiebke, Eric A.; Miller, Spencer; Baxter, Laurence; Miller, Donald; Alvarez, Jorge; Pekny, Joseph

    2012-01-01

    Perioperative care is complex and involves multiple interconnected subsystems. Delayed starts, prolonged cases and overtime are common. Surgical procedures account for 40–70% of hospital revenues and 30–40% of total costs. Most planning and scheduling in healthcare is done without modern planning tools, which have potential for improving access by assisting in operations planning support. We identified key planning scenarios of interest to perioperative leaders, in order to examine the feasibility of applying combinatorial optimization software solving some of those planning issues in the operative setting. Perioperative leaders desire a broad range of tools for planning and assessing alternate solutions. Our modeled solutions generated feasible solutions that varied as expected, based on resource and policy assumptions and found better utilization of scarce resources. Combinatorial optimization modeling can effectively evaluate alternatives to support key decisions for planning clinical workflow and improving care efficiency and satisfaction. PMID:23304284

  15. Optimizing perioperative decision making: improved information for clinical workflow planning.

    PubMed

    Doebbeling, Bradley N; Burton, Matthew M; Wiebke, Eric A; Miller, Spencer; Baxter, Laurence; Miller, Donald; Alvarez, Jorge; Pekny, Joseph

    2012-01-01

    Perioperative care is complex and involves multiple interconnected subsystems. Delayed starts, prolonged cases and overtime are common. Surgical procedures account for 40-70% of hospital revenues and 30-40% of total costs. Most planning and scheduling in healthcare is done without modern planning tools, which have potential for improving access by assisting in operations planning support. We identified key planning scenarios of interest to perioperative leaders, in order to examine the feasibility of applying combinatorial optimization software solving some of those planning issues in the operative setting. Perioperative leaders desire a broad range of tools for planning and assessing alternate solutions. Our modeled solutions generated feasible solutions that varied as expected, based on resource and policy assumptions and found better utilization of scarce resources. Combinatorial optimization modeling can effectively evaluate alternatives to support key decisions for planning clinical workflow and improving care efficiency and satisfaction.

  16. Using dental care resources optimally: quality-efficiency trade-offs in a competitive private market.

    PubMed

    Prasad, Banuru Muralidhara; Varatharajan, D

    2011-01-01

    Modern lifestyle changes led to increased dental care needs in India. Consequently, there has been a sharp rise in dentist numbers. Karnataka state alone produces 2,500 dentists annually, who are engaged in the non-government sector owing to inadequate public sector opportunities. This article aims to assess Karnataka private dental clinic quality and efficiency. Dentists were interviewed using a close-ended, structured interview schedule and their clinics were assessed using a checklist adopted from guidelines for providing machinery and equipment under the National Oral Health Care Programme (NOHCP). Dental "hotel" and clinical quality were scored based on this checklist. Clinical quality was "excellent" in 12 per cent of clinics and poor in 49 per cent. Clinics with better infrastructure charged higher price (p < 0.05). Multi-chair clinics charging fixed rates were high (81 per cent). According to 59.5 per cent of dentists, competition did not improve quality while 27 per cent felt that competition increased price, not quality. About 30.9 per cent of the poor quality clinics, 41 per cent average quality clinics and 26 per cent good quality clinics were technically efficient. The multi chair clinics offered better quality at higher prices and single chair clinics provided poorer quality at lower prices. In other words, they had a sub-optimal price-quality mix. Therefore, there is a need to regulate price and quality in all clinics to arrive at an optimal price-quality mix so that clients are not overburdened financially even while receiving good quality dental care. The article advocates that resources are used optimally as a way to achieve value for money and to achieve break-even points thereby providing quality care in a competitive market. Factors that influence dental practitioner behaviour are evaluated.

  17. Robust Airfoil Optimization to Achieve Consistent Drag Reduction Over a Mach Range

    NASA Technical Reports Server (NTRS)

    Li, Wu; Huyse, Luc; Padula, Sharon; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    We prove mathematically that in order to avoid point-optimization at the sampled design points for multipoint airfoil optimization, the number of design points must be greater than the number of free-design variables. To overcome point-optimization at the sampled design points, a robust airfoil optimization method (called the profile optimization method) is developed and analyzed. This optimization method aims at a consistent drag reduction over a given Mach range and has three advantages: (a) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (b) there is no random airfoil shape distortion for any iterate it generates, and (c) it allows a designer to make a trade-off between a truly optimized airfoil and the amount of computing time consumed. For illustration purposes, we use the profile optimization method to solve a lift-constrained drag minimization problem for 2-D airfoil in Euler flow with 20 free-design variables. A comparison with other airfoil optimization methods is also included.

  18. Statistical model based iterative reconstruction in clinical CT systems. Part III. Task-based kV/mAs optimization for radiation dose reduction

    PubMed Central

    Li, Ke; Gomez-Cardona, Daniel; Hsieh, Jiang; Lubner, Meghan G.; Pickhardt, Perry J.; Chen, Guang-Hong

    2015-01-01

    prescribed detectability level of d℞′=16 were determined. As another example, the optimal kV and mA for an 8 mm hyperattenuating liver lesion detection task were also measured using the developed framework. Both an in vivo animal and human subject study were used as demonstrations of how the developed framework can be applied to the clinical work flow. Results: For the first task, the optimal kV and mAs were measured to be 100 and 500, respectively, for FBP, which corresponded to a dose level of 24 mGy. In comparison, the optimal kV and mAs for MBIR were 80 and 150, respectively, which corresponded to a dose level of 4 mGy. The topographies of the iso-d′ map and the iso-CNR map were the same for FBP; thus, the use of d′- and CNR-based optimization methods generated the same results for FBP. However, the topographies of the iso-d′ and iso-CNR map were significantly different in MBIR; the CNR-based method overestimated the performance of MBIR, predicting an overly aggressive dose reduction factor. For the second task, the developed framework generated the following optimization results: for FBP, kV = 140, mA = 350, dose = 37.5 mGy; for MBIR, kV = 120, mA = 250, dose = 18.8 mGy. Again, the CNR-based method overestimated the performance of MBIR. Results of the preliminary in vivo studies were consistent with those of the phantom experiments. Conclusions: A unified and task-driven kV/mAs optimization framework has been developed in this work. The framework is applicable to both linear and nonlinear CT systems such as those using the MBIR method. As expected, the developed framework can be reduced to the conventional CNR-based kV/mAs optimization frameworks if the system is linear. For MBIR-based nonlinear CT systems, however, the developed task-based kV/mAs optimization framework is needed to achieve the maximal dose reduction while maintaining the desired diagnostic performance. PMID:26328971

  19. Economic comparison of common treatment protocols and J5 vaccination for clinical mastitis in dairy herds using optimized culling decisions.

    PubMed

    Kessels, J A; Cha, E; Johnson, S K; Welcome, F L; Kristensen, A R; Gröhn, Y T

    2016-05-01

    This study used an existing dynamic optimization model to compare costs of common treatment protocols and J5 vaccination for clinical mastitis in US dairy herds. Clinical mastitis is an infection of the mammary gland causing major economic losses in dairy herds due to reduced milk production, reduced conception, and increased risk of mortality and culling for infected cows. Treatment protocols were developed to reflect common practices in dairy herds. These included targeted therapy following pathogen identification, and therapy without pathogen identification using a broad-spectrum antimicrobial or treating with the cheapest treatment option. The cost-benefit of J5 vaccination was also estimated. Effects of treatment were accounted for as changes in treatment costs, milk loss due to mastitis, milk discarded due to treatment, and mortality. Following ineffective treatments, secondary decisions included extending the current treatment, alternative treatment, discontinuing treatment, and pathogen identification followed by recommended treatment. Average net returns for treatment protocols and vaccination were generated using an existing dynamic programming model. This model incorporates cow and pathogen characteristics to optimize management decisions to treat, inseminate, or cull cows. Of the treatment protocols where 100% of cows received recommended treatment, pathogen-specific identification followed by recommended therapy yielded the highest average net returns per cow per year. Out of all treatment scenarios, the highest net returns were achieved with selecting the cheapest treatment option and discontinuing treatment, or alternate treatment with a similar spectrum therapy; however, this may not account for the full consequences of giving nonrecommended therapies to cows with clinical mastitis. Vaccination increased average net returns in all scenarios. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. A free gingival impression for achieving optimal interdental papilla height: a case report.

    PubMed

    Nozawa, Takeshi; Kitami, Norikazu; Tsurumaki, Shunzo; Enomoto, Hiroaki; Ito, Koichi

    2011-02-01

    Failure to tend to inadequate crown contours in the crown trial can cause long-term disharmony of the free gingival form. This case report describes a novel technique for free gingival impression from a final provisional restoration to a zirconia crown. Two die casts were manufactured from a silicone impression. The first die cast was for the zirconia crown; the second die cast was for the final provisional restoration and the provisionalized transfer coping. A free gingival impression was taken using a provisionalized transfer coping, and a soft gingival model was manufactured. The proximal contact position was managed using the predicted convex curve of the interdental papillae. One year after zirconia crown placement, no inflammation was observed around the pyramidal interdental papillae, and symmetric interdental papilla heights were evident. A free gingival impression using a two die-cast technique appears to be useful for achieving optimal interdental papilla height.

  1. SU-E-I-43: Pediatric CT Dose and Image Quality Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, G; Singh, R

    2014-06-01

    Purpose: To design an approach to optimize radiation dose and image quality for pediatric CT imaging, and to evaluate expected performance. Methods: A methodology was designed to quantify relative image quality as a function of CT image acquisition parameters. Image contrast and image noise were used to indicate expected conspicuity of objects, and a wide-cone system was used to minimize scan time for motion avoidance. A decision framework was designed to select acquisition parameters as a weighted combination of image quality and dose. Phantom tests were used to acquire images at multiple techniques to demonstrate expected contrast, noise and dose.more » Anthropomorphic phantoms with contrast inserts were imaged on a 160mm CT system with tube voltage capabilities as low as 70kVp. Previously acquired clinical images were used in conjunction with simulation tools to emulate images at different tube voltages and currents to assess human observer preferences. Results: Examination of image contrast, noise, dose and tube/generator capabilities indicates a clinical task and object-size dependent optimization. Phantom experiments confirm that system modeling can be used to achieve the desired image quality and noise performance. Observer studies indicate that clinical utilization of this optimization requires a modified approach to achieve the desired performance. Conclusion: This work indicates the potential to optimize radiation dose and image quality for pediatric CT imaging. In addition, the methodology can be used in an automated parameter selection feature that can suggest techniques given a limited number of user inputs. G Stevens and R Singh are employees of GE Healthcare.« less

  2. Optimizing the Usability of Brain-Computer Interfaces.

    PubMed

    Zhang, Yin; Chase, Steve M

    2018-05-01

    Brain-computer interfaces are in the process of moving from the laboratory to the clinic. These devices act by reading neural activity and using it to directly control a device, such as a cursor on a computer screen. An open question in the field is how to map neural activity to device movement in order to achieve the most proficient control. This question is complicated by the fact that learning, especially the long-term skill learning that accompanies weeks of practice, can allow subjects to improve performance over time. Typical approaches to this problem attempt to maximize the biomimetic properties of the device in order to limit the need for extensive training. However, it is unclear if this approach would ultimately be superior to performance that might be achieved with a nonbiomimetic device once the subject has engaged in extended practice and learned how to use it. Here we approach this problem using ideas from optimal control theory. Under the assumption that the brain acts as an optimal controller, we present a formal definition of the usability of a device and show that the optimal postlearning mapping can be written as the solution of a constrained optimization problem. We then derive the optimal mappings for particular cases common to most brain-computer interfaces. Our results suggest that the common approach of creating biomimetic interfaces may not be optimal when learning is taken into account. More broadly, our method provides a blueprint for optimal device design in general control-theoretic contexts.

  3. The Effect of Anxiety, Depression, and Optimism on Postoperative Satisfaction and Clinical Outcomes in Lumbar Spinal Stenosis and Degenerative Spondylolisthesis Patients: Cohort Study.

    PubMed

    Lee, Jaewon; Kim, Hong-Sik; Shim, Kyu-Dong; Park, Ye-Soo

    2017-06-01

    The aim of this study is to evaluate the effect of depression, anxiety, and optimism on postoperative satisfaction and clinical outcomes in patients who underwent less than two-level posterior instrumented fusions for lumbar spinal stenosis and degenerative spondylolisthesis. Preoperative psychological status of subjects, such as depression, anxiety, and optimism, was evaluated using the Hospital Anxiety and Depression Scale (HADS) and the Revised Life Orientation Test (LOT-R). Clinical evaluation was determined by measuring changes in a visual analogue scale (VAS) and the Oswestry Disability Index (ODI) before and after surgery. Postoperative satisfaction of subjects assessed using the North American Spine Society lumbar spine questionnaire was comparatively analyzed against the preoperative psychological status. The correlation between patient's preoperative psychological status (depression, anxiety, and optimism) and clinical outcomes (VAS and ODI) was evaluated. VAS and ODI scores significantly decreased after surgery ( p < 0.001), suggesting clinically favorable outcomes. Preoperative psychological status of patients (anxiety, depression, and optimism) was not related to the degree of improvement in clinical outcomes (VAS and ODI) after surgery. However, postoperative satisfaction was moderately correlated with optimism. Anxiety and optimism were more correlated with patient satisfaction than clinical outcomes. Accordingly, the surgeon can predict postoperative satisfaction of patients based on careful evaluation of psychological status before surgery.

  4. Engineering of Fc Fragments with Optimized Physicochemical Properties Implying Improvement of Clinical Potentials for Fc-Based Therapeutics

    PubMed Central

    Yang, Chunpeng; Gao, Xinyu; Gong, Rui

    2018-01-01

    Therapeutic monoclonal antibodies and Fc-fusion proteins are successfully used in treatment of various diseases mainly including cancer, immune disease, and viral infection, which belong to the Fc-based therapeutics. In recent years, engineered Fc-derived antibody domains have also shown potential for Fc-based therapeutics. To increase the druggability of Fc-based therapeutic candidates, many efforts have been made in optimizing physicochemical properties and functions mediated by Fc fragment. The desired result is that we can simultaneously obtain Fc variants with increased physicochemical properties in vitro and capacity of mediating appropriate functions in vivo. However, changes of physicochemical properties of Fc may result in alternation of Fc-mediated functions and vice versa, which leads to undesired outcomes for further development of Fc-based therapeutics. Therefore, whether modified Fc fragments are suitable for achievement of expected clinical results or not needs to be seriously considered. Now, this question comes to be noticed and should be figured out to make better translation from the results of laboratory into clinical applications. In this review, we summarize different strategies on engineering physicochemical properties of Fc, and preliminarily elucidate the relationships between modified Fc in vitro and the subsequent therapeutic influence in vivo. PMID:29375551

  5. Role of clinical questionnaires in optimizing everyday care of chronic obstructive pulmonary disease

    PubMed Central

    Jones, Paul W; Price, David; van der Molen, Thys

    2011-01-01

    Chronic obstructive pulmonary disease (COPD) is a leading cause of disability in all its stages, and death in patients with moderate or severe obstruction. At present, COPD is suboptimally managed; current health is often not measured properly and hardly taken into account in management plans, and the future risk for patients with regard to health status and quality of life is not being evaluated. This review addresses the effect of COPD on the lives of patients and examines ways in which existing assessment tools meet physicians’ needs for a standardized, simple method to measure consistently the full impact of COPD on patients in routine clinical practice. Current assessment of COPD severity tends to focus on airflow limitation, but this does not capture the full impact of the disease and is not well correlated with patient perception of symptoms and health-related quality of life. Qualitative studies have demonstrated that patients usually consider COPD impact in terms of frequency and severity of symptoms, and physical and emotional wellbeing. However, patients often have difficulty expressing their disease burden and physicians generally have insufficient time to collect this information. Therefore, it is important that methods are implemented to help generate a more complete understanding of the impact of COPD. This can be achieved most efficiently using a quick, reliable, and standardized measure of disease impact, such as a short questionnaire that can be applied in daily clinical practice. Questionnaires are precision instruments that contribute sensitive and specific information, and can potentially help physicians provide optimal care for patients with COPD. Two short, easy-to-use, specific measures, ie, the COPD Assessment Test and the Clinical COPD Questionnaire, enable physicians to assess patients’ health status accurately and improve disease management. Such questionnaires provide important measurements that can assist primary care physicians to

  6. Teachers' Autonomy Support, Autonomy Suppression and Conditional Negative Regard as Predictors of Optimal Learning Experience among High-Achieving Bedouin Students

    ERIC Educational Resources Information Center

    Kaplan, Haya

    2018-01-01

    The study is based on self-determination theory and focuses on the motivation of high-achieving Bedouin students who belong to a hierarchical-collectivist society. The study focuses on the question: What are the relations between teachers' autonomy support and control and an optimal learning experience among students? The study is unique in its…

  7. Achieving Conservation when Opportunity Costs Are High: Optimizing Reserve Design in Alberta's Oil Sands Region

    PubMed Central

    Schneider, Richard R.; Hauer, Grant; Farr, Dan; Adamowicz, W. L.; Boutin, Stan

    2011-01-01

    Recent studies have shown that conservation gains can be achieved when the spatial distributions of biological benefits and economic costs are incorporated in the conservation planning process. Using Alberta, Canada, as a case study we apply these techniques in the context of coarse-filter reserve design. Because targets for ecosystem representation and other coarse-filter design elements are difficult to define objectively we use a trade-off analysis to systematically explore the relationship between conservation targets and economic opportunity costs. We use the Marxan conservation planning software to generate reserve designs at each level of conservation target to ensure that our quantification of conservation and economic outcomes represents the optimal allocation of resources in each case. Opportunity cost is most affected by the ecological representation target and this relationship is nonlinear. Although petroleum resources are present throughout most of Alberta, and include highly valuable oil sands deposits, our analysis indicates that over 30% of public lands could be protected while maintaining access to more than 97% of the value of the region's resources. Our case study demonstrates that optimal resource allocation can be usefully employed to support strategic decision making in the context of land-use planning, even when conservation targets are not well defined. PMID:21858046

  8. Optimal management of Alzheimer’s disease patients: Clinical guidelines and family advice

    PubMed Central

    Haberstroh, Julia; Hampel, Harald; Pantel, Johannes

    2010-01-01

    Family members provide most of the patient care and administer most of the treatments to patients with Alzheimer’s disease (AD). Family caregivers have an important impact on clinical outcomes, such as quality of life (QoL). As a consequence of this service, family caregivers suffer high rates of psychological and physical illness as well as social and financial burdens. Hence, it is important to involve family caregivers in multimodal treatment settings and provide interventions that are both suitable and specifically tailored to their needs. In recent years, several clinical guidelines have been presented worldwide for evidence-based treatment of AD and other forms of dementia. Most of these guidelines have considered family advice as integral to the optimal clinical management of AD. This article reviews current and internationally relevant guidelines with emphasis on recommendations concerning family advice. PMID:20520788

  9. Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging

    PubMed Central

    Van Audenhaege, Karen; Van Holen, Roel; Vandenberghe, Stefaan; Vanhove, Christian; Metzler, Scott D.; Moore, Stephen C.

    2015-01-01

    In single photon emission computed tomography, the choice of the collimator has a major impact on the sensitivity and resolution of the system. Traditional parallel-hole and fan-beam collimators used in clinical practice, for example, have a relatively poor sensitivity and subcentimeter spatial resolution, while in small-animal imaging, pinhole collimators are used to obtain submillimeter resolution and multiple pinholes are often combined to increase sensitivity. This paper reviews methods for production, sensitivity maximization, and task-based optimization of collimation for both clinical and preclinical imaging applications. New opportunities for improved collimation are now arising primarily because of (i) new collimator-production techniques and (ii) detectors with improved intrinsic spatial resolution that have recently become available. These new technologies are expected to impact the design of collimators in the future. The authors also discuss concepts like septal penetration, high-resolution applications, multiplexing, sampling completeness, and adaptive systems, and the authors conclude with an example of an optimization study for a parallel-hole, fan-beam, cone-beam, and multiple-pinhole collimator for different applications. PMID:26233207

  10. Learning optimal embedded cascades.

    PubMed

    Saberian, Mohammad Javad; Vasconcelos, Nuno

    2012-10-01

    The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.

  11. Optimizing the Use of Aripiprazole Augmentation in the Treatment of Major Depressive Disorder: From Clinical Trials to Clinical Practice

    PubMed Central

    Han, Changsu; Wang, Sheng-Min; Lee, Soo-Jung; Jun, Tae-Youn

    2015-01-01

    Major depressive disorder (MDD) is a recurrent, chronic, and devastating disorder leading to serious impairment in functional capacity as well as increasing public health care costs. In the previous decade, switching therapy and dose adjustment of ongoing antidepressants was the most frequently chosen subsequent treatment option for MDD. However, such recommendations were not based on firmly proven efficacy data from well-designed, placebo-controlled, randomized clinical trials (RCTs) but on practical grounds and clinical reasoning. Aripiprazole augmentation has been dramatically increasing in clinical practice owing to its unique action mechanisms as well as proven efficacy and safety from adequately powered and well-controlled RCTs. Despite the increased use of aripiprazole in depression, limited clinical information and knowledge interfere with proper and efficient use of aripiprazole augmentation for MDD. The objective of the present review was to enhance clinicians' current understanding of aripiprazole augmentation and how to optimize the use of this therapy in the treatment of MDD. PMID:26306301

  12. Clinical decision tool for optimal delivery of liver stereotactic body radiation therapy: Photons versus protons.

    PubMed

    Gandhi, Saumil J; Liang, Xing; Ding, Xuanfeng; Zhu, Timothy C; Ben-Josef, Edgar; Plastaras, John P; Metz, James M; Both, Stefan; Apisarnthanarax, Smith

    2015-01-01

    Stereotactic body radiation therapy (SBRT) for treatment of liver tumors is often limited by liver dose constraints. Protons offer potential for more liver sparing, but clinical situations in which protons may be superior to photons are not well described. We developed and validated a treatment decision model to determine whether liver tumors of certain sizes and locations are more suited for photon versus proton SBRT. Six spherical mock tumors from 1 to 6 cm in diameter were contoured on computed tomography images of 1 patient at 4 locations: dome, caudal, left medial, and central. Photon and proton plans were generated to deliver 50 Gy in 5 fractions to each tumor and optimized to deliver equivalent target coverage and maximal liver sparing. Using these plans, we developed a hypothesis-generating model to predict the optimal modality for maximal liver sparing based on tumor size and location. We then validated this model in 10 patients with liver tumors. Protons spared significantly more liver than photons for dome or central tumors ≥3 cm (dome: 134 ± 21 cm(3), P = .03; central: 108 ± 4 cm(3), P = .01). Our model correctly predicted the optimal SBRT modality for all 10 patients. For patients with dome or central tumors ≥3 cm, protons significantly increased the volume of liver spared (176 ± 21 cm(3), P = .01) and decreased the mean liver dose (8.4 vs 12.2 Gy, P = .01) while offering no significant advantage for tumors <3 cm at any location or for caudal and left medial tumors of any size. When feasible, protons should be considered as the radiation modality of choice for dome and central tumors >3 cm to allow maximal liver sparing and potentially reduce radiation toxicity. Protons should also be considered for any tumor >5 cm if photon plans fail to achieve adequate coverage or exceed the mean liver threshold. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  13. Insights into the Functional Anatomy Behind the PREEMPT Injection Paradigm: Guidance on Achieving Optimal Outcomes.

    PubMed

    Blumenfeld, Andrew M; Silberstein, Stephen D; Dodick, David W; Aurora, Sheena K; Brin, Mitchell F; Binder, William J

    2017-05-01

    To provide clinically relevant insights on the identification of the muscles and techniques involved in the safe and effective use of onabotulinumtoxinA for chronic migraine prophylaxis. Although guidance on the use of onabotulinumtoxinA for chronic migraine is available, based on the Phase III Research Evaluating Migraine Prophylaxis Therapy (PREEMPT) clinical program, clinical experience has shown that insufficient understanding of the anatomy and function of the head and neck muscles may lead to undesirable outcomes and suboptimal efficacy. Each muscle involved in the standardized PREEMPT injection paradigm is reviewed with a thorough description of each muscle's anatomy (ie, muscle description and location, innervation, vascular supply) and function. Key insights based on clinical experience are also provided to help improve outcomes. The identification of the muscles in the PREEMPT injection paradigm should be based on each patient's unique anatomy and injections should be administered using the advised techniques. A thorough examination of the patient prior to treatment is also critical to determine if any preexisting conditions may increase the risk for unwanted outcomes and appropriate expectations should be communicated. Thorough knowledge of the functional anatomy of the muscles involved in the standardized PREEMPT injection paradigm is critical to achieve the efficacy and safety observed in clinical trials. In addition, it is important to assess a patient's baseline condition to anticipate the risk for unwanted outcomes that may result from treatment. © 2017 Allergan plc. Headache published by Wiley Periodicals, Inc. on behalf of American Headache Society.

  14. Insights into the Functional Anatomy Behind the PREEMPT Injection Paradigm: Guidance on Achieving Optimal Outcomes

    PubMed Central

    Silberstein, Stephen D.; Dodick, David W.; Aurora, Sheena K.; Brin, Mitchell F.; Binder, William J.

    2017-01-01

    Objective To provide clinically relevant insights on the identification of the muscles and techniques involved in the safe and effective use of onabotulinumtoxinA for chronic migraine prophylaxis. Background Although guidance on the use of onabotulinumtoxinA for chronic migraine is available, based on the Phase III Research Evaluating Migraine Prophylaxis Therapy (PREEMPT) clinical program, clinical experience has shown that insufficient understanding of the anatomy and function of the head and neck muscles may lead to undesirable outcomes and suboptimal efficacy. Design/Methods Each muscle involved in the standardized PREEMPT injection paradigm is reviewed with a thorough description of each muscle's anatomy (ie, muscle description and location, innervation, vascular supply) and function. Key insights based on clinical experience are also provided to help improve outcomes. Results The identification of the muscles in the PREEMPT injection paradigm should be based on each patient's unique anatomy and injections should be administered using the advised techniques. A thorough examination of the patient prior to treatment is also critical to determine if any preexisting conditions may increase the risk for unwanted outcomes and appropriate expectations should be communicated. Conclusions Thorough knowledge of the functional anatomy of the muscles involved in the standardized PREEMPT injection paradigm is critical to achieve the efficacy and safety observed in clinical trials. In addition, it is important to assess a patient's baseline condition to anticipate the risk for unwanted outcomes that may result from treatment. PMID:28387038

  15. Clinically Effective Treatment of Fibromyalgia Pain With High-Definition Transcranial Direct Current Stimulation: Phase II Open-Label Dose Optimization.

    PubMed

    Castillo-Saavedra, Laura; Gebodh, Nigel; Bikson, Marom; Diaz-Cruz, Camilo; Brandao, Rivail; Coutinho, Livia; Truong, Dennis; Datta, Abhishek; Shani-Hershkovich, Revital; Weiss, Michal; Laufer, Ilan; Reches, Amit; Peremen, Ziv; Geva, Amir; Parra, Lucas C; Fregni, Felipe

    2016-01-01

    Despite promising preliminary results in treating fibromyalgia (FM) pain, no neuromodulation technique has been adopted in clinical practice because of limited efficacy, low response rate, or poor tolerability. This phase II open-label trial aims to define a methodology for a clinically effective treatment of pain in FM by establishing treatment protocols and screening procedures to maximize efficacy and response rate. High-definition transcranial direct current stimulation (HD-tDCS) provides targeted subthreshold brain stimulation, combining tolerability with specificity. We aimed to establish the number of HD-tDCS sessions required to achieve a 50% FM pain reduction, and to characterize the biometrics of the response, including brain network activation pain scores of contact heat-evoked potentials. We report a clinically significant benefit of a 50% pain reduction in half (n = 7) of the patients (N = 14), with responders and nonresponders alike benefiting from a cumulative effect of treatment, reflected in significant pain reduction (P = .035) as well as improved quality of life (P = .001) over time. We also report an aggregate 6-week response rate of 50% of patients and estimate 15 as the median number of HD-tDCS sessions to reach clinically meaningful outcomes. The methodology for a pivotal FM neuromodulation clinical trial with individualized treatment is thus supported. Registered in Clinicaltrials.gov under registry number NCT01842009. In this article, an optimized protocol for the treatment of fibromyalgia pain with targeted subthreshold brain stimulation using high-definition transcranial direct current stimulation is outlined. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  16. Achieving Optimal Privacy in Trust-Aware Social Recommender Systems

    NASA Astrophysics Data System (ADS)

    Dokoohaki, Nima; Kaleli, Cihan; Polat, Huseyin; Matskin, Mihhail

    Collaborative filtering (CF) recommenders are subject to numerous shortcomings such as centralized processing, vulnerability to shilling attacks, and most important of all privacy. To overcome these obstacles, researchers proposed for utilization of interpersonal trust between users, to alleviate many of these crucial shortcomings. Till now, attention has been mainly paid to strong points about trust-aware recommenders such as alleviating profile sparsity or calculation cost efficiency, while least attention has been paid on investigating the notion of privacy surrounding the disclosure of individual ratings and most importantly protection of trust computation across social networks forming the backbone of these systems. To contribute to addressing problem of privacy in trust-aware recommenders, within this paper, first we introduce a framework for enabling privacy-preserving trust-aware recommendation generation. While trust mechanism aims at elevating recommender's accuracy, to preserve privacy, accuracy of the system needs to be decreased. Since within this context, privacy and accuracy are conflicting goals we show that a Pareto set can be found as an optimal setting for both privacy-preserving and trust-enabling mechanisms. We show that this Pareto set, when used as the configuration for measuring the accuracy of base collaborative filtering engine, yields an optimized tradeoff between conflicting goals of privacy and accuracy. We prove this concept along with applicability of our framework by experimenting with accuracy and privacy factors, and we show through experiment how such optimal set can be inferred.

  17. Optimal Flow.

    ERIC Educational Resources Information Center

    Norman, Donald A.

    1996-01-01

    Discusses the educational applications of experimental psychologist Mihaly Csikszentmihalyi's theory of peak experience, or optimal flow. Optimal flow refers to the receptive state people achieve when they are engaged in interesting and challenging activity. Includes an insightful critique of multimedia instruction from this perspective. (MJP)

  18. Appraising Reading Achievement.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    To determine quality sequence in pupil progress, evaluation approaches need to be used which guide the teacher to assist learners to attain optimally. Teachers must use a variety of procedures to appraise student achievement in reading, because no one approach is adequate. Appraisal approaches might include: (1) observation and subsequent…

  19. Are Adults Diagnosed with Diabetes achieving the American Diabetes Association Clinical Practice Recommendations?

    PubMed Central

    Pérez, Cynthia M.; Febo-Vázquez, Isaedmarie; Guzmán, Manuel; Ortiz, Ana Patricia; Suárez, Erick

    2012-01-01

    Objective This study assessed the proportion of adults with previously diagnosed diabetes mellitus (DM) who met selected preventive practices and treatment goals according to the American Diabetes Association (ADA) standards of medical care. Methods A secondary analysis of data collected for a previous epidemiologic study that used a probability cluster design to select 859 persons aged 21–79 years in the San Juan metropolitan area was undertaken. This study focused on 136 (15.8%) adults who self-reported DM. The Standards of Medical Care in Diabetes published by the ADA in 2011 were used to determine the proportion of adults achieving selected clinical practice recommendations. Results Less than half of adults achieved recommended treatment goals for LDL-cholesterol (47.8%), HDL-cholesterol (44.1%), blood pressure (41.2%) and HbA1c (28.7%). The percentage of adults achieving recommended levels of HbA1c, blood pressure and LDL-cholesterol simultaneously was 6.6%; the percentage achieving HbA1c, blood pressure, LDL-cholesterol, HDL-cholesterol, triglycerides and albumin-to-creatinine ratio target levels was only 2.2%. More than half (60.2%) reported daily self-monitoring of foot ulcers and HbA1c testing at least twice over the past year (52.3%). However, less than half reported annual dilated eye examination (49.2%), annual comprehensive foot examination (43.8%), daily self-monitoring blood glucose (37.5%), moderate or vigorous physical activity (33.8%), and self-management DM education (28.9%). Conclusion This study showed that a substantial proportion of adults with DM did not achieve ADA recommendations on selected preventive practices and treatment goals. Strategies to improve DM medical care and surveillance of preventive-care practices and treatment goals among affected individuals are essential for planning further initiatives that contribute to reduce the burden of DM complications. PMID:22432404

  20. Optimizing the interpretation of CT for appendicitis: modeling health utilities for clinical practice.

    PubMed

    Blackmore, C Craig; Terasawa, Teruhiko

    2006-02-01

    Error in radiology can be reduced by standardizing the interpretation of imaging studies to the optimum sensitivity and specificity. In this report, the authors demonstrate how the optimal interpretation of appendiceal computed tomography (CT) can be determined and how it varies in different clinical scenarios. Utility analysis and receiver operating characteristic (ROC) curve modeling were used to determine the trade-off between false-positive and false-negative test results to determine the optimal operating point on the ROC curve for the interpretation of appendicitis CT. Modeling was based on a previous meta-analysis for the accuracy of CT and on literature estimates of the utilities of various health states. The posttest probability of appendicitis was derived using Bayes's theorem. At a low prevalence of disease (screening), appendicitis CT should be interpreted at high specificity (97.7%), even at the expense of lower sensitivity (75%). Conversely, at a high probability of disease, high sensitivity (97.4%) is preferred (specificity 77.8%). When the clinical diagnosis of appendicitis is equivocal, CT interpretation should emphasize both sensitivity and specificity (sensitivity 92.3%, specificity 91.5%). Radiologists can potentially decrease medical error and improve patient health by varying the interpretation of appendiceal CT on the basis of the clinical probability of appendicitis. This report is an example of how utility analysis can be used to guide radiologists in the interpretation of imaging studies and provide guidance on appropriate targets for the standardization of interpretation.

  1. Optimization of protocol design: a path to efficient, lower cost clinical trial execution

    PubMed Central

    Malikova, Marina A

    2016-01-01

    Managing clinical trials requires strategic planning and efficient execution. In order to achieve a timely delivery of important clinical trials’ outcomes, it is useful to establish standardized trial management guidelines and develop robust scoring methodology for evaluation of study protocol complexity. This review will explore the challenges clinical teams face in developing protocols to ensure that the right patients are enrolled and the right data are collected to demonstrate that a drug is safe and efficacious, while managing study costs and study complexity based on proposed comprehensive scoring model. Key factors to consider when developing protocols and techniques to minimize complexity will be discussed. A methodology to identify processes at planning phase, approaches to increase fiscal return and mitigate fiscal compliance risk for clinical trials will be addressed. PMID:28031939

  2. The clinical benefit of cardiac resynchronization therapy optimization using a device-based hemodynamic sensor in a patient with dilated cardiomyopathy: a case report.

    PubMed

    Volpicelli, Mario; Covino, Gregorio; Capogrosso, Paolo

    2015-12-19

    Results on the evolution of the clinical status of patients undergoing cardiac resynchronization therapy with a defibrillator after automatic optimization of their cardiac resynchronization therapy are scarce. We observed a rapid and important change in the clinical status of our non-responding patient following activation of a sensor capable of weekly atrioventricular and interventricular delays' optimization. A 78-year-old Caucasian man presented with dilated cardiomyopathy, left bundle branch block, a left ventricular ejection fraction of 35 %, New York Heart Association class III/IV heart failure, and paroxysmal atrial fibrillation. Our patient was implanted with a cardiac resynchronization device with a defibrillator and the SonRtip atrial lead. Right ventricular and left ventricular leads were also implanted. Because of the recurrence of atrial fibrillation, the automatic optimization was set off at discharge. Consequently, the device did not optimize atrioventricular and interventricular delays (programming at discharge: 125 ms for the atrioventricular delay and 0 ms for the interventriculardelay). Our patient was treated with an anti-arrhythmic drug. Five months after implantation, his clinical status remained impaired (left ventricular ejection fraction = 30 %). The SonR signal amplitude had also decreased from 0.52 g to 0.29 g. Nevertheless, because our patient was no longer presenting with atrial fibrillation, the anti-arrhythmic treatment was stopped and the SonR optimization system was activated. After 2 months of automatic cardiac resynchronization therapy with defibrillator optimization, our patient's clinical status had significantly improved (left ventricular ejection fraction = 60 %, New York Heart Association class II) and the SonR signal amplitude had doubled shortly after the first weekly automatic optimization. In this non-responding patient, device-based automatic cardiac resynchronization therapy optimization was shown to significantly

  3. Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media

    NASA Astrophysics Data System (ADS)

    Li, Runze; Peng, Tong; Liang, Yansheng; Yang, Yanlong; Yao, Baoli; Yu, Xianghua; Min, Junwei; Lei, Ming; Yan, Shaohui; Zhang, Chunmin; Ye, Tong

    2017-10-01

    Focusing and imaging through scattering media has been proved possible with high resolution wavefront shaping. A completely scrambled scattering field can be corrected by applying a correction phase mask on a phase only spatial light modulator (SLM) and thereby the focusing quality can be improved. The correction phase is often found by global searching algorithms, among which Genetic Algorithm (GA) stands out for its parallel optimization process and high performance in noisy environment. However, the convergence of GA slows down gradually with the progression of optimization, causing the improvement factor of optimization to reach a plateau eventually. In this report, we propose an interleaved segment correction (ISC) method that can significantly boost the improvement factor with the same number of iterations comparing with the conventional all segment correction method. In the ISC method, all the phase segments are divided into a number of interleaved groups; GA optimization procedures are performed individually and sequentially among each group of segments. The final correction phase mask is formed by applying correction phases of all interleaved groups together on the SLM. The ISC method has been proved significantly useful in practice because of its ability to achieve better improvement factors when noise is present in the system. We have also demonstrated that the imaging quality is improved as better correction phases are found and applied on the SLM. Additionally, the ISC method lowers the demand of dynamic ranges of detection devices. The proposed method holds potential in applications, such as high-resolution imaging in deep tissue.

  4. Determination of the optimal sample size for a clinical trial accounting for the population size.

    PubMed

    Stallard, Nigel; Miller, Frank; Day, Simon; Hee, Siew Wan; Madan, Jason; Zohar, Sarah; Posch, Martin

    2017-07-01

    The problem of choosing a sample size for a clinical trial is a very common one. In some settings, such as rare diseases or other small populations, the large sample sizes usually associated with the standard frequentist approach may be infeasible, suggesting that the sample size chosen should reflect the size of the population under consideration. Incorporation of the population size is possible in a decision-theoretic approach either explicitly by assuming that the population size is fixed and known, or implicitly through geometric discounting of the gain from future patients reflecting the expected population size. This paper develops such approaches. Building on previous work, an asymptotic expression is derived for the sample size for single and two-arm clinical trials in the general case of a clinical trial with a primary endpoint with a distribution of one parameter exponential family form that optimizes a utility function that quantifies the cost and gain per patient as a continuous function of this parameter. It is shown that as the size of the population, N, or expected size, N∗ in the case of geometric discounting, becomes large, the optimal trial size is O(N1/2) or O(N∗1/2). The sample size obtained from the asymptotic expression is also compared with the exact optimal sample size in examples with responses with Bernoulli and Poisson distributions, showing that the asymptotic approximations can also be reasonable in relatively small sample sizes. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Clinical implementation of stereotaxic brain implant optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenow, U.F.; Wojcicka, J.B.

    1991-03-01

    This optimization method for stereotaxic brain implants is based on seed/strand configurations of the basic type developed for the National Cancer Institute (NCI) atlas of regular brain implants. Irregular target volume shapes are determined from delineation in a stack of contrast enhanced computed tomography scans. The neurosurgeon may then select up to ten directions, or entry points, of surgical approach of which the program finds the optimal one under the criterion of smallest target volume diameter. Target volume cross sections are then reconstructed in 5-mm-spaced planes perpendicular to the implantation direction defined by the entry point and the target volumemore » center. This information is used to define a closed line in an implant cross section along which peripheral seed strands are positioned and which has now an irregular shape. Optimization points are defined opposite peripheral seeds on the target volume surface to which the treatment dose rate is prescribed. Three different optimization algorithms are available: linear least-squares programming, quadratic programming with constraints, and a simplex method. The optimization routine is implemented into a commercial treatment planning system. It generates coordinate and source strength information of the optimized seed configurations for further dose rate distribution calculation with the treatment planning system, and also the coordinate settings for the stereotaxic Brown-Roberts-Wells (BRW) implantation device.« less

  6. Achieving low anastomotic leak rates utilizing clinical perfusion assessment.

    PubMed

    Kream, Jacob; Ludwig, Kirk A; Ridolfi, Timothy J; Peterson, Carrie Y

    2016-10-01

    Anastomotic leak after colorectal resection increases morbidity, mortality, and in the setting of cancer, increases recurrences rates and reduces survival odds. Recent reports suggest that fluorescence evaluation of perfusion after colorectal anastomosis creation is associated with low anastomotic leak rates (1.4%). The purpose of this work was to evaluate whether a similar low anastomotic leak rate after left-sided colorectal resections could be achieved using standard assessment of blood flow to the bowel ends. We performed a retrospective chart review at an academic tertiary referral center, evaluating 317 consecutive patients who underwent a pelvic anastomosis after sigmoid colectomy, left colectomy, or low anterior resection. All operations were performed by a single surgeon from March 2008 to January 2015 with only standard clinical measures used to assess perfusion to the bowel ends. The primary outcome measure was the anastomotic leak rate as diagnosed by clinical symptoms, exam, or routine imaging. The average patient age was 59.7 years with an average body mass index of 28.8 kg/m(2). Rectal cancer (128, 40.4%) was the most common indication for operation while hypertension (134, 42.3%) was the most common comorbidity. In total, 177 operations were laparoscopic (55.8%), 13 were reoperative resections (4.1%), and 108 were protected with a loop ileostomy (34.1%). Preoperative chemotherapy was administered to 25 patients (7.9%) while preoperative chemo/radiation was administered to 64 patients (20.2%). The anastomotic leak rate was 1.6% (5/317). Our data suggests that standard, careful evaluation of adequate blood flow via inspection and confirmation of pulsatile blood flow to the bowel ends and meticulous construction of the colorectal or coloanal anastomoses can result in very low leak rates, similar to the rate reported when intraoperative imaging is used to assess perfusion. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Multidisciplinary optimization for engineering systems - Achievements and potential

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    The currently common sequential design process for engineering systems is likely to lead to suboptimal designs. Recently developed decomposition methods offer an alternative for coming closer to optimum by breaking the large task of system optimization into smaller, concurrently executed and, yet, coupled tasks, identified with engineering disciplines or subsystems. The hierarchic and non-hierarchic decompositions are discussed and illustrated by examples. An organization of a design process centered on the non-hierarchic decomposition is proposed.

  8. Multidisciplinary optimization for engineering systems: Achievements and potential

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    The currently common sequential design process for engineering systems is likely to lead to suboptimal designs. Recently developed decomposition methods offer an alternative for coming closer to optimum by breaking the large task of system optimization into smaller, concurrently executed and, yet, coupled tasks, identified with engineering disciplines or subsystems. The hierarchic and non-hierarchic decompositions are discussed and illustrated by examples. An organization of a design process centered on the non-hierarchic decomposition is proposed.

  9. Scope-of-practice laws for nurse practitioners limit cost savings that can be achieved in retail clinics.

    PubMed

    Spetz, Joanne; Parente, Stephen T; Town, Robert J; Bazarko, Dawn

    2013-11-01

    Retail clinics have the potential to reduce health spending by offering convenient, low-cost access to basic health care services. Retail clinics are often staffed by nurse practitioners (NPs), whose services are regulated by state scope-of-practice regulations. By limiting NPs' work scope, restrictive regulations could affect possible cost savings. Using multistate insurance claims data from 2004-07, a period in which many retail clinics opened, we analyzed whether the cost per episode associated with the use of retail clinics was lower in states where NPs are allowed to practice independently and to prescribe independently. We also examined whether retail clinic use and scope of practice were associated with emergency department visits and hospitalizations. We found that visits to retail clinics were associated with lower costs per episode, compared to episodes of care that did not begin with a retail clinic visit, and the costs were even lower when NPs practiced independently. Eliminating restrictions on NPs' scope of practice could have a large impact on the cost savings that can be achieved by retail clinics.

  10. Investigating multi-objective fluence and beam orientation IMRT optimization

    NASA Astrophysics Data System (ADS)

    Potrebko, Peter S.; Fiege, Jason; Biagioli, Matthew; Poleszczuk, Jan

    2017-07-01

    Radiation Oncology treatment planning requires compromises to be made between clinical objectives that are invariably in conflict. It would be beneficial to have a ‘bird’s-eye-view’ perspective of the full spectrum of treatment plans that represent the possible trade-offs between delivering the intended dose to the planning target volume (PTV) while optimally sparing the organs-at-risk (OARs). In this work, the authors demonstrate Pareto-aware radiotherapy evolutionary treatment optimization (PARETO), a multi-objective tool featuring such bird’s-eye-view functionality, which optimizes fluence patterns and beam angles for intensity-modulated radiation therapy (IMRT) treatment planning. The problem of IMRT treatment plan optimization is managed as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. To achieve this, PARETO is built around a powerful multi-objective evolutionary algorithm, called Ferret, which simultaneously optimizes multiple fitness functions that encode the attributes of the desired dose distribution for the PTV and OARs. The graphical interfaces within PARETO provide useful information such as: the convergence behavior during optimization, trade-off plots between the competing objectives, and a graphical representation of the optimal solution database allowing for the rapid exploration of treatment plan quality through the evaluation of dose-volume histograms and isodose distributions. PARETO was evaluated for two relatively complex clinical cases, a paranasal sinus and a pancreas case. The end result of each PARETO run was a database of optimal (non-dominated) treatment plans that demonstrated trade-offs between the OAR and PTV fitness functions, which were all equally good in the Pareto-optimal sense (where no one objective can be improved without worsening at least one other). Ferret was able to produce high quality solutions even though a large number of parameters

  11. The Impact of Worksite Clinics on Teacher Healthcare Utilization and Cost, Self-reported Health Status, and Student Academic Achievement growth in a Public School District.

    PubMed

    Engberg, John B; Harris-Shapiro, Jon; Hines, David; McCarver, Patti; Liu, Harry H

    2018-05-29

    To examine the impact of worksite clinics on healthcare utilization and cost, self-reported health status, and student achievement growth in a public school district. We used insurance claims, health risk assessment, and student achievement growth data for active teachers during 2007-2015. A difference-in-differences approach was applied to measure the impact of worksite clinics. Compared to using a community-based clinic as the usual source of primary care, using a worksite clinic was associated with significantly lower inpatient admissions (53 vs. 31 per 1,000 teacher years), annual healthcare cost ($5,043 vs. $4,298 in 2016 US dollars, a difference of $62 per teacher per month), and annual absent work hours (63 vs. 61). No significant differences were detected in self-reported health status or student achievement growth. Worksite clinics reduce teacher healthcare cost and absenteeism.

  12. TESTOSTERONE LEVELS ACHIEVED BY MEDICALLY TREATED TRANSGENDER WOMEN IN A UNITED STATES ENDOCRINOLOGY CLINIC COHORT.

    PubMed

    Liang, Jennifer J; Jolly, Divya; Chan, Kelly J; Safer, Joshua D

    2018-02-01

    Most transgender women depend on medical treatment alone to lower testosterone levels in order to align physical appearance with gender identity. The medical regimen in the United States typically includes spironolactone and estrogens. The purpose of this cross-sectional study was to assess the testosterone suppression achieved among transgender women treated with spironolactone and estrogens. Testosterone and estradiol levels were extracted from the electronic medical records of 98 anonymized transgender women treated with oral spironolactone and oral estrogen therapy at the Endocrinology Clinic at Boston Medical Center. Patients starting therapy required about 9 months to reach a steady-state testosterone, with significant heterogeneity of levels achieved among patients. Patients with normal body mass index (BMI) had higher testosterone levels, whereas patients with obese BMI had lower testosterone levels throughout treatment. Stratification of patients by age or spironolactone dosage revealed no significant difference in testosterone levels achieved. At steady state, patients in the highest suppressing quartile were able to achieve testosterone levels of 27 ng/dL, with a standard deviation of 21 ng/dL. Measured serum estradiol levels did not change over time and did not correlate with dosage of estradiol administered. Among a cohort of transgender women treated with spironolactone and estrogen, the highest suppressing quartile could reliably achieve testosterone levels in the female range at virtually all times. The second highest suppressing quartile could not achieve female levels but remained below the male range virtually all of the time. One quartile was unable to achieve any significant suppression. BMC = Boston Medical Center BMI = body mass index CPY = cyproterone acetate LC-MS/MS = liquid chromatography-tandem mass spectrometry Q = quartile.

  13. Time-optimal control with finite bandwidth

    NASA Astrophysics Data System (ADS)

    Hirose, M.; Cappellaro, P.

    2018-04-01

    Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.

  14. Dimensions of design space: a decision-theoretic approach to optimal research design.

    PubMed

    Conti, Stefano; Claxton, Karl

    2009-01-01

    Bayesian decision theory can be used not only to establish the optimal sample size and its allocation in a single clinical study but also to identify an optimal portfolio of research combining different types of study design. Within a single study, the highest societal payoff to proposed research is achieved when its sample sizes and allocation between available treatment options are chosen to maximize the expected net benefit of sampling (ENBS). Where a number of different types of study informing different parameters in the decision problem could be conducted, the simultaneous estimation of ENBS across all dimensions of the design space is required to identify the optimal sample sizes and allocations within such a research portfolio. This is illustrated through a simple example of a decision model of zanamivir for the treatment of influenza. The possible study designs include: 1) a single trial of all the parameters, 2) a clinical trial providing evidence only on clinical endpoints, 3) an epidemiological study of natural history of disease, and 4) a survey of quality of life. The possible combinations, samples sizes, and allocation between trial arms are evaluated over a range of cost-effectiveness thresholds. The computational challenges are addressed by implementing optimization algorithms to search the ENBS surface more efficiently over such large dimensions.

  15. Robust optimization methods for cardiac sparing in tangential breast IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmoudzadeh, Houra, E-mail: houra@mie.utoronto.ca; Lee, Jenny; Chan, Timothy C. Y.

    Purpose: In left-sided tangential breast intensity modulated radiation therapy (IMRT), the heart may enter the radiation field and receive excessive radiation while the patient is breathing. The patient’s breathing pattern is often irregular and unpredictable. We verify the clinical applicability of a heart-sparing robust optimization approach for breast IMRT. We compare robust optimized plans with clinical plans at free-breathing and clinical plans at deep inspiration breath-hold (DIBH) using active breathing control (ABC). Methods: Eight patients were included in the study with each patient simulated using 4D-CT. The 4D-CT image acquisition generated ten breathing phase datasets. An average scan was constructedmore » using all the phase datasets. Two of the eight patients were also imaged at breath-hold using ABC. The 4D-CT datasets were used to calculate the accumulated dose for robust optimized and clinical plans based on deformable registration. We generated a set of simulated breathing probability mass functions, which represent the fraction of time patients spend in different breathing phases. The robust optimization method was applied to each patient using a set of dose-influence matrices extracted from the 4D-CT data and a model of the breathing motion uncertainty. The goal of the optimization models was to minimize the dose to the heart while ensuring dose constraints on the target were achieved under breathing motion uncertainty. Results: Robust optimized plans were improved or equivalent to the clinical plans in terms of heart sparing for all patients studied. The robust method reduced the accumulated heart dose (D10cc) by up to 801 cGy compared to the clinical method while also improving the coverage of the accumulated whole breast target volume. On average, the robust method reduced the heart dose (D10cc) by 364 cGy and improved the optBreast dose (D99%) by 477 cGy. In addition, the robust method had smaller deviations from the planned dose to the

  16. Treatments for Parkinson disease--past achievements and current clinical needs.

    PubMed

    Poewe, Werner

    2009-02-17

    Although idiopathic Parkinson disease (PD) remains the only neurodegenerative disorder for which there are highly effective symptomatic therapies, there are still major unmet needs regarding its long-term management. Although levodopa continues as the gold standard for efficacy, its chronic use is associated with potentially disabling motor complications. Current evidence suggests that these are related to mode of administration, whereby multiple oral doses of levodopa generate pulsatile stimulation of striatal dopamine receptors. Current dopamine agonists, while producing more constant plasma levels, fail to match levodopa's efficacy. Strategies to treat levodopa-related motor complications are only partially effective, rarely abolishing motor fluctuations or dyskinesias. Best results are currently achieved with invasive strategies via subcutaneous (s.c.) or intraduodenal delivery of apomorphine or levodopa, or deep brain stimulation of the subthalamic nucleus. Another area of major unmet medical need is related to nondopaminergic and nonmotor symptoms of PD. Targeting transmitter systems beyond the dopamine system is an interesting approach, both for the motor and nonmotor problems of PD. So far, clinical trial evidence regarding 5-HT agonists, glutamate antagonists, adenosine A(2) antagonists and alpha-adrenergic receptor antagonists, has been inconsistent, but trials with cholinesterase inhibitors and atypical antipsychotics to treat dementia and psychosis, have been successful. However, the ultimate goal of PD medical management is modifying disease progression, thereby delaying the evolution of motor and nonmotor complications of advanced disease. As understanding of preclinical markers for PD develops, there is new hope for neuropreventive strategies to target "at risk" populations before clinical onset of disease.

  17. 75 FR 47819 - Workshop on Optimizing Clinical Trial Design for the Development of Pediatric Cardiovascular Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ...] Workshop on Optimizing Clinical Trial Design for the Development of Pediatric Cardiovascular Devices AGENCY... (AAP), the American College of Cardiology (ACC), and the Society for Cardiovascular Angiography and... Development of Pediatric Cardiovascular Devices.'' The topic to be discussed is pediatric cardiovascular...

  18. Optimized distributed systems achieve significant performance improvement on sorted merging of massive VCF files.

    PubMed

    Sun, Xiaobo; Gao, Jingjing; Jin, Peng; Eng, Celeste; Burchard, Esteban G; Beaty, Terri H; Ruczinski, Ingo; Mathias, Rasika A; Barnes, Kathleen; Wang, Fusheng; Qin, Zhaohui S

    2018-06-01

    Sorted merging of genomic data is a common data operation necessary in many sequencing-based studies. It involves sorting and merging genomic data from different subjects by their genomic locations. In particular, merging a large number of variant call format (VCF) files is frequently required in large-scale whole-genome sequencing or whole-exome sequencing projects. Traditional single-machine based methods become increasingly inefficient when processing large numbers of files due to the excessive computation time and Input/Output bottleneck. Distributed systems and more recent cloud-based systems offer an attractive solution. However, carefully designed and optimized workflow patterns and execution plans (schemas) are required to take full advantage of the increased computing power while overcoming bottlenecks to achieve high performance. In this study, we custom-design optimized schemas for three Apache big data platforms, Hadoop (MapReduce), HBase, and Spark, to perform sorted merging of a large number of VCF files. These schemas all adopt the divide-and-conquer strategy to split the merging job into sequential phases/stages consisting of subtasks that are conquered in an ordered, parallel, and bottleneck-free way. In two illustrating examples, we test the performance of our schemas on merging multiple VCF files into either a single TPED or a single VCF file, which are benchmarked with the traditional single/parallel multiway-merge methods, message passing interface (MPI)-based high-performance computing (HPC) implementation, and the popular VCFTools. Our experiments suggest all three schemas either deliver a significant improvement in efficiency or render much better strong and weak scalabilities over traditional methods. Our findings provide generalized scalable schemas for performing sorted merging on genetics and genomics data using these Apache distributed systems.

  19. Heterogeneous Optimization Framework: Reproducible Preprocessing of Multi-Spectral Clinical MRI for Neuro-Oncology Imaging Research.

    PubMed

    Milchenko, Mikhail; Snyder, Abraham Z; LaMontagne, Pamela; Shimony, Joshua S; Benzinger, Tammie L; Fouke, Sarah Jost; Marcus, Daniel S

    2016-07-01

    Neuroimaging research often relies on clinically acquired magnetic resonance imaging (MRI) datasets that can originate from multiple institutions. Such datasets are characterized by high heterogeneity of modalities and variability of sequence parameters. This heterogeneity complicates the automation of image processing tasks such as spatial co-registration and physiological or functional image analysis. Given this heterogeneity, conventional processing workflows developed for research purposes are not optimal for clinical data. In this work, we describe an approach called Heterogeneous Optimization Framework (HOF) for developing image analysis pipelines that can handle the high degree of clinical data non-uniformity. HOF provides a set of guidelines for configuration, algorithm development, deployment, interpretation of results and quality control for such pipelines. At each step, we illustrate the HOF approach using the implementation of an automated pipeline for Multimodal Glioma Analysis (MGA) as an example. The MGA pipeline computes tissue diffusion characteristics of diffusion tensor imaging (DTI) acquisitions, hemodynamic characteristics using a perfusion model of susceptibility contrast (DSC) MRI, and spatial cross-modal co-registration of available anatomical, physiological and derived patient images. Developing MGA within HOF enabled the processing of neuro-oncology MR imaging studies to be fully automated. MGA has been successfully used to analyze over 160 clinical tumor studies to date within several research projects. Introduction of the MGA pipeline improved image processing throughput and, most importantly, effectively produced co-registered datasets that were suitable for advanced analysis despite high heterogeneity in acquisition protocols.

  20. Optimal Methods to Screen Men and Women for Intimate Partner Violence: Results from an Internal Medicine Residency Continuity Clinic

    ERIC Educational Resources Information Center

    Kapur, Nitin A.; Windish, Donna M.

    2011-01-01

    Contradictory data exist regarding optimal methods and instruments for intimate partner violence (IPV) screening in primary care settings. The purpose of this study was to determine the optimal method and screening instrument for IPV among men and women in a primary-care resident clinic. We conducted a cross-sectional study at an urban, academic,…

  1. Use of plan quality degradation to evaluate tradeoffs in delivery efficiency and clinical plan metrics arising from IMRT optimizer and sequencer compromises

    PubMed Central

    Wilkie, Joel R.; Matuszak, Martha M.; Feng, Mary; Moran, Jean M.; Fraass, Benedick A.

