Sample records for achieve signal amplification

  1. Signal transduction and amplification through enzyme-triggered ligand release and accelerated catalysis.

    PubMed

    Goggins, Sean; Marsh, Barrie J; Lubben, Anneke T; Frost, Christopher G

    2015-08-01

    Signal transduction and signal amplification are both important mechanisms used within biological signalling pathways. Inspired by this process, we have developed a signal amplification methodology that utilises the selectivity and high activity of enzymes in combination with the robustness and generality of an organometallic catalyst, achieving a hybrid biological and synthetic catalyst cascade. A proligand enzyme substrate was designed to selectively self-immolate in the presence of the enzyme to release a ligand that can bind to a metal pre-catalyst and accelerate the rate of a transfer hydrogenation reaction. Enzyme-triggered catalytic signal amplification was then applied to a range of catalyst substrates demonstrating that signal amplification and signal transduction can both be achieved through this methodology.

  2. Brillouin Selective Sideband Amplification of Microwave Photonic Signals

    NASA Technical Reports Server (NTRS)

    Yao, S.

    1997-01-01

    We introduce a powerful Brillouin selective sideband amplification technique and demonstrate its application for achieving gain in photonix signal up- and down- conversions in microwave photonic systems.

  3. Visual Biopsy by Hydrogen Peroxide-Induced Signal Amplification.

    PubMed

    Zhao, Wenjie; Yang, Sheng; Yang, Jinfeng; Li, Jishan; Zheng, Jing; Qing, Zhihe; Yang, Ronghua

    2016-11-01

    Visual biopsy has attracted special interest by surgeons due to its simplicity and practicality; however, the limited sensitivity of the technology makes it difficult to achieve an early diagnosis. To circumvent this problem, herein, we report a visual signal amplification strategy for establishing a marker-recognizable biopsy that enables early cancer diagnosis. In our proposed approach, hydrogen peroxide (H 2 O 2 ) was selected as a potential underlying marker for its compact relationship in cancer progression. For selective recognition of H 2 O 2 in the process of visual biopsy, a benzylbenzeneboronic acid pinacol ester-decorated copolymer, namely, PMPC-Bpe, was synthesized, affording the final formation of the H 2 O 2 -responsive micelles in which amylose was trapped. The presence of H 2 O 2 activates the boronate ester recognition site and induces it releasing abundant indicator amylose, leading to signal amplification. The indicator came across the solution of KI/I 2 added to the sample, and the formative amylose-KI/I 2 complex has a distinct blue color at 574 nm for visual amplification detection. The feasibility of the proposed method is demonstrated by visualizing the H 2 O 2 content of cancer at different stages and three kinds of actual cancerous samples. As far as we know, this is the first paradigm to rationally design a signaling amplification-based molecular recognizable biopsy for visual and sensitive disease identification, which will extend new possibilities for marker-recognition and signal amplification-based biopsy in disease progressing.

  4. First demonstration of high-order QAM signal amplification in PPLN-based phase sensitive amplifier.

    PubMed

    Umeki, T; Tadanaga, O; Asobe, M; Miyamoto, Y; Takenouchi, H

    2014-02-10

    We demonstrate the phase sensitive amplification of a high-order quadrature amplitude modulation (QAM) signal using non-degenerate parametric amplification in a periodically poled lithium niobate (PPLN) waveguide. The interaction between the pump, signal, and phase-conjugated idler enables us to amplify arbitrary phase components of the signal. The 16QAM signals are amplified without distortion because of the high gain linearity of the PPLN-based phase sensitive amplifier (PSA). Both the phase and amplitude noise reduction capabilities of the PSA are ensured. Phase noise cancellation is achieved by using the interaction with the phase-conjugated idler. A degraded signal-to-noise ratio (SNR) is restored by using the gain difference between a phase-correlated signal-idler pair and uncorrelated excess noise. The applicability of the simultaneous amplification of multi-carrier signals and the amplification of two independent polarization signals are also confirmed with a view to realizing ultra-high spectrally efficient signal amplification.

  5. Signal amplification by rolling circle amplification on DNA microarrays

    PubMed Central

    Nallur, Girish; Luo, Chenghua; Fang, Linhua; Cooley, Stephanie; Dave, Varshal; Lambert, Jeremy; Kukanskis, Kari; Kingsmore, Stephen; Lasken, Roger; Schweitzer, Barry

    2001-01-01

    While microarrays hold considerable promise in large-scale biology on account of their massively parallel analytical nature, there is a need for compatible signal amplification procedures to increase sensitivity without loss of multiplexing. Rolling circle amplification (RCA) is a molecular amplification method with the unique property of product localization. This report describes the application of RCA signal amplification for multiplexed, direct detection and quantitation of nucleic acid targets on planar glass and gel-coated microarrays. As few as 150 molecules bound to the surface of microarrays can be detected using RCA. Because of the linear kinetics of RCA, nucleic acid target molecules may be measured with a dynamic range of four orders of magnitude. Consequently, RCA is a promising technology for the direct measurement of nucleic acids on microarrays without the need for a potentially biasing preamplification step. PMID:11726701

  6. Cascade Signal Amplification Based on Copper Nanoparticle-Reported Rolling Circle Amplification for Ultrasensitive Electrochemical Detection of the Prostate Cancer Biomarker.

    PubMed

    Zhu, Ye; Wang, Huijuan; Wang, Lin; Zhu, Jing; Jiang, Wei

    2016-02-03

    An ultrasensitive and highly selective electrochemical assay was first attempted by combining the rolling circle amplification (RCA) reaction with poly(thymine)-templated copper nanoparticles (CuNPs) for cascade signal amplification. As proof of concept, prostate specific antigen (PSA) was selected as a model target. Using a gold nanoparticle (AuNP) as a carrier, we synthesized the primer-AuNP-aptamer bioconjugate for signal amplification by increasing the primer/aptamer ratio. The specific construction of primer-AuNP-aptamer/PSA/anti-PSA sandwich structure triggered the effective RCA reaction, in which thousands of tandem poly(thymine) repeats were generated and directly served as the specific templates for the subsequent CuNP formation. The signal readout was easily achieved by dissolving the RCA product-templated CuNPs and detecting the released copper ions with differential pulse stripping voltammetry. Because of the designed cascade signal amplification strategy, the newly developed method achieved a linear range of 0.05-500 fg/mL, with a remarkable detection limit of 0.020 ± 0.001 fg/mL PSA. Finally, the feasibility of the developed method for practical application was investigated by analyzing PSA in the real clinical human serum samples. The ultrasensitivity, specificity, convenience, and capability for analyzing the clinical samples demonstrate that this method has great potential for practical disease diagnosis applications.

  7. Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review.

    PubMed

    Ding, Liang; Bond, Alan M; Zhai, Jianping; Zhang, Jie

    2013-10-03

    Nanoparticles with desirable properties not exhibited by the bulk material can be readily synthesized because of rapid technological developments in the fields of materials science and nanotechnology. In particular their highly attractive electrochemical properties and electrocatalytic activity have facilitated achievement of the high level of signal amplification needed for the development of ultrasensitive electrochemical affinity biosensors for the detection of proteins and DNA. This review article explains the basic principles of nanoparticle based electrochemical biosensors, highlights the recent advances in the development of nanoparticle based signal amplification strategies, and provides a critical assessment of the likely drawbacks associated with each strategy. Finally, future perspectives for achieving advanced signal simplification in nanoparticles based biosensors are considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Detection and signal amplification in zebrafish RNA FISH.

    PubMed

    Hauptmann, Giselbert; Lauter, Gilbert; Söll, Iris

    2016-04-01

    In situ hybridization (ISH) has become an invaluable tool for the detection of RNA in cells, tissues and organisms. Due to improvements in target and signal amplification and in probe design remarkable progress has been made concerning sensitivity, specificity and resolution of chromogenic and fluorescent ISH (FISH). These advancements allow for exquisite cellular and sub-cellular resolution and for detecting multiple RNA species at a time by multiplexing. In zebrafish (F)ISH non-enzymatic and enzymatic amplification systems have been employed to obtain enhanced signal intensities and signal-to-noise ratios. These amplification strategies include branched DNA-based RNAscope and in situ hybridization chain reaction (HCR) techniques, as well as alkaline phosphatase (AP)- and horseradish peroxidase (PO)-based immunoassays. For practical application, we provide proven multiplex FISH protocols for AP- and PO-based visualization of mRNAs at high resolution. The protocols take advantage of optimized tyramide signal amplification (TSA) conditions of the PO assay and long-lasting high signal-to-noise ratio of the AP reaction, thereby enabling detection of less abundant transcripts. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Optically Controlled Signal Amplification for DNA Computation.

    PubMed

    Prokup, Alexander; Hemphill, James; Liu, Qingyang; Deiters, Alexander

    2015-10-16

    The hybridization chain reaction (HCR) and fuel-catalyst cycles have been applied to address the problem of signal amplification in DNA-based computation circuits. While they function efficiently, these signal amplifiers cannot be switched ON or OFF quickly and noninvasively. To overcome these limitations, a light-activated initiator strand for the HCR, which enabled fast optical OFF → ON switching, was developed. Similarly, when a light-activated version of the catalyst strand or the inhibitor strand of a fuel-catalyst cycle was applied, the cycle could be optically switched from OFF → ON or ON → OFF, respectively. To move the capabilities of these devices beyond solution-based operations, the components were embedded in agarose gels. Irradiation with customizable light patterns and at different time points demonstrated both spatial and temporal control. The addition of a translator gate enabled a spatially activated signal to travel along a predefined path, akin to a chemical wire. Overall, the addition of small light-cleavable photocaging groups to DNA signal amplification circuits enabled conditional control as well as fast photocontrol of signal amplification.

  10. Dual signal amplification of surface plasmon resonance imaging for sensitive immunoassay of tumor marker.

    PubMed

    Hu, Weihua; Chen, Hongming; Shi, Zhuanzhuan; Yu, Ling

    2014-05-15

    Surface plasmon resonance imaging (SPRi) is an intriguing technique for immunoassay with the inherent advantages of being high throughput, real time, and label free, but its sensitivity needs essential improvement for practical applications. Here, we report a dual signal amplification strategy using functional gold nanoparticles (AuNPs) followed by on-chip atom transfer radical polymerization (ATRP) for sensitive SPRi immunoassay of tumor biomarker in human serum. The AuNPs are grafted with an initiator of ATRP as well as a recognition antibody, where the antibody directs the specific binding of functional AuNPs onto the SPRi sensing surface to form immunocomplexes for first signal amplification and the initiator allows for on-chip ATRP of 2-hydroxyethyl methacrylate (HEMA) from the AuNPs to further enhance the SPRi signal. High sensitivity and broad dynamic range are achieved with this dual signal amplification strategy for detection of a model tumor marker, α-fetoprotein (AFP), in 10% human serum. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. A Strategy for Minimizing Background Signal in Autoinductive Signal Amplification Reactions for Point-of-Need Assays.

    PubMed

    Brooks, Adam D; Yeung, Kimy; Lewis, Gregory G; Phillips, Scott T

    2015-09-07

    Rapid point-of-need assays are used to detect abundant biomarkers. The development of in situ signal amplification reactions could extend these assays to screening and triaging of patients for trace levels of biomarkers, even in resource-limited settings. We, and others, have developed small molecule-based in situ signal amplification reactions that eventually may be useful in this context. Herein we describe a design strategy for minimizing background signal that may occur in the absence of the target analyte, thus moving this in situ signal amplification approach one step closer to practical applications. Specifically, we describe allylic ethers as privileged connectors for linking detection and propagating functionality in a small molecule signal amplification reagent. Allylic ethers minimize background reactions while still enabling controlled release of a propagating signal in order to continue the signal amplification reaction. This paper characterizes the ability of allylic ethers to provide an amplified response, and offers insight into additional design considerations that are needed before in situ small molecule-based signal amplification becomes a viable strategy for point-of-need diagnostics.

  12. A Strategy for Minimizing Background Signal in Autoinductive Signal Amplification Reactions for Point-of-Need Assays

    PubMed Central

    Brooks, Adam D.; Yeung, Kimy; Lewis, Gregory G.

    2015-01-01

    Rapid point-of-need assays are used to detect abundant biomarkers. The development of in situ signal amplification reactions could extend these assays to screening and triaging of patients for trace levels of biomarkers, even in resource-limited settings. We, and others, have developed small molecule-based in situ signal amplification reactions that eventually may be useful in this context. Herein we describe a design strategy for minimizing background signal that may occur in the absence of the target analyte, thus moving this in situ signal amplification approach one step closer to practical applications. Specifically, we describe allylic ethers as privileged connectors for linking detection and propagating functionality in a small molecule signal amplification reagent. Allylic ethers minimize background reactions while still enabling controlled release of a propagating signal in order to continue the signal amplification reaction. This paper characterizes the ability of allylic ethers to provide an amplified response, and offers insight into additional design considerations that are needed before in situ small molecule-based signal amplification becomes a viable strategy for point-of-need diagnostics. PMID:26604988

  13. Parametric Amplification For Detecting Weak Optical Signals

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Chien; Chakravarthi, Prakash

    1996-01-01

    Optical-communication receivers of proposed type implement high-sensitivity scheme of optical parametric amplification followed by direct detection for reception of extremely weak signals. Incorporates both optical parametric amplification and direct detection into optimized design enhancing effective signal-to-noise ratios during reception in photon-starved (photon-counting) regime. Eliminates need for complexity of heterodyne detection scheme and partly overcomes limitations imposed on older direct-detection schemes by noise generated in receivers and by limits on quantum efficiencies of photodetectors.

  14. Reversible Gating of Plasmonic Coupling for Optical Signal Amplification.

    PubMed

    Khoury, Christopher G; Fales, Andrew M; Vo-Dinh, Tuan

    2016-07-20

    Amplification of optical signals is useful for a wide variety of applications, ranging from data signal transmission to chemical sensing and biomedical diagnostics. One such application in chemical sensing is surface-enhanced Raman scattering (SERS), an important technique for increasing the Raman signal using the plasmonic effect of enhanced electromagnetic fields associated with metallic nanostructures. One of the most important limitations of SERS-based amplification is the difficulty to reproducibly control the SERS signal. Here, we describe the design and implementation of a unique hybrid system capable of producing reversible gating of plasmonic coupling for Raman signal amplification. The hybrid system is composed of two subsystems: (1) colloidal magneto-plasmonic nanoparticles for SERS enhancement and (2) a micromagnet substrate with an externally applied magnetic field to modulate the colloidal nanoparticles. For this proof of concept demonstration, the nanoparticles were labeled with a Raman-active dye, and it was shown that the detected SERS signal could be reproducibly modulated by controlling the externally applied magnetic field. The developed system provides a simple, robust, inexpensive, and reusable device for SERS signal modulation. These properties will open up new possibilities for optical signal amplification and gating as well for high-throughput, reproducible SERS detection.

  15. Design of nuclease-based target recycling signal amplification in aptasensors.

    PubMed

    Yan, Mengmeng; Bai, Wenhui; Zhu, Chao; Huang, Yafei; Yan, Jiao; Chen, Ailiang

    2016-03-15

    Compared with conventional antibody-based immunoassay methods, aptasensors based on nucleic acid aptamer have made at least two significant breakthroughs. One is that aptamers are more easily used for developing various simple and rapid homogeneous detection methods by "sample in signal out" without multi-step washing. The other is that aptamers are more easily employed for developing highly sensitive detection methods by using various nucleic acid-based signal amplification approaches. As many substances playing regulatory roles in physiology or pathology exist at an extremely low concentration and many chemical contaminants occur in trace amounts in food or environment, aptasensors for signal amplification contribute greatly to detection of such targets. Among the signal amplification approaches in highly sensitive aptasensors, the nuclease-based target recycling signal amplification has recently become a research focus because it shows easy design, simple operation, and rapid reaction and can be easily developed for homogenous assay. In this review, we summarized recent advances in the development of various nuclease-based target recycling signal amplification with the aim to provide a general guide for the design of aptamer-based ultrasensitive biosensing assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy.

    PubMed

    Yang, Xingwang; Qian, Jing; Jiang, Ling; Yan, Yuting; Wang, Kan; Liu, Qian; Wang, Kun

    2014-04-01

    Ochratoxin A (OTA) has a number of toxic effects to both humans and animals, so developing sensitive detection method is of great importance. Herein, we describe an ultrasensitive electrochemical aptasensor for OTA based on the two-level cascaded signal amplification strategy with methylene blue (MB) as a redox indicator. In this method, capture DNA, aptamers, and reporter DNA functionalized-gold nanoparticles (GNPs) were immobilized on the electrode accordingly, where GNPs were used as the first-level signal enhancer. To receive the more sensitive response, a larger number of guanine (G)-rich DNA was bound to the GNPs' surface to provide abundant anchoring sites for MB to achieve the second-level signal amplification. By employing this novel strategy, an ~8.5 (±0.3) fold amplification in signal intensity was obtained. Afterward, OTA was added to force partial GNPs/G-rich DNA to release from the sensing interface and thus decreased the electrochemical response. An effective sensing range from 2.5pM to 2.5nM was received with an extremely low detection limit of 0.75 (±0.12) pM. This amplification strategy has the potential to be the main technology for aptamer-based electrochemical biosensor in a variety of fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. A simple analytical model for signal amplification by reversible exchange (SABRE) process.

    PubMed

    Barskiy, Danila A; Pravdivtsev, Andrey N; Ivanov, Konstantin L; Kovtunov, Kirill V; Koptyug, Igor V

    2016-01-07

    We demonstrate an analytical model for the description of the signal amplification by reversible exchange (SABRE) process. The model relies on a combined analysis of chemical kinetics and the evolution of the nuclear spin system during the hyperpolarization process. The presented model for the first time provides rationale for deciding which system parameters (i.e. J-couplings, relaxation rates, reaction rate constants) have to be optimized in order to achieve higher signal enhancement for a substrate of interest in SABRE experiments.

  18. Method Of Signal Amplification In Multi-Chromophore Luminescence Sensors

    DOEpatents

    Levitsky, Igor A.; Krivoshlykov, Sergei G.

    2004-02-03

    A fluorescence-based method for highly sensitive and selective detection of analyte molecules is proposed. The method employs the energy transfer between two or more fluorescent chromophores in a carefully selected polymer matrix. In one preferred embodiment, signal amplification has been achieved in the fluorescent sensing of dimethyl methylphosphonate (DMMP) using two dyes, 3-aminofluoranthene (AM) and Nile Red (NR), in a hydrogen bond acidic polymer matrix. The selected polymer matrix quenches the fluorescence of both dyes and shifts dye emission and absorption spectra relative to more inert matrices. Upon DMMP sorption, the AM fluorescence shifts to the red at the same time the NR absorption shifts to the blue, resulting in better band overlap and increased energy transfer between chromophores. In another preferred embodiment, the sensitive material is incorporated into an optical fiber system enabling efficient excitation of the dye and collecting the fluorescent signal form the sensitive material on the remote end of the system. The proposed method can be applied to multichromophore luminescence sensor systems incorporating N-chromophores leading to N-fold signal amplification and improved selectivity. The method can be used in all applications where highly sensitive detection of basic gases, such as dimethyl methylphosphonate (DMMP), Sarin, Soman and other chemical warfare agents having basic properties, is required, including environmental monitoring, chemical industry and medicine.

  19. Optimization of noise in non-integrated instrumentation amplifier for the amplification of very low electrophysiological [corrected] signals. Case of electro cardio graphic signals (ECG).

    PubMed

    Ngounou, Guy Merlin; Kom, Martin

    2014-12-01

    In this paper we present an instrumentation amplifier with discrete elements and optimized noise for the amplification of very low signals. In amplifying signals of very weak amplitude, the noise can completely absorb these signals if the used amplifier does not present the optimal guarantee to minimize the noise. Based on related research and re-viewing of recent patents Journal of Medical Systems, 30:205-209, 2006, we suggest an approach of noise reduction in amplification much more thoroughly than re-viewing of recent patents and we deduce from it the general criteria necessary and essential to achieve this optimization. The comparison of these criteria with the provisions adopted in practice leads to the inadequacy of conventional amplifiers for effective noise reduction. The amplifier we propose is an instrumentation amplifier with active negative feedback and optimized noise for the amplification of signals with very low amplitude. The application of this method in the case of electro cardio graphic signals (ECG) provides simulation results fully in line with forecasts.