    2013-01-01

    Purpose: Plan degradation resulting from compromises made to enhance delivery efficiency is an important consideration for intensity modulated radiation therapy (IMRT) treatment plans. IMRT optimization and/or multileaf collimator (MLC) sequencing schemes can be modified to generate more efficient treatment delivery, but the effect those modifications have on plan quality is often difficult to quantify. In this work, the authors present a method for quantitative assessment of overall plan quality degradation due to tradeoffs between delivery efficiency and treatment plan quality, illustrated using comparisons between plans developed allowing different numbers of intensity levels in IMRT optimization and/or MLC sequencing for static segmental MLC IMRT plans. Methods: A plan quality degradation method to evaluate delivery efficiency and plan quality tradeoffs was developed and used to assess planning for 14 prostate and 12 head and neck patients treated with static IMRT. Plan quality was evaluated using a physician's predetermined “quality degradation” factors for relevant clinical plan metrics associated with the plan optimization strategy. Delivery efficiency and plan quality were assessed for a range of optimization and sequencing limitations. The “optimal” (baseline) plan for each case was derived using a clinical cost function with an unlimited number of intensity levels. These plans were sequenced with a clinical MLC leaf sequencer which uses >100 segments, assuring delivered intensities to be within 1% of the optimized intensity pattern. Each patient's optimal plan was also sequenced limiting the number of intensity levels (20, 10, and 5), and then separately optimized with these same numbers of intensity levels. Delivery time was measured for all plans, and direct evaluation of the tradeoffs between delivery time and plan degradation was performed. Results: When considering tradeoffs, the optimal number of intensity levels depends on the treatment

  2. Failure of Ivermectin per Rectum to Achieve Clinically Meaningful Serum Levels in Two Cases of Strongyloides Hyperinfection

    PubMed Central

    Bogoch, Isaac I.; Khan, Kamran; Abrams, Howard; Nott, Caroline; Leung, Elizabeth; Fleckenstein, Lawrence; Keystone, Jay S.

    2015-01-01

    Two cases of Strongyloides hyperinfection are presented. Ivermectin was initially administered orally and per rectum pending the availability of subcutaneous (SC) preparations. In neither case did rectal suppositories of ivermectin achieve clinically meaningful serum values. Clinicians should use SC preparations of ivermectin as early as possible in Strongyloides hyperinfection and dissemination. PMID:25918215

  3. The chemical evolution of oligonucleotide therapies of clinical utility

    PubMed Central

    Khvorova, Anastasia; Watts, Jonathan K.

    2017-01-01

    After nearly 40 years of development, oligonucleotide therapeutics are nearing meaningful clinical productivity. One of the key advantages of oligonucleotide drugs is that their delivery and potency properties are derived primarily from the chemical structure of the oligonucleotide, while their target is defined by the base sequence. Thus, as oligonucleotides with a particular chemical design demonstrate appropriate distribution and safety profiles for clinical gene silencing in a particular tissue, this will open the door to the rapid development of additional drugs targeting other disease-associated genes in the same tissue. To achieve clinical productivity, the chemical architecture of the oligonucleotide needs to be optimized as a whole, using a combination of sugar, backbone, nucleobase and 3′/5′-terminal modifications. A portfolio of chemistries can be used to confer drug like properties onto the oligonucleotide as a whole, with minor chemical changes often translating into major improvements in clinical efficacy. Outstanding challenges in oligonucleotide chemical development include optimization of chemical architectures to ensure long-term safety and to enable robust clinical activity beyond the liver. PMID:28244990

  4. Framework for computationally efficient optimal irrigation scheduling using ant colony optimization

    USDA-ARS?s Scientific Manuscript database

    A general optimization framework is introduced with the overall goal of reducing search space size and increasing the computational efficiency of evolutionary algorithm application for optimal irrigation scheduling. The framework achieves this goal by representing the problem in the form of a decisi...

  5. CT dose minimization using personalized protocol optimization and aggressive bowtie

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Yin, Zhye; Jin, Yannan; Wu, Mingye; Yao, Yangyang; Tao, Kun; Kalra, Mannudeep K.; De Man, Bruno

    2016-03-01

    In this study, we propose to use patient-specific x-ray fluence control to reduce the radiation dose to sensitive organs while still achieving the desired image quality (IQ) in the region of interest (ROI). The mA modulation profile is optimized view by view, based on the sensitive organs and the ROI, which are obtained from an ultra-low-dose volumetric CT scout scan [1]. We use a clinical chest CT scan to demonstrate the feasibility of the proposed concept: the breast region is selected as the sensitive organ region while the cardiac region is selected as IQ ROI. Two groups of simulations are performed based on the clinical CT dataset: (1) a constant mA scan adjusted based on the patient attenuation (120 kVp, 300 mA), which serves as baseline; (2) an optimized scan with aggressive bowtie and ROI centering combined with patient-specific mA modulation. The results shows that the combination of the aggressive bowtie and the optimized mA modulation can result in 40% dose reduction in the breast region, while the IQ in the cardiac region is maintained. More generally, this paper demonstrates the general concept of using a 3D scout scan for optimal scan planning.

  6. The relationship between medical students' epistemological beliefs and achievement on a clinical performance examination.

    PubMed

    Oh, Sun-A; Chung, Eun-Kyung; Han, Eui-Ryoung; Woo, Young-Jong; Kevin, Deiter

    2016-03-01

    This study was to explore the relationship between clinical performance examination (CPX) achievement and epistemological beliefs to investigate the potentials of epistemological beliefs in ill-structured medical problem solving tasks. We administered the epistemological beliefs questionnaire (EBQ) to fourth-year medical students and correlated the results with their CPX scores. The EBQ comprised 61 items reflecting five belief systems: certainty of knowledge, source of knowledge, rigidity of learning, ability to learn, and speed of knowledge acquisition. The CPX included scores for history taking, physical examination, and patient-physician interaction. The higher epistemological beliefs group obtained significantly higher scores on the CPX with regard to history taking and patient-physician interaction. The epistemological beliefs scores on certainty of knowledge and source of knowledge were significantly positively correlated with patient-physician interaction. The epistemological beliefs scores for ability to learn were significantly positively correlated with those for history taking, physical examination, and patient-physician interaction. Students with more sophisticated and advanced epistemological beliefs stances used more comprehensive and varied approaches in the patient-physician interaction. Therefore, educational efforts that encourage discussions pertaining to epistemological views should be considered to improve clinical reasoning and problem-solving competence in the clinic setting.

  7. Convergence of models of human ventricular myocyte electrophysiology after global optimization to recapitulate clinical long QT phenotypes.

    PubMed

    Mann, Stefan A; Imtiaz, Mohammad; Winbo, Annika; Rydberg, Annika; Perry, Matthew D; Couderc, Jean-Philippe; Polonsky, Bronislava; McNitt, Scott; Zareba, Wojciech; Hill, Adam P; Vandenberg, Jamie I

    2016-11-01

    In-silico models of human cardiac electrophysiology are now being considered for prediction of cardiotoxicity as part of the preclinical assessment phase of all new drugs. We ask the question whether any of the available models are actually fit for this purpose. We tested three models of the human ventricular action potential, the O'hara-Rudy (ORD11), the Grandi-Bers (GB10) and the Ten Tusscher (TT06) models. We extracted clinical QT data for LQTS1 and LQTS2 patients with nonsense mutations that would be predicted to cause 50% loss of function in I Ks and I Kr respectively. We also obtained clinical QT data for LQTS3 patients. We then used a global optimization approach to improve the existing in silico models so that they reproduced all three clinical data sets more closely. We also examined the effects of adrenergic stimulation in the different LQTS subsets. All models, in their original form, produce markedly different and unrealistic predictions of QT prolongation for LQTS1, 2 and 3. After global optimization of the maximum conductances for membrane channels, all models have similar current densities during the action potential, despite differences in kinetic properties of the channels in the different models, and more closely reproduce the prolongation of repolarization seen in all LQTS subtypes. In-silico models of cardiac electrophysiology have the potential to be tremendously useful in complementing traditional preclinical drug testing studies. However, our results demonstrate they should be carefully validated and optimized to clinical data before they can be used for this purpose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Optimization of a secondary VOI protocol for lung imaging in a clinical CT scanner.

    PubMed

    Larsen, Thomas C; Gopalakrishnan, Vissagan; Yao, Jianhua; Nguyen, Catherine P; Chen, Marcus Y; Moss, Joel; Wen, Han

    2018-05-21

    We present a solution to meet an unmet clinical need of an in-situ "close look" at a pulmonary nodule or at the margins of a pulmonary cyst revealed by a primary (screening) chest CT while the patient is still in the scanner. We first evaluated options available on current whole-body CT scanners for high resolution screening scans, including ROI reconstruction of the primary scan data and HRCT, but found them to have insufficient SNR in lung tissue or discontinuous slice coverage. Within the capabilities of current clinical CT systems, we opted for the solution of a secondary, volume-of-interest (VOI) protocol where the radiation dose is focused into a short-beam axial scan at the z position of interest, combined with a small-FOV reconstruction at the xy position of interest. The objective of this work was to design a VOI protocol that is optimized for targeted lung imaging in a clinical whole-body CT system. Using a chest phantom containing a lung-mimicking foam insert with a simulated cyst, we identified the appropriate scan mode and optimized both the scan and recon parameters. The VOI protocol yielded 3.2 times the texture amplitude-to-noise ratio in the lung-mimicking foam when compared to the standard chest CT, and 8.4 times the texture difference between the lung mimicking and reference foams. It improved details of the wall of the simulated cyst and better resolution in a line-pair insert. The Effective Dose of the secondary VOI protocol was 42% on average and up to 100% in the worst-case scenario of VOI positioning relative to the standard chest CT. The optimized protocol will be used to obtain detailed CT textures of pulmonary lesions, which are biomarkers for the type and stage of lung diseases. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  9. Optimized distributed systems achieve significant performance improvement on sorted merging of massive VCF files

    PubMed Central

    Gao, Jingjing; Jin, Peng; Eng, Celeste; Burchard, Esteban G; Beaty, Terri H; Ruczinski, Ingo; Mathias, Rasika A; Barnes, Kathleen; Wang, Fusheng

    2018-01-01

    Abstract Background Sorted merging of genomic data is a common data operation necessary in many sequencing-based studies. It involves sorting and merging genomic data from different subjects by their genomic locations. In particular, merging a large number of variant call format (VCF) files is frequently required in large-scale whole-genome sequencing or whole-exome sequencing projects. Traditional single-machine based methods become increasingly inefficient when processing large numbers of files due to the excessive computation time and Input/Output bottleneck. Distributed systems and more recent cloud-based systems offer an attractive solution. However, carefully designed and optimized workflow patterns and execution plans (schemas) are required to take full advantage of the increased computing power while overcoming bottlenecks to achieve high performance. Findings In this study, we custom-design optimized schemas for three Apache big data platforms, Hadoop (MapReduce), HBase, and Spark, to perform sorted merging of a large number of VCF files. These schemas all adopt the divide-and-conquer strategy to split the merging job into sequential phases/stages consisting of subtasks that are conquered in an ordered, parallel, and bottleneck-free way. In two illustrating examples, we test the performance of our schemas on merging multiple VCF files into either a single TPED or a single VCF file, which are benchmarked with the traditional single/parallel multiway-merge methods, message passing interface (MPI)–based high-performance computing (HPC) implementation, and the popular VCFTools. Conclusions Our experiments suggest all three schemas either deliver a significant improvement in efficiency or render much better strong and weak scalabilities over traditional methods. Our findings provide generalized scalable schemas for performing sorted merging on genetics and genomics data using these Apache distributed systems. PMID:29762754

  10. Generalized optimal design for two-arm, randomized phase II clinical trials with endpoints from the exponential dispersion family.

    PubMed

    Jiang, Wei; Mahnken, Jonathan D; He, Jianghua; Mayo, Matthew S

    2016-11-01

    For two-arm randomized phase II clinical trials, previous literature proposed an optimal design that minimizes the total sample sizes subject to multiple constraints on the standard errors of the estimated event rates and their difference. The original design is limited to trials with dichotomous endpoints. This paper extends the original approach to be applicable to phase II clinical trials with endpoints from the exponential dispersion family distributions. The proposed optimal design minimizes the total sample sizes needed to provide estimates of population means of both arms and their difference with pre-specified precision. Its applications on data from specific distribution families are discussed under multiple design considerations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Global optimization method based on ray tracing to achieve optimum figure error compensation

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolin; Guo, Xuejia; Tang, Tianjin

    2017-02-01

    Figure error would degrade the performance of optical system. When predicting the performance and performing system assembly, compensation by clocking of optical components around the optical axis is a conventional but user-dependent method. Commercial optical software cannot optimize this clocking. Meanwhile existing automatic figure-error balancing methods can introduce approximate calculation error and the build process of optimization model is complex and time-consuming. To overcome these limitations, an accurate and automatic global optimization method of figure error balancing is proposed. This method is based on precise ray tracing to calculate the wavefront error, not approximate calculation, under a given elements' rotation angles combination. The composite wavefront error root-mean-square (RMS) acts as the cost function. Simulated annealing algorithm is used to seek the optimal combination of rotation angles of each optical element. This method can be applied to all rotational symmetric optics. Optimization results show that this method is 49% better than previous approximate analytical method.

  12. Optimal medication dosing from suboptimal clinical examples: a deep reinforcement learning approach.

    PubMed

    Nemati, Shamim; Ghassemi, Mohammad M; Clifford, Gari D

    2016-08-01

    Misdosing medications with sensitive therapeutic windows, such as heparin, can place patients at unnecessary risk, increase length of hospital stay, and lead to wasted hospital resources. In this work, we present a clinician-in-the-loop sequential decision making framework, which provides an individualized dosing policy adapted to each patient's evolving clinical phenotype. We employed retrospective data from the publicly available MIMIC II intensive care unit database, and developed a deep reinforcement learning algorithm that learns an optimal heparin dosing policy from sample dosing trails and their associated outcomes in large electronic medical records. Using separate training and testing datasets, our model was observed to be effective in proposing heparin doses that resulted in better expected outcomes than the clinical guidelines. Our results demonstrate that a sequential modeling approach, learned from retrospective data, could potentially be used at the bedside to derive individualized patient dosing policies.

  13. Pre-operative Thresholds for Achieving Meaningful Clinical Improvement after Arthroscopic Treatment of Femoroacetabular Impingement

    PubMed Central

    Nwachukwu, Benedict U.; Fields, Kara G.; Nawabi, Danyal H.; Kelly, Bryan T.; Ranawat, Anil S.

    2016-01-01

    Objectives: Knowledge of the thresholds and determinants for successful femoroacetabular impingement (FAI) treatment is evolving. The primary purpose of this study was to define pre-operative outcome score thresholds that can be used to predict patients most likely to achieve meaningful clinically important difference (MCID) after arthroscopic FAI treatment. Secondarily determinants of achieving MCID were evaluated. Methods: A prospective institutional hip arthroscopy registry was reviewed to identify patients with FAI treated with arthroscopic labral surgery, acetabular rim trimming, and femoral osteochondroplasty. The modified Harris Hip Score (mHHS), the Hip Outcome Score (HOS) and the international Hip Outcome Tool (iHOT-33) tools were administered at baseline and at one year post-operatively. MCID was calculated using a distribution-based method. A receiver operating characteristic (ROC) analysis was used to calculate cohort-based threshold values predictive of achieving MCID. Area under the curve (AUC) was used to define predictive ability (strength of association) with AUC >0.7 considered acceptably predictive. Univariate and multivariable analyses were used to analyze demographic, radiographic and intra-operative factors associated with achieving MCID. Results: There were 374 patients (mean + SD age, 32.9 + 10.5) and 56.4% were female. The MCID for mHHS, HOS activities of daily living (HOS-ADL), HOS Sports, and iHOT-33 was 8.2, 8.4,14.5, and 12.0 respectively. ROC analysis (threshold, % achieving MCID, strength of association) for these tools in our population was: mHHS (61.6, 78%, 0.68), HOS-ADL (83.8, 68%, 0.84), HOS-Sports (63.9, 64%, 0.74), and iHOT-33 (54.3, 82%, 0.65). Likelihood for achieving MCID declined above and increased below these thresholds. In univariate analysis female sex, femoral version, lower acetabular outerbridge score and increasing CT sagittal center edge angle (CEA) were predictive of achieving MCID. In multivariable analysis

  14. Reinforcement Learning Strategies for Clinical Trials in Non-small Cell Lung Cancer

    PubMed Central

    Zhao, Yufan; Zeng, Donglin; Socinski, Mark A.; Kosorok, Michael R.

    2010-01-01

    Summary Typical regimens for advanced metastatic stage IIIB/IV non-small cell lung cancer (NSCLC) consist of multiple lines of treatment. We present an adaptive reinforcement learning approach to discover optimal individualized treatment regimens from a specially designed clinical trial (a “clinical reinforcement trial”) of an experimental treatment for patients with advanced NSCLC who have not been treated previously with systemic therapy. In addition to the complexity of the problem of selecting optimal compounds for first and second-line treatments based on prognostic factors, another primary goal is to determine the optimal time to initiate second-line therapy, either immediately or delayed after induction therapy, yielding the longest overall survival time. A reinforcement learning method called Q-learning is utilized which involves learning an optimal regimen from patient data generated from the clinical reinforcement trial. Approximating the Q-function with time-indexed parameters can be achieved by using a modification of support vector regression which can utilize censored data. Within this framework, a simulation study shows that the procedure can extract optimal regimens for two lines of treatment directly from clinical data without prior knowledge of the treatment effect mechanism. In addition, we demonstrate that the design reliably selects the best initial time for second-line therapy while taking into account the heterogeneity of NSCLC across patients. PMID:21385164

  15. A Randomized Clinical Trial to Determine Optimal Infertility Treatment in Older Couples: The Forty and Over Treatment Trial (FORT-T)

    PubMed Central

    Goldman, Marlene B.; Thornton, Kim L.; Ryley, David; Alper, Michael M.; Fung, June L.; Hornstein, Mark D.; Reindollar, Richard H.

    2014-01-01

    Objective To determine optimal infertility therapy in women at the end of their reproductive potential. Design Randomized clinical trial. Setting Academic medical centers and private infertility center in a state with mandated insurance coverage. Patients Couples with ≥ 6 months of unexplained infertility; female partner aged 38–42. Interventions Randomized to treatment with 2 cycles of clomiphene citrate (CC) and intrauterine insemination (IUI), follicle stimulating hormone (FSH)/IUI, or immediate IVF, followed by IVF if not pregnant. Main Outcome Measures Proportion with a clinically recognized pregnancy, number of treatment cycles, and time to conception after 2 treatment cycles and at the end of treatment. Results 154 couples were randomized to receive CC/IUI (N=51), FSH/IUI (N=52), or immediate IVF (N=51); 140 (90.9%) couples initiated treatment. Cumulative clinical pregnancy rates per couple after the first 2 cycles of CC/IUI, FSH/IUI, or immediate IVF were 21.6%, 17.3%, and 49.0%, respectively. After all treatment, 71.4% (110/154) of couples conceived a clinically recognized pregnancy and 46.1% delivered at least one live-born baby. 84.2% of all live born infants resulting from treatment were achieved from IVF. There were 36% fewer treatment cycles in the IVF arm compared to either COH/IUI arm and couples conceived a pregnancy leading to a live birth after fewer treatment cycles. Conclusions An RCT to compare treatment initiated with 2 cycles of COH/IUI to immediate IVF in older women with unexplained infertility demonstrated superior pregnancy rates with fewer treatment cycles in the immediate IVF group. PMID:24796764

  16. Optimizing density patterns to achieve desired light extraction for displays

    NASA Astrophysics Data System (ADS)

    Davenport, T. L. R.; Cassarly, W. J.

    2007-01-01

    In displays such as backlights and signage, it is often desirable to produce a particular spatial luminance distribution of light. This work demonstrates an iterative optimization technique for determining the density of light extractors required to produce desired luminance distributions.

  17. Optimization of EGFR high positive cell isolation procedure by design of experiments methodology.

    PubMed

    Levi, Ofer; Tal, Baruch; Hileli, Sagi; Shapira, Assaf; Benhar, Itai; Grabov, Pavel; Eliaz, Noam

    2015-01-01

    Circulating tumor cells (CTCs) in blood circulation may play a role in monitoring and even in early detection of metastasis patients. Due to the limited presence of CTCs in blood circulation, viable CTCs isolation technology must supply a very high recovery rate. Here, we implement design of experiments (DOE) methodology in order to optimize the Bio-Ferrography (BF) immunomagnetic isolation (IMI) procedure for the EGFR high positive CTCs application. All consequent DOE phases such as screening design, optimization experiments and validation experiments were used. A significant recovery rate of more than 95% was achieved while isolating 100 EGFR high positive CTCs from 1 mL human whole blood. The recovery achievement in this research positions BF technology as one of the most efficient IMI technologies, which is ready to be challenged with patients' blood samples. © 2015 International Clinical Cytometry Society.

  18. Proceedings of the 2016 Clinical Nutrition Week Research Workshop-The Optimal Dose of Protein Provided to Critically Ill Patients.

    PubMed

    Heyland, Daren K; Rooyakers, Olav; Mourtzakis, Marina; Stapleton, Renee D

    2017-02-01

    Recent literature has created considerable confusion about the optimal amount of protein/amino acids that should be provided to the critically ill patient. In fact, the evidentiary basis that directly tries to answer this question is relatively small. As a clinical nutrition research community, there is an urgent need to develop the optimal methods to assess the impact of exogenous protein/amino acid administration in the intensive care unit setting. That assessment can be conducted at various levels: (1) impact on stress response pathways, (2) impact on muscle synthesis and protein balance, (3) impact on muscle mass and function, and (4) impact on the patient's recovery. The objective of this research workshop was to review current literature relating to protein/amino acid administration for the critically ill patient and clinical outcomes and to discuss the key measurement and methodological features of future studies that should be done to inform the optimal protein/amino acid dose provided to critically ill patients.

  19. Evaluation of a clinical TOF-PET detector design that achieves ⩽100 ps coincidence time resolution

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Levin, Craig S.

    2018-06-01

    Commercially available clinical positron emission tomography (PET) detectors employ scintillation crystals that are long (20 mm length) and narrow (4–5 mm width) optically coupled on their narrow end to a photosensor. The aspect ratio of this traditional crystal rod configuration and 511 keV photon attenuation properties yield significant variances in scintillation light collection efficiency and transit time to the photodetector, due to variations in the 511 keV photon interaction depth in the crystal. These variances contribute significant to coincidence time resolution degradation. If instead, crystals are coupled to a photosensor on their long side, near-complete light collection efficiency can be achieved, and scintillation photon transit time jitter is reduced. In this work, we compare the achievable coincidence time resolution (CTR) of LGSO:Ce(0.025 mol%) crystals 3–20 mm in length when optically coupled to silicon photomultipliers (SiPMs) on either their short end or long side face. In this ‘side readout’ configuration, a CTR of 102  ±  2 ps FWHM was measured with mm3 crystals coupled to rows of mm2 SensL-J SiPMs using leading edge time pickoff and a single timing channel. This is in contrast to a CTR of 137  ±  3 ps FWHM when the same crystals were coupled to single mm2 SiPMs on their narrow ends. We further study the statistical limit on CTR using side readout via the Cramér–Rao lower bound (CRLB), with consideration given to ongoing work to further improve photosensor technologies and exploit fast phenomena to ultimately achieve 10 ps FWHM CTR. Potential design aspects of scalable front-end signal processing readout electronics using this side readout configuration are discussed. Altogether, we demonstrate that the side readout configuration offers an immediate solution for 100 ps CTR clinical PET detectors and mitigates factors prohibiting future efforts to achieve 10 ps FWHM CTR.

  20. Evaluation of a clinical TOF-PET detector design that achieves ⩽100 ps coincidence time resolution.

    PubMed

    Cates, Joshua W; Levin, Craig S

    2018-06-07

    Commercially available clinical positron emission tomography (PET) detectors employ scintillation crystals that are long ([Formula: see text]20 mm length) and narrow (4-5 mm width) optically coupled on their narrow end to a photosensor. The aspect ratio of this traditional crystal rod configuration and 511 keV photon attenuation properties yield significant variances in scintillation light collection efficiency and transit time to the photodetector, due to variations in the 511 keV photon interaction depth in the crystal. These variances contribute significant to coincidence time resolution degradation. If instead, crystals are coupled to a photosensor on their long side, near-complete light collection efficiency can be achieved, and scintillation photon transit time jitter is reduced. In this work, we compare the achievable coincidence time resolution (CTR) of LGSO:Ce(0.025 mol%) crystals 3-20 mm in length when optically coupled to silicon photomultipliers (SiPMs) on either their short end or long side face. In this 'side readout' configuration, a CTR of 102  ±  2 ps FWHM was measured with [Formula: see text] mm 3 crystals coupled to rows of [Formula: see text] mm 2 SensL-J SiPMs using leading edge time pickoff and a single timing channel. This is in contrast to a CTR of 137  ±  3 ps FWHM when the same crystals were coupled to single [Formula: see text] mm 2 SiPMs on their narrow ends. We further study the statistical limit on CTR using side readout via the Cramér-Rao lower bound (CRLB), with consideration given to ongoing work to further improve photosensor technologies and exploit fast phenomena to ultimately achieve 10 ps FWHM CTR. Potential design aspects of scalable front-end signal processing readout electronics using this side readout configuration are discussed. Altogether, we demonstrate that the side readout configuration offers an immediate solution for 100 ps CTR clinical PET detectors and mitigates factors prohibiting future

  1. Improving healthcare value through clinical community and supply chain collaboration.

    PubMed

    Ishii, Lisa; Demski, Renee; Ken Lee, K H; Mustafa, Zishan; Frank, Steve; Wolisnky, Jean Paul; Cohen, David; Khanna, Jay; Ammerman, Joshua; Khanuja, Harpal S; Unger, Anthony S; Gould, Lois; Wachter, Patricia Ann; Stearns, Lauren; Werthman, Ronald; Pronovost, Peter

    2017-03-01

    We hypothesized that integrating supply chain with clinical communities would allow for clinician-led supply cost reduction and improved value in an academic health system. Three clinical communities (spine, joint, blood management) and one clinical community-like physician led team of surgeon stakeholders partnered with the supply chain team on specific supply cost initiatives. The teams reviewed their specific utilization and cost data, and the physicians led consensus-building conversations over a series of team meetings to agree to standard supply utilization. The spine and joint clinical communities each agreed upon a vendor capping model that led to cost savings of $3 million dollars and $1.5 million dollars respectively. The blood management decreased blood product utilization and achieved $1.2 million dollars savings. $5.6 million dollars in savings was achieved by a clinical community-like group of surgeon stakeholders through standardization of sutures and endomechanicals. Physician led clinical teams empowered to lead change achieved substantial supply chain cost savings in an academic health system. The model of combining clinical communities with supply chain offers hope for an effective, practical, and scalable approach to improving value and engaging physicians in other academic health systems. This clinician led model could benefit both private and academic health systems engaging in value optimization efforts. N/A. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. General equations for optimal selection of diagnostic image acquisition parameters in clinical X-ray imaging.

    PubMed

    Zheng, Xiaoming

    2017-12-01

    The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.

  3. Gaussian processes with optimal kernel construction for neuro-degenerative clinical onset prediction

    NASA Astrophysics Data System (ADS)

    Canas, Liane S.; Yvernault, Benjamin; Cash, David M.; Molteni, Erika; Veale, Tom; Benzinger, Tammie; Ourselin, Sébastien; Mead, Simon; Modat, Marc

    2018-02-01

    Gaussian Processes (GP) are a powerful tool to capture the complex time-variations of a dataset. In the context of medical imaging analysis, they allow a robust modelling even in case of highly uncertain or incomplete datasets. Predictions from GP are dependent of the covariance kernel function selected to explain the data variance. To overcome this limitation, we propose a framework to identify the optimal covariance kernel function to model the data.The optimal kernel is defined as a composition of base kernel functions used to identify correlation patterns between data points. Our approach includes a modified version of the Compositional Kernel Learning (CKL) algorithm, in which we score the kernel families using a new energy function that depends both the Bayesian Information Criterion (BIC) and the explained variance score. We applied the proposed framework to model the progression of neurodegenerative diseases over time, in particular the progression of autosomal dominantly-inherited Alzheimer's disease, and use it to predict the time to clinical onset of subjects carrying genetic mutation.

  4. SU-F-J-211: Scatter Correction for Clinical Cone-Beam CT System Using An Optimized Stationary Beam Blocker with a Single Scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, X; Zhang, Z; Xie, Y

    Purpose: X-ray scatter photons result in significant image quality degradation of cone-beam CT (CBCT). Measurement based algorithms using beam blocker directly acquire the scatter samples and achieve significant improvement on the quality of CBCT image. Within existing algorithms, single-scan and stationary beam blocker proposed previously is promising due to its simplicity and practicability. Although demonstrated effectively on tabletop system, the blocker fails to estimate the scatter distribution on clinical CBCT system mainly due to the gantry wobble. In addition, the uniform distributed blocker strips in our previous design results in primary data loss in the CBCT system and leads tomore » the image artifacts due to data insufficiency. Methods: We investigate the motion behavior of the beam blocker in each projection and design an optimized non-uniform blocker strip distribution which accounts for the data insufficiency issue. An accurate scatter estimation is then achieved from the wobble modeling. Blocker wobble curve is estimated using threshold-based segmentation algorithms in each projection. In the blocker design optimization, the quality of final image is quantified using the number of the primary data loss voxels and the mesh adaptive direct search algorithm is applied to minimize the objective function. Scatter-corrected CT images are obtained using the optimized blocker. Results: The proposed method is evaluated using Catphan@504 phantom and a head patient. On the Catphan©504, our approach reduces the average CT number error from 115 Hounsfield unit (HU) to 11 HU in the selected regions of interest, and improves the image contrast by a factor of 1.45 in the high-contrast regions. On the head patient, the CT number error is reduced from 97 HU to 6 HU in the soft tissue region and image spatial non-uniformity is decreased from 27% to 5% after correction. Conclusion: The proposed optimized blocker design is practical and attractive for CBCT guided

  5. Achieving the World Health Organization's vision for clinical pharmacology

    PubMed Central

    Henry, David; Gray, Jean; Day, Richard; Bochner, Felix; Ferro, Albert; Pirmohamed, Munir; Mörike, Klaus; Schwab, Matthias

    2015-01-01

    Clinical pharmacology is a medical specialty whose practitioners teach, undertake research, frame policy, give information and advice about the actions and proper uses of medicines in humans and implement that knowledge in clinical practice. It involves a combination of several activities: drug discovery and development, training safe prescribers, providing objective and evidence‐based therapeutic information to ethics, regulatory and pricing bodies, supporting patient care in an increasingly subspecialized arena where co‐morbidities, polypharmacy, altered pharmacokinetics and drug interactions are common and developing and contributing to medicines policies for Governments. Clinical pharmacologists must advocate drug quality and they must also advocate for sustainability of the Discipline. However for this they need appropriate clinical service and training support. This Commentary discusses strategies to ensure the Discipline is supported by teaching, training and policy organizations, to communicate the full benefits of clinical pharmacology services, put a monetary value on clinical pharmacology services and to grow the clinical pharmacology workforce to support a growing clinical, academic and regulatory need. PMID:26466826

  6. Motivation and academic achievement in medical students.

    PubMed

    Yousefy, Alireza; Ghassemi, Gholamreza; Firouznia, Samaneh

    2012-01-01

    Despite their ascribed intellectual ability and achieved academic pursuits, medical students' academic achievement is influenced by motivation. This study is an endeavor to examine the role of motivation in the academic achievement of medical students. In this cross-sectional correlational study, out of the total 422 medical students, from 4th to final year during the academic year 2007-2008, at School of Medicine, Isfahan University of Medical Sciences, 344 participated in completion of the Inventory of School Motivation (ISM), comprising 43 items and measuring eight aspects of motivation. The gold standard for academic achievement was their average academic marks at pre-clinical and clinical levels. Data were computer analyzed by running a couple of descriptive and analytical tests including Pearson Correlation and Student's t-student. Higher motivation scores in areas of competition, effort, social concern, and task were accompanied by higher average marks at pre-clinical as well as clinical levels. However, the latter ones showed greater motivation for social power as compared to the former group. Task and competition motivation for boys was higher than for girls. In view of our observations, students' academic achievement requires coordination and interaction between different aspects of motivation.

  7. Aircraft optimization by a system approach: Achievements and trends

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1992-01-01

    Recently emerging methodology for optimal design of aircraft treated as a system of interacting physical phenomena and parts is examined. The methodology is found to coalesce into methods for hierarchic, non-hierarchic, and hybrid systems all dependent on sensitivity analysis. A separate category of methods has also evolved independent of sensitivity analysis, hence suitable for discrete problems. References and numerical applications are cited. Massively parallel computer processing is seen as enabling technology for practical implementation of the methodology.

  8. Case Example of Dose Optimization Using Data From Bortezomib Dose-Finding Clinical Trials.

    PubMed

    Lee, Shing M; Backenroth, Daniel; Cheung, Ying Kuen Ken; Hershman, Dawn L; Vulih, Diana; Anderson, Barry; Ivy, Percy; Minasian, Lori

    2016-04-20

    The current dose-finding methodology for estimating the maximum tolerated dose of investigational anticancer agents is based on the cytotoxic chemotherapy paradigm. Molecularly targeted agents (MTAs) have different toxicity profiles, which may lead to more long-lasting mild or moderate toxicities as well as to late-onset and cumulative toxicities. Several approved MTAs have been poorly tolerated during long-term administration, leading to postmarketing dose optimization studies to re-evaluate the optimal treatment dose. Using data from completed bortezomib dose-finding trials, we explore its toxicity profile, optimize its dose, and examine the appropriateness of current designs for identifying an optimal dose. We classified the toxicities captured from 481 patients in 14 bortezomib dose-finding studies conducted through the National Cancer Institute Cancer Therapy Evaluation Program, computed the incidence of late-onset toxicities, and compared the incidence of dose-limiting toxicities (DLTs) among groups of patients receiving different doses of bortezomib. A total of 13,008 toxicities were captured: 46% of patients' first DLTs and 88% of dose reductions or discontinuations of treatment because of toxicity were observed after the first cycle. Moreover, for the approved dose of 1.3 mg/m(2), the estimated cumulative incidence of DLT was > 50%, and the estimated cumulative incidence of dose reduction or treatment discontinuation because of toxicity was nearly 40%. When considering the entire course of treatment, the approved bortezomib dose exceeds the conventional ceiling DLT rate of 20% to 33%. Retrospective analysis of trial data provides an opportunity for dose optimization of MTAs. Future dose-finding studies of MTAs should take into account late-onset toxicities to ensure that a tolerable dose is identified for future efficacy and comparative trials. © 2016 by American Society of Clinical Oncology.

  9. Optimization in Radiation Therapy: Applications in Brachytherapy and Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    McGeachy, Philip David

    Over 50% of cancer patients require radiation therapy (RT). RT is an optimization problem requiring maximization of the radiation damage to the tumor while minimizing the harm to the healthy tissues. This dissertation focuses on two main RT optimization problems: 1) brachytherapy and 2) intensity modulated radiation therapy (IMRT). The brachytherapy research involved solving a non-convex optimization problem by creating an open-source genetic algorithm optimizer to determine the optimal radioactive seed distribution for a given set of patient volumes and constraints, both dosimetric- and implant-based. The optimizer was tested for a set of 45 prostate brachytherapy patients. While all solutions met the clinical standards, they also benchmarked favorably with those generated by a standard commercial solver. Compared to its compatriot, the salient features of the generated solutions were: slightly reduced prostate coverage, lower dose to the urethra and rectum, and a smaller number of needles required for an implant. Historically, IMRT requires modulation of fluence while keeping the photon beam energy fixed. The IMRT-related investigation in this thesis aimed at broadening the solution space by varying photon energy. The problem therefore involved simultaneous optimization of photon beamlet energy and fluence, denoted by XMRT. Formulating the problem as convex, linear programming was applied to obtain solutions for optimal energy-dependent fluences, while achieving all clinical objectives and constraints imposed. Dosimetric advantages of XMRT over single-energy IMRT in the improved sparing of organs at risk (OARs) was demonstrated in simplified phantom studies. The XMRT algorithm was improved to include clinical dose-volume constraints and clinical studies for prostate and head and neck cancer patients were investigated. Compared to IMRT, XMRT provided improved dosimetric benefit in the prostate case, particularly within intermediate- to low-dose regions (≤ 40 Gy

  10. Optimized survey design for electrical resistivity tomography: combined optimization of measurement configuration and electrode placement

    NASA Astrophysics Data System (ADS)

    Uhlemann, Sebastian; Wilkinson, Paul B.; Maurer, Hansruedi; Wagner, Florian M.; Johnson, Timothy C.; Chambers, Jonathan E.

    2018-07-01

    Within geoelectrical imaging, the choice of measurement configurations and electrode locations is known to control the image resolution. Previous work has shown that optimized survey designs can provide a model resolution that is superior to standard survey designs. This paper demonstrates a methodology to optimize resolution within a target area, while limiting the number of required electrodes, thereby selecting optimal electrode locations. This is achieved by extending previous work on the `Compare-R' algorithm, which by calculating updates to the resolution matrix optimizes the model resolution in a target area. Here, an additional weighting factor is introduced that allows to preferentially adding measurement configurations that can be acquired on a given set of electrodes. The performance of the optimization is tested on two synthetic examples and verified with a laboratory study. The effect of the weighting factor is investigated using an acquisition layout comprising a single line of electrodes. The results show that an increasing weight decreases the area of improved resolution, but leads to a smaller number of electrode positions. Imaging results superior to a standard survey design were achieved using 56 per cent fewer electrodes. The performance was also tested on a 3-D acquisition grid, where superior resolution within a target at the base of an embankment was achieved using 22 per cent fewer electrodes than a comparable standard survey. The effect of the underlying resistivity distribution on the performance of the optimization was investigated and it was shown that even strong resistivity contrasts only have minor impact. The synthetic results were verified in a laboratory tank experiment, where notable image improvements were achieved. This work shows that optimized surveys can be designed that have a resolution superior to standard survey designs, while requiring significantly fewer electrodes. This methodology thereby provides a means for

  11. Optimized survey design for Electrical Resistivity Tomography: combined optimization of measurement configuration and electrode placement

    NASA Astrophysics Data System (ADS)

    Uhlemann, Sebastian; Wilkinson, Paul B.; Maurer, Hansruedi; Wagner, Florian M.; Johnson, Timothy C.; Chambers, Jonathan E.

    2018-03-01

    Within geoelectrical imaging, the choice of measurement configurations and electrode locations is known to control the image resolution. Previous work has shown that optimized survey designs can provide a model resolution that is superior to standard survey designs. This paper demonstrates a methodology to optimize resolution within a target area, while limiting the number of required electrodes, thereby selecting optimal electrode locations. This is achieved by extending previous work on the `Compare-R' algorithm, which by calculating updates to the resolution matrix optimizes the model resolution in a target area. Here, an additional weighting factor is introduced that allows to preferentially adding measurement configurations that can be acquired on a given set of electrodes. The performance of the optimization is tested on two synthetic examples and verified with a laboratory study. The effect of the weighting factor is investigated using an acquisition layout comprising a single line of electrodes. The results show that an increasing weight decreases the area of improved resolution, but leads to a smaller number of electrode positions. Imaging results superior to a standard survey design were achieved using 56 per cent fewer electrodes. The performance was also tested on a 3D acquisition grid, where superior resolution within a target at the base of an embankment was achieved using 22 per cent fewer electrodes than a comparable standard survey. The effect of the underlying resistivity distribution on the performance of the optimization was investigated and it was shown that even strong resistivity contrasts only have minor impact. The synthetic results were verified in a laboratory tank experiment, where notable image improvements were achieved. This work shows that optimized surveys can be designed that have a resolution superior to standard survey designs, while requiring significantly fewer electrodes. This methodology thereby provides a means for improving

  12. Dendritic cells for active immunotherapy: optimizing design and manufacture in order to develop commercially and clinically viable products.

    PubMed

    Nicolette, C A; Healey, D; Tcherepanova, I; Whelton, P; Monesmith, T; Coombs, L; Finke, L H; Whiteside, T; Miesowicz, F

    2007-09-27

    Dendritic cell (DC) active immunotherapy is potentially efficacious in a broad array of malignant disease settings. However, challenges remain in optimizing DC-based therapy for maximum clinical efficacy within manufacturing processes that permit quality control and scale-up of consistent products. In this review we discuss the critical issues that must be addressed in order to optimize DC-based product design and manufacture, and highlight the DC based platforms currently addressing these issues. Variables in DC-based product design include the type of antigenic payload used, DC maturation steps and activation processes, and functional assays. Issues to consider in development include: (a) minimizing the invasiveness of patient biological material collection; (b) minimizing handling and manipulations of tissue at the clinical site; (c) centralized product manufacturing and standardized processing and capacity for commercial-scale production; (d) rapid product release turnaround time; (e) the ability to manufacture sufficient product from limited starting material; and (f) standardized release criteria for DC phenotype and function. Improvements in the design and manufacture of DC products have resulted in a handful of promising leads currently in clinical development.

  13. The chemical evolution of oligonucleotide therapies of clinical utility.

    PubMed

    Khvorova, Anastasia; Watts, Jonathan K

    2017-03-01

    After nearly 40 years of development, oligonucleotide therapeutics are nearing meaningful clinical productivity. One of the key advantages of oligonucleotide drugs is that their delivery and potency are derived primarily from the chemical structure of the oligonucleotide whereas their target is defined by the base sequence. Thus, as oligonucleotides with a particular chemical design show appropriate distribution and safety profiles for clinical gene silencing in a particular tissue, this will open the door to the rapid development of additional drugs targeting other disease-associated genes in the same tissue. To achieve clinical productivity, the chemical architecture of the oligonucleotide needs to be optimized with a combination of sugar, backbone, nucleobase, and 3'- and 5'-terminal modifications. A portfolio of chemistries can be used to confer drug-like properties onto the oligonucleotide as a whole, with minor chemical changes often translating into major improvements in clinical efficacy. One outstanding challenge in oligonucleotide chemical development is the optimization of chemical architectures to ensure long-term safety. There are multiple designs that enable effective targeting of the liver, but a second challenge is to develop architectures that enable robust clinical efficacy in additional tissues.

  14. Computation of physiological human vocal fold parameters by mathematical optimization of a biomechanical model

    PubMed Central

    Yang, Anxiong; Stingl, Michael; Berry, David A.; Lohscheller, Jörg; Voigt, Daniel; Eysholdt, Ulrich; Döllinger, Michael

    2011-01-01

    With the use of an endoscopic, high-speed camera, vocal fold dynamics may be observed clinically during phonation. However, observation and subjective judgment alone may be insufficient for clinical diagnosis and documentation of improved vocal function, especially when the laryngeal disease lacks any clear morphological presentation. In this study, biomechanical parameters of the vocal folds are computed by adjusting the corresponding parameters of a three-dimensional model until the dynamics of both systems are similar. First, a mathematical optimization method is presented. Next, model parameters (such as pressure, tension and masses) are adjusted to reproduce vocal fold dynamics, and the deduced parameters are physiologically interpreted. Various combinations of global and local optimization techniques are attempted. Evaluation of the optimization procedure is performed using 50 synthetically generated data sets. The results show sufficient reliability, including 0.07 normalized error, 96% correlation, and 91% accuracy. The technique is also demonstrated on data from human hemilarynx experiments, in which a low normalized error (0.16) and high correlation (84%) values were achieved. In the future, this technique may be applied to clinical high-speed images, yielding objective measures with which to document improved vocal function of patients with voice disorders. PMID:21877808

  15. An enhancement of ROC curves made them clinically relevant for diagnostic-test comparison and optimal-threshold determination.

    PubMed

    Subtil, Fabien; Rabilloud, Muriel

    2015-07-01

    The receiver operating characteristic curves (ROC curves) are often used to compare continuous diagnostic tests or determine the optimal threshold of a test; however, they do not consider the costs of misclassifications or the disease prevalence. The ROC graph was extended to allow for these aspects. Two new lines are added to the ROC graph: a sensitivity line and a specificity line. Their slopes depend on the disease prevalence and on the ratio of the net benefit of treating a diseased subject to the net cost of treating a nondiseased one. First, these lines help researchers determine the range of specificities within which test comparisons of partial areas under the curves is clinically relevant. Second, the ROC curve point the farthest from the specificity line is shown to be the optimal threshold in terms of expected utility. This method was applied: (1) to determine the optimal threshold of ratio specific immunoglobulin G (IgG)/total IgG for the diagnosis of congenital toxoplasmosis and (2) to select, among two markers, the most accurate for the diagnosis of left ventricular hypertrophy in hypertensive subjects. The two additional lines transform the statistically valid ROC graph into a clinically relevant tool for test selection and threshold determination. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Maximizing the probability of satisfying the clinical goals in radiation therapy treatment planning under setup uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredriksson, Albin, E-mail: albin.fredriksson@raysearchlabs.com; Hårdemark, Björn; Forsgren, Anders

    2015-07-15

    Purpose: This paper introduces a method that maximizes the probability of satisfying the clinical goals in intensity-modulated radiation therapy treatments subject to setup uncertainty. Methods: The authors perform robust optimization in which the clinical goals are constrained to be satisfied whenever the setup error falls within an uncertainty set. The shape of the uncertainty set is included as a variable in the optimization. The goal of the optimization is to modify the shape of the uncertainty set in order to maximize the probability that the setup error will fall within the modified set. Because the constraints enforce the clinical goalsmore » to be satisfied under all setup errors within the uncertainty set, this is equivalent to maximizing the probability of satisfying the clinical goals. This type of robust optimization is studied with respect to photon and proton therapy applied to a prostate case and compared to robust optimization using an a priori defined uncertainty set. Results: Slight reductions of the uncertainty sets resulted in plans that satisfied a larger number of clinical goals than optimization with respect to a priori defined uncertainty sets, both within the reduced uncertainty sets and within the a priori, nonreduced, uncertainty sets. For the prostate case, the plans taking reduced uncertainty sets into account satisfied 1.4 (photons) and 1.5 (protons) times as many clinical goals over the scenarios as the method taking a priori uncertainty sets into account. Conclusions: Reducing the uncertainty sets enabled the optimization to find better solutions with respect to the errors within the reduced as well as the nonreduced uncertainty sets and thereby achieve higher probability of satisfying the clinical goals. This shows that asking for a little less in the optimization sometimes leads to better overall plan quality.« less

  17. A Novel Method to Generate and Expand Clinical-Grade, Genetically Modified, Tumor-Infiltrating Lymphocytes

    PubMed Central

    Forget, Marie-Andrée; Tavera, René J.; Haymaker, Cara; Ramachandran, Renjith; Malu, Shuti; Zhang, Minying; Wardell, Seth; Fulbright, Orenthial J.; Toth, Chistopher Leroy; Gonzalez, Audrey M.; Thorsen, Shawne T.; Flores, Esteban; Wahl, Arely; Peng, Weiyi; Amaria, Rodabe N.; Hwu, Patrick; Bernatchez, Chantale

    2017-01-01

    Following the clinical success achieved with the first generation of adoptive cell therapy (ACT) utilizing in vitro expanded tumor-infiltrating lymphocytes (TILs), the second and third generations of TIL ACT are evolving toward the use of genetically modified TIL. TIL therapy generally involves the transfer of a high number of TIL, ranging from 109 to 1011 cells. One of the technical difficulties in genetically modifying TIL, using a retroviral vector, is the ability to achieve large expansion of transduced TIL, while keeping the technique suitable to a Good Manufacturing Practices (GMP) environment. Consequently, we developed and optimized a novel method for the efficient production of large numbers of GMP-grade, gene-modified TIL for the treatment of patients with ACT. The chemokine receptor CXCR2 was used as the gene of interest for methodology development. The optimized procedure is currently used in the production of gene-modified TIL for two clinical trials for the treatment of metastatic melanoma at MD Anderson Cancer Center. PMID:28824634

  18. Vitamin D in corticosteroid-naïve and corticosteroid-treated Duchenne muscular dystrophy: what dose achieves optimal 25(OH) vitamin D levels?

    PubMed

    Alshaikh, Nahla; Brunklaus, Andreas; Davis, Tracey; Robb, Stephanie A; Quinlivan, Ros; Munot, Pinki; Sarkozy, Anna; Muntoni, Francesco; Manzur, Adnan Y

    2016-10-01

    Assessment of the efficacy of vitamin D replenishment and maintenance doses required to attain optimal levels in boys with Duchenne muscular dystrophy (DMD). 25(OH)-vitamin D levels and concurrent vitamin D dosage were collected from retrospective case-note review of boys with DMD at the Dubowitz Neuromuscular Centre. Vitamin D levels were stratified as deficient at <25 nmol/L, insufficient at 25-49 nmol/L, adequate at 50-75 nmol/L and optimal at >75 nmol/L. 617 vitamin D samples were available from 197 boys (range 2-18 years)-69% from individuals on corticosteroids. Vitamin D-naïve boys (154 samples) showed deficiency in 28%, insufficiency in 42%, adequate levels in 24% and optimal levels in 6%. The vitamin D-supplemented group (463 samples) was tested while on different maintenance/replenishment doses. Three-month replenishment of daily 3000 IU (23 samples) or 6000 IU (37 samples) achieved optimal levels in 52% and 84%, respectively. 182 samples taken on 400 IU revealed deficiency in 19 (10%), insufficiency in 84 (47%), adequate levels in 67 (37%) and optimal levels in 11 (6%). 97 samples taken on 800 IU showed deficiency in 2 (2%), insufficiency in 17 (17%), adequate levels in 56 (58%) and optimal levels in 22 (23%). 81 samples were on 1000 IU and 14 samples on 1500 IU, with optimal levels in 35 (43%) and 9 (64%), respectively. No toxic level was seen (highest level 230 nmol/L). The prevalence of vitamin D deficiency and insufficiency in DMD is high. A 2-month replenishment regimen of 6000 IU and maintenance regimen of 1000-1500 IU/day was associated with optimal vitamin D levels. These data have important implications for optimising vitamin D dosing in DMD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Two Blades-Up Runs Using the JetStream Navitus Atherectomy Device Achieve Optimal Tissue Debulking of Nonocclusive In-Stent Restenosis: Observations From a Porcine Stent/Balloon Injury Model.

    PubMed

    Shammas, Nicolas W; Aasen, Nicole; Bailey, Lynn; Budrewicz, Jay; Farago, Trent; Jarvis, Gary

    2015-08-01

    To determine the number of runs with blades up (BU) using the JetStream Navitus to achieving optimal debulking in a porcine model of femoropopliteal artery in-stent restenosis (ISR). In this porcine model, 8 limbs were implanted with overlapping nitinol self-expanding stents. ISR was treated initially with 2 blades-down (BD) runs followed by 4 BU runs (BU1 to BU4). Quantitative vascular angiography (QVA) was performed at baseline, after 2 BD runs, and after each BU run. Plaque surface area and percent stenosis within the treated stented segment were measured. Intravascular ultrasound (IVUS) was used to measure minimum lumen area (MLA) and determine IVUS-derived plaque surface area. QVA showed that plaque surface area was significantly reduced between baseline (83.9%±14.8%) and 2 BD (67.7%±17.0%, p=0.005) and BU1 (55.4%±9.0%, p=0.005) runs, and between BU1 and BU2 runs (50.7%±9.7%, p<0.05). Percent stenosis behaved similarly with no further reduction after BU2. There were no further reductions in plaque surface area or percent stenosis with BU 3 and 4 runs (p=0.10). Similarly, IVUS (24 lesions) confirmed optimal results with BU2 runs and no additional gain in MLA or reduction in plaque surface area with BU3 and 4. IVUS confirmed no orbital cutting with JetStream Navitus. There were no stent strut discontinuities on high-resolution radiographs following atherectomy. JetStream Navitus achieved optimal tissue debulking after 2 BD and 2 BU runs with no further statistical gain in debulking after the BU2 run. Operators treating ISR with JetStream Navitus may be advised to limit their debulking to 2 BD and 2 BU runs to achieve optimal debulking. © The Author(s) 2015.

  20. Enteral nutrition for optimal growth in preterm infants

    PubMed Central

    2016-01-01

    Early, aggressive nutrition is an important contributing factor of long-term neurodevelopmental outcomes. To ensure optimal growth in premature infants, adequate protein intake and optimal protein/energy ratio should be emphasized rather than the overall energy intake. Minimal enteral nutrition should be initiated as soon as possible in the first days of life, and feeding advancement should be individualized according to the clinical course of the infant. During hospitalization, enteral nutrition with preterm formula and fortified human milk represent the best feeding practices for facilitating growth. After discharge, the enteral nutrition strategy should be individualized according to the infant's weight at discharge. Infants with suboptimal weight for their postconceptional age at discharge should receive supplementation with human milk fortifiers or nutrient-enriched feeding, and the enteral nutrition strategy should be reviewed and modified continuously to achieve the target growth parameters. PMID:28194211

  1. Can three-dimensional patient-specific cutting guides be used to achieve optimal correction for high tibial osteotomy? Pilot study.

    PubMed

    Munier, M; Donnez, M; Ollivier, M; Flecher, X; Chabrand, P; Argenson, J-N; Parratte, S

    2017-04-01

    Treatment of medial tibiofemoral osteoarthritis with a high-tibial osteotomy (HTO) is most effective when the optimal angular correction is achieved. However, conventional instrumentation is limited when multiplanar correction is needed. Use of patient-specific cutting guides (PSCGs) for HTO provides an accurate correction (difference<2°) relative to the preoperative planning. Between February 2014 and February 2015, 10 patients (mean age: 46 years [range: 31-59]; grade 1 or 2 osteoarthritis in Ahlbäck's classification) were included prospectively in this reliability and safety study. All patients were operated using the same medial opening-wedge osteotomy technique. Preoperative planning was based on long-leg radiographs and CT scans with 3D reconstruction. The PSGCs were used to align the osteotomy cut and position the screw holes for the plate. The desired correction was achieved in the three planes when the holes on the plate were aligned with the holes drilled based on the PSCG. Preoperatively, the mean HKA angle was 171.9° (range: 166-179°), the mean proximal tibial angle was 87° (86-88°) and the mean tibial slope was 7.8° (1-22°). The postoperative correction was compared to the planned correction using 3D CT scan transformations. Intraoperative and postoperative complications were assessed at a minimum follow-up of 1 year. The procedure was successfully carried out in all patients with the PSCGs. On postoperative long-leg radiographs, the mean HKA was 182.3° (180-185°); on the CT scan, the mean tibial mechanical angle was 94° (90-98°) and the mean tibial slope was 7.1° (4-11°). In 19 out of 20 postoperative HKA and slope measurements, the difference between the planned and achieved correction was <2° based on the 3D analysis of the three planes in space; in the other case, the slope was 13° instead of the planned 10°. The intra-class correlation coefficients between the postoperative and planned parameters were 0.98 [0.92-0.99] for

  2. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data.

    PubMed

    Zou, Meng; Liu, Zhaoqi; Zhang, Xiang-Sun; Wang, Yong

    2015-10-15

    In prognosis and survival studies, an important goal is to identify multi-biomarker panels with predictive power using molecular characteristics or clinical observations. Such analysis is often challenged by censored, small-sample-size, but high-dimensional genomic profiles or clinical data. Therefore, sophisticated models and algorithms are in pressing need. In this study, we propose a novel Area Under Curve (AUC) optimization method for multi-biomarker panel identification named Nearest Centroid Classifier for AUC optimization (NCC-AUC). Our method is motived by the connection between AUC score for classification accuracy evaluation and Harrell's concordance index in survival analysis. This connection allows us to convert the survival time regression problem to a binary classification problem. Then an optimization model is formulated to directly maximize AUC and meanwhile minimize the number of selected features to construct a predictor in the nearest centroid classifier framework. NCC-AUC shows its great performance by validating both in genomic data of breast cancer and clinical data of stage IB Non-Small-Cell Lung Cancer (NSCLC). For the genomic data, NCC-AUC outperforms Support Vector Machine (SVM) and Support Vector Machine-based Recursive Feature Elimination (SVM-RFE) in classification accuracy. It tends to select a multi-biomarker panel with low average redundancy and enriched biological meanings. Also NCC-AUC is more significant in separation of low and high risk cohorts than widely used Cox model (Cox proportional-hazards regression model) and L1-Cox model (L1 penalized in Cox model). These performance gains of NCC-AUC are quite robust across 5 subtypes of breast cancer. Further in an independent clinical data, NCC-AUC outperforms SVM and SVM-RFE in predictive accuracy and is consistently better than Cox model and L1-Cox model in grouping patients into high and low risk categories. In summary, NCC-AUC provides a rigorous optimization framework to

  3. A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system.

    PubMed

    Ma, Jiasen; Beltran, Chris; Seum Wan Chan Tseung, Hok; Herman, Michael G

    2014-12-01

    Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. For relatively large and complex three-field head and neck cases, i.e., >100,000 spots with a target volume of ∼ 1000 cm(3) and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45,000 dollars. The fast calculation and

  4. Implementing optimal thinning strategies

    Treesearch

    Kurt H. Riitters; J. Douglas Brodie

    1984-01-01

    Optimal thinning regimes for achieving several management objectives were derived from two stand-growth simulators by dynamic programming. Residual mean tree volumes were then plotted against stand density management diagrams. The results supported the use of density management diagrams for comparing, checking, and implementing the results of optimization analyses....

  5. Challenges in Achieving Collaboration in Clinical Practice: The Case of Norwegian Health Care

    PubMed Central

    Johannessen, Anne-Kari; Ådnanes, Marian; Paulsen, Bård; Mannion, Russell

    2016-01-01

    Introduction: This article summarizes and synthesizes the findings of four separate but inter-linked empirical projects which explored challenges of collaboration in the Norwegian health system from the perspectives of providers and patients. The results of the four projects are summarised in eight articles. Methods: The eight articles constituted our empirical material. Meta-ethnography was used as a method to integrate, translate, and synthesize the themes and concepts contained in the articles in order to understand how challenges related to collaboration impact on clinical work. Results: Providers’ collaboration across all contexts was hampered by organizational and individual factors, including, differences in professional power, knowledge bases, and professional culture. The lack of appropriate collaboration between providers impeded clinical work. Mental health service users experienced fragmented services leading to insecurity and frustration. The lack of collaboration resulted in inadequate rehabilitation services and lengthened the institutional stay for older patients. Conclusion: Focusing on the different perspectives and the inequality in power between patients and healthcare providers and between different providers might contribute to a better environment for achieving appropriate collaboration. Organizational systems need to be redesigned to better nurture collaborative relationships and information sharing and support integrated working between providers, health care professionals and patients. PMID:28435416

  6. Increasing efficiency of human mesenchymal stromal cell culture by optimization of microcarrier concentration and design of medium feed.