  20. Sensitive SERS detection of DNA methyltransferase by target triggering primer generation-based multiple signal amplification strategy.

    PubMed

    Li, Ying; Yu, Chuanfeng; Han, Huixia; Zhao, Caisheng; Zhang, Xiaoru

    2016-07-15

    A novel and sensitive surface-enhanced Raman scattering (SERS) method is proposed for the assay of DNA methyltransferase (MTase) activity and evaluation of inhibitors by developing a target triggering primer generation-based multiple signal amplification strategy. By using of a duplex substrate for Dam MTase, two hairpin templates and a Raman probe, multiple signal amplification mode is achieved. Once recognized by Dam MTase, the duplex substrate can be cleaved by Dpn I endonuclease and two primers are released for triggering the multiple signal amplification reaction. Consequently, a wide dynamic range and remarkably high sensitivity are obtained under isothermal conditions. The detection limit is 2.57×10(-4)UmL(-1). This assay exhibits an excellent selectivity and is successfully applied in the screening of inhibitors for Dam MTase. In addition, this novel sensing system is potentially universal as the recognition element can be conveniently designed for other target analytes by changing the substrate of DNA MTase. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Colocalization recognition-activated cascade signal amplification strategy for ultrasensitive detection of transcription factors.

    PubMed

    Zhu, Desong; Wang, Lei; Xu, Xiaowen; Jiang, Wei

    2017-03-15

    Transcription factors (TFs) bind to specific double-stranded DNA (dsDNA) sequences in the regulatory regions of genes to regulate the process of gene transcription. Their expression levels sensitively reflect cell developmental situation and disease state. TFs have become potential diagnostic markers and therapeutic targets of cancers and some other diseases. Hence, high sensitive detection of TFs is of vital importance for early diagnosis of diseases and drugs development. The traditional exonucleases-assisted signal amplification methods suffered from the false positives caused by incomplete digestion of excess recognition probes. Herein, based on a new recognition way-colocalization recognition (CR)-activated dual signal amplification, an ultrasensitive fluorescent detection strategy for TFs was developed. TFs-induced the colocalization of three split recognition components resulted in noticeable increases of local effective concentrations and hybridization of three split components, which activated the subsequent cascade signal amplification including strand displacement amplification (SDA) and exponential rolling circle amplification (ERCA). This strategy eliminated the false positive influence and achieved ultra-high sensitivity towards the purified NF-κB p50 with detection limit of 2.0×10 -13 M. Moreover, NF-κB p50 can be detected in as low as 0.21ngμL -1 HeLa cell nuclear extracts. In addition, this proposed strategy could be used for the screening of NF-κB p50 activity inhibitors and potential anti-NF-κB p50 drugs. Finally, our proposed strategy offered a potential method for reliable detection of TFs in medical diagnosis and treatment research of cancers and other related diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Impulse-induced optimum signal amplification in scale-free networks.

    PubMed

    Martínez, Pedro J; Chacón, Ricardo

    2016-04-01

    Optimizing information transmission across a network is an essential task for controlling and manipulating generic information-processing systems. Here, we show how topological amplification effects in scale-free networks of signaling devices are optimally enhanced when the impulse transmitted by periodic external signals (time integral over two consecutive zeros) is maximum. This is demonstrated theoretically by means of a star-like network of overdamped bistable systems subjected to generic zero-mean periodic signals and confirmed numerically by simulations of scale-free networks of such systems. Our results show that the enhancer effect of increasing values of the signal's impulse is due to a correlative increase of the energy transmitted by the periodic signals, while it is found to be resonant-like with respect to the topology-induced amplification mechanism.

  3. Signal bi-amplification in networks of unidirectionally coupled MEMS

    NASA Astrophysics Data System (ADS)

    Tchakui, Murielle Vanessa; Woafo, Paul; Colet, Pere

    2016-01-01

    The purpose of this paper is to analyze the propagation and the amplification of an input signal in networks of unidirectionally coupled micro-electro-mechanical systems (MEMS). Two types of external excitations are considered: sinusoidal and stochastic signals. We show that sinusoidal signals are amplified up to a saturation level which depends on the transmission rate and despite MEMS being nonlinear the sinusoidal shape is well preserved if the number of MEMS is not too large. However, increasing the number of MEMS, there is an instability that leads to chaotic behavior and which is triggered by the amplification of the harmonics generated by the nonlinearities. We also show that for stochastic input signals, the MEMS array acts as a band-pass filter and after just a few elements the signal has a narrow power spectra.

  4. Dual Electrophoresis Detection System for Rapid and Sensitive Immunoassays with Nanoparticle Signal Amplification

    NASA Astrophysics Data System (ADS)

    Zhang, Fangfang; Ma, Junjie; Watanabe, Junji; Tang, Jinlong; Liu, Huiyu; Shen, Heyun

    2017-02-01

    An electrophoretic technique was combined with an enzyme-linked immunosorbent assay (ELISA) system to achieve a rapid and sensitive immunoassay. A cellulose acetate filter modified with polyelectrolyte multilayer (PEM) was used as a solid substrate for three-dimensional antigen-antibody reactions. A dual electrophoresis process was used to induce directional migration and local condensation of antigens and antibodies at the solid substrate, avoiding the long diffusion times associated with antigen-antibody reactions in conventional ELISAs. The electrophoretic forces drove two steps in the ELISA process, namely the adsorption of antigen, and secondary antibody-labelled polystyrene nanoparticles (NP-Ab). The total time needed for dual electrophoresis-driven detection was just 4 min, nearly 2 h faster than a conventional ELISA system. Moreover, the rapid NP-Ab electrophoresis system simultaneously achieved amplification of the specific signal and a reduction in noise, leading to a more sensitive NP-Ab immunoassay with a limit of detection (LOD) of 130 fM, and wide range of detectable concentrations from 0.13 to 130 pM. These results suggest that the combination of dual electrophoresis detection and NP-Ab signal amplification has great potential for future immunoassay systems.

  5. Polydimethylsiloxane microfluidic chemiluminescence immunodevice with the signal amplification strategy for sensitive detection of human immunoglobin G.

    PubMed

    Li, Huifang; Zhao, Mei; Liu, Wei; Chu, Weiru; Guo, Yumei

    2016-01-15

    A polydimethylsiloxane (PDMS) microfluidic chemiluminescence (CL) immunodevice for sensitive detection of human immunoglobin G (IgG) with the signal amplification strategy was developed in this work. The immunodevice was prepared by covalently immobilizing capture antibodies (Abs) on the silanized microchannel of microfluidic chip. Gold nanoparticles (AuNPs) functionalized with a high molar ratio of horseradish peroxidase (HRP) were used as an Ab label for signal amplification. Using a sandwich immunoassay, the multi-HRP conjugated AuNPs can catalyze the luminol-H2O2 CL system to achieve the high sensitivity. In addition, the double spiral flow-channel was adopted here, which can still contribute to the high sensitivity. Based on signal amplification strategy, the performance of human IgG tests revealed a lower detection limit (DL) of 0.03ng/mL and showed an increase of 7.4-fold in detection sensitivity compared to a commercial Ab-HRP conjugation. This microfluidic immunodevice can provide an alternative approach for sensitive detection of human IgG in the field of clinic diagnostic and therapeutic. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Invasive reaction assisted strand-displacement signal amplification for sensitive DNA detection.

    PubMed

    Zou, Bingjie; Song, Qinxin; Wang, Jianping; Liu, Yunlong; Zhou, Guohua

    2014-11-18

    A novel DNA detection assay was proposed by invasive reaction coupled with molecular beacon assisted strand-displacement signal amplification (IRASA). Target DNAs are firstly hybridized to two probes to initiate invasive reaction to produce amplified flaps. Then these flaps are further amplified by strand-displacement signal amplification. The detection limit was around 0.2 pM.

  7. Ultrasensitive detection of uranyl by graphene oxide-based background reduction and RCDzyme-based enzyme strand recycling signal amplification.

    PubMed

    Li, Ming-Hui; Wang, Yong-Sheng; Cao, Jin-Xiu; Chen, Si-Han; Tang, Xian; Wang, Xiao-Feng; Zhu, Yu-Feng; Huang, Yan-Qin

    2015-10-15

    We proposed a novel strategy which combines graphene oxide-based background reduction with RCDzyme-based enzyme strand recycling amplification for ultrahigh sensitive detection of uranyl. The RCDzyme is designed to contain a guanine (G)-rich sequence that replaces the partial sequence in an uranyl-specific DNAzyme. This multifunctional probe can act as the target recognition element, DNAzyme and the primer of signal amplification. The presence of UO2(2+) can induce the cleavage of the substrate strands in RCDzyme. Then, each released enzyme strand can hybridize with another substrate strands to trigger many cycles of the cleavage by binding uranyl, leading to the formation of more G-quadruplexes by split guanine-rich oligonucleotide fragments. The resulting G-quadruplexes could bind to N-methyl-mesoporphyrin IX (NMM), causing an amplified detection signal for the target uranyl. Next, graphene oxide-based background reduction strategy was further employed for adsorbing free ssDNA and NMM, thereby providing a proximalis zero-background signal. The combination of RCDzyme signal amplification and proximalis zero-background signal remarkably improves the sensitivity of this method, achieving a dynamic range of two orders of magnitude and giving a detection limit down to 86 pM, which is much lower than those of related literature reports. These achievements might be helpful in the design of highly sensitive analytical platform for wide applications in environmental and biomedical fields. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Drastic disorder-induced reduction of signal amplification in scale-free networks.

    PubMed

    Chacón, Ricardo; Martínez, Pedro J

    2015-07-01

    Understanding information transmission across a network is a fundamental task for controlling and manipulating both biological and manmade information-processing systems. Here we show how topological resonant-like amplification effects in scale-free networks of signaling devices are drastically reduced when phase disorder in the external signals is considered. This is demonstrated theoretically by means of a starlike network of overdamped bistable systems, and confirmed numerically by simulations of scale-free networks of such systems. The taming effect of the phase disorder is found to be sensitive to the amplification's strength, while the topology-induced amplification mechanism is robust against this kind of quenched disorder in the sense that it does not significantly change the values of the coupling strength where amplification is maximum in its absence.

  9. Gene Signal Distribution and HER2 Amplification in Gastroesophageal Cancer.

    PubMed

    Jørgensen, Jan Trøst; Nielsen, Karsten Bork; Kjærsgaard, Gitte; Jepsen, Anna; Mollerup, Jens

    2017-01-01

    Background : HER2 serves as an important therapeutic target in gastroesophageal cancer. Differences in HER2 gene signal distribution patterns can be observed at the tissue level, but how it influences the HER2 amplification status has not been studied so far. Here, we investigated the link between HER2 amplification and the different types of gene signal distribution. Methods : Tumor samples from 140 patients with gastroesophageal adenocarcinoma where analyzed using the HER2 IQFISH pharmDx™ assay. Specimens covered non-amplified and amplified cases with a preselected high proportion of HER2 amplified cases. Based on the HER2 /CEN-17 ratio, specimens were categorized into amplified or non-amplified. The signal distribution patterns were divided into homogeneous, heterogeneous focal or heterogeneous mosaic. The study was conducted based on anonymized specimens with limited access to clinicopathological data. Results: Among the 140 analyzed specimens 83 had a heterogeneous HER2 signal distribution, with 62 being focal and 21 of the mosaic type. The remaining 57 specimens had a homogeneous signal distribution. HER2 amplification was observed in 63 of the 140 specimens, and nearly all (93.7%) were found among specimens with a heterogeneous focal signal distribution (p<0.0001). The mean HER2 /CEN-17 ratio for the focal heterogeneous group was 8.75 (CI95%: 6.87 - 10.63), compared to 1.53 (CI95%: 1.45 - 1.61) and 1.70 (CI95%: 1.22 - 2.18) for the heterogeneous mosaic and homogeneous groups, respectively, (p<0.0001). Conclusions: A clear relationship between HER2 amplification and the focal heterogeneous signal distribution was demonstrated in tumor specimens from patients with gastroesophageal cancer. Furthermore, we raise the hypothesis that the signal distribution patterns observed with FISH might be related to different subpopulations of HER2 positive tumor cells.

  10. 3-dB signal-ASE beat noise reduction of coherent multi-carrier signal utilizing phase sensitive amplification.

    PubMed

    Umeki, Takeshi; Takara, Hidehiko; Miyamoto, Yutaka; Asobe, Masaki

    2012-10-22

    We demonstrated the simultaneous amplification of a coherent multi-carrier signal using a χ(2)-based non-degenerate phase sensitive amplifier (PSA). The signal-to-noise ratio (SNR), which is degraded by the additional amplified spontaneous emission (ASE) noise, can be recovered due to the gain difference between a phase-correlated signal-idler pair and uncorrelated excess noise. Utilizing the second harmonic pumping of a χ(2)-based PSA enables us to observe the SNR recovery directly by comparing the SNR for the input with that for the PSA output. A 3-dB optical-SNR (OSNR) improvement was obtained as a result of the gain difference. We also achieved a 3-dB SNR improvement in the electric domain by reducing the signal-ASE beat noise. The receiver sensitivity for a 10 Gbit/s phase shift keying signal was clearly improved with the PSA.

  11. "Signal-on" photoelectrochemical biosensor for sensitive detection of human T-Cell lymphotropic virus type II DNA: dual signal amplification strategy integrating enzymatic amplification with terminal deoxynucleotidyl transferase-mediated extension.

    PubMed

    Shen, Qingming; Han, Li; Fan, Gaochao; Zhang, Jian-Rong; Jiang, Liping; Zhu, Jun-Jie

    2015-01-01

    A novel "signal-on" photoelectrochemical (PEC) biosensor for sensitive detection of human T-cell lymphotropic virus type II (HTLV-II) DNA was developed on the basis of enzymatic amplification coupled with terminal deoxynucleotidyl transferase (TdT)-mediated extension strategy. The intensity of the photocurrent signal was proportional to the concentration of the HTLV-II DNA-target DNA (tDNA) by dual signal amplification. In this protocol, GR-CdS:Mn/ZnS nanocomposites were used as photoelectric conversion material, while pDNA was used as the tDNA recognizing unit. Moreover, the TdT-mediated extension and the enzymatic signal amplification technique were used to enhance the sensitivity of detection. Using this novel dual signal amplification strategy, the prototype of PEC DNA sensor can detect as low as ∼0.033 fM of HTLV-II DNA with a linear range of 0.1-5000 fM, with excellent differentiation ability even for single-base mismatches. This PEC DNA assay opens a promising platform to detect various DNA targets at ultralow levels for early diagnoses of different diseases.

  12. Signal amplification of FISH for automated detection using image cytometry.

    PubMed

    Truong, K; Boenders, J; Maciorowski, Z; Vielh, P; Dutrillaux, B; Malfoy, B; Bourgeois, C A

    1997-05-01

    The purpose of this study was to improve the detection of FISH signals, in order that spot counting by a fully automated image cytometer be comparable to that obtained visually under the microscope. Two systems of spot scoring, visual and automated counting, were investigated in parallel on stimulated human lymphocytes with FISH using a biotinylated centromeric probe for chromosome 3. Signal characteristics were first analyzed on images recorded with a coupled charge device (CCD) camera. Number of spots per nucleus were scored visually on these recorded images versus automatically with a DISCOVERY image analyzer. Several fluochromes, amplification and pretreatments were tested. Our results for both visual and automated scoring show that the tyramide amplification system (TSA) gives the best amplification of signal if pepsin treatment is applied prior to FISH. Accuracy of the automated scoring, however, remained low (58% of nuclei containing two spots) compared to the visual scoring because of the high intranuclear variation between FISH spots.

  13. Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification.

    PubMed

    Cho, Il-Hoon; Lee, Jongsung; Kim, Jiyeon; Kang, Min-Soo; Paik, Jean Kyung; Ku, Seockmo; Cho, Hyun-Mo; Irudayaraj, Joseph; Kim, Dong-Hyung

    2018-01-12

    An electrochemical immunosensor employs antibodies as capture and detection means to produce electrical charges for the quantitative analysis of target molecules. This sensor type can be utilized as a miniaturized device for the detection of point-of-care testing (POCT). Achieving high-performance analysis regarding sensitivity has been one of the key issues with developing this type of biosensor system. Many modern nanotechnology efforts allowed for the development of innovative electrochemical biosensors with high sensitivity by employing various nanomaterials that facilitate the electron transfer and carrying capacity of signal tracers in combination with surface modification and bioconjugation techniques. In this review, we introduce novel nanomaterials (e.g., carbon nanotube, graphene, indium tin oxide, nanowire and metallic nanoparticles) in order to construct a high-performance electrode. Also, we describe how to increase the number of signal tracers by employing nanomaterials as carriers and making the polymeric enzyme complex associated with redox cycling for signal amplification. The pros and cons of each method are considered throughout this review. We expect that these reviewed strategies for signal enhancement will be applied to the next versions of lateral-flow paper chromatography and microfluidic immunosensor, which are considered the most practical POCT biosensor platforms.

  14. Cascade signal amplification for electrochemical immunosensing by integrating biobarcode probes, surface-initiated enzymatic polymerization and silver nanoparticle deposition.

    PubMed

    Lin, Dajie; Mei, Chengyang; Liu, Aili; Jin, Huile; Wang, Shun; Wang, Jichang

    2015-04-15

    A cascade signal amplification strategy through combining surface-initiated enzymatic polymerization (SIEP) and the subsequent deposition of strepavidin functionalized silver nanoparticles (AgNPs) was proposed. The first step of constructing the electrochemical immunosensor involves covalently immobilizing capture antibody on a chitosan modified glass carbon electrode, which then catalyzes DNA addition of deoxynucleotides (dNTP) at the 3'-OH group by terminal deoxynucleotidyl transferase (TdT), leading to the formation of long single-stranded DNAs labeled with numerous biotins. Following the deposition of numerous strepavidin functionalized AgNPs on those long DNA chains, electrochemical stripping signal of silver was used to monitor the immunoreaction in KCl solution. Using α-fetoprotein as a model analyte, this amplification strategy could detect fetoprotein down to 0.046pg/mL with a wide linear range from 0.1pg/mL to 1.0ng/mL. The achieved high sensitivity and good reproducibility suggest that this cascade signal amplification strategy has great potential for detecting biological samples and possibly clinical application. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Signal amplification of microRNAs with modified strand displacement-based cycling probe technology.

    PubMed

    Jia, Huning; Bu, Ying; Zou, Bingjie; Wang, Jianping; Kumar, Shalen; Pitman, Janet L; Zhou, Guohua; Song, Qinxin

    2016-10-24

    Micro ribose nucleic acids (miRNAs) play an important role in biological processes such as cell differentiation, proliferation and apoptosis. Therefore, miRNAs are potentially a powerful marker for monitoring cancer and diagnosis. Here, we present sensitive signal amplification for miRNAs based on modified cycling probe technology with strand displacement amplification. miRNA was captured by the template coupled with beads, and then the first cycle based on SDA was repeatedly extended to the nicking end, which was produced by the extension reaction of miRNA. The products generated by SDA are captured by a molecular beacon (MB), which is designed to initiate the second amplification cycle, with a similar principle to the cycling probe technology (CPT), which is based on repeated digestion of the DNA-RNA hybrid by the RNase H. After one sample enrichment and two steps of signal amplification, 0.1 pM of let-7a can be detected. The miRNA assay exhibits a great dynamic range of over 100 orders of magnitude and high specificity to clearly discriminate a single base difference in miRNA sequences. This isothermal amplification does not require any special temperature control instrument. The assay is also about signal amplification rather than template amplification, therefore minimising contamination issues. In addition, there is no need for the reverse transcription (RT) process. Thus the amplification is suitable for miRNA detection.

  16. Liposomes with High Refractive Index Encapsulants as Tunable Signal Amplification Tools in Surface Plasmon Resonance Spectroscopy.

    PubMed

    Fenzl, Christoph; Hirsch, Thomas; Baeumner, Antje J

    2015-11-03

    One major goal in the surface plasmon resonance (SPR) technique is the reliable detection of small molecules as well as low analyte concentrations. This can be achieved by a viable signal amplification strategy. We therefore investigated optimal liposome characteristics for use as a signal enhancement system for SPR sensors, as liposomes excel not only at versatility but also at colloidal stability and ease of functionalization. These characteristics include the encapsulation of high refractive index markers, lipid composition, liposome size, and surface modifications to best match the requirements of the SPR system. Our studies of the binding of biotinylated liposomes to surface-immobilized streptavidin show that the refractive index of the encapsulant has a major influence on the SPR signal and outweighs the influence of the thin lipid bilayer. Thus, the signal amplification properties of liposomes can be adjusted to the respective needs of any analytical task by simply exchanging the encapsulant solution. In this work, a maximum enhancement factor of 23 was achieved by encapsulating a 500 mM sucrose solution. Dose-response studies with and without liposome enhancement revealed an improvement of the limit of detection from 10 nmol L(-1) to 320 pmol L(-1) streptavidin concentration with a much higher sensitivity of 3 mRIU per logarithmic unit of the concentration between 500 pmol L(-1) and 10 nmol L(-1).

  17. A cascade signal amplification strategy for sensitive and label-free DNA detection based on Exo III-catalyzed recycling coupled with rolling circle amplification.

    PubMed

    Liu, Xingti; Xue, Qingwang; Ding, Yongshun; Zhu, Jing; Wang, Lei; Jiang, Wei

    2014-06-07

    A sensitive and label-free fluorescence assay for DNA detection has been developed based on cascade signal amplification combining exonuclease III (Exo III)-catalyzed recycling with rolling circle amplification. In this assay, probe DNA hybridized with template DNA was coupled onto magnetic nanoparticles to prepare a magnetic bead-probe (MNB-probe)-template complex. The complex could hybridize with the target DNA, which transformed the protruding 3' terminus of template DNA into a blunt end. Exo III could then digest template DNA, liberating the MNB-probe and target DNA. The intact target DNA then hybridized with other templates and released more MNB-probes. The liberated MNB-probe captured the primer, circular DNA and then initiated the rolling circle amplification (RCA) reaction, realizing a cascade signal amplification. Using this cascade amplification strategy, a sensitive DNA detection method was developed which was superior to many existing Exo III-based signal amplification methods. Moreover, N-methyl mesoporphyrin IX, which had a pronounced structural selectivity for the G-quadruplex, was used to combine with the G-quadruplex RCA products and generate a fluorescence signal, avoiding the need for any fluorophore-label probes. The spike and recovery experiments in a human serum sample indicated that our assay also had great potential for DNA detection in real biological samples.

  18. Graphene Ambipolar Nanoelectronics for High Noise Rejection Amplification.

    PubMed

    Liu, Che-Hung; Chen, Qi; Liu, Chang-Hua; Zhong, Zhaohui

    2016-02-10

    In a modern wireless communication system, signal amplification is critical for overcoming losses during multiple data transformations/processes and long-distance transmission. Common mode and differential mode are two fundamental amplification mechanisms, and they utilize totally different circuit configurations. In this paper, we report a new type of dual-gate graphene ambipolar device with capability of operating under both common and differential modes to realize signal amplification. The signal goes through two stages of modulation where the phase of signal can be individually modulated to be either in-phase or out-of-phase at two stages by exploiting the ambipolarity of graphene. As a result, both common and differential mode amplifications can be achieved within one single device, which is not possible in the conventional circuit configuration. In addition, a common-mode rejection ratio as high as 80 dB can be achieved, making it possible for low noise circuit application. These results open up new directions of graphene-based ambipolar electronics that greatly simplify the RF circuit complexity and the design of multifunction device operation.

  19. Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification

    PubMed Central

    Cho, Il-Hoon; Kim, Jiyeon; Kang, Min-soo; Paik, Jean Kyung; Ku, Seockmo; Cho, Hyun-Mo; Irudayaraj, Joseph; Kim, Dong-Hyung

    2018-01-01

    An electrochemical immunosensor employs antibodies as capture and detection means to produce electrical charges for the quantitative analysis of target molecules. This sensor type can be utilized as a miniaturized device for the detection of point-of-care testing (POCT). Achieving high-performance analysis regarding sensitivity has been one of the key issues with developing this type of biosensor system. Many modern nanotechnology efforts allowed for the development of innovative electrochemical biosensors with high sensitivity by employing various nanomaterials that facilitate the electron transfer and carrying capacity of signal tracers in combination with surface modification and bioconjugation techniques. In this review, we introduce novel nanomaterials (e.g., carbon nanotube, graphene, indium tin oxide, nanowire and metallic nanoparticles) in order to construct a high-performance electrode. Also, we describe how to increase the number of signal tracers by employing nanomaterials as carriers and making the polymeric enzyme complex associated with redox cycling for signal amplification. The pros and cons of each method are considered throughout this review. We expect that these reviewed strategies for signal enhancement will be applied to the next versions of lateral-flow paper chromatography and microfluidic immunosensor, which are considered the most practical POCT biosensor platforms. PMID:29329274

  20. Compaction of rolling circle amplification products increases signal integrity and signal-to-noise ratio

    PubMed Central

    Clausson, Carl-Magnus; Arngården, Linda; Ishaq, Omer; Klaesson, Axel; Kühnemund, Malte; Grannas, Karin; Koos, Björn; Qian, Xiaoyan; Ranefall, Petter; Krzywkowski, Tomasz; Brismar, Hjalmar; Nilsson, Mats; Wählby, Carolina; Söderberg, Ola

    2015-01-01

    Rolling circle amplification (RCA) for generation of distinct fluorescent signals in situ relies upon the self-collapsing properties of single-stranded DNA in commonly used RCA-based methods. By introducing a cross-hybridizing DNA oligonucleotide during rolling circle amplification, we demonstrate that the fluorophore-labeled RCA products (RCPs) become smaller. The reduced size of RCPs increases the local concentration of fluorophores and as a result, the signal intensity increases together with the signal-to-noise ratio. Furthermore, we have found that RCPs sometimes tend to disintegrate and may be recorded as several RCPs, a trait that is prevented with our cross-hybridizing DNA oligonucleotide. These effects generated by compaction of RCPs improve accuracy of visual as well as automated in situ analysis for RCA based methods, such as proximity ligation assays (PLA) and padlock probes. PMID:26202090

  1. Increasing the sensitivity of reverse phase protein arrays by antibody-mediated signal amplification

    PubMed Central

    2010-01-01

    Background Reverse phase protein arrays (RPPA) emerged as a useful experimental platform to analyze biological samples in a high-throughput format. Different signal detection methods have been described to generate a quantitative readout on RPPA including the use of fluorescently labeled antibodies. Increasing the sensitivity of RPPA approaches is important since many signaling proteins or posttranslational modifications are present at a low level. Results A new antibody-mediated signal amplification (AMSA) strategy relying on sequential incubation steps with fluorescently-labeled secondary antibodies reactive against each other is introduced here. The signal quantification is performed in the near-infrared range. The RPPA-based analysis of 14 endogenous proteins in seven different cell lines demonstrated a strong correlation (r = 0.89) between AMSA and standard NIR detection. Probing serial dilutions of human cancer cell lines with different primary antibodies demonstrated that the new amplification approach improved the limit of detection especially for low abundant target proteins. Conclusions Antibody-mediated signal amplification is a convenient and cost-effective approach for the robust and specific quantification of low abundant proteins on RPPAs. Contrasting other amplification approaches it allows target protein detection over a large linear range. PMID:20569466

  2. Controlled membrane translocation provides a mechanism for signal transduction and amplification

    NASA Astrophysics Data System (ADS)

    Langton, Matthew J.; Keymeulen, Flore; Ciaccia, Maria; Williams, Nicholas H.; Hunter, Christopher A.

    2017-05-01

    Transmission and amplification of chemical signals across lipid bilayer membranes is of profound significance in many biological processes, from the development of multicellular organisms to information processing in the nervous system. In biology, membrane-spanning proteins are responsible for the transmission of chemical signals across membranes, and signal transduction is often associated with an amplified signalling cascade. The ability to reproduce such processes in artificial systems has potential applications in sensing, controlled drug delivery and communication between compartments in tissue-like constructs of synthetic vesicles. Here we describe a mechanism for transmitting a chemical signal across a membrane based on the controlled translocation of a synthetic molecular transducer from one side of a lipid bilayer membrane to the other. The controlled molecular motion has been coupled to the activation of a catalyst on the inside of a vesicle, which leads to a signal-amplification process analogous to the biological counterpart.

  3. Microwave amplification with nanomechanical resonators.

    PubMed

    Massel, F; Heikkilä, T T; Pirkkalainen, J-M; Cho, S U; Saloniemi, H; Hakonen, P J; Sillanpää, M A

    2011-12-14

    The sensitive measurement of electrical signals is at the heart of modern technology. According to the principles of quantum mechanics, any detector or amplifier necessarily adds a certain amount of noise to the signal, equal to at least the noise added by quantum fluctuations. This quantum limit of added noise has nearly been reached in superconducting devices that take advantage of nonlinearities in Josephson junctions. Here we introduce the concept of the amplification of microwave signals using mechanical oscillation, which seems likely to enable quantum-limited operation. We drive a nanomechanical resonator with a radiation pressure force, and provide an experimental demonstration and an analytical description of how a signal input to a microwave cavity induces coherent stimulated emission and, consequently, signal amplification. This generic scheme, which is based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices. In our device, we achieve signal amplification of 25 decibels with the addition of 20 quanta of noise, which is consistent with the expected amount of added noise. The generality of the model allows for realization in other physical systems as well, and we anticipate that near-quantum-limited mechanical microwave amplification will soon be feasible in various applications involving integrated electrical circuits.

  4. Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Zhou, Yuchun; Sham, L. J.; Lo, Yu-Hwa

    2015-08-01

    Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanism based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.

  5. Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review.

    PubMed

    Zhou, Shaohong; Yuan, Liang; Hua, Xin; Xu, Lingling; Liu, Songqin

    2015-06-02

    Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Thousand-fold fluorescent signal amplification for mHealth diagnostics

    PubMed Central

    Balsam, Joshua; Rasooly, Reuven; Bruck, Hugh Alan; Rasooly, Avraham

    2013-01-01

    The low sensitivity of Mobile Health (mHealth) optical detectors, such as those found on mobile phones, is a limiting factor for many mHealth clinical applications. To improve sensitivity, we have combined two approaches for optical signal amplification: (1) a computational approach based on an image stacking algorithm to decrease the image noise and enhance weak signals, and (2) an optical signal amplifier utilizing a capillary tube array. These approaches were used in a detection system which includes a multi-wavelength LEDs capable of exciting many fluorophores in multiple wavelengths, a mobile phone or a webcam as a detector, and capillary tube array configured with 36 capillary tubes for signal enhancement. The capillary array enables a ~100X increase in signal sensitivity for fluorescein, reducing the limit of detection (LOD) for mobile phones and webcams from 1000 nM to 10 nM. Computational image stacking enables another ~10X increase in signal sensitivity, further reducing the LOD for webcam from 10 nM to 1 nM. To demonstrate the feasibility of the device for the detection of disease-related biomarkers, Adenovirus DNA labeled with SYBR Green or fluorescein was analyzed by both our capillary array and a commercial plate reader. The LOD for the capillary array was 5ug/mL, and that of the plate reader was 1 ug/mL. Similar results were obtained using DNA stained with fluorescein. The combination of the two signal amplification approaches enables a ~1000X increase in LOD for the webcam platform. This brings it into the range of a conventional plate reader while using a smaller sample volume (10ul) than the plate reader requires (100 ul). This suggests that such a device could be suitable for biosensing applications where up to 10 fold smaller sample sizes are needed. The simple optical configuration for mHealth described in this paper employing the combined capillary and image processing signal amplification is capable of measuring weak fluorescent signals

  7. Thousand-fold fluorescent signal amplification for mHealth diagnostics.

    PubMed

    Balsam, Joshua; Rasooly, Reuven; Bruck, Hugh Alan; Rasooly, Avraham

    2014-01-15

    The low sensitivity of Mobile Health (mHealth) optical detectors, such as those found on mobile phones, is a limiting factor for many mHealth clinical applications. To improve sensitivity, we have combined two approaches for optical signal amplification: (1) a computational approach based on an image stacking algorithm to decrease the image noise and enhance weak signals, and (2) an optical signal amplifier utilizing a capillary tube array. These approaches were used in a detection system which includes multi-wavelength LEDs capable of exciting many fluorophores in multiple wavelengths, a mobile phone or a webcam as a detector, and capillary tube array configured with 36 capillary tubes for signal enhancement. The capillary array enables a ~100× increase in signal sensitivity for fluorescein, reducing the limit of detection (LOD) for mobile phones and webcams from 1000 nM to 10nM. Computational image stacking enables another ~10× increase in signal sensitivity, further reducing the LOD for webcam from 10nM to 1 nM. To demonstrate the feasibility of the device for the detection of disease-related biomarkers, adenovirus DNA labeled with SYBR green or fluorescein was analyzed by both our capillary array and a commercial plate reader. The LOD for the capillary array was 5 ug/mL, and that of the plate reader was 1 ug/mL. Similar results were obtained using DNA stained with fluorescein. The combination of the two signal amplification approaches enables a ~1000× increase in LOD for the webcam platform. This brings it into the range of a conventional plate reader while using a smaller sample volume (10 ul) than the plate reader requires (100 ul). This suggests that such a device could be suitable for biosensing applications where up to 10 fold smaller sample sizes are needed. The simple optical configuration for mHealth described in this paper employing the combined capillary and image processing signal amplification is capable of measuring weak fluorescent signals

  8. Tiny Grains Give Huge Gains: Nanocrystal–Based Signal Amplification for Biomolecule Detection

    PubMed Central

    Tong, Sheng; Ren, Binbin; Zheng, Zhilan; Shen, Han; Bao, Gang

    2013-01-01

    Nanocrystals, despite their tiny sizes, contain thousands to millions of atoms. Here we show that the large number of atoms packed in each metallic nanocrystal can provide a huge gain in signal amplification for biomolecule detection. We have devised a highly sensitive, linear amplification scheme by integrating the dissolution of bound nanocrystals and metal-induced stoichiometric chromogenesis, and demonstrated that signal amplification is fully defined by the size and atom density of nanocrystals, which can be optimized through well-controlled nanocrystal synthesis. Further, the rich library of chromogenic reactions allows implementation of this scheme in various assay formats, as demonstrated by the iron oxide nanoparticle linked immunosorbent assay (ILISA) and blotting assay developed in this study. Our results indicate that, owing to the inherent simplicity, high sensitivity and repeatability, the nanocrystal based amplification scheme can significantly improve biomolecule quantification in both laboratory research and clinical diagnostics. This novel method adds a new dimension to current nanoparticle-based bioassays. PMID:23659350

  9. Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce

    2015-08-03

    Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanismmore » based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.« less

  10. ZnOEP based phototransistor: signal amplification and light-controlled switch.

    PubMed

    Ji, Heng-Xing; Hu, Jin-Song; Wan, Li-Jun

    2008-06-21

    A phototransistor with a field-effect transistor configuration was fabricated using a single zinc octaethylporphyrin (ZnOEP) nanorod; the device showed ability in signal amplification and reversible light-controlled switching.

  11. Increased Sensitivity of HIV-1 p24 ELISA Using a Photochemical Signal Amplification System.

    PubMed

    Bystryak, Simon; Santockyte, Rasa

    2015-10-01

    In this study we describe a photochemical signal amplification method (PSAM) for increasing of the sensitivity of enzyme-linked immunosorbent assay (ELISA) for determination of HIV-1 p24 antigen. The photochemical signal amplification method is based on an autocatalytic photochemical reaction of a horseradish peroxidase (HRP) substrate, orthophenylenediamine (OPD). To compare the performance of PSAM-boosted ELISA with a conventional colorimetric ELISA for determination of HIV-1 p24 antigen we employed a PerkinElmer HIV-1 p24 ELISA kit, using conventional ELISA alongside ELISA + PSAM. In the present study, we show that PSAM technology allows one to increase the analytical sensitivity and dynamic range of a commercial HIV-1 p24 ELISA kit, with and without immune-complex disruption, by a factor of approximately 40-fold. ELISA + PSAM is compatible with commercially available microtiter plate readers, requires only an inexpensive illumination device, and the PSAM amplification step takes no longer than 15 min. This method can be used for both commercially available and in-house ELISA tests, and has the advantage of being considerably simpler and less costly than alternative signal amplification methods. This method can be used for both commercially available and in-house ELISA tests, and has the advantage of being considerably simpler and less costly than alternative signal amplification methods.

  12. Signal Amplification by Reversible Exchange (SABRE): From Discovery to Diagnosis.

    PubMed

    Rayner, Peter J; Duckett, Simon B

    2018-06-04

    Signal amplification by reversible exchange (SABRE) turns typically weak magnetic resonance responses into strong signals making previously impractical measurements possible. This technique has gained significant popularity because of its speed and simplicity. This Minireview tracks the development of SABRE from the initial hyperpolarization of pyridine in 2009 to the point in which 50 % 1 H polarization levels have been achieved in a di-deuterio-nicotinate, a key step in the pathway to potential clinical use. Simple routes to highly efficient 15 N hyperpolarization and the creation of hyperpolarized long-lived magnetic states are illustrated. To conclude, we describe how the recently reported SABRE-RELAY approach offers a route for parahydrogen to hyperpolarize a much wider array of molecular scaffolds, such as amides, alcohols, carboxylic acids, and phosphates, than was previously thought possible. We predict that collectively these developments ensure that SABRE will significantly impact on both chemical analysis and the diagnosis of disease in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Signal Amplification Technologies for the Detection of Nucleic Acids: from Cell-Free Analysis to Live-Cell Imaging.

    PubMed

    Fozooni, Tahereh; Ravan, Hadi; Sasan, Hosseinali

    2017-12-01

    Due to their unique properties, such as programmability, ligand-binding capability, and flexibility, nucleic acids can serve as analytes and/or recognition elements for biosensing. To improve the sensitivity of nucleic acid-based biosensing and hence the detection of a few copies of target molecule, different modern amplification methodologies, namely target-and-signal-based amplification strategies, have already been developed. These recent signal amplification technologies, which are capable of amplifying the signal intensity without changing the targets' copy number, have resulted in fast, reliable, and sensitive methods for nucleic acid detection. Working in cell-free settings, researchers have been able to optimize a variety of complex and quantitative methods suitable for deploying in live-cell conditions. In this study, a comprehensive review of the signal amplification technologies for the detection of nucleic acids is provided. We classify the signal amplification methodologies into enzymatic and non-enzymatic strategies with a primary focus on the methods that enable us to shift away from in vitro detecting to in vivo imaging. Finally, the future challenges and limitations of detection for cellular conditions are discussed.

  14. Entanglement sensitivity to signal attenuation and amplification

    NASA Astrophysics Data System (ADS)

    Filippov, Sergey N.; Ziman, Mário

    2014-07-01

    We analyze general laws of continuous-variable entanglement dynamics during the deterministic attenuation and amplification of the physical signal carrying the entanglement. These processes are inevitably accompanied by noises, so we find fundamental limitations on noise intensities that destroy entanglement of Gaussian and non-Gaussian input states. The phase-insensitive amplification Φ1⊗Φ2⊗⋯ΦN with the power gain κi≥2 (≈3 dB, i =1,...,N) is shown to destroy entanglement of any N-mode Gaussian state even in the case of quantum-limited performance. In contrast, we demonstrate non-Gaussian states with the energy of a few photons such that their entanglement survives within a wide range of noises beyond quantum-limited performance for any degree of attenuation or gain. We detect entanglement preservation properties of the channel Φ1⊗Φ2, where each mode is deterministically attenuated or amplified. Gaussian states of high energy are shown to be robust to very asymmetric attenuations, whereas non-Gaussian states are at an advantage in the case of symmetric attenuation and general amplification. If Φ1=Φ2, the total noise should not exceed 1/2√κ2+1 to guarantee entanglement preservation.

  15. Thousand-fold fluorescent signal amplification for mHealth diagnostics

    USDA-ARS?s Scientific Manuscript database

    The low sensitivity of Mobile Health (mHealth) optical detectors, such as those found on mobile phones, is a limiting factor for many mHealth clinical applications. To improve sensitivity, we have combined two approaches for optical signal amplification: (1) a computational approach based on an imag...