    PubMed

    Chen, Allen Kuan-Liang; Chew, Yi Kong; Tan, Hong Yu; Reuveny, Shaul; Weng Oh, Steve Kah

    2015-02-01

    Large amounts of human mesenchymal stromal cells (MSCs) are needed for clinical cellular therapy. In a previous publication, we described a microcarrier-based process for expansion of MSCs. The present study optimized this process by selecting suitable basal media, microcarrier concentration and feeding regime to achieve higher cell yields and more efficient medium utilization. MSCs were expanded in stirred cultures on Cytodex 3 microcarriers with media containing 10% fetal bovine serum. Process optimization was carried out in spinner flasks. A 2-L bioreactor with an automated feeding system was used to validate the optimized parameters explored in spinner flask cultures. Minimum essential medium-α-based medium supported faster MSC growth on microcarriers than did Dulbecco's modified Eagle's medium (doubling time, 31.6 ± 1.4 vs 42 ± 1.7 h) and shortened the process time. At microcarrier concentration of 8 mg/mL, a high cell concentration of 1.08 × 10(6) cells/mL with confluent cell concentration of 4.7 × 10(4)cells/cm(2) was achieved. Instead of 50% medium exchange every 2 days, we have designed a full medium feed that is based on glucose consumption rate. The optimal medium feed that consisted of 1.5 g/L glucose supported MSC growth to full confluency while achieving the low medium usage efficiency of 3.29 mL/10(6)cells. Finally, a controlled bioreactor with the optimized parameters achieved maximal confluent cell concentration with 16-fold expansion and a further improved medium usage efficiency of 1.68 mL/10(6)cells. We have optimized the microcarrier-based platform for expansion of MSCs that generated high cell yields in a more efficient and cost-effective manner. This study highlighted the critical parameters in the optimization of MSC production process. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  7. Portfolio optimization with mean-variance model

    NASA Astrophysics Data System (ADS)

    Hoe, Lam Weng; Siew, Lam Weng

    2016-06-01

    Investors wish to achieve the target rate of return at the minimum level of risk in their investment. Portfolio optimization is an investment strategy that can be used to minimize the portfolio risk and can achieve the target rate of return. The mean-variance model has been proposed in portfolio optimization. The mean-variance model is an optimization model that aims to minimize the portfolio risk which is the portfolio variance. The objective of this study is to construct the optimal portfolio using the mean-variance model. The data of this study consists of weekly returns of 20 component stocks of FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBMKLCI). The results of this study show that the portfolio composition of the stocks is different. Moreover, investors can get the return at minimum level of risk with the constructed optimal mean-variance portfolio.

  8. Efficiency achievements from a user-developed real-time modifiable clinical information system.

    PubMed

    Bishop, Roderick O; Patrick, Jon; Besiso, Ali

    2015-02-01

    recovered within a few days in time savings to clinicians. An analysis of the differences between Cerner FirstNet and NEDIMS for sequences of patient journeys showed an average difference of 127 seconds and 15.2 clicks. A simulation model of workflows for typical patient journeys for a normal daily attendance of 165 patients showed that NEDIMS saved 23.9 hours of staff time per day compared with Cerner FirstNet. The results of this investigation show that information systems that are designed by a clinical team using a technology that enables real-time adaptation provides much greater efficiency for the ED. Staff consider that a point-and-click user interface constantly interrupts their train of thought in a way that does not happen when writing on paper. This is partially overcome by the reduction of cognitive load that arises from minimizing the number of clicks to complete a task in the context of global versus local workflow optimization. Copyright © 2014 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  9. Achieving recovery in patients with schizophrenia through psychosocial interventions: A retrospective study.

    PubMed

    Buonocore, Mariachiara; Bosia, Marta; Baraldi, Maria A; Bechi, Margherita; Spangaro, Marco; Cocchi, Federica; Bianchi, Laura; Guglielmino, Carmelo; Mastromatteo, Antonella R; Cavallaro, Roberto

    2018-01-01

    Recovery, or functional remission, represents the ultimate treatment goal in schizophrenia. Despite its importance, a standardized definition of remission is still lacking, thus reported rates significantly vary across studies. Moreover, the effects of rehabilitative interventions on recovery have not been thoroughly investigated. This study aimed to evaluate recovery in a sample of patients with chronic schizophrenia engaged in rehabilitation programs and to explore contributing factors, with a focus on sociocognitive rehabilitative interventions. Data from 104 patients with schizophrenia treated either with a standard rehabilitation program, including cognitive remediation (n = 46), or the latter plus a specific sociocognitive intervention (n = 58), and assessed for psychopathology, cognition, social cognition, and Quality of Life Scale, were retrospectively analyzed for this study. Recovery, evaluated with the Quality of Life Scale, was achieved by 56.76% of patients in our sample. While no effects were observed for clinical, cognitive, or sociocognitive variables, participation in the sociocognitive rehabilitative interventions was positively associated with recovery. Our results indicate that high rates of recovery can be achieved in patients treated with psychosocial interventions and suggest that rehabilitative programs targeting social cognition may further facilitate the process of recovery. If confirmed, these results may have relevant implications for daily clinical practice and service provision, allowing clinicians to develop and optimize specific rehabilitation programs in order to promote recovery. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.

  10. Selected options supporting use of the group embedded figures test in modeling achievement in clinical laboratory science programs.

    PubMed

    Powell, M E

    1995-01-01

    To identify, in light of predicted future shortages of allied-health personnel, student and curricular characteristics of clinical laboratory science (CLS) programs relevant to recruitment and retention at the baccalaureate level. Not applicable. Not applicable. Options for modeling achievement in CLS programs are developed, and designs and procedures for clarifying procedural questions are considered in a context of delivery of instruction for specialized curricula and skill development. Considerable attention is given to the potential for using the Group Embedded Figures Test (GEFT) in modeling, advising, designing curricula, and monitoring quality improvement of programs and graduates. Not applicable. Supporting evidence is supplied from the literature for options in developing an appropriate model for examining those salient variables known to have linkages to achievement. An argument is presented for better understanding of antecedent variables affecting achievement and retention of CLS students. In addition, a case is made for development of an appropriate model examining variables identified in the literature as being linked to achievement. Dynamic models based on these considerations should be developed chronologically from entry through graduation with emphasis on growth at year-end milestones.

  11. Supply-Chain Optimization Template

    NASA Technical Reports Server (NTRS)

    Quiett, William F.; Sealing, Scott L.

    2009-01-01

    The Supply-Chain Optimization Template (SCOT) is an instructional guide for identifying, evaluating, and optimizing (including re-engineering) aerospace- oriented supply chains. The SCOT was derived from the Supply Chain Council s Supply-Chain Operations Reference (SCC SCOR) Model, which is more generic and more oriented toward achieving a competitive advantage in business.

  12. [Clinical Simulation and Emotional Learning].

    PubMed

    Afanador, Adalberto Amaya

    2012-01-01

    At present, the clinical simulation has been incorporated into medical school curriculum. It is considered that the simulation is useful to develop skills, and as such its diffusion. Within the acquisition of skills, meaningful learning is an essential emotional component for the student and this point is essential to optimize the results of the simulation experience. Narrative description on the subject of simulation and the degree of "emotionality." The taxonomy is described for the types of clinical simulation fidelity and correlates it with the degree of emotionality required to achieve significant and lasting learning by students. It is essential to take into account the student's level of emotion in the learning process through simulation strategy. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  13. Examining Curricular Integration Strategies To Optimize Learning Of The Anatomical Sciences

    NASA Astrophysics Data System (ADS)

    Lisk, Kristina Adriana Ayako

    Background: Integration of basic and clinical science knowledge is essential to clinical practice. Although the importance of these two knowledge domains is well-recognized, successfully supporting the development of learners' integrated basic and clinical science knowledge, remains an educational challenge. In this dissertation, I examine curricular integration strategies to optimize learning of the anatomical sciences. Objectives: The studies were designed to achieve the following research aims: 1) to objectively identify clinically relevant content for an integrated musculoskeletal anatomy curriculum; 2) to examine the value of integrated anatomy and clinical science instruction compared to clinical science instruction alone on novices' diagnostic accuracy and diagnostic reasoning process; 3) to compare the effect of integrating and segregating anatomy and clinical science instruction along with a learning strategy (self-explanation) on novices' diagnostic accuracy. Methods: A modified Delphi was used to objectively select clinically relevant content for an integrated musculoskeletal anatomy curriculum. Two experimental studies were created to compare different instructional strategies to optimize learning of the curricular content. In both of these studies, novice learners were taught the clinical features of musculoskeletal pathologies using different learning approaches. Diagnostic performance was measured immediately after instruction and one-week later. Results: The results show that the Delphi method is an effective strategy to select clinically relevant content for integrated anatomy curricula. The findings also demonstrate that novices who were explicitly taught the clinical features of musculoskeletal diseases using causal basic science descriptions had superior diagnostic accuracy and a better understanding of the relative importance of key clinical features for disease categories. Conclusions: This research demonstrates how integration strategies can

  14. Psychology of the scientist: LXXXI. Professional school and traditional program graduates: comparison on measures of achievement in clinical psychology.

    PubMed

    Templer, D I; Tomeo, M E; Pointkowski, S R; Mitroff, D; Niederhauser, R N; Siscoe, K

    2000-06-01

    Clinical psychologists who graduated from traditional programs and those who graduated from professional schools were compared on both scientifically and professionally oriented criteria of achievement and recognition. Upon controlling for year of graduation from a doctoral program, the professional school graduates were less likely to be APA fellows, less likely to be on the editorial board of specified research oriented journals in clinical psychology, less likely to have diplomate status in the American Board of Professional Psychology (ABPP), less likely to have been president of state psychological associations, and less likely to have been APPIC internship directors.

  15. Optimization of a shorter variable-acquisition time for legs to achieve true whole-body PET/CT images.

    PubMed

    Umeda, Takuro; Miwa, Kenta; Murata, Taisuke; Miyaji, Noriaki; Wagatsuma, Kei; Motegi, Kazuki; Terauchi, Takashi; Koizumi, Mitsuru

    2017-12-01

    The present study aimed to qualitatively and quantitatively evaluate PET images as a function of acquisition time for various leg sizes, and to optimize a shorter variable-acquisition time protocol for legs to achieve better qualitative and quantitative accuracy of true whole-body PET/CT images. The diameters of legs to be modeled as phantoms were defined based on data derived from 53 patients. This study analyzed PET images of a NEMA phantom and three plastic bottle phantoms (diameter, 5.68, 8.54 and 10.7 cm) that simulated the human body and legs, respectively. The phantoms comprised two spheres (diameters, 10 and 17 mm) containing fluorine-18 fluorodeoxyglucose solution with sphere-to-background ratios of 4 at a background radioactivity level of 2.65 kBq/mL. All PET data were reconstructed with acquisition times ranging from 10 to 180, and 1200 s. We visually evaluated image quality and determined the coefficient of variance (CV) of the background, contrast and the quantitative %error of the hot spheres, and then determined two shorter variable-acquisition protocols for legs. Lesion detectability and quantitative accuracy determined based on maximum standardized uptake values (SUV max ) in PET images of a patient using the proposed protocols were also evaluated. A larger phantom and a shorter acquisition time resulted in increased background noise on images and decreased the contrast in hot spheres. A visual score of ≥ 1.5 was obtained when the acquisition time was ≥ 30 s for three leg phantoms, and ≥ 120 s for the NEMA phantom. The quantitative %errors of the 10- and 17-mm spheres in the leg phantoms were ± 15 and ± 10%, respectively, in PET images with a high CV (scan < 30 s). The mean SUV max of three lesions using the current fixed-acquisition and two proposed variable-acquisition time protocols in the clinical study were 3.1, 3.1 and 3.2, respectively, which did not significantly differ. Leg acquisition time per bed position of

  16. Implementation of evidence-based treatment for schizophrenic disorders: two-year outcome of an international field trial of optimal treatment

    PubMed Central

    Falloon, Ian RH; Montero, Isabel; Sungur, Mehmet; Mastroeni, Antonino; Malm, Ulf; Economou, Marina; Grawe, Rolf; Harangozo, Judit; Mizuno, Masafumi; Murakami, Masaaki; Hager, Bert; Held, Tilo; Veltro, Franco; Gedye, Robyn

    2004-01-01

    According to clinical trials literature, every person with a schizophrenic disorder should be provided with the combination of optimal dose antipsychotics, strategies to educate himself and his carers to cope more efficiently with environmental stresses, cognitive-behavioural strategies to enhance work and social goals and reducing residual symptoms, and assertive home-based management to help prevent and resolve major social needs and crises, including recurrent episodes of symptoms. Despite strong scientific support for the routine implementation of these 'evidence-based' strategies, few services provide more than the pharmacotherapy component, and even this is seldom applied in the manner associated with the best results in the clinical trials. An international collaborative group, the Optimal Treatment Project (OTP), has been developed to promote the routine use of evidence-based strategies for schizophrenic disorders. A field trial was started to evaluate the benefits and costs of applying evidence-based strategies over a 5-year period. Centres have been set up in 18 countries. This paper summarises the outcome after 24 months of 'optimal' treatment in 603 cases who had reached this stage in their treatment by the end of 2002. On all measures the evidence-based OTP approach achieved more than double the benefits associated with current best practices. One half of recent cases had achieved full recovery from clinical and social morbidity. These advantages were even more striking in centres where a random-control design was used. PMID:16633471

  17. Implementation of evidence-based treatment for schizophrenic disorders: two-year outcome of an international field trial of optimal treatment.

    PubMed

    Falloon, Ian R H; Montero, Isabel; Sungur, Mehmet; Mastroeni, Antonino; Malm, Ulf; Economou, Marina; Grawe, Rolf; Harangozo, Judit; Mizuno, Masafumi; Murakami, Masaaki; Hager, Bert; Held, Tilo; Veltro, Franco; Gedye, Robyn

    2004-06-01

    According to clinical trials literature, every person with a schizophrenic disorder should be provided with the combination of optimal dose antipsychotics, strategies to educate himself and his carers to cope more efficiently with environmental stresses, cognitive-behavioural strategies to enhance work and social goals and reducing residual symptoms, and assertive home-based management to help prevent and resolve major social needs and crises, including recurrent episodes of symptoms. Despite strong scientific support for the routine implementation of these 'evidence-based' strategies, few services provide more than the pharmacotherapy component, and even this is seldom applied in the manner associated with the best results in the clinical trials. An international collaborative group, the Optimal Treatment Project (OTP), has been developed to promote the routine use of evidence-based strategies for schizophrenic disorders. A field trial was started to evaluate the benefits and costs of applying evidence-based strategies over a 5-year period. Centres have been set up in 18 countries. This paper summarises the outcome after 24 months of 'optimal' treatment in 603 cases who had reached this stage in their treatment by the end of 2002. On all measures the evidence-based OTP approach achieved more than double the benefits associated with current best practices. One half of recent cases had achieved full recovery from clinical and social morbidity. These advantages were even more striking in centres where a random-control design was used.

  18. Current status of achieving blood pressure target and its clinical correlates in Japanese type 2 diabetes.

    PubMed

    Yokoyama, Hiroki; Araki, Shin-Ichi; Kawai, Koichi; Hirao, Koichi; Kurihara, Yoshio; Seino, Hiroaki; Takamura, Hiroshi; Sugimoto, Hidekatsu; Okada, Akira; Maegawa, Hiroshi

    2017-07-21

    To investigate the current status of achieved blood pressure levels in association with the number of antihypertensive drug classes as of 2013, and to explore the clinical correlates with achievement of target blood pressure in a large-scale cohort of Japanese subjects with type 2 diabetes. A nationwide survey was conducted including 12,811 subjects with type 2 diabetes. Subjects were divided by achieved blood pressure, <130/80 or 140/90 mmHg, and the number of drug classes taken. The percentages achieving a blood pressure of <130/80 or 140/90 mmHg were 52.0% and 86.1%, respectively. The prevalence of hypertension, if defined as ≥130/80 mmHg or treated, became 67.9%. Among subjects taking antihypertensive drugs, a blood pressure of <130/80 or <140/90 mmHg was 46.7% and 83.2%, respectively. The percentages of <130/80 mmHg were 55.9% without drugs, 47.1% on 1, 42.5% on 2, 47.2% on 3, and 56.8% on ≥4 drugs, respectively. The most prescribed drugs were renin-angiotensin system inhibitors, followed by calcium channel blockers, diuretics, and β-blockers. The multiple logistic regression analysis indicated that a blood pressure <130/80 mmHg was associated with lower values in age, body mass index, albuminuria, and glomerular filtration rate, higher proportions on targets for HbA 1C and lipids, and less retinopathy. In type 2 diabetes, hypertension is common and only 52% achieved <130/80 mmHg, indicating a difficulty in blood pressure lowering. This was correlated with difficulties in glycemic and lipid management, obesity, and vascular complications, implying these clustering to be a serious problem. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. ‘Trial Exegesis’: Methods for Synthesizing Clinical and Patient Reported Outcome (PRO) Data in Trials to Inform Clinical Practice. A Systematic Review

    PubMed Central

    Macefield, Rhiannon C.; Blencowe, Natalie S.; Brookes, Sara T.; Blazeby, Jane M.

    2016-01-01

    Purpose The CONSORT extension for patient reported outcomes (PROs) aims to improve reporting, but guidance on the optimal integration with clinical data is lacking. This study examines in detail the reporting of PROs and clinical data from randomized controlled trials (RCTs) in gastro-intestinal cancer to inform design and reporting of combined PRO and clinical data from trials to improve the ‘take home’ message for clinicians to use in practice. Materials and Methods The case study was undertaken in gastro-intestinal cancer trials. Well-conducted RCTs reporting PROs with validated instruments were identified and categorized into those combining PRO and clinical data in a single paper, or those separating data into linked primary and supplemental papers. Qualitative methods were developed to examine reporting of the critical interpretation of the trial results (trial exegesis) in the papers in relation of the PRO and clinical outcomes and applied to each publication category. Results were used to inform recommendations for practice. Results From 1917 screened abstracts, 49 high quality RCTs were identified reported in 36 combined and 15 linked primary and supplemental papers. In-depth analysis of manuscript text identified three categories for understanding trial exegesis: where authors reported a “detailed”, “general”, or absent PRO rationale and integrated interpretation of clinical and PRO results. A total of 11 (30%) and 6 (16%) combined papers reported “detailed” PRO rationale and integrated interpretation of results although only 2 (14%) and 1 (7%) primary papers achieved the same standard respectively. Supplemental papers provide better information with 11 (73%) and 3 (20%) achieving “detailed” rationale and integrated interpretation of results. Supplemental papers, however, were published a median of 20 months after the primary RCT data in lower impact factor journals (median 16.8 versus 5.2). Conclusion It is recommended that single

  20. The expanded invasive weed optimization metaheuristic for solving continuous and discrete optimization problems.

    PubMed

    Josiński, Henryk; Kostrzewa, Daniel; Michalczuk, Agnieszka; Switoński, Adam

    2014-01-01

    This paper introduces an expanded version of the Invasive Weed Optimization algorithm (exIWO) distinguished by the hybrid strategy of the search space exploration proposed by the authors. The algorithm is evaluated by solving three well-known optimization problems: minimization of numerical functions, feature selection, and the Mona Lisa TSP Challenge as one of the instances of the traveling salesman problem. The achieved results are compared with analogous outcomes produced by other optimization methods reported in the literature.

  1. Clinical significance of achieving a flexion limitation with a tension band system in grade 1 degenerative spondylolisthesis: a minimum 5-year follow-up.

    PubMed

    Lee, Sang-Ho; Lee, Ho-Yeon; Baek, Oon Ki; Bae, Jun Seok; Yoo, Seung-Hwa; Lee, June-Ho

    2015-03-15

    Retrospective clinical study. To evaluate the effect of the limitation of flexion rotation clinically and radiologically after interspinous soft stabilization using a tension band system in grade 1 degenerative spondylolisthesis. Although several studies have been published on the clinical effects of limiting rotatory motion using tension band systems, which mainly targets the limitation of flexion rather than that of extension, they were confined to the category of pedicle screw-based systems, revealing inconsistent long-term outcomes. Sixty-one patients with a mean age of 60.6 years (range, 28-76 yr) who underwent interspinous soft stabilization after decompression for grade 1 degenerative spondylolisthesis with stenosis between 2002 and 2004 were analyzed. At follow-up, the patients were divided into 2 groups on the basis of their achievement or failure to achieve flexion limitation. The clinical and radiological findings were analyzed. A multiple linear regression analysis was performed to determine the prognostic factors for surgical outcomes. At a mean follow-up duration of 72.5 months (range, 61-82 mo), 51 patients were classified into the flexion-limited group and 10 into the flexion-unlimited group. Statistically significant improvements were noted only in the flexion-limited group in all clinical scores. In the flexion-unlimited group, there were significant deteriorations in flexion angle (P = 0.009), axial thickness of the ligamentum flavum (P = 0.013), and the foraminal cross-sectional area (P = 0.011), resulting in significant intergroup differences. The preoperative extension angle was identified as the most influential variable for the flexion limitation and the clinical outcomes. The effects of the limitation of flexion rotation achieved through interspinous soft stabilization using a tension band system after decompression were related to the prevention of late recurrent stenosis and resultant radicular pain caused by flexion instability. The

  2. Assisting Pupils in Mathematics Achievement (The Common Core Standards)

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2011-01-01

    Mathematics teachers must expect reasonably high standards of achievement from pupils. Too frequently, pupils attain at a substandard level and more optimal achievement is necessary. Thus, pupils should have self esteem needs met in the school and classroom setting. Thus, learners feel that mathematics is worthwhile and effort must be put forth to…

  3. Precision Oncology Medicine: The Clinical Relevance of Patient-Specific Biomarkers Used to Optimize Cancer Treatment.

    PubMed

    Schmidt, Keith T; Chau, Cindy H; Price, Douglas K; Figg, William D

    2016-12-01

    Precision medicine in oncology is the result of an increasing awareness of patient-specific clinical features coupled with the development of genomic-based diagnostics and targeted therapeutics. Companion diagnostics designed for specific drug-target pairs were the first to widely utilize clinically applicable tumor biomarkers (eg, HER2, EGFR), directing treatment for patients whose tumors exhibit a mutation susceptible to an FDA-approved targeted therapy (eg, trastuzumab, erlotinib). Clinically relevant germline mutations in drug-metabolizing enzymes and transporters (eg, TPMT, DPYD) have been shown to impact drug response, providing a rationale for individualized dosing to optimize treatment. The use of multigene expression-based assays to analyze an array of prognostic biomarkers has been shown to help direct treatment decisions, especially in breast cancer (eg, Oncotype DX). More recently, the use of next-generation sequencing to detect many potential "actionable" cancer molecular alterations is further shifting the 1 gene-1 drug paradigm toward a more comprehensive, multigene approach. Currently, many clinical trials (eg, NCI-MATCH, NCI-MPACT) are assessing novel diagnostic tools with a combination of different targeted therapeutics while also examining tumor biomarkers that were previously unexplored in a variety of cancer histologies. Results from ongoing trials such as the NCI-MATCH will help determine the clinical utility and future development of the precision-medicine approach. © 2016, The American College of Clinical Pharmacology.

  4. Inverse 4D conformal planning for lung SBRT using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Modiri, A.; Gu, X.; Hagan, A.; Bland, R.; Iyengar, P.; Timmerman, R.; Sawant, A.

    2016-08-01

    A critical aspect of highly potent regimens such as lung stereotactic body radiation therapy (SBRT) is to avoid collateral toxicity while achieving planning target volume (PTV) coverage. In this work, we describe four dimensional conformal radiotherapy using a highly parallelizable swarm intelligence-based stochastic optimization technique. Conventional lung CRT-SBRT uses a 4DCT to create an internal target volume and then, using forward-planning, generates a 3D conformal plan. In contrast, we investigate an inverse-planning strategy that uses 4DCT data to create a 4D conformal plan, which is optimized across the three spatial dimensions (3D) as well as time, as represented by the respiratory phase. The key idea is to use respiratory motion as an additional degree of freedom. We iteratively adjust fluence weights for all beam apertures across all respiratory phases considering OAR sparing, PTV coverage and delivery efficiency. To demonstrate proof-of-concept, five non-small-cell lung cancer SBRT patients were retrospectively studied. The 4D optimized plans achieved PTV coverage comparable to the corresponding clinically delivered plans while showing significantly superior OAR sparing ranging from 26% to 83% for D max heart, 10%-41% for D max esophagus, 31%-68% for D max spinal cord and 7%-32% for V 13 lung.

  5. A continuous arc delivery optimization algorithm for CyberKnife m6.

    PubMed

    Kearney, Vasant; Descovich, Martina; Sudhyadhom, Atchar; Cheung, Joey P; McGuinness, Christopher; Solberg, Timothy D

    2018-06-01

    This study aims to reduce the delivery time of CyberKnife m6 treatments by allowing for noncoplanar continuous arc delivery. To achieve this, a novel noncoplanar continuous arc delivery optimization algorithm was developed for the CyberKnife m6 treatment system (CyberArc-m6). CyberArc-m6 uses a five-step overarching strategy, in which an initial set of beam geometries is determined, the robotic delivery path is calculated, direct aperture optimization is conducted, intermediate MLC configurations are extracted, and the final beam weights are computed for the continuous arc radiation source model. This algorithm was implemented on five prostate and three brain patients, previously planned using a conventional step-and-shoot CyberKnife m6 delivery technique. The dosimetric quality of the CyberArc-m6 plans was assessed using locally confined mutual information (LCMI), conformity index (CI), heterogeneity index (HI), and a variety of common clinical dosimetric objectives. Using conservative optimization tuning parameters, CyberArc-m6 plans were able to achieve an average CI difference of 0.036 ± 0.025, an average HI difference of 0.046 ± 0.038, and an average LCMI of 0.920 ± 0.030 compared with the original CyberKnife m6 plans. Including a 5 s per minute image alignment time and a 5-min setup time, conservative CyberArc-m6 plans achieved an average treatment delivery speed up of 1.545x ± 0.305x compared with step-and-shoot plans. The CyberArc-m6 algorithm was able to achieve dosimetrically similar plans compared to their step-and-shoot CyberKnife m6 counterparts, while simultaneously reducing treatment delivery times. © 2018 American Association of Physicists in Medicine.

  6. Optimal and safe standard doses of midazolam and propofol to achieve patient and doctor satisfaction with dental treatment: A prospective cohort study

    PubMed Central

    Nonaka, Mutsumi; Nishimura, Akiko; Gotoh, Kinuko; Oka, Shuichirou; Iijima, Takehiko

    2017-01-01

    Background The incidences of morbidity and mortality caused by pharmacosedation for dental treatment have not yet reached zero. Adverse events are related to inappropriate respiratory management, mostly originating from an overdose of sedatives. Since sedation is utilized for the satisfaction of both the dentist and the patient, the optimal dose should be minimized to prevent adverse events. We attempted to define the optimal doses of midazolam and propofol required to achieve high levels of patient and dentist satisfaction. Methods One thousand dental patients, including those undergoing third molar extractions, were enrolled in this study. A dose of 1 mg of midazolam was administered at 1-minute intervals until adequate sedation was achieved. Propofol was then infused continuously to maintain the sedation level. Both the patients and the dentists were subsequently interviewed and asked to complete a questionnaire. A multivariate logistic regression analysis was used to examine the factors that contributed to patient and dentist satisfaction. Results The peak midazolam dose resulting in the highest percentage of patient satisfaction was 3 mg. Both a lower dose and a higher dose reduced patient satisfaction. Patient satisfaction increased with an increasing dosage of propofol up until 4 mg/kg/hr, reaching a peak of 78.6%. The peak midazolam dose resulting in the highest percentage of dentist satisfaction (78.8%) was 2 mg. Incremental propofol doses reduced dentist satisfaction, in contrast to their effect on patient satisfaction. The strongest independent predictors of patient satisfaction and dentist satisfaction were no intraoperative memory (OR, 5.073; 95% CI, 3.532–7.287; P<0.001) and unintentional movements by the patient (OR, 0.035; 95% CI, 0.012–0.104; P<0.001), respectively. No serious adverse events were reported. Conclusion We found that 3 mg of midazolam and 3 mg/kg/hr of propofol may be the optimal doses for maximizing both patient and dentist

  7. Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1.

    PubMed

    Nasri Nasrabadi, Mohammad Reza; Razavi, Seyed Hadi

    2010-04-01

    In this work, we applied statistical experimental design to a fed-batch process for optimization of tricarboxylic acid cycle (TCA) intermediates in order to achieve high-level production of canthaxanthin from Dietzia natronolimnaea HS-1 cultured in beet molasses. A fractional factorial design (screening test) was first conducted on five TCA cycle intermediates. Out of the five TCA cycle intermediates investigated via screening tests, alfaketoglutarate, oxaloacetate and succinate were selected based on their statistically significant (P<0.05) and positive effects on canthaxanthin production. These significant factors were optimized by means of response surface methodology (RSM) in order to achieve high-level production of canthaxanthin. The experimental results of the RSM were fitted with a second-order polynomial equation by means of a multiple regression technique to identify the relationship between canthaxanthin production and the three TCA cycle intermediates. By means of this statistical design under a fed-batch process, the optimum conditions required to achieve the highest level of canthaxanthin (13172 + or - 25 microg l(-1)) were determined as follows: alfaketoglutarate, 9.69 mM; oxaloacetate, 8.68 mM; succinate, 8.51 mM. Copyright 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Need for optimizing catalyst loading for achieving affordable microbial fuel cells.

    PubMed

    Singh, Inderjeet; Chandra, Amreesh

    2013-08-01

    Microbial fuel cell (MFC) technology is a promising technology for electricity production together with simultaneous water treatment. Catalysts play an important role in deciding the MFC performance. In most reports, effect of catalyst - both type and quantity is not optimized. In this paper, synthesis of nanorods of MnO2-catalyst particles for application in Pt-free MFCs is reported. The effect of catalyst loading i.e., weight ratio, with respect to conducting element and binder has been optimized by employing large number of combinations. Using simple theoretical model, it is shown that too high (or low) concentration of catalysts result in loss of MFC performance. The operation of MFC has been investigated using domestic wastewater as source of bio-waste for obtaining real world situation. Maximum power density of ∼61 mW/m(2) was obtained when weight ratio of catalyst and conducting species was 1:1. Suitable reasons are given to explain the outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Medical school clinical placements - the optimal method for assessing the clinical educational environment from a graduate entry perspective.

    PubMed

    Hyde, Sarah; Hannigan, Ailish; Dornan, Tim; McGrath, Deirdre

    2018-01-05

    Educational environment is a strong determinant of student satisfaction and achievement. The learning environments of medical students on clinical placements are busy workplaces, composed of many variables. There is no universally accepted method of evaluating the clinical learning environment, nor is there consensus on what concepts or aspects should be measured. The aims of this study were to compare the Dundee ready educational environment measure (DREEM - the current de facto standard) and the more recently developed Manchester clinical placement index (MCPI) for the assessment of the clinical learning environment in a graduate entry medical student cohort by correlating the scores of each and analysing free text comments. This study also explored student perceptionof how the clinical educational environment is assessed. An online, anonymous survey comprising of both the DREEM and MCPI instruments was delivered to students on clinical placement in a graduate entry medical school. Additional questions explored students' perceptions of instruments for giving feedback. Numeric variables (DREEM score, MCPI score, ratings) were tested for normality and summarised. Pearson's correlation coefficient was used to measure the strength of the association between total DREEM score and total MCPI scores. Thematic analysis was used to analyse the free text comments. The overall response rate to the questionnaire was 67% (n = 180), with a completed response rate for the MCPI of 60% (n = 161) and for the DREEM of 58% (n = 154). There was a strong, positive correlation between total DREEM and MCPI scores (r = 0.71, p < 0.001). On a scale of 0 to 7, the mean rating for how worthwhile students found completing the DREEM was 3.27 (SD 1.41) and for the MCPI was 3.49 (SD 1.57). 'Finding balance' and 'learning at work' were among the themes to emerge from analysis of free text comments. The present study confirms that DREEM and MCPI total scores are strongly correlated

  10. Lack of Clinical Pharmacokinetic Studies to Optimize the Treatment of Neglected Tropical Diseases: A Systematic Review.

    PubMed

    Verrest, Luka; Dorlo, Thomas P C

    2017-06-01

    Neglected tropical diseases (NTDs) affect more than one billion people, mainly living in developing countries. For most of these NTDs, treatment is suboptimal. To optimize treatment regimens, clinical pharmacokinetic studies are required where they have not been previously conducted to enable the use of pharmacometric modeling and simulation techniques in their application, which can provide substantial advantages. Our aim was to provide a systematic overview and summary of all clinical pharmacokinetic studies in NTDs and to assess the use of pharmacometrics in these studies, as well as to identify which of the NTDs or which treatments have not been sufficiently studied. PubMed was systematically searched for all clinical trials and case reports until the end of 2015 that described the pharmacokinetics of a drug in the context of treating any of the NTDs in patients or healthy volunteers. Eighty-two pharmacokinetic studies were identified. Most studies included small patient numbers (only five studies included >50 subjects) and only nine (11 %) studies included pediatric patients. A large part of the studies was not very recent; 56 % of studies were published before 2000. Most studies applied non-compartmental analysis methods for pharmacokinetic analysis (62 %). Twelve studies used population-based compartmental analysis (15 %) and eight (10 %) additionally performed simulations or extrapolation. For ten out of the 17 NTDs, none or only very few pharmacokinetic studies could be identified. For most NTDs, adequate pharmacokinetic studies are lacking and population-based modeling and simulation techniques have not generally been applied. Pharmacokinetic clinical trials that enable population pharmacokinetic modeling are needed to make better use of the available data. Simulation-based studies should be employed to enable the design of improved dosing regimens and more optimally use the limited resources to effectively provide therapy in this neglected area.

  11. Optimization of a whole blood phenotyping assay for enumeration of peripheral blood leukocyte populations in multicenter clinical trials.

    PubMed

    Hensley-McBain, Tiffany; Heit, Antje; De Rosa, Stephen C; McElrath, M Juliana; Andersen-Nissen, Erica

    2014-09-01

    Vaccination with viral vectors or adjuvants can induce early changes in circulating peripheral blood leukocytes that are predictive of a protective immune response. In this study, we define an 11-color whole blood antibody staining Trucount Panel (TP1) to enumerate and phenotype the major leukocyte populations in a human vaccine experimental medicine trial setting. TP1 can be prepared up to 8weeks prior to use, enabling bulk preparation at a central laboratory and distribution to clinical sites. Cells in whole blood must be stained within 4h of draw to accurately detect the major cell populations. Staining of cells with TP1 followed by storage and shipping at -80°C to a central laboratory has little to no effect on the cell concentrations observed. We also present data from an HIV vaccine multicenter clinical trial obtained using the optimized TP1 assay protocol and show that the data produced accurately correlates with complete blood count (CBC) data. Taken together, these data indicate the optimized TP1 panel assay can be used in a multicenter clinical trial setting to increase our understanding of systemic responses to vaccination or disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Feasibility and robustness of dose painting by numbers in proton therapy with contour-driven plan optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barragán, A. M., E-mail: ana.barragan@uclouvain.be; Differding, S.; Lee, J. A.

    Purpose: To prove the ability of protons to reproduce a dose gradient that matches a dose painting by numbers (DPBN) prescription in the presence of setup and range errors, by using contours and structure-based optimization in a commercial treatment planning system. Methods: For two patients with head and neck cancer, voxel-by-voxel prescription to the target volume (GTV{sub PET}) was calculated from {sup 18}FDG-PET images and approximated with several discrete prescription subcontours. Treatments were planned with proton pencil beam scanning. In order to determine the optimal plan parameters to approach the DPBN prescription, the effects of the scanning pattern, number ofmore » fields, number of subcontours, and use of range shifter were separately tested on each patient. Different constant scanning grids (i.e., spot spacing = Δx = Δy = 3.5, 4, and 5 mm) and uniform energy layer separation [4 and 5 mm WED (water equivalent distance)] were analyzed versus a dynamic and automatic selection of the spots grid. The number of subcontours was increased from 3 to 11 while the number of beams was set to 3, 5, or 7. Conventional PTV-based and robust clinical target volumes (CTV)-based optimization strategies were considered and their robustness against range and setup errors assessed. Because of the nonuniform prescription, ensuring robustness for coverage of GTV{sub PET} inevitably leads to overdosing, which was compared for both optimization schemes. Results: The optimal number of subcontours ranged from 5 to 7 for both patients. All considered scanning grids achieved accurate dose painting (1% average difference between the prescribed and planned doses). PTV-based plans led to nonrobust target coverage while robust-optimized plans improved it considerably (differences between worst-case CTV dose and the clinical constraint was up to 3 Gy for PTV-based plans and did not exceed 1 Gy for robust CTV-based plans). Also, only 15% of the points in the GTV{sub PET} (worst

  13. Outcomes of a Joint Replacement Surgical Home Model Clinical Pathway

    PubMed Central

    Chaurasia, Avinash; Garson, Leslie; Kain, Zeev L.; Schwarzkopf, Ran

    2014-01-01

    Optimizing perioperative care to provide maximum benefit at minimum cost may be best achieved using a perioperative clinical pathway (PCP). Using our joint replacement surgical home (JSH) model PCP, we examined length of stay (LOS) following total joint arthroplasty (TJA) to evaluate patient care optimization. We reviewed a spectrum of clinical measurements in 190 consecutive patients who underwent TJA. Patients who had surgery earlier in the week and who were earlier cases of the day had a significantly lower LOS than patients whose cases started both later in the week and later in the day. Patients discharged home had significantly lower LOS than those discharged to a secondary care facility. Patients who received regional versus general anesthesia had a significantly lower LOS. Scheduling patients discharged to home and who will likely receive regional anesthesia for the earliest morning slot and earlier in the week may help decrease overall LOS. PMID:25025045

  14. Drug efficiency: a new concept to guide lead optimization programs towards the selection of better clinical candidates.

    PubMed

    Braggio, Simone; Montanari, Dino; Rossi, Tino; Ratti, Emiliangelo

    2010-07-01

    As a result of their wide acceptance and conceptual simplicity, drug-like concepts are having a major influence on the drug discovery process, particularly in the selection of the 'optimal' absorption, distribution, metabolism, excretion and toxicity and physicochemical parameters space. While they have an undisputable value when assessing the potential of lead series or in evaluating inherent risk of a portfolio of drug candidates, they result much less useful in weighing up compounds for the selection of the best potential clinical candidate. We introduce the concept of drug efficiency as a new tool both to guide the drug discovery program teams during the lead optimization phase and to better assess the developability potential of a drug candidate.

  15. Identification of threshold prostate specific antigen levels to optimize the detection of clinically significant prostate cancer by magnetic resonance imaging/ultrasound fusion guided biopsy.

    PubMed

    Shakir, Nabeel A; George, Arvin K; Siddiqui, M Minhaj; Rothwax, Jason T; Rais-Bahrami, Soroush; Stamatakis, Lambros; Su, Daniel; Okoro, Chinonyerem; Raskolnikov, Dima; Walton-Diaz, Annerleim; Simon, Richard; Turkbey, Baris; Choyke, Peter L; Merino, Maria J; Wood, Bradford J; Pinto, Peter A

    2014-12-01

    with an increasing prostate specific antigen cutoff. Above a prostate specific antigen threshold of 5.2 ng/ml most upgrading to clinically significant disease was achieved by targeted biopsy. In our population this corresponded to potentially sparing biopsy in 36% of patients who underwent multiparametric magnetic resonance imaging. Below this value 12-core biopsy detected more clinically insignificant cancer. Thus, the diagnostic usefulness of targeted biopsy is optimized in patients with prostate specific antigen 5.2 ng/ml or greater. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Achieving Consistent Near-Optimal Pattern Recognition Accuracy Using Particle Swarm Optimization to Pre-Train Artificial Neural Networks

    ERIC Educational Resources Information Center

    Nikelshpur, Dmitry O.

    2014-01-01

    Similar to mammalian brains, Artificial Neural Networks (ANN) are universal approximators, capable of yielding near-optimal solutions to a wide assortment of problems. ANNs are used in many fields including medicine, internet security, engineering, retail, robotics, warfare, intelligence control, and finance. "ANNs have a tendency to get…

  17. Optimal Auxiliary-Covariate Based Two-Phase Sampling Design for Semiparametric Efficient Estimation of a Mean or Mean Difference, with Application to Clinical Trials

    PubMed Central

    Gilbert, Peter B.; Yu, Xuesong; Rotnitzky, Andrea

    2014-01-01

    To address the objective in a clinical trial to estimate the mean or mean difference of an expensive endpoint Y, one approach employs a two-phase sampling design, wherein inexpensive auxiliary variables W predictive of Y are measured in everyone, Y is measured in a random sample, and the semi-parametric efficient estimator is applied. This approach is made efficient by specifying the phase-two selection probabilities as optimal functions of the auxiliary variables and measurement costs. While this approach is familiar to survey samplers, it apparently has seldom been used in clinical trials, and several novel results practicable for clinical trials are developed. Simulations are performed to identify settings where the optimal approach significantly improves efficiency compared to approaches in current practice. Proofs and R code are provided. The optimality results are developed to design an HIV vaccine trial, with objective to compare the mean “importance-weighted” breadth (Y) of the T cell response between randomized vaccine groups. The trial collects an auxiliary response (W) highly predictive of Y, and measures Y in the optimal subset. We show that the optimal design-estimation approach can confer anywhere between absent and large efficiency gain (up to 24% in the examples) compared to the approach with the same efficient estimator but simple random sampling, where greater variability in the cost-standardized conditional variance of Y given W yields greater efficiency gains. Accurate estimation of E[Y∣W] is important for realizing the efficiency gain, which is aided by an ample phase-two sample and by using a robust fitting method. PMID:24123289

  18. MO-A-BRB-01: TG191: Clinical Use of Luminescent Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kry, S.

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3)more » To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.« less

  19. MO-A-BRB-00: TG191: Clinical Use of Luminescent Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3)more » To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.« less

  20. Optimization of pelvic heating rate distributions with electromagnetic phased arrays.

    PubMed

    Paulsen, K D; Geimer, S; Tang, J; Boyse, W E

    1999-01-01

    Deep heating of pelvic tumours with electromagnetic phased arrays has recently been reported to improve local tumour control when combined with radiotherapy in a randomized clinical trial despite the fact that rather modest elevations in tumour temperatures were achieved. It is reasonable to surmise that improvements in temperature elevation could lead to even better tumour response rates, motivating studies which attempt to explore the parameter space associated with heating rate delivery in the pelvis. Computational models which are based on detailed three-dimensional patient anatomy are readily available and lend themselves to this type of investigation. In this paper, volume average SAR is optimized in a predefined target volume subject to a maximum allowable volume average SAR outside this zone. Variables under study include the position of the target zone, the number and distribution of radiators and the applicator operating frequency. The results show a clear preference for increasing frequency beyond 100 MHz, which is typically applied clinically, especially as the number of antennae increases. Increasing both the number of antennae per circumferential distance around the patient, as well as the number of independently functioning antenna bands along the patient length, is important in this regard, although improvements were found to be more significant with increasing circumferential antenna density. However, there is considerable site specific variation and cases occur where lower numbers of antennae spread out over multiple longitudinal bands are more advantageous. The results presented here have been normalized relative to an optimized set of antenna array amplitudes and phases operating at 100 MHz which is a common clinical configuration. The intent is to provide some indications of avenues for improving the heating rate distributions achievable with current technology.

  1. Spatio-temporal optimization of agricultural practices to achieve a sustainable development at basin level; framework of a case study in Colombia

    NASA Astrophysics Data System (ADS)

    Uribe, Natalia; corzo, Gerald; Solomatine, Dimitri

    2016-04-01

    The flood events present during the last years in different basins of the Colombian territory have raised questions on the sensitivity of the regions and if this regions have common features. From previous studies it seems important features in the sensitivity of the flood process were: land cover change, precipitation anomalies and these related to impacts of agriculture management and water management deficiencies, among others. A significant government investment in the outreach activities for adopting and promoting the Colombia National Action Plan on Climate Change (NAPCC) is being carried out in different sectors and regions, having as a priority the agriculture sector. However, more information is still needed in the local environment in order to assess were the regions have this sensitivity. Also the continuous change in one region with seasonal agricultural practices have been pointed out as a critical information for optimal sustainable development. This combined spatio-temporal dynamics of crops cycle in relation to climate change (or variations) has an important impact on flooding events at basin areas. This research will develop on the assessment and optimization of the aggregated impact of flood events due to determinate the spatio-temporal dynamic of changes in agricultural management practices. A number of common best agricultural practices have been identified to explore their effect in a spatial hydrological model that will evaluate overall changes. The optimization process consists on the evaluation of best performance in the agricultural production, without having to change crops activities or move to other regions. To achieve this objectives a deep analysis of different models combined with current and future climate scenarios have been planned. An algorithm have been formulated to cover the parametric updates such that the optimal temporal identification will be evaluated in different region on the case study area. Different hydroinformatics

  2. Affectionless control by the same-sex parents increases dysfunctional attitudes about achievement.

    PubMed

    Otani, Koichi; Suzuki, Akihito; Matsumoto, Yoshihiko; Sadahiro, Ryoichi; Enokido, Masanori

    2014-08-01

    The affectionless control parenting has been associated with depression in recipients. The aim of this study was to examine the effect of this parenting style on dysfunctional attitudes predisposing to depression. The subjects were 666 Japanese volunteers. Perceived parental rearing was evaluated by the Parental Bonding Instrument, which has the care and protection subscales. Parental rearing was classified into four types, i.e., optimal parenting (high care/low protection), affectionate constraint (high care/high protection), neglectful parenting (low care/low protection), and affectionless control (low care/high protection). Dysfunctional attitudes were evaluated by the 24-item Dysfunctional Attitude Scale, which has the achievement, dependency and self-control subscales. Males with paternal affectionless control had higher achievement scores than those with paternal optimal parenting (P=.016). Similarly, females with maternal affectionless control had higher achievement scores than those with maternal optimal parenting (P=.016). The present study suggests that affectionless control by the same-sex parents increases dysfunctional attitudes about achievement. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Thermography based prescreening software tool for veterinary clinics

    NASA Astrophysics Data System (ADS)

    Dahal, Rohini; Umbaugh, Scott E.; Mishra, Deependra; Lama, Norsang; Alvandipour, Mehrdad; Umbaugh, David; Marino, Dominic J.; Sackman, Joseph

    2017-05-01

    Under development is a clinical software tool which can be used in the veterinary clinics as a prescreening tool for these pathologies: anterior cruciate ligament (ACL) disease, bone cancer and feline hyperthyroidism. Currently, veterinary clinical practice uses several imaging techniques including radiology, computed tomography (CT), and magnetic resonance imaging (MRI). But, harmful radiation involved during imaging, expensive equipment setup, excessive time consumption and the need for a cooperative patient during imaging, are major drawbacks of these techniques. In veterinary procedures, it is very difficult for animals to remain still for the time periods necessary for standard imaging without resorting to sedation - which creates another set of complexities. Therefore, clinical application software integrated with a thermal imaging system and the algorithms with high sensitivity and specificity for these pathologies, can address the major drawbacks of the existing imaging techniques. A graphical user interface (GUI) has been created to allow ease of use for the clinical technician. The technician inputs an image, enters patient information, and selects the camera view associated with the image and the pathology to be diagnosed. The software will classify the image using an optimized classification algorithm that has been developed through thousands of experiments. Optimal image features are extracted and the feature vector is then used in conjunction with the stored image database for classification. Classification success rates as high as 88% for bone cancer, 75% for ACL and 90% for feline hyperthyroidism have been achieved. The software is currently undergoing preliminary clinical testing.

  4. Pain in children--are we accomplishing the optimal pain treatment?

    PubMed

    Lundeberg, Stefan

    2015-01-01

    Morphine, paracetamol and local anesthetics have for a long time been the foremost used analgesics in the pediatric patient by tradition but not always enough effective and associated with side effects. The purpose with this article is to propose alternative approaches in pain management, not always supported up by substantial scientific work but from a combination of science and clinical experience in the field. The scientific literature has been reviewed in parts regarding different aspects of pain assessment and analgesics used for treatment of diverse pain conditions with focus on procedural and acute pain. Clinical experience has been added to form the suggested improvements in accomplishing an improved pain management in pediatric patients. The aim with pain management in children should be a tailored analgesic medication with an individual acceptable pain level and optimal degree of mobilization with as little side effects as possible. Simple techniques of pain control are as effective as and complex techniques in pediatrics but the technique used is not of the highest importance in achieving a good pain management. Increased interest and improved education of the doctors prescribing analgesics is important in accomplishing a better pain management. The optimal treatment with analgesics is depending on the analysis of pain origin and analgesics used should be adjusted thereafter. A multimodal treatment regime is advocated for optimal analgesic effect. © 2014 John Wiley & Sons Ltd.

  5. Clinical implementation of a knowledge based planning tool for prostate VMAT.

    PubMed

    Powis, Richard; Bird, Andrew; Brennan, Matthew; Hinks, Susan; Newman, Hannah; Reed, Katie; Sage, John; Webster, Gareth

    2017-05-08

    A knowledge based planning tool has been developed and implemented for prostate VMAT radiotherapy plans providing a target average rectum dose value based on previously achievable values for similar rectum/PTV overlap. The purpose of this planning tool is to highlight sub-optimal clinical plans and to improve plan quality and consistency. A historical cohort of 97 VMAT prostate plans was interrogated using a RayStation script and used to develop a local model for predicting optimum average rectum dose based on individual anatomy. A preliminary validation study was performed whereby historical plans identified as "optimal" and "sub-optimal" by the local model were replanned in a blinded study by four experienced planners and compared to the original clinical plan to assess whether any improvement in rectum dose was observed. The predictive model was then incorporated into a RayStation script and used as part of the clinical planning process. Planners were asked to use the script during planning to provide a patient specific prediction for optimum average rectum dose and to optimise the plan accordingly. Plans identified as "sub-optimal" in the validation study observed a statistically significant improvement in average rectum dose compared to the clinical plan when replanned whereas plans that were identified as "optimal" observed no improvement when replanned. This provided confidence that the local model can identify plans that were suboptimal in terms of rectal sparing. Clinical implementation of the knowledge based planning tool reduced the population-averaged mean rectum dose by 5.6Gy. There was a small but statistically significant increase in total MU and femoral head dose and a reduction in conformity index. These did not affect the clinical acceptability of the plans and no significant changes to other plan quality metrics were observed. The knowledge-based planning tool has enabled substantial reductions in population-averaged mean rectum dose for prostate

  6. Academic Optimism and Collective Responsibility: An Organizational Model of the Dynamics of Student Achievement

    ERIC Educational Resources Information Center

    Wu, Jason H.

    2013-01-01

    This study was designed to examine the construct of academic optimism and its relationship with collective responsibility in a sample of Taiwan elementary schools. The construct of academic optimism was tested using confirmatory factor analysis, and the whole structural model was tested with a structural equation modeling analysis. The data were…

  7. [Clinical and histological findings in Fabry nephropathy].

    PubMed

    Pieruzzi, Federico; Salerno, Fabio; Di Giacomo, Antonella; Torti, Giacomo; Ferrario, Franco; Pagni, Fabio; Stella, Andrea

    2013-01-01

    Fabry disease is a complex pathology, requiring a multidisciplinar approach both in the diagnostic workout and in the management of therapy. Clinical criteria able to predict its morbidity have not yet been found. The wide variability of clinical signs and symptoms requires an individual approach based on the single patient, in order to achieve an optimal management. Enzyme replacement therapy (ERT) has been introduced in the clinical setting for over ten years, but its ability to change the course of the disease has not yet been clearly proved. Recently the hypothesis that ERT may be ineffective in patients with severe organ involvement has emerged. The clinical course of Fabry disease is usually slower in eterozygous women than emizygous men, but can be frequently associated to severe organ failure and premature death in both cases. In this review we discuss the histological aspects of Fabry nephropathy in relation to diagnosis, prognosis, therapy and its effectiveness.

  8. Strategies of experiment standardization and response optimization in a rat model of hemorrhagic shock and chronic hypertension.

    PubMed

    Reynolds, Penny S; Tamariz, Francisco J; Barbee, Robert Wayne

    2010-04-01

    Exploratory pilot studies are crucial to best practice in research but are frequently conducted without a systematic method for maximizing the amount and quality of information obtained. We describe the use of response surface regression models and simultaneous optimization methods to develop a rat model of hemorrhagic shock in the context of chronic hypertension, a clinically relevant comorbidity. Response surface regression model was applied to determine optimal levels of two inputs--dietary NaCl concentration (0.49%, 4%, and 8%) and time on the diet (4, 6, 8 weeks)--to achieve clinically realistic and stable target measures of systolic blood pressure while simultaneously maximizing critical oxygen delivery (a measure of vulnerability to hemorrhagic shock) and body mass M. Simultaneous optimization of the three response variables was performed though a dimensionality reduction strategy involving calculation of a single aggregate measure, the "desirability" function. Optimal conditions for inducing systolic blood pressure of 208 mmHg, critical oxygen delivery of 4.03 mL/min, and M of 290 g were determined to be 4% [NaCl] for 5 weeks. Rats on the 8% diet did not survive past 7 weeks. Response surface regression model and simultaneous optimization method techniques are commonly used in process engineering but have found little application to date in animal pilot studies. These methods will ensure both the scientific and ethical integrity of experimental trials involving animals and provide powerful tools for the development of novel models of clinically interacting comorbidities with shock.

  9. Achieving optimal welfare for the Nile hippopotamus (Hippopotamus amphibius) in North American zoos and aquariums.

    PubMed

    Tennant, Kaylin S; Segura, Valerie D; Morris, Megan C; Snyder, Kristen Denninger; Bocian, David; Maloney, Dan; Maple, Terry L

    2017-07-29

    Compared to other megafauna managed in zoos and aquariums, the current state of welfare for the Nile hippopotamus (Hippopotamus amphibius) is poorly understood. Complex behavior and physiological characteristics make hippos a difficult species to manage. Thus, hippos in managed care are currently at risk for a decreased state of welfare. In an effort to assess and improve conditions for this species, a survey was administered to North American institutions housing Nile hippos. This assessment utilized a multiple-choice format and consisted of questions relating to group structure, behavior, and exhibit design, allowing for the creation of cross-institutional, welfare-based analysis. Responses were gathered from 85.29% of the institutions to which the survey was distributed. Despite recommendations for maintaining groups of at least five individuals (Forthman, 1998), only 34.25% of hippos in North America were housed in groups of three or more. The survey also highlighted that 39.29% of institutions secure their hippos in holding areas overnight, despite their highly active nocturnal propensities. A better understanding of hippo behavior and environmental preferences can be used to inform wellness-oriented management practices to achieve a state of "optimal welfare". Copyright © 2017 Elsevier B.V. All rights reserved.

  10. [Development of an ophthalmological clinical information system for inpatient eye clinics].

    PubMed

    Kortüm, K U; Müller, M; Babenko, A; Kampik, A; Kreutzer, T C

    2015-12-01

    In times of increased digitalization in healthcare, departments of ophthalmology are faced with the challenge of introducing electronic clinical health records (EHR); however, specialized software for ophthalmology is not available with most major EHR sytems. The aim of this project was to create specific ophthalmological user interfaces for large inpatient eye care providers within a hospitalwide EHR. Additionally the integration of ophthalmic imaging systems, scheduling and surgical documentation should be achieved. The existing EHR i.s.h.med (Siemens, Germany) was modified using advanced business application programming (ABAP) language to create specific ophthalmological user interfaces for reproduction and moreover optimization of the clinical workflow. A user interface for documentation of ambulatory patients with eight tabs was designed. From June 2013 to October 2014 a total of 61,551 patient contact details were documented. For surgical documentation a separate user interface was set up. Digital clinical orders for documentation of registration and scheduling of operations user interfaces were also set up. A direct integration of ophthalmic imaging modalities could be established. An ophthalmologist-orientated EHR for outpatient and surgical documentation for inpatient clinics was created and successfully implemented. By incorporation of imaging procedures the foundation of future smart/big data analyses was created.

  11. An efficient inverse radiotherapy planning method for VMAT using quadratic programming optimization.

    PubMed

    Hoegele, W; Loeschel, R; Merkle, N; Zygmanski, P

    2012-01-01

    The purpose of this study is to investigate the feasibility of an inverse planning optimization approach for the Volumetric Modulated Arc Therapy (VMAT) based on quadratic programming and the projection method. The performance of this method is evaluated against a reference commercial planning system (eclipse(TM) for rapidarc(TM)) for clinically relevant cases. The inverse problem is posed in terms of a linear combination of basis functions representing arclet dose contributions and their respective linear coefficients as degrees of freedom. MLC motion is decomposed into basic motion patterns in an intuitive manner leading to a system of equations with a relatively small number of equations and unknowns. These equations are solved using quadratic programming under certain limiting physical conditions for the solution, such as the avoidance of negative dose during optimization and Monitor Unit reduction. The modeling by the projection method assures a unique treatment plan with beneficial properties, such as the explicit relation between organ weightings and the final dose distribution. Clinical cases studied include prostate and spine treatments. The optimized plans are evaluated by comparing isodose lines, DVH profiles for target and normal organs, and Monitor Units to those obtained by the clinical treatment planning system eclipse(TM). The resulting dose distributions for a prostate (with rectum and bladder as organs at risk), and for a spine case (with kidneys, liver, lung and heart as organs at risk) are presented. Overall, the results indicate that similar plan qualities for quadratic programming (QP) and rapidarc(TM) could be achieved at significantly more efficient computational and planning effort using QP. Additionally, results for the quasimodo phantom [Bohsung et al., "IMRT treatment planning: A comparative inter-system and inter-centre planning exercise of the estro quasimodo group," Radiother. Oncol. 76(3), 354-361 (2005)] are presented as an example

  12. Multiobjective Particle Swarm Optimization for the optimal design of photovoltaic grid-connected systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornelakis, Aris

    2010-12-15

    Particle Swarm Optimization (PSO) is a highly efficient evolutionary optimization algorithm. In this paper a multiobjective optimization algorithm based on PSO applied to the optimal design of photovoltaic grid-connected systems (PVGCSs) is presented. The proposed methodology intends to suggest the optimal number of system devices and the optimal PV module installation details, such that the economic and environmental benefits achieved during the system's operational lifetime period are both maximized. The objective function describing the economic benefit of the proposed optimization process is the lifetime system's total net profit which is calculated according to the method of the Net Present Valuemore » (NPV). The second objective function, which corresponds to the environmental benefit, equals to the pollutant gas emissions avoided due to the use of the PVGCS. The optimization's decision variables are the optimal number of the PV modules, the PV modules optimal tilt angle, the optimal placement of the PV modules within the available installation area and the optimal distribution of the PV modules among the DC/AC converters. (author)« less

  13. Clinical prediction model to identify vulnerable patients in ambulatory surgery: towards optimal medical decision-making.