  16. Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance

    NASA Astrophysics Data System (ADS)

    Badzey, Robert L.; Mohanty, Pritiraj

    2005-10-01

    Stochastic resonance is a counterintuitive concept: the addition of noise to a noisy system induces coherent amplification of its response. First suggested as a mechanism for the cyclic recurrence of ice ages, stochastic resonance has been seen in a wide variety of macroscopic physical systems: bistable ring lasers, superconducting quantum interference devices (SQUIDs), magnetoelastic ribbons and neurophysiological systems such as the receptors in crickets and crayfish. Although fundamentally important as a mechanism of coherent signal amplification, stochastic resonance has yet to be observed in nanoscale systems. Here we report the observation of stochastic resonance in bistable nanomechanical silicon oscillators. Our nanomechanical systems consist of beams that are clamped at each end and driven into transverse oscillation with the use of a radiofrequency source. Modulation of the source induces controllable switching of the beams between two stable, distinct states. We observe that the addition of white noise causes a marked amplification of the signal strength. Stochastic resonance in nanomechanical systems could have a function in the realization of controllable high-speed nanomechanical memory cells, and paves the way for exploring macroscopic quantum coherence and tunnelling.

  17. Novel rolling circle amplification and DNA origami-based DNA belt-involved signal amplification assay for highly sensitive detection of prostate-specific antigen (PSA).

    PubMed

    Yan, Juan; Hu, Chongya; Wang, Ping; Liu, Rui; Zuo, Xiaolei; Liu, Xunwei; Song, Shiping; Fan, Chunhai; He, Dannong; Sun, Gang

    2014-11-26

    Prostate-specific antigen (PSA) is one of the most important biomarkers for the early diagnosis and prognosis of prostate cancer. Although many efforts have been made to achieve significant progress for the detection of PSA, challenges including relative low sensitivity, complicated operation, sophisticated instruments, and high cost remain unsolved. Here, we have developed a strategy combining rolling circle amplification (RCA)-based DNA belts and magnetic bead-based enzyme-linked immunosorbent assay (ELISA) for the highly sensitive and specific detection of PSA. At first, a 96-base circular DNA template was designed and prepared for the following RCA. Single stranded DNA (ssDNA) products from RCA were used as scaffold strand for DNA origami, which was hybridized with three staple strands of DNA. The resulting DNA belts were conjugated with multiple enzymes for signal amplification and then employed to magnetic bead based ELISA for PSA detection. Through our strategy, as low as 50 aM of PSA can be detected with excellent specificity.

  18. Bioinspired Composite Microfibers for Skin Adhesion and Signal Amplification of Wearable Sensors.

    PubMed

    Drotlef, Dirk-M; Amjadi, Morteza; Yunusa, Muhammad; Sitti, Metin

    2017-07-01

    A facile approach is proposed for superior conformation and adhesion of wearable sensors to dry and wet skin. Bioinspired skin-adhesive films are composed of elastomeric microfibers decorated with conformal and mushroom-shaped vinylsiloxane tips. Strong skin adhesion is achieved by crosslinking the viscous vinylsiloxane tips directly on the skin surface. Furthermore, composite microfibrillar adhesive films possess a high adhesion strength of 18 kPa due to the excellent shape adaptation of the vinylsiloxane tips to the multiscale roughness of the skin. As a utility of the skin-adhesive films in wearable-device applications, they are integrated with wearable strain sensors for respiratory and heart-rate monitoring. The signal-to-noise ratio of the strain sensor is significantly improved to 59.7 because of the considerable signal amplification of microfibrillar skin-adhesive films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Label-Free Sensitive Detection of DNA Methyltransferase by Target-Induced Hyperbranched Amplification with Zero Background Signal.

    PubMed

    Zhang, Yan; Wang, Xin-Yan; Zhang, Qianyi; Zhang, Chun-Yang

    2017-11-21

    DNA methyltransferases (MTases) may specifically recognize the short palindromic sequences and transfer a methyl group from S-adenosyl-l-methionine to target cytosine/adenine. The aberrant DNA methylation is linked to the abnormal DNA MTase activity, and some DNA MTases have become promising targets of anticancer/antimicrobial drugs. However, the reported DNA MTase assays often involve laborious operation, expensive instruments, and radio-labeled substrates. Here, we develop a simple and label-free fluorescent method to sensitively detect DNA adenine methyltransferase (Dam) on the basis of terminal deoxynucleotidyl transferase (TdT)-activated Endonuclease IV (Endo IV)-assisted hyperbranched amplification. We design a hairpin probe with a palindromic sequence in the stem as the substrate and a NH 2 -modified 3' end for the prevention of nonspecific amplification. The substrate may be methylated by Dam and subsequently cleaved by DpnI, producing three single-stranded DNAs, two of which with 3'-OH termini may be amplified by hyperbranched amplification to generate a distinct fluorescence signal. Because high exactitude of TdT enables the amplification only in the presence of free 3'-OH termini and Endo IV only hydrolyzes the intact apurinic/apyrimidinic sites in double-stranded DNAs, zero background signal can be achieved. This method exhibits excellent selectivity and high sensitivity with a limit of detection of 0.003 U/mL for pure Dam and 9.61 × 10 -6 mg/mL for Dam in E. coli cells. Moreover, it can be used to screen the Dam inhibitors, holding great potentials in disease diagnosis and drug development.

  20. Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect

    PubMed Central

    Maram, Reza; Van Howe, James; Li, Ming; Azaña, José

    2014-01-01

    Amplification of signal intensity is essential for initiating physical processes, diagnostics, sensing, communications and measurement. During traditional amplification, the signal is amplified by multiplying the signal carriers through an active gain process, requiring the use of an external power source. In addition, the signal is degraded by noise and distortions that typically accompany active gain processes. We show noiseless intensity amplification of repetitive optical pulse waveforms with gain from 2 to ~20 without using active gain. The proposed method uses a dispersion-induced temporal self-imaging (Talbot) effect to redistribute and coherently accumulate energy of the original repetitive waveforms into fewer replica waveforms. In addition, we show how our passive amplifier performs a real-time average of the wave-train to reduce its original noise fluctuation, as well as enhances the extinction ratio of pulses to stand above the noise floor. Our technique is applicable to repetitive waveforms in any spectral region or wave system. PMID:25319207

  1. An ultrasensitive colorimeter assay strategy for p53 mutation assisted by nicking endonuclease signal amplification.

    PubMed

    Lin, Zhenyu; Yang, Weiqiang; Zhang, Guiyun; Liu, Qida; Qiu, Bin; Cai, Zongwei; Chen, Guonan

    2011-08-28

    A novel catalytic colorimetric assay assisted by nicking endonuclease signal amplification (NESA) was developed. With the signal amplification, the detection limit of the p53 target gene can be as low as 1 pM, which is nearly 5 orders of magnitude lower than that of other previously reported colorimetric DNA detection strategies based on catalytic DNAzyme.

  2. Dual signal amplification for highly sensitive electrochemical detection of uropathogens via enzyme-based catalytic target recycling.

    PubMed

    Su, Jiao; Zhang, Haijie; Jiang, Bingying; Zheng, Huzhi; Chai, Yaqin; Yuan, Ruo; Xiang, Yun

    2011-11-15

    We report an ultrasensitive electrochemical approach for the detection of uropathogen sequence-specific DNA target. The sensing strategy involves a dual signal amplification process, which combines the signal enhancement by the enzymatic target recycling technique with the sensitivity improvement by the quantum dot (QD) layer-by-layer (LBL) assembled labels. The enzyme-based catalytic target DNA recycling process results in the use of each target DNA sequence for multiple times and leads to direct amplification of the analytical signal. Moreover, the LBL assembled QD labels can further enhance the sensitivity of the sensing system. The coupling of these two effective signal amplification strategies thus leads to low femtomolar (5fM) detection of the target DNA sequences. The proposed strategy also shows excellent discrimination between the target DNA and the single-base mismatch sequences. The advantageous intrinsic sequence-independent property of exonuclease III over other sequence-dependent enzymes makes our new dual signal amplification system a general sensing platform for monitoring ultralow level of various types of target DNA sequences. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Harnessing polarisation transfer to indazole and imidazole through signal amplification by reversible exchange to improve their NMR detectability

    PubMed Central

    Fekete, Marianna; Rayner, Peter J.; Green, Gary G. R.

    2017-01-01

    The signal amplification by reversible exchange (SABRE) approach has been used to hyperpolarise the substrates indazole and imidazole in the presence of the co‐ligand acetonitrile through the action of the precataysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)]. 2H‐labelled forms of these catalysts were also examined. Our comparison of the two precatalysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)], coupled with 2H labelling of the N‐heterocyclic carbene and associated relaxation and polarisation field variation studies, demonstrates the critical and collective role these parameters play in controlling the efficiency of signal amplification by reversible exchange. Ultimately, with imidazole, a 700‐fold1H signal gain per proton is produced at 400 MHz, whilst for indazole, a 90‐fold increase per proton is achieved. The co‐ligand acetonitrile proved to optimally exhibit a 190‐fold signal gain per proton in these measurements, with the associated studies revealing the importance the substrate plays in controlling this value. Copyright © 2017 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. PMID:28497481

  4. Target-triggering multiple-cycle signal amplification strategy for ultrasensitive detection of DNA based on QCM and SPR.

    PubMed

    Song, Weiling; Yin, Wenshuo; Sun, Wenbo; Guo, Xiaoyan; He, Peng; Yang, Xiaoyan; Zhang, Xiaoru

    2018-04-24

    Detection of ultralow concentrations of nucleic acid sequences is a central challenge in the early diagnosis of genetic diseases. Herein, we developed a target-triggering cascade multiple cycle amplification for ultrasensitive DNA detection using quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). It was based on the exonuclease Ⅲ (Exo Ⅲ)-assisted signal amplification and the hybridization chain reaction (HCR). The streptavidin-coated Au-NPs (Au-NPs-SA) were assembled on the HCR products as recognition element. Upon sensing of target DNA, the duplex DNA probe triggered the Exo Ⅲ cleavage process, accompanied by generating a new secondary target DNA and releasing target DNA. The released target DNA and the secondary target DNA were recycled. Simultaneously, numerous single strands were liberated and acted as the trigger of HCR to generate further signal amplification, resulting in the immobilization of abundant Au-NPs-SA on the gold substrate. The QCM sensor results were found to be comparable to that achieved using a SPR sensor platform. This method exhibited a high sensitivity toward target DNA with a detection limit of 0.70 fM. The high sensitivity and specificity make this method a great potential for detecting DNA with trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Quinone Methide Signal Amplification: Covalent Reporter Labeling of Cancer Epitopes using Alkaline Phosphatase Substrates.

    PubMed

    Polaske, Nathan W; Kelly, Brian D; Ashworth-Sharpe, Julia; Bieniarz, Christopher

    2016-03-16

    Diagnostic assays with the sensitivity required to improve cancer therapeutics depend on the development of new signal amplification technologies. Herein, we report the development and application of a novel amplification system which utilizes latent quinone methides (QMs) activated by alkaline phosphatase (AP) for signal amplification in solid-phase immunohistochemical (IHC) assays. Phosphate-protected QM precursor substrates were prepared and conjugated to either biotin or a fluorophore through an amine-functionalized linker group. Upon reaction with AP, the phosphate group is cleaved, followed by elimination of the leaving group and formation of the highly reactive and short-lived QM. The QMs either react with tissue nucleophiles in close proximity to their site of generation, or are quenched by nucleophiles in the reaction media. The reporter molecules that covalently bind to the tissue were then detected visually by fluorescence microscopy in the case of fluorophore reporters, or brightfield microscopy using diaminobenzidine (DAB) in the case of biotin reporters. With multiple reporters deposited per enzyme, significant signal amplification was observed utilizing QM precursor substrates containing either benzyl difluoro or benzyl monofluoro leaving group functionalities. However, the benzyl monofluoro leaving group gave superior results with respect to both signal intensity and discretion, the latter of which was found to be imperative for use in diagnostic IHC assays.

  6. Recent advances in signal amplification strategy based on oligonucleotide and nanomaterials for microRNA detection-a review.

    PubMed

    Chen, Ying-Xu; Huang, Ke-Jing; Niu, Ke-Xin

    2018-01-15

    MicroRNAs (MiRNAs) play multiple crucial regulating roles in cell which can regulate one third of protein-coding genes. MiRNAs participate in the developmental and physiological processes of human body, while their aberrant adjustment will be more likely to trigger diseases such as cancers, kidney disease, central nervous system diseases, cardiovascular diseases, diabetes, viral infections and so on. What's worse, for the detection of miRNAs, their small size, high sequence similarity, low abundance and difficult extraction from cells impose great challenges in the analysis. Hence, it's necessary to fabricate accurate and sensitive biosensing platform for miRNAs detection. Up to now, researchers have developed many signal-amplification strategies for miRNAs detection, including hybridization chain reaction, nuclease amplification, rolling circle amplification, catalyzed hairpin assembly amplification and nanomaterials based amplification. These methods are typical, feasible and frequently used. In this review, we retrospect recent advances in signal amplification strategies for detecting miRNAs and point out the pros and cons of them. Furthermore, further prospects and promising developments of the signal-amplification strategies for detecting miRNAs are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. New Signal Amplification Strategy Using Semicarbazide as Co-reaction Accelerator for Highly Sensitive Electrochemiluminescent Aptasensor Construction.

    PubMed

    Ma, Meng-Nan; Zhuo, Ying; Yuan, Ruo; Chai, Ya-Qin

    2015-11-17

    A highly sensitive electrochemiluminescent (ECL) aptasensor was constructed using semicarbazide (Sem) as co-reaction accelerator to promote the ECL reaction rate of CdTe quantum dots (CdTe QDs) and the co-reactant of peroxydisulfate (S2O8(2-)) for boosting signal amplification. The co-reaction accelerator is a species that when it is introduced into the ECL system containing luminophore and co-reactant, it can interact with co-reactant rather than luminophore to promote the ECL reaction rate of luminophore and co-reactant; thus the ECL signal is significantly amplified in comparison with that in which only luminophore and co-reactant are present. In this work, the ECL signal probes were first fabricated by alternately assembling the Sem and Au nanoparticles (AuNPs) onto the surfaces of hollow Au nanocages (AuNCs) via Au-N bond to obtain the multilayered nanomaterials of (AuNPs-Sem)n-AuNCs for immobilizing amino-terminated detection aptamer of thrombin (TBA2). Notably, the Sem with two -NH2 terminal groups could not only serve as cross-linking reagent to assemble AuNPs and AuNCs but also act as co-reaction accelerator to enhance the ECL reaction rate of CdTe QDs and S2O8(2-) for signal amplification. With the sandwich-type format, TBA2 signal probes could be trapped on the CdTe QD-based sensing interface in the presence of thrombin (TB) to achieve a considerably enhanced ECL signal in S2O8(2-) solution. As a result, the Sem in the TBA2 signal probes could accelerate the reduction of S2O8(2-) to produce the more oxidant mediators of SO4(•-), which further boosted the production of excited states of CdTe QDs to emit light. With the employment of the novel co-reaction accelerator Sem, the proposed ECL biosensor exhibited ultrahigh sensitivity to quantify the concentration of TB from 1 × 10(-7) to 1 nM with a detection limit of 0.03 fM, which demonstrated that the co-reaction accelerator could provide a simple, efficient, and low-cost approach for signal

  8. SERS assay of telomerase activity at single-cell level and colon cancer tissues via quadratic signal amplification.

    PubMed

    Shi, Muling; Zheng, Jing; Liu, Changhui; Tan, Guixiang; Qing, Zhihe; Yang, Sheng; Yang, Jinfeng; Tan, Yongjun; Yang, Ronghua

    2016-03-15

    As an important biomarker and therapeutic target, telomerase has attracted extensive attention concerning its detection and monitoring. Recently, enzyme-assisted amplification approaches have provided useful platforms for the telomerase activity detection, however, further improvement in sensitivity is still hindered by the single-step signal amplification. Herein, we develop a quadratic signal amplification strategy for ultrasensitive surface-enhanced Raman scattering (SERS) detection of telomerase activity. The central idea of our design is using telomerase-induced silver nanoparticles (AgNPs) assembly and silver ions (Ag(+))-mediated cascade amplification. In our approach, each telomerase-aided DNA sequence extension could trigger the formation of a long double-stranded DNA (dsDNA), making numerous AgNPs assembling along with this long strand through specific Ag-S bond, to form a primary amplification element. For secondary amplification, each conjugated AgNP was dissolved into Ag(+), which can effectively induce the 4-aminobenzenethiol (4-ABT) modified gold nanoparticles (AuNPs@4-ABT) to undergo aggregation to form numerous "hot-spots". Through quadratic amplifications, a limit of detection down to single HeLa cell was achieved. More importantly, this method demonstrated good performance when applied to tissues from colon cancer patients, which exhibits great potential in the practical application of telomerase-based cancer diagnosis in early stages. To demonstrate the potential in screening the telomerase inhibitors and telomerase-targeted drugs, the proposed design is successfully employed to measure the inhibition of telomerase activity by 3'-azido-3'-deoxythymidine. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges.

    PubMed

    Qing, Taiping; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Wen, Li; Shangguan, Jingfang; Mao, Zhengui; Lei, Yanli

    2016-04-01

    Owing to their highly efficient catalytic effects and substrate specificity, the nucleic acid tool enzymes are applied as 'nano-tools' for manipulating different nucleic acid substrates both in the test-tube and in living organisms. In addition to the function as molecular scissors and molecular glue in genetic engineering, the application of nucleic acid tool enzymes in biochemical analysis has also been extensively developed in the past few decades. Used as amplifying labels for biorecognition events, the nucleic acid tool enzymes are mainly applied in nucleic acids amplification sensing, as well as the amplification sensing of biorelated variations of nucleic acids. With the introduction of aptamers, which can bind different target molecules, the nucleic acid tool enzymes-aided signal amplification strategies can also be used to sense non-nucleic targets (e.g., ions, small molecules, proteins, and cells). This review describes and discusses the amplification strategies of nucleic acid tool enzymes-aided biosensors for biochemical analysis applications. Various analytes, including nucleic acids, ions, small molecules, proteins, and cells, are reviewed briefly. This work also addresses the future trends and outlooks for signal amplification in nucleic acid tool enzymes-aided biosensors.

  10. Anomalous amplification of a homodyne signal via almost-balanced weak values.

    PubMed

    Liu, Wei-Tao; Martínez-Rincón, Julián; Viza, Gerardo I; Howell, John C

    2017-03-01

    We propose precision measurements of ultra-small angular velocities of a mirror within a modified Sagnac interferometer, where the counter-propagating beams are spatially separated, using the recently proposed technique of almost-balanced weak values amplification (ABWV) [Phys. Rev. Lett.116, 100803 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.100803]. The separation between the two beams provides additional amplification with respect to using collinear beams in a Sagnac interferometer. Within the same setup, the weak-value amplification technique is also performed for comparison. Much higher amplification factors can be obtained using the almost-balanced weak values technique, with the best one achieved in our experiments being as high as 1.2×107. In addition, the amplification factor monotonically increases with decreasing of the post-selection phase for the ABWV case in our experiments, which is not the case for weak-value amplification (WVA) at small post-selection phases. Both techniques consist of measuring the angular velocity. The sensitivity of the ABWV technique is ∼38  nrad/s per averaged pulse for a repetition rate of 1 Hz and ∼33  nrad/s per averaged pulse for the WVA technique.

  11. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2000-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  12. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2004-10-12

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  13. Novel Immunohistochemical Techniques Using Discrete Signal Amplification Systems for Human Cutaneous Peripheral Nerve Fiber Imaging

    PubMed Central

    Wang, Ningshan; Gibbons, Christopher H.; Freeman, Roy

    2011-01-01

    Confocal imaging uses immunohistochemical binding of specific antibodies to visualize tissues, but technical obstacles limit more widespread use of this technique in the imaging of peripheral nerve tissue. These obstacles include same-species antibody cross-reactivity and weak fluorescent signals of individual and co-localized antigens. The aims of this study were to develop new immunohistochemical techniques for imaging of peripheral nerve fibers. Three-millimeter punch skin biopsies of healthy individuals were fixed, frozen, and cut into 50-µm sections. Tissues were stained with a variety of antibody combinations with two signal amplification systems, streptavidin-biotin-fluorochrome (sABC) and tyramide-horseradish peroxidase-fluorochrome (TSA), used simultaneously to augment immunohistochemical signals. The combination of the TSA and sABC amplification systems provided the first successful co-localization of sympathetic adrenergic and sympathetic cholinergic nerve fibers in cutaneous human sweat glands and vasomotor and pilomotor systems. Primary antibodies from the same species were amplified individually without cross-reactivity or elevated background interference. The confocal fluorescent signal-to-noise ratio increased, and image clarity improved. These modifications to signal amplification systems have the potential for widespread use in the study of human neural tissues. PMID:21411809

  14. Amplification of an Autodyne Signal in a Bistable Vertical-Cavity Surface-Emitting Laser with the Use of a Vibrational Resonance

    NASA Astrophysics Data System (ADS)

    Chizhevsky, V. N.

    2018-01-01

    For the first time, it is demonstrated experimentally that a vibrational resonance in a polarization-bistable vertical-cavity surface-emitting laser can be used to increase the laser response in autodyne detection of microvibrations from reflecting surfaces. In this case, more than 25-fold signal amplification is achieved. The influence of the asymmetry of the bistable potential on the microvibration-detection efficiency is studied.

  15. Glucose Oxidase-Mediated Polymerization as a Platform for Dual-Mode Signal Amplification and Biodetection

    PubMed Central

    Berron, Brad J; Johnson, Leah M; Ba, Xiao; McCall, Joshua D; Alvey, Nicholas J; Anseth, Kristi S; Bowman, Christopher N

    2011-01-01

    We report the first use of a polymerization-based ELISA substrate solution employing enzymatically mediated radical polymerization as a dual-mode amplification strategy. Enzymes are selectively coupled to surfaces to generate radicals that subsequently lead to polymerization-based amplification (PBA) and biodetection. Sensitivity and amplification of the polymerization-based detection system were optimized in a microwell strip format using a biotinylated microwell surface with a glucose oxidase (GOx)–avidin conjugate. The immobilized GOx is used to initiate polymerization, enabling the detection of the biorecognition event visually or through the use of a plate reader. Assay response is compared to that of an enzymatic substrate utilizing nitroblue tetrazolium in a simplified assay using biotinylated wells. The polymerization substrate exhibits equivalent sensitivity (2 µg/mL of GOx-avidin) and over three times greater signal amplification than this traditional enzymatic substrate since each radical that is enzymatically generated leads to a large number of polymerization events. Enzyme-mediated polymerization proceeds in an ambient atmosphere without the need for external energy sources, which is an improvement upon previous PBA platforms. Substrate formulations are highly sensitive to both glucose and iron concentrations at the lowest enzyme concentrations. Increases in amplification time correspond to higher assay sensitivities with no increase in non-specific signal. Finally, the polymerization substrate generated a signal to noise ratio of 14 at the detection limit (156 ng/mL) in an assay of transforming growth factor-beta. Biotechnol. Bioeng. 2011; 108:1521–1528. © 2011 Wiley Periodicals, Inc. PMID:21337335

  16. Protection from feed-forward amplification in an amplified RNAi mechanism

    PubMed Central

    Pak, Julia; Maniar, Jay Mahesh; Mello, Cecilia Cabral; Fire, Andrew

    2012-01-01

    SUMMARY The effectiveness of RNA interference (RNAi) in many organisms is potentiated through the signal-amplifying activity of a targeted RNA directed RNA polymerase (RdRP) system that can convert a small population of exogenously-encountered dsRNA fragments into an abundant internal pool of small interfering RNA (siRNA). As for any biological amplification system, we expect an underlying architecture that will limit the ability of a randomly encountered trigger to produce an uncontrolled and self-escalating response. Investigating such limits in C. elegans, we find that feed-forward amplification is limited by a critical biosynthetic and structural distinction at the RNA level between (i) triggers that can produce amplification and (ii) siRNA products of the amplification reaction. By assuring that initial (primary) siRNAs can act as triggers but not templates for activation, and that the resulting (secondary) siRNAs can enforce gene silencing on additional targets without unbridled trigger amplification, the system achieves substantial but fundamentally limited signal amplification. PMID:23141544

  17. Comparison of sensor structures for the signal amplification of surface plasmon resonance immunoassay using enzyme precipitation

    NASA Astrophysics Data System (ADS)

    Yang, Chih-Tsung; Thierry, Benjamin

    2015-12-01

    Surface plasmon resonance (SPR) biosensing has been successfully applied for the label-free detection of a broad range of bioanalytes ranging from bacteria, cell, exosome, protein and nucleic acids. When it comes to the detection of small molecules or analytes found at low concentration, amplification schemes are desirable to enhance binding signals and in turn increase sensitivity. A number of SPR signal amplification schemes have been developed and validated; however, little effort has been devoted to understanding the effect of the SPR sensor structures on the amplification of binding signals and therefore on the overall sensing performance. The physical phenomenon of long-range SPR (LRSPR) relies on the propagation of coupled surface plasmonic waves on the opposite sides of a nanoscale-thick noble metal film suspended between two dielectrics with similar refractive indices. Importantly, as compared with commonly used conventional SPR (cSPR), LRSPR is not only characterized by a longer penetration depth of the plasmonic waves in the analyzed medium but also by a greater sensitivity to bulk refractive index changes. In this work, an immunoassay signal amplification platform based on horseradish peroxidase (HRP) catalyzed precipitation was utilized to investigate the sensing performance with regards to cSPR and LRSPR. The enzymatic precipitation of 3, 3'-diaminobenzidine tetrahydrochloride (DAB)/H2O2 was used to amplify SPR signals. The structure-function relationship of cSPR and LRSPR sensors is presented for both standard refractometric measurements and the enzymatic precipitation scheme. Experimental data shows that despite its inherent higher sensitivity to bulk refractive index changes and higher figure of merit, LRSPR was characterized by a lower angular sensitivity in the model enzymatic amplification scheme used here.

  18. Signal persistence and amplification in cancer development and possible, related opportunities for novel therapies.

    PubMed

    Ford, Shea A; Blanck, George

    2015-01-01

    Research in cancer biology has been largely driven by experimental approaches whereby discreet inputs are used to assess discreet outputs, for example, gene-knockouts to assess cancer occurrence. However, cancer hallmarks are only rarely, if ever, exclusively dependent on discreet regulatory processes. Rather, cancer-related regulatory factors affect multiple cancer hallmarks. Thus, novel approaches and paradigms are needed for further advances. Signal pathway persistence and amplification, rather than signal pathway activation resulting from an on/off switch, represent emerging paradigms for cancer research, closely related to developmental regulatory paradigms. In this review, we address both mechanisms and effects of signal pathway persistence and amplification in cancer settings; and address the possibility that hyper-activation of pro-proliferative signal pathways in certain cancer settings could be exploited for therapy. Copyright © 2014. Published by Elsevier B.V.

  19. Dual-primer self-generation SERS signal amplification assay for PDGF-BB using label-free aptamer.

    PubMed

    Ye, SuJuan; Zhai, XiaoMo; Wu, YanYing; Kuang, ShaoPing

    2016-05-15

    Highly sensitive detection of proteins, especially those associated with cancers, is essential to biomedical research as well as clinical diagnosis. In this work, a simple and novel one-two-three signal amplification surface-enhanced Raman scattering (SERS) method for the detection of protein is fabricated by using label-free aptamer and dual-primer self-generation. Platelet-derived growth factor B-chain (PDGF-BB) is selected as the model protein. The one-two-three cascade DNA amplification means one target-aptamer binding event, two hairpin DNA switches and three DNA amplification reactions. This strategy possesses some remarkable features compared to conventional signal amplification methods: (i) A smart probe including a label-free aptamer is fabricated, for suitable hybridization without hindering the affinity of the aptamer toward its target. (ii) Using the unique structure switch of the aptamer and cooperator, a one-two-three working mode is developed to amplify the SERS signal. The amplification efficiency is enhanced. Given the unique and attractive characteristics, a simple and universal strategy is designed to accomplish ultrasensitive detection of proteins. The detection limit of PDGF-BB via SERS detection is 0.42 pM, with the linear range from 1.0×10(-12)M to 10(-8)M. It is potentially universal because the aptamer can be easily designed for biomolecules whose aptamers undergo similar conformational changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Binding-induced DNA walker for signal amplification in highly selective electrochemical detection of protein.

    PubMed

    Ji, Yuhang; Zhang, Lei; Zhu, Longyi; Lei, Jianping; Wu, Jie; Ju, Huangxian

    2017-10-15

    A binding-induced DNA walker-assisted signal amplification was developed for highly selective electrochemical detection of protein. Firstly, the track of DNA walker was constructed by self-assembly of the high density ferrocene (Fc)-labeled anchor DNA and aptamer 1 on the gold electrode surface. Sequentially, a long swing-arm chain containing aptamer 2 and walking strand DNA was introduced onto gold electrode through aptamers-target specific recognition, and thus initiated walker strand sequences to hybridize with anchor DNA. Then, the DNA walker was activated by the stepwise cleavage of the hybridized anchor DNA by nicking endonuclease to release multiple Fc molecules for signal amplification. Taking thrombin as the model target, the Fc-generated electrochemical signal decreased linearly with logarithm value of thrombin concentration ranging from 10pM to 100nM with a detection limit of 2.5pM under the optimal conditions. By integrating the specific recognition of aptamers to target with the enzymatic cleavage of nicking endonuclease, the aptasensor showed the high selectivity. The binding-induced DNA walker provides a promising strategy for signal amplification in electrochemical biosensor, and has the extensive applications in sensitive and selective detection of the various targets. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Magnetic micro/nanoparticle flocculation-based signal amplification for biosensing

    PubMed Central

    Mzava, Omary; Taş, Zehra; İçöz, Kutay

    2016-01-01

    We report a time and cost efficient signal amplification method for biosensors employing magnetic particles. In this method, magnetic particles in an applied external magnetic field form magnetic dipoles, interact with each other, and accumulate along the magnetic field lines. This magnetic interaction does not need any biomolecular coating for binding and can be controlled with the strength of the applied magnetic field. The accumulation can be used to amplify the corresponding pixel area that is obtained from an image of a single magnetic particle. An application of the method to the Escherichia coli 0157:H7 bacteria samples is demonstrated in order to show the potential of the approach. A minimum of threefold to a maximum of 60-fold amplification is reached from a single bacteria cell under a magnetic field of 20 mT. PMID:27354793

  2. Quencher-free fluorescence strategy for detection of DNA methyltransferase activity based on exonuclease III-assisted signal amplification.

    PubMed

    Liu, Haisheng; Ma, Changbei; Zhou, Meijuan; Chen, Hanchun; He, Hailun; Wang, Kemin

    2016-11-01

    This work demonstrates a novel method for DNA methyltransferase (MTase) activity detection with a quencher-free molecular beacon (MB) probe based on exonuclease (Exo) III-assisted signal amplification. In the presence of Dam MTase and DpnI endonuclease, the elaborately designed hairpin substrate (MB1) was cleaved into two parts (part A and part B). Exo III can then digest part A and release a single-stranded target of the 2-aminopurine-labeled MB (MB2). Subsequently, the MB2 can hybridize with its target to form a double-stranded structure with a protruding 3'-terminus and then trigger the digestion of MB2 by Exo III. During the digestion of MB2, the 2-aminopurine is separated from the DNA strands and released free in solution, inducing an increase of the fluorescent signal. Owing to the presence of a recessed 3'-terminus in the formed double-stranded DNA, Exo III-assisted recyclable cleavage of MB2 was achieved. Therefore, an amplified fluorescence signal was observed. Under the optimized conditions, Dam MTase can be detected in the range of 0.2-40 units/mL with a limit of detection of 0.2 units/mL and good selectivity. Furthermore, the present assay can be used for screening potential DNA MTase inhibitors. Graphical Abstract A quencher-free fluorescence assay for sensitive detection of DNA methyltransferase activity based on exonuclease III-assisted signal amplification is reported.

  3. Isothermal amplification detection of nucleic acids by a double-nicked beacon.

    PubMed

    Shi, Chao; Zhou, Meiling; Pan, Mei; Zhong, Guilin; Ma, Cuiping

    2016-03-01

    Isothermal and rapid amplification detection of nucleic acids is an important technology in environmental monitoring, foodborne pathogen detection, and point-of-care clinical diagnostics. Here we have developed a novel method of isothermal signal amplification for single-stranded DNA (ssDNA) detection. The ssDNA target could be used as an initiator, coupled with a double-nicked molecular beacon, to originate amplification cycles, achieving cascade signal amplification. In addition, the method showed good specificity and strong anti-jamming capability. Overall, it is a one-pot and isothermal strand displacement amplification method without the requirement of a stepwise procedure, which greatly simplifies the experimental procedure and decreases the probability of contamination of samples. With its advantages, the method would be very useful to detect nucleic acids in point-of-care or field use. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Aided Electrophysiology Using Direct Audio Input: Effects of Amplification and Absolute Signal Level

    PubMed Central

    Billings, Curtis J.; Miller, Christi W.; Tremblay, Kelly L.

    2016-01-01

    Purpose This study investigated (a) the effect of amplification on cortical auditory evoked potentials (CAEPs) at different signal levels when signal-to-noise ratios (SNRs) were equated between unaided and aided conditions, and (b) the effect of absolute signal level on aided CAEPs when SNR was held constant. Method CAEPs were recorded from 13 young adults with normal hearing. A 1000-Hz pure tone was presented in unaided and aided conditions with a linear analog hearing aid. Direct audio input was used, allowing recorded hearing aid noise floor to be added to unaided conditions to equate SNRs between conditions. An additional stimulus was created through scaling the noise floor to study the effect of signal level. Results Amplification resulted in delayed N1 and P2 peak latencies relative to the unaided condition. An effect of absolute signal level (when SNR was constant) was present for aided CAEP area measures, such that larger area measures were found at higher levels. Conclusion Results of this study further demonstrate that factors in addition to SNR must also be considered before CAEPs can be used to clinically to measure aided thresholds. PMID:26953543

  5. Phase sensitive amplification in integrated waveguides (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Schroeder, Jochen B.; Zhang, Youngbin; Husko, Chad A.; LeFrancois, Simon; Eggleton, Benjamin J.

    2017-02-01

    Phase sensitive amplification (PSA) is an attractive technology for integrated all-optical signal processing, due to it's potential for noiseless amplification, phase regeneration and generation of squeezed light. In this talk I will review our results on implementing four-wave-mixing based PSA inside integrated photonic devices. In particular I will discuss PSA in chalcogenide ridge waveguides and silicon slow-light photonic crystals. We achieve PSA in both pump- and signal-degenerate schemes with maximum extinction ratios of 11 (silicon) and 18 (chalcogenide) dB. I will further discuss the influence of two-photon absorption and free carrier effects on the performance of silicon-based PSAs.

  6. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2001-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal. Specifically, the analyte transducer immobilized in a polymeric matrix can be a boronic acid moiety.

  7. Circulation and Directional Amplification in the Josephson Parametric Converter

    NASA Astrophysics Data System (ADS)

    Hatridge, Michael

    Nonreciprocal transport and directional amplification of weak microwave signals are fundamental ingredients in performing efficient measurements of quantum states of flying microwave light. This challenge has been partly met, as quantum-limited amplification is now regularly achieved with parametrically-driven, Josephson-junction based superconducting circuits. However, these devices are typically non-directional, requiring external circulators to separate incoming and outgoing signals. Recently this limitation has been overcome by several proposals and experimental realizations of both directional amplifiers and circulators based on interference between several parametric processes in a single device. This new class of multi-parametrically driven devices holds the promise of achieving a variety of desirable characteristics simultaneously- directionality, reduced gain-bandwidth constraints and quantum-limited added noise, and are good candidates for on-chip integration with other superconducting circuits such as qubits.

  8. A three-parameter two-state model of receptor function that incorporates affinity, efficacy, and signal amplification.

    PubMed

    Buchwald, Peter

    2017-06-01

    A generalized model of receptor function is proposed that relies on the essential assumptions of the minimal two-state receptor theory (i.e., ligand binding followed by receptor activation), but uses a different parametrization and allows nonlinear response (transduction) for possible signal amplification. For the most general case, three parameters are used: K d , the classic equilibrium dissociation constant to characterize binding affinity; ε , an intrinsic efficacy to characterize the ability of the bound ligand to activate the receptor (ranging from 0 for an antagonist to 1 for a full agonist); and γ , a gain (amplification) parameter to characterize the nonlinearity of postactivation signal transduction (ranging from 1 for no amplification to infinity). The obtained equation, E/Emax=εγLεγ+1-εL+Kd, resembles that of the operational (Black and Leff) or minimal two-state (del Castillo-Katz) models, E/Emax=τLτ+1L+Kd, with εγ playing a role somewhat similar to that of the τ efficacy parameter of those models, but has several advantages. Its parameters are more intuitive as they are conceptually clearly related to the different steps of binding, activation, and signal transduction (amplification), and they are also better suited for optimization by nonlinear regression. It allows fitting of complex data where receptor binding and response are measured separately and the fractional occupancy and response are mismatched. Unlike the previous models, it is a true generalized model as simplified forms can be reproduced with special cases of its parameters. Such simplified forms can be used on their own to characterize partial agonism, competing partial and full agonists, or signal amplification.

  9. Detection of biological molecules using boronate-based chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph; Lane, Stephen M.; Satcher, Jr., Joe H.; Darrow, Christopher B.; Peyser, Thomas A.; Harder, Jennifer

    1999-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  10. Detection of biological molecules using boronate-based chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph; Lane, Stephen M.; Satcher, Jr., Joe H.; Darrow, Christopher B.; Peyser, Thomas A.; Harder, Jennifer

    2004-06-15

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  11. Parametric amplification in MoS2 drum resonator.

    PubMed

    Prasad, Parmeshwar; Arora, Nishta; Naik, A K

    2017-11-30

    Parametric amplification is widely used in diverse areas from optics to electronic circuits to enhance low level signals by varying relevant system parameters. Parametric amplification has also been performed in several micro-nano resonators including nano-electromechanical system (NEMS) resonators based on a two-dimensional (2D) material. Here, we report the enhancement of mechanical response in a MoS 2 drum resonator using degenerate parametric amplification. We use parametric pumping to modulate the spring constant of the MoS 2 resonator and achieve a 10 dB amplitude gain. We also demonstrate quality factor enhancement in the resonator with parametric amplification. We investigate the effect of cubic nonlinearity on parametric amplification and show that it limits the gain of the mechanical resonator. Amplifying ultra-small displacements at room temperature and understanding the limitations of the amplification in these devices is key for using these devices for practical applications.

  12. Development of Fluorescent Polymerization-based Signal Amplification for Sensitive and Non-enzymatic Biodetection in Antibody Microarrays

    PubMed Central

    Avens, Heather J.; Bowman, Christopher N.

    2009-01-01

    Antibody microarrays are a critical tool for proteomics, requiring broad, highly sensitive detection of numerous low abundance biomarkers. Fluorescent polymerization-based amplification (FPBA) is presented as a novel, non-enzymatic signal amplification method that takes advantage of the chain-reaction nature of radical polymerization to achieve a highly amplified fluorescent response. A streptavidin-eosin conjugate localizes eosin photoinitiators for polymerization on the chip where biotinylated target protein is bound. The chip is contacted with acrylamide as a monomer, N-methyldiethanolamine as a coinitiator and yellow/green fluorescent nanoparticles (NPs) which, upon initiation, combine to form a macroscopically visible and highly fluorescent film. The rapid polymerization kinetics and the presence of cross-linker favor entrapment of the fluorescent NPs in the polymer, enabling highly sensitive fluorescent biodetection. This method is demonstrated as being appropriate for antibody microarrays and is compared to detection approaches which utilize streptavidin-FITC (SA-FITC) and streptavidin-labeled yellow/green NPs (SA-NPs). It is found that FPBA is able to detect 0.16 (+/− 0.01) biotin-antibody/µm2 (or 40 zeptomole surface-bound target molecules), while SA-FITC has a limit of detection of 31 (+/− 1) biotin-antibody/µm2 and SA-NPs fail to achieve any significant signal under the conditions evaluated here. Further, FPBA in conjunction with fluorescent stereomicroscopy yields equal or better sensitivity compared to fluorescent detection of SA-eosin using a much more costly microarray scanner. By facilitating highly sensitive detection, FPBA is expected to enable detection of low abundance antigens and also make possible a transition towards less expensive fluorescence detection instrumentation. PMID:19508906

  13. Engineering self-contained DNA circuit for proximity recognition and localized signal amplification of target biomolecules

    PubMed Central

    Ang, Yan Shan; Yung, Lin-Yue Lanry

    2014-01-01

    Biomolecular interactions have important cellular implications, however, a simple method for the sensing of such proximal events is lacking in the current molecular toolbox. We designed a dynamic DNA circuit capable of recognizing targets in close proximity to initiate a pre-programmed signal transduction process resulting in localized signal amplification. The entire circuit was engineered to be self-contained, i.e. it can self-assemble onto individual target molecules autonomously and form localized signal with minimal cross-talk. α-thrombin was used as a model protein to evaluate the performance of the individual modules and the overall circuit for proximity interaction under physiologically relevant buffer condition. The circuit achieved good selectivity in presence of non-specific protein and interfering serum matrix and successfully detected for physiologically relevant α-thrombin concentration (50 nM–5 μM) in a single mixing step without any further washing. The formation of localized signal at the interaction site can be enhanced kinetically through the control of temperature and probe concentration. This work provides a basic general framework from which other circuit modules can be adapted for the sensing of other biomolecular or cellular interaction of interest. PMID:25056307

  14. E2F Activators Signal and Maintain Centrosome Amplification in Breast Cancer Cells

    PubMed Central

    Lee, Mi-Young; Moreno, Carlos S.