    PubMed

    Mijderwijk, Herjan; Stolker, Robert Jan; Duivenvoorden, Hugo J; Klimek, Markus; Steyerberg, Ewout W

    2016-09-01

    Ambulatory surgery patients are at risk of adverse psychological outcomes such as anxiety, aggression, fatigue, and depression. We developed and validated a clinical prediction model to identify patients who were vulnerable to these psychological outcome parameters. We prospectively assessed 383 mixed ambulatory surgery patients for psychological vulnerability, defined as the presence of anxiety (state/trait), aggression (state/trait), fatigue, and depression seven days after surgery. Three psychological vulnerability categories were considered-i.e., none, one, or multiple poor scores, defined as a score exceeding one standard deviation above the mean for each single outcome according to normative data. The following determinants were assessed preoperatively: sociodemographic (age, sex, level of education, employment status, marital status, having children, religion, nationality), medical (heart rate and body mass index), and psychological variables (self-esteem and self-efficacy), in addition to anxiety, aggression, fatigue, and depression. A prediction model was constructed using ordinal polytomous logistic regression analysis, and bootstrapping was applied for internal validation. The ordinal c-index (ORC) quantified the discriminative ability of the model, in addition to measures for overall model performance (Nagelkerke's R (2) ). In this population, 137 (36%) patients were identified as being psychologically vulnerable after surgery for at least one of the psychological outcomes. The most parsimonious and optimal prediction model combined sociodemographic variables (level of education, having children, and nationality) with psychological variables (trait anxiety, state/trait aggression, fatigue, and depression). Model performance was promising: R (2)  = 30% and ORC = 0.76 after correction for optimism. This study identified a substantial group of vulnerable patients in ambulatory surgery. The proposed clinical prediction model could allow healthcare

  14. Optimization and evaluation of a proportional derivative controller for planar arm movement.

    PubMed

    Jagodnik, Kathleen M; van den Bogert, Antonie J

    2010-04-19

    In most clinical applications of functional electrical stimulation (FES), the timing and amplitude of electrical stimuli have been controlled by open-loop pattern generators. The control of upper extremity reaching movements, however, will require feedback control to achieve the required precision. Here we present three controllers using proportional derivative (PD) feedback to stimulate six arm muscles, using two joint angle sensors. Controllers were first optimized and then evaluated on a computational arm model that includes musculoskeletal dynamics. Feedback gains were optimized by minimizing a weighted sum of position errors and muscle forces. Generalizability of the controllers was evaluated by performing movements for which the controller was not optimized, and robustness was tested via model simulations with randomly weakened muscles. Robustness was further evaluated by adding joint friction and doubling the arm mass. After optimization with a properly weighted cost function, all PD controllers performed fast, accurate, and robust reaching movements in simulation. Oscillatory behavior was seen after improper tuning. Performance improved slightly as the complexity of the feedback gain matrix increased. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Optimization and evaluation of a proportional derivative controller for planar arm movement

    PubMed Central

    Jagodnik, Kathleen M.; van den Bogert, Antonie J.

    2013-01-01

    In most clinical applications of functional electrical stimulation (FES), the timing and amplitude of electrical stimuli have been controlled by open-loop pattern generators. The control of upper extremity reaching movements, however, will require feedback control to achieve the required precision. Here we present three controllers using proportional derivative (PD) feedback to stimulate six arm muscles, using two joint angle sensors. Controllers were first optimized and then evaluated on a computational arm model that includes musculoskeletal dynamics. Feedback gains were optimized by minimizing a weighted sum of position errors and muscle forces. Generalizability of the controllers was evaluated by performing movements for which the controller was not optimized, and robustness was tested via model simulations with randomly weakened muscles. Robustness was further evaluated by adding joint friction and doubling the arm mass. After optimization with a properly weighted cost function, all PD controllers performed fast, accurate, and robust reaching movements in simulation. Oscillatory behavior was seen after improper tuning. Performance improved slightly as the complexity of the feedback gain matrix increased. PMID:20097345

  16. Searching ClinicalTrials.gov and the International Clinical Trials Registry Platform to inform systematic reviews: what are the optimal search approaches?

    PubMed

    Glanville, Julie M; Duffy, Steven; McCool, Rachael; Varley, Danielle

    2014-07-01

    Since 2005, International Committee of Medical Journal Editors (ICMJE) member journals have required that clinical trials be registered in publicly available trials registers before they are considered for publication. The research explores whether it is adequate, when searching to inform systematic reviews, to search for relevant clinical trials using only public trials registers and to identify the optimal search approaches in trials registers. A search was conducted in ClinicalTrials.gov and the International Clinical Trials Registry Platform (ICTRP) for research studies that had been included in eight systematic reviews. Four search approaches (highly sensitive, sensitive, precise, and highly precise) were performed using the basic and advanced interfaces in both resources. On average, 84% of studies were not listed in either resource. The largest number of included studies was retrieved in ClinicalTrials.gov and ICTRP when a sensitive search approach was used in the basic interface. The use of the advanced interface maintained or improved sensitivity in 16 of 19 strategies for Clinicaltrials.gov and 8 of 18 for ICTRP. No single search approach was sensitive enough to identify all studies included in the 6 reviews. Trials registers cannot yet be relied upon as the sole means to locate trials for systematic reviews. Trials registers lag behind the major bibliographic databases in terms of their search interfaces. For systematic reviews, trials registers and major bibliographic databases should be searched. Trials registers should be searched using sensitive approaches, and both the registers consulted in this study should be searched.

  17. Reduction of exposure to acrylamide: achievements, potential of optimization, and problems encountered from the perspectives of a Swiss enforcement laboratory.

    PubMed

    Grob, Koni

    2005-01-01

    The most important initiatives taken in Switzerland to reduce exposure of consumers to acrylamide are the separate sale of potatoes low in reducing sugars for roasting and frying, the optimization of the raw material and preparation of french fries, and campaigns to implement suitable preparation methods in the gastronomy and homes. Industry works on improving a range of other products. Although these measures can reduce high exposures by some 80%, they have little effect on the background exposure resulting from coffee, bread, and numerous other products for which no substantial improvement is in sight. At this stage, improvements should be achieved by supporting voluntary activity rather than legal limits. Committed and consistent risk communication is key, and the support of improvements presupposes innovative approaches.

  18. Mixed-Strategy Chance Constrained Optimal Control

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J.

    2013-01-01

    This paper presents a novel chance constrained optimal control (CCOC) algorithm that chooses a control action probabilistically. A CCOC problem is to find a control input that minimizes the expected cost while guaranteeing that the probability of violating a set of constraints is below a user-specified threshold. We show that a probabilistic control approach, which we refer to as a mixed control strategy, enables us to obtain a cost that is better than what deterministic control strategies can achieve when the CCOC problem is nonconvex. The resulting mixed-strategy CCOC problem turns out to be a convexification of the original nonconvex CCOC problem. Furthermore, we also show that a mixed control strategy only needs to "mix" up to two deterministic control actions in order to achieve optimality. Building upon an iterative dual optimization, the proposed algorithm quickly converges to the optimal mixed control strategy with a user-specified tolerance.

  19. Optimal auxiliary-covariate-based two-phase sampling design for semiparametric efficient estimation of a mean or mean difference, with application to clinical trials.

    PubMed

    Gilbert, Peter B; Yu, Xuesong; Rotnitzky, Andrea

    2014-03-15

    To address the objective in a clinical trial to estimate the mean or mean difference of an expensive endpoint Y, one approach employs a two-phase sampling design, wherein inexpensive auxiliary variables W predictive of Y are measured in everyone, Y is measured in a random sample, and the semiparametric efficient estimator is applied. This approach is made efficient by specifying the phase two selection probabilities as optimal functions of the auxiliary variables and measurement costs. While this approach is familiar to survey samplers, it apparently has seldom been used in clinical trials, and several novel results practicable for clinical trials are developed. We perform simulations to identify settings where the optimal approach significantly improves efficiency compared to approaches in current practice. We provide proofs and R code. The optimality results are developed to design an HIV vaccine trial, with objective to compare the mean 'importance-weighted' breadth (Y) of the T-cell response between randomized vaccine groups. The trial collects an auxiliary response (W) highly predictive of Y and measures Y in the optimal subset. We show that the optimal design-estimation approach can confer anywhere between absent and large efficiency gain (up to 24 % in the examples) compared to the approach with the same efficient estimator but simple random sampling, where greater variability in the cost-standardized conditional variance of Y given W yields greater efficiency gains. Accurate estimation of E[Y | W] is important for realizing the efficiency gain, which is aided by an ample phase two sample and by using a robust fitting method. Copyright © 2013 John Wiley & Sons, Ltd.

  20. WE-DE-201-01: BEST IN PHYSICS (THERAPY): A Fast Multi-Target Inverse Treatment Planning Strategy Optimizing Dosimetric Measures for High-Dose-Rate (HDR) Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guthier, C; University Medical Center Mannheim, Mannheim; Harvard Medical School, Boston, MA

    Purpose: Inverse treatment planning (ITP) for interstitial HDR brachytherapy of gynecologic cancers seeks to maximize coverage of the clinical target volumes (tumor and vagina) while respecting dose-volume-histogram related dosimetric measures (DMs) for organs at risk (OARs). Commercially available ITP tools do not support DM-based planning because it is computationally too expensive to solve. In this study we present a novel approach that allows fast ITP for gynecologic cancers based on DMs for the first time. Methods: This novel strategy is an optimization model based on a smooth DM-based objective function. The smooth approximation is achieved by utilizing a logistic functionmore » for the evaluation of DMs. The resulting nonconvex and constrained optimization problem is then optimized with a BFGS algorithm. The model was evaluated using the implant geometry extracted from 20 patient treatment plans under an IRB-approved retrospective study. For each plan, the final DMs were evaluated and compared to the original clinical plans. The CTVs were the contoured tumor volume and the contoured surface of the vagina. Statistical significance was evaluated with a one-sided paired Wilcoxon signed-rank test. Results: As did the clinical plans, all generated plans fulfilled the defined DMs for OARs. The proposed strategy showed a statistically significant improvement (p<0.001) in coverage of the tumor and vagina, with absolute improvements of related DMs of (6.9 +/− 7.9)% and (28.2 +/− 12.0)%, respectively. This was achieved with a statistically significant (p<0.01) decrease of the high-dose-related DM for the tumor. The runtime of the optimization was (2.3 +/− 2.0) seconds. Conclusion: We demonstrated using clinical data that our novel approach allows rapid DM-based optimization with improved coverage of CTVs with fewer hot spots. Being up to three orders of magnitude faster than the current clinical practice, the method dramatically shortens planning time.« less

  1. Integrated multidisciplinary design optimization of rotorcraft

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Mantay, Wayne R.

    1989-01-01

    The NASA/Army research plan for developing the logic elements for helicopter rotor design optimization by integrating appropriate disciplines and accounting for important interactions among the disciplines is discussed. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. The analysis aspects are discussed, and an initial effort at defining the interdisciplinary coupling is summarized. Results are presented on the achievements made in the rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, rotor structural optimization for minimum weight, and integrated aerodynamic load/dynamics optimization for minimum vibration and weight.

  2. Optimizing Clinical Drug Product Performance: Applying Biopharmaceutics Risk Assessment Roadmap (BioRAM) and the BioRAM Scoring Grid.

    PubMed

    Dickinson, Paul A; Kesisoglou, Filippos; Flanagan, Talia; Martinez, Marilyn N; Mistry, Hitesh B; Crison, John R; Polli, James E; Cruañes, Maria T; Serajuddin, Abu T M; Müllertz, Anette; Cook, Jack A; Selen, Arzu

    2016-11-01

    The aim of Biopharmaceutics Risk Assessment Roadmap (BioRAM) and the BioRAM Scoring Grid is to facilitate optimization of clinical performance of drug products. BioRAM strategy relies on therapy-driven drug delivery and follows an integrated systems approach for formulating and addressing critical questions and decision-making (J Pharm Sci. 2014,103(11): 3777-97). In BioRAM, risk is defined as not achieving the intended in vivo drug product performance, and success is assessed by time to decision-making and action. Emphasis on time to decision-making and time to action highlights the value of well-formulated critical questions and well-designed and conducted integrated studies. This commentary describes and illustrates application of the BioRAM Scoring Grid, a companion to the BioRAM strategy, which guides implementation of such an integrated strategy encompassing 12 critical areas and 6 assessment stages. Application of the BioRAM Scoring Grid is illustrated using published literature. Organizational considerations for implementing BioRAM strategy, including the interactions, function, and skillsets of the BioRAM group members, are also reviewed. As a creative and innovative systems approach, we believe that BioRAM is going to have a broad-reaching impact, influencing drug development and leading to unique collaborations influencing how we learn, and leverage and share knowledge. Published by Elsevier Inc.

  3. Clinical Outcomes of an Optimized Prolate Ablation Procedure for Correcting Residual Refractive Errors Following Laser Surgery.

    PubMed

    Chung, Byunghoon; Lee, Hun; Choi, Bong Joon; Seo, Kyung Ryul; Kim, Eung Kwon; Kim, Dae Yune; Kim, Tae-Im

    2017-02-01

    The purpose of this study was to investigate the clinical efficacy of an optimized prolate ablation procedure for correcting residual refractive errors following laser surgery. We analyzed 24 eyes of 15 patients who underwent an optimized prolate ablation procedure for the correction of residual refractive errors following laser in situ keratomileusis, laser-assisted subepithelial keratectomy, or photorefractive keratectomy surgeries. Preoperative ophthalmic examinations were performed, and uncorrected distance visual acuity, corrected distance visual acuity, manifest refraction values (sphere, cylinder, and spherical equivalent), point spread function, modulation transfer function, corneal asphericity (Q value), ocular aberrations, and corneal haze measurements were obtained postoperatively at 1, 3, and 6 months. Uncorrected distance visual acuity improved and refractive errors decreased significantly at 1, 3, and 6 months postoperatively. Total coma aberration increased at 3 and 6 months postoperatively, while changes in all other aberrations were not statistically significant. Similarly, no significant changes in point spread function were detected, but modulation transfer function increased significantly at the postoperative time points measured. The optimized prolate ablation procedure was effective in terms of improving visual acuity and objective visual performance for the correction of persistent refractive errors following laser surgery.

  4. Optimized Hyper Beamforming of Linear Antenna Arrays Using Collective Animal Behaviour

    PubMed Central

    Ram, Gopi; Mandal, Durbadal; Kar, Rajib; Ghoshal, Sakti Prasad

    2013-01-01

    A novel optimization technique which is developed on mimicking the collective animal behaviour (CAB) is applied for the optimal design of hyper beamforming of linear antenna arrays. Hyper beamforming is based on sum and difference beam patterns of the array, each raised to the power of a hyperbeam exponent parameter. The optimized hyperbeam is achieved by optimization of current excitation weights and uniform interelement spacing. As compared to conventional hyper beamforming of linear antenna array, real coded genetic algorithm (RGA), particle swarm optimization (PSO), and differential evolution (DE) applied to the hyper beam of the same array can achieve reduction in sidelobe level (SLL) and same or less first null beam width (FNBW), keeping the same value of hyperbeam exponent. Again, further reductions of sidelobe level (SLL) and first null beam width (FNBW) have been achieved by the proposed collective animal behaviour (CAB) algorithm. CAB finds near global optimal solution unlike RGA, PSO, and DE in the present problem. The above comparative optimization is illustrated through 10-, 14-, and 20-element linear antenna arrays to establish the optimization efficacy of CAB. PMID:23970843

  5. Numerical difficulties associated with using equality constraints to achieve multi-level decomposition in structural optimization

    NASA Technical Reports Server (NTRS)

    Thareja, R.; Haftka, R. T.

    1986-01-01

    There has been recent interest in multidisciplinary multilevel optimization applied to large engineering systems. The usual approach is to divide the system into a hierarchy of subsystems with ever increasing detail in the analysis focus. Equality constraints are usually placed on various design quantities at every successive level to ensure consistency between levels. In many previous applications these equality constraints were eliminated by reducing the number of design variables. In complex systems this may not be possible and these equality constraints may have to be retained in the optimization process. In this paper the impact of such a retention is examined for a simple portal frame problem. It is shown that the equality constraints introduce numerical difficulties, and that the numerical solution becomes very sensitive to optimization parameters for a wide range of optimization algorithms.

  6. Educational achievement in Swiss childhood cancer survivors compared with the general population.

    PubMed

    Kuehni, Claudia E; Strippoli, Marie-Pierre F; Rueegg, Corina S; Rebholz, Cornelia E; Bergstraesser, Eva; Grotzer, Michael; von der Weid, Nicolas X; Michel, Gisela

    2012-03-01

    The objective of this study was to describe educational achievements of childhood cancer survivors in Switzerland compared with the general population. In particular, the authors investigated educational problems during childhood, final educational achievement in adulthood, and its predictors. Childhood cancer survivors who were aged <16 years at diagnosis from 1976 to 2003 who had survived for ≥5 years and were currently ages 20 to 40 years received a postal questionnaire during 2007 to 2009. Controls were respondents of the Swiss Health Survey ages 20 to 40 years. Educational achievement included compulsory schooling, vocational training, upper secondary schooling, and university degree. The analysis was weighted to optimize comparability of the populations. The authors analyzed the association between demographic and clinical predictors and educational achievement using multivariable logistic regression. Subgroup analyses focused on survivors aged ≥27 years. One-third of survivors encountered educational problems during schooling (30% repeated 1 year, and 35% received supportive tutoring). In the total sample, more survivors than controls achieved compulsory schooling only (8.7% vs 5.2%) and fewer acquired a university degree (7.3% vs 11%), but more survivors than controls achieved an upper secondary education (36.1 vs 24.1%). In those aged ≥27 years, differences in compulsory schooling and university education largely disappeared. In survivors and controls, sex, nationality, language region, and migration background were strong predictors of achievement. Survivors of central nervous system tumors or those who had a relapse had poorer outcomes (P < .05). Childhood cancer survivors encountered problems during schooling and completed professional education with some delay. However, with the exception of patients who had central nervous system tumors and those who experienced a relapse, the final educational achievement in survivors of child cancer was

  7. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy.

    PubMed

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-05

    approach is tested and compared with MultiPlan on three clinical cases of varying complexities. In general, the plans generated by the SVDLP achieve steeper dose gradient, better conformity and less damage to normal tissues. In conclusion, the SVDLP approach effectively improves the quality of treatment plan due to the use of the complete beam search space. This challenging optimization problem with the complete beam search space is effectively handled by the proposed SVD acceleration.

  8. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy

    NASA Astrophysics Data System (ADS)

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-01

    approach is tested and compared with MultiPlan on three clinical cases of varying complexities. In general, the plans generated by the SVDLP achieve steeper dose gradient, better conformity and less damage to normal tissues. In conclusion, the SVDLP approach effectively improves the quality of treatment plan due to the use of the complete beam search space. This challenging optimization problem with the complete beam search space is effectively handled by the proposed SVD acceleration.

  9. Optimized emission in nanorod arrays through quasi-aperiodic inverse design.

    PubMed

    Anderson, P Duke; Povinelli, Michelle L

    2015-06-01

    We investigate a new class of quasi-aperiodic nanorod structures for the enhancement of incoherent light emission. We identify one optimized structure using an inverse design algorithm and the finite-difference time-domain method. We carry out emission calculations on both the optimized structure as well as a simple periodic array. The optimized structure achieves nearly perfect light extraction while maintaining a high spontaneous emission rate. Overall, the optimized structure can achieve a 20%-42% increase in external quantum efficiency relative to a simple periodic design, depending on material quality.

  10. Factors affecting optimal linear endovenous energy density for endovenous laser ablation in incompetent lower limb truncal veins - A review of the clinical evidence.

    PubMed

    Cowpland, Christine A; Cleese, Amy L; Whiteley, Mark S

    2017-06-01

    Objectives The objective is to identify the factors that affect the optimal linear endovenous energy density (LEED) to ablate incompetent truncal veins. Methods We performed a literature review of clinical studies, which reported truncal vein ablation rates and LEED. A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) flow diagram documents the search strategy. We analysed 13 clinical papers which fulfilled the criteria to be able to compare results of great saphenous vein occlusion as defined by venous duplex ultrasound, with the LEED used in the treatment. Results Evidence suggests that the optimal LEED for endovenous laser ablation of the great saphenous vein is >80 J/cm and <100 J/cm in terms of optimal closure rates with minimal side-effects and complications. Longer wavelengths targeting water might have a lower optimal LEED. A LEED <60 J/cm has reduced efficacy regardless of wavelength. The optimal LEED may vary with vein diameter and may be reduced by using specially shaped fibre tips. Laser delivery technique and type as well as the duration time of energy delivery appear to play a role in determining LEED. Conclusion The optimal LEED to ablate an incompetent great saphenous vein appears to be >80 J/cm and <95 J/cm based on current evidence for shorter wavelength lasers. There is evidence that longer wavelength lasers may be effective at LEEDs of <85 J/cm.

  11. Exemplary Care and Learning Sites: A Model for Achieving Continual Improvement in Care and Learning in the Clinical Setting

    PubMed Central

    Ogrinc, Greg; Hoffman, Kimberly G.; Stevenson, Katherine M.; Shalaby, Marc; Beard, Albertine S.; Thörne, Karin E.; Coleman, Mary T.; Baum, Karyn D.

    2016-01-01

    Problem Current models of health care quality improvement do not explicitly describe the role of health professions education. The authors propose the Exemplary Care and Learning Site (ECLS) model as an approach to achieving continual improvement in care and learning in the clinical setting. Approach From 2008–2012, an iterative, interactive process was used to develop the ECLS model and its core elements—patients and families informing process changes; trainees engaging both in care and the improvement of care; leaders knowing, valuing, and practicing improvement; data transforming into useful information; and health professionals competently engaging both in care improvement and teaching about care improvement. In 2012–2013, a three-part feasibility test of the model, including a site self-assessment, an independent review of each site’s ratings, and implementation case stories, was conducted at six clinical teaching sites (in the United States and Sweden). Outcomes Site leaders reported the ECLS model provided a systematic approach toward improving patient (and population) outcomes, system performance, and professional development. Most sites found it challenging to incorporate the patients and families element. The trainee element was strong at four sites. The leadership and data elements were self-assessed as the most fully developed. The health professionals element exhibited the greatest variability across sites. Next Steps The next test of the model should be prospective, linked to clinical and educa tional outcomes, to evaluate whether it helps care delivery teams, educators, and patients and families take action to achieve better patient (and population) outcomes, system performance, and professional development. PMID:26760058

  12. Managing the peri-implant mucosa: a clinically reliable method for optimizing soft tissue contours and emergence profile.

    PubMed

    Parpaiola, Andrea; Sbricoli, Luca; Guazzo, Riccardo; Bressan, Eriberto; Lops, Diego

    2013-10-01

    The proper representation of soft tissue contours for a natural aspect of the peri-implant mucosa and its mimesis with the adjacent teeth is a crucial aspect of the esthetic area restoration. This paper describes a method for the easy transfer of the peri-implant tissue morphology onto impression material with a view to achieving an accurate, custom implant restoration. The procedure described is suitable both for single and multi-unit implant-supported prostheses. Once the peri-implant mucosa is sculpted by the provisional restoration, the emergence profile is duplicated. The implant analog is embedded into laboratory stone or plaster in a mixing cup and allowed to set. The provisional restoration is removed from the oral cavity and screwed to the implant analog; then, a polyether material is placed in the mixing cup so that the provisional restoration is put into impression material at the level of the prosthetic emergence profile. After the polyether polymerizing, the provisional prosthesis is unscrewed and replaced with the stock hexed transfer for the final impression. Next, cold self-curing resin is poured into this gap and left to set. A custom transfer for this single implant site is thus obtained. This modified transfer is then removed and screwed onto the implant in the oral cavity for the definitive impression. The technique described enables a faithful reproduction of the peri-implant soft tissues and emergence profile. An emergence profile that mimics the natural tooth should be obtained by successful esthetic implant restoration. Moreover, it allows proper hygiene, which is fundamental for implant maintenance. The best way to achieve the correct emergence profile is to sculpture the peri-implant mucosa by means of a provisional prosthesis. Prefabricated provisional crowns cannot mimic the complexity and the variations of human soft tissue. Therefore, only a chair-side modification of the provisional restoration can accomplish the optimal result. Such

  13. Threshold-driven optimization for reference-based auto-planning

    NASA Astrophysics Data System (ADS)

    Long, Troy; Chen, Mingli; Jiang, Steve; Lu, Weiguo

    2018-02-01

    We study threshold-driven optimization methodology for automatically generating a treatment plan that is motivated by a reference DVH for IMRT treatment planning. We present a framework for threshold-driven optimization for reference-based auto-planning (TORA). Commonly used voxel-based quadratic penalties have two components for penalizing under- and over-dosing of voxels: a reference dose threshold and associated penalty weight. Conventional manual- and auto-planning using such a function involves iteratively updating the preference weights while keeping the thresholds constant, an unintuitive and often inconsistent method for planning toward some reference DVH. However, driving a dose distribution by threshold values instead of preference weights can achieve similar plans with less computational effort. The proposed methodology spatially assigns reference DVH information to threshold values, and iteratively improves the quality of that assignment. The methodology effectively handles both sub-optimal and infeasible DVHs. TORA was applied to a prostate case and a liver case as a proof-of-concept. Reference DVHs were generated using a conventional voxel-based objective, then altered to be either infeasible or easy-to-achieve. TORA was able to closely recreate reference DVHs in 5-15 iterations of solving a simple convex sub-problem. TORA has the potential to be effective for auto-planning based on reference DVHs. As dose prediction and knowledge-based planning becomes more prevalent in the clinical setting, incorporating such data into the treatment planning model in a clear, efficient way will be crucial for automated planning. A threshold-focused objective tuning should be explored over conventional methods of updating preference weights for DVH-guided treatment planning.

  14. Inverse 4D conformal planning for lung SBRT using particle swarm optimization

    PubMed Central

    Modiri, A; Gu, X; Hagan, A; Bland, R; Iyengar, P; Timmerman, R; Sawant, A

    2016-01-01

    A critical aspect of highly potent regimens such as lung stereotactic body radiation therapy (SBRT) is to avoid collateral toxicity while achieving planning target volume (PTV) coverage. In this work, we describe four dimensional conformal radiotherapy (4D CRT) using a highly parallelizable swarm intelligence-based stochastic optimization technique. Conventional lung CRT-SBRT uses a 4DCT to create an internal target volume (ITV) and then, using forward-planning, generates a 3D conformal plan. In contrast, we investigate an inverse-planning strategy that uses 4DCT data to create a 4D conformal plan, which is optimized across the three spatial dimensions (3D) as well as time, as represented by the respiratory phase. The key idea is to use respiratory motion as an additional degree of freedom. We iteratively adjust fluence weights for all beam apertures across all respiratory phases considering OAR sparing, PTV coverage and delivery efficiency. To demonstrate proof-of-concept, five non-small-cell lung cancer SBRT patients were retrospectively studied. The 4D optimized plans achieved PTV coverage comparable to the corresponding clinically delivered plans while showing significantly superior OAR sparing ranging from 26% to 83% for Dmax heart, 10% to 41% for Dmax esophagus, 31% to 68% for Dmax spinal cord and 7% to 32% for V13 lung. PMID:27476472

  15. A European perspective--the European clinical research infrastructures network.

    PubMed

    Demotes-Mainard, J; Kubiak, C

    2011-11-01

    Evaluating research outcomes requires multinational cooperation in clinical research for optimization of treatment strategies and comparative effectiveness research, leading to evidence-based practice and healthcare cost containment. The European Clinical Research Infrastructures Network (ECRIN) is a distributed ESFRI (European Strategy Forum on Research Infrastructures) roadmap pan-European infrastructure designed to support multinational clinical research, making Europe a single area for clinical studies, taking advantage of its population size to access patients, and unlocking latent scientific potential. Servicing multinational trials started during its preparatory phase, and ECRIN will now apply for an ERIC (European Research Infrastructures Consortium) status by 2011. By creating a single area for clinical research in Europe, this achievement will contribute to the implementation of the Europe flagship initiative 2020 'Innovation Union', whose objectives include defragmentation of the research and education capacity, tackling the major societal challenges starting with the area of healthy ageing, and removing barriers to bring ideas to the market.

  16. A novel methodology for AV and VV delay optimization in CRT: results from a randomized pilot clinical trial.

    PubMed

    Di Molfetta, Arianna; Forleo, Giovanni B; Santini, Luca; Fresiello, Libera; Papavasileiou, Lida P; Magliano, Giulia; Sergi, Domenico; Capria, Ambrogio; Romeo, Francesco; Ferrari, Gianfranco

    2013-09-01

    The aim of this work was to determine whether the use of a newly developed methodology (Alg1) for AV and VV optimization improves cardiac resynchronization therapy (CRT) clinical and echocardiographic (ECHO) outcomes. In this single-center pilot clinical trial, 80 consecutive patients (79 % male; 70.1 ± 11.2 years) receiving CRT were randomly assigned to AV and VV optimization using Alg1 (group A) or standard commercial procedures (group B). Clinical status and ECHOs were analyzed at baseline (_0) , 3 (fu1), and 6 months (fu2) of follow-up evaluating left ventricular end systolic (LVESV) and end diastolic (LVEDV) volumes, ejection fraction (EF), Minnesota test, and 6-min walk test (6MWT). Alg1 is based on a cardiovascular model fed with patient data. Baseline characteristics did not differ significantly between groups. Group A had a better clinical outcome and reverse remodeling. Remodeling was calculated as the difference (Δ) between fu1 and _0 and between fu2 and fu1, respectively: [LVESV (ml): ΔA_fu1 = -55.3, ΔB_fu1 = -13.5, p_fu1 = 0.002; ΔA_fu2 = -22.8, ΔB_fu2 = 3.0, p_fu2 = 0.04], [LVEDV (ml): ΔA_fu1 = -61.9, ΔB_fu1 = -16.1, p_fu1 = 0.01; ΔA_fu2 = -30.4, ΔB_fu2 = 11.3, p_fu2 = 0.02]; Minnesota test: total (p_fu1 = 0.01; p_fu2 = 0.04), physical (p_fu1 = 0.01; p_fu2 = 0.03) and emotional scores (p_fu1 = 0.04; p_fu2 = 0.03) and in 6MWT (m) (p_fu2 = 0.008). No statistically significant difference was observed in QRS width. Compared with current standard of care, CRT optimization using Alg1 is associated with better outcomes, showing the power of a tailored CRT.

  17. Harmony search optimization for HDR prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Panchal, Aditya

    implemented in this thesis was within 2% of the values computed by Varian BrachyVision for the prostate, within 3% for the rectum and bladder and 6% for the urethra. The calculation of dose compared to BrachyVision was determined to be different by only 0.38%. Isodose curves were also generated and were found to be similar to BrachyVision. The comparison between Harmony Search and genetic algorithm showed that Harmony Search was over 4 times faster when compared over multiple data sets. The optimal Harmony Memory Size was found to be 5 or lower; the Harmony Memory Considering Rate was determined to be 0.95, and the Pitch Adjusting Rate was found to be 0.9. Ultimately, the effect of multithreading showed that as intensive computations such as optimization and dose calculation are involved, the threads of execution scale with the number of processors, achieving a speed increase proportional to the number of processor cores. In conclusion, this work showed that Harmony Search is a viable alternative to existing algorithms for use in HDR prostate brachytherapy optimization. Coupled with the optimal parameters for the algorithm and a multithreaded simulation, this combination has the capability to significantly decrease the time spent on minimizing optimization problems in the clinic that are time intensive, such as brachytherapy, IMRT and beam angle optimization.

  18. Comparison of evolutionary algorithms for LPDA antenna optimization

    NASA Astrophysics Data System (ADS)

    Lazaridis, Pavlos I.; Tziris, Emmanouil N.; Zaharis, Zaharias D.; Xenos, Thomas D.; Cosmas, John P.; Gallion, Philippe B.; Holmes, Violeta; Glover, Ian A.

    2016-08-01

    A novel approach to broadband log-periodic antenna design is presented, where some of the most powerful evolutionary algorithms are applied and compared for the optimal design of wire log-periodic dipole arrays (LPDA) using Numerical Electromagnetics Code. The target is to achieve an optimal antenna design with respect to maximum gain, gain flatness, front-to-rear ratio (F/R) and standing wave ratio. The parameters of the LPDA optimized are the dipole lengths, the spacing between the dipoles, and the dipole wire diameters. The evolutionary algorithms compared are the Differential Evolution (DE), Particle Swarm (PSO), Taguchi, Invasive Weed (IWO), and Adaptive Invasive Weed Optimization (ADIWO). Superior performance is achieved by the IWO (best results) and PSO (fast convergence) algorithms.

  19. Barriers to the clinical translation of orthopedic tissue engineering.

    PubMed

    Evans, Christopher H

    2011-12-01

    Tissue engineering and regenerative medicine have been the subject of increasingly intensive research for over 20 years, and there is concern in some quarters over the lack of clinically useful products despite the large sums of money invested. This review provides one perspective on orthopedic applications from a biologist working in academia. It is suggested that the delay in clinical application is not atypical of new, biologically based technologies. Some barriers to progress are acknowledged and discussed, but it is also noted that preclinical studies have identified several promising types of cells, scaffolds, and morphogenetic signals, which, although not optimal, are worth advancing toward human trials to establish a bridgehead in the clinic. Although this transitional technology will be replaced by more sophisticated, subsequent systems, it will perform valuable pioneering functions and facilitate the clinical development of the field. Some strategies for achieving this are suggested. © Mary Ann Liebert, Inc.

  20. Intelligence and Academic Achievement in a Clinical Adolescent Population

    ERIC Educational Resources Information Center

    Stewart, David W.; Morris, Linda

    1977-01-01

    The present study was undertaken with two related goals: (a) to examine the relationships between the WRAT and CAT, and (b) to examine the relationships which may exist between these academic achievement tests -nd a standard intelligence battery such as the Wechsler Scale. (Author)

  1. Acute care clinical pharmacy practice: unit- versus service-based models.

    PubMed

    Haas, Curtis E; Eckel, Stephen; Arif, Sally; Beringer, Paul M; Blake, Elizabeth W; Lardieri, Allison B; Lobo, Bob L; Mercer, Jessica M; Moye, Pamela; Orlando, Patricia L; Wargo, Kurt

    2012-02-01

    This commentary from the 2010 Task Force on Acute Care Practice Model of the American College of Clinical Pharmacy was developed to compare and contrast the "unit-based" and "service-based" orientation of the clinical pharmacist within an acute care pharmacy practice model and to offer an informed opinion concerning which should be preferred. The clinical pharmacy practice model must facilitate patient-centered care and therefore must position the pharmacist to be an active member of the interprofessional team focused on providing high-quality pharmaceutical care to the patient. Although both models may have advantages and disadvantages, the most important distinction pertains to the patient care role of the clinical pharmacist. The unit-based pharmacist is often in a position of reacting to an established order or decision and frequently is focused on task-oriented clinical services. By definition, the service-based clinical pharmacist functions as a member of the interprofessional team. As a team member, the pharmacist proactively contributes to the decision-making process and the development of patient-centered care plans. The service-based orientation of the pharmacist is consistent with both the practice vision embraced by ACCP and its definition of clinical pharmacy. The task force strongly recommends that institutions pursue a service-based pharmacy practice model to optimally deploy their clinical pharmacists. Those who elect to adopt this recommendation will face challenges in overcoming several resource, technologic, regulatory, and accreditation barriers. However, such challenges must be confronted if clinical pharmacists are to contribute fully to achieving optimal patient outcomes. © 2012 Pharmacotherapy Publications, Inc.

  2. Optimizing participation of children with autism spectrum disorder experiencing sensory challenges: a clinical reasoning framework.

    PubMed

    Ashburner, Jill K; Rodger, Sylvia A; Ziviani, Jenny M; Hinder, Elizabeth A

    2014-02-01

    Remedial sensory interventions currently lack supportive evidence and can be challenging to implement for families and clinicians. It may be timely to shift the focus to optimizing participation of children with autism spectrum disorders (ASD) through accommodation and self-regulation of their sensory differences. A framework to guide practitioners in selecting strategies is proposed based on clinical reasoning considerations, including (a) research evidence, (b) client- and family-centredness, (c) practice contexts, (d) occupation-centredness, and (e) risks. Information-sharing with families and coaching constitute the basis for intervention. Specific strategies are identified where sensory aversions or seeking behaviours, challenges with modulation of arousal, or sensory-related behaviours interfere with participation. Self-regulatory strategies are advocated. The application of universal design principles to shared environments is also recommended. The implications of this framework for future research, education, and practice are discussed. The clinical utility of the framework now needs to be tested.

  3. Pre-admission criteria and pre-clinical achievement: Can they predict medical students performance in the clinical phase?

    PubMed

    Salem, Raneem O; Al-Mously, Najwa; AlFadil, Sara; Baalash, Amal

    2016-01-01

    Various factors affect medical students' performance during clinical phase. Identifying these factors would help in mentoring weak students and help in selection process for residency programmes. Our study objective is to evaluate the impact of pre-admission criteria, and pre-clinical grade point average (GPA) on undergraduate medical students' performance during clinical phase. This study has a cross-sectional design that includes fifth- and sixth-year female medical students (71). Data of clinical and pre-clinical GPA in medical school and pre-admission to medical school tests scores were collected. A significant correlation between clinical GPA with the pre-clinical GPA was observed (p < 0.05). Such significant correlation was not seen with other variables under study. A regression analysis was performed, and the only significant predictor of students clinical performance was the pre-clinical GPA (p < 0.001). However, no significant difference between students' clinical and pre-clinical GPA for both cohorts was observed (p > 0.05). Pre-clinical GPA is strongly correlated with and can predict medical students' performance during clinical years. Our study highlighted the importance of evaluating the academic performances of students in pre-clinical years before they move into clinical years in order to identify weak students to mentor them and monitor their progress.

  4. Optimization of dual-wavelength intravascular photoacoustic imaging of atherosclerotic plaques using Monte Carlo optical modeling

    NASA Astrophysics Data System (ADS)

    Dana, Nicholas; Sowers, Timothy; Karpiouk, Andrei; Vanderlaan, Donald; Emelianov, Stanislav

    2017-10-01

    Coronary heart disease (the presence of coronary atherosclerotic plaques) is a significant health problem in the industrialized world. A clinical method to accurately visualize and characterize atherosclerotic plaques is needed. Intravascular photoacoustic (IVPA) imaging is being developed to fill this role, but questions remain regarding optimal imaging wavelengths. We utilized a Monte Carlo optical model to simulate IVPA excitation in coronary tissues, identifying optimal wavelengths for plaque characterization. Near-infrared wavelengths (≤1800 nm) were simulated, and single- and dual-wavelength data were analyzed for accuracy of plaque characterization. Results indicate light penetration is best in the range of 1050 to 1370 nm, where 5% residual fluence can be achieved at clinically relevant depths of ≥2 mm in arteries. Across the arterial wall, fluence may vary by over 10-fold, confounding plaque characterization. For single-wavelength results, plaque segmentation accuracy peaked at 1210 and 1720 nm, though correlation was poor (<0.13). Dual-wavelength analysis proved promising, with 1210 nm as the most successful primary wavelength (≈1.0). Results suggest that, without flushing the luminal blood, a primary and secondary wavelength near 1210 and 1350 nm, respectively, may offer the best implementation of dual-wavelength IVPA imaging. These findings could guide the development of a cost-effective clinical system by highlighting optimal wavelengths and improving plaque characterization.

  5. Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Md. Sohrab; Nik Ab Rahman, Nik Norulaini; Balakrishnan, Venugopal

    2015-04-15

    Highlights: • Supercritical carbon dioxide sterilization of clinical solid waste. • Inactivation of bacteria in clinical solid waste using supercritical carbon dioxide. • Reduction of the hazardous exposure of clinical solid waste. • Optimization of the supercritical carbon dioxide experimental conditions. - Abstract: Clinical solid waste (CSW) poses a challenge to health care facilities because of the presence of pathogenic microorganisms, leading to concerns in the effective sterilization of the CSW for safe handling and elimination of infectious disease transmission. In the present study, supercritical carbon dioxide (SC-CO{sub 2}) was applied to inactivate gram-positive Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis,more » and gram-negative Escherichia coli in CSW. The effects of SC-CO{sub 2} sterilization parameters such as pressure, temperature, and time were investigated and optimized by response surface methodology (RSM). Results showed that the data were adequately fitted into the second-order polynomial model. The linear quadratic terms and interaction between pressure and temperature had significant effects on the inactivation of S. aureus, E. coli, E. faecalis, and B. subtilis in CSW. Optimum conditions for the complete inactivation of bacteria within the experimental range of the studied variables were 20 MPa, 60 °C, and 60 min. The SC-CO{sub 2}-treated bacterial cells, observed under a scanning electron microscope, showed morphological changes, including cell breakage and dislodged cell walls, which could have caused the inactivation. This espouses the inference that SC-CO{sub 2} exerts strong inactivating effects on the bacteria present in CSW, and has the potential to be used in CSW management for the safe handling and recycling-reuse of CSW materials.« less

  6. Formestane, a steroidal aromatase inhibitor after failure of non-steroidal aromatase inhibitors (anastrozole and letrozole): is a clinical benefit still achievable?

    PubMed

    Carlini, P; Frassoldati, A; De Marco, S; Casali, A; Ruggeri, E M; Nardi, M; Papaldo, P; Fabi, A; Paoloni, F; Cognetti, F

    2001-11-01

    There are few clinical data on the sequential use of aromatase inhibitors (AI). This paper focuses on the relevance of clinical benefit CB (CR + PR + SD > or = 6 months) in postmenopausal metastatic breast cancer (MBC) patients treated with the steroidal aromatase inhibitor (SAI) formestane (FOR). who had already received non-steroidal aromatase inhibitor (nSAI): letrozole (LTZ) or anastrozole (ANZ). Twenty postmenopausal women with MBC were analysed in this retrospective two-centre study with the sequence nSAI-FOR. When receiving ANZ, 1 of 11 achieved a complete response and 9 of 11 a stable disease > or = 6 months, and receiving LTZ 1 of 9 achieved a partial response and 4 of 9 a stable disease > or = 6 months. The analysis of the entire population treated with FOR showed an overall CB of 55% (11 of 20) with a median duration of 15 months and median time to progression (TTP) of 6 months. Formestane 250 mg once bi-weekly seems to be an attractive alternative third-line hormonal therapy for the treatment of patients with MBC, previously treated with nSAI.

  7. Linear energy transfer incorporated intensity modulated proton therapy optimization

    NASA Astrophysics Data System (ADS)

    Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe

    2018-01-01

    The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the

  8. Optimization and validation of sample preparation for metagenomic sequencing of viruses in clinical samples.

    PubMed

    Lewandowska, Dagmara W; Zagordi, Osvaldo; Geissberger, Fabienne-Desirée; Kufner, Verena; Schmutz, Stefan; Böni, Jürg; Metzner, Karin J; Trkola, Alexandra; Huber, Michael

    2017-08-08

    Sequence-specific PCR is the most common approach for virus identification in diagnostic laboratories. However, as specific PCR only detects pre-defined targets, novel virus strains or viruses not included in routine test panels will be missed. Recently, advances in high-throughput sequencing allow for virus-sequence-independent identification of entire virus populations in clinical samples, yet standardized protocols are needed to allow broad application in clinical diagnostics. Here, we describe a comprehensive sample preparation protocol for high-throughput metagenomic virus sequencing using random amplification of total nucleic acids from clinical samples. In order to optimize metagenomic sequencing for application in virus diagnostics, we tested different enrichment and amplification procedures on plasma samples spiked with RNA and DNA viruses. A protocol including filtration, nuclease digestion, and random amplification of RNA and DNA in separate reactions provided the best results, allowing reliable recovery of viral genomes and a good correlation of the relative number of sequencing reads with the virus input. We further validated our method by sequencing a multiplexed viral pathogen reagent containing a range of human viruses from different virus families. Our method proved successful in detecting the majority of the included viruses with high read numbers and compared well to other protocols in the field validated against the same reference reagent. Our sequencing protocol does work not only with plasma but also with other clinical samples such as urine and throat swabs. The workflow for virus metagenomic sequencing that we established proved successful in detecting a variety of viruses in different clinical samples. Our protocol supplements existing virus-specific detection strategies providing opportunities to identify atypical and novel viruses commonly not accounted for in routine diagnostic panels.

  9. Concepts and clinical use of ultra-long basal insulin.

    PubMed

    Eliaschewitz, Freddy Goldberg; Barreto, Tânia

    2016-01-01

    Diabetes mellitus (DM) is a public health issue, affecting around 382 million people worldwide. In order to achieve glycemic goals, insulin therapy is the frontline therapy for type 1 DM patients; for patients with type 2 DM, use of insulin therapy is an option as initial or add-on therapy for those not achieving glycemic control. Despite insulin therapy developments seen in the last decades, several barriers remain for insulin initiation and optimal maintenance in clinical practice. Fear of hypoglycemia, weight gain, pain associated with blood testing and injection-related pain are the most cited reasons for not starting insulin therapy. However, new generation of basal insulin formulations, with longer length of action, have shown the capability of providing adequate glycemic control with lower risk of hypoglycemia.

  10. SU-E-T-593: Clinical Evaluation of Direct Aperture Optimization in Head/Neck and Prostate IMRT Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosini, M; GALAL, M; Emam, I

    2014-06-01

    Purpose: To investigate the planning and dosimetric advantages of direct aperture optimization (DAO) over beam-let optimization in IMRT treatment of head and neck (H/N) and prostate cancers. Methods: Five Head and Neck as well as five prostate patients were planned using the beamlet optimizer in Elekta-Xio ver 4.6 IMRT treatment planning system. Based on our experience in beamlet IMRT optimization, PTVs in H/N plans were prescribed to 70 Gy delivered by 7 fields. While prostate PTVs were prescribed to 76 Gy with 9 fields. In all plans, fields were set to be equally spaced. All cases were re-planed using Directmore » Aperture optimizer in Prowess Panther ver 5.01 IMRT planning system at same configurations and dose constraints. Plans were evaluated according to ICRU criteria, number of segments, number of monitor units and planning time. Results: For H/N plans, the near maximum dose (D2) and the dose that covers 95% D95 of PTV has improved by 4% in DAO. For organs at risk (OAR), DAO reduced the volume covered by 30% (V30) in spinal cord, right parotid, and left parotid by 60%, 54%, and 53% respectively. This considerable dosimetric quality improvement achieved using 25% less planning time and lower number of segments and monitor units by 46% and 51% respectively. In DAO prostate plans, Both D2 and D95 for the PTV were improved by only 2%. The V30 of the right femur, left femur and bladder were improved by 35%, 15% and 3% respectively. On the contrary, the rectum V30 got even worse by 9%. However, number of monitor units, and number of segments decreased by 20% and 25% respectively. Moreover the planning time reduced significantly too. Conclusion: DAO introduces considerable advantages over the beamlet optimization in regards to organs at risk sparing. However, no significant improvement occurred in most studied PTVs.« less

  11. Dithiothreitol-Regulated Coverage of Oligonucleotide-Modified Gold Nanoparticles To Achieve Optimized Biosensor Performance.

    PubMed

    Liang, Pingping; Canoura, Juan; Yu, Haixiang; Alkhamis, Obtin; Xiao, Yi

    2018-01-31

    DNA-modified gold nanoparticles (AuNPs) are useful signal-reporters for detecting diverse molecules through various hybridization- and enzyme-based assays. However, their performance is heavily dependent on the probe DNA surface coverage, which can influence both target binding and enzymatic processing of the bound probes. Current methods used to adjust the surface coverage of DNA-modified AuNPs require the production of multiple batches of AuNPs under different conditions, which is costly and laborious. We here develop a single-step assay utilizing dithiothreitol (DTT) to fine-tune the surface coverage of DNA-modified AuNPs. DTT is superior to the commonly used surface diluent, mercaptohexanol, as it is less volatile, allowing for the rapid and reproducible controlling of surface coverage on AuNPs with only micromolar concentrations of DTT. Upon adsorption, DTT forms a dense monolayer on gold surfaces, which provides antifouling capabilities. Furthermore, surface-bound DTT adopts a cyclic conformation, which reorients DNA probes into an upright position and provides ample space to promote DNA hybridization, aptamer assembly, and nuclease digestion. We demonstrate the effects of surface coverage on AuNP-based sensors using DTT-regulated DNA-modified AuNPs. We then use these AuNPs to visually detect DNA and cocaine in colorimetric assays based on enzyme-mediated AuNP aggregation. We determine that DTT-regulated AuNPs with lower surface coverage achieve shorter reaction times and lower detection limits relative to those for assays using untreated AuNPs or DTT-regulated AuNPs with high surface coverage. Additionally, we demonstrate that our DTT-regulated AuNPs can perform cocaine detection in 50% urine without any significant matrix effects. We believe that DTT regulation of surface coverage can be broadly employed for optimizing DNA-modified AuNP performance for use in biosensors as well as drug delivery and therapeutic applications.

  12. The design and pre-clinical evaluation of knee replacements for osteoarthritis.

    PubMed

    Walker, Peter S

    2015-03-18

    One of the concepts that Rik Huiskes promoted was that implants such as knee and hip replacements could be analyzed and optimized using numerical models such as finite element analysis, or by experimental testing, an area he called pre-clinical testing. The design itself could be formulated or improved by defining a specific goal or asking a key question. These propositions are examined in the light of almost five decades of experience with knee implants. Achieving the required laxity and stability, was achieved by attempting to reproduce anatomical values by suitable radii of curvature and selective ligament retention. Obtaining durable fixation was based on testing many configurations to obtain the most uniform stress distribution at the implant-bone interface. Achieving the best overall kinematics has yet to be fully solved due to the variations in activities and patients. These and many other factors have usually been addressed individually rather than as a composite, although as time has gone on, successful features have gradually been assimilated into most designs. But even a systematic approach has been flawed because some unrecognized response was not accounted for in the pre-clinical model, a limitation of models in general. In terms of the design process, so far no method has emerged for systematically reaching an optimal solution from all aspects, although this is possible in principle. Overall however, predictive numerical or physical models should be an essential element in the design of new or improved knee replacements, a part of the design process itself. Copyright © 2015. Published by Elsevier Ltd.

  13. Optimization of Composite Material System and Lay-up to Achieve Minimum Weight Pressure Vessel

    NASA Astrophysics Data System (ADS)

    Mian, Haris Hameed; Wang, Gang; Dar, Uzair Ahmed; Zhang, Weihong

    2013-10-01

    The use of composite pressure vessels particularly in the aerospace industry is escalating rapidly because of their superiority in directional strength and colossal weight advantage. The present work elucidates the procedure to optimize the lay-up for composite pressure vessel using finite element analysis and calculate the relative weight saving compared with the reference metallic pressure vessel. The determination of proper fiber orientation and laminate thickness is very important to decrease manufacturing difficulties and increase structural efficiency. In the present work different lay-up sequences for laminates including, cross-ply [ 0 m /90 n ] s , angle-ply [ ±θ] ns , [ 90/±θ] ns and [ 0/±θ] ns , are analyzed. The lay-up sequence, orientation and laminate thickness (number of layers) are optimized for three candidate composite materials S-glass/epoxy, Kevlar/epoxy and Carbon/epoxy. Finite element analysis of composite pressure vessel is performed by using commercial finite element code ANSYS and utilizing the capabilities of ANSYS Parametric Design Language and Design Optimization module to automate the process of optimization. For verification, a code is developed in MATLAB based on classical lamination theory; incorporating Tsai-Wu failure criterion for first-ply failure (FPF). The results of the MATLAB code shows its effectiveness in theoretical prediction of first-ply failure strengths of laminated composite pressure vessels and close agreement with the FEA results. The optimization results shows that for all the composite material systems considered, the angle-ply [ ±θ] ns is the optimum lay-up. For given fixed ply thickness the total thickness of laminate is obtained resulting in factor of safety slightly higher than two. Both Carbon/epoxy and Kevlar/Epoxy resulted in approximately same laminate thickness and considerable percentage of weight saving, but S-glass/epoxy resulted in weight increment.

  14. Spatiotemporal radiotherapy planning using a global optimization approach

    NASA Astrophysics Data System (ADS)

    Adibi, Ali; Salari, Ehsan

    2018-02-01

    This paper aims at quantifying the extent of potential therapeutic gain, measured using biologically effective dose (BED), that can be achieved by altering the radiation dose distribution over treatment sessions in fractionated radiotherapy. To that end, a spatiotemporally integrated planning approach is developed, where the spatial and temporal dose modulations are optimized simultaneously. The concept of equivalent uniform BED (EUBED) is used to quantify and compare the clinical quality of spatiotemporally heterogeneous dose distributions in target and critical structures. This gives rise to a large-scale non-convex treatment-plan optimization problem, which is solved using global optimization techniques. The proposed spatiotemporal planning approach is tested on two stylized cancer cases resembling two different tumor sites and sensitivity analysis is performed for radio-biological and EUBED parameters. Numerical results validate that spatiotemporal plans are capable of delivering a larger BED to the target volume without increasing the BED in critical structures compared to conventional time-invariant plans. In particular, this additional gain is attributed to the irradiation of different regions of the target volume at different treatment sessions. Additionally, the trade-off between the potential therapeutic gain and the number of distinct dose distributions is quantified, which suggests a diminishing marginal gain as the number of dose distributions increases.

  15. Competency in health care management: a training model in epidemiologic methods for assessing and improving the quality of clinical practice through evidence-based decision making.

    PubMed

    Hudak, R P; Jacoby, I; Meyer, G S; Potter, A L; Hooper, T I; Krakauer, H

    1997-01-01

    This article describes a training model that focuses on health care management by applying epidemiologic methods to assess and improve the quality of clinical practice. The model's uniqueness is its focus on integrating clinical evidence-based decision making with fundamental principles of resource management to achieve attainable, cost-effective, high-quality health outcomes. The target students are current and prospective clinical and administrative executives who must optimize decision making at the clinical and managerial levels of health care organizations.

  16. Development of optimized segmentation map in dual energy computed tomography

    NASA Astrophysics Data System (ADS)

    Yamakawa, Keisuke; Ueki, Hironori

    2012-03-01

    Dual energy computed tomography (DECT) has been widely used in clinical practice and has been particularly effective for tissue diagnosis. In DECT the difference of two attenuation coefficients acquired by two kinds of X-ray energy enables tissue segmentation. One problem in conventional DECT is that the segmentation deteriorates in some cases, such as bone removal. This is due to two reasons. Firstly, the segmentation map is optimized without considering the Xray condition (tube voltage and current). If we consider the tube voltage, it is possible to create an optimized map, but unfortunately we cannot consider the tube current. Secondly, the X-ray condition is not optimized. The condition can be set empirically, but this means that the optimized condition is not used correctly. To solve these problems, we have developed methods for optimizing the map (Method-1) and the condition (Method-2). In Method-1, the map is optimized to minimize segmentation errors. The distribution of the attenuation coefficient is modeled by considering the tube current. In Method-2, the optimized condition is decided to minimize segmentation errors depending on tube voltagecurrent combinations while keeping the total exposure constant. We evaluated the effectiveness of Method-1 by performing a phantom experiment under the fixed condition and of Method-2 by performing a phantom experiment under different combinations calculated from the total exposure constant. When Method-1 was followed with Method-2, the segmentation error was reduced from 37.8 to 13.5 %. These results demonstrate that our developed methods can achieve highly accurate segmentation while keeping the total exposure constant.

  17. Prospective registration of clinical trials in India: strategies, achievements & challenges.

    PubMed

    Tharyan, Prathap

    2009-02-01

    This paper traces the development of the Clinical Trial Registry-India (CTRI) against the backdrop of the inequities in healthcare and the limitations in the design, conduct, regulation, oversight and reporting of clinical trials in India. It describes the scope and goals of the CTRI, the data elements it seeks and the process of registering clinical trials. It reports progress in trial registration in India and discusses the challenges in ensuring that healthcare decisions are informed by all the evidence. A descriptive survey of developments in clinical trial registration in India from publications in the Indian medical literature supplemented by first hand knowledge of these developments and an evaluation of how well clinical trials registered in the CTRI up to 10 January, 2009 comply with the requirements of the CTRI and the World Health Organization's International Clinical Trial Registry (WHO ICTRP). Considerable inequities exist within the Indian health system. Deficiencies in healthcare provision and uneven regulation of, and access to, affordable healthcare co-exists with a large private health system of uneven quality. India is now a preferred destination for outsourced clinical trials but is plagued by poor ethical oversight of the many trial sites and scant information of their existence. The CTRI's vision of conforming to international requirements for transparency and accountability but also using trial registration as a means of improving trial design, conduct and reporting led to the selection of registry-specific dataset items in addition to those endorsed by the WHO ICTRP. Compliance with these requirements is good for the trials currently registered but these trials represent only a fraction of the trials in progress in India. Prospective trial registration is a reality in India. The challenges facing the CTRI include better engagement with key stakeholders to ensure increased prospective registration of clinical trials and utilization of

  18. Controlled release of optimized electroporation enhances the transdermal efficiency of sinomenine hydrochloride for treating arthritis in vitro and in clinic

    PubMed Central

    Feng, Shun; Zhu, Lijun; Huang, Zhisheng; Wang, Haojia; Li, Hong; Zhou, Hua; Lu, Linlin; Wang, Ying; Liu, Zhongqiu; Liu, Liang

    2017-01-01

    Sinomenine hydrochloride (SH) is an ideal drug for the treatment of rheumatoid arthritis and osteoarthritis. However, high plasma concentration of systemically administered SH can release histamine, which can cause rash and gastrointestinal side effects. Topical delivery can increase SH concentration in the synovial fluid without high plasma level, thus minimizing systemic side effects. However, passive diffusion of SH was found to be inefficient because of the presence of the stratum corneum layer. Therefore, an effective method is required to compensate for the low efficiency of SH passive diffusion. In this study, transdermal experiments in vitro and clinical tests were utilized to explore the optimized parameters for electroporation of topical delivery for SH. Fluorescence experiment and hematoxylin and eosin staining analysis were performed to reveal the mechanism by which electroporation promoted permeation. In vitro, optimized electroporation parameters were 3 KHz, exponential waveform, and intensity 10. Using these parameters, transdermal permeation of SH was increased by 1.9–10.1 fold in mice skin and by 1.6–47.1 fold in miniature pig skin compared with passive diffusion. After the electroporation stimulation, the intercellular intervals and epidermal cracks in the skin increased. In clinical tests, SH concentration in synovial fluid was 20.84 ng/mL after treatment with electroporation. Therefore, electroporation with optimized parameters could significantly enhance transdermal permeation of SH. The mechanism by which electroporation promoted permeation was that the electronic pulses made the skin structure looser. To summarize, electroporation may be an effective complementary method for transdermal permeation of SH. The controlled release of electroporation may be a promising clinical method for transdermal drug administration. PMID:28670109

  19. National turnaround time survey: professional consensus standards for optimal performance and thresholds considered to compromise efficient and effective clinical management.

    PubMed

    McKillop, Derek J; Auld, Peter

    2017-01-01

    Background Turnaround time can be defined as the time from receipt of a sample by the laboratory to the validation of the result. The Royal College of Pathologists recommends that a number of performance indicators for turnaround time should be agreed with stakeholders. The difficulty is in arriving at a goal which has some evidence base to support it other than what may simply be currently achievable technically. This survey sought to establish a professional consensus on the goals and meaning of targets for laboratory turnaround time. Methods A questionnaire was circulated by the National Audit Committee to 173 lead consultants for biochemistry in the UK. The survey asked each participant to state their current target turnaround time for core investigations in a broad group of clinical settings. Each participant was also asked to provide a professional opinion on what turnaround time would pose an unacceptable risk to patient safety for each departmental category. A super majority (2/3) was selected as the threshold for consensus. Results The overall response rate was 58% ( n = 100) with a range of 49-72% across the individual Association for Clinical Biochemistry and Laboratory Medicine regions. The consensus optimal turnaround time for the emergency department was <1 h with >2 h considered unacceptable. The times for general practice and outpatient department were <24 h and >48 h and for Wards <4 h and >12 h, respectively. Conclusions We consider that the figures provide a useful benchmark of current opinion, but clearly more empirical standards will have to develop alongside other aspects of healthcare delivery.