    2014-01-01

    Centrosomes ensure accurate chromosome segregation by directing spindle bipolarity. Loss of centrosome regulation results in centrosome amplification, multipolar mitosis and aneuploidy. Since centrosome amplification is common in premalignant lesions and breast tumors, it is proposed to play a central role in breast tumorigenesis, a hypothesis that remains to be tested. The coordination between the cell and centrosome cycles is of paramount importance to maintain normal centrosome numbers, and the E2Fs may be responsible for regulating these cycles. However, the role of E2F activators in centrosome amplification is unclear. Because E2Fs are deregulated in Her2+ cells displaying centrosome amplification, we addressed whether they signal this abnormal process. Knockdown of E2F1 or E2F3 in Her2+ cells decreased centrosome amplification without significantly affecting cell cycle progression, whereas the overexpression of E2F1, E2F2, or E2F3 increased centrosome amplification in MCF10A mammary epithelial cells. Our results revealed that E2Fs affect the expression of proteins, including Nek2 and Plk4, known to influence the cell/centrosome cycles and mitosis. Downregulation of E2F3 resulted in cell death and delays/blocks in cytokinesis, which was reversed by Nek2 overexpression. Nek2 overexpression enhanced centrosome amplification in Her2+ breast cancer cells silenced for E2F3, revealing a role for the E2F activators in maintaining centrosome amplification in part through Nek2. PMID:24797070

  15. E2F activators signal and maintain centrosome amplification in breast cancer cells.

    PubMed

    Lee, Mi-Young; Moreno, Carlos S; Saavedra, Harold I

    2014-07-01

    Centrosomes ensure accurate chromosome segregation by directing spindle bipolarity. Loss of centrosome regulation results in centrosome amplification, multipolar mitosis and aneuploidy. Since centrosome amplification is common in premalignant lesions and breast tumors, it is proposed to play a central role in breast tumorigenesis, a hypothesis that remains to be tested. The coordination between the cell and centrosome cycles is of paramount importance to maintain normal centrosome numbers, and the E2Fs may be responsible for regulating these cycles. However, the role of E2F activators in centrosome amplification is unclear. Because E2Fs are deregulated in Her2(+) cells displaying centrosome amplification, we addressed whether they signal this abnormal process. Knockdown of E2F1 or E2F3 in Her2(+) cells decreased centrosome amplification without significantly affecting cell cycle progression, whereas the overexpression of E2F1, E2F2, or E2F3 increased centrosome amplification in MCF10A mammary epithelial cells. Our results revealed that E2Fs affect the expression of proteins, including Nek2 and Plk4, known to influence the cell/centrosome cycles and mitosis. Downregulation of E2F3 resulted in cell death and delays/blocks in cytokinesis, which was reversed by Nek2 overexpression. Nek2 overexpression enhanced centrosome amplification in Her2(+) breast cancer cells silenced for E2F3, revealing a role for the E2F activators in maintaining centrosome amplification in part through Nek2.

  16. A facile approach to construct versatile signal amplification system for bacterial detection.

    PubMed

    Qi, Peng; Zhang, Dun; Wan, Yi; Lv, Dandan

    2014-01-01

    In this work, a facile approach to design versatile signal amplification system for bacterial detection has been presented. Bio-recognition elements and signaling molecules can be immobilized on the surface of Fe₃O₄@MnO₂ nanomaterials with the help of bioinspired polydopamine (PDA). Fe₃O₄@MnO₂ nanoplates were chosen as carrier for bio-recognizing and signaling molecules because this kind of nanomaterial was superparamagnetic and the existence of MnO₂ could enhance the polymerization of dopamine due to its strong oxidative ability. This nanocomposite system was versatile because PDA around Fe₃O₄@MnO₂ nanoplates provided a stable and convenient platform for immobilization of biological and chemical materials, and various kinds of bio-recognizing and signaling molecules could be immobilized by reaction with pendant amino groups of dopamine to meet different detection requirements. Since a substantial amount of signaling molecules were immobilized on the surface of the nanocomposites, so the sensitivity of detection would be improved when the prepared nanocomposites were selectively conjugated with target pathogen. In the experimental section, a sandwich-type electrochemical biosensor was developed to verify the amplified bacterial detection sensitivity. Concanavalin A (conA) and ferrocene (Fc) were chosen as bio-recognition elements and signaling molecules for detection of Desulforibrio caledoiensis, respectively. The conA and Fc modified nanocomposites were conjugated on electrode by the selective recognition between conA and target bacteria, and the bacterial population was obtained by quantification of the electrochemical signal of Fc moieties. The experimental results showed that the detection sensitivity for D. caledoiensis was improved by taking advantage of this signal amplification system. © 2013 Elsevier B.V. All rights reserved.

  17. Efficient Sub-Bandgap Light Absorption and Signal Amplification in Silicon Photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hsin

    This thesis focuses on two areas in silicon photodetectors, the first being enhancing the sub-bandgap light absorption of IR wavelenghts in silicon, and the second being intrinsic signal amplification in silicon photodetectors. Both of these are achieved using heavily doped p-n junction devices which create localized states that relax the k-selection rule of indirect bandgap material. The probability of transitions between impurity band and the conduction/valence band would be much more efficient than the one between band-to-band transition. The waveguide-coupled epitaxial p-n photodetector was demonstrated for 1310 nm wavelength detection. Incorporated with the Franz-Keldysh effect and the quasi-confined epitaxial layer design, an absorption coefficient around 10 cm-1 has been measured and internal quantum efficiency nearly 100% at -2.5V. The absorption coefficient is calculated from the wave function of the electron and hole in p-n diode. The heavily doped impurity wave function can be formulated as a delta function, and the quasi-confined conduction band energy states, and the wave function on each level can be obtained from the Silvaco software. The calculated theoretical absorption coefficient increases with the increasing applied bias and the doping concentration, which matches the experimental results. To solve the issues of large excess noise and high operation bias for avalanche photodiodes based on impact ionization, I presented a detector using the Cycling Excitation Process (CEP) for signal amplification. This can be realized in a heavily doped and highly compensated Si p-n junction, showing ultra high gain about 3000 at very low bias (<4 V), and possessing an intrinsic, phonon-mediated regulation process to keep the device stable without any quenching device required in today's Geiger-mode avalanche detectors. The CEP can be formulated with the rate equations in conduction bands and impurity states. The gain expression, which is a function of the

  18. Enzymatic signal amplification for sensitive detection of intracellular antigens by flow cytometry.

    PubMed

    Karkmann, U; Radbruch, A; Hölzel, V; Scheffold, A

    1999-11-19

    Flow cytometry is the method of choice for the analysis of single cells with respect to the expression of specific antigens. Antigens can be detected with specific antibodies either on the cell surface or within the cells, after fixation and permeabilization of the cell membrane. Using conventional fluorochrome-labeled antibodies several thousand antigens are required for clear-cut separation of positive and negative cells. More sensitive reagents, e.g., magnetofluorescent liposomes conjugated to specific antibodies permit the detection of less than 200 molecules per cell but cannot be used for the detection of intracellular antigens. Here, we describe an enzymatic amplification technique (intracellular tyramine-based signal amplification, ITSA) for the sensitive cytometric analysis of intracellular cytokines by immunofluorescence. This approach results in a 10 to 15-fold improvement of the signal-to-noise ratio compared to conventional fluorochrome labeled antibodies and permits the detection of as few as 300-400 intracellular antigens per cell.

  19. Signal-Switchable Electrochemiluminescence System Coupled with Target Recycling Amplification Strategy for Sensitive Mercury Ion and Mucin 1 Assay.

    PubMed

    Jiang, Xinya; Wang, Huijun; Wang, Haijun; Yuan, Ruo; Chai, Yaqin

    2016-09-20

    In the present work, we first found that mercury ion (Hg(2+)) has an efficient quenching effect on the electrochemiluminescence (ECL) of N-(aminobutyl)-N-(ethylisoluminol) (ABEI). Since we were inspired by this discovery, an aptamer-based ECL sensor was fabricated based on a Hg(2+) triggered signal switch coupled with an exonuclease I (Exo I)-stimulated target recycling amplification strategy for ultrasensitive determination of Hg(2+) and mucin 1 (MUC1). Concretely, the ECL intensity of ABEI-functionalized silver nanoparticles decorated graphene oxide nanocomposite (GO-AgNPs-ABEI) was initially enhanced by ferrocene labeled ssDNA (Fc-S1) (first signal switch "on" state) in the existence of H2O2. With the aid of aptamer, assistant ssDNA (S2) and full thymine (T) bases ssDNA (S3) modified Au nanoparticles (AuNPs-S2-S3) were immobilized on the sensing surface through the hybridization reaction. Then, via the strong and stable T-Hg(2+)-T interaction, an abundance of Hg(2+) was successfully captured on the AuNPs-S2-S3 and effectively inhibited the ECL reaction of ABEI (signal switch "off" state). Finally, the signal switch "on" state was executed by utilizing MUC1 as an aptamer-specific target to bind aptamer, leading to the large decrease of the captured Hg(2+). To further improve the sensitivity of the aptasensor, Exo I was implemented to digest the binded aptamer, which resulted in the release of MUC1 for achieving target recycling with strong detectable ECL signal even in a low level of MUC1. By integrating the quenching effect of Hg(2+) to reduce the background signal and target recycling for signal amplification, this proposed ECL aptasensor was successfully used to detect Hg(2+) and MUC1 sensitively with a wide linear response.

  20. A cascade signal amplification strategy for surface enhanced Raman spectroscopy detection of thrombin based on DNAzyme assistant DNA recycling and rolling circle amplification.

    PubMed

    Gao, Fenglei; Du, Lili; Tang, Daoquan; Lu, Yao; Zhang, Yanzhuo; Zhang, Lixian

    2015-04-15

    A sensitive protocol for surface enhanced Raman spectroscopy (SERS) detection of thrombin is designed with R6G-Ag NPs as a signal tag by combining DNAzyme assistant DNA recycling and rolling circle amplification (RCA). Molecular beacon (MB) as recognition probe immobilizes on the glass slides and performs the amplification procedure. After thrombin-induced structure-switching DNA hairpins of probe 1, the DNAzyme is liberated from the caged structure, which hybridizes with the MB for cleavage of the MB in the presence of cofactor Zn(2+) and initiates the DNA recycling process, leading to the cleavage of a large number of MB and the generation of numerous primers for triggering RCA reaction. The long amplified RCA product which contained hundreds of tandem-repeat sequences, which can bind with oligonucleotide functionalized Ag NPs reporters. The attached signal tags can be easily read out by SERS. Because of the cascade signal amplification, these newly designed protocols provides a sensitive SERS detection of thrombin down to the femolar level (2.3fM) with a linear range of 5 orders of magnitude (from 10(-14) to 10(-9)M) and have high selectivity toward its target protein. The proposed method is expected to be a good clinical tool for the diagnosis of a thrombotic disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Hetero-enzyme-based two-round signal amplification strategy for trace detection of aflatoxin B1 using an electrochemical aptasensor.

    PubMed

    Zheng, Wanli; Teng, Jun; Cheng, Lin; Ye, Yingwang; Pan, Daodong; Wu, Jingjing; Xue, Feng; Liu, Guodong; Chen, Wei

    2016-06-15

    An electrochemical aptasensor for trace detection of aflatoxin B1 (AFB1) was developed by using an aptamer as the recognition unit while adopting the telomerase and EXO III based two-round signal amplification strategy as the signal enhancement units. The telomerase amplification was used to elongate the ssDNA probes on the surface of gold nanoparticles, by which the signal response range of the signal-off model electrochemical aptasensor could be correspondingly enlarged. Then, the EXO III amplification was used to hydrolyze the 3'-end of the dsDNA after the recognition of target AFB1, which caused the release of bounded AFB1 into the sensing system, where it participated in the next recognition-sensing cycle. With this two-round signal amplified electrochemical aptasensor, target AFB1 was successfully measured at trace concentrations with excellent detection limit of 0.6*10(-4)ppt and satisfied specificity due to the excellent affinity of the aptamer against AFB1. Based on this designed two-round signal amplification strategy, both the sensing range and detection limit were greatly improved. This proposed ultrasensitive electrochemical aptasensor method was also validated by comparison with the classic instrumental methods. Importantly, this hetero-enzyme based two-round signal amplified electrochemical aptasensor offers a great promising protocol for ultrasensitive detection of AFB1 and other mycotoxins by replacing the core recognition sequence of the aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Sensitive detection of Escherichia coli O157:H7 based on cascade signal amplification in ELISA.

    PubMed

    Shan, Shan; Liu, Daofeng; Guo, Qi; Wu, Songsong; Chen, Rui; Luo, Kai; Hu, Liming; Xiong, Yonghua; Lai, Weihua

    2016-09-01

    In this study, cascade signal amplification in ELISA involving double-antibody sandwich ELISA and indirectly competitive ELISA was established to sensitively detect Escherichia coli O157:H7. In the double-antibody sandwich ELISA, a complex was formed comprising anti-E. coli O157:H7 polyclonal antibody, E. coli O157:H7, biotinylated anti-E. coli O157:H7 monoclonal antibody, streptavidin, and biotinylated β-lactamase. Penicillin solution was then added into the ELISA well and hydrolyzed by β-lactamase. Afterward, the penicillin solution was transferred to indirectly competitive ELISA. The concentration of penicillin can be sensitively detected in indirectly competitive ELISA. In the cascade signal amplification system, increasing the amount of added E. coli O157:H7 resulted in more β-lactamase and less penicillin. The detection sensitivity of E. coli O157:H7, which was 20cfu/mL with the cascade signal amplification in ELISA, was 1,000-fold higher than that of traditional ELISA. Furthermore, the novel method can be used to detect E. coli O157:H7 in milk (2cfu/g). Therefore, this new signaling strategy will facilitate analyses of highly sensitive foodborne pathogens. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. A micromechanical analogue mixer with dynamic displacement amplification

    NASA Astrophysics Data System (ADS)

    Erismis, M. A.

    2018-06-01

    A new micromechanical device is proposed which is capable of modulation, demodulation and filtering operations. The device uses a patented 3-mass coupled micromechanical resonator which dynamically amplifies the displacement within a frequency range of interest. Modulation can be obtained by exciting different masses of the resonator with the data and the carrier signals. Demodulation can be obtained similarly by exciting the actuator with the input and carrier signals at the same time. With the help of dynamic motion amplification, filtering and signal amplification can be achieved simultaneously. A generic design approach is introduced which can be applied from kHz to MHz regime frequencies of interest. A sample mixer design for an silicon on insulator-based process is provided. A SPICE (Simulation Program with Integrated Circuit Emphasis)-based electro-mechanical co-simulation platform is also developed and the proposed mixer is simulated.

  4. Rolling chain amplification based signal-enhanced electrochemical aptasensor for ultrasensitive detection of ochratoxin A.

    PubMed

    Huang, Lin; Wu, Jingjing; Zheng, Lei; Qian, Haisheng; Xue, Feng; Wu, Yucheng; Pan, Daodong; Adeloju, Samuel B; Chen, Wei

    2013-11-19

    A novel electrochemical aptasensor is described for rapid and ultrasensitive detection of ochratoxin A (OTA) based on signal enhancement with rolling circle amplification (RCA). The primer for RCA was designed to compose of a two-part sequence, one part of the aptamer sequence directed against OTA while the other part was complementary to the capture probe on the electrode surface. In the presence of target OTA, the primer, originally hybridized with the RCA padlock, is replaced to combine with OTA. This induces the inhibition of RCA and decreases the OTA sensing signal obtained with the electrochemical aptasensor. Under the optimized conditions, ultrasensitive detection of OTA was achieved with a limit of detection (LOD) of 0.065 ppt (pg/mL), which is much lower than previously reported. The electrochemical aptasensor was also successfully applied to the determination of OTA in wine samples. This ultrasensitive electrochemical aptasensor is of great practical importance in food safety and could be widely extended to the detection of other toxins by replacing the sequence of the recognition aptamer.

  5. Highly sensitive electrochemical nuclear factor kappa B aptasensor based on target-induced dual-signal ratiometric and polymerase-assisted protein recycling amplification strategy.

    PubMed

    Peng, Kanfu; Xie, Pan; Yang, Zhe-Han; Yuan, Ruo; Zhang, Keqin

    2018-04-15

    In this work, an amplified electrochemical ratiometric aptasensor for nuclear factor kappa B (NF-κB) assay based on target binding-triggered ratiometric signal readout and polymerase-assisted protein recycling amplification strategy is described. To demonstrate the effect of "signal-off" and "signal-on" change for the dual-signal electrochemical ratiometric readout, the thiol-hairpin DNA (SH-HD) hybridizes with methylene blue (MB)-modified protection DNA (MB-PD) to form capture probes, which is rationally introduced for the construction of the assay platform. On the interface, the probes can specifically bind to target NF-κB and expose a toehold region which subsequently hybridizes with the ferrocene (Fc)-modified DNA strand to take the Fc group to the electrode surface, accompanied by displacing MB-PD to release the MB group from the electrode surface, leading to the both "signal-on" of Fc (I Fc ) and "signal-off" of MB (I MB ). In order to improve the sensitivity of the electrochemical aptasensor, phi29-assisted target protein recycling amplification strategy was designed to achieve an amplified ratiometric signal. With the above advantages, the prepared aptasensor exhibits a wide linear range of 0.1pgmL -1 to 15ngmL -1 with a low detection limit of 0.03pgmL -1 . This strategy provides a simple and ingenious approach to construct ratiometric electrochemical aptasensor and shows promising potential applications in multiple disease marker detection by changing the recognition probe. Copyright © 2017. Published by Elsevier B.V.

  6. Layer-by-layer multienzyme assembly for highly sensitive electrochemical immunoassay based on tyramine signal amplification strategy.

    PubMed

    Zhou, Jun; Tang, Juan; Chen, Guonan; Tang, Dianping

    2014-04-15

    A new sandwich-type electrochemical immunosensor based on nanosilver-doped bovine serum albumin microspheres (Ag@BSA) with a high ratio of horseradish peroxidase (HRP) and detection antibody was developed for quantitative monitoring of biomarkers (carcinoembryonic antigen, CEA, used in this case) by coupling enzymatic biocatalytic precipitation with tyramine signal amplification strategy on capture antibody-modified glassy carbon electrode. Two immunosensing protocols (with and without tyramine signal amplification) were also investigated for the detection of CEA and improved analytical features were acquired with tyramine signal amplification strategy. With the labeling method, the performance and factors influencing the electrochemical immunoassay were studied and evaluated in detail. Under the optimal conditions, the electrochemical immunosensor exhibited a wide dynamic range of 0.005-80 ng mL(-1) toward CEA standards with a low detection limit of 5.0 pg mL(-1). Intra- and inter-assay coefficients of variation were below 11%. No significant differences at the 0.05 significance level were encountered in the analysis of 6 clinical serum specimens and 6 spiked new-born cattle serum samples between the electrochemical immunoassay and the commercialized electrochemiluminescent immunoassay method for the detection of CEA. © 2013 Published by Elsevier B.V.

  7. Ultrasensitive sandwich-type electrochemical immunosensor based on a novel signal amplification strategy using highly loaded palladium nanoparticles/carbon decorated magnetic microspheres as signal labels.

    PubMed

    Ji, Lei; Guo, Zhankui; Yan, Tao; Ma, Hongmin; Du, Bin; Li, Yueyun; Wei, Qin

    2015-06-15

    An ultrasensitive sandwich-type electrochemical immunosensor for quantitative detection of alpha fetoprotein (AFP) was proposed based on a novel signal amplification strategy in this work. Carbon decorated Fe3O4 magnetic microspheres (Fe3O4@C) with large specific surface area and good adsorption property were used as labels to anchor palladium nanoparticles (Pd NPs) and the secondary antibodies (Ab2). Pd NPs were loaded on Fe3O4@C to obtain Fe3O4@C@Pd with core-shell structure by electrostatic attraction, which were further used to immobilize Ab2 due to the bonding of Pd-NH2. A signal amplification strategy was the noble metal nanoparticles, such as Pd NPs, exhibiting high electrocatalytic activities toward hydrogen peroxide (H2O2) reduction. This signal amplification was novel not only because of the great capacity, but also the ease of magnetic separation from the sample solution based on their magnetic property. Moreover, carboxyl-functionalized multi-walled carbon nanotubes (MWCNTs-COOH) were used for the immobilization of primary antibodies (Ab1). Therefore, high sensitivity could be realized by the designed immunosensor based on this novel signal amplification strategy. Under optimal conditions, the immunosensor exhibited a wide linear range of 0.5 pg/mL to 10 ng/mL toward AFP with a detection limit of 0.16 pg/mL (S/N=3). Moreover, it revealed good selectivity, acceptable reproducibility and stability, indicating a potential application in clinical monitoring of tumor biomarkers. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Graphene oxide@gold nanorods-based multiple-assisted electrochemiluminescence signal amplification strategy for sensitive detection of prostate specific antigen.

    PubMed

    Cao, Jun-Tao; Yang, Jiu-Jun; Zhao, Li-Zhen; Wang, Yu-Ling; Wang, Hui; Liu, Yan-Ming; Ma, Shu-Hui

    2018-01-15

    A novel and competitive electrochemiluminescence (ECL) aptasensor for prostate specific antigen (PSA) assay was constructed using gold nanorods functionalized graphene oxide (GO@AuNRs) multilabeled with glucose oxidase (GOD) and streptavidin (SA) toward luminol-based ECL system. A strong initial ECL signal was achieved by electrodeposited gold (DpAu) on the electrode because of gold nanoparticles (AuNPs) motivating the luminol ECL signal. The signal probes prepared by loading GOD and SA-biotin-DNA on GO@AuNRs were used for achieving multiple signal amplification. In the absence of PSA, the signal probes can be attached on the electrode by hybridization reaction between PSA aptamer and biotin-DNA. In this state, the GOD loaded on the probe could catalyze glucose to in situ produce H 2 O 2 and then AuNRs catalyze H 2 O 2 to generate abundant reactive oxygen species (ROSs) in luminol ECL reaction. Both the high-content GOD and AuNRs in the signal probe amplified the ECL signal in the ECL system. Moreover, the combination of SA with biotin-DNA further expands ECL intensity. The integration of such amplifying effects in this protocol endows the aptasensor with high sensitivity and good selectivity for PSA detection. This aptasensor exhibits a linear relation in the range of 0.5pgmL -1 to 5.0ngmL -1 with the detection limit of 0.17pgmL -1 (S/N = 3). Besides, the strategy was successfully applied in determination of human serum samples with recovery of 81.4-116.0%. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A sensitive electrochemical aptasensor based on palladium nanoparticles decorated graphene-molybdenum disulfide flower-like nanocomposites and enzymatic signal amplification.

    PubMed

    Jing, Pei; Yi, Huayu; Xue, Shuyan; Chai, Yaqin; Yuan, Ruo; Xu, Wenju

    2015-01-01

    In the present study, with the aggregated advantages of graphene and molybdenum disulfide (MoS2), we prepared poly(diallyldimethylammonium chloride)-graphene/molybdenum disulfide (PDDA-G-MoS2) nanocomposites with flower-like structure, large surface area and excellent conductivity. Furthermore, an advanced sandwich-type electrochemical assay for sensitive detection of thrombin (TB) was fabricated using palladium nanoparticles decorated PDDA-G-MoS2 (PdNPs/PDDA-G-MoS2) as nanocarriers, which were functionalized by hemin/G-quadruplex, glucose oxidase (GOD), and toluidine blue (Tb) as redox probes. The signal amplification strategy was achieved as follows: Firstly, the immobilized GOD could effectively catalyze the oxidation of glucose to gluconolactone, coupling with the reduction of the dissolved oxygen to H2O2. Then, both PdNPs and hemin/G-quadruplex acting as hydrogen peroxide (HRP)-mimicking enzyme could further catalyze the reduction of H2O2, resulting in significant electrochemical signal amplification. So the proposed aptasensor showed high sensitivity with a wide dynamic linear range of 0.0001 to 40 nM and a relatively low detection limit of 0.062 pM for TB determination. The strategy showed huge potential of application in protein detection and disease diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Broad-spectrum neodymium-doped laser glasses for high-energy chirped-pulse amplification.

    PubMed

    Hays, Greg R; Gaul, Erhard W; Martinez, Mikael D; Ditmire, Todd

    2007-07-20

    We have investigated two novel laser glasses in an effort to generate high-energy, broad-spectrum pulses from a chirped-pulse amplification Nd:glass laser. Both glasses have significantly broader spectra (>38 nm FWHM) than currently available Nd:phosphate and Nd:silicate glasses. We present calculations for small signal pulse amplification to simulate spectral gain narrowing. The technique of spectral shaping using mixed-glass architecture with an optical parametric chirped-pulse amplification front end is evaluated. Our modeling shows that amplified pulses with energies exceeding 10 kJ with sufficient bandwidth to achieve 120 fs pulsewidths are achievable with the use of the new laser glasses. With further development of current technologies, a laser system could be scaled to generate one exawatt in peak power.

  11. Signal amplification of padlock probes by rolling circle replication.

    PubMed Central

    Banér, J; Nilsson, M; Mendel-Hartvig, M; Landegren, U

    1998-01-01

    Circularizing oligonucleotide probes (padlock probes) have the potential to detect sets of gene sequences with high specificity and excellent selectivity for sequence variants, but sensitivity of detection has been limiting. By using a rolling circle replication (RCR) mechanism, circularized but not unreacted probes can yield a powerful signal amplification. We demonstrate here that in order for the reaction to proceed efficiently, the probes must be released from the topological link that forms with target molecules upon hybridization and ligation. If the target strand has a nearby free 3' end, then the probe-target hybrids can be displaced by the polymerase used for replication. The displaced probe can then slip off the targetstrand and a rolling circle amplification is initiated. Alternatively, the target sequence itself can prime an RCR after its non-base paired 3' end has been removed by exonucleolytic activity. We found the Phi29 DNA polymerase to be superior to the Klenow fragment in displacing the target DNA strand, and it maintained the polymerization reaction for at least 12 h, yielding an extension product that represents several thousand-fold the length of the padlock probe. PMID:9801302

  12. Lable-free quadruple signal amplification strategy for sensitive electrochemical p53 gene biosensing.

    PubMed

    Wang, Zonghua; Xia, Jianfei; Song, Daimin; Zhang, Feifei; Yang, Min; Gui, Rijun; Xia, Lin; Bi, Sai; Xia, Yanzhi

    2016-03-15

    A versatile label-free quadruple signal amplification biosensing platform for p53 gene (target DNA) detection was proposed. The chitosan-graphene (CS-GR) modified electrode with excellent electron transfer ability could provide a large specific surface for high levels of AuNPs-DNA attachment. The large amount of AuNPs could immobilize more capture probes and enhance the electrochemical signal with the excellent electrocatalytic activity. Furthermore, with the assist of N.BstNB I (the nicking endonuclease), target DNA could be reused and more G-quadruplex-hemin DNAzyme could be formed, allowing significant signal amplification in the presence of H2O2. Such strategy can enhance the oxidation-reduction reaction of adsorbed methylene blue (MB) and efficiently improve the sensitivity of the proposed biosensor. The morphologies of materials and the stepwise biosensor were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry (CV). Differential pulse voltammetry (DPV) signals of MB provided quantitative measures of the concentrations of target DNA, with a linear calibration range of 1.0 × 10(-15)-1.0 × 10(-9)M and a detection limit of 3.0 × 10(-16)M. Moreover, the resulting biosensor also exhibited good specificity, acceptable reproducibility and stability, indicating that the present strategy was promising for broad potential application in clinic assay. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A small molecule sensor for fluoride based on an autoinductive, colorimetric signal amplification reaction.

    PubMed

    Baker, Matthew S; Phillips, Scott T

    2012-05-14

    This article describes a small molecule reagent that is capable of detecting fluoride down to 0.12 mM (2.3 ppm) in water. The reagent reveals this level of fluoride through a novel autoinductive signal amplification reaction that produces an unambiguous colorimetric readout.

  14. Parametric Amplification Protocol for Frequency-Modulated Magnetic Resonance Force Microscopy Signals

    NASA Astrophysics Data System (ADS)

    Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John

    2011-03-01

    We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.

  15. Direct and quantitative detection of HIV-1 RNA in human plasma with a branched DNA signal amplification assay.

    PubMed

    Urdea, M S; Wilber, J C; Yeghiazarian, T; Todd, J A; Kern, D G; Fong, S J; Besemer, D; Hoo, B; Sheridan, P J; Kokka, R

    1993-11-01

    To determine the relative effect of sample matrix on the quantitation of HIV RNA in plasma. Two HIV-positive specimens were diluted into five and 10 different HIV-negative plasma samples, respectively. Branched DNA signal amplification technology and reverse-transcriptase polymerase chain reaction were used to measure the viral load. In one sample the viral load by polymerase chain reaction ranged from undetectable to 1.9 x 10(5) copies/ml, and the branched DNA results ranged from 2.6 x 10(4) to 4.2 x 10(4) HIV RNA equivalent/ml. In the other sample the corresponding figures were 6.3 x 10(4) to 5.5 x 10(5) copies/ml and 5.7 x 10(4) to 7.5 x 10(4) HIV RNA equivalents/ml. In contrast to reverse-transcriptase polymerase chain reaction the branched DNA signal amplification assay does not require a separate extraction step or enzymatic amplification of the target. Therefore this measurement is less affected by the sample matrix and the signal generated is directly proportional to the viral load.

  16. Ultrasensitive and Multiple Disease-Related MicroRNA Detection Based on Tetrahedral DNA Nanostructures and Duplex-Specific Nuclease-Assisted Signal Amplification.

    PubMed

    Xu, Fang; Dong, Haifeng; Cao, Yu; Lu, Huiting; Meng, Xiangdan; Dai, Wenhao; Zhang, Xueji; Al-Ghanim, Khalid Abdullah; Mahboob, Shahid

    2016-12-14

    A highly sensitive and multiple microRNA (miRNA) detection method by combining three-dimensional (3D) DNA tetrahedron-structured probes (TSPs) to increase the probe reactivity and accessibility with duplex-specific nuclease (DSN) for signal amplification for sensitive miRNA detection was proposed. Briefly, 3D DNA TSPs labeled with different fluorescent dyes for specific target miRNA recognition were modified on a gold nanoparticle (GNP) surface to increase the reactivity and accessibility. Upon hybridization with a specific target, the TSPs immobilized on the GNP surface hybridized with the corresponding target miRNA to form DNA-RNA heteroduplexes, and the DSN can recognize the formed DNA-RNA heteroduplexes to hydrolyze the DNA in the heteroduplexes to produce a specific fluorescent signal corresponding to a specific miRNA, while the released target miRNA strands can initiate another cycle, resulting in a significant signal amplification for sensitive miRNA detection. Different targets can produce different fluorescent signals, leading to the development of a sensitive detection for multiple miRNAs in a homogeneous solution. Under optimized conditions, the proposed assay can simultaneously detect three different miRNAs in a homogeneous solution with a logarithmic linear range spanning 5 magnitudes (10 -12 -10 -16 ) and achieving a limit of detection down to attomolar concentrations. Meanwhile, the proposed miRNA assay exhibited the capability of discriminating single bases (three bases mismatched miRNAs) and showed good eligibility in the analysis of miRNAs extracted from cell lysates and miRNAs in cell incubation media, which indicates its potential use in biomedical research and clinical analysis.

  17. Delivering strong 1H nuclear hyperpolarization levels and long magnetic lifetimes through signal amplification by reversible exchange

    PubMed Central

    Rayner, Peter J.; Burns, Michael J.; Olaru, Alexandra M.; Norcott, Philip; Fekete, Marianna; Green, Gary G. R.; Highton, Louise A. R.; Mewis, Ryan E.

    2017-01-01

    Hyperpolarization turns typically weak NMR and MRI responses into strong signals so that ordinarily impractical measurements become possible. The potential to revolutionize analytical NMR and clinical diagnosis through this approach reflect this area's most compelling outcomes. Methods to optimize the low-cost parahydrogen-based approach signal amplification by reversible exchange with studies on a series of biologically relevant nicotinamides and methyl nicotinates are detailed. These procedures involve specific 2H labeling in both the agent and catalyst and achieve polarization lifetimes of ca. 2 min with 50% polarization in the case of methyl-4,6-d2-nicotinate. Because a 1.5-T hospital scanner has an effective 1H polarization level of just 0.0005% this strategy should result in compressed detection times for chemically discerning measurements that probe disease. To demonstrate this technique’s generality, we exemplify further studies on a range of pyridazine, pyrimidine, pyrazine, and isonicotinamide analogs that feature as building blocks in biochemistry and many disease-treating drugs. PMID:28377523

  18. Ultrasensitive electrochemical immunosensor for alpha fetoprotein detection based on platinum nanoparticles anchored on cobalt oxide/graphene nanosheets for signal amplification.

    PubMed

    Liu, Li; Tian, Lihui; Zhao, Guanhui; Huang, Yuzhen; Wei, Qin; Cao, Wei

    2017-09-15

    An ultrasensitive sandwich-type electrochemical immunosensor was developed for quantitative monitoring of Alpha fetoprotein (AFP). To achieve this objective, an incorporated signal amplification strategy of platinum nanoparticles anchored on cobalt oxide/graphene nanosheets (Pt NPs/Co 3 O 4 /graphene) was proposed by acting as the label of secondary antibodies. The prepared label not only empowered by advantages of each component but exhibited better electrochemical performance than single Pt NPs, Co 3 O 4 and graphene, which has shown large specific surface area and good catalytic activity towards the reduction of H 2 O 2 . Meanwhile, the nanocomposite of gold nanoparticles adhered on 3-mercaptopropyltriethoxysilane functionalized graphene sheets (Au@MPTES-GS) was used as matrix to accelerate electron transfer and immobilize primary antibodies in this system. The signal amplification mechanism of the matrix and the label were explored successfully. Under optimal conditions, the electrochemical immunosensor exhibited a wide linear range from 0.1 pg mL -1 to 60 ng mL -1 with a low detection limit of 0.029 pg mL -1 for AFP. The proposed immunosensor may have promising application in the clinical diagnosis of AFP and other tumor markers. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Excision Repair-Initiated Enzyme-Assisted Bicyclic Cascade Signal Amplification for Ultrasensitive Detection of Uracil-DNA Glycosylase.

    PubMed

    Wang, Li-Juan; Ren, Ming; Zhang, Qianyi; Tang, Bo; Zhang, Chun-Yang

    2017-04-18

    Uracil-DNA glycosylase (UDG) is an important base excision repair (BER) enzyme responsible for the repair of uracil-induced DNA lesion and the maintenance of genomic integrity, while the aberrant expression of UDG is associated with a variety of cancers. Thus, the accurate detection of UDG activity is essential to biomedical research and clinical diagnosis. Here, we develop a fluorescent method for ultrasensitive detection of UDG activity using excision repair-initiated enzyme-assisted bicyclic cascade signal amplification. This assay involves (1) UDG-actuated uracil-excision repair, (2) excision repair-initiated nicking enzyme-mediated isothermal exponential amplification, (3) ribonuclease H (RNase H)-induced hydrolysis of signal probes for generating fluorescence signal. The presence of UDG enables the removal of uracil from U·A pairs and generates an apurinic/apyrimidinic (AP) site. Endonuclease IV (Endo IV) subsequently cleaves the AP site, resulting in the break of DNA substrate. The cleaved DNA substrate functions as both a primer and a template to initiate isothermal exponential amplification, producing a large number of triggers. The resultant trigger may selectively hybridize with the signal probe which is modified with FAM and BHQ1, forming a RNA-DNA heterogeneous duplex. The subsequent hydrolysis of RNA-DNA duplex by RNase H leads to the generation of fluorescence signal. This assay exhibits ultrahigh sensitivity with a detection limit of 0.0001 U/mL, and it can even measure UDG activity at the single-cell level. Moreover, this method can be applied for the measurement of kinetic parameters and the screening of inhibitors, thereby providing a powerful tool for DNA repair enzyme-related biomedical research and clinical diagnosis.

  20. The effect of classroom amplification on the signal-to-noise ratio in classrooms while class is in session.

    PubMed

    Larsen, Jeffery B; Blair, James C

    2008-10-01

    The purpose of this study was to measure the signal-to-noise ratios in classrooms while class was in session and students were interacting with the teacher and each other. Measurements of noise and reverberation were collected for 5 different classrooms in 3 different schools while class was in session. Activities taking place during the measurements were recorded to compare with sound level measures. The use of infrared classroom amplification was compared with no amplification. The results revealed that when classroom amplification was used, students heard the teacher's voice at a level that was an average of 13 dB above the noise floor as compared to an average of +2 dB above the noise floor without amplification.

  1. Biobar-coded gold nanoparticles and DNAzyme-based dual signal amplification strategy for ultrasensitive detection of protein by electrochemiluminescence.

    PubMed

    Xia, Hui; Li, Lingling; Yin, Zhouyang; Hou, Xiandeng; Zhu, Jun-Jie

    2015-01-14

    A dual signal amplification strategy for electrochemiluminescence (ECL) aptasensor was designed based on biobar-coded gold nanoparticles (Au NPs) and DNAzyme. CdSeTe@ZnS quantum dots (QDs) were chosen as the ECL signal probes. To verify the proposed ultrasensitive ECL aptasensor for biomolecules, we detected thrombin (Tb) as a proof-of-principle analyte. The hairpin DNA designed for the recognition of protein consists of two parts: the sequences of catalytical 8-17 DNAzyme and thrombin aptamer. Only in the presence of thrombin could the hairpin DNA be opened, followed by a recycling cleavage of excess substrates by catalytic core of the DNAzyme to induce the first-step amplification. One part of the fragments was captured to open the capture DNA modified on the Au electrode, which further connected with the prepared biobar-coded Au NPs-CdSeTe@ZnS QDs to get the final dual-amplified ECL signal. The limit of detection for Tb was 0.28 fM with excellent selectivity, and this proposed method possessed good performance in real sample analysis. This design introduces the new concept of dual-signal amplification by a biobar-coded system and DNAzyme recycling into ECL determination, and it is promising to be extended to provide a highly sensitive platform for various target biomolecules.

  2. Amplification in the rehabilitation of unilateral deafness: speech in noise and directional hearing effects with bone-anchored hearing and contralateral routing of signal amplification.

    PubMed

    Lin, Li-Mei; Bowditch, Stephen; Anderson, Michael J; May, Bradford; Cox, Kenneth M; Niparko, John K

    2006-02-01

    Vibromechanical stimulation with a semi-implantable bone conductor (Entific BAHA device) overcomes some of the head-shadow effects in unilateral deafness. What specific rehabilitative benefits are observed when the functional ear exhibits normal hearing versus moderate sensorineural hearing loss (SNHL)? The authors conducted a prospective trial of subjects with unilateral deafness in a tertiary care center. This study comprised adults with unilateral deafness (pure-tone average [PTA] > 90 dB; Sp.D. < 20%) and either normal monaural hearing (n = 18) or moderate SNHL (PTA = 25-50 dB: Sp.D. > 75%) in the contralateral functional ear (n = 5). Subjects were fit with contralateral routing of signal (CROS) devices for 1 month and tested before (mastoid) implantation, fitting, and testing with a bone-anchored hearing aid (BAHA). Outcome measures were: 1) subjective benefit; 2) source localization tests (Source Azimuth Identification in Noise Test [SAINT]); 3) speech discrimination in quiet and in noise assessed with Hearing In Noise Test (HINT) protocols. There was consistent satisfaction with BAHA amplification and poor acceptance of CROS amplification. General directional hearing decreased with CROS use and was unchanged by BAHA and directional microphone aids. Relative to baseline and CROS, BAHA produced significantly better speech recognition in noise. Twenty-two of 23 subjects followed up in this study continue to use their BAHA device over an average follow-up period of 30.24 months (range, 51-12 months). BAHA amplification on the side of a deaf ear yields greater benefit in subjects with monaural hearing than does CROS amplification. Advantages likely related to averting the interference of speech signals delivered to the better ear, as occurs with conventional CROS amplification, while alleviating the negative head-shadow effects of unilateral deafness. The advantages of head-shadow reduction in enhancing speech recognition with noise in the hearing ear outweigh

  3. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor.