  20. Challenges and opportunities in SLE clinical trials.

    PubMed

    van Vollenhoven, Ronald F

    2013-09-01

    To provide an update on the field of clinical trials in systemic lupus erythematosus (SLE). This review will examine failed and successful clinical trials in SLE in order to draw lessons and determine the optimal ways forward. Over the past decade, many clinical trials in SLE met with limited success, but in the past 2 years several SLE clinical trials have been successful. The two large phase III randomized controlled trials (RCTs) of belimumab achieved their primary endpoints and resulted in food and drug administration and European medicines agency approval of the drug. Characteristics of these trials were, among other things, a very large number of patients (>800 each), compound clinical endpoints, and a flexible design with regards to concomitant medication use. Likewise, large randomized controlled trials with mycophenolate mofetil, although nominally unsuccessful, clearly demonstrated the clinical benefit of this drug in lupus nephritis. Posthoc analyses of several failed trials involving abatacept and rituximab revealed design elements and/or outcomes that might have changed the outcomes of these studies. Many smaller trials have also been reported, in some instances with surprisingly positive results. An improved understanding of specific design features in SLE clinical trials combined with robust outcomes will make it possible more effectively to design and conduct clinical trials in SLE.

  1. Optimizing biologically targeted clinical trials for neurofibromatosis

    PubMed Central

    Gutmann, David H; Blakeley, Jaishri O; Korf, Bruce R; Packer, Roger J

    2014-01-01

    Introduction The neurofibromatoses (neurofibromatosis type 1, NF1 and neurofibromatosis type 2, NF2) comprise the most common inherited conditions in which affected children and adults develop tumors of the central and peripheral nervous system. In this review, the authors discuss how the establishment of the Neurofibromatosis Clinical Trials Consortium (NFCTC) has positively impacted on the design and execution of treatment studies for individuals with NF1 and NF2. Areas covered Using an extensive PUBMED search in collaboration with select NFCTC members expert in distinct NF topics, the authors discuss the clinical features of NF1 and NF2, the molecular biology of the NF1 and NF2 genes, the development and application of clinically relevant Nf1 and Nf2 genetically engineered mouse models and the formation of the NFCTC to enable efficient clinical trial design and execution. Expert opinion The NFCTC has resulted in a more seamless integration of mouse preclinical and human clinical trials efforts. Leveraging emerging enabling resources, current research is focused on identifying subtypes of tumors in NF1 and NF2 to deliver the most active compounds to the patients most likely to respond to the targeted therapy. PMID:23425047

  2. Can the multiple mini-interview predict academic achievement in medical school?

    PubMed

    Kim, Ja Kyoung; Kang, Seok Hoon; Lee, Hee Jae; Yang, JeongHee

    2014-09-01

    The purpose of this study was to determine whether the multiple mini-interview (MMI) predicts academic achievement for subjects in a medical school curriculum. Of 49 students who were admitted in 2008, 46 students finished the entire medical education curriculum within 4 years. We calculated the Pearson correlation coefficients between the total MMI score of the 46 graduates and their academic achievements in all subjects of the curriculum. The correlation coefficients between total MMI score and academic achievement in Medical Interview and History Taking, Problem-Based Learning, Doctoring I, and Clinical Practice of Surgery ranged from 0.4 to 0.7, indicating that they were moderately related. The values between total MMI score and achievement in Research Overview, Technical and Procedural Skills, Clinical Performance Examinations 1 and 3, Clinical Practice of Laboratory Medicine and Psychiatry, Neurology, and Orthopedics ranged from 0.2 to 0.4, which meant that they were weakly related. MMI score can predict medical student' academic achievement in subjects in the medical humanities and clinical practice.

  3. Blast optimization for improved dragline productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, M.; Baldwin, G.

    1994-12-31

    A project aimed at blast optimization for large open pit coal mines is utilizing blast monitoring and analysis techniques, advanced dragline monitoring equipment, and blast simulation software, to assess the major controlling factors affecting both blast performance and subsequent dragline productivity. This has involved collaborative work between the explosives supplier, mine operator, monitoring equipment manufacturer, and a mining research organization. The results from trial blasts and subsequently monitored dragline production have yielded promising results and continuing studies are being conducted as part of a blast optimization program. It should be stressed that the optimization of blasting practices for improved draglinemore » productivity is a site specific task, achieved through controlled and closely monitored procedures. The benefits achieved at one location can not be simply transferred to another minesite unless similar improvement strategies are first implemented.« less

  4. Optimized Orthovoltage Stereotactic Radiosurgery

    NASA Astrophysics Data System (ADS)

    Fagerstrom, Jessica M.

    Because of its ability to treat intracranial targets effectively and noninvasively, stereotactic radiosurgery (SRS) is a prevalent treatment modality in modern radiation therapy. This work focused on SRS delivering rectangular function dose distributions, which are desirable for some targets such as those with functional tissue included within the target volume. In order to achieve such distributions, this work used fluence modulation and energies lower than those utilized in conventional SRS. In this work, the relationship between prescription isodose and dose gradients was examined for standard, unmodulated orthovoltage SRS dose distributions. Monte Carlo-generated energy deposition kernels were used to calculate 4pi, isocentric dose distributions for a polyenergetic orthovoltage spectrum, as well as monoenergetic orthovoltage beams. The relationship between dose gradients and prescription isodose was found to be field size and energy dependent, and values were found for prescription isodose that optimize dose gradients. Next, a pencil-beam model was used with a Genetic Algorithm search heuristic to optimize the spatial distribution of added tungsten filtration within apertures of cone collimators in a moderately filtered 250 kVp beam. Four cone sizes at three depths were examined with a Monte Carlo model to determine the effects of the optimized modulation compared to open cones, and the simulations found that the optimized cones were able to achieve both improved penumbra and flatness statistics at depth compared to the open cones. Prototypes of the filter designs calculated using mathematical optimization techniques and Monte Carlo simulations were then manufactured and inserted into custom built orthovoltage SRS cone collimators. A positioning system built in-house was used to place the collimator and filter assemblies temporarily in the 250 kVp beam line. Measurements were performed in water using radiochromic film scanned with both a standard white light

  5. Optimal correction and design parameter search by modern methods of rigorous global optimization

    NASA Astrophysics Data System (ADS)

    Makino, K.; Berz, M.

    2011-07-01

    Frequently the design of schemes for correction of aberrations or the determination of possible operating ranges for beamlines and cells in synchrotrons exhibit multitudes of possibilities for their correction, usually appearing in disconnected regions of parameter space which cannot be directly qualified by analytical means. In such cases, frequently an abundance of optimization runs are carried out, each of which determines a local minimum depending on the specific chosen initial conditions. Practical solutions are then obtained through an often extended interplay of experienced manual adjustment of certain suitable parameters and local searches by varying other parameters. However, in a formal sense this problem can be viewed as a global optimization problem, i.e. the determination of all solutions within a certain range of parameters that lead to a specific optimum. For example, it may be of interest to find all possible settings of multiple quadrupoles that can achieve imaging; or to find ahead of time all possible settings that achieve a particular tune; or to find all possible manners to adjust nonlinear parameters to achieve correction of high order aberrations. These tasks can easily be phrased in terms of such an optimization problem; but while mathematically this formulation is often straightforward, it has been common belief that it is of limited practical value since the resulting optimization problem cannot usually be solved. However, recent significant advances in modern methods of rigorous global optimization make these methods feasible for optics design for the first time. The key ideas of the method lie in an interplay of rigorous local underestimators of the objective functions, and by using the underestimators to rigorously iteratively eliminate regions that lie above already known upper bounds of the minima, in what is commonly known as a branch-and-bound approach. Recent enhancements of the Differential Algebraic methods used in particle

  6. Preservation of micronutrients during rapeseed oil refining: a tool to optimize the health value of edible vegetable oils? Rationale and design of the Optim'Oils randomized clinical trial.

    PubMed

    Gladine, C; Meunier, N; Blot, Adeline; Bruchet, Lucile; Pagès, X; Gaud, M; Floter, E; Metin, Z; Rossignol, A; Cano, N; Chardigny, J M

    2011-03-01

    Numerous micronutrients naturally abundant in oilseeds prevent the risk of cardiovascular diseases by reducing cholesterolemia and oxidative stress. These micronutrients include phytosterols and various antioxidants such as polyphenols, tocopherols and coenzyme Q10/Q9 but most of them are lost during the oilseed oil refining. The main objective of the Optim'Oil project was to modify the processes of oil refining in order to reduce the lost of micronutrients. Two clinical trials (cross-over, monocentric, randomized, double-blind and controlled) were designed to investigate the effect of an optimized rapeseed oil 1) on cardiovascular biomarkers (long-term study) and 2) on oxidative stress parameters (post-prandial study). For the long-term study, 59 volunteers ingested daily 20 g of oil and 22 g of margarine (optimized or standard) for 2 periods of 3 weeks separated by a 3-week wash-out period. Blood samples were collected at the beginning and at the end of each period. For the post-prandial study, a sub-group of 16 volunteers came fasted at the laboratory and took 300 mL of a test meal containing 60% of the optimized or standard oils. Blood samples were collected before and during 6h after the test meal intake. In comparison with the standard oil and margarine, the optimized oil and margarine exhibit as expected an increased content of phytosterol (+22%), polyphenols (× 11), tocopherols (+131%) and coenzyme Q10/Q9 (+165%). Overall, conditions of this study were relevant to investigate the effect of the optimized rapeseed oil and margarine on the cardiovascular risk and the oxidative stress. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Action on diabetic macular oedema: achieving optimal patient management in treating visual impairment due to diabetic eye disease

    PubMed Central

    Gale, R; Scanlon, P H; Evans, M; Ghanchi, F; Yang, Y; Silvestri, G; Freeman, M; Maisey, A; Napier, J

    2017-01-01

    This paper identifies best practice recommendations for managing diabetes and sight-threatening diabetic eye disease. The authors provide an update for ophthalmologists and allied healthcare professionals on key aspects of diabetes management, supported by a review of the pertinent literature, and recommend practice principles for optimal patient management in treating visual impairment due to diabetic eye disease. In people with diabetes, early optimal glycaemic control reduces the long-term risk of both microvascular and macrovascular complications. The authors propose more can and should be done to maximise metabolic control, promote appropriate behavioural modifications and encourage timely treatment intensification when indicated to ameliorate diabetes-related complications. All people with diabetes should be screened for sight-threatening diabetic retinopathy promptly and regularly. It is shown that attitudes towards treatment adherence in diabetic macular oedema appear to mirror patients' views and health behaviours towards the management of their own diabetes. Awareness of diabetic macular oedema remains low among people with diabetes, who need access to education early in their disease about how to manage their diabetes to delay progression and possibly avoid eye-related complications. Ophthalmologists and allied healthcare professionals play a vital role in multidisciplinary diabetes management and establishment of dedicated diabetic macular oedema clinics is proposed. A broader understanding of the role of the diabetes specialist nurse may strengthen the case for comprehensive integrated care in ophthalmic practice. The recommendations are based on round table presentations and discussions held in London, UK, September 2016. PMID:28490797

  8. Action on diabetic macular oedema: achieving optimal patient management in treating visual impairment due to diabetic eye disease.

    PubMed

    Gale, R; Scanlon, P H; Evans, M; Ghanchi, F; Yang, Y; Silvestri, G; Freeman, M; Maisey, A; Napier, J

    2017-05-01

    This paper identifies best practice recommendations for managing diabetes and sight-threatening diabetic eye disease. The authors provide an update for ophthalmologists and allied healthcare professionals on key aspects of diabetes management, supported by a review of the pertinent literature, and recommend practice principles for optimal patient management in treating visual impairment due to diabetic eye disease. In people with diabetes, early optimal glycaemic control reduces the long-term risk of both microvascular and macrovascular complications. The authors propose more can and should be done to maximise metabolic control, promote appropriate behavioural modifications and encourage timely treatment intensification when indicated to ameliorate diabetes-related complications. All people with diabetes should be screened for sight-threatening diabetic retinopathy promptly and regularly. It is shown that attitudes towards treatment adherence in diabetic macular oedema appear to mirror patients' views and health behaviours towards the management of their own diabetes. Awareness of diabetic macular oedema remains low among people with diabetes, who need access to education early in their disease about how to manage their diabetes to delay progression and possibly avoid eye-related complications. Ophthalmologists and allied healthcare professionals play a vital role in multidisciplinary diabetes management and establishment of dedicated diabetic macular oedema clinics is proposed. A broader understanding of the role of the diabetes specialist nurse may strengthen the case for comprehensive integrated care in ophthalmic practice. The recommendations are based on round table presentations and discussions held in London, UK, September 2016.

  9. Optimizing drug therapy in patients with cardiovascular disease: the impact of pharmacist-managed pharmacotherapy clinics in a primary care setting.

    PubMed

    Geber, Jean; Parra, David; Beckey, Nick P; Korman, Lisa

    2002-06-01

    We evaluated the effectiveness of pharmacist-managed pharmacotherapy clinics in implementing and maximizing therapy with agents known to reduce the morbidity and mortality associated with cardiovascular disease. This was a retrospective chart review of 150 patients who were treated for coronary artery disease in primary care clinics. Appropriate treatment of hypercholesterolemia occurred in 96% of patients referred to a clinical pharmacy specialist, compared with 68% of those followed by primary care providers alone (p<0.0001). Eighty-five percent and 50%, respectively, achieved goal low-density lipoprotein (LDL) values below 105 mg/dl (p<0.0001). Appropriate therapy with aspirin or other antiplatelet or anticoagulant drugs was prescribed in 97% and 92%, respectively (p=0.146). As appropriate therapy with these agents was high in both groups, the ability to detect a difference between groups was limited. Among patients with an ejection fraction below 40%, appropriate therapy with an angiotensin-converting enzyme inhibitor or acceptable alternative was 89% and 69%, respectively (p<0.05). Twenty-seven cardiac events were documented in the clinical pharmacy group, versus 22 in the primary care group (p=0.475). Despite the relatively high percentage of patients reaching goal LDL in the primary care group, referral to clinical pharmacy specialists resulted in statistically significant increases in the number of patients appropriately treated for hypercholesterolemia and achieving goal LDL.

  10. Strategy to Achieve Highly Porous/Biocompatible Macroscale Cell Blocks, Using a Collagen/Genipin-bioink and an Optimal 3D Printing Process.

    PubMed

    Kim, Yong Bok; Lee, Hyeongjin; Kim, Geun Hyung

    2016-11-30

    Recently, a three-dimensional (3D) bioprinting process for obtaining a cell-laden structure has been widely applied because of its ability to fabricate biomimetic complex structures embedded with and without cells. To successfully obtain a cell-laden porous block, the cell-delivering vehicle, bioink, is one of the significant factors. Until now, various biocompatible hydrogels (synthetic and natural biopolymers) have been utilized in the cell-printing process, but a bioink satisfying both biocompatibility and print-ability requirements to achieve a porous structure with reasonable mechanical strength has not been issued. Here, we propose a printing strategy with optimal conditions including a safe cross-linking procedure for obtaining a 3D porous cell block composed of a biocompatible collagen-bioink and genipin, a cross-linking agent. To obtain the optimal processing conditions, we modified the 3D printing machine and selected an optimal cross-linking condition (∼1 mM and 1 h) of genipin solution. To show the feasibility of the process, 3D pore-interconnected cell-laden constructs were manufactured using osteoblast-like cells (MG63) and human adipose stem cells (hASCs). Under these processing conditions, a macroscale 3D collagen-based cell block of 21 × 21 × 12 mm 3 and over 95% cell viability was obtained. In vitro biological testing of the cell-laden 3D porous structure showed that the embedded cells were sufficiently viable, and their proliferation was significantly higher; the cells also exhibited increased osteogenic activities compared to the conventional alginate-based bioink (control). The results indicated the fabrication process using the collagen-bioink would be an innovative platform to design highly biocompatible and mechanically stable cell blocks.

  11. Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method.

    PubMed

    Sutradhar, Alok; Park, Jaejong; Carrau, Diana; Nguyen, Tam H; Miller, Michael J; Paulino, Glaucio H

    2016-07-01

    Large craniofacial defects require efficient bone replacements which should not only provide good aesthetics but also possess stable structural function. The proposed work uses a novel multiresolution topology optimization method to achieve the task. Using a compliance minimization objective, patient-specific bone replacement shapes can be designed for different clinical cases that ensure revival of efficient load transfer mechanisms in the mid-face. In this work, four clinical cases are introduced and their respective patient-specific designs are obtained using the proposed method. The optimized designs are then virtually inserted into the defect to visually inspect the viability of the design . Further, once the design is verified by the reconstructive surgeon, prototypes are fabricated using a 3D printer for validation. The robustness of the designs are mechanically tested by subjecting them to a physiological loading condition which mimics the masticatory activity. The full-field strain result through 3D image correlation and the finite element analysis implies that the solution can survive the maximum mastication of 120 lb. Also, the designs have the potential to restore the buttress system and provide the structural integrity. Using the topology optimization framework in designing the bone replacement shapes would deliver surgeons new alternatives for rather complicated mid-face reconstruction.

  12. Optimization of a Tube Hydroforming Process

    NASA Astrophysics Data System (ADS)

    Abedrabbo, Nader; Zafar, Naeem; Averill, Ron; Pourboghrat, Farhang; Sidhu, Ranny

    2004-06-01

    An approach is presented to optimize a tube hydroforming process using a Genetic Algorithm (GA) search method. The goal of the study is to maximize formability by identifying the optimal internal hydraulic pressure and feed rate while satisfying the forming limit diagram (FLD). The optimization software HEEDS is used in combination with the nonlinear structural finite element code LS-DYNA to carry out the investigation. In particular, a sub-region of a circular tube blank is formed into a square die. Compared to the best results of a manual optimization procedure, a 55% increase in expansion was achieved when using the pressure and feed profiles identified by the automated optimization procedure.

  13. Dosage optimization in positron emission tomography: state-of-the-art methods and future prospects

    PubMed Central

    Karakatsanis, Nicolas A; Fokou, Eleni; Tsoumpas, Charalampos

    2015-01-01

    Positron emission tomography (PET) is widely used nowadays for tumor staging and therapy response in the clinic. However, average PET radiation exposure has increased due to higher PET utilization. This study aims to review state-of-the-art PET tracer dosage optimization methods after accounting for the effects of human body attenuation and scan protocol parameters on the counting rate. In particular, the relationship between the noise equivalent count rate (NECR) and the dosage (NECR-dosage curve) for a range of clinical PET systems and body attenuation sizes will be systematically studied to prospectively estimate the minimum dosage required for sufficiently high NECR. The optimization criterion can be determined either as a function of the peak of the NECR-dosage curve or as a fixed NECR score when NECR uniformity across a patient population is important. In addition, the systematic NECR assessments within a controllable environment of realistic simulations and phantom experiments can lead to a NECR-dosage response model, capable of predicting the optimal dosage for every individual PET scan. Unlike conventional guidelines suggesting considerably large dosage levels for obese patients, NECR-based optimization recommends: i) moderate dosage to achieve 90% of peak NECR for obese patients, ii) considerable dosage reduction for slimmer patients such that uniform NECR is attained across the patient population, and iii) prolongation of scans for PET/MR protocols, where longer PET acquisitions are affordable due to lengthy MR sequences, with motion compensation becoming important then. Finally, the need for continuous adaptation of dosage optimization to emerging technologies will be discussed. PMID:26550543

  14. Perspective: Recommendations for benchmarking pre-clinical studies of nanomedicines

    PubMed Central

    Dawidczyk, Charlene M.; Russell, Luisa M.; Searson, Peter C.

    2015-01-01

    Nanoparticle-based delivery systems provide new opportunities to overcome the limitations associated with traditional small molecule drug therapy for cancer, and to achieve both therapeutic and diagnostic functions in the same platform. Pre-clinical trials are generally designed to assess therapeutic potential and not to optimize the design of the delivery platform. Consequently, progress in developing design rules for cancer nanomedicines has been slow, hindering progress in the field. Despite the large number of pre-clinical trials, several factors restrict comparison and benchmarking of different platforms, including variability in experimental design, reporting of results, and the lack of quantitative data. To solve this problem, we review the variables involved in the design of pre-clinical trials and propose a protocol for benchmarking that we recommend be included in in vivo pre-clinical studies of drug delivery platforms for cancer therapy. This strategy will contribute to building the scientific knowledge base that enables development of design rules and accelerates the translation of new technologies. PMID:26249177

  15. Improving scanner wafer alignment performance by target optimization

    NASA Astrophysics Data System (ADS)

    Leray, Philippe; Jehoul, Christiane; Socha, Robert; Menchtchikov, Boris; Raghunathan, Sudhar; Kent, Eric; Schoonewelle, Hielke; Tinnemans, Patrick; Tuffy, Paul; Belen, Jun; Wise, Rich

    2016-03-01

    In the process nodes of 10nm and below, the patterning complexity along with the processing and materials required has resulted in a need to optimize alignment targets in order to achieve the required precision, accuracy and throughput performance. Recent industry publications on the metrology target optimization process have shown a move from the expensive and time consuming empirical methodologies, towards a faster computational approach. ASML's Design for Control (D4C) application, which is currently used to optimize YieldStar diffraction based overlay (DBO) metrology targets, has been extended to support the optimization of scanner wafer alignment targets. This allows the necessary process information and design methodology, used for DBO target designs, to be leveraged for the optimization of alignment targets. In this paper, we show how we applied this computational approach to wafer alignment target design. We verify the correlation between predictions and measurements for the key alignment performance metrics and finally show the potential alignment and overlay performance improvements that an optimized alignment target could achieve.

  16. Optimization of oncological {sup 18}F-FDG PET/CT imaging based on a multiparameter analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menezes, Vinicius O., E-mail: vinicius@radtec.com.br; Machado, Marcos A. D.; Queiroz, Cleiton C.

    2016-02-15

    Purpose: This paper describes a method to achieve consistent clinical image quality in {sup 18}F-FDG scans accounting for patient habitus, dose regimen, image acquisition, and processing techniques. Methods: Oncological PET/CT scan data for 58 subjects were evaluated retrospectively to derive analytical curves that predict image quality. Patient noise equivalent count rate and coefficient of variation (CV) were used as metrics in their analysis. Optimized acquisition protocols were identified and prospectively applied to 179 subjects. Results: The adoption of different schemes for three body mass ranges (<60 kg, 60–90 kg, >90 kg) allows improved image quality with both point spread functionmore » and ordered-subsets expectation maximization-3D reconstruction methods. The application of this methodology showed that CV improved significantly (p < 0.0001) in clinical practice. Conclusions: Consistent oncological PET/CT image quality on a high-performance scanner was achieved from an analysis of the relations existing between dose regimen, patient habitus, acquisition, and processing techniques. The proposed methodology may be used by PET/CT centers to develop protocols to standardize PET/CT imaging procedures and achieve better patient management and cost-effective operations.« less

  17. Clinical response and symptomatic remission in short- and long-term trials of lisdexamfetamine dimesylate in adults with attention-deficit/hyperactivity disorder.

    PubMed

    Mattingly, Greg W; Weisler, Richard H; Young, Joel; Adeyi, Ben; Dirks, Bryan; Babcock, Thomas; Lasser, Robert; Scheckner, Brian; Goodman, David W

    2013-01-29

    Despite the overall high degree of response to pharmacotherapy, consensus is lacking on how to judge clinical response or define optimal treatment/remission when treating adults with attention-deficit/hyperactivity disorder (ADHD). This study examined clinical response and symptomatic remission in analyses of 2 studies of lisdexamfetamine dimesylate (LDX) in adults with ADHD. In a 4-week, double-blind, forced-dose trial, adults with ADHD were randomized to LDX 30, 50, and 70 mg/day (mg/d) or placebo. In a second, open-label, follow-up trial, adults entering from the 4-week study were titrated to an "optimal" LDX dose (30 mg/d [n=44], 50 mg/d [n=112], and 70 mg/d [n=171]) over 4 weeks, and maintained for 11 additional months. The ADHD Rating Scale IV (ADHD-RS-IV) with adult prompts and the Clinical Global Impressions-Improvement (CGI-I) scale assessed efficacy. Clinical response was defined, post hoc, as ≥30% reduction from baseline in ADHD-RS-IV and CGI-I rating of 1 or 2; symptomatic remission was defined as ADHD-RS-IV total score ≤18. Log rank analysis examined overall significance among the treatment groups in time to response or remission. Four hundred and fourteen participants in the 4-week study and 345 in the open-label, extension study were included in the efficacy populations. All LDX groups improved by ADHD-RS-IV and CGI-I scores in both studies. In the 4-week study (n=414), 69.3% responded and 45.5% achieved remission with LDX (all doses); 37.1% responded and 16.1% achieved remission with placebo; time (95% CI) to median clinical response (all LDX doses) was 15.0 (15.0, 17.0) days and to remission was 31.0 (28.0, 37.0) days (P<.0001 overall). In the open-label study, with LDX (all doses), 313 (95.7%) and 278 (85.0%) of 327 participants with evaluable maintenance-phase data met criteria for response and remission, respectively. Of participants who completed dose optimization, 75.2% remained responders and 65.7% remained in remission in the 12-month

  18. [How can institutional structures make clinical research in France more operational?].

    PubMed

    Funck-Brentano, C; Brouard, R

    The laws regulating the practice of clinical research in France, in particular the law of 20 December 1988, the so-called Huriet's law, constitute a major advance for medical progress. However, their implementation by administrative offices generates practical difficulties which impair the development of applied research in human beings. Beyond the laws themselves, it appears that our institutions are unprepared to optimize the conduct of such research. This round table sought to list the existing problems and to propose constructive solutions or objectives to be reached to optimize clinical research in France, with a view to improving French participation in international collaborative programmes, notably European ones. Evaluation of projects and practices, financial support and accounting, and some aspects of existing laws have been identified as the major sources of our difficulties. Harmonization and clarification of our procedures as well as improvement of training should be our primary objectives to achieve a higher level of medical, scientific, financial and administrative quality in the conduct of clinical research. Creation of a referential Web site, designed and updated by a central public organization, is an imperative step towards reaching these objectives.

  19. Learning styles and academic achievement among undergraduate medical students in Thailand.

    PubMed

    Jiraporncharoen, Wichuda; Angkurawaranon, Chaisiri; Chockjamsai, Manoch; Deesomchok, Athavudh; Euathrongchit, Juntima

    2015-01-01

    This study aimed to explore the associations between learning styles and high academic achievement and to ascertain whether the factors associated with high academic achievement differed between preclinical and clinical students. A survey was conducted among undergraduate medical students in Chiang Mai University, Thailand. The Index of Learning Styles questionnaire was used to assess each student's learning style across four domains. High academic achievement was defined as a grade point average of at least 3.0. Of the 1,248 eligible medical students, 1,014 (81.3%) participated. Learning styles differed between the preclinical and clinical students in the active/reflective domain. A sequential learning style was associated with high academic achievement in both preclinical and clinical students. A reflective learning style was only associated with high academic achievement among preclinical students. The association between learning styles and academic achievement may have differed between preclinical and clinical students due to different learning content and teaching methods. Students should be encouraged to be flexible in their own learning styles in order to engage successfully with various and changing teaching methods across the curriculum. Instructors should be also encouraged to provide a variety of teaching materials and resources to suit different learning styles.

  20. Learning styles and academic achievement among undergraduate medical students in Thailand

    PubMed Central

    Jiraporncharoen, Wichuda; Angkurawaranon, Chaisiri; Chockjamsai, Manoch; Deesomchok, Athavudh; Euathrongchit, Juntima

    2015-01-01

    Purpose: This study aimed to explore the associations between learning styles and high academic achievement and to ascertain whether the factors associated with high academic achievement differed between preclinical and clinical students. Methods: A survey was conducted among undergraduate medical students in Chiang Mai University, Thailand. The Index of Learning Styles questionnaire was used to assess each student’s learning style across four domains. High academic achievement was defined as a grade point average of at least 3.0. Results: Of the 1,248 eligible medical students, 1,014 (81.3%) participated. Learning styles differed between the preclinical and clinical students in the active/reflective domain. A sequential learning style was associated with high academic achievement in both preclinical and clinical students. A reflective learning style was only associated with high academic achievement among preclinical students. Conclusion: The association between learning styles and academic achievement may have differed between preclinical and clinical students due to different learning content and teaching methods. Students should be encouraged to be flexible in their own learning styles in order to engage successfully with various and changing teaching methods across the curriculum. Instructors should be also encouraged to provide a variety of teaching materials and resources to suit different learning styles. PMID:26165948

  1. The population-level impacts of a national health insurance program and franchise midwife clinics on achievement of prenatal and delivery care standards in the Philippines

    PubMed Central

    Kozhimannil, Katy Backes; Valera, Madeleine R.; Adams, Alyce S.; Ross-Degnan, Dennis

    2009-01-01

    Objectives Adequate prenatal and delivery care are vital components of successful maternal health care provision. Starting in 1998, two programs were widely expanded in the Philippines: a national health insurance program (PhilHealth); and a donor-funded franchise of midwife clinics (Well-Family Midwife Clinics). This paper examines population-level impacts of these interventions on achievement of minimum standards for prenatal and delivery care. Methods Data from two waves of the Demographic and Health Surveys, conducted before (1998) and after (2003) scale up of the interventions, are employed in a pre/post study design, using longitudinal multivariate logistic and linear regression models. Results After controlling for demographic and socioeconomic characteristics, the PhilHealth insurance program scale up was associated with increased odds of receiving at least four prenatal visits (OR 1.04 [95% CI 1.01–1.06]) and receiving a visit during the first trimester of pregnancy (OR 1.03 [95% CI 1.01–1.06]). Exposure to midwife clinics was not associated with significant changes in achievement of prenatal care standards. While both programs were associated with slight increases in the odds of delivery in a health facility, these increases were not statistically significant. Conclusions These results suggest that expansion of an insurance program with accreditation standards was associated with increases in achievement of minimal standards for prenatal care among women in the Philippines. PMID:19327862

  2. The population-level impacts of a national health insurance program and franchise midwife clinics on achievement of prenatal and delivery care standards in the Philippines.

    PubMed

    Kozhimannil, Katy Backes; Valera, Madeleine R; Adams, Alyce S; Ross-Degnan, Dennis

    2009-09-01

    Adequate prenatal and delivery care are vital components of successful maternal health care provision. Starting in 1998, two programs were widely expanded in the Philippines: a national health insurance program (PhilHealth); and a donor-funded franchise of midwife clinics (Well Family Midwife Clinics). This paper examines population-level impacts of these interventions on achievement of minimum standards for prenatal and delivery care. Data from two waves of the Demographic and Health Surveys, conducted before (1998) and after (2003) scale-up of the interventions, are employed in a pre/post-study design, using longitudinal multivariate logistic and linear regression models. After controlling for demographic and socioeconomic characteristics, the PhilHealth insurance program scale-up was associated with increased odds of receiving at least four prenatal visits (OR 1.04 [95% CI 1.01-1.06]) and receiving a visit during the first trimester of pregnancy (OR 1.03 [95% CI 1.01-1.06]). Exposure to midwife clinics was not associated with significant changes in achievement of prenatal care standards. While both programs were associated with slight increases in the odds of delivery in a health facility, these increases were not statistically significant. These results suggest that expansion of an insurance program with accreditation standards was associated with increases in achievement of minimal standards for prenatal care among women in the Philippines.

  3. Aerodynamic design and optimization in one shot

    NASA Technical Reports Server (NTRS)

    Ta'asan, Shlomo; Kuruvila, G.; Salas, M. D.

    1992-01-01

    This paper describes an efficient numerical approach for the design and optimization of aerodynamic bodies. As in classical optimal control methods, the present approach introduces a cost function and a costate variable (Lagrange multiplier) in order to achieve a minimum. High efficiency is achieved by using a multigrid technique to solve for all the unknowns simultaneously, but restricting work on a design variable only to grids on which their changes produce nonsmooth perturbations. Thus, the effort required to evaluate design variables that have nonlocal effects on the solution is confined to the coarse grids. However, if a variable has a nonsmooth local effect on the solution in some neighborhood, it is relaxed in that neighborhood on finer grids. The cost of solving the optimal control problem is shown to be approximately two to three times the cost of the equivalent analysis problem. Examples are presented to illustrate the application of the method to aerodynamic design and constraint optimization.

  4. Parsing clinical text: how good are the state-of-the-art parsers?

    PubMed

    Jiang, Min; Huang, Yang; Fan, Jung-wei; Tang, Buzhou; Denny, Josh; Xu, Hua

    2015-01-01

    PACQ corpus. Our study demonstrates that re-training using clinical Treebanks is critical for improving general English parsers' performance on clinical text, and combining clinical and open domain corpora might achieve optimal performance for parsing clinical text.

  5. Parsing clinical text: how good are the state-of-the-art parsers?

    PubMed Central

    2015-01-01

    -measure of 84.15% on the MiPACQ corpus. Conclusions Our study demonstrates that re-training using clinical Treebanks is critical for improving general English parsers' performance on clinical text, and combining clinical and open domain corpora might achieve optimal performance for parsing clinical text. PMID:26045009

  6. VMAT optimization with dynamic collimator rotation.

    PubMed

    Lyu, Qihui; O'Connor, Daniel; Ruan, Dan; Yu, Victoria; Nguyen, Dan; Sheng, Ke

    2018-04-16

    Although collimator rotation is an optimization variable that can be exploited for dosimetric advantages, existing Volumetric Modulated Arc Therapy (VMAT) optimization uses a fixed collimator angle in each arc and only rotates the collimator between arcs. In this study, we develop a novel integrated optimization method for VMAT, accounting for dynamic collimator angles during the arc motion. Direct Aperture Optimization (DAO) for Dynamic Collimator in VMAT (DC-VMAT) was achieved by adding to the existing dose fidelity objective an anisotropic total variation term for regulating the fluence smoothness, a binary variable for forming simple apertures, and a group sparsity term for controlling collimator rotation. The optimal collimator angle for each beam angle was selected using the Dijkstra's algorithm, where the node costs depend on the estimated fluence map at the current iteration and the edge costs account for the mechanical constraints of multi-leaf collimator (MLC). An alternating optimization strategy was implemented to solve the DAO and collimator angle selection (CAS). Feasibility of DC-VMAT using one full-arc with dynamic collimator rotation was tested on a phantom with two small spherical targets, a brain, a lung and a prostate cancer patient. The plan was compared against a static collimator VMAT (SC-VMAT) plan using three full arcs with 60 degrees of collimator angle separation in patient studies. With the same target coverage, DC-VMAT achieved 20.3% reduction of R50 in the phantom study, and reduced the average max and mean OAR dose by 4.49% and 2.53% of the prescription dose in patient studies, as compared with SC-VMAT. The collimator rotation co-ordinated with the gantry rotation in DC-VMAT plans for deliverability. There were 13 beam angles in the single-arc DC-VMAT plan in patient studies that requires slower gantry rotation to accommodate multiple collimator angles. The novel DC-VMAT approach utilizes the dynamic collimator rotation during arc

  7. Optimal control of complex atomic quantum systems

    PubMed Central

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-01-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688

  8. Optimal control of complex atomic quantum systems.

    PubMed

    van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S

    2016-10-11

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.

  9. Taking It to the Top: A Lesson in Search Engine Optimization

    ERIC Educational Resources Information Center

    Frydenberg, Mark; Miko, John S.

    2011-01-01

    Search engine optimization (SEO), the promoting of a Web site so it achieves optimal position with a search engine's rankings, is an important strategy for organizations and individuals in order to promote their brands online. Techniques for achieving SEO are relevant to students of marketing, computing, media arts, and other disciplines, and many…

  10. Incorporating C60 as Nucleation Sites Optimizing PbI2 Films To Achieve Perovskite Solar Cells Showing Excellent Efficiency and Stability via Vapor-Assisted Deposition Method.

    PubMed

    Chen, Hai-Bin; Ding, Xi-Hong; Pan, Xu; Hayat, Tasawar; Alsaedi, Ahmed; Ding, Yong; Dai, Song-Yuan

    2018-01-24

    To achieve high-quality perovskite solar cells (PSCs), the morphology and carrier transportation of perovskite films need to be optimized. Herein, C 60 is employed as nucleation sites in PbI 2 precursor solution to optimize the morphology of perovskite films via vapor-assisted deposition process. Accompanying the homogeneous nucleation of PbI 2 , the incorporation of C 60 as heterogeneous nucleation sites can lower the nucleation free energy of PbI 2 , which facilitates the diffusion and reaction between PbI 2 and organic source. Meanwhile, C 60 could enhance carrier transportation and reduce charge recombination in the perovskite layer due to its high electron mobility and conductivity. In addition, the grain sizes of perovskite get larger with C 60 optimizing, which can reduce the grain boundaries and voids in perovskite and prevent the corrosion because of moisture. As a result, we obtain PSCs with a power conversion efficiency (PCE) of 18.33% and excellent stability. The PCEs of unsealed devices drop less than 10% in a dehumidification cabinet after 100 days and remain at 75% of the initial PCE during exposure to ambient air (humidity > 60% RH, temperature > 30 °C) for 30 days.

  11. Fertility and neonatal outcomes of embryos achieving blastulation on Day 7: are they of clinical value?

    PubMed

    Du, Tong; Wang, Yun; Fan, Yong; Zhang, Shiyi; Yan, Zhiguang; Yu, Weina; Xi, Qianwen; Chen, Qiuju; Mol, Ben W; Lyu, Qifeng; Kuang, Yanping

    2018-06-01

    Is transferring embryos that achieve blastulation on Day 7 effective and safe? Embryos that achieve blastulation on Day 7 resulted in clinically relevant rates of clinical pregnancy (32.5%) and live birth (25.2%), and newborns have a similar risk of low birth weight, congenital malformations or early neonatal death compared with those derived from Days 5 and 6 blastocysts. Potential advantages of blastocyst transfer over cleavage embryo transfer have led to a shift toward the former in IVF practice. However, published data about the fertility outcomes of transferring embryos with a delayed blastulation on Day 7 are scarce and controversial. Moreover, there are few data available on the neonatal outcomes of Day 7 blastocysts. As a result, the clinical value of Day 7 blastocysts is uncertain. This was a retrospective cohort study that included 2908 women undergoing frozen-thawed embryo transfer cycles of IVF/ICSI from January 2006 to May 2015, and reported on the 1518 live born infants from those cycles. We used propensity score matching to compare the fertility outcomes of women undergoing Day-5, Day-6 and Day-7 vitrified embryo transfers in three matched comparisons (Day 5 vs Day 6, Day 5 vs Day 7 and Day 6 vs Day 7). We also compared neonatal outcomes among babies derived from Day-5, Day-6 and Day-7 vitrified embryo transfers. We studied 922 Day-5, 1752 Day-6 and 234 Day-7 vitrified embryo transfers. Day-7 vitrified embryo transfers had significantly lower implantation, clinical pregnancy and live birth rates than both Day-5 (23.9 vs 49.9%, 31.7 vs 58.1% and 25.1 vs 46.5%, all P < 0.001, respectively) and Day-6 (24.7 vs 42.3%, 33.0 vs 53.2% and 25.6 vs 41.4%, all P < 0.001, respectively) vitrified embryo transfers. Assessment of babies showed no statistically significant difference in the rates of low birth weight, congenital malformations and early neonatal death among the 585, 869 and 64 babies born from Day-5, Day-6 and Day-7 vitrified embryo transfer groups

  12. Peritoneal dialysis catheter implantation: avoiding problems and optimizing outcomes.

    PubMed

    Crabtree, John H

    2015-01-01

    The success of peritoneal dialysis (PD) as renal replacement therapy is dependent upon the patient having a functional long-term peritoneal access. There are a number of identified best practices that must be adhered to during PD catheter placement to achieve a durable and infection-resistant access. The clinical setting, available resources, and the employed catheter insertion method may not always permit complete adherence to these practices; however, an attempt should be made to comply with them as closely as possible. Although omission of any one of the practices can lead to catheter loss, departures from some are committed more frequently, manifesting as commonly occurring clinical problems, such as drain pain, catheter tip migration, omental entrapment, pericatheter leaks and hernias, and poor exit-site location. Understanding the technical pitfalls in PD catheter placement that lead to these problems, enable the provider to modify practice habits to avoid them and optimize outcomes. © 2014 Wiley Periodicals, Inc.

  13. Wind Turbine Optimization with WISDEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Damiani, Rick R; Graf, Peter A

    This presentation for the Fourth Wind Energy Systems Engineering Workshop explains the NREL wind energy systems engineering initiative-developed analysis platform and research capability to capture important system interactions to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. Topics include Wind-Plant Integrated System Design and Engineering Model (WISDEM) and multidisciplinary design analysis and optimization.

  14. Wavelength optimization for in vivo multispectral photoacoustic/ultrasound tomography of hemoglobin oxygenation in ovarian cancer: clinical studies

    NASA Astrophysics Data System (ADS)

    Salehi, Hassan S.; Li, Hai; Kumavor, Patrick D.; Merkulov, Aleksey; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2015-03-01

    In this paper, wavelength selection for multispectral photoacoustic/ultrasound tomography was optimized to obtain accurate images of hemoglobin oxygen saturation (sO2) in vivo. Although wavelengths can be selected by theoretical methods, in practice the accuracy of reconstructed images will be affected by wavelength-specific and system-specific factors such as laser source power and ultrasound transducer sensitivity. By performing photoacoustic spectroscopy of mouse tumor models using 14 different wavelengths between 710 and 840 nm, we were able to identify a wavelength set which most accurately reproduced the results obtained using all 14 wavelengths via selection criteria. In clinical studies, the optimal wavelength set was successfully used to image human ovaries in vivo and noninvasively. Although these results are specific to our co-registered photoacoustic/ultrasound imaging system, the approach we developed can be applied to other functional photoacoustic and optical imaging systems.

  15. A Comprehensive Program for the Enhancement of Accrual to Clinical Trials.

    PubMed

    Porter, Mark; Ramaswamy, Bhuvaneswari; Beisler, Karen; Neki, Poonam; Single, Nancy; Thomas, James; Hofacker, Janie; Caligiuri, Michael; Carson, William E

    2016-07-01

    The Ohio State University Comprehensive Cancer Center (OSUCCC) embarked on a single institution campaign over 2 years to enhance the enrollment of cancer patients into therapeutic clinical trials. The goal of this campaign was to achieve a 40 % increase in accrual over a 2-year period. The entire process of accruing patients to clinical trials at the OSUCCC was carefully evaluated and broken down into several interlocking components. The four key areas of emphasis were as follows: (i) tasking of OSUCCC leadership with increased oversight of the entire process; (ii) education of all stakeholders [patients, their families, nurses and staff, physicians (both internal and external), Disease-Specific Committees (DSCs), and the OSUCCC leadership] as to the purpose, advantages, and availability of clinical trials, with an emphasis on accrual to cancer clinical trials (CCTs) being a critical function of all OSUCCC employees; (iii) increased oversight of the portfolio of clinical trials by DSCs; and (iv) optimization of accrual operations and infrastructure center-wide. The accrual goal was achieved a full 4 months ahead of schedule. In total, 2327 patients were accrued to therapeutic clinical trials over the course of this 2-year campaign. Prior to implementation of the accrual program, the accrual rate was consistently below 15 %. From 2009 onwards, the therapeutic accrual rate was always greater than 25 %. A campaign to educate key stakeholders in the clinical trials accrual process was successful in its goal of increasing accrual to therapeutic trials.

  16. Risk modelling in portfolio optimization

    NASA Astrophysics Data System (ADS)

    Lam, W. H.; Jaaman, Saiful Hafizah Hj.; Isa, Zaidi

    2013-09-01

    Risk management is very important in portfolio optimization. The mean-variance model has been used in portfolio optimization to minimize the investment risk. The objective of the mean-variance model is to minimize the portfolio risk and achieve the target rate of return. Variance is used as risk measure in the mean-variance model. The purpose of this study is to compare the portfolio composition as well as performance between the optimal portfolio of mean-variance model and equally weighted portfolio. Equally weighted portfolio means the proportions that are invested in each asset are equal. The results show that the portfolio composition of the mean-variance optimal portfolio and equally weighted portfolio are different. Besides that, the mean-variance optimal portfolio gives better performance because it gives higher performance ratio than the equally weighted portfolio.

  17. Optimization and life-cycle cost of health clinic PV system for a rural area in southern Iraq using HOMER software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Karaghouli, Ali; Kazmerski, L.L.

    2010-04-15

    This paper addresses the need for electricity of rural areas in southern Iraq and proposes a photovoltaic (PV) solar system to power a health clinic in that region. The total daily health clinic load is 31.6 kW h and detailed loads are listed. The National Renewable Energy Laboratory (NREL) optimization computer model for distributed power, ''HOMER,'' is used to estimate the system size and its life-cycle cost. The analysis shows that the optimal system's initial cost, net present cost, and electricity cost is US$ 50,700, US$ 60,375, and US$ 0.238/kW h, respectively. These values for the PV system are comparedmore » with those of a generator alone used to supply the load. We found that the initial cost, net present cost of the generator system, and electricity cost are US$ 4500, US$ 352,303, and US$ 1.332/kW h, respectively. We conclude that using the PV system is justified on humanitarian, technical, and economic grounds. (author)« less

  18. Determination of Optimal Amikacin Dosing Regimens for Pediatric Patients With Burn Wound Sepsis.

    PubMed

    Yu, Tian; Stockmann, Chris; Healy, Daniel P; Olson, Jared; Wead, Stephanie; Neely, Alice N; Kagan, Richard J; Spigarelli, Michael G; Sherwin, Catherine M T

    2015-01-01

    This study aimed to develop optimal amikacin dosing regimens for the empirical treatment of Gram-negative bacterial sepsis in pediatric patients with burn injuries. A pharmacodynamic (PD) target in which the peak concentration (Cmax) is ≥8 times the minimum inhibitory concentration (MIC) (Cmax/MIC ≥ 8) is reflective of optimal bactericidal activity and has been used to predict clinical outcomes. Population pharmacokinetic modeling was performed in NONMEM 7.2 for pediatric patients with and without burn injuries. Amikacin pharmacokinetic parameters were compared between the two groups and multiple dosing regimens were simulated using MATLAB to achieve the PD target in ≥90% of patients with burn injuries. The pharmacokinetic analysis included 282 amikacin concentrations from 70 pediatric patients with burn injuries and 99 concentrations from 32 pediatric patients without burns. A one-compartment model with first-order elimination described amikacin pharmacokinetics well for both groups. Clearance (CL) was significantly higher in patients with burn injuries than in patients without (7.22 vs 5.36 L/h, P < .001). The volume of distribution (V) was also significantly increased in patients with burn injuries (22.7 vs 18.7 L, P < .01). Weight significantly influenced amikacin CL (P < .001) and V (P < .001) for both groups. Model-based simulations showed that a higher amikacin dose (≥25 mg/kg) achieved a Cmax/MIC ≥8 in ≥90% of patients with assumed infections of organisms with an MIC = 8 mg/L. Amikacin pharmacokinetics are altered in patients with burn injuries, including a significant increase in CL and V. In simulations, increased doses (≥25 mg/kg) led to improved PD target attainment rates. Further clinical evaluation of this proposed dosing regimen is warranted to assess clinical and microbiological outcomes in pediatric patients with burn wound sepsis.

  19. Quality assurance for high dose rate brachytherapy treatment planning optimization: using a simple optimization to verify a complex optimization

    NASA Astrophysics Data System (ADS)

    Deufel, Christopher L.; Furutani, Keith M.

    2014-02-01

    As dose optimization for high dose rate brachytherapy becomes more complex, it becomes increasingly important to have a means of verifying that optimization results are reasonable. A method is presented for using a simple optimization as quality assurance for the more complex optimization algorithms typically found in commercial brachytherapy treatment planning systems. Quality assurance tests may be performed during commissioning, at regular intervals, and/or on a patient specific basis. A simple optimization method is provided that optimizes conformal target coverage using an exact, variance-based, algebraic approach. Metrics such as dose volume histogram, conformality index, and total reference air kerma agree closely between simple and complex optimizations for breast, cervix, prostate, and planar applicators. The simple optimization is shown to be a sensitive measure for identifying failures in a commercial treatment planning system that are possibly due to operator error or weaknesses in planning system optimization algorithms. Results from the simple optimization are surprisingly similar to the results from a more complex, commercial optimization for several clinical applications. This suggests that there are only modest gains to be made from making brachytherapy optimization more complex. The improvements expected from sophisticated linear optimizations, such as PARETO methods, will largely be in making systems more user friendly and efficient, rather than in finding dramatically better source strength distributions.

  20. Acoustic-noise-optimized diffusion-weighted imaging.

    PubMed

    Ott, Martin; Blaimer, Martin; Grodzki, David M; Breuer, Felix A; Roesch, Julie; Dörfler, Arnd; Heismann, Björn; Jakob, Peter M

    2015-12-01

    This work was aimed at reducing acoustic noise in diffusion-weighted MR imaging (DWI) that might reach acoustic noise levels of over 100 dB(A) in clinical practice. A diffusion-weighted readout-segmented echo-planar imaging (EPI) sequence was optimized for acoustic noise by utilizing small readout segment widths to obtain low gradient slew rates and amplitudes instead of faster k-space coverage. In addition, all other gradients were optimized for low slew rates. Volunteer and patient imaging experiments were conducted to demonstrate the feasibility of the method. Acoustic noise measurements were performed and analyzed for four different DWI measurement protocols at 1.5T and 3T. An acoustic noise reduction of up to 20 dB(A) was achieved, which corresponds to a fourfold reduction in acoustic perception. The image quality was preserved at the level of a standard single-shot (ss)-EPI sequence, with a 27-54% increase in scan time. The diffusion-weighted imaging technique proposed in this study allowed a substantial reduction in the level of acoustic noise compared to standard single-shot diffusion-weighted EPI. This is expected to afford considerably more patient comfort, but a larger study would be necessary to fully characterize the subjective changes in patient experience.

  1. Achieving Optimal Self-Adaptivity for Dynamic Tuning of Organic Semiconductors through Resonance Engineering.

    PubMed

    Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei

    2016-08-03

    Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic.

  2. Semantic Role Labeling of Clinical Text: Comparing Syntactic Parsers and Features

    PubMed Central

    Zhang, Yaoyun; Jiang, Min; Wang, Jingqi; Xu, Hua

    2016-01-01

    Semantic role labeling (SRL), which extracts shallow semantic relation representation from different surface textual forms of free text sentences, is important for understanding clinical narratives. Since semantic roles are formed by syntactic constituents in the sentence, an effective parser, as well as an effective syntactic feature set are essential to build a practical SRL system. Our study initiates a formal evaluation and comparison of SRL performance on a clinical text corpus MiPACQ, using three state-of-the-art parsers, the Stanford parser, the Berkeley parser, and the Charniak parser. First, the original parsers trained on the open domain syntactic corpus Penn Treebank were employed. Next, those parsers were retrained on the clinical Treebank of MiPACQ for further comparison. Additionally, state-of-the-art syntactic features from open domain SRL were also examined for clinical text. Experimental results showed that retraining the parsers on clinical Treebank improved the performance significantly, with an optimal F1 measure of 71.41% achieved by the Berkeley parser. PMID:28269926

  3. Optimizing clinical use of mesalazine (5-aminosalicylic acid) in inflammatory bowel disease

    PubMed Central

    Williams, Chadwick; Panaccione, Remo; Ghosh, Subrata; Rioux, Kevin

    2011-01-01

    Mesalazine [5-aminosalicylic acid (5-ASA)] has been used for over 30 years in the treatment of inflammatory bowel disease (IBD). It is a highly effective, safe, and well-tolerated drug for treatment of mild to moderate ulcerative colitis, which represents most patients with this disease. Recent studies of patient adherence to 5-ASA therapies in ulcerative colitis have highlighted the need for regimens that enable long-term compliance to significantly reduce the risk of troublesome and debilitating flares in the short term, and possibly colon cancer in the long term. Indeed, much of the recent innovation in clinical use of 5-ASA in colitis has come from studies of novel delivery mechanisms and simplified oral dosing schedules. These studies have provided much needed clarity on essential matters such as starting dose, dose escalation, and efficacy in terms of the ideal clinical endpoint - mucosal healing. Various manufacturers are re-evaluating their products to determine the safety and efficacy of such dosing regimens. Although once widely employed in the treatment of Crohn’s disease (CD), the accumulated body of evidence now suggests that there is a much more limited role for 5-ASA in this particular form of inflammatory bowel disease. Recent 5-ASA randomized-controlled trials, comparative studies, and outcomes research have led to refined treatment strategies and awareness for practitioners to better inform, engage and facilitate patients in optimal use of 5-ASA in inflammatory bowel disease. PMID:21765868

  4. Sootblowing optimization for improved boiler performance

    DOEpatents

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

    2012-12-25

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  5. Sootblowing optimization for improved boiler performance

    DOEpatents

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

    2013-07-30

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  6. Planning: supporting and optimizing clinical guidelines execution.

    PubMed

    Anselma, Luca; Montani, Stefania

    2008-01-01

    A crucial feature of computerized clinical guidelines (CGs) lies in the fact that they may be used not only as conventional documents (as if they were just free text) describing general procedures that users have to follow. In fact, thanks to a description of their actions and control flow in some semiformal representation language, CGs can also take advantage of Computer Science methods and Information Technology infrastructures and techniques, to become executable documents, in the sense that they may support clinical decision making and clinical procedures execution. In order to reach this goal, some advanced planning techniques, originally developed within the Artificial Intelligence (AI) community, may be (at least partially) resorted too, after a proper adaptation to the specific CG needs has been carried out.

  7. Effects of Achieving Target Measures in Rheumatoid Arthritis on Functional Status, Quality of Life, and Resource Utilization: Analysis of Clinical Practice Data.

    PubMed

    Alemao, Evo; Joo, Seongjung; Kawabata, Hugh; Al, Maiwenn J; Allison, Paul D; Rutten-van Mölken, Maureen P M H; Frits, Michelle L; Iannaccone, Christine K; Shadick, Nancy A; Weinblatt, Michael E

    2016-03-01

    To evaluate associations between achieving guideline-recommended targets of disease activity, defined by the Disease Activity Score in 28 joints using C-reactive protein level (DAS28-CRP) <2.6, the Simplified Disease Activity Index (SDAI) ≤3.3, or the Clinical Disease Activity Index (CDAI) ≤2.8, and other health outcomes in a longitudinal observational study. Other defined thresholds included low disease activity (LDA), moderate (MDA), or severe disease activity (SDA). To control for intraclass correlation and estimate effects of independent variables on outcomes of the modified Health Assessment Questionnaire (M-HAQ), the EuroQol 5-domain (EQ-5D; a quality-of-life measure), hospitalization, and durable medical equipment (DME) use, we employed mixed models for continuous outcomes and generalized estimating equations for binary outcomes. Among 1,297 subjects, achievement (versus nonachievement) of recommended disease targets was associated with enhanced physical functioning and lower health resource utilization. After controlling for baseline covariates, achievement of disease targets (versus LDA) was associated with significantly enhanced physical functioning based on SDAI ≤3.3 (ΔM-HAQ -0.047; P = 0.0100) and CDAI ≤2.8 (-0.073; P = 0.0003) but not DAS28-CRP <2.6 (-0.022; P = 0.1735). Target attainment was associated with significantly improved EQ-5D (0.022-0.096; P < 0.0030 versus LDA, MDA, or SDA). Patients achieving guideline-recommended disease targets were 36-45% less likely to be hospitalized (P < 0.0500) and 23-45% less likely to utilize DME (P < 0.0100). Attaining recommended target disease-activity measures was associated with enhanced physical functioning and health-related quality of life. Some health outcomes were similar in subjects attaining guideline targets versus LDA. Achieving LDA is a worthy clinical objective in some patients. © 2016 The Authors. Arthritis Care & Research published by Wiley Periodicals, Inc. on behalf of the

  8. A study of optimization techniques in HDR brachytherapy for the prostate

    NASA Astrophysics Data System (ADS)

    Pokharel, Ghana Shyam

    . Based on our study, DVH based objective function performed better than traditional variance based objective function in creating a clinically acceptable plan when executed under identical conditions. Thirdly, we studied the multiobjective optimization strategy using both DVH and variance based objective functions. The optimization strategy was to create several Pareto optimal solutions by scanning the clinically relevant part of the Pareto front. This strategy was adopted to decouple optimization from decision such that user could select final solution from the pool of alternative solutions based on his/her clinical goals. The overall quality of treatment plan improved using this approach compared to traditional class solution approach. In fact, the final optimized plan selected using decision engine with DVH based objective was comparable to typical clinical plan created by an experienced physicist. Next, we studied the hybrid technique comprising both stochastic and deterministic algorithm to optimize both dwell positions and dwell times. The simulated annealing algorithm was used to find optimal catheter distribution and the DVH based algorithm was used to optimize 3D dose distribution for given catheter distribution. This unique treatment planning and optimization tool was capable of producing clinically acceptable highly reproducible treatment plans in clinically reasonable time. As this algorithm was able to create clinically acceptable plans within clinically reasonable time automatically, it is really appealing for real time procedures. Next, we studied the feasibility of multiobjective optimization using evolutionary algorithm for real time HDR brachytherapy for the prostate. The algorithm with properly tuned algorithm specific parameters was able to create clinically acceptable plans within clinically reasonable time. However, the algorithm was let to run just for limited number of generations not considered optimal, in general, for such algorithms. This was

  9. Impact of Targeted Preoperative Optimization on Clinical Outcome in Emergency Abdominal Surgeries: A Prospective Randomized Trial.

    PubMed

    Sethi, Ashish; Debbarma, Miltan; Narang, Neeraj; Saxena, Anudeep; Mahobia, Mamta; Tomar, Gaurav Singh

    2018-01-01

    Perforation peritonitis continues to be one of the most common surgical emergencies that need a surgical intervention most of the times. Anesthesiologists are invariably involved in managing such cases efficiently in perioperative period. The assessment and evaluation of Acute Physiology and Chronic Health Evaluation II (APACHE II) score at presentation and 24 h after goal-directed optimization, administration of empirical broad-spectrum antibiotics, and definitive source control postoperatively. Outcome assessment in terms of duration of hospital stay and mortality in with or without optimization was also measured. It is a prospective, randomized, double-blind controlled study in hospital setting. One hundred and one patients aged ≥18 years, of the American Society of Anesthesiologists physical Status I and II (E) with clinical diagnosis of perforation peritonitis posted for surgery were enrolled. Enrolled patients were randomly divided into two groups. Group A is optimized by goal-directed optimization protocol in the preoperative holding room by anesthesiology residents whereas in Group S, managed by surgery residents in the surgical wards without any fixed algorithm. The assessment of APACHE II score was done as a first step on admission and 24 h postoperatively. Duration of hospital stay and mortality in both the groups were also measured and compared. Categorical data are presented as frequency counts (percent) and compared using the Chi-square or Fisher's exact test. The statistical significance for categorical variables was determined by Chi-square analysis. For continuous variables, a two-sample t -test was applied. The mean APACHE II score on admission in case and control groups was comparable. Significant lowering of serial scores in case group was observed as compared to control group ( P = 0.02). There was a significant lowering of mean duration of hospital stay seen in case group (9.8 ± 1.7 days) as compared to control group ( P = 0

  10. A fast inverse treatment planning strategy facilitating optimized catheter selection in image-guided high-dose-rate interstitial gynecologic brachytherapy.