    PubMed

    Feng, Lingyan; Sivanesan, Arumugam; Lyu, Zhaozi; Offenhäusser, Andreas; Mayer, Dirk

    2015-04-15

    Electrochemical aptamer-based (E-AB) sensors represent an emerging class of recently developed sensors. However, numerous of these sensors are limited by a low surface density of electrode-bound redox-oligonucleotides which are used as probe. Here we propose to use the concept of electrochemical current rectification (ECR) for the enhancement of the redox signal of E-AB sensors. Commonly, the probe-DNA performs a change in conformation during target binding and enables a nonrecurring charge transfer between redox-tag and electrode. In our system, the redox-tag of the probe-DNA is continuously replenished by solution-phase redox molecules. A unidirectional electron transfer from electrode via surface-linked redox-tag to the solution-phase redox molecules arises that efficiently amplifies the current response. Using this robust and straight-forward strategy, the developed sensor showed a substantial signal amplification and consequently improved sensitivity with a calculated detection limit of 114nM for ATP, which was improved by one order of magnitude compared with the amplification-free detection and superior to other previous detection results using enzymes or nanomaterials-based signal amplification. To the best of our knowledge, this is the first demonstration of an aptamer-based electrochemical biosensor involving electrochemical rectification, which can be presumably transferred to other biomedical sensor systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Two approximations for the geometric model of signal amplification in an electron-multiplying charge-coupled device detector

    PubMed Central

    Chao, Jerry; Ram, Sripad; Ward, E. Sally; Ober, Raimund J.

    2014-01-01

    The extraction of information from images acquired under low light conditions represents a common task in diverse disciplines. In single molecule microscopy, for example, techniques for superresolution image reconstruction depend on the accurate estimation of the locations of individual particles from generally low light images. In order to estimate a quantity of interest with high accuracy, however, an appropriate model for the image data is needed. To this end, we previously introduced a data model for an image that is acquired using the electron-multiplying charge-coupled device (EMCCD) detector, a technology of choice for low light imaging due to its ability to amplify weak signals significantly above its readout noise floor. Specifically, we proposed the use of a geometrically multiplied branching process to model the EMCCD detector’s stochastic signal amplification. Geometric multiplication, however, can be computationally expensive and challenging to work with analytically. We therefore describe here two approximations for geometric multiplication that can be used instead. The high gain approximation is appropriate when a high level of signal amplification is used, a scenario which corresponds to the typical usage of an EMCCD detector. It is an accurate approximation that is computationally more efficient, and can be used to perform maximum likelihood estimation on EMCCD image data. In contrast, the Gaussian approximation is applicable at all levels of signal amplification, but is only accurate when the initial signal to be amplified is relatively large. As we demonstrate, it can importantly facilitate the analysis of an information-theoretic quantity called the noise coefficient. PMID:25075263

  5. Signal-on electrochemical detection of antibiotics at zeptomole level based on target-aptamer binding triggered multiple recycling amplification.

    PubMed

    Wang, Hongzhi; Wang, Yu; Liu, Su; Yu, Jinghua; Guo, Yuna; Xu, Ying; Huang, Jiadong

    2016-06-15

    In the work, a signal-on electrochemical DNA sensor based on multiple amplification for ultrasensitive detection of antibiotics has been reported. In the presence of target, the ingeniously designed hairpin probe (HP1) is opened and the polymerase-assisted target recycling amplification is triggered, resulting in autonomous generation of secondary target. It is worth noting that the produced secondary target could not only hybridize with other HP1, but also displace the Helper from the electrode. Consequently, methylene blue labeled HP2 forms a "close" probe structure, and the increase of signal is monitored. The increasing current provides an ultrasensitive electrochemical detection for antibiotics down to 1.3 fM. To our best knowledge, such work is the first report about multiple recycling amplification combing with signal-on sensing strategy, which has been utilized for quantitative determination of antibiotics. It would be further used as a general strategy associated with more analytical techniques toward the detection of a wide spectrum of analytes. Thus, it holds great potential for the development of ultrasensitive biosensing platform for the applications in bioanalysis, disease diagnostics, and clinical biomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Signal Amplification in Field Effect-Based Sandwich Enzyme-Linked Immunosensing by Tuned Buffer Concentration with Ionic Strength Adjuster.

    PubMed

    Kumar, Satyendra; Kumar, Narendra; Panda, Siddhartha

    2016-04-01

    Miniaturization of the sandwich enzyme-based immunosensor has several advantages but could result in lower signal strength due to lower enzyme loading. Hence, technologies for amplification of the signal are needed. Signal amplification in a field effect-based electrochemical immunosensor utilizing chip-based ELISA is presented in this work. First, the molarities of phosphate buffer saline (PBS) and concentrations of KCl as ionic strength adjuster were optimized to maximize the GOx glucose-based enzymatic reactions in a beaker for signal amplification measured by change in the voltage shift with an EIS device (using 20 μl of solution) and validated with a commercial pH meter (using 3 ml of solution). The PBS molarity of 100 μM with 25 mM KCl provided the maximum voltage shift. These optimized buffer conditions were further verified for GOx immobilized on silicon chips, and similar trends with decreased PBS molarity were obtained; however, the voltage shift values obtained on chip reaction were lower as compared to the reactions occurring in the beaker. The decreased voltage shift with immobilized enzyme on chip could be attributed to the increased Km (Michaelis-Menten constant) values in the immobilized GOx. Finally, a more than sixfold signal enhancement (from 8 to 47 mV) for the chip-based sandwich immunoassay was obtained by altering the PBS molarity from 10 to 100 μM with 25 mM KCl.

  7. Ultrasensitive signal-on DNA biosensor based on nicking endonuclease assisted electrochemistry signal amplification.

    PubMed

    Liu, Zhongyuan; Zhang, Wei; Zhu, Shuyun; Zhang, Ling; Hu, Lianzhe; Parveen, Saima; Xu, Guobao

    2011-11-15

    Combining the advantages of signal-on strategy and nicking endonuclease assisted electrochemistry signal amplification (NEAESA), a new sensitive and signal-on electrochemical DNA biosensor for the sequence specific DNA detection based on NEAESA has been developed for the first time. A Hairpin-shape probe (HP), containing the target DNA recognition sequence, is thiol-modified at 5' end and immobilized on gold electrode via Au-S bonding. Subsequently, the HP modified electrode is hybridized with target DNA to form a duplex. Then the nicking endonuclease is added and nicks the HP strand in the duplex. After nicking, 3'-ferrocene (Fc)-labeled part complementary probe (Fc-PCP) is introduced on the electrode surface by hybridizing with the thiol-modified HP fragment, which results in the generation of electrochemical signal. Hence, the DNA biosensor is constructed successfully. The present DNA biosensor shows a wide linear range of 5.0×10(-13)-5.0×10(-8)M for detecting target DNA, with a low detection limit of 0.167pM. The proposed strategy does not require any amplifying labels (enzymes, DNAzymes, nanoparticles, etc.) for biorecognition events, which avoids false-positive results to occur frequently. Moreover, the strategy has the benefits of simple preparation, convenient operation, good selectivity, and high sensitivity. With the advantages mentioned above, this simple and sensitive strategy has the potential to be integrated in portable, low cost and simplified devices for diagnostic applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Classroom Amplification Technology: Theory and Practice.

    ERIC Educational Resources Information Center

    Crandell, Carl C.; Smaldino, Joseph J.

    2000-01-01

    This article reviews some relevant events in the development of acoustical standards for classrooms, describes classroom challenges to providing clear acoustical signals to children in classrooms, and outlines amplification solutions to some of those classroom challenges. Solutions include personal amplification devices and use of signal-to-noise…

  9. Multifunctional reduced graphene oxide trigged chemiluminescence resonance energy transfer: Novel signal amplification strategy for photoelectrochemical immunoassay of squamous cell carcinoma antigen.

    PubMed

    Zhang, Yan; Sun, Guoqiang; Yang, Hongmei; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2016-05-15

    Herein, a photoelectrochemical (PEC) immunoassay is constructed for squamous cell carcinoma antigen (SCCA) detection using zinc oxide nanoflower-bismuth sulfide (Bi2S3) composites as photoactive materials and reduced graphene oxide (rGO) as signal labels. Horseradish peroxidase is used to block sites against nonspecific binding, and then participated in luminol-based chemiluminescence (CL) system. The induced CL emission is acted as an inner light source to excite photoactive materials, simplifying the instrument. A novel signal amplification strategy is stem from rGO because of the rGO acts as an energy acceptor, while luminol serves as a donor to rGO, triggering the CL resonance energy transfer phenomenon between luminol and rGO. Thus, the efficient CL emission to photoactive materials decreases. Furthermore, the signal amplification caused by rGO labeled signal antibodies is related to photogenerated electron-hole pairs: perfect matching of energy levels between rGO and Bi2S3 makes rGO a sink to capture photogenerated electrons from Bi2S3; the increased steric hindrance hinders the electron donor to the surface of Bi2S3 for reaction with the photogenerated holes. On the basis of the novel signal amplification strategy, the proposed immunosensor exhibits excellent analytical performance for PEC detection of SCCA, ranging from 0.8 pg mL(-1) to 80 ng mL(-1) with a low detection limit of 0.21 pg mL(-1). Meanwhile, the designed signal amplification strategy provides a general format for future development of PEC assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Highly sensitive and selective microRNA detection based on DNA-bio-bar-code and enzyme-assisted strand cycle exponential signal amplification.

    PubMed

    Dong, Haifeng; Meng, Xiangdan; Dai, Wenhao; Cao, Yu; Lu, Huiting; Zhou, Shufeng; Zhang, Xueji

    2015-04-21

    Herein, a highly sensitive and selective microRNA (miRNA) detection strategy using DNA-bio-bar-code amplification (BCA) and Nb·BbvCI nicking enzyme-assisted strand cycle for exponential signal amplification was designed. The DNA-BCA system contains a locked nucleic acid (LNA) modified DNA probe for improving hybridization efficiency, while a signal reported molecular beacon (MB) with an endonuclease recognition site was designed for strand cycle amplification. In the presence of target miRNA, the oligonucleotides functionalized magnetic nanoprobe (MNP-DNA) and gold nanoprobe (AuNP-DNA) with numerous reported probes (RP) can hybridize with target miRNA, respectively, to form a sandwich structure. After sandwich structures were separated from the solution by the magnetic field, the RP were released under high temperature to recognize the MB and cleaved the hairpin DNA to induce the dissociation of RP. The dissociated RP then triggered the next strand cycle to produce exponential fluorescent signal amplification for miRNA detection. Under optimized conditions, the exponential signal amplification system shows a good linear range of 6 orders of magnitude (from 0.3 pM to 3 aM) with limit of detection (LOD) down to 52.5 zM, while the sandwich structure renders the system with high selectivity. Meanwhile, the feasibility of the proposed strategy for cell miRNA detection was confirmed by analyzing miRNA-21 in HeLa lysates. Given the high-performance for miRNA analysis, the strategy has a promising application in biological detection and in clinical diagnosis.

  11. Evolution and Design Governing Signal Precision and Amplification in a Bacterial Chemosensory Pathway

    PubMed Central

    Espinosa, Leon; Baronian, Grégory; Molle, Virginie; Mauriello, Emilia M. F.; Brochier-Armanet, Céline; Mignot, Tâm

    2015-01-01

    Understanding the principles underlying the plasticity of signal transduction networks is fundamental to decipher the functioning of living cells. In Myxococcus xanthus, a particular chemosensory system (Frz) coordinates the activity of two separate motility systems (the A- and S-motility systems), promoting multicellular development. This unusual structure asks how signal is transduced in a branched signal transduction pathway. Using combined evolution-guided and single cell approaches, we successfully uncoupled the regulations and showed that the A-motility regulation system branched-off an existing signaling system that initially only controlled S-motility. Pathway branching emerged in part following a gene duplication event and changes in the circuit structure increasing the signaling efficiency. In the evolved pathway, the Frz histidine kinase generates a steep biphasic response to increasing external stimulations, which is essential for signal partitioning to the motility systems. We further show that this behavior results from the action of two accessory response regulator proteins that act independently to filter and amplify signals from the upstream kinase. Thus, signal amplification loops may underlie the emergence of new connectivity in signal transduction pathways. PMID:26291327

  12. Highly Sensitive Colorimetric Cancer Cell Detection Based on Dual Signal Amplification.

    PubMed

    Yu, Tao; Dai, Pan-Pan; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-02-01

    Facile and efficient detection of cancer cells at their preclinical stages is one of the central challenges in cancer diagnostics. A direct, rapid, highly sensitive and specific biosensor for detection of cancer biomarkers is desirable in early diagnosis and prognosis of cancer. In this work, we developed, for the first time, an easy and intuitive dispersion-dominated colorimetric strategy for cancer cell detection based on combining multi-DNA released from an aptamer scaffold with cyclic enzymatic amplification, which was triggered by aptamer DNA conformational switch and demonstrated by non-cross-linking gold nanoparticles (Au NPs) aggregation. First, five kinds of messenger DNAs (mDNAs) were aligned on the cancer cell aptamers modified on magnetic beads (MBs) to form mDNAs-Apt-MBs biocompatible nanosensors. In the presence of target cells, the aptamer would bind to the receptors on the cell membranes, and mDNAs would be released, resulting in the first amplification that one biological binding event would cause the release of multiple kinds of mDNAs simultaneously. After magnetic separation, the released mDNAs were introduced into the cyclic enzymatic amplification to cleave more single strand DNA (ssDNA) fragments. Instead of modification of Au NPs, these fragments and mDNAs could be adsorbed on the surface of Au NPs to prevent particle aggregation and ensure the stability and color of solution in high salt environments. The linear response for HL-60 cells in a concentration range from 10 to 10(4) cells was obtained with a detection limit of four cells in buffer solution. Moreover, the feasibility of the proposed strategy was demonstrated in a diluted serum sample. This dual signal amplification method can be extended to other types of cancer cells, which has potential application in point-of-care cancer diagnosis.

  13. Cross-catalytic hairpin assembly-based exponential signal amplification for CRET assay with low background noise.

    PubMed

    Yue, Shuzhen; Zhao, Tingting; Qi, Hongjie; Yan, Yongcun; Bi, Sai

    2017-08-15

    A toehold-mediated strand displacement (TMSD)-based cross-catalytic hairpin assembly (C-CHA) is demonstrated in this study, achieving exponential amplification of nucleic acids. Functionally, this system consists of four hairpins (H1, H2, H3 and H4) and one single-stranded initiator (I). Upon the introduction of I, the first CHA reaction (CHA1) is triggered, leading to the self-assembly of hybrid H1·H2 that then initiates the second CHA reaction (CHA2) to obtain the hybrid H3·H4. Since the single-stranded region in H3·H4 is identical to I, a new CHA1 is initiated, which thus achieves cross operation of CHA1 and CHA2 and exponential growth kinetics. Interestingly, because the C-CHA performs in a cascade manner, this system can be considered as multi-level molecular logic circuits with feedback mechanism. Moreover, through incorporating G-quadruplex subunits and fluorescein isothiocyanate (FITC) in the product of H1·H2, this C-CHA is readily utilized to fabricate a chemiluminescence resonance energy transfer (CRET) biosensing platform, achieving sensitive and selective detection of DNA and microRNA in real samples. Since the high background signal induced by FITC in the absence of initiator is greatly reduced through labeling quencher in H1, the signal-to-noise ratio and detection sensitivity are improved significantly. Therefore, our proposed C-CHA protocol holds a great potential for further applications in not only building complex autonomous systems but also the development of biosensing platforms and DNA nanotechnology. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Phase matched parametric amplification via four-wave mixing in optical microfibers.

    PubMed

    Abdul Khudus, Muhammad I M; De Lucia, Francesco; Corbari, Costantino; Lee, Timothy; Horak, Peter; Sazio, Pier; Brambilla, Gilberto

    2016-02-15

    Four-wave mixing (FWM) based parametric amplification in optical microfibers (OMFs) is demonstrated over a wavelength range of over 1000 nm by exploiting their tailorable dispersion characteristics to achieve phase matching. Simulations indicate that for any set of wavelengths satisfying the FWM energy conservation condition there are two diameters at which phase matching in the fundamental mode can occur. Experiments with a high-power pulsed source working in conjunction with a periodically poled silica fiber (PPSF), producing both fundamental and second harmonic signals, are undertaken to investigate the possibility of FWM parametric amplification in OMFs. Large increases of idler output power at the third harmonic wavelength were recorded for diameters close to the two phase matching diameters. A total amplification of more than 25 dB from the initial signal was observed in a 6 mm long optical microfiber, after accounting for the thermal drift of the PPSF and other losses in the system.

  15. Ultrasensitive and selective signal-on electrochemical DNA detection via exonuclease III catalysis and hybridization chain reaction amplification.

    PubMed

    Ren, Wang; Gao, Zhong Feng; Li, Nian Bing; Luo, Hong Qun

    2015-01-15

    This work reported a novel, ultrasensitive, and selective platform for electrochemical detection of DNA, employing an integration of exonuclease III (Exo-III) assisted target recycling and hybridization chain reaction (HCR) for the dual signal amplification strategy. The hairpin capture probe DNA (C-DNA) with an Exo-III 3' overhang end was self-assembled on a gold electrode. In the presence of target DNA (T-DNA), C-DNA hybridized with the T-DNA to form a duplex region, exposing its 5' complementary sequence (initiator). Exo-III was applied to selectively digest duplex region from its 3-hydroxyl termini until the duplex was fully consumed, leaving the remnant initiator. The intact T-DNA spontaneously dissociated from the structure and then initiated the next hybridization process as a result of catalysis of the Exo-III. HCR event was triggered by the initiator and two hairpin helper signal probes labeled with methylene blue, facilitating the polymerization of oligonucleotides into a long nicked dsDNA molecule. The numerous exposed remnant initiators can trigger more HCR events. Because of integration of dual signal amplification and the specific HCR process reaction, the resultant sensor showed a high sensitivity for the detection of the target DNA in a linear range from 1.0 fM to 1.0 nM, and a detection limit as low as 0.2 fM. The proposed dual signal amplification strategy provides a powerful tool for detecting different sequences of target DNA by changing the sequence of capture probe and signal probes, holding a great potential for early diagnosis in gene-related diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Combination of Mass Signal Amplification and Isotope-Labeled Alkanethiols for the Multiplexed Detection of miRNAs.

    PubMed

    Kang, Hyunook; Hong, Seol-Hye; Sung, Jiha; Yeo, Woon-Seok

    2017-08-04

    We report a fast and sensitive method for the multiplexed detection of miRNAs by combining mass signal amplification and isotope-labeled signal reporter molecules. In our strategy, target miRNAs are captured specifically by immobilized DNAs on gold nanoparticles (AuNPs), which carry a large number of small molecules, called amplification tags (Am-tags), as the reporter for the detection of target miRNAs. For multiplexed detection, we designed and synthesized four Am-tags containing 0, 4, 8, 12 isotopes so that they had same molecular properties but different molecular weights. By observing the mass signals of the Am-tags on AuNPs decorated along with different probe DNAs, four types of miRNAs in a sample could be easily discriminated, and the relative amounts of these miRNAs could be quantified. The practicability of our strategy was further verified by measuring the expression levels of two miRNAs in HUVECs in response to different CuSO 4 concentrations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A SPR biosensor based on signal amplification using antibody-QD conjugates for quantitative determination of multiple tumor markers

    PubMed Central

    Wang, Huan; Wang, Xiaomei; Wang, Jue; Fu, Weiling; Yao, Chunyan

    2016-01-01

    The detection of tumor markers is very important in early cancer diagnosis; however, tumor markers are usually present at very low concentrations, especially in the early stages of tumor development. Surface plasmon resonance (SPR