    PubMed

    Guthier, Christian V; Damato, Antonio L; Hesser, Juergen W; Viswanathan, Akila N; Cormack, Robert A

    2017-12-01

    Interstitial high-dose rate (HDR) brachytherapy is an important therapeutic strategy for the treatment of locally advanced gynecologic (GYN) cancers. The outcome of this therapy is determined by the quality of dose distribution achieved. This paper focuses on a novel yet simple heuristic for catheter selection for GYN HDR brachytherapy and their comparison against state of the art optimization strategies. The proposed technique is intended to act as a decision-supporting tool to select a favorable needle configuration. The presented heuristic for catheter optimization is based on a shrinkage-type algorithm (SACO). It is compared against state of the art planning in a retrospective study of 20 patients who previously received image-guided interstitial HDR brachytherapy using a Syed Neblett template. From those plans, template orientation and position are estimated via a rigid registration of the template with the actual catheter trajectories. All potential straight trajectories intersecting the contoured clinical target volume (CTV) are considered for catheter optimization. Retrospectively generated plans and clinical plans are compared with respect to dosimetric performance and optimization time. All plans were generated with one single run of the optimizer lasting 0.6-97.4 s. Compared to manual optimization, SACO yields a statistically significant (P ≤ 0.05) improved target coverage while at the same time fulfilling all dosimetric constraints for organs at risk (OARs). Comparing inverse planning strategies, dosimetric evaluation for SACO and "hybrid inverse planning and optimization" (HIPO), as gold standard, shows no statistically significant difference (P > 0.05). However, SACO provides the potential to reduce the number of used catheters without compromising plan quality. The proposed heuristic for needle selection provides fast catheter selection with optimization times suited for intraoperative treatment planning. Compared to manual optimization, the

  11. Gear optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.; Chen, Xiang; Zhang, Ning-Tian

    1988-01-01

    The use of formal numerical optimization methods for the design of gears is investigated. To achieve this, computer codes were developed for the analysis of spur gears and spiral bevel gears. These codes calculate the life, dynamic load, bending strength, surface durability, gear weight and size, and various geometric parameters. It is necessary to calculate all such important responses because they all represent competing requirements in the design process. The codes developed here were written in subroutine form and coupled to the COPES/ADS general purpose optimization program. This code allows the user to define the optimization problem at the time of program execution. Typical design variables include face width, number of teeth and diametral pitch. The user is free to choose any calculated response as the design objective to minimize or maximize and may impose lower and upper bounds on any calculated responses. Typical examples include life maximization with limits on dynamic load, stress, weight, etc. or minimization of weight subject to limits on life, dynamic load, etc. The research codes were written in modular form for easy expansion and so that they could be combined to create a multiple reduction optimization capability in future.

  12. Optimizing collection of adverse event data in cancer clinical trials supporting supplemental indications.

    PubMed

    Kaiser, Lee D; Melemed, Allen S; Preston, Alaknanda J; Chaudri Ross, Hilary A; Niedzwiecki, Donna; Fyfe, Gwendolyn A; Gough, Jacqueline M; Bushnell, William D; Stephens, Cynthia L; Mace, M Kelsey; Abrams, Jeffrey S; Schilsky, Richard L

    2010-12-01

    Although much is known about the safety of an anticancer agent at the time of initial marketing approval, sponsors customarily collect comprehensive safety data for studies that support supplemental indications. This adds significant cost and complexity to the study but may not provide useful new information. The main purpose of this analysis was to assess the amount of safety and concomitant medication data collected to determine a more optimal approach in the collection of these data when used in support of supplemental applications. Following a prospectively developed statistical analysis plan, we reanalyzed safety data from eight previously completed prospective randomized trials. A total of 107,884 adverse events and 136,608 concomitant medication records were reviewed for the analysis. Of these, four grade 1 to 2 and nine grade 3 and higher events were identified as drug effects that were not included in the previously established safety profiles and could potentially have been missed using subsampling. These events were frequently detected in subsamples of 400 patients or larger. Furthermore, none of the concomitant medication records contributed to labeling changes for the supplemental indications. Our study found that applying the optimized methodologic approach, described herein, has a high probability of detecting new drug safety signals. Focusing data collection on signals that cause physicians to modify or discontinue treatment ensures that safety issues of the highest concern for patients and regulators are captured and has significant potential to relieve strain on the clinical trials system.

  13. Variation in Patient Profiles and Outcomes in US and Non-US Subgroups of the Cangrelor Versus Standard Therapy to Achieve Optimal Management of Platelet Inhibition (CHAMPION) PHOENIX Trial

    PubMed Central

    Vaduganathan, Muthiah; Harrington, Robert A.; Stone, Gregg W.; Steg, Ph. Gabriel; Gibson, C. Michael; Hamm, Christian W.; Price, Matthew J.; Prats, Jayne; Deliargyris, Efthymios N.; Mahaffey, Kenneth W.; White, Harvey D.

    2016-01-01

    Background— The Cangrelor Versus Standard Therapy to Achieve Optimal Management of Platelet Inhibition (CHAMPION) PHOENIX trial demonstrated superiority of cangrelor in reducing ischemic events at 48 hours in patients undergoing percutaneous coronary intervention compared with clopidogrel. Methods and Results— We analyzed all patients included in the modified intention-to-treat analysis in US (n=4097; 37.4%) and non-US subgroups (n=6845; 62.6%). The US cohort was older, had a higher burden of cardiovascular risk factors, and had more frequently undergone prior cardiovascular procedures. US patients more frequently underwent percutaneous coronary intervention for stable angina (77.9% versus 46.2%). Almost all US patients (99.1%) received clopidogrel loading doses of 600 mg, whereas 40.5% of non-US patients received 300 mg. Bivalirudin was more frequently used in US patients (56.7% versus 2.9%). At 48 hours, rates of the primary composite end point were comparable in the US and non-US cohorts (5.5% versus 5.2%; P=0.53). Cangrelor reduced rates of the primary composite end point compared with clopidogrel in US (4.5% versus 6.4%; odds ratio 0.70 [95% confidence interval 0.53–0.92]) and in non-US patients (4.8% versus 5.6%; odds ratio 0.85 [95% confidence interval 0.69–1.05]; interaction P=0.26). Similarly, rates of the key secondary end point, stent thrombosis, were reduced by cangrelor in both regions. Rates of Global Use of Strategies to Open Occluded Arteries (GUSTO)–defined severe bleeding were low and not significantly increased by cangrelor in either region. Conclusions— Despite broad differences in clinical profiles and indications for percutaneous coronary intervention by region in a large global cardiovascular clinical trial, cangrelor consistently reduced rates of ischemic end points compared with clopidogrel without an excess in severe bleeding in both the US and non-US subgroups. Clinical Trial Registration— URL: http

  14. Rejuvenation of the Aging Arm: Multimodal Combination Therapy for Optimal Results.

    PubMed

    Wu, Douglas C; Green, Jeremy B

    2016-05-01

    The aging arm is characterized by increased dyspigmentation, a proliferation of ectactic blood vessels, excessive adiposity, excessive skin laxity, and actinic keratosis. A variety of laser, energy, and surgical techniques can be used to improve these features. The objective of this article is to describe the treatment modalities that have proven efficacious in rejuvenating the aging arm and combination therapies that have the potential to optimize patient outcomes while maintaining safety and tolerability. A Medline search was performed on nonsurgical aesthetic combination treatments because it relates to arm rejuvenation, and results are summarized. Practical applications for these combination treatments are also discussed. Although there is significant evidence supporting the effective use of nonsurgical treatments for arm rejuvenation, little in the literature was found on the safety and efficacy of combining such procedures and devices. However, in the authors' clinical experience, combining arm rejuvenation techniques can be done safely and often result in optimal outcomes. Arm rejuvenation can be safely and effectively achieved with combination nonsurgical aesthetic treatments.

  15. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1988-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  16. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1989-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  17. The antiviral effects of RSV fusion inhibitor, MDT-637, on clinical isolates, vs its achievable concentrations in the human respiratory tract and comparison to ribavirin.

    PubMed

    Kim, Young-In; Pareek, Rajat; Murphy, Ryan; Harrison, Lisa; Farrell, Eric; Cook, Robert; DeVincenzo, John

    2017-11-01

    Respiratory syncytial virus (RSV) viral load and disease severity associate, and the timing of viral load and disease run in parallel. An antiviral must be broadly effective against the natural spectrum of RSV genotypes and must attain concentrations capable of inhibiting viral replication within the human respiratory tract. We evaluated a novel RSV fusion inhibitor, MDT-637, and compared it with ribavirin for therapeutic effect in vitro to identify relative therapeutic doses achievable in humans. MDT-637 and ribavirin were co-incubated with RSV in HEp-2 cells. Quantitative PCR assessed viral concentrations; 50% inhibitory concentrations (IC 50 ) were compared to achievable human MDT-637 and ribavirin peak and trough concentrations. The IC 50 for MDT-637 and ribavirin (against RSV-A Long) was 1.42 and 16 973 ng/mL, respectively. The ratio of achievable peak respiratory secretion concentration to IC 50 was 6041-fold for MDT-637 and 25-fold for aerosolized ribavirin. The ratio of trough concentration to IC 50 was 1481-fold for MDT-637 and 3.29-fold for aerosolized ribavirin. Maximal peak and trough levels of oral or intravenous ribavirin were significantly lower than their IC 50 s. We also measured MDT-637 IC 50 s in 3 lab strains and 4 clinical strains. The IC 50 s ranged from 0.36 to 3.4 ng/mL. Achievable human MDT-637 concentrations in respiratory secretions exceed the IC 50 s by factors from hundreds to thousands of times greater than does ribavirin. Furthermore, MDT-637 has broad in vitro antiviral activity on clinical strains of different RSV genotypes and clades. Together, these data imply that MDT-637 may produce a superior clinical effect compared to ribavirin on natural RSV infections. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  18. Gender Issues in Gifted Achievement: Are Girls Making Inroads While Boys Fall Behind?

    ERIC Educational Resources Information Center

    Rimm, Sylvia B.

    2015-01-01

    School and life achievement patterns for girls and women differ from those of boys and men. While girls have made dramatic progress in school, they need to be inspired to connect to lifelong achievement. Both research and clinical work at the Ohio-based Family Achievement Clinic find that more boys than girls underachieve in school. There is much…

  19. Redesigning Radiotherapy Quality Assurance: Opportunities to Develop an Efficient, Evidence-Based System to Support Clinical Trials

    PubMed Central

    Bekelman, Justin E.; Deye, James A.; Vikram, Bhadrasain; Bentzen, Soren M.; Bruner, Deborah; Curran, Walter J.; Dignam, James; Efstathiou, Jason A.; FitzGerald, T. J.; Hurkmans, Coen; Ibbott, Geoffrey S.; Lee, J. Jack; Merchant, Timothy E.; Michalski, Jeff; Palta, Jatinder R.; Simon, Richard; Ten Haken, Randal K.; Timmerman, Robert; Tunis, Sean; Coleman, C. Norman; Purdy, James

    2012-01-01

    Background In the context of national calls for reorganizing cancer clinical trials, the National Cancer Institute (NCI) sponsored a two day workshop to examine the challenges and opportunities for optimizing radiotherapy quality assurance (QA) in clinical trial design. Methods Participants reviewed the current processes of clinical trial QA and noted the QA challenges presented by advanced technologies. Lessons learned from the radiotherapy QA programs of recent trials were discussed in detail. Four potential opportunities for optimizing radiotherapy QA were explored, including the use of normal tissue toxicity and tumor control metrics, biomarkers of radiation toxicity, new radiotherapy modalities like proton beam therapy, and the international harmonization of clinical trial QA. Results Four recommendations were made: 1) Develop a tiered (and more efficient) system for radiotherapy QA and tailor intensity of QA to clinical trial objectives. Tiers include (i) general credentialing, (ii) trial specific credentialing, and (iii) individual case review; 2) Establish a case QA repository; 3) Develop an evidence base for clinical trial QA and introduce innovative prospective trial designs to evaluate radiotherapy QA in clinical trials; and 4) Explore the feasibility of consolidating clinical trial QA in the United States. Conclusion Radiotherapy QA may impact clinical trial accrual, cost, outcomes and generalizability. To achieve maximum benefit, QA programs must become more efficient and evidence-based. PMID:22425219

  20. Optimal neurocognitive, personality and behavioral measures for assessing impulsivity in cocaine dependence.

    PubMed

    LoBue, Christian; Cullum, C Munro; Braud, Jacqueline; Walker, Robrina; Winhusen, Theresa; Suderajan, Prabha; Adinoff, Bryon

    2014-11-01

    Impulsivity may underlie the poor treatment retention and high relapse rates observed in cocaine-dependent persons. However, observed differences in measures of impulsivity between cocaine-dependent and healthy control participants often do not reach clinical significance, suggesting that the clinical relevance of these differences may be limited. To examine which measures of impulsivity (i.e. self-report impulsivity, self-report personality, neurocognitive testing) best distinguish cocaine-dependent and healthy control participants (i.e. showing differences at least 1.5 standard deviations [SD] from controls). Optimal measures were considered to demonstrate sufficient classification accuracy. Sixty-five recently abstinent cocaine-dependent and 25 healthy control participants were assessed using select neurocognitive tests and self-report questionnaires including the NEO Personality Inventory-Revised (NEO-PI-R), Temperament and Character Inventory (TCI), Barratt Impulsiveness Scale (BIS-11a), and the Frontal Systems Behavior Scale (FrSBe). When corrected for years of education and gender, neurocognitive measures did not demonstrate clinically significant differences between cocaine-dependent and control participants. The personality measures TCI Purposefulness and Congruent Second Nature and NEO-PI-R Impulsiveness, and the self-rating measures FrSBe Disinhibition and BIS-11 Motor Impulsivity and Total successfully identified clinically meaningful elevations in impulsivity within cocaine-dependent participants (>1.5 SDs from controls). Furthermore, these measures achieved 84-93% accuracy in discriminating cocaine-dependent from control participants. Clinically significant neurocognitive impairment in cocaine-dependent participants was not observed in this sample. As the BIS-11 or FrSBe are brief to administer, accurate, and have been shown to predict treatment retention and relapse, these measures appear to be optimal, relative to the personality measures, for

  1. Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease.

    PubMed

    West, Andrew B

    2017-12-01

    In the translation of discoveries from the laboratory to the clinic, the track record in developing disease-modifying therapies in neurodegenerative disease is poor. A carefully designed development pipeline built from discoveries in both pre-clinical models and patient populations is necessary to optimize the chances for success. Genetic variation in the leucine-rich repeat kinase two gene (LRRK2) is linked to Parkinson disease (PD) susceptibility. Pathogenic mutations, particularly those in the LRRK2 GTPase (Roc) and COR domains, increase LRRK2 kinase activities in cells and tissues. In some PD models, small molecule LRRK2 kinase inhibitors that block these activities also provide neuroprotection. Herein, the genetic and biochemical evidence that supports the involvement of LRRK2 kinase activity in PD susceptibility is reviewed. Issues related to the definition of a therapeutic window for LRRK2 inhibition and the safety of chronic dosing are discussed. Finally, recommendations are given for a biomarker-guided initial entry of LRRK2 kinase inhibitors in PD patients. Four key areas must be considered for achieving neuroprotection with LRRK2 kinase inhibitors in PD: 1) identification of patient populations most likely to benefit from LRRK2 kinase inhibitors, 2) prioritization of superior LRRK2 small molecule inhibitors based on open disclosures of drug performance, 3) incorporation of biomarkers and empirical measures of LRRK2 kinase inhibition in clinical trials, and 4) utilization of appropriate efficacy measures guided in part by rigorous pre-clinical modeling. Meticulous and rational development decisions can potentially prevent incredibly costly errors and provide the best chances for LRRK2 inhibitors to slow the progression of PD. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  2. Optimized diffusion gradient orientation schemes for corrupted clinical DTI data sets.

    PubMed

    Dubois, J; Poupon, C; Lethimonnier, F; Le Bihan, D

    2006-08-01

    A method is proposed for generating schemes of diffusion gradient orientations which allow the diffusion tensor to be reconstructed from partial data sets in clinical DT-MRI, should the acquisition be corrupted or terminated before completion because of patient motion. A general energy-minimization electrostatic model was developed in which the interactions between orientations are weighted according to their temporal order during acquisition. In this report, two corruption scenarios were specifically considered for generating relatively uniform schemes of 18 and 60 orientations, with useful subsets of 6 and 15 orientations. The sets and subsets were compared to conventional sets through their energy, condition number and rotational invariance. Schemes of 18 orientations were tested on a volunteer. The optimized sets were similar to uniform sets in terms of energy, condition number and rotational invariance, whether the complete set or only a subset was considered. Diffusion maps obtained in vivo were close to those for uniform sets whatever the acquisition time was. This was not the case with conventional schemes, whose subset uniformity was insufficient. With the proposed approach, sets of orientations responding to several corruption scenarios can be generated, which is potentially useful for imaging uncooperative patients or infants.

  3. DSP code optimization based on cache

    NASA Astrophysics Data System (ADS)

    Xu, Chengfa; Li, Chengcheng; Tang, Bin

    2013-03-01

    DSP program's running efficiency on board is often lower than which via the software simulation during the program development, which is mainly resulted from the user's improper use and incomplete understanding of the cache-based memory. This paper took the TI TMS320C6455 DSP as an example, analyzed its two-level internal cache, and summarized the methods of code optimization. Processor can achieve its best performance when using these code optimization methods. At last, a specific algorithm application in radar signal processing is proposed. Experiment result shows that these optimization are efficient.

  4. Optimization of lattice surgery is NP-hard

    NASA Astrophysics Data System (ADS)

    Herr, Daniel; Nori, Franco; Devitt, Simon J.

    2017-09-01

    The traditional method for computation in either the surface code or in the Raussendorf model is the creation of holes or "defects" within the encoded lattice of qubits that are manipulated via topological braiding to enact logic gates. However, this is not the only way to achieve universal, fault-tolerant computation. In this work, we focus on the lattice surgery representation, which realizes transversal logic operations without destroying the intrinsic 2D nearest-neighbor properties of the braid-based surface code and achieves universality without defects and braid-based logic. For both techniques there are open questions regarding the compilation and resource optimization of quantum circuits. Optimization in braid-based logic is proving to be difficult and the classical complexity associated with this problem has yet to be determined. In the context of lattice-surgery-based logic, we can introduce an optimality condition, which corresponds to a circuit with the lowest resource requirements in terms of physical qubits and computational time, and prove that the complexity of optimizing a quantum circuit in the lattice surgery model is NP-hard.

  5. Comparison of the progressive resolution optimizer and photon optimizer in VMAT optimization for stereotactic treatments.

    PubMed

    Liu, Han; Sintay, Benjamin; Pearman, Keith; Shang, Qingyang; Hayes, Lane; Maurer, Jacqueline; Vanderstraeten, Caroline; Wiant, David

    2018-05-20

    The photon optimization (PO) algorithm was recently released by Varian Medical Systems to improve volumetric modulated arc therapy (VMAT) optimization within Eclipse (Version 13.5). The purpose of this study is to compare the PO algorithm with its predecessor, progressive resolution optimizer (PRO) for lung SBRT and brain SRS treatments. A total of 30 patients were selected retrospectively. Previously, all the plans were generated with the PRO algorithm within Eclipse Version 13.6. In the new version of PO algorithm (Version 15), dynamic conformal arcs (DCA) were first conformed to the target, then VMAT inverse planning was performed to achieve the desired dose distributions. PTV coverages were forced to be identical for the same patient for a fair comparison. SBRT plan quality was assessed based on selected dose-volume parameters, including the conformity index, V 20 for lung, V 30 Gy for chest wall, and D 0.035 cc for other critical organs. SRS plan quality was evaluated based on the conformity index and normal tissue volumes encompassed by the 12 and 6 Gy isodose lines (V 12 and V 6 ). The modulation complexity score (MCS) was used to compare plan complexity of two algorithms. No statistically significant differences between the PRO and PO algorithms were found for any of the dosimetric parameters studied, which indicates both algorithms produce comparable plan quality. Significant improvements in the gamma passing rate (increased from 97.0% to 99.2% for SBRT and 96.1% to 98.4% for SRS), MCS (average increase of 0.15 for SBRT and 0.10 for SRS), and delivery efficiency (MU reduction of 29.8% for SBRT and 28.3% for SRS) were found for the PO algorithm. MCS showed a strong correlation with the gamma passing rate, and an inverse correlation with total MUs used. The PO algorithm offers comparable plan quality to the PRO, while minimizing MLC complexity, thereby improving the delivery efficiency and accuracy. © 2018 The Authors. Journal of Applied Clinical Medical

  6. Software for Optimizing Plans Involving Interdependent Goals

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Gaines, Daniel; Rabideau, Gregg

    2005-01-01

    A computer program enables construction and optimization of plans for activities that are directed toward achievement of goals that are interdependent. Goal interdependence is defined as the achievement of one or more goals affecting the desirability or priority of achieving one or more other goals. This program is overlaid on the Automated Scheduling and Planning Environment (ASPEN) software system, aspects of which have been described in a number of prior NASA Tech Briefs articles. Unlike other known or related planning programs, this program considers interdependences among goals that can change between problems and provides a language for easily specifying such dependences. Specifications of the interdependences can be formulated dynamically and provided to the associated planning software as part of the goal input. Then an optimization algorithm provided by this program enables the planning software to reason about the interdependences and incorporate them into an overall objective function that it uses to rate the quality of a plan under construction and to direct its optimization search. In tests on a series of problems of planning geological experiments by a team of instrumented robotic vehicles (rovers) on new terrain, this program was found to enhance plan quality.

  7. What Is the Optimal Target Convective Volume in On-Line Hemodiafiltration Therapy?

    PubMed

    Canaud, Bernard; Koehler, Katrin; Bowry, Sudhir; Stuard, Stefano

    2017-01-01

    Conventional diffusion-based dialysis modalities including high-flux hemodialysis are limited in their capacity to effectively remove large uremic toxins and to improve outcomes for end-stage chronic kidney disease (ESKD) patients. By increasing convective solute transport, hemodiafiltration (HDF) enhances solute removal capacity over a broad range of middle- and large-size uremic toxins implicated in the pathophysiology of chronic kidney disease. Furthermore, by offering flexible convection volume, on-line HDF permits customizing the treatment dose to the patient's needs. In addition, convective-based modalities have been shown to improve hemodynamic stability and to reduce patients' inflammation profile - both of which are implicated in CKD morbidity and mortality. Growing clinical evidence indicates that HDF-based modalities provide ESKD patients with a number of clinical and biological benefits, including improved outcomes. Interestingly, it has recently emerged that the clinical benefits associated with HDF are positively associated with the total ultrafiltered volume per session (and per week), namely convective dose. In this chapter, we revisit the concept of convective dose and discuss the threshold value above which an improvement in ESKD patient outcome can be expected. This particular point will be addressed by stratifying the level of efficacy of convective volumes, schematically defined as minimal, optimal, personalized, and maximal. In addition, factors and best clinical practices implicated in the achievement of an optimal convective dose are reviewed. To conclude, we show how HDF differs from standard hemodialysis and why HDF offers a paradigm shift in renal replacement therapy. © 2017 S. Karger AG, Basel.

  8. Role of step size and max dwell time in anatomy based inverse optimization for prostate implants

    PubMed Central

    Manikandan, Arjunan; Sarkar, Biplab; Rajendran, Vivek Thirupathur; King, Paul R.; Sresty, N.V. Madhusudhana; Holla, Ragavendra; Kotur, Sachin; Nadendla, Sujatha

    2013-01-01

    In high dose rate (HDR) brachytherapy, the source dwell times and dwell positions are vital parameters in achieving a desirable implant dose distribution. Inverse treatment planning requires an optimal choice of these parameters to achieve the desired target coverage with the lowest achievable dose to the organs at risk (OAR). This study was designed to evaluate the optimum source step size and maximum source dwell time for prostate brachytherapy implants using an Ir-192 source. In total, one hundred inverse treatment plans were generated for the four patients included in this study. Twenty-five treatment plans were created for each patient by varying the step size and maximum source dwell time during anatomy-based, inverse-planned optimization. Other relevant treatment planning parameters were kept constant, including the dose constraints and source dwell positions. Each plan was evaluated for target coverage, urethral and rectal dose sparing, treatment time, relative target dose homogeneity, and nonuniformity ratio. The plans with 0.5 cm step size were seen to have clinically acceptable tumor coverage, minimal normal structure doses, and minimum treatment time as compared with the other step sizes. The target coverage for this step size is 87% of the prescription dose, while the urethral and maximum rectal doses were 107.3 and 68.7%, respectively. No appreciable difference in plan quality was observed with variation in maximum source dwell time. The step size plays a significant role in plan optimization for prostate implants. Our study supports use of a 0.5 cm step size for prostate implants. PMID:24049323

  9. SU-F-BRD-13: Quantum Annealing Applied to IMRT Beamlet Intensity Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazareth, D; Spaans, J

    Purpose: We report on the first application of quantum annealing (QA) to the process of beamlet intensity optimization for IMRT. QA is a new technology, which employs novel hardware and software techniques to address various discrete optimization problems in many fields. Methods: We apply the D-Wave Inc. proprietary hardware, which natively exploits quantum mechanical effects for improved optimization. The new QA algorithm, running on this hardware, is most similar to simulated annealing, but relies on natural processes to directly minimize the free energy of a system. A simple quantum system is slowly evolved into a classical system, representing the objectivemore » function. To apply QA to IMRT-type optimization, two prostate cases were considered. A reduced number of beamlets were employed, due to the current QA hardware limitation of ∼500 binary variables. The beamlet dose matrices were computed using CERR, and an objective function was defined based on typical clinical constraints, including dose-volume objectives. The objective function was discretized, and the QA method was compared to two standard optimization Methods: simulated annealing and Tabu search, run on a conventional computing cluster. Results: Based on several runs, the average final objective function value achieved by the QA was 16.9 for the first patient, compared with 10.0 for Tabu and 6.7 for the SA. For the second patient, the values were 70.7 for the QA, 120.0 for Tabu, and 22.9 for the SA. The QA algorithm required 27–38% of the time required by the other two methods. Conclusion: In terms of objective function value, the QA performance was similar to Tabu but less effective than the SA. However, its speed was 3–4 times faster than the other two methods. This initial experiment suggests that QA-based heuristics may offer significant speedup over conventional clinical optimization methods, as quantum annealing hardware scales to larger sizes.« less

  10. Canadian Association of Gastroenterology policy on the application for, and implementation of, clinical practice guidelines

    PubMed Central

    Singh, Harminder; Leontiadis, Grigorios I; Hookey, Lawrence; Enns, Robert; Bistritz, Lana; Rioux, Louis-Charles; Hope, Louise; Sinclair, Paul

    2014-01-01

    An important mandate of the Canadian Association of Gastroenterology (CAG), as documented in the Association’s governance policies, is to optimize the care of patients with digestive disorders. Clinical practice guidelines are one means of achieving this goal. The benefits of timely, high-quality and evidenced-based recommendations include: Enhancing the professional development of clinical members through education and dissemination of synthesized clinical research;Improving patient care provided by members by providing focus on quality and evidence;Creating legislative environments that favour effective clinical practice;Enhancing the clinical care provided to patients with digestive disease by nongastroenterologists; andIdentifying areas that require further information or research to improve clinical care.The present document provides the foundation required to ensure that clinical practice guidelines produced by the CAG are necessary, appropriate, credible and applicable. These recommendations should be adhered to as closely as possible to obtain CAG endorsement. PMID:25314352

  11. Canadian Association of Gastroenterology policy on the application for, and implementation of, clinical practice guidelines.

    PubMed

    Singh, Harminder; Leontiadis, Grigorios I; Hookey, Lawrence; Enns, Robert; Bistritz, Lana; Rioux, Louis-Charles; Hope, Louise; Sinclair, Paul

    2014-10-01

    An important mandate of the Canadian Association of Gastroenterology (CAG), as documented in the Association's governance policies, is to optimize the care of patients with digestive disorders. Clinical practice guidelines are one means of achieving this goal. The benefits of timely, high-quality and evidenced-based recommendations include: Enhancing the professional development of clinical members through education and dissemination of synthesized clinical research; Improving patient care provided by members by providing focus on quality and evidence; Creating legislative environments that favour effective clinical practice; Enhancing the clinical care provided to patients with digestive disease by nongastroenterologists; and Identifying areas that require further information or research to improve clinical care. The present document provides the foundation required to ensure that clinical practice guidelines produced by the CAG are necessary, appropriate, credible and applicable. These recommendations should be adhered to as closely as possible to obtain CAG endorsement.

  12. Parental Warmth, Control, and Involvement in Schooling: Predicting Academic Achievement among Korean American Adolescents.

    ERIC Educational Resources Information Center

    Kim, Kyoungho; Rohner, Ronald P.

    2002-01-01

    Explored the relationship between parenting style and academic achievement of Korean American adolescents, investigating the influence of perceived parental warmth and control and improvement in schooling. Survey data indicated that authoritative paternal parenting related to optimal academic achievement. Differences in maternal parenting styles…

  13. Report of a consultation on the optimization of clinical challenge trials for evaluation of candidate blood stage malaria vaccines, 18-19 March 2009, Bethesda, MD, USA.

    PubMed

    Moorthy, V S; Diggs, C; Ferro, S; Good, M F; Herrera, S; Hill, A V; Imoukhuede, E B; Kumar, S; Loucq, C; Marsh, K; Ockenhouse, C F; Richie, T L; Sauerwein, R W

    2009-09-25

    Development and optimization of first generation malaria vaccine candidates has been facilitated by the existence of a well-established Plasmodium falciparum clinical challenge model in which infectious sporozoites are administered to human subjects via mosquito bite. While ideal for testing pre-erythrocytic stage vaccines, some researchers believe that the sporozoite challenge model is less appropriate for testing blood stage vaccines. Here we report a consultation, co-sponsored by PATH MVI, USAID, EMVI and WHO, where scientists from all institutions globally that have conducted such clinical challenges in recent years and representatives from regulatory agencies and funding agencies met to discuss clinical malaria challenge models. Participants discussed strengthening and harmonizing the sporozoite challenge model and considered the pros and cons of further developing a blood stage challenge possibly better suited for evaluating the efficacy of blood stage vaccines. This report summarizes major findings and recommendations, including an update on the Plasmodium vivax clinical challenge model, the prospects for performing experimental challenge trials in malaria endemic countries and an update on clinical safety data. While the focus of the meeting was on the optimization of clinical challenge models for evaluation of blood stage candidate malaria vaccines, many of the considerations are relevant for the application of challenge trials to other purposes.

  14. Concurrently adjusting interrelated control parameters to achieve optimal engine performance

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-12-01

    Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.

  15. Papilla and pontic area regeneration in patient with gingival smile: A clinical case

    PubMed Central

    Gómez-Meda, Ramón; Torres-Sanchez, Carlos; Mareque-Bueno, Santiago; Zufía-González, Juan; Gutierrez-Pérez, José-Luis

    2018-01-01

    Purpose Connective tissue grafts are widely documented as a predictable technique for treating Miller Class I and II recessions, as well as procedures in which soft tissue augmentation is required for aesthetic reasons. This article aims to explore the resolution of a clinical case with this type of problema. Clinical case This case describes a technique for reconstructing a pontic area and adjacent papilla by means of two consecutive connective tissue grafts. The first graft served to increase the amount of tissue in the horizontal direction, and the second promoted vertical reconstruction of the defect. Results and Conclusion In cases with aesthetic requirements, restorative intervention may be able to mask tissue loss, but it can hardly achieve optimal aesthetic results. Periodontal plastic surgery techniques can be used to achieve that ideal result. The clinician must diagnose conditions in order to select correct treatment regimen for each individual case. Key words:Papilla, gingival smile, pontic, restorative dentistry. PMID:29849978

  16. A Multiobjective Optimization Framework for Online Stochastic Optimal Control in Hybrid Electric Vehicles

    DOE PAGES

    Malikopoulos, Andreas

    2015-01-01

    The increasing urgency to extract additional efficiency from hybrid propulsion systems has led to the development of advanced power management control algorithms. In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain and we show that the control policy yielding the Pareto optimal solution minimizes online the long-run expected average cost per unit time criterion. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.more » Both solutions achieved the same cumulative fuel consumption demonstrating that the online Pareto control policy is an optimal control policy.« less

  17. A practical globalization of one-shot optimization for optimal design of tokamak divertors

    NASA Astrophysics Data System (ADS)

    Blommaert, Maarten; Dekeyser, Wouter; Baelmans, Martine; Gauger, Nicolas R.; Reiter, Detlev

    2017-01-01

    In past studies, nested optimization methods were successfully applied to design of the magnetic divertor configuration in nuclear fusion reactors. In this paper, so-called one-shot optimization methods are pursued. Due to convergence issues, a globalization strategy for the one-shot solver is sought. Whereas Griewank introduced a globalization strategy using a doubly augmented Lagrangian function that includes primal and adjoint residuals, its practical usability is limited by the necessity of second order derivatives and expensive line search iterations. In this paper, a practical alternative is offered that avoids these drawbacks by using a regular augmented Lagrangian merit function that penalizes only state residuals. Additionally, robust rank-two Hessian estimation is achieved by adaptation of Powell's damped BFGS update rule. The application of the novel one-shot approach to magnetic divertor design is considered in detail. For this purpose, the approach is adapted to be complementary with practical in parts adjoint sensitivities. Using the globalization strategy, stable convergence of the one-shot approach is achieved.

  18. Dose Optimization in TOF-PET/MR Compared to TOF-PET/CT

    PubMed Central

    Queiroz, Marcelo A.; Delso, Gaspar; Wollenweber, Scott; Deller, Timothy; Zeimpekis, Konstantinos; Huellner, Martin; de Galiza Barbosa, Felipe; von Schulthess, Gustav; Veit-Haibach, Patrick

    2015-01-01

    Purpose To evaluate the possible activity reduction in FDG-imaging in a Time-of-Flight (TOF) PET/MR, based on cross-evaluation of patient-based NECR (noise equivalent count rate) measurements in PET/CT, cross referencing with phantom-based NECR curves as well as initial evaluation of TOF-PET/MR with reduced activity. Materials and Methods A total of 75 consecutive patients were evaluated in this study. PET/CT imaging was performed on a PET/CT (time-of-flight (TOF) Discovery D 690 PET/CT). Initial PET/MR imaging was performed on a newly available simultaneous TOF-PET/MR (Signa PET/MR). An optimal NECR for diagnostic purposes was defined in clinical patients (NECRP) in PET/CT. Subsequent optimal activity concentration at the acquisition time ([A]0) and target NECR (NECRT) were obtained. These data were used to predict the theoretical FDG activity requirement of the new TOF-PET/MR system. Twenty-five initial patients were acquired with (retrospectively reconstructed) different imaging times equivalent for different activities on the simultaneous PET/MR for the evaluation of clinically realistic FDG-activities. Results The obtained values for NECRP, [A]0 and NECRT were 114.6 (± 14.2) kcps (Kilocounts per second), 4.0 (± 0.7) kBq/mL and 45 kcps, respectively. Evaluating the NECRT together with the phantom curve of the TOF-PET/MR device, the theoretical optimal activity concentration was found to be approximately 1.3 kBq/mL, which represents 35% of the activity concentration required by the TOF-PET/CT. Initial evaluation on patients in the simultaneous TOF-PET/MR shows clinically realistic activities of 1.8 kBq/mL, which represent 44% of the required activity. Conclusion The new TOF-PET/MR device requires significantly less activity to generate PET-images with good-to-excellent image quality, due to improvements in detector geometry and detector technologies. The theoretically achievable dose reduction accounts for up to 65% but cannot be fully translated into clinical

  19. Optimized magnetic resonance diffusion protocol for ex-vivo whole human brain imaging with a clinical scanner

    NASA Astrophysics Data System (ADS)

    Scherrer, Benoit; Afacan, Onur; Stamm, Aymeric; Singh, Jolene; Warfield, Simon K.

    2015-03-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) provides a novel insight into the brain to facilitate our understanding of the brain connectivity and microstructure. While in-vivo DW-MRI enables imaging of living patients and longitudinal studies of brain changes, post-mortem ex-vivo DW-MRI has numerous advantages. Ex-vivo imaging benefits from greater resolution and sensitivity due to the lack of imaging time constraints; the use of tighter fitting coils; and the lack of movement artifacts. This allows characterization of normal and abnormal tissues with unprecedented resolution and sensitivity, facilitating our ability to investigate anatomical structures that are inaccessible in-vivo. This also offers the opportunity to develop today novel imaging biomarkers that will, with tomorrow's MR technology, enable improved in-vivo assessment of the risk of disease in an individual. Post-mortem studies, however, generally rely on the fixation of specimen to inhibit tissue decay which starts as soon as tissue is deprived from its blood supply. Unfortunately, fixation of tissues substantially alters tissue diffusivity profiles. In addition, ex-vivo DW-MRI requires particular care when packaging the specimen because the presence of microscopic air bubbles gives rise to geometric and intensity image distortion. In this work, we considered the specific requirements of post-mortem imaging and designed an optimized protocol for ex-vivo whole brain DW-MRI using a human clinical 3T scanner. Human clinical 3T scanners are available to a large number of researchers and, unlike most animal scanners, have a bore diameter large enough to image a whole human brain. Our optimized protocol will facilitate widespread ex-vivo investigations of large specimen.

  20. Optimizing global liver function in radiation therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Wu, Victor W.; Epelman, Marina A.; Wang, Hesheng; Romeijn, H. Edwin; Feng, Mary; Cao, Yue; Ten Haken, Randall K.; Matuszak, Martha M.

    2016-09-01

    often achieves better GLF than \\ell \\text{EUD} model optimization does, the GLF model directly optimizes a more clinically relevant metric and can further improve fEUD plan quality.

  1. Sampling with poling-based flux balance analysis: optimal versus sub-optimal flux space analysis of Actinobacillus succinogenes.

    PubMed

    Binns, Michael; de Atauri, Pedro; Vlysidis, Anestis; Cascante, Marta; Theodoropoulos, Constantinos

    2015-02-18

    Flux balance analysis is traditionally implemented to identify the maximum theoretical flux for some specified reaction and a single distribution of flux values for all the reactions present which achieve this maximum value. However it is well known that the uncertainty in reaction networks due to branches, cycles and experimental errors results in a large number of combinations of internal reaction fluxes which can achieve the same optimal flux value. In this work, we have modified the applied linear objective of flux balance analysis to include a poling penalty function, which pushes each new set of reaction fluxes away from previous solutions generated. Repeated poling-based flux balance analysis generates a sample of different solutions (a characteristic set), which represents all the possible functionality of the reaction network. Compared to existing sampling methods, for the purpose of generating a relatively "small" characteristic set, our new method is shown to obtain a higher coverage than competing methods under most conditions. The influence of the linear objective function on the sampling (the linear bias) constrains optimisation results to a subspace of optimal solutions all producing the same maximal fluxes. Visualisation of reaction fluxes plotted against each other in 2 dimensions with and without the linear bias indicates the existence of correlations between fluxes. This method of sampling is applied to the organism Actinobacillus succinogenes for the production of succinic acid from glycerol. A new method of sampling for the generation of different flux distributions (sets of individual fluxes satisfying constraints on the steady-state mass balances of intermediates) has been developed using a relatively simple modification of flux balance analysis to include a poling penalty function inside the resulting optimisation objective function. This new methodology can achieve a high coverage of the possible flux space and can be used with and without

  2. Applications of physiologically based pharmacokinetic modeling for the optimization of anti-infective therapies.

    PubMed

    Moss, Darren Michael; Marzolini, Catia; Rajoli, Rajith K R; Siccardi, Marco

    2015-01-01

    The pharmacokinetic properties of anti-infective drugs are a determinant part of treatment success. Pathogen replication is inhibited if adequate drug levels are achieved in target sites, whereas excessive drug concentrations linked to toxicity are to be avoided. Anti-infective distribution can be predicted by integrating in vitro drug properties and mathematical descriptions of human anatomy in physiologically based pharmacokinetic models. This method reduces the need for animal and human studies and is used increasingly in drug development and simulation of clinical scenario such as, for instance, drug-drug interactions, dose optimization, novel formulations and pharmacokinetics in special populations. We have assessed the relevance of physiologically based pharmacokinetic modeling in the anti-infective research field, giving an overview of mechanisms involved in model design and have suggested strategies for future applications of physiologically based pharmacokinetic models. Physiologically based pharmacokinetic modeling provides a powerful tool in anti-infective optimization, and there is now no doubt that both industry and regulatory bodies have recognized the importance of this technology. It should be acknowledged, however, that major challenges remain to be addressed and that information detailing disease group physiology and anti-infective pharmacodynamics is required if a personalized medicine approach is to be achieved.

  3. Pharmacology and Clinical Drug Candidates in Redox Medicine

    PubMed Central

    Casas, Ana I.; Maghzal, Ghassan J.; Seredenina, Tamara; Kaludercic, Nina; Robledinos-Anton, Natalia; Di Lisa, Fabio; Stocker, Roland; Ghezzi, Pietro; Jaquet, Vincent; Cuadrado, Antonio

    2015-01-01

    Abstract Significance: Oxidative stress is suggested to be a disease mechanism common to a wide range of disorders affecting human health. However, so far, the pharmacotherapeutic exploitation of this, for example, based on chemical scavenging of pro-oxidant molecules, has been unsuccessful. Recent Advances: An alternative emerging approach is to target the enzymatic sources of disease-relevant oxidative stress. Several such enzymes and isoforms have been identified and linked to different pathologies. For some targets, the respective pharmacology is quite advanced, that is, up to late-stage clinical development or even on the market; for others, drugs are already in clinical use, although not for indications based on oxidative stress, and repurposing seems to be a viable option. Critical Issues: For all other targets, reliable preclinical validation and drug ability are key factors for any translation into the clinic. In this study, specific pharmacological agents with optimal pharmacokinetic profiles are still lacking. Moreover, these enzymes also serve largely unknown physiological functions and their inhibition may lead to unwanted side effects. Future Directions: The current promising data based on new targets, drugs, and drug repurposing are mainly a result of academic efforts. With the availability of optimized compounds and coordinated efforts from academia and industry scientists, unambiguous validation and translation into proof-of-principle studies seem achievable in the very near future, possibly leading towards a new era of redox medicine. Antioxid. Redox Signal. 23, 1113–1129. PMID:26415051

  4. Direct handling of equality constraints in multilevel optimization

    NASA Technical Reports Server (NTRS)

    Renaud, John E.; Gabriele, Gary A.

    1990-01-01

    In recent years there have been several hierarchic multilevel optimization algorithms proposed and implemented in design studies. Equality constraints are often imposed between levels in these multilevel optimizations to maintain system and subsystem variable continuity. Equality constraints of this nature will be referred to as coupling equality constraints. In many implementation studies these coupling equality constraints have been handled indirectly. This indirect handling has been accomplished using the coupling equality constraints' explicit functional relations to eliminate design variables (generally at the subsystem level), with the resulting optimization taking place in a reduced design space. In one multilevel optimization study where the coupling equality constraints were handled directly, the researchers encountered numerical difficulties which prevented their multilevel optimization from reaching the same minimum found in conventional single level solutions. The researchers did not explain the exact nature of the numerical difficulties other than to associate them with the direct handling of the coupling equality constraints. The coupling equality constraints are handled directly, by employing the Generalized Reduced Gradient (GRG) method as the optimizer within a multilevel linear decomposition scheme based on the Sobieski hierarchic algorithm. Two engineering design examples are solved using this approach. The results show that the direct handling of coupling equality constraints in a multilevel optimization does not introduce any problems when the GRG method is employed as the internal optimizer. The optimums achieved are comparable to those achieved in single level solutions and in multilevel studies where the equality constraints have been handled indirectly.

  5. Optimization of light source parameters in the photodynamic therapy of heterogeneous prostate

    NASA Astrophysics Data System (ADS)

    Li, Jun; Altschuler, Martin D.; Hahn, Stephen M.; Zhu, Timothy C.

    2008-08-01

    The three-dimensional (3D) heterogeneous distributions of optical properties in a patient prostate can now be measured in vivo. Such data can be used to obtain a more accurate light-fluence kernel. (For specified sources and points, the kernel gives the fluence delivered to a point by a source of unit strength.) In turn, the kernel can be used to solve the inverse problem that determines the source strengths needed to deliver a prescribed photodynamic therapy (PDT) dose (or light-fluence) distribution within the prostate (assuming uniform drug concentration). We have developed and tested computational procedures to use the new heterogeneous data to optimize delivered light-fluence. New problems arise, however, in quickly obtaining an accurate kernel following the insertion of interstitial light sources and data acquisition. (1) The light-fluence kernel must be calculated in 3D and separately for each light source, which increases kernel size. (2) An accurate kernel for light scattering in a heterogeneous medium requires ray tracing and volume partitioning, thus significant calculation time. To address these problems, two different kernels were examined and compared for speed of creation and accuracy of dose. Kernels derived more quickly involve simpler algorithms. Our goal is to achieve optimal dose planning with patient-specific heterogeneous optical data applied through accurate kernels, all within clinical times. The optimization process is restricted to accepting the given (interstitially inserted) sources, and determining the best source strengths with which to obtain a prescribed dose. The Cimmino feasibility algorithm is used for this purpose. The dose distribution and source weights obtained for each kernel are analyzed. In clinical use, optimization will also be performed prior to source insertion to obtain initial source positions, source lengths and source weights, but with the assumption of homogeneous optical properties. For this reason, we compare the

  6. International Study to Predict Optimized Treatment for Depression (iSPOT-D), a randomized clinical trial: rationale and protocol.

    PubMed

    Williams, Leanne M; Rush, A John; Koslow, Stephen H; Wisniewski, Stephen R; Cooper, Nicholas J; Nemeroff, Charles B; Schatzberg, Alan F; Gordon, Evian

    2011-01-05

    Clinically useful treatment moderators of Major Depressive Disorder (MDD) have not yet been identified, though some baseline predictors of treatment outcome have been proposed. The aim of iSPOT-D is to identify pretreatment measures that predict or moderate MDD treatment response or remission to escitalopram, sertraline or venlafaxine; and develop a model that incorporates multiple predictors and moderators. The International Study to Predict Optimized Treatment - in Depression (iSPOT-D) is a multi-centre, international, randomized, prospective, open-label trial. It is enrolling 2016 MDD outpatients (ages 18-65) from primary or specialty care practices (672 per treatment arm; 672 age-, sex- and education-matched healthy controls). Study-eligible patients are antidepressant medication (ADM) naïve or willing to undergo a one-week wash-out of any non-protocol ADM, and cannot have had an inadequate response to protocol ADM. Baseline assessments include symptoms; distress; daily function; cognitive performance; electroencephalogram and event-related potentials; heart rate and genetic measures. A subset of these baseline assessments are repeated after eight weeks of treatment. Outcomes include the 17-item Hamilton Rating Scale for Depression (primary) and self-reported depressive symptoms, social functioning, quality of life, emotional regulation, and side-effect burden (secondary). Participants may then enter a naturalistic telephone follow-up at weeks 12, 16, 24 and 52. The first half of the sample will be used to identify potential predictors and moderators, and the second half to replicate and confirm. First enrolment was in December 2008, and is ongoing. iSPOT-D evaluates clinical and biological predictors of treatment response in the largest known sample of MDD collected worldwide. International Study to Predict Optimised Treatment - in Depression (iSPOT-D) ClinicalTrials.gov Identifier: NCT00693849. URL: http://clinicaltrials.gov/ct2/show/NCT00693849?term=International+Study+to+Predict+Optimized

  7. A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization.

    PubMed

    Liu, Qingshan; Guo, Zhishan; Wang, Jun

    2012-02-01

    In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Primary Mental Abilities and Metropolitan Readiness Tests as Predictors of Achievement in the First Primary Year.

    ERIC Educational Resources Information Center

    University City School District, MO.

    The prediction of achievement provides teachers with necessary information to help children attain optimal achievement. If some skill prerequistites to learning which are not fully developed can be identified and strengthened, higher levels of achievement may result. The Metropolitan Readiness Tests (MRT) are routinely given to all University City…

  9. Iterative dataset optimization in automated planning: Implementation for breast and rectal cancer radiotherapy.

    PubMed

    Fan, Jiawei; Wang, Jiazhou; Zhang, Zhen; Hu, Weigang

    2017-06-01

    To develop a new automated treatment planning solution for breast and rectal cancer radiotherapy. The automated treatment planning solution developed in this study includes selection of the iterative optimized training dataset, dose volume histogram (DVH) prediction for the organs at risk (OARs), and automatic generation of clinically acceptable treatment plans. The iterative optimized training dataset is selected by an iterative optimization from 40 treatment plans for left-breast and rectal cancer patients who received radiation therapy. A two-dimensional kernel density estimation algorithm (noted as two parameters KDE) which incorporated two predictive features was implemented to produce the predicted DVHs. Finally, 10 additional new left-breast treatment plans are re-planned using the Pinnacle 3 Auto-Planning (AP) module (version 9.10, Philips Medical Systems) with the objective functions derived from the predicted DVH curves. Automatically generated re-optimized treatment plans are compared with the original manually optimized plans. By combining the iterative optimized training dataset methodology and two parameters KDE prediction algorithm, our proposed automated planning strategy improves the accuracy of the DVH prediction. The automatically generated treatment plans using the dose derived from the predicted DVHs can achieve better dose sparing for some OARs without compromising other metrics of plan quality. The proposed new automated treatment planning solution can be used to efficiently evaluate and improve the quality and consistency of the treatment plans for intensity-modulated breast and rectal cancer radiation therapy. © 2017 American Association of Physicists in Medicine.

  10. Identification and Treatment of Pathophysiological Comorbidities of Autism Spectrum Disorder to Achieve Optimal Outcomes

    PubMed Central

    Frye, Richard E.; Rossignol, Daniel A.

    2016-01-01

    Despite the fact that the prevalence of autism spectrum disorder (ASD) continues to rise, no effective medical treatments have become standard of care. In this paper we review some of the pathophysiological abnormalities associated with ASD and their potential associated treatments. Overall, there is evidence for some children with ASD being affected by seizure and epilepsy, neurotransmitter dysfunction, sleep disorders, metabolic abnormalities, including abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, redox and mitochondrial metabolism, and immune and gastrointestinal disorders. Although evidence for an association between these pathophysiological abnormalities and ASD exists, the exact relationship to the etiology of ASD and its associated symptoms remains to be further defined in many cases. Despite these limitations, treatments targeting some of these pathophysiological abnormalities have been studied in some cases with high-quality studies, whereas treatments for other pathophysiological abnormalities have not been well studied in many cases. There are some areas of more promising treatments specific for ASD including neurotransmitter abnormalities, particularly imbalances in glutamate and acetylcholine, sleep onset disorder (with behavioral therapy and melatonin), and metabolic abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, and redox pathways. There is some evidence for treatments of epilepsy and seizures, mitochondrial and immune disorders, and gastrointestinal abnormalities, particularly imbalances in the enteric microbiome, but further clinical studies are needed in these areas to better define treatments specific to children with ASD. Clearly, there are some promising areas of ASD research that could lead to novel treatments that could become standard of care in the future, but more research is needed to better define subgroups of children with ASD who are affected by specific pathophysiological abnormalities and

  11. Optimizing resource allocation and patient flow: process analysis and reorganization in three chemotherapy outpatient clinics.

    PubMed

    Holmes, Morgan; Bodie, Kelly; Porter, Geoffrey; Sullivan, Victoria; Tarasuk, Joy; Trembley, Jodie; Trudeau, Maureen

    2010-01-01

    Optimizing human and physical resources is a major concern for cancer care decision-makers and practitioners. This issue is particularly acute in the context of ambulatory out patient chemotherapy clinics, especially when - as is the case almost everywhere in the industrialized world - the number of people requiring systemic therapy is increasing while budgets, staffing and physical space remain static. Recent initiatives at three hospital-based chemotherapy units - in Halifax, Toronto and Kingston - shed light on the value of process analysis and reorganization for using existing human and physical resources to their full potential, improving patient flow and enhancing patient satisfaction. The steps taken in these settings are broadly applicable to other healthcare settings and would likely result in similar benefits in those environments.

  12. Designing an Optimized Novel Femoral Stem

    PubMed Central

    Babaniamansour, Parto; Ebrahimian-Hosseinabadi, Mehdi; Zargar-Kharazi, Anousheh

    2017-01-01

    Background: After total hip arthroplasty, there would be some problems for the patients. Implant loosening is one of the significant problems which results in thigh pain and even revision surgery. Difference between Young's modulus of bone-metal is the cause of stress shielding, atrophy, and subsequent implant loosening. Materials and Methods: In this paper, femoral stem stiffness is reduced by novel biomechanical and biomaterial design which includes using proper design parameters, coating it with porous surface, and modeling the sketch by the software. Parametric design of femoral stem is done on the basis of clinical reports. Results: Optimized model for femoral stem is proposed. Curved tapered stem with trapezoidal cross-section and particular neck and offset is designed. Fully porous surface is suggested. Moreover, Designed femoral stem analysis showed the Ti6Al4V stem which is covered with layer of 1.5 mm in thickness and 50% of porosity is as stiff as 77 GPa that is 30% less than the stem without any porosity. Porous surface of designed stem makes it fix biologically; thus, prosthesis loosening probability decreases. Conclusion: By optimizing femoral stem geometry (size and shape) and also making a porous surface, which had an intermediate stiffness of bone and implant, a more efficient hip joint prosthesis with more durability fixation was achieved due to better stress transmission from implant to the bone. PMID:28840118

  13. An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization.

    PubMed

    Dai, Cai; Wang, Yuping; Ye, Miao; Xue, Xingsi; Liu, Hailin

    2016-12-01

    Research on multiobjective optimization problems becomes one of the hottest topics of intelligent computation. In order to improve the search efficiency of an evolutionary algorithm and maintain the diversity of solutions, in this paper, the learning automata (LA) is first used for quantization orthogonal crossover (QOX), and a new fitness function based on decomposition is proposed to achieve these two purposes. Based on these, an orthogonal evolutionary algorithm with LA for complex multiobjective optimization problems with continuous variables is proposed. The experimental results show that in continuous states, the proposed algorithm is able to achieve accurate Pareto-optimal sets and wide Pareto-optimal fronts efficiently. Moreover, the comparison with the several existing well-known algorithms: nondominated sorting genetic algorithm II, decomposition-based multiobjective evolutionary algorithm, decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes, multiobjective optimization by LA, and multiobjective immune algorithm with nondominated neighbor-based selection, on 15 multiobjective benchmark problems, shows that the proposed algorithm is able to find more accurate and evenly distributed Pareto-optimal fronts than the compared ones.

  14. Multiparameter optimization of mammography: an update

    NASA Astrophysics Data System (ADS)

    Jafroudi, Hamid; Muntz, E. P.; Jennings, Robert J.

    1994-05-01

    Previously in this forum we have reported the application of multiparameter optimization techniques to the design of a minimum dose mammography system. The approach used a reference system to define the physical imaging performance required and the dose to which the dose for the optimized system should be compared. During the course of implementing the resulting design in hardware suitable for laboratory testing, the state of the art in mammographic imaging changed, so that the original reference system, which did not have a grid, was no longer appropriate. A reference system with a grid was selected in response to this change, and at the same time the optimization procedure was modified, to make it more general and to facilitate study of the optimized design under a variety of conditions. We report the changes in the procedure, and the results obtained using the revised procedure and the up- to-date reference system. Our results, which are supported by laboratory measurements, indicate that the optimized design can image small objects as well as the reference system using only about 30% of the dose required by the reference system. Hardware meeting the specification produced by the optimization procedure and suitable for clinical use is currently under evaluation in the Diagnostic Radiology Department at the Clinical Center, NH.

  15. Optimization and Clinical Feasibility of Free-breathing Diffusion-weighted Imaging of the Liver: Comparison with Respiratory-Triggered Diffusion-weighted Imaging.

    PubMed

    Takayama, Yukihisa; Nishie, Akihiro; Asayama, Yoshiki; Ishigami, Kousei; Kakihara, Daisuke; Ushijima, Yasuhiro; Fujita, Nobuhiro; Yoshiura, Takashi; Takemura, Atsushi; Obara, Makoto; Takahara, Taro; Honda, Hiroshi

    2015-01-01

    We compared the image quality of free-breathing diffusion-weighted imaging (FB-DWI) to that of respiratory-triggered DWI (RT-DWI) after proper optimization. Three healthy subjects were scanned to optimize magnetic resonance (MR) parameters of FB-DWI to improve image quality, including spatial resolution, image noise, and chemical shift artifacts. After this optimization, we scanned 32 patients with liver disease to assess the clinical feasibility of the optimized FB-DWI. Of the 32 patients, 14 had a total of 28 hepatocellular carcinomas (HCCs), four had a total of 15 metastatic liver tumors, and the other 14 had no tumor. Qualitatively, we compared the image quality scores of FB-DWI with those of RT-DWI with the Wilcoxon signed-rank test. Quantitatively, we compared the signal-to-noise ratios (SNRs) of the liver parenchyma, lesion-to-nonlesion contrast-to-noise ratios (CNRs) and apparent diffusion coefficient (ADC) values of the liver parenchyma and liver tumor by the paired t-test. The average scores of image quality for sharpness of liver contour, image noise, and chemical shift artifacts were significantly higher for FB-DWI than RT-DWI (P < 0.05). SNRs, CNRs, and ADC values of the liver parenchyma and tumors did not differ significantly between the 2 DWI methods. Compared with RT-DWI, the optimized FB-DWI provided better spatial resolution, fewer artifacts, and comparable SNRs, lesion-to-nonlesion CNRs, and ADC values.

  16. Optimizing phase to enhance optical trap stiffness.

    PubMed

    Taylor, Michael A

    2017-04-03

    Phase optimization offers promising capabilities in optical tweezers, allowing huge increases in the applied forces, trap stiff-ness, or measurement sensitivity. One key obstacle to potential applications is the lack of an efficient algorithm to compute an optimized phase profile, with enhanced trapping experiments relying on slow programs that would take up to a week to converge. Here we introduce an algorithm that reduces the wait from days to minutes. We characterize the achievable in-crease in trap stiffness and its dependence on particle size, refractive index, and optical polarization. We further show that phase-only control can achieve almost all of the enhancement possible with full wavefront shaping; for instance phase control allows 62 times higher trap stiffness for 10 μm silica spheres in water, while amplitude control and non-trivial polarization further increase this by 1.26 and 1.01 respectively. This algorithm will facilitate future applications in optical trapping, and more generally in wavefront optimization.

  17. Multidisciplinary design optimization using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1994-01-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared

  18. Optimization of Medication Use at Accountable Care Organizations.

    PubMed

    Wilks, Chrisanne; Krisle, Erik; Westrich, Kimberly; Lunner, Kristina; Muhlestein, David; Dubois, Robert

    2017-10-01

    Optimized medication use involves the effective use of medications for better outcomes, improved patient experience, and lower costs. Few studies systematically gather data on the actions accountable care organizations (ACOs) have taken to optimize medication use. To (a) assess how ACOs optimize medication use; (b) establish an association between efforts to optimize medication use and achievement on financial and quality metrics; (c) identify organizational factors that correlate with optimized medication use; and (d) identify barriers to optimized medication use. This cross-sectional study consisted of a survey and interviews that gathered information on the perceptions of ACO leadership. The survey contained a medication practices inventory (MPI) composed of 38 capabilities across 6 functional domains related to optimizing medication use. ACOs completed self-assessments that included rating each component of the MPI on a scale of 1 to 10. Fisher's exact tests, 2-proportions tests, t-tests, and logistic regression were used to test for associations between ACO scores on the MPI and performance on financial and quality metrics, and on ACO descriptive characteristics. Of the 847 ACOs that were contacted, 49 provided usable survey data. These ACOs rated their own system's ability to manage the quality and costs of optimizing medication use, providing a 64% and 31% affirmative response, respectively. Three ACOs achieved an overall MPI score of 8 or higher, 45 scored between 4 and 7.9, and 1 scored between 0 and 3.9. Using the 3 score groups, the study did not identify a relationship between MPI scores and achievement on financial or quality benchmarks, ACO provider type, member volume, date of ACO creation, or the presence of a pharmacist in a leadership position. Barriers to optimizing medication use relate to reimbursement for pharmacist integration, lack of health information technology interoperability, lack of data, feasibility issues, and physician buy

  19. [Optimization of radiological scoliosis assessment].

    PubMed

    Enríquez, Goya; Piqueras, Joaquim; Catalá, Ana; Oliva, Glòria; Ruiz, Agustí; Ribas, Montserrat; Duran, Carmina; Rodrigo, Carlos; Rodríguez, Eugenia; Garriga, Victoria; Maristany, Teresa; García-Fontecha, César; Baños, Joan; Muchart, Jordi; Alava, Fernando

    2014-07-01

    Most scoliosis are idiopathic (80%) and occur more frequently in adolescent girls. Plain radiography is the imaging method of choice, both for the initial study and follow-up studies but has the disadvantage of using ionizing radiation. The breasts are exposed to x-ray along these repeated examinations. The authors present a range of recommendations in order to optimize radiographic exam technique for both conventional and digital x-ray settings to prevent unnecessary patients' radiation exposure and to reduce the risk of breast cancer in patients with scoliosis. With analogue systems, leaded breast protectors should always be used, and with any radiographic equipment, analog or digital radiography, the examination should be performed in postero-anterior projection and optimized low-dose techniques. The ALARA (as low as reasonable achievable) rule should always be followed to achieve diagnostic quality images with the lowest feasible dose. Copyright © 2014. Published by Elsevier Espana.

  20. TU-AB-BRC-12: Optimized Parallel MonteCarlo Dose Calculations for Secondary MU Checks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, S; Nazareth, D; Bellor, M

    Purpose: Secondary MU checks are an important tool used during a physics review of a treatment plan. Commercial software packages offer varying degrees of theoretical dose calculation accuracy, depending on the modality involved. Dose calculations of VMAT plans are especially prone to error due to the large approximations involved. Monte Carlo (MC) methods are not commonly used due to their long run times. We investigated two methods to increase the computational efficiency of MC dose simulations with the BEAMnrc code. Distributed computing resources, along with optimized code compilation, will allow for accurate and efficient VMAT dose calculations. Methods: The BEAMnrcmore » package was installed on a high performance computing cluster accessible to our clinic. MATLAB and PYTHON scripts were developed to convert a clinical VMAT DICOM plan into BEAMnrc input files. The BEAMnrc installation was optimized by running the VMAT simulations through profiling tools which indicated the behavior of the constituent routines in the code, e.g. the bremsstrahlung splitting routine, and the specified random number generator. This information aided in determining the most efficient compiling parallel configuration for the specific CPU’s available on our cluster, resulting in the fastest VMAT simulation times. Our method was evaluated with calculations involving 10{sup 8} – 10{sup 9} particle histories which are sufficient to verify patient dose using VMAT. Results: Parallelization allowed the calculation of patient dose on the order of 10 – 15 hours with 100 parallel jobs. Due to the compiler optimization process, further speed increases of 23% were achieved when compared with the open-source compiler BEAMnrc packages. Conclusion: Analysis of the BEAMnrc code allowed us to optimize the compiler configuration for VMAT dose calculations. In future work, the optimized MC code, in conjunction with the parallel processing capabilities of BEAMnrc, will be applied to provide

  1. How to optimize the economic viability of thyroid surgery in a French public hospital?

    PubMed

    D'Hubert, E; Proske, J-M

    2010-08-01

    Physicians in France have been asked to change their day-to-day medical practice to reduce overall costs. We examine ways to achieve this goal in thyroid surgery. We defined and implemented a clinical pathway to optimize the economic viability of thyroid surgery by increasing revenues and lowering expenses. An increase in revenue was achieved by decreasing patient length of stay (LOS) through the use of a fast-track rehabilitation protocol. Expenses were decreased by performing all pre-operative work-up in the out-patient setting and by decreasing costs in the operating room. For 292 consecutive patients who underwent thyroidectomy, the average LOS has been decreased over time to a mean of 2.03 days in 2008; 96% of patients were discharged on the first postoperative day. These results were primarily achieved by using a fast-track rehabilitation clinical pathway, and no increase in postoperative morbidity was noted. Operating time was decreased by 20% through the use of a second surgical assistant and hemostatic scissors but this improvement did not translate into better daily utilization of the operating room. The economic profitability of thyroid surgery is improved when mean LOS is reduced to 2 days through a fast-track protocol. Decreasing the duration of hospitalization was more effective than decreasing operative duration in controlling overall costs. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  2. A Bayesian approach for incorporating economic factors in sample size design for clinical trials of individual drugs and portfolios of drugs.

    PubMed

    Patel, Nitin R; Ankolekar, Suresh

    2007-11-30

    Classical approaches to clinical trial design ignore economic factors that determine economic viability of a new drug. We address the choice of sample size in Phase III trials as a decision theory problem using a hybrid approach that takes a Bayesian view from the perspective of a drug company and a classical Neyman-Pearson view from the perspective of regulatory authorities. We incorporate relevant economic factors in the analysis to determine the optimal sample size to maximize the expected profit for the company. We extend the analysis to account for risk by using a 'satisficing' objective function that maximizes the chance of meeting a management-specified target level of profit. We extend the models for single drugs to a portfolio of clinical trials and optimize the sample sizes to maximize the expected profit subject to budget constraints. Further, we address the portfolio risk and optimize the sample sizes to maximize the probability of achieving a given target of expected profit.

  3. Optimal swimming of a sheet.

    PubMed

    Montenegro-Johnson, Thomas D; Lauga, Eric

    2014-06-01

    Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.

  4. Optimal neurocognitive, personality and behavioral measures for assessing impulsivity in cocaine dependence

    PubMed Central

    LoBue, Christian; Cullum, C. Munro; Braud, Jacqueline; Walker, Robrina; Winhusen, Theresa; Suderajan, Prabha; Adinoff, Bryon

    2015-01-01

    Background Impulsivity may underlie the poor treatment retention and high relapse rates observed in cocaine-dependent persons. However, observed differences in measures of impulsivity between cocaine-dependent and healthy control participants often do not reach clinical significance, suggesting that the clinical relevance of these differences may be limited. Objectives To examine which measures of impulsivity (i.e. self-report impulsivity, self-report personality, neurocognitive testing) best distinguish cocaine-dependent and healthy control participants (i.e. showing differences at least 1.5 standard deviations [SD] from controls). Optimal measures were considered to demonstrate sufficient classification accuracy. Methods Sixty-five recently abstinent cocaine-dependent and 25 healthy control participants were assessed using select neurocognitive tests and self-report questionnaires including the NEO Personality Inventory-Revised (NEO-PI-R), Temperament and Character Inventory (TCI), Barratt Impulsiveness Scale (BIS-11a), and the Frontal Systems Behavior Scale (FrSBe). Results When corrected for years of education and gender, neurocognitive measures did not demonstrate clinically significant differences between cocaine-dependent and control participants. The personality measures TCI Purposefulness and Congruent Second Nature and NEO-PI-R Impulsiveness, and the self-rating measures FrSBe Disinhibition and BIS-11 Motor Impulsivity and Total successfully identified clinically meaningful elevations in impulsivity within cocaine-dependent participants (>1.5 SDs from controls). Furthermore, these measures achieved 84–93% accuracy in discriminating cocaine-dependent from control participants. Conclusion Clinically significant neurocognitive impairment in cocaine-dependent participants was not observed in this sample. As the BIS-11 or FrSBe are brief to administer, accurate, and have been shown to predict treatment retention and relapse, these measures appear to be

  5. Expertise, Ethics Expertise, and Clinical Ethics Consultation: Achieving Terminological Clarity

    PubMed Central

    Iltis, Ana S.; Sheehan, Mark

    2016-01-01

    The language of ethics expertise has become particularly important in bioethics in light of efforts to establish the value of the clinical ethics consultation (CEC), to specify who is qualified to function as a clinical ethics consultant, and to characterize how one should evaluate whether or not a person is so qualified. Supporters and skeptics about the possibility of ethics expertise use the language of ethics expertise in ways that reflect competing views about what ethics expertise entails. We argue for clarity in understanding the nature of expertise and ethics expertise. To be an ethics expert, we argue, is to be an expert in knowing what ought to be done. Any attempt to articulate expertise with respect to knowing what ought to be done must include an account of ethics that specifies the nature of moral truth and the means by which we access this truth or a theoretical account of ethics such that expertise in another domain is linked to knowing or being better at judging what ought to be done and the standards by which this “knowing” or “being better at judging” is determined. We conclude with a discussion of the implications of our analysis for the literature on ethics expertise in CEC. We do think that there are clear domains in which a clinical ethics consultant might be expert but we are skeptical about the possibility that this includes ethics expertise. Clinical ethics consultants should not be referred to as ethics experts. PMID:27256848

  6. Noninvasive, automatic optimization strategy in cardiac resynchronization therapy.

    PubMed

    Reumann, Matthias; Osswald, Brigitte; Doessel, Olaf

    2007-07-01

    Optimization of cardiac resynchronization therapy (CRT) is still unsolved. It has been shown that optimal electrode position,atrioventricular (AV) and interventricular (VV) delays improve the success of CRT and reduce the number of non-responders. However, no automatic, noninvasive optimization strategy exists to date. Cardiac resynchronization therapy was simulated on the Visible Man and a patient data-set including fiber orientation and ventricular heterogeneity. A cellular automaton was used for fast computation of ventricular excitation. An AV block and a left bundle branch block were simulated with 100%, 80% and 60% interventricular conduction velocity. A right apical and 12 left ventricular lead positions were set. Sequential optimization and optimization with the downhill simplex algorithm (DSA) were carried out. The minimal error between isochrones of the physiologic excitation and the therapy was computed automatically and leads to an optimal lead position and timing. Up to 1512 simulations were carried out per pathology per patient. One simulation took 4 minutes on an Apple Macintosh 2 GHz PowerPC G5. For each electrode pair an optimal pacemaker delay was found. The DSA reduced the number of simulations by an order of magnitude and the AV-delay and VV - delay were determined with a much higher resolution. The findings are well comparable with clinical studies. The presented computer model of CRT automatically evaluates an optimal lead position and AV-delay and VV-delay, which can be used to noninvasively plan an optimal therapy for an individual patient. The application of the DSA reduces the simulation time so that the strategy is suitable for pre-operative planning in clinical routine. Future work will focus on clinical evaluation of the computer models and integration of patient data for individualized therapy planning and optimization.

  7. Functional and Structural Optimality in Plant Growth: A Crop Modelling Case Study

    NASA Astrophysics Data System (ADS)

    Caldararu, S.; Purves, D. W.; Smith, M. J.

    2014-12-01

    Simple mechanistic models of vegetation processes are essential both to our understanding of plant behaviour and to our ability to predict future changes in vegetation. One concept that can take us closer to such models is that of plant optimality, the hypothesis that plants aim to achieve an optimal state. Conceptually, plant optimality can be either structural or functional optimality. A structural constraint would mean that plants aim to achieve a certain structural characteristic such as an allometric relationship or nutrient content that allows optimal function. A functional condition refers to plants achieving optimal functionality, in most cases by maximising carbon gain. Functional optimality conditions are applied on shorter time scales and lead to higher plasticity, making plants more adaptable to changes in their environment. In contrast, structural constraints are optimal given the specific environmental conditions that plants are adapted to and offer less flexibility. We exemplify these concepts using a simple model of crop growth. The model represents annual cycles of growth from sowing date to harvest, including both vegetative and reproductive growth and phenology. Structural constraints to growth are represented as an optimal C:N ratio in all plant organs, which drives allocation throughout the vegetative growing stage. Reproductive phenology - i.e. the onset of flowering and grain filling - is determined by a functional optimality condition in the form of maximising final seed mass, so that vegetative growth stops when the plant reaches maximum nitrogen or carbon uptake. We investigate the plants' response to variations in environmental conditions within these two optimality constraints and show that final yield is most affected by changes during vegetative growth which affect the structural constraint.

  8. Codon Optimization of the Human Papillomavirus E7 Oncogene Induces a CD8+ T Cell Response to a Cryptic Epitope Not Harbored by Wild-Type E7

    PubMed Central

    Lorenz, Felix K. M.; Wilde, Susanne; Voigt, Katrin; Kieback, Elisa; Mosetter, Barbara; Schendel, Dolores J.; Uckert, Wolfgang

    2015-01-01

    Codon optimization of nucleotide sequences is a widely used method to achieve high levels of transgene expression for basic and clinical research. Until now, immunological side effects have not been described. To trigger T cell responses against human papillomavirus, we incubated T cells with dendritic cells that were pulsed with RNA encoding the codon-optimized E7 oncogene. All T cell receptors isolated from responding T cell clones recognized target cells expressing the codon-optimized E7 gene but not the wild type E7 sequence. Epitope mapping revealed recognition of a cryptic epitope from the +3 alternative reading frame of codon-optimized E7, which is not encoded by the wild type E7 sequence. The introduction of a stop codon into the +3 alternative reading frame protected the transgene product from recognition by T cell receptor gene-modified T cells. This is the first experimental study demonstrating that codon optimization can render a transgene artificially immunogenic through generation of a dominant cryptic epitope. This finding may be of great importance for the clinical field of gene therapy to avoid rejection of gene-corrected cells and for the design of DNA- and RNA-based vaccines, where codon optimization may artificially add a strong immunogenic component to the vaccine. PMID:25799237

  9. The Effect of Primary School Size on Academic Achievement

    ERIC Educational Resources Information Center

    Gershenson, Seth; Langbein, Laura

    2015-01-01

    Evidence on optimal school size is mixed. We estimate the effect of transitory changes in school size on the academic achievement of fourth-and fifth-grade students in North Carolina using student-level longitudinal administrative data. Estimates of value-added models that condition on school-specific linear time trends and a variety of…

  10. Compact MEMS-based adaptive optics: optical coherence tomography for clinical use

    NASA Astrophysics Data System (ADS)

    Chen, Diana C.; Olivier, Scot S.; Jones, Steven M.; Zawadzki, Robert J.; Evans, Julia W.; Choi, Stacey S.; Werner, John S.

    2008-02-01

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography (OCT) system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of limitations on current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in previous AO-OCT instruments. In this instrument, we incorporate an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminates the tedious process of using trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  11. Imbalanced target prediction with pattern discovery on clinical data repositories.

    PubMed

    Chan, Tak-Ming; Li, Yuxi; Chiau, Choo-Chiap; Zhu, Jane; Jiang, Jie; Huo, Yong

    2017-04-20

    Clinical data repositories (CDR) have great potential to improve outcome prediction and risk modeling. However, most clinical studies require careful study design, dedicated data collection efforts, and sophisticated modeling techniques before a hypothesis can be tested. We aim to bridge this gap, so that clinical domain users can perform first-hand prediction on existing repository data without complicated handling, and obtain insightful patterns of imbalanced targets for a formal study before it is conducted. We specifically target for interpretability for domain users where the model can be conveniently explained and applied in clinical practice. We propose an interpretable pattern model which is noise (missing) tolerant for practice data. To address the challenge of imbalanced targets of interest in clinical research, e.g., deaths less than a few percent, the geometric mean of sensitivity and specificity (G-mean) optimization criterion is employed, with which a simple but effective heuristic algorithm is developed. We compared pattern discovery to clinically interpretable methods on two retrospective clinical datasets. They contain 14.9% deaths in 1 year in the thoracic dataset and 9.1% deaths in the cardiac dataset, respectively. In spite of the imbalance challenge shown on other methods, pattern discovery consistently shows competitive cross-validated prediction performance. Compared to logistic regression, Naïve Bayes, and decision tree, pattern discovery achieves statistically significant (p-values < 0.01, Wilcoxon signed rank test) favorable averaged testing G-means and F1-scores (harmonic mean of precision and sensitivity). Without requiring sophisticated technical processing of data and tweaking, the prediction performance of pattern discovery is consistently comparable to the best achievable performance. Pattern discovery has demonstrated to be robust and valuable for target prediction on existing clinical data repositories with imbalance and

  12. Achieving Optimal Quantum Acceleration of Frequency Estimation Using Adaptive Coherent Control.

    PubMed

    Naghiloo, M; Jordan, A N; Murch, K W

    2017-11-03

    Precision measurements of frequency are critical to accurate time keeping and are fundamentally limited by quantum measurement uncertainties. While for time-independent quantum Hamiltonians the uncertainty of any parameter scales at best as 1/T, where T is the duration of the experiment, recent theoretical works have predicted that explicitly time-dependent Hamiltonians can yield a 1/T^{2} scaling of the uncertainty for an oscillation frequency. This quantum acceleration in precision requires coherent control, which is generally adaptive. We experimentally realize this quantum improvement in frequency sensitivity with superconducting circuits, using a single transmon qubit. With optimal control pulses, the theoretically ideal frequency precision scaling is reached for times shorter than the decoherence time. This result demonstrates a fundamental quantum advantage for frequency estimation.

  13. A concept analysis of optimality in perinatal health.

    PubMed

    Kennedy, Holly Powell

    2006-01-01

    This analysis was conducted to describe the concept of optimality and its appropriateness for perinatal health care. The concept was identified in 24 scientific disciplines. Across all disciplines, the universal definition of optimality is the robust, efficient, and cost-effective achievement of best possible outcomes within a rule-governed framework. Optimality, specifically defined for perinatal health care, is the maximal perinatal outcome with minimal intervention placed against the context of the woman's social, medical, and obstetric history.

  14. Pervious concrete mix optimization for sustainable pavement solution

    NASA Astrophysics Data System (ADS)

    Barišić, Ivana; Galić, Mario; Netinger Grubeša, Ivanka

    2017-10-01

    In order to fulfill requirements of sustainable road construction, new materials for pavement construction are investigated with the main goal to preserve natural resources and achieve energy savings. One of such sustainable pavement material is pervious concrete as a new solution for low volume pavements. To accommodate required strength and porosity as the measure of appropriate drainage capability, four mixtures of pervious concrete are investigated and results of laboratory tests of compressive and flexural strength and porosity are presented. For defining the optimal pervious concrete mixture in a view of aggregate and financial savings, optimization model is utilized and optimal mixtures defined according to required strength and porosity characteristics. Results of laboratory research showed that comparing single-sized aggregate pervious concrete mixtures, coarse aggregate mixture result in increased porosity but reduced strengths. The optimal share of the coarse aggregate turn to be 40.21%, the share of fine aggregate is 49.79% for achieving required compressive strength of 25 MPa, flexural strength of 4.31 MPa and porosity of 21.66%.

  15. A Technical Survey on Optimization of Processing Geo Distributed Data

    NASA Astrophysics Data System (ADS)

    Naga Malleswari, T. Y. J.; Ushasukhanya, S.; Nithyakalyani, A.; Girija, S.

    2018-04-01

    With growing cloud services and technology, there is growth in some geographically distributed data centers to store large amounts of data. Analysis of geo-distributed data is required in various services for data processing, storage of essential information, etc., processing this geo-distributed data and performing analytics on this data is a challenging task. The distributed data processing is accompanied by issues in storage, computation and communication. The key issues to be dealt with are time efficiency, cost minimization, utility maximization. This paper describes various optimization methods like end-to-end multiphase, G-MR, etc., using the techniques like Map-Reduce, CDS (Community Detection based Scheduling), ROUT, Workload-Aware Scheduling, SAGE, AMP (Ant Colony Optimization) to handle these issues. In this paper various optimization methods and techniques used are analyzed. It has been observed that end-to end multiphase achieves time efficiency; Cost minimization concentrates to achieve Quality of Service, Computation and reduction of Communication cost. SAGE achieves performance improvisation in processing geo-distributed data sets.

  16. Optimizing outcome after cardiac arrest.

    PubMed

    Nolan, Jerry P

    2011-10-01

    To discuss recent data relating to survival rates after cardiac arrest and interventions that can be used to optimize outcome. A recent analysis of 70 studies indicates that following out-of-hospital cardiac arrest (OHCA), 7.6% of patients will survive to hospital discharge (95% confidence interval 6.7-8.4). Following in-hospital cardiac arrest, 18% of patients will survive to hospital discharge. Survival may be optimized by increasing the rate of bystander cardiopulmonary resuscitation (CPR), which can be achieved by improving recognition of cardiac arrest, simplifying CPR and training more of the community. Feedback systems improve the quality of CPR but this has yet to be translated into improved outcome. One study has shown improved survival following OHCA with active compression-decompression CPR combined with an impedance-threshold device. In those who have no obvious extracardiac cause of OHCA, 70% have at least one significant coronary lesion demonstrable by coronary angiography. Although generally reserved for those with ST-elevation myocardial infarction, primary percutaneous coronary intervention may also benefit OHCA survivors with ECG patterns other than ST elevation. The term 'mild therapeutic hypothermia' has been replaced by the term 'targeted temperature management'; its role in optimizing outcome after cardiac arrest continues to be defined. In several centres, survival rates following OHCA are increasing. All links in the chain of survival must be optimized if a good-quality neurological outcome is to be achieved.

  17. Configuration optimization and experimental accuracy evaluation of a bone-attached, parallel robot for skull surgery.

    PubMed

    Kobler, Jan-Philipp; Nuelle, Kathrin; Lexow, G Jakob; Rau, Thomas S; Majdani, Omid; Kahrs, Lueder A; Kotlarski, Jens; Ortmaier, Tobias

    2016-03-01

    Minimally invasive cochlear implantation is a novel surgical technique which requires highly accurate guidance of a drilling tool along a trajectory from the mastoid surface toward the basal turn of the cochlea. The authors propose a passive, reconfigurable, parallel robot which can be directly attached to bone anchors implanted in a patient's skull, avoiding the need for surgical tracking systems. Prior to clinical trials, methods are necessary to patient specifically optimize the configuration of the mechanism with respect to accuracy and stability. Furthermore, the achievable accuracy has to be determined experimentally. A comprehensive error model of the proposed mechanism is established, taking into account all relevant error sources identified in previous studies. Two optimization criteria to exploit the given task redundancy and reconfigurability of the passive robot are derived from the model. The achievable accuracy of the optimized robot configurations is first estimated with the help of a Monte Carlo simulation approach and finally evaluated in drilling experiments using synthetic temporal bone specimen. Experimental results demonstrate that the bone-attached mechanism exhibits a mean targeting accuracy of [Formula: see text] mm under realistic conditions. A systematic targeting error is observed, which indicates that accurate identification of the passive robot's kinematic parameters could further reduce deviations from planned drill trajectories. The accuracy of the proposed mechanism demonstrates its suitability for minimally invasive cochlear implantation. Future work will focus on further evaluation experiments on temporal bone specimen.

  18. Review of design optimization methods for turbomachinery aerodynamics

    NASA Astrophysics Data System (ADS)

    Li, Zhihui; Zheng, Xinqian

    2017-08-01

    In today's competitive environment, new turbomachinery designs need to be not only more efficient, quieter, and ;greener; but also need to be developed at on much shorter time scales and at lower costs. A number of advanced optimization strategies have been developed to achieve these requirements. This paper reviews recent progress in turbomachinery design optimization to solve real-world aerodynamic problems, especially for compressors and turbines. This review covers the following topics that are important for optimizing turbomachinery designs. (1) optimization methods, (2) stochastic optimization combined with blade parameterization methods and the design of experiment methods, (3) gradient-based optimization methods for compressors and turbines and (4) data mining techniques for Pareto Fronts. We also present our own insights regarding the current research trends and the future optimization of turbomachinery designs.

  19. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    NASA Astrophysics Data System (ADS)

    Vinding, Mads S.; Laustsen, Christoffer; Maximov, Ivan I.; Søgaard, Lise Vejby; Ardenkjær-Larsen, Jan H.; Nielsen, Niels Chr.

    2013-02-01

    Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction. This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7 T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region-of-interest (ROI) single metabolite signals available for higher image resolution or single-peak spectra. The 2D spatial-selective rf pulses were designed using a novel Krotov-based optimal control approach capable of iteratively fast providing successful pulse sequences in the absence of qualified initial guesses. The technique may be important for early detection of abnormal metabolism, monitoring disease progression, and drug research.

  20. Optimizing dosing of oncology drugs.

    PubMed

    Minasian, L; Rosen, O; Auclair, D; Rahman, A; Pazdur, R; Schilsky, R L

    2014-11-01

    The purpose of this article is to acknowledge the challenges in optimizing the dosing of oncology drugs and to propose potential approaches to address these challenges in order to optimize effectiveness, minimize toxicity, and promote adherence in patients. These approaches could provide better opportunities to understand the sources of variability in drug exposure and clinical outcomes during the development and premarketing evaluation of investigational new drugs.

  1. Integrating epidemiology, psychology, and economics to achieve HPV vaccination targets.

    PubMed

    Basu, Sanjay; Chapman, Gretchen B; Galvani, Alison P

    2008-12-02

    Human papillomavirus (HPV) vaccines provide an opportunity to reduce the incidence of cervical cancer. Optimization of cervical cancer prevention programs requires anticipation of the degree to which the public will adhere to vaccination recommendations. To compare vaccination levels driven by public perceptions with levels that are optimal for maximizing the community's overall utility, we develop an epidemiological game-theoretic model of HPV vaccination. The model is parameterized with survey data on actual perceptions regarding cervical cancer, genital warts, and HPV vaccination collected from parents of vaccine-eligible children in the United States. The results suggest that perceptions of survey respondents generate vaccination levels far lower than those that maximize overall health-related utility for the population. Vaccination goals may be achieved by addressing concerns about vaccine risk, particularly those related to sexual activity among adolescent vaccine recipients. In addition, cost subsidizations and shifts in federal coverage plans may compensate for perceived and real costs of HPV vaccination to achieve public health vaccination targets.

  2. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms

    USDA-ARS?s Scientific Manuscript database

    It has been well established that individual organisms can acclimate and adapt to temperature change to optimize their performance (i.e., achieve thermal optimality). However, whether ecosystems with an assembly of organisms would also undergo thermal optimization has not been examined on a broader ...

  3. Robust plan optimization for electromagnetic transponder guided hypo-fractionated prostate treatment using volumetric modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Pengpeng; Hunt, Margie; Happersett, Laura; Yang, Jie; Zelefsky, Michael; Mageras, Gig

    2013-11-01

    To develop an optimization algorithm for volumetric modulated arc therapy which incorporates an electromagnetic tracking (EMT) guided gating strategy and is robust to residual intra-fractional motion uncertainties. In a computer simulation, intra-fractional motion traces from prior treatments with EMT were converted to a probability distribution function (PDF), truncated using a patient specific action volume that encloses allowed deviations from the planned position, and renormalized to yield a new PDF with EMT-gated interventions. In lieu of a conventional planning target volume (PTV), multiple instances of clinical target volume (CTV) and organs at risk (OARs) were replicated and displaced to extreme positions inside the action volume representing possible delivery scenarios. When optimizing the volumetric modulated arc therapy plan, doses to the CTV and OARs were calculated as a sum of doses to the replicas weighted by the PDF to account for motion. A treatment plan meeting the clinical constraints was produced and compared to the counterpart conventional margin (PTV) plan. EMT traces from a separate testing database served to simulate motion during gated delivery. Dosimetric end points extracted from dose accumulations for each motion trace were utilized to evaluate potential clinical benefit. Five prostate cases from a hypofractionated protocol (42.5 Gy in 5 fractions) were retrospectively investigated. The patient specific gating window resulted in tight anterior and inferior action levels (∼1 mm) to protect rectal wall and bladder wall, and resulted in an average of four beam interruptions per fraction in the simulation. The robust-optimized plans achieved the same average CTV D95 coverage of 40.5 Gy as the PTV-optimized plans, but with reduced patient-averaged rectum wall D1cc by 2.2 Gy (range 0.7 to 4.7 Gy) and bladder wall mean dose by 2.9 Gy (range 2.0 to 3.4 Gy). Integration of an intra-fractional motion management strategy into the robust

  4. Robust plan optimization for electromagnetic transponder guided hypo-fractionated prostate treatment using volumetric modulated arc therapy.

    PubMed

    Zhang, Pengpeng; Hunt, Margie; Happersett, Laura; Yang, Jie; Zelefsky, Michael; Mageras, Gig

    2013-11-07

    To develop an optimization algorithm for volumetric modulated arc therapy which incorporates an electromagnetic tracking (EMT) guided gating strategy and is robust to residual intra-fractional motion uncertainties. In a computer simulation, intra-fractional motion traces from prior treatments with EMT were converted to a probability distribution function (PDF), truncated using a patient specific action volume that encloses allowed deviations from the planned position, and renormalized to yield a new PDF with EMT-gated interventions. In lieu of a conventional planning target volume (PTV), multiple instances of clinical target volume (CTV) and organs at risk (OARs) were replicated and displaced to extreme positions inside the action volume representing possible delivery scenarios. When optimizing the volumetric modulated arc therapy plan, doses to the CTV and OARs were calculated as a sum of doses to the replicas weighted by the PDF to account for motion. A treatment plan meeting the clinical constraints was produced and compared to the counterpart conventional margin (PTV) plan. EMT traces from a separate testing database served to simulate motion during gated delivery. Dosimetric end points extracted from dose accumulations for each motion trace were utilized to evaluate potential clinical benefit. Five prostate cases from a hypofractionated protocol (42.5 Gy in 5 fractions) were retrospectively investigated. The patient specific gating window resulted in tight anterior and inferior action levels (~1 mm) to protect rectal wall and bladder wall, and resulted in an average of four beam interruptions per fraction in the simulation. The robust-optimized plans achieved the same average CTV D95 coverage of 40.5 Gy as the PTV-optimized plans, but with reduced patient-averaged rectum wall D1cc by 2.2 Gy (range 0.7 to 4.7 Gy) and bladder wall mean dose by 2.9 Gy (range 2.0 to 3.4 Gy). Integration of an intra-fractional motion management strategy into the robust optimization

  5. On optimization of energy harvesting from base-excited vibration

    NASA Astrophysics Data System (ADS)

    Tai, Wei-Che; Zuo, Lei

    2017-12-01

    This paper re-examines and clarifies the long-believed optimization conditions of electromagnetic and piezoelectric energy harvesting from base-excited vibration. In terms of electromagnetic energy harvesting, it is typically believed that the maximum power is achieved when the excitation frequency and electrical damping equal the natural frequency and mechanical damping of the mechanical system respectively. We will show that this optimization condition is only valid when the acceleration amplitude of base excitation is constant and an approximation for small mechanical damping when the excitation displacement amplitude is constant. To this end, a two-variable optimization analysis, involving the normalized excitation frequency and electrical damping ratio, is performed to derive the exact optimization condition of each case. When the excitation displacement amplitude is constant, we analytically show that, in contrast to the long-believed optimization condition, the optimal excitation frequency and electrical damping are always larger than the natural frequency and mechanical damping ratio respectively. In particular, when the mechanical damping ratio exceeds a critical value, the optimization condition is no longer valid. Instead, the average power generally increases as the excitation frequency and electrical damping ratio increase. Furthermore, the optimization analysis is extended to consider parasitic electrical losses, which also shows different results when compared with existing literature. When the excitation acceleration amplitude is constant, on the other hand, the exact optimization condition is identical to the long-believed one. In terms of piezoelectric energy harvesting, it is commonly believed that the optimal power efficiency is achieved when the excitation and the short or open circuit frequency of the harvester are equal. Via a similar two-variable optimization analysis, we analytically show that the optimal excitation frequency depends on the

  6. A Goal Programming Optimization Model for The Allocation of Liquid Steel Production

    NASA Astrophysics Data System (ADS)

    Hapsari, S. N.; Rosyidi, C. N.

    2018-03-01

    This research was conducted in one of the largest steel companies in Indonesia which has several production units and produces a wide range of steel products. One of the important products in the company is billet steel. The company has four Electric Arc Furnace (EAF) which produces liquid steel which must be procesed further to be billet steel. The billet steel plant needs to make their production process more efficient to increase the productvity. The management has four goals to be achieved and hence the optimal allocation of the liquid steel production is needed to achieve those goals. In this paper, a goal programming optimization model is developed to determine optimal allocation of liquid steel production in each EAF, to satisfy demand in 3 periods and the company goals, namely maximizing the volume of production, minimizing the cost of raw materials, minimizing maintenance costs, maximizing sales revenues, and maximizing production capacity. From the results of optimization, only maximizing production capacity goal can not achieve the target. However, the model developed in this papare can optimally allocate liquid steel so the allocation of production does not exceed the maximum capacity of the machine work hours and maximum production capacity.

  7. A practical globalization of one-shot optimization for optimal design of tokamak divertors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blommaert, Maarten, E-mail: maarten.blommaert@kuleuven.be; Dekeyser, Wouter; Baelmans, Martine

    In past studies, nested optimization methods were successfully applied to design of the magnetic divertor configuration in nuclear fusion reactors. In this paper, so-called one-shot optimization methods are pursued. Due to convergence issues, a globalization strategy for the one-shot solver is sought. Whereas Griewank introduced a globalization strategy using a doubly augmented Lagrangian function that includes primal and adjoint residuals, its practical usability is limited by the necessity of second order derivatives and expensive line search iterations. In this paper, a practical alternative is offered that avoids these drawbacks by using a regular augmented Lagrangian merit function that penalizes onlymore » state residuals. Additionally, robust rank-two Hessian estimation is achieved by adaptation of Powell's damped BFGS update rule. The application of the novel one-shot approach to magnetic divertor design is considered in detail. For this purpose, the approach is adapted to be complementary with practical in parts adjoint sensitivities. Using the globalization strategy, stable convergence of the one-shot approach is achieved.« less

  8. Optimizing hidden layer node number of BP network to estimate fetal weight

    NASA Astrophysics Data System (ADS)

    Su, Juan; Zou, Yuanwen; Lin, Jiangli; Wang, Tianfu; Li, Deyu; Xie, Tao

    2007-12-01

    The ultrasonic estimation of fetal weigh before delivery is of most significance for obstetrical clinic. Estimating fetal weight more accurately is crucial for prenatal care, obstetrical treatment, choosing appropriate delivery methods, monitoring fetal growth and reducing the risk of newborn complications. In this paper, we introduce a method which combines golden section and artificial neural network (ANN) to estimate the fetal weight. The golden section is employed to optimize the hidden layer node number of the back propagation (BP) neural network. The method greatly improves the accuracy of fetal weight estimation, and simultaneously avoids choosing the hidden layer node number with subjective experience. The estimation coincidence rate achieves 74.19%, and the mean absolute error is 185.83g.

  9. Using optimal combination of teaching-learning methods (open book assignment and group tutorials) as revision exercises to improve learning outcome in low achievers in biochemistry.

    PubMed

    Rajappa, Medha; Bobby, Zachariah; Nandeesha, H; Suryapriya, R; Ragul, Anithasri; Yuvaraj, B; Revathy, G; Priyadarssini, M

    2016-07-08

    Graduate medical students of India are taught Biochemistry by didactic lectures and they hardly get any opportunity to clarify their doubts and reinforce the concepts which they learn in these lectures. We used a combination of teaching-learning (T-L) methods (open book assignment followed by group tutorials) to study their efficacy in improving the learning outcome. About 143 graduate medical students were classified into low (<50%: group 1, n = 23), medium (50-75%: group 2, n = 74), and high (>75%: group 3, n = 46) achievers, based on their internal assessment marks. After the regular teaching module on the topics "Vitamins and Enzymology", all the students attempted an open book assignment without peer consultation. Then all the students participated in group tutorials. The effects on the groups were evaluated by pre and posttests at the end of each phase, with the same set of MCQs. Gain from group tutorials and overall gain was significantly higher in the low achievers, compared to other groups. High and medium achievers obtained more gain from open book assignment, than group tutorials. The overall gain was significantly higher than the gain obtained from open book assignment or group tutorials, in all three groups. All the three groups retained the gain even after 1 week of the exercise. Hence, optimal use of novel T-L methods (open book assignment followed by group tutorials) as revision exercises help in strengthening concepts in Biochemistry in this oft neglected group of low achievers in graduate medical education. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(4):321-325, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  10. Optimizing the wireless power transfer over MIMO Channels

    NASA Astrophysics Data System (ADS)

    Wiedmann, Karsten; Weber, Tobias

    2017-09-01

    In this paper, the optimization of the power transfer over wireless channels having multiple-inputs and multiple-outputs (MIMO) is studied. Therefore, the transmitter, the receiver and the MIMO channel are modeled as multiports. The power transfer efficiency is described by a Rayleigh quotient, which is a function of the channel's scattering parameters and the incident waves from both transmitter and receiver side. This way, the power transfer efficiency can be maximized analytically by solving a generalized eigenvalue problem, which is deduced from the Rayleigh quotient. As a result, the maximum power transfer efficiency achievable over a given MIMO channel is obtained. This maximum can be used as a performance bound in order to benchmark wireless power transfer systems. Furthermore, the optimal operating point which achieves this maximum will be obtained. The optimal operating point will be described by the complex amplitudes of the optimal incident and reflected waves of the MIMO channel. This supports the design of the optimal transmitter and receiver multiports. The proposed method applies for arbitrary MIMO channels, taking transmitter-side and/or receiver-side cross-couplings in both near- and farfield scenarios into consideration. Special cases are briefly discussed in this paper in order to illustrate the method.

  11. Markerless motion estimation for motion-compensated clinical brain imaging

    NASA Astrophysics Data System (ADS)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (<2 mm discrepancy against a benchmarking system) on an ethnically diverse range of subjects and, moreover, exhibits lower jitter and estimation of motion over a greater range than some marker-based methods. Our optimization tests indicate that the basic pose estimation algorithm is very robust but generally benefits from rudimentary background masking. Further marginal gains in accuracy can be achieved by accounting for non-rigid motion of features. Efficiency gains can be achieved by capping the number of features used for pose estimation provided that these features adequately sample the range of head motion encountered in the study. These proof-of-principle data suggest that markerless motion tracking is amenable to motion-compensated brain imaging and holds

  12. SU-F-J-105: Towards a Novel Treatment Planning Pipeline Delivering Pareto- Optimal Plans While Enabling Inter- and Intrafraction Plan Adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontaxis, C; Bol, G; Lagendijk, J

    2016-06-15

    Purpose: To develop a new IMRT treatment planning methodology suitable for the new generation of MR-linear accelerator machines. The pipeline is able to deliver Pareto-optimal plans and can be utilized for conventional treatments as well as for inter- and intrafraction plan adaptation based on real-time MR-data. Methods: A Pareto-optimal plan is generated using the automated multicriterial optimization approach Erasmus-iCycle. The resulting dose distribution is used as input to the second part of the pipeline, an iterative process which generates deliverable segments that target the latest anatomical state and gradually converges to the prescribed dose. This process continues until a certainmore » percentage of the dose has been delivered. Under a conventional treatment, a Segment Weight Optimization (SWO) is then performed to ensure convergence to the prescribed dose. In the case of inter- and intrafraction adaptation, post-processing steps like SWO cannot be employed due to the changing anatomy. This is instead addressed by transferring the missing/excess dose to the input of the subsequent fraction. In this work, the resulting plans were delivered on a Delta4 phantom as a final Quality Assurance test. Results: A conventional static SWO IMRT plan was generated for two prostate cases. The sequencer faithfully reproduced the input dose for all volumes of interest. For the two cases the mean relative dose difference of the PTV between the ideal input and sequenced dose was 0.1% and −0.02% respectively. Both plans were delivered on a Delta4 phantom and passed the clinical Quality Assurance procedures by achieving 100% pass rate at a 3%/3mm gamma analysis. Conclusion: We have developed a new sequencing methodology capable of online plan adaptation. In this work, we extended the pipeline to support Pareto-optimal input and clinically validated that it can accurately achieve these ideal distributions, while its flexible design enables inter- and intrafraction plan

  13. The first pharmacist-managed anticoagulation clinic under a collaborative practice agreement in Qatar: clinical and patient-oriented outcomes.

    PubMed

    Elewa, H F; AbdelSamad, O; Elmubark, A E; Al-Taweel, H M; Mohamed, A; Kheir, N; Mohamed Ibrahim, M I; Awaisu, A

    2016-08-01

    Optimal outpatient anticoagulation management requires a systematic and coordinated approach. Extensive evidence regarding the benefits of pharmacist-managed anticoagulation services has been reported in the literature. The quality and outcomes associated with pharmacist-managed anticoagulation clinics under collaborative practice agreements in the Middle East have rarely been reported. The first pharmacist-managed ambulatory anticoagulation clinic in Qatar was launched at Al-Wakrah Hospital in March 2013. The objectives of this study were to: (i) describe the practice model of the clinic, (ii) evaluate the quality of the clinic [i.e. the time in therapeutic range (TTR)] and the clinical outcomes (i.e. the efficacy and safety), and (iii) determine the patients' satisfaction and overall quality of life (QoL). Clinical outcome data were collected through a retrospective chart review of all patients managed from March 2013 to October 2014 at the pharmacist-managed anticoagulation clinic. Furthermore, the patient-oriented outcomes data were prospectively collected using the 24-item Duke Anticoagulation Satisfaction Scale (DASS). Each item was assessed using a 7-point Likert-type scale on which lower scores indicated better QoL and greater satisfaction. The clinical outcome data analyses included 119 patients who were enrolled at the clinic during the 19-month study period. The mean number of international normalized ratio (INR) tests/month was 65 ± 9, the average testing frequency was 2·7 ± 1·6 weeks, and the average %TTR was 76·8 ± 22·9%. There was one major bleeding event (0·67%/year), 12 minor bleeding events (8%/year) and two thromboembolic events (1·35%/year) recorded during the study period. Of the 119 patients, 50 participated in the satisfaction and QoL survey. The median (IQR) total QoL score of these subjects was 63 (48) (minimum-maximum achievable score: 24-168). Seventy-six per cent of the patients indicated 'a lot to very much' in terms of their

  14. Construction Performance Optimization toward Green Building Premium Cost Based on Greenship Rating Tools Assessment with Value Engineering Method

    NASA Astrophysics Data System (ADS)

    Latief, Yusuf; Berawi, Mohammed Ali; Basten, Van; Riswanto; Budiman, Rachmat

    2017-07-01

    Green building concept becomes important in current building life cycle to mitigate environment issues. The purpose of this paper is to optimize building construction performance towards green building premium cost, achieving green building rating tools with optimizing life cycle cost. Therefore, this study helps building stakeholder determining building fixture to achieve green building certification target. Empirically the paper collects data of green building in the Indonesian construction industry such as green building fixture, initial cost, operational and maintenance cost, and certification score achievement. After that, using value engineering method optimized green building fixture based on building function and cost aspects. Findings indicate that construction performance optimization affected green building achievement with increasing energy and water efficiency factors and life cycle cost effectively especially chosen green building fixture.

  15. Thermally-Constrained Fuel-Optimal ISS Maneuvers

    NASA Technical Reports Server (NTRS)

    Bhatt, Sagar; Svecz, Andrew; Alaniz, Abran; Jang, Jiann-Woei; Nguyen, Louis; Spanos, Pol

    2015-01-01

    Optimal Propellant Maneuvers (OPMs) are now being used to rotate the International Space Station (ISS) and have saved hundreds of kilograms of propellant over the last two years. The savings are achieved by commanding the ISS to follow a pre-planned attitude trajectory optimized to take advantage of environmental torques. The trajectory is obtained by solving an optimal control problem. Prior to use on orbit, OPM trajectories are screened to ensure a static sun vector (SSV) does not occur during the maneuver. The SSV is an indicator that the ISS hardware temperatures may exceed thermal limits, causing damage to the components. In this paper, thermally-constrained fuel-optimal trajectories are presented that avoid an SSV and can be used throughout the year while still reducing propellant consumption significantly.

  16. Joint optimization of source, mask, and pupil in optical lithography

    NASA Astrophysics Data System (ADS)

    Li, Jia; Lam, Edmund Y.

    2014-03-01

    Mask topography effects need to be taken into consideration for more advanced resolution enhancement techniques in optical lithography. However, rigorous 3D mask model achieves high accuracy at a large computational cost. This work develops a combined source, mask and pupil optimization (SMPO) approach by taking advantage of the fact that pupil phase manipulation is capable of partially compensating for mask topography effects. We first design the pupil wavefront function by incorporating primary and secondary spherical aberration through the coefficients of the Zernike polynomials, and achieve optimal source-mask pair under the condition of aberrated pupil. Evaluations against conventional source mask optimization (SMO) without incorporating pupil aberrations show that SMPO provides improved performance in terms of pattern fidelity and process window sizes.

  17. In what ways do communities support optimal antiretroviral treatment in Zimbabwe?

    PubMed

    Scott, K; Campbell, C; Madanhire, C; Skovdal, M; Nyamukapa, C; Gregson, S

    2014-12-01

    Little research has been conducted on how pre-existing indigenous community resources, especially social networks, affect the success of externally imposed HIV interventions. Antiretroviral treatment (ART), an externally initiated biomedical intervention, is being rolled out across sub-Saharan Africa. Understanding the ways in which community networks are working to facilitate optimal ART access and adherence will enable policymakers to better engage with and bolster these pre-existing resources. We conducted 67 interviews and eight focus group discussions with 127 people from three key population groups in Manicaland, eastern Zimbabwe: healthcare workers, adults on ART and carers of children on ART. We also observed over 100 h of HIV treatment sites at local clinics and hospitals. Our research sought to determine how indigenous resources were enabling people to achieve optimal ART access and adherence. We analysed data transcripts using thematic network technique, coding references to supportive community networks that enable local people to achieve ART access and adherence. People on ART or carers of children on ART in Zimbabwe report drawing support from a variety of social networks that enable them to overcome many obstacles to adherence. Key support networks include: HIV groups; food and income support networks; home-based care, church and women's groups; family networks; and relationships with healthcare providers. More attention to the community context in which HIV initiatives occur will help ensure that interventions work with and benefit from pre-existing social capital. © The Author (2013). Published by Oxford University Press.

  18. In what ways do communities support optimal antiretroviral treatment in Zimbabwe?

    PubMed Central

    Scott, K.; Campbell, C.; Madanhire, C.; Skovdal, M.; Nyamukapa, C.; Gregson, S.

    2014-01-01

    Little research has been conducted on how pre-existing indigenous community resources, especially social networks, affect the success of externally imposed HIV interventions. Antiretroviral treatment (ART), an externally initiated biomedical intervention, is being rolled out across sub-Saharan Africa. Understanding the ways in which community networks are working to facilitate optimal ART access and adherence will enable policymakers to better engage with and bolster these pre-existing resources. We conducted 67 interviews and eight focus group discussions with 127 people from three key population groups in Manicaland, eastern Zimbabwe: healthcare workers, adults on ART and carers of children on ART. We also observed over 100 h of HIV treatment sites at local clinics and hospitals. Our research sought to determine how indigenous resources were enabling people to achieve optimal ART access and adherence. We analysed data transcripts using thematic network technique, coding references to supportive community networks that enable local people to achieve ART access and adherence. People on ART or carers of children on ART in Zimbabwe report drawing support from a variety of social networks that enable them to overcome many obstacles to adherence. Key support networks include: HIV groups; food and income support networks; home-based care, church and women's groups; family networks; and relationships with healthcare providers. More attention to the community context in which HIV initiatives occur will help ensure that interventions work with and benefit from pre-existing social capital. PMID:23503291

  19. Optimal design of reverse osmosis module networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maskan, F.; Wiley, D.E.; Johnston, L.P.M.

    2000-05-01

    The structure of individual reverse osmosis modules, the configuration of the module network, and the operating conditions were optimized for seawater and brackish water desalination. The system model included simple mathematical equations to predict the performance of the reverse osmosis modules. The optimization problem was formulated as a constrained multivariable nonlinear optimization. The objective function was the annual profit for the system, consisting of the profit obtained from the permeate, capital cost for the process units, and operating costs associated with energy consumption and maintenance. Optimization of several dual-stage reverse osmosis systems were investigated and compared. It was found thatmore » optimal network designs are the ones that produce the most permeate. It may be possible to achieve economic improvements by refining current membrane module designs and their operating pressures.« less

  20. Analysis and optimization of hybrid electric vehicle thermal management systems

    NASA Astrophysics Data System (ADS)

    Hamut, H. S.; Dincer, I.; Naterer, G. F.

    2014-02-01

    In this study, the thermal management system of a hybrid electric vehicle is optimized using single and multi-objective evolutionary algorithms in order to maximize the exergy efficiency and minimize the cost and environmental impact of the system. The objective functions are defined and decision variables, along with their respective system constraints, are selected for the analysis. In the multi-objective optimization, a Pareto frontier is obtained and a single desirable optimal solution is selected based on LINMAP decision-making process. The corresponding solutions are compared against the exergetic, exergoeconomic and exergoenvironmental single objective optimization results. The results show that the exergy efficiency, total cost rate and environmental impact rate for the baseline system are determined to be 0.29, ¢28 h-1 and 77.3 mPts h-1 respectively. Moreover, based on the exergoeconomic optimization, 14% higher exergy efficiency and 5% lower cost can be achieved, compared to baseline parameters at an expense of a 14% increase in the environmental impact. Based on the exergoenvironmental optimization, a 13% higher exergy efficiency and 5% lower environmental impact can be achieved at the expense of a 27% increase in the total cost.

  1. A hybrid multi-objective evolutionary algorithm for wind-turbine blade optimization

    NASA Astrophysics Data System (ADS)

    Sessarego, M.; Dixon, K. R.; Rival, D. E.; Wood, D. H.

    2015-08-01

    A concurrent-hybrid non-dominated sorting genetic algorithm (hybrid NSGA-II) has been developed and applied to the simultaneous optimization of the annual energy production, flapwise root-bending moment and mass of the NREL 5 MW wind-turbine blade. By hybridizing a multi-objective evolutionary algorithm (MOEA) with gradient-based local search, it is believed that the optimal set of blade designs could be achieved in lower computational cost than for a conventional MOEA. To measure the convergence between the hybrid and non-hybrid NSGA-II on a wind-turbine blade optimization problem, a computationally intensive case was performed using the non-hybrid NSGA-II. From this particular case, a three-dimensional surface representing the optimal trade-off between the annual energy production, flapwise root-bending moment and blade mass was achieved. The inclusion of local gradients in the blade optimization, however, shows no improvement in the convergence for this three-objective problem.

  2. Parallel Aircraft Trajectory Optimization with Analytic Derivatives

    NASA Technical Reports Server (NTRS)

    Falck, Robert D.; Gray, Justin S.; Naylor, Bret

    2016-01-01

    Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging aircraft technologies have introduced new demands on trajectory analysis that current tools are not well suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing wings requires consideration of the operational behavior as well as the physical design characteristics of the aircraft. The addition of operational variables can dramatically increase the number of design variables which motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization framework. This collocation method uses an implicit time integration scheme that provides a high degree of sparsity and thus several potential options for parallelization. The performance of the new implementation was investigated via a series of single and multi-trajectory optimizations using a combination of parallel computing and constraint aggregation. The computational performance results show that in order to take full advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and the derivative computations themselves. The constraint aggregation results showed a significant numerical challenge due to difficulty in achieving tight convergence tolerances. Overall, the results demonstrate the value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future application of this collocation based method to the design of aircraft with where operational scheduling of technologies is key to achieving good performance.

  3. Role of semantic paradigms for optimization of language mapping in clinical FMRI studies.

    PubMed

    Zacà, D; Jarso, S; Pillai, J J

    2013-10-01

    The optimal paradigm choice for language mapping in clinical fMRI studies is challenging due to the variability in activation among different paradigms, the contribution to activation of cognitive processes other than language, and the difficulties in monitoring patient performance. In this study, we compared language localization and lateralization between 2 commonly used clinical language paradigms and 3 newly designed dual-choice semantic paradigms to define a streamlined and adequate language-mapping protocol. Twelve healthy volunteers performed 5 language paradigms: Silent Word Generation, Sentence Completion, Visual Antonym Pair, Auditory Antonym Pair, and Noun-Verb Association. Group analysis was performed to assess statistically significant differences in fMRI percentage signal change and lateralization index among these paradigms in 5 ROIs: inferior frontal gyrus, superior frontal gyrus, middle frontal gyrus for expressive language activation, middle temporal gyrus, and superior temporal gyrus for receptive language activation. In the expressive ROIs, Silent Word Generation was the most robust and best lateralizing paradigm (greater percentage signal change and lateralization index than semantic paradigms at P < .01 and P < .05 levels, respectively). In the receptive region of interest, Sentence Completion and Noun-Verb Association were the most robust activators (greater percentage signal change than other paradigms, P < .01). All except Auditory Antonym Pair were good lateralizing tasks (the lateralization index was significantly lower than other paradigms, P < .05). The combination of Silent Word Generation and ≥1 visual semantic paradigm, such as Sentence Completion and Noun-Verb Association, is adequate to determine language localization and lateralization; Noun-Verb Association has the additional advantage of objective monitoring of patient performance.

  4. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation†

    PubMed Central

    Kamaly, Nazila; Xiao, Zeyu; Valencia, Pedro M.; Radovic-Moreno, Aleksandar F.; Farokhzad, Omid C.

    2013-01-01

    Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development

  5. Application of Boiler Op for combustion optimization at PEPCO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maines, P.; Williams, S.; Levy, E.

    1997-09-01

    Title IV requires the reduction of NOx at all stations within the PEPCO system. To assist PEPCO plant personnel in achieving low heat rates while meeting NOx targets, Lehigh University`s Energy Research Center and PEPCO developed a new combustion optimization software package called Boiler Op. The Boiler Op code contains an expert system, neural networks and an optimization algorithm. The expert system guides the plant engineer through a series of parametric boiler tests, required for the development of a comprehensive boiler database. The data are then analyzed by the neural networks and optimization algorithm to provide results on the boilermore » control settings which result in the best possible heat rate at a target NOx level or produce minimum NOx. Boiler Op has been used at both Potomac River and Morgantown Stations to help PEPCO engineers optimize combustion. With the use of Boiler Op, Morgantown Station operates under low NOx restrictions and continues to achieve record heat rate values, similar to pre-retrofit conditions. Potomac River Station achieves the regulatory NOx limit through the use of Boiler Op recommended control settings and without NOx burners. Importantly, any software like Boiler Op cannot be used alone. Its application must be in concert with human intelligence to ensure unit safety, reliability and accurate data collection.« less

  6. Real-time trajectory optimization on parallel processors

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    1993-01-01

    A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.

  7. Rationale and Design of the Randomized Evaluation of an Ambulatory Care Pharmacist-Led Intervention to Optimize Urate Lowering Pathways (RAmP-UP) Study

    PubMed Central

    Coburn, Brian W; Cheetham, T Craig; Rashid, Nazia; Chang, John M; Levy, Gerald D; Kerimian, Artak; Low, Kimberly J; Redden, David T; Bridges, S Louis; Saag, Kenneth G; Curtis, Jeffrey R; Mikuls, Ted R

    2016-01-01

    Background Despite the availability of effective therapies, most gout patients achieve suboptimal treatment outcomes. Current best practices suggest gradual dose-escalation of urate lowering therapy and serial serum urate (sUA) measurement to achieve sUA < 6.0 mg/dl. However, this strategy is not routinely used. Here we present the study design rationale and development for a pharmacist-led intervention to promote sUA goal attainment. Methods To overcome barriers in achieving optimal outcomes, we planned and implemented the Randomized Evaluation of an Ambulatory Care Pharmacist-Led Intervention to Optimize Urate Lowering Pathways (RAmP-UP) study. This is a large pragmatic cluster-randomized trial designed to assess a highly automated, pharmacist-led intervention to optimize allopurinol treatment in gout. Ambulatory clinics (n=101) from a large health system were randomized to deliver either the pharmacist-led intervention or usual care to gout patients over the age of 18 years newly initiating allopurinol. All participants received educational materials and could opt-out of the study. For intervention sites, pharmacists conducted outreach primarily via an automated telephone interactive voice recognition system. The outreach, guided by a gout care algorithm developed for this study, systematically promoted adherence assessment, facilitated sUA testing, provided education, and adjusted allopurinol dosing. The primary study outcomes are achievement of sUA < 6.0 mg/dl and treatment adherence determined after one year. With follow-up ongoing, study results will be reported subsequently. Conclusion Ambulatory care pharmacists and automated calling technology represent potentially important, underutilized resources for improving health outcomes for gout patients. PMID:27449546

  8. Rationale and design of the randomized evaluation of an Ambulatory Care Pharmacist-Led Intervention to Optimize Urate Lowering Pathways (RAmP-UP) Study.

    PubMed

    Coburn, Brian W; Cheetham, T Craig; Rashid, Nazia; Chang, John M; Levy, Gerald D; Kerimian, Artak; Low, Kimberly J; Redden, David T; Bridges, S Louis; Saag, Kenneth G; Curtis, Jeffrey R; Mikuls, Ted R

    2016-09-01

    Despite the availability of effective therapies, most gout patients achieve suboptimal treatment outcomes. Current best practices suggest gradual dose-escalation of urate lowering therapy and serial serum urate (sUA) measurement to achieve sUA<6.0mg/dl. However, this strategy is not routinely used. Here we present the study design rationale and development for a pharmacist-led intervention to promote sUA goal attainment. To overcome barriers in achieving optimal outcomes, we planned and implemented the Randomized Evaluation of an Ambulatory Care Pharmacist-Led Intervention to Optimize Urate Lowering Pathways (RAmP-UP) study. This is a large pragmatic cluster-randomized trial designed to assess a highly automated, pharmacist-led intervention to optimize allopurinol treatment in gout. Ambulatory clinics (n=101) from a large health system were randomized to deliver either the pharmacist-led intervention or usual care to gout patients over the age of 18years newly initiating allopurinol. All participants received educational materials and could opt-out of the study. For intervention sites, pharmacists conducted outreach primarily via an automated telephone interactive voice recognition system. The outreach, guided by a gout care algorithm developed for this study, systematically promoted adherence assessment, facilitated sUA testing, provided education, and adjusted allopurinol dosing. The primary study outcomes are achievement of sUA<6.0mg/dl and treatment adherence determined after one year. With follow-up ongoing, study results will be reported subsequently. Ambulatory care pharmacists and automated calling technology represent potentially important, underutilized resources for improving health outcomes for gout patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Non-Hodgkin's lymphomas: clinical governance issues.

    PubMed

    Fields, P A; Goldstone, A H

    2002-09-01

    Every patient in every part of the world has the right to expect the best possible quality of care from health care providers. Non-Hodgkin's lymphomas (NHL) are an extremely heterogeneous group of conditions which require important decisions to be taken at many points along the treatment pathway. To get this right every time requires that high-quality standards are instituted and adhered to, so that the best possible outcome is achieved. In the past this has not always been the case because of the failure of clinicians sometimes to adhere to an optimal management plan. In 1995, the UK government commissioned an inquiry into the running of cancer services in the United Kingdom, which culminated in a series of recommendations to improve them. Subsequently, these recommendations were implemented as objectives of the NHS Cancer Plan which is the framework by which the UK government wishes to improve cancer services. Concurrently another general concept has emerged which is designed to ensure that the highest quality standards may be achieved for all patients across the whole National Health Service (NHS). This concept, termed 'clinical governance', brings together a corporate responsibility of all health care workers to deliver high quality standards, in the hope that this will translate into better long-term survival of patients with malignant disease. This chapter focuses on the issues surrounding clinical governance and how the principles of this concept relate to non-Hodgkin's lymphomas.

  10. Multiple anatomy optimization of accumulated dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, W. Tyler, E-mail: watkinswt@virginia.edu; Siebers, Jeffrey V.; Moore, Joseph A.

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dosemore » variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.« less

  11. Use of a channelized Hotelling observer to assess CT image quality and optimize dose reduction for iteratively reconstructed images.

    PubMed

    Favazza, Christopher P; Ferrero, Andrea; Yu, Lifeng; Leng, Shuai; McMillan, Kyle L; McCollough, Cynthia H

    2017-07-01

    The use of iterative reconstruction (IR) algorithms in CT generally decreases image noise and enables dose reduction. However, the amount of dose reduction possible using IR without sacrificing diagnostic performance is difficult to assess with conventional image quality metrics. Through this investigation, achievable dose reduction using a commercially available IR algorithm without loss of low contrast spatial resolution was determined with a channelized Hotelling observer (CHO) model and used to optimize a clinical abdomen/pelvis exam protocol. A phantom containing 21 low contrast disks-three different contrast levels and seven different diameters-was imaged at different dose levels. Images were created with filtered backprojection (FBP) and IR. The CHO was tasked with detecting the low contrast disks. CHO performance indicated dose could be reduced by 22% to 25% without compromising low contrast detectability (as compared to full-dose FBP images) whereas 50% or more dose reduction significantly reduced detection performance. Importantly, default settings for the scanner and protocol investigated reduced dose by upward of 75%. Subsequently, CHO-based protocol changes to the default protocol yielded images of higher quality and doses more consistent with values from a larger, dose-optimized scanner fleet. CHO assessment provided objective data to successfully optimize a clinical CT acquisition protocol.

  12. A generalized concept of power helped to choose optimal endpoints in clinical trials.

    PubMed

    Borm, George F; van der Wilt, Gert J; Kremer, Jan A M; Zielhuis, Gerhard A

    2007-04-01

    A clinical trial may have multiple objectives. Sometimes the results for several parameters may need to be significant or meet certain other criteria. In such cases, it is important to evaluate the probability that all these objectives will be met, rather than the probability that each will be met. The purpose of this article is to introduce a definition of power that is tailored to handle this situation and that is helpful for the design of such trials. We introduce a generalized concept of power. It can handle complex situations, for example, in which there is a logical combination of partial objectives. These may be formulated not only in terms of statistical tests and of confidence intervals, but also in nonstatistical terms, such as "selecting the optimal by dose." The power of a trial was calculated for various objectives and combinations of objectives. The generalized concept of power may lead to power calculations that closely match the objectives of the trial and contribute to choosing more efficient endpoints and designs.

  13. Automatic CT simulation optimization for radiation therapy: A general strategy.

    PubMed

    Li, Hua; Yu, Lifeng; Anastasio, Mark A; Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M; Low, Daniel A; Mutic, Sasa

    2014-03-01

    In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube potentials for patient sizes

  14. Within-Teacher Variation of Causal Attributions of Low Achieving Students

    ERIC Educational Resources Information Center

    Jager, Lieke; Denessen, Eddie

    2015-01-01

    In teacher research, causal attributions of low achievement have been proven to be predictive of teachers' efforts to provide optimal learning contexts for all students. In most studies, however, attributions have been studied as a between-teacher variable rather than a within-teacher variable assuming that teachers' responses to low achievement…

  15. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D; Olivier, S; Jones, S

    2008-02-04

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of themore » trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.« less

  16. CLINICALLY SIGNIFICANT PSYCHOTROPIC DRUG-DRUG INTERACTIONS IN THE PRIMARY CARE SETTING

    PubMed Central

    English, Brett A.; Dortch, Marcus; Ereshefsky, Larry; Jhee, Stanford

    2014-01-01

    In recent years, the growing numbers of patients seeking care for a wide range of psychiatric illnesses in the primary care setting has resulted in an increase in the number of psychotropic medications prescribed. Along with the increased utilization of psychotropic medications, considerable variability is noted in the prescribing patterns of primary care providers and psychiatrists. Because psychiatric patients also suffer from a number of additional medical comorbidities, the increased utilization of psychotropic medications presents an elevated risk of clinically significant drug interactions in these patients. While life-threatening drug interactions are rare, clinically significant drug interactions impacting drug response or appearance of serious adverse drug reactions have been documented and can impact long-term outcomes. Additionally, the impact of genetic variability on the psychotropic drug’s pharmacodynamics and/or pharmacokinetics may further complicate drug therapy. Increased awareness of clinically relevant psychotropic drug interactions can aid clinicians to achieve optimal therapeutic outcomes in patients in the primary care setting. PMID:22707017

  17. Teaching clinical reasoning: case-based and coached.

    PubMed

    Kassirer, Jerome P

    2010-07-01

    Optimal medical care is critically dependent on clinicians' skills to make the right diagnosis and to recommend the most appropriate therapy, and acquiring such reasoning skills is a key requirement at every level of medical education. Teaching clinical reasoning is grounded in several fundamental principles of educational theory. Adult learning theory posits that learning is best accomplished by repeated, deliberate exposure to real cases, that case examples should be selected for their reflection of multiple aspects of clinical reasoning, and that the participation of a coach augments the value of an educational experience. The theory proposes that memory of clinical medicine and clinical reasoning strategies is enhanced when errors in information, judgment, and reasoning are immediately pointed out and discussed. Rather than using cases artificially constructed from memory, real cases are greatly preferred because they often reflect the false leads, the polymorphisms of actual clinical material, and the misleading test results encountered in everyday practice. These concepts foster the teaching and learning of the diagnostic process, the complex trade-offs between the benefits and risks of diagnostic tests and treatments, and cognitive errors in clinical reasoning. The teaching of clinical reasoning need not and should not be delayed until students gain a full understanding of anatomy and pathophysiology. Concepts such as hypothesis generation, pattern recognition, context formulation, diagnostic test interpretation, differential diagnosis, and diagnostic verification provide both the language and the methods of clinical problem solving. Expertise is attainable even though the precise mechanisms of achieving it are not known.

  18. Effective Utilization of Oral Hypoglycemic Agents to Achieve Individualized HbA1c Targets in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Bannister, Margaret; Berlanga, Jenny

    2016-09-01

    Type 2 diabetes is a progressive condition that may require the combination of three oral treatments to achieve optimal glycemic management to prevent microvascular and macrovascular complications whilst minimizing the risk of acute complications and side effects or adverse reactions to treatments. With the widening availability of treatment options and increasing importance of individualized treatment pathways, including personalized HbA1c targets, this article will explore the mode of action of currently available oral treatments, factors to consider when individualizing HbA1c targets, the relevance of estimated glomerular filtration rate assessment, and the importance of reviewing the clinical impact of all treatment decisions.

  19. Development of an Optimization Methodology for the Aluminum Alloy Wheel Casting Process

    NASA Astrophysics Data System (ADS)

    Duan, Jianglan; Reilly, Carl; Maijer, Daan M.; Cockcroft, Steve L.; Phillion, Andre B.

    2015-08-01

    An optimization methodology has been developed for the aluminum alloy wheel casting process. The methodology is focused on improving the timing of cooling processes in a die to achieve improved casting quality. This methodology utilizes (1) a casting process model, which was developed within the commercial finite element package, ABAQUS™—ABAQUS is a trademark of Dassault Systèms; (2) a Python-based results extraction procedure; and (3) a numerical optimization module from the open-source Python library, Scipy. To achieve optimal casting quality, a set of constraints have been defined to ensure directional solidification, and an objective function, based on the solidification cooling rates, has been defined to either maximize, or target a specific, cooling rate. The methodology has been applied to a series of casting and die geometries with different cooling system configurations, including a 2-D axisymmetric wheel and die assembly generated from a full-scale prototype wheel. The results show that, with properly defined constraint and objective functions, solidification conditions can be improved and optimal cooling conditions can be achieved leading to process productivity and product quality improvements.

  20. Optimal estimation of entanglement in optical qubit systems

    NASA Astrophysics Data System (ADS)

    Brida, Giorgio; Degiovanni, Ivo P.; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G. A.; Shurupov, Alexander P.

    2011-05-01

    We address the experimental determination of entanglement for systems made of a pair of polarization qubits. We exploit quantum estimation theory to derive optimal estimators, which are then implemented to achieve ultimate bound to precision. In particular, we present a set of experiments aimed at measuring the amount of entanglement for states belonging to different families of pure and mixed two-qubit two-photon states. Our scheme is based on visibility measurements of quantum correlations and achieves the ultimate precision allowed by quantum mechanics in the limit of Poissonian distribution of coincidence counts. Although optimal estimation of entanglement does not require the full tomography of the states we have also performed state reconstruction using two different sets of tomographic projectors and explicitly shown that they provide a less precise determination of entanglement. The use of optimal estimators also allows us to compare and statistically assess the different noise models used to describe decoherence effects occurring in the generation of entanglement.

  1. Optimal Design of Calibration Signals in Space-Borne Gravitational Wave Detectors

    NASA Technical Reports Server (NTRS)

    Nofrarias, Miquel; Karnesis, Nikolaos; Gibert, Ferran; Armano, Michele; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; Dolesi, Rita; Ferraioli, Luigi; Ferroni, Valerio; hide

    2016-01-01

    Future space borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterisation of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space borne gravitational wave observatories. Here we propose a framework to derive the optimal signals in terms of minimum parameter uncertainty to be injected to these instruments during its calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.

  2. Optimal Design of Calibration Signals in Space Borne Gravitational Wave Detectors

    NASA Technical Reports Server (NTRS)

    Nofrarias, Miquel; Karnesis, Nikolaos; Gibert, Ferran; Armano, Michele; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; Dolesi, Rita; Ferraioli, Luigi; Thorpe, James I.

    2014-01-01

    Future space borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterization of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space borne gravitational wave observatories. Here we propose a framework to derive the optimal signals in terms of minimum parameter uncertainty to be injected to these instruments during its calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.

  3. Coverage-based constraints for IMRT optimization

    NASA Astrophysics Data System (ADS)

    Mescher, H.; Ulrich, S.; Bangert, M.

    2017-09-01

    Radiation therapy treatment planning requires an incorporation of uncertainties in order to guarantee an adequate irradiation of the tumor volumes. In current clinical practice, uncertainties are accounted for implicitly with an expansion of the target volume according to generic margin recipes. Alternatively, it is possible to account for uncertainties by explicit minimization of objectives that describe worst-case treatment scenarios, the expectation value of the treatment or the coverage probability of the target volumes during treatment planning. In this note we show that approaches relying on objectives to induce a specific coverage of the clinical target volumes are inevitably sensitive to variation of the relative weighting of the objectives. To address this issue, we introduce coverage-based constraints for intensity-modulated radiation therapy (IMRT) treatment planning. Our implementation follows the concept of coverage-optimized planning that considers explicit error scenarios to calculate and optimize patient-specific probabilities q(\\hat{d}, \\hat{v}) of covering a specific target volume fraction \\hat{v} with a certain dose \\hat{d} . Using a constraint-based reformulation of coverage-based objectives we eliminate the trade-off between coverage and competing objectives during treatment planning. In-depth convergence tests including 324 treatment plan optimizations demonstrate the reliability of coverage-based constraints for varying levels of probability, dose and volume. General clinical applicability of coverage-based constraints is demonstrated for two cases. A sensitivity analysis regarding penalty variations within this planing study based on IMRT treatment planning using (1) coverage-based constraints, (2) coverage-based objectives, (3) probabilistic optimization, (4) robust optimization and (5) conventional margins illustrates the potential benefit of coverage-based constraints that do not require tedious adjustment of target volume objectives.

  4. Algorithm optimization for multitined radiofrequency ablation: comparative study in ex vivo and in vivo bovine liver.

    PubMed

    Appelbaum, Liat; Sosna, Jacob; Pearson, Robert; Perez, Sarah; Nissenbaum, Yizhak; Mertyna, Pawel; Libson, Eugene; Goldberg, S Nahum

    2010-02-01

    To prospectively optimize multistep algorithms for largest available multitined radiofrequency (RF) electrode system in ex vivo and in vivo tissues, to determine best energy parameters to achieve large predictable target sizes of coagulation, and to compare these algorithms with manufacturer's recommended algorithms. Institutional animal care and use committee approval was obtained for the in vivo portion of this study. Ablation (n = 473) was performed in ex vivo bovine liver; final tine extension was 5-7 cm. Variables in stepped-deployment RF algorithm were interrogated and included initial current ramping to 105 degrees C (1 degrees C/0.5-5.0 sec), the number of sequential tine extensions (2-7 cm), and duration of application (4-12 minutes) for final two to three tine extensions. Optimal parameters to achieve 5-7 cm of coagulation were compared with recommended algorithms. Optimal settings for 5- and 6-cm final tine extensions were confirmed in in vivo perfused bovine liver (n = 14). Multivariate analysis of variance and/or paired t tests were used. Mean RF ablation zones of 5.1 cm +/- 0.2 (standard deviation), 6.3 cm +/- 0.4, and 7 cm +/- 0.3 were achieved with 5-, 6-, and 7-cm final tine extensions in a mean of 19.5 min +/- 0.5, 27.9 min +/- 6, and 37.1 min +/- 2.3, respectively, at optimal settings. With these algorithms, size of ablation at 6- and 7-cm tine extension significantly increased from mean of 5.4 cm +/- 0.4 and 6.1 cm +/- 0.6 (manufacturer's algorithms) (P <.05, both comparisons); two recommended tine extensions were eliminated. In vivo confirmation produced mean diameter in specified time: 5.5 cm +/- 0.4 in 18.5 min +/- 0.5 (5-cm extensions) and 5.7 cm +/- 0.2 in 21.2 min +/- 0.6 (6-cm extensions). Large zones of coagulation of 5-7 cm can be created with optimized RF algorithms that help reduce number of tine extensions compared with manufacturer's recommendations. Such algorithms are likely to facilitate the utility of these devices for RF

  5. Oxidative DNA Base Damage in MCF-10A Breast Epithelial Cells at Clinically Achievable Concentrations of Doxorubicin

    PubMed Central

    Gajewski, Ewa; Gaur, Shikha; Akman, Steven A.; Matsumoto, Linda; van Balgooy, Josephus N.A.; Doroshow, James H.

    2009-01-01

    The cellular metabolism of doxorubicin generates reactive oxygen species with significant potential to damage DNA. Such DNA damage can result in mutations if not adequately repaired by cellular DNA repair pathways. Secondary malignancies have been reported in patients who have received doxorubicin-containing chemotherapeutic regimens; however, the underlying molecular mechanism(s) to explain the development of these tumors remains under active investigation. We have previously demonstrated the presence of DNA bases modified by oxidation in the peripheral blood mononuclear cells of patients with breast cancer following treatment with doxorubicin. In those studies, doxorubicin was administered by continuous infusion over 96 hours to minimize the risk of cardiac toxicity. To evaluate potential mechanisms underlying doxorubicin-induced DNA base oxidation in non-malignant tissues, MCF-10A breast epithelial cells were cultured for 96 hours with the same doxorubicin concentration achieved in vivo (0.1 μM). During doxorubicin exposure, MCF-10A cells underwent growth arrest and apoptosis, developed elevated levels of reactive oxygen species, and demonstrated a time-dependent and significant increase in the levels of 11 oxidized DNA bases, as determined by gas chromatography/mass spectroscopy. Diminished expression of DNA repair enzymes was also observed over the same time course. Thus, clinically achievable concentrations of doxorubicin induce a level of oxidative stress in MCF-10A cells that is capable of oxidizing DNA bases and significantly altering cellular proliferation. PMID:17445777

  6. Accelerating IMRT optimization by voxel sampling

    NASA Astrophysics Data System (ADS)

    Martin, Benjamin C.; Bortfeld, Thomas R.; Castañon, David A.

    2007-12-01

    This paper presents a new method for accelerating intensity-modulated radiation therapy (IMRT) optimization using voxel sampling. Rather than calculating the dose to the entire patient at each step in the optimization, the dose is only calculated for some randomly selected voxels. Those voxels are then used to calculate estimates of the objective and gradient which are used in a randomized version of a steepest descent algorithm. By selecting different voxels on each step, we are able to find an optimal solution to the full problem. We also present an algorithm to automatically choose the best sampling rate for each structure within the patient during the optimization. Seeking further improvements, we experimented with several other gradient-based optimization algorithms and found that the delta-bar-delta algorithm performs well despite the randomness. Overall, we were able to achieve approximately an order of magnitude speedup on our test case as compared to steepest descent.

  7. Achieving organisational competence for clinical leadership: the role of high performance work systems.

    PubMed

    Leggat, Sandra G; Balding, Cathy

    2013-01-01

    While there has been substantial discussion about the potential for clinical leadership in improving quality and safety in healthcare, there has been little robust study. The purpose of this paper is to present the results of a qualitative study with clinicians and clinician managers to gather opinions on the appropriate content of an educational initiative being planned to improve clinical leadership in quality and safety among medical, nursing and allied health professionals working in primary, community and secondary care. In total, 28 clinicians and clinician managers throughout the state of Victoria, Australia, participated in focus groups to provide advice on the development of a clinical leadership program in quality and safety. An inductive, thematic analysis was completed to enable the themes to emerge from the data. Overwhelmingly the participants conceptualised clinical leadership in relation to organisational factors. Only four individual factors, comprising emotional intelligence, resilience, self-awareness and understanding of other clinical disciplines, were identified as being important for clinical leaders. Conversely seven organisational factors, comprising role clarity and accountability, security and sustainability for clinical leaders, selective recruitment into clinical leadership positions, teamwork and decentralised decision making, training, information sharing, and transformational leadership, were seen as essential, but the participants indicated they were rarely addressed. The human resource management literature includes these seven components, with contingent reward, reduced status distinctions and measurement of management practices, as the essential organisational underpinnings of high performance work systems. The results of this study propose that clinical leadership is an organisational property, suggesting that capability frameworks and educational programs for clinical leadership need a broader organisation focus. The paper

  8. Radiobiological evaluation of the influence of dwell time modulation restriction in HIPO optimized HDR prostate brachytherapy implants.

    PubMed

    Mavroidis, Panayiotis; Katsilieri, Zaira; Kefala, Vasiliki; Milickovic, Natasa; Papanikolaou, Nikos; Karabis, Andreas; Zamboglou, Nikolaos; Baltas, Dimos

    2010-09-01

    One of the issues that a planner is often facing in HDR brachytherapy is the selective existence of high dose volumes around some few dominating dwell positions. If there is no information available about its necessity (e.g. location of a GTV), then it is reasonable to investigate whether this can be avoided. This effect can be eliminated by limiting the free modulation of the dwell times. HIPO, an inverse treatment plan optimization algorithm, offers this option. In treatment plan optimization there are various methods that try to regularize the variation of dose non-uniformity using purely dosimetric measures. However, although these methods can help in finding a good dose distribution they do not provide any information regarding the expected treatment outcome as described by radiobiology based indices. The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO and modulation restriction (MR) has been compared to alternative plans with HIPO and free modulation (without MR). All common dose-volume indices for the prostate and the organs at risk have been considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by calculating the response probabilities of the tumors and organs-at-risk (OARs) involved in these prostate cancer cases. The radiobiological models used are the Poisson and the relative seriality models. Furthermore, the complication-free tumor control probability, P + and the biologically effective uniform dose ([Formula: see text]) were used for treatment plan evaluation and comparison. Our results demonstrate that HIPO with a modulation restriction value of 0.1-0.2 delivers high quality plans which are practically equivalent to those achieved with free modulation regarding the clinically used dosimetric indices. In the comparison, many of the dosimetric and radiobiological indices showed significantly different results. The modulation restricted clinical

  9. TH-EF-BRB-02: Feasibility of Optimization for Dynamic Trajectory Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, MK; Frei, D; Volken, W

    2016-06-15

    Purpose: Over the last years, volumetric modulated arc therapy (VMAT) has been widely introduced into clinical routine using a coplanar delivery technique. However, VMAT might be improved by including dynamic couch and collimator rotations, leading to dynamic trajectory radiotherapy (DTRT). In this work the feasibility and the potential benefit of DTRT was investigated. Methods: A general framework for the optimization was developed using the Eclipse Scripting Research Application Programming Interface (ESRAPI). Based on contoured target and organs at risk (OARs), the structures are extracted using the ESRAPI. Sampling potential beam directions, regularly distributed on a sphere using a Fibanocci-lattice, themore » fractional volume-overlap of each OAR and the target is determined and used to establish dynamic gantry-couch movements. Then, for each gantry-couch track the most suitable collimator angle is determined for each control point by optimizing the area between the MLC leaves and the target contour. The resulting dynamic trajectories are used as input to perform the optimization using a research version of the VMAT optimization algorithm and the ESRAPI. The feasibility of this procedure was tested for a clinically motivated head and neck case. Resulting dose distributions for the VMAT plan and for the dynamic trajectory treatment plan were compared based on DVH-parameters. Results: While the DVH for the target is virtually preserved, improvements in maximum dose for the DTRT plan were achieved for all OARs except for the inner-ear, where maximum dose remains the same. The major improvements in maximum dose were 6.5% of the prescribed dose (66 Gy) for the parotid and 5.5% for the myelon and the eye. Conclusion: The result of this work suggests that DTRT has a great potential to reduce dose to OARs with similar target coverage when compared to conventional VMAT treatment plans. This work was supported by Varian Medical Systems. This work was supported by

  10. SynGenics Optimization System (SynOptSys)

    NASA Technical Reports Server (NTRS)

    Ventresca, Carol; McMilan, Michelle L.; Globus, Stephanie

    2013-01-01

    The SynGenics Optimization System (SynOptSys) software application optimizes a product with respect to multiple, competing criteria using statistical Design of Experiments, Response-Surface Methodology, and the Desirability Optimization Methodology. The user is not required to be skilled in the underlying math; thus, SynOptSys can help designers and product developers overcome the barriers that prevent them from using powerful techniques to develop better pro ducts in a less costly manner. SynOpt-Sys is applicable to the design of any product or process with multiple criteria to meet, and at least two factors that influence achievement of those criteria. The user begins with a selected solution principle or system concept and a set of criteria that needs to be satisfied. The criteria may be expressed in terms of documented desirements or defined responses that the future system needs to achieve. Documented desirements can be imported into SynOptSys or created and documented directly within SynOptSys. Subsequent steps include identifying factors, specifying model order for each response, designing the experiment, running the experiment and gathering the data, analyzing the results, and determining the specifications for the optimized system. The user may also enter textual information as the project progresses. Data is easily edited within SynOptSys, and the software design enables full traceability within any step in the process, and facilitates reporting as needed. SynOptSys is unique in the way responses are defined and the nuances of the goodness associated with changes in response values for each of the responses of interest. The Desirability Optimization Methodology provides the basis of this novel feature. Moreover, this is a complete, guided design and optimization process tool with embedded math that can remain invisible to the user. It is not a standalone statistical program; it is a design and optimization system.

  11. Optimal consensus algorithm integrated with obstacle avoidance

    NASA Astrophysics Data System (ADS)

    Wang, Jianan; Xin, Ming

    2013-01-01

    This article proposes a new consensus algorithm for the networked single-integrator systems in an obstacle-laden environment. A novel optimal control approach is utilised to achieve not only multi-agent consensus but also obstacle avoidance capability with minimised control efforts. Three cost functional components are defined to fulfil the respective tasks. In particular, an innovative nonquadratic obstacle avoidance cost function is constructed from an inverse optimal control perspective. The other two components are designed to ensure consensus and constrain the control effort. The asymptotic stability and optimality are proven. In addition, the distributed and analytical optimal control law only requires local information based on the communication topology to guarantee the proposed behaviours, rather than all agents' information. The consensus and obstacle avoidance are validated through simulations.

  12. Multiple Detector Optimization for Hidden Radiation Source Detection

    DTIC Science & Technology

    2015-03-26

    important in achieving operationally useful methods for optimizing detector emplacement, the 2-D attenuation model approach promises to speed up the...process of hidden source detection significantly. The model focused on detection of the full energy peak of a radiation source. Methods to optimize... radioisotope identification is possible without using a computationally intensive stochastic model such as the Monte Carlo n-Particle (MCNP) code

  13. Predictive Analytics for Coordinated Optimization in Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui

    This talk will present NREL's work on developing predictive analytics that enables the optimal coordination of all the available resources in distribution systems to achieve the control objectives of system operators. Two projects will be presented. One focuses on developing short-term state forecasting-based optimal voltage regulation in distribution systems; and the other one focuses on actively engaging electricity consumers to benefit distribution system operations.

  14. Application of Particle Swarm Optimization Algorithm for Optimizing ANN Model in Recognizing Ripeness of Citrus

    NASA Astrophysics Data System (ADS)

    Diyana Rosli, Anis; Adenan, Nur Sabrina; Hashim, Hadzli; Ezan Abdullah, Noor; Sulaiman, Suhaimi; Baharudin, Rohaiza

    2018-03-01

    This paper shows findings of the application of Particle Swarm Optimization (PSO) algorithm in optimizing an Artificial Neural Network that could categorize between ripeness and unripeness stage of citrus suhuensis. The algorithm would adjust the network connections weights and adapt its values during training for best results at the output. Initially, citrus suhuensis fruit’s skin is measured using optically non-destructive method via spectrometer. The spectrometer would transmit VIS (visible spectrum) photonic light radiation to the surface (skin of citrus) of the sample. The reflected light from the sample’s surface would be received and measured by the same spectrometer in terms of reflectance percentage based on VIS range. These measured data are used to train and test the best optimized ANN model. The accuracy is based on receiver operating characteristic (ROC) performance. The result outcomes from this investigation have shown that the achieved accuracy for the optimized is 70.5% with a sensitivity and specificity of 60.1% and 80.0% respectively.

  15. Vitamin D, Essential Minerals, and Toxic Elements: Exploring Interactions between Nutrients and Toxicants in Clinical Medicine

    PubMed Central

    Schwalfenberg, Gerry K.; Genuis, Stephen J.

    2015-01-01

    In clinical medicine, increasing attention is being directed towards the important areas of nutritional biochemistry and toxicant bioaccumulation as they relate to human health and chronic disease. Optimal nutritional status, including healthy levels of vitamin D and essential minerals, is requisite for proper physiological function; conversely, accrual of toxic elements has the potential to impair normal physiology. It is evident that vitamin D intake can facilitate the absorption and assimilation of essential inorganic elements (such as calcium, magnesium, copper, zinc, iron, and selenium) but also the uptake of toxic elements (such as lead, arsenic, aluminum, cobalt, and strontium). Furthermore, sufficiency of essential minerals appears to resist the uptake of toxic metals. This paper explores the literature to determine a suitable clinical approach with regard to vitamin D and essential mineral intake to achieve optimal biological function and to avoid harm in order to prevent and overcome illness. It appears preferable to secure essential mineral status in conjunction with adequate vitamin D, as intake of vitamin D in the absence of mineral sufficiency may result in facilitation of toxic element absorption with potential adverse clinical outcomes. PMID:26347061

  16. Measurement configuration optimization for dynamic metrology using Stokes polarimetry

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Zhang, Chuanwei; Zhong, Zhicheng; Gu, Honggang; Chen, Xiuguo; Jiang, Hao; Liu, Shiyuan

    2018-05-01

    As dynamic loading experiments such as a shock compression test are usually characterized by short duration, unrepeatability and high costs, high temporal resolution and precise accuracy of the measurements is required. Due to high temporal resolution up to a ten-nanosecond-scale, a Stokes polarimeter with six parallel channels has been developed to capture such instantaneous changes in optical properties in this paper. Since the measurement accuracy heavily depends on the configuration of the probing beam incident angle and the polarizer azimuth angle, it is important to select an optimal combination from the numerous options. In this paper, a systematic error propagation-based measurement configuration optimization method corresponding to the Stokes polarimeter was proposed. The maximal Frobenius norm of the combinatorial matrix of the configuration error propagating matrix and the intrinsic error propagating matrix is introduced to assess the measurement accuracy. The optimal configuration for thickness measurement of a SiO2 thin film deposited on a Si substrate has been achieved by minimizing the merit function. Simulation and experimental results show a good agreement between the optimal measurement configuration achieved experimentally using the polarimeter and the theoretical prediction. In particular, the experimental result shows that the relative error in the thickness measurement can be reduced from 6% to 1% by using the optimal polarizer azimuth angle when the incident angle is 45°. Furthermore, the optimal configuration for the dynamic metrology of a nickel foil under quasi-dynamic loading is investigated using the proposed optimization method.

  17. Optimal discrimination of M coherent states with a small quantum computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Marcus P. da; Guha, Saikat; Dutton, Zachary

    2014-12-04

    The ability to distinguish between coherent states optimally plays in important role in the efficient usage of quantum resources for classical communication and sensing applications. While it has been known since the early 1970’s how to optimally distinguish between two coherent states, generalizations to larger sets of coherent states have so far failed to reach optimality. In this work we outline how optimality can be achieved by using a small quantum computer, building on recent proposals for optimal qubit state discrimination with multiple copies.

  18. A questionnaire study to derive information on the working environment, clinical training, use of ancillary staff and optimization of patient radiation dose within UK dental practice.

    PubMed

    Orafi, I; Rushton, V E

    2012-08-01

    To evaluate the working environment of GDPs and Endodontists and the methods used to optimize patient radiation dose. A total of 857 GDPs and 170 specialist Endodontists were contacted. The responders, 603 of the former and 132 of the latter, completed a questionnaire covering practitioner demographics, pattern of practice, the use of radiographic techniques and the optimization of dose. Chi-squared tests were used to compare groups at the P=0.05 level of significance. For nonparametric data, the Mann-Whitney U-test was employed. A response rate of 73% was achieved. Overall, 79.5% of endodontic specialists used film holders compared with 65.9% of GDPs (P=0.001). One hundred and thirty (98.5%) endodontists and 581 (96.3%) GDPs reported that they were well prepared or adequately prepared in radiographically assessing the presence of apical pathosis. The study found significant differences (P<0.001) between the use of digital radiography by specialist endodontists 93 (70.5%) compared with general dental practitioners 167 (27.7%). Significant differences (P=0.004) were also observed in the use of rectangular collimation between endodontic specialists 55 (42%) and GDPs 223 (37%). With regard to the use of film holders in diagnostic radiography, 105 (79.5%) of endodontic specialists employed these devices compared with 396 (65.7%) GDPs; this finding was significant (P=0.005). For working length estimation, significant differences (P=0.001) were noted in the use of a film holder between endodontic specialists 105 (79.5%) and GDPs 386 (64%). Both Endodontists and GDPs demonstrated compliance with guidelines relating to radiation protection being more significant amongst those clinicians working within specialist clinical practice. © 2012 International Endodontic Journal.

  19. Linear antenna array optimization using flower pollination algorithm.

    PubMed

    Saxena, Prerna; Kothari, Ashwin

    2016-01-01

    Flower pollination algorithm (FPA) is a new nature-inspired evolutionary algorithm used to solve multi-objective optimization problems. The aim of this paper is to introduce FPA to the electromagnetics and antenna community for the optimization of linear antenna arrays. FPA is applied for the first time to linear array so as to obtain optimized antenna positions in order to achieve an array pattern with minimum side lobe level along with placement of deep nulls in desired directions. Various design examples are presented that illustrate the use of FPA for linear antenna array optimization, and subsequently the results are validated by benchmarking along with results obtained using other state-of-the-art, nature-inspired evolutionary algorithms such as particle swarm optimization, ant colony optimization and cat swarm optimization. The results suggest that in most cases, FPA outperforms the other evolutionary algorithms and at times it yields a similar performance.

  20. Non-ECG-gated unenhanced MRA of the carotids: optimization and clinical feasibility.

    PubMed

    Raoult, H; Gauvrit, J Y; Schmitt, P; Le Couls, V; Bannier, E

    2013-11-01

    To optimise and assess the clinical feasibility of a carotid non-ECG-gated unenhanced MRA sequence. Sixteen healthy volunteers and 11 patients presenting with internal carotid artery (ICA) disease underwent large field-of-view balanced steady-state free precession (bSSFP) unenhanced MRA at 3T. Sampling schemes acquiring the k-space centre either early (kCE) or late (kCL) in the acquisition window were evaluated. Signal and image quality was scored in comparison to ECG-gated kCE unenhanced MRA and TOF. For patients, computed tomography angiography was used as the reference. In volunteers, kCE sampling yielded higher image quality than kCL and TOF, with fewer flow artefacts and improved signal homogeneity. kCE unenhanced MRA image quality was higher without ECG-gating. Arterial signal and artery/vein contrast were higher with both bSSFP sampling schemes than with TOF. The kCE sequence allowed correct quantification of ten significant stenoses, and it facilitated the identification of an infrapetrous dysplasia, which was outside of the TOF imaging coverage. Non-ECG-gated bSSFP carotid imaging offers high-quality images and is a promising sequence for carotid disease diagnosis in a short acquisition time with high spatial resolution and a large field of view. • Non-ECG-gated unenhanced bSSFP MRA offers high-quality imaging of the carotid arteries. • Sequences using early acquisition of the k-space centre achieve higher image quality. • Non-ECG-gated unenhanced bSSFP MRA allows quantification of significant carotid stenosis. • Short MR acquisition times and ungated sequences are helpful in clinical practice. • High 3D spatial resolution and a large field of view improve diagnostic performance.

  1. Emerging Techniques for Dose Optimization in Abdominal CT

    PubMed Central

    Platt, Joel F.; Goodsitt, Mitchell M.; Al-Hawary, Mahmoud M.; Maturen, Katherine E.; Wasnik, Ashish P.; Pandya, Amit

    2014-01-01

    Recent advances in computed tomographic (CT) scanning technique such as automated tube current modulation (ATCM), optimized x-ray tube voltage, and better use of iterative image reconstruction have allowed maintenance of good CT image quality with reduced radiation dose. ATCM varies the tube current during scanning to account for differences in patient attenuation, ensuring a more homogeneous image quality, although selection of the appropriate image quality parameter is essential for achieving optimal dose reduction. Reducing the x-ray tube voltage is best suited for evaluating iodinated structures, since the effective energy of the x-ray beam will be closer to the k-edge of iodine, resulting in a higher attenuation for the iodine. The optimal kilovoltage for a CT study should be chosen on the basis of imaging task and patient habitus. The aim of iterative image reconstruction is to identify factors that contribute to noise on CT images with use of statistical models of noise (statistical iterative reconstruction) and selective removal of noise to improve image quality. The degree of noise suppression achieved with statistical iterative reconstruction can be customized to minimize the effect of altered image quality on CT images. Unlike with statistical iterative reconstruction, model-based iterative reconstruction algorithms model both the statistical noise and the physical acquisition process, allowing CT to be performed with further reduction in radiation dose without an increase in image noise or loss of spatial resolution. Understanding these recently developed scanning techniques is essential for optimization of imaging protocols designed to achieve the desired image quality with a reduced dose. © RSNA, 2014 PMID:24428277

  2. Lipid Encapsulation Provides Insufficient Total-Tract Digestibility to Achieve an Optimal Transfer Efficiency of Fatty Acids to Milk Fat

    PubMed Central

    Bainbridge, Melissa; Kraft, Jana

    2016-01-01

    Transfer efficiencies of rumen-protected n-3 fatty acids (FA) to milk are low, thus we hypothesized that rumen-protection technologies allow for biohydrogenation and excretion of n-3 FA. The objectives of this study were to i) investigate the ruminal protection and post-ruminal release of the FA derived from the lipid-encapsulated echium oil (EEO), and ii) assess the bioavailability and metabolism of the EEO-derived FA through measuring the FA content in plasma lipid fractions, feces, and milk. The EEO was tested for rumen stability using the in situ nylon bag technique, then the apparent total-tract digestibility was assessed in vivo using six Holstein dairy cattle. Diets consisted of a control (no EEO); 1.5% of dry matter (DM) as EEO and 1.5% DM as encapsulation matrix; and 3% DM as EEO. The EEO was rumen-stable and had no effect on animal production. EEO-derived FA were incorporated into all plasma lipid fractions, with the highest proportion of n-3 FA observed in cholesterol esters. Fecal excretion of EEO-derived FA ranged from 7–14%. Biohydrogenation products increased in milk, plasma, and feces with EEO supplementation. In conclusion, lipid-encapsulation provides inadequate digestibility to achieve an optimal transfer efficiency of n-3 FA to milk. PMID:27741299

  3. Knowing 'something is not right' is beyond intuition: development of a clinical algorithm to enhance surveillance and assist nurses to organise and communicate clinical findings.

    PubMed

    Brier, Jessica; Carolyn, Moalem; Haverly, Marsha; Januario, Mary Ellen; Padula, Cynthia; Tal, Ahuva; Triosh, Henia

    2015-03-01

    To develop a clinical algorithm to guide nurses' critical thinking through systematic surveillance, assessment, actions required and communication strategies. To achieve this, an international, multiphase project was initiated. Patients receive hospital care postoperatively because they require the skilled surveillance of nurses. Effective assessment of postoperative patients is essential for early detection of clinical deterioration and optimal care management. Despite the significant amount of time devoted to surveillance activities, there is lack of evidence that nurses use a consistent, systematic approach in surveillance, management and communication, potentially leading to less optimal outcomes. Several explanations for the lack of consistency have been suggested in the literature. Mixed methods approach. Retrospective chart review; semi-structured interviews conducted with expert nurses (n = 10); algorithm development. Themes developed from the semi-structured interviews, including (1) complete, systematic assessment, (2) something is not right (3) validating with others, (4) influencing factors and (5) frustration with lack of response when communicating findings were used as the basis for development of the Surveillance Algorithm for Post-Surgical Patients. The algorithm proved beneficial based on limited use in clinical settings. Further work is needed to fully test it in education and practice. The Surveillance Algorithm for Post-Surgical Patients represents the approach of expert nurses, and serves to guide less expert nurses' observations, critical thinking, actions and communication. Based on this approach, the algorithm assists nurses to develop skills promoting early detection, intervention and communication in cases of patient deterioration. © 2014 John Wiley & Sons Ltd.

  4. Using Distributed Data over HBase in Big Data Analytics Platform for Clinical Services

    PubMed Central

    Zamani, Hamid

    2017-01-01

    Big data analytics (BDA) is important to reduce healthcare costs. However, there are many challenges of data aggregation, maintenance, integration, translation, analysis, and security/privacy. The study objective to establish an interactive BDA platform with simulated patient data using open-source software technologies was achieved by construction of a platform framework with Hadoop Distributed File System (HDFS) using HBase (key-value NoSQL database). Distributed data structures were generated from benchmarked hospital-specific metadata of nine billion patient records. At optimized iteration, HDFS ingestion of HFiles to HBase store files revealed sustained availability over hundreds of iterations; however, to complete MapReduce to HBase required a week (for 10 TB) and a month for three billion (30 TB) indexed patient records, respectively. Found inconsistencies of MapReduce limited the capacity to generate and replicate data efficiently. Apache Spark and Drill showed high performance with high usability for technical support but poor usability for clinical services. Hospital system based on patient-centric data was challenging in using HBase, whereby not all data profiles were fully integrated with the complex patient-to-hospital relationships. However, we recommend using HBase to achieve secured patient data while querying entire hospital volumes in a simplified clinical event model across clinical services. PMID:29375652

  5. Using Distributed Data over HBase in Big Data Analytics Platform for Clinical Services.

    PubMed

    Chrimes, Dillon; Zamani, Hamid

    2017-01-01

    Big data analytics (BDA) is important to reduce healthcare costs. However, there are many challenges of data aggregation, maintenance, integration, translation, analysis, and security/privacy. The study objective to establish an interactive BDA platform with simulated patient data using open-source software technologies was achieved by construction of a platform framework with Hadoop Distributed File System (HDFS) using HBase (key-value NoSQL database). Distributed data structures were generated from benchmarked hospital-specific metadata of nine billion patient records. At optimized iteration, HDFS ingestion of HFiles to HBase store files revealed sustained availability over hundreds of iterations; however, to complete MapReduce to HBase required a week (for 10 TB) and a month for three billion (30 TB) indexed patient records, respectively. Found inconsistencies of MapReduce limited the capacity to generate and replicate data efficiently. Apache Spark and Drill showed high performance with high usability for technical support but poor usability for clinical services. Hospital system based on patient-centric data was challenging in using HBase, whereby not all data profiles were fully integrated with the complex patient-to-hospital relationships. However, we recommend using HBase to achieve secured patient data while querying entire hospital volumes in a simplified clinical event model across clinical services.

  6. Ezetimibe Use and LDL-C Goal Achievement: A Retrospective Database Analysis of Patients with Clinical Atherosclerotic Cardiovascular Disease or Probable Heterozygous Familial Hypercholesterolemia.

    PubMed

    Menzin, Joseph; Aggarwal, Jyoti; Boatman, Brian; Yu, Jeffrey; Stern, Kevin; Harrison, David J; Patel, Jeetvan G

    2017-12-01

    Ezetimibe is recommended by clinical practice guidelines as a second-line therapy for lowering low-density lipoprotein cholesterol (LDL-C) levels, but little is known about its use and effectiveness in real-world populations. To understand the real-world impact of adding or switching to ezetimibe on LDL-C goal achievement in patients with clinical atherosclerotic cardiovascular disease (ASCVD) and/or heterozygous familial hypercholesterolemia (HeFH). Patients aged ≥ 18 years with an LDL-C measurement available between January 1, 2013, and June 30, 2014, were identified using the Inovalon MORE 2 database; this included commercial, health insurance exchange, Medicare Advantage, and managed Medicaid patients. The index date was the date of the first LDL-C measurement. Patients were required to have evidence of clinical ASCVD or probable HeFH based on ICD-9-CM codes and ≥ 1 outpatient pharmacy claim for a statin in the 1-year pre-index period, as well as continuous medical and pharmacy coverage for 1 year pre- and post-index. Patients who added ezetimibe to existing statin therapy or switched to ezetimibe within 90 days post-index LDL-C measurement were identified in order to replicate the typical time a clinician takes to assess the use of ezetimibe. The primary outcome was the proportion of patients who met the LDL-C goal of < 70 mg/dL within the follow-up period. LDL-C goal achievement was evaluated by baseline LDL-C level groupings: < 70 mg/dL, 70-99 mg/dL, 100-129 mg/dL, or ≥ 130 mg/dL; and across 4 patient diagnosis categories: all patients, ASCVD only, probable HeFH only, and ASCVD and probable HeFH. Descriptive analyses were reported. Categorical variables were summarized as the number of and corresponding percentage of patients. Continuous variables were presented as the mean and SD of the number of observations and median and range where appropriate. Of 125,330 patients who met selection criteria, mean age was 70.1 (SD = 9.9) years and mean LDL

  7. Optimal web investment in sub-optimal foraging conditions.

    PubMed

    Harmer, Aaron M T; Kokko, Hanna; Herberstein, Marie E; Madin, Joshua S

    2012-01-01

    Orb web spiders sit at the centre of their approximately circular webs when waiting for prey and so face many of the same challenges as central-place foragers. Prey value decreases with distance from the hub as a function of prey escape time. The further from the hub that prey are intercepted, the longer it takes a spider to reach them and the greater chance they have of escaping. Several species of orb web spiders build vertically elongated ladder-like orb webs against tree trunks, rather than circular orb webs in the open. As ladder web spiders invest disproportionately more web area further from the hub, it is expected they will experience reduced prey gain per unit area of web investment compared to spiders that build circular webs. We developed a model to investigate how building webs in the space-limited microhabitat on tree trunks influences the optimal size, shape and net prey gain of arboricolous ladder webs. The model suggests that as horizontal space becomes more limited, optimal web shape becomes more elongated, and optimal web area decreases. This change in web geometry results in decreased net prey gain compared to webs built without space constraints. However, when space is limited, spiders can achieve higher net prey gain compared to building typical circular webs in the same limited space. Our model shows how spiders optimise web investment in sub-optimal conditions and can be used to understand foraging investment trade-offs in other central-place foragers faced with constrained foraging arenas.

  8. Optimal web investment in sub-optimal foraging conditions

    NASA Astrophysics Data System (ADS)

    Harmer, Aaron M. T.; Kokko, Hanna; Herberstein, Marie E.; Madin, Joshua S.

    2012-01-01

    Orb web spiders sit at the centre of their approximately circular webs when waiting for prey and so face many of the same challenges as central-place foragers. Prey value decreases with distance from the hub as a function of prey escape time. The further from the hub that prey are intercepted, the longer it takes a spider to reach them and the greater chance they have of escaping. Several species of orb web spiders build vertically elongated ladder-like orb webs against tree trunks, rather than circular orb webs in the open. As ladder web spiders invest disproportionately more web area further from the hub, it is expected they will experience reduced prey gain per unit area of web investment compared to spiders that build circular webs. We developed a model to investigate how building webs in the space-limited microhabitat on tree trunks influences the optimal size, shape and net prey gain of arboricolous ladder webs. The model suggests that as horizontal space becomes more limited, optimal web shape becomes more elongated, and optimal web area decreases. This change in web geometry results in decreased net prey gain compared to webs built without space constraints. However, when space is limited, spiders can achieve higher net prey gain compared to building typical circular webs in the same limited space. Our model shows how spiders optimise web investment in sub-optimal conditions and can be used to understand foraging investment trade-offs in other central-place foragers faced with constrained foraging arenas.

  9. Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    NASA Astrophysics Data System (ADS)

    da Silva, Marcus P.; Guha, Saikat; Dutton, Zachary

    2013-05-01

    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states—the quantum states of light emitted by an ideal laser—has immense practical importance. Due to fundamental limits imposed by quantum mechanics, such discrimination has a finite minimum probability of error. While concrete optical circuits for the optimal discrimination between two coherent states are well known, the generalization to larger sets of coherent states has been challenging. In this paper, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multicopy quantum hypotheses [Blume-Kohout, Croke, and Zwolak, arXiv:1201.6625]. As illustrative examples, we analyze the performance of discriminating a ternary alphabet and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show that our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.

  10. Delta-doping optimization for high quality p-type GaN

    NASA Astrophysics Data System (ADS)

    Bayram, C.; Pau, J. L.; McClintock, R.; Razeghi, M.

    2008-10-01

    Delta (δ -) doping is studied in order to achieve high quality p-type GaN. Atomic force microscopy, x-ray diffraction, photoluminescence, and Hall measurements are performed on the samples to optimize the δ-doping characteristics. The effect of annealing on the electrical, optical, and structural quality is also investigated for different δ-doping parameters. Optimized pulsing conditions result in layers with hole concentrations near 1018 cm-3 and superior crystal quality compared to conventional p-GaN. This material improvement is achieved thanks to the reduction in the Mg activation energy and self-compensation effects in δ-doped p-GaN.

  11. Developmental Pathways from Parental Substance Use to Childhood Academic Achievement

    PubMed Central

    Brook, Judith S.; Saar, Naomi S.; Brook, David W.

    2010-01-01

    This cross-sectional study examined the pathways to childhood academic achievement in 209 African American and Puerto Rican children and their mothers. There were three pathways to childhood academic achievement: (a) the mother-child relationship and the child’s personality mediated between parental substance use and childhood academic achievement; (b) the child’s personality mediated between parental education and childhood academic achievement; and (c) there was a direct relationship between the child’s gender and childhood academic achievement. Policy and clinical implications suggest the importance of increasing educational opportunities for all parents, providing substance use treatment and self-esteem workshops, and altering the school curriculum. PMID:20525035

  12. The association between achieving low-density lipoprotein cholesterol (LDL-C) goal and statin treatment in an employee population.

    PubMed

    Burton, Wayne N; Chen, Chin-Yu; Schultz, Alyssa B; Edington, Dee W

    2010-02-01

    Statin medications are recommended for patients who have not achieved low-density lipoprotein cholesterol (LDL-C) goals through lifestyle modifications. The objective of this retrospective observational study was to examine statin medication usage patterns and the relationship with LDL-C goal levels (according to Adult Treatment Panel III guidelines) among a cohort of employees of a major financial services corporation. From 1995 to 2004, a total of 1607 executives participated in a periodic health examination program. An index date was assigned for each study participant (date of their exam) and statin medication usage was determined from the pharmacy claims database for 365 days before the index date. Patients were identified as adherent to statins if the medication possession ratio was > or =80%. In all, 150 (9.3%) executives filled at least 1 statin prescription in the 365 days prior to their exam. A total of 102 statin users (68%) were adherent to statin medication. Among all executives who received statin treatment, 70% (odds ratio [OR] = 2.30, 95% confidence interval [CI] = 1.82, 2.90) achieved near-optimal (<130 mg/dL) and 30% (OR = 1.78, 95% CI = 1.15, 2.76) achieved optimal (<100 mg/dL) LDL-C goals, which is significantly higher than the rates among statin nonusers (55% and 21%). Adherent statin users were more likely to achieve recommended near-optimal LDL-C goals compared to statin nonusers (overall P = 0.002; adherent: OR = 2.75, 95% CI = 1.662, 4.550), while nonadherent statin users were more likely to achieve the optimal goal compared to statin nonusers (OR = 2.223; CI = 1.145, 4.313). Statin usage was associated with improvements in LDL-C goal attainment among executives who participated in a periodic health examination. Appropriate statin medication adherence should be encouraged in working populations in order to achieve LDL-C goals.

  13. Dose-shaping using targeted sparse optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, George A.; Ruan, Dan

    2013-07-15

    Purpose: Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, themore » authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method.Methods: In designing the energy minimization objective (E{sub tot}{sup sparse}), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L{sub 1} norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E

  14. [Optimize preparation of compound licorice microemulsion with D-optimal design].

    PubMed

    Ma, Shu-Wei; Wang, Yong-Jie; Chen, Cheng; Qiu, Yue; Wu, Qing

    2018-03-01

    In order to increase the solubility of essential oil in compound licorice microemulsion and improve the efficacy of the decoction for treating chronic eczema, this experiment intends to prepare the decoction into microemulsion. The essential oil was used as the oil phase of the microemulsion and the extract was used as the water phase. Then the microemulsion area and maximum ratio of water capacity was obtained by plotting pseudo-ternary phase diagram, to determine the appropriate types of surfactant and cosurfactant, and Km value-the mass ratio between surfactant and cosurfactant. With particle size and skin retention of active ingredients as the index, microemulsion prescription was optimized by D-optimal design method, to investigate the in vitro release behavior of the optimized prescription. The results showed that the microemulsion was optimal with tween-80 as the surfactant and anhydrous ethanol as the cosurfactant. When the Km value was 1, the area of the microemulsion region was largest while when the concentration of extract was 0.5 g·mL⁻¹, it had lowest effect on the particle size distribution of microemulsion. The final optimized formulation was as follows: 9.4% tween-80, 9.4% anhydrous ethanol, 1.0% peppermint oil and 80.2% 0.5 g·mL⁻¹ extract. The microemulsion prepared under these conditions had a small viscosity, good stability and high skin retention of drug; in vitro release experiment showed that microemulsion had a sustained-release effect on glycyrrhizic acid and liquiritin, basically achieving the expected purpose of the project. Copyright© by the Chinese Pharmaceutical Association.

  15. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    PubMed

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  16. The Computer Book of the Internal Medicine Resident: competence acquisition and achievement of learning objectives.

    PubMed

    Oristrell, J; Oliva, J C; Casanovas, A; Comet, R; Jordana, R; Navarro, M

    2014-01-01

    The Computer Book of the Internal Medicine resident (CBIMR) is a computer program that was validated to analyze the acquisition of competences in teams of Internal Medicine residents. To analyze the characteristics of the rotations during the Internal Medicine residency and to identify the variables associated with the acquisition of clinical and communication skills, the achievement of learning objectives and resident satisfaction. All residents of our service (n=20) participated in the study during a period of 40 months. The CBIMR consisted of 22 self-assessment questionnaires specific for each rotation, with items on services (clinical workload, disease protocolization, resident responsibilities, learning environment, service organization and teamwork) and items on educational outcomes (acquisition of clinical and communication skills, achievement of learning objectives, overall satisfaction). Associations between services features and learning outcomes were analyzed using bivariate and multivariate analysis. An intense clinical workload, high resident responsibilities and disease protocolization were associated with the acquisition of clinical skills. High clinical competence and teamwork were both associated with better communication skills. Finally, an adequate learning environment was associated with increased clinical competence, the achievement of educational goals and resident satisfaction. Potentially modifiable variables related with the operation of clinical services had a significant impact on the acquisition of clinical and communication skills, the achievement of educational goals, and resident satisfaction during the specialized training in Internal Medicine. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  17. Optimal and robust control of quantum state transfer by shaping the spectral phase of ultrafast laser pulses.

    PubMed

    Guo, Yu; Dong, Daoyi; Shu, Chuan-Cun

    2018-04-04

    Achieving fast and efficient quantum state transfer is a fundamental task in physics, chemistry and quantum information science. However, the successful implementation of the perfect quantum state transfer also requires robustness under practically inevitable perturbative defects. Here, we demonstrate how an optimal and robust quantum state transfer can be achieved by shaping the spectral phase of an ultrafast laser pulse in the framework of frequency domain quantum optimal control theory. Our numerical simulations of the single dibenzoterrylene molecule as well as in atomic rubidium show that optimal and robust quantum state transfer via spectral phase modulated laser pulses can be achieved by incorporating a filtering function of the frequency into the optimization algorithm, which in turn has potential applications for ultrafast robust control of photochemical reactions.

  18. Canadian chronic kidney disease clinics: a national survey of structure, function and models of care.

    PubMed

    Levin, Adeera; Steven, Soroka; Selina, Allu; Flora, Au; Sarah, Gil; Braden, Manns

    2014-01-01

    The goals of care for patients with chronic kidney disease (CKD) are to delay progression to end stage renal disease, reduce complications, and to ensure timely transition to dialysis or transplantation, while optimizing independence. Recent guidelines recommend that multidisciplinary team based care should be available to patients with CKD. While most provinces fund CKD care, the specific models by which these outcomes are achieved are not known. Funding for clinics is hospital or program based. To describe the structure and function of clinics in order to understand the current models of care, inform best practice and potentially standardize models of care. Prospective cross sectional observational survey study. Canadian nephrology programs in all provinces. Using an open-ended semi-structured questionnaire, we surveyed 71 of 84 multidisciplinary adult CKD clinics across Canada, by telephone and with written semi-structured questionnaires; (June 2012 to November 2013). Standardized introductory scripts were used, in both English and French. CKD clinic structure and models of care vary significantly across Canada. Large variation exists in staffing ratios (Nephrologist, dieticians, pharmacists and nurses to patients), and in referral criteria. Dialysis initiation decisions were usually made by MDs. The majority of clinics (57%) had a consistent model of care (the same Nephrologist and nurse per patient), while others had patients seeing a different nephrologist and nurses at each clinic visit. Targets for various modality choices varied, as did access to those modalities. No patient or provider educational tools describing the optimal time to start dialysis exist in any of the clinics. The surveys rely on self reporting without validation from independent sources, and there was limited involvement of Quebec clinics. These are relative limitations and do not affect the main results. The variability in clinic structure and function offers an opportunity to explore

  19. The role of social media in clinical excellence.

    PubMed

    Batt-Rawden, Samantha; Flickinger, Tabor; Weiner, John; Cheston, Christine; Chisolm, Margaret

    2014-07-01

    The provision of excellent patient care is a goal shared by all doctors. The role of social media (SM) in helping medical students and doctors achieve clinical excellence is unknown. Social media may help facilitate the achievement of clinical excellence This report aimed to identify examples of how SM may be used to help promote the achievement of clinical excellence in medical learners. Three of the authors previously conducted a systematic review of the published literature on SM use in undergraduate, graduate and continuing medical education. Two authors re-examined the 14 evaluative studies to identify any examples of SM use that may facilitate the achievement of clinical excellence and to consider whether there were any aspects of clinical excellence for which no studies had been performed, and, if so, whether SM was relevant to these domains. Each study touched on one or more of the following domains of clinical excellence: communication and interpersonal skills; professionalism and humanism; knowledge; diagnostic acumen; exhibiting a passion for patient care; a scholarly approach to clinical practice; and explicitly modelling expertise to medical trainees. No study addressed the role of SM to promote the skillful negotiation of the health care system, and in collaboration with investigators to advance science and discovery; however, additional evidence suggested that SM may play an adjunctive role in promoting the achievement of these aspects of clinical excellence. This report supports the hypothesis that SM may help facilitate the achievement of clinical excellence; however, further research is needed into the role of SM in promoting the achievement of clinical excellence. © 2014 John Wiley & Sons Ltd.

  20. Challenges in achieving patient participation: A review of how patient participation is addressed in empirical studies.

    PubMed

    Angel, Sanne; Frederiksen, Kirsten Norup

    2015-09-01

    For decades, it has been an ideal in western countries that individuals should participate in society as self-governing and autonomous subjects; however, this ideal does not always correspond to the actual experiences of individuals in their encounters with health professionals. This review identifies how empirical studies address challenges in achieving patient participation in clinical nursing. We conducted a literature search for studies of patient participation in PubMed, Cinahl, PsychInfo and Scopus. In a systematic review using Garrard's matrix method, we selected empirical studies that focused on patients' participation in health services. The empirical studies we investigated addressed the relationship between patient and nurse, knowledge, contact time with the patient, severity of illness and the effect of age on the degree of patient involvement. Every study thus investigated assessed patient participation as being achievable. None of the studies questioned the foundation for patient participation, which has been described in theoretical articles. The main explanation for difficulties in achieving patient participation was that expectations concerning the extent and quality of participation could be unrealistic and lead to dissatisfaction. Studies on patient participation identify challenges due to the nature of the relationship between laypersons and professionals, and the embedded difference in situation and knowledge. This difference may be reduced by time and a mutually positive attitude. But participation in its ideal form cannot be achieved because of this fundamental difference. Therefore, the optimal level of patient participation can only be achieved within a framework which provides both patients and health professionals with adequate time to build relationships and shared knowledge. Copyright © 2015 Elsevier Ltd. All rights reserved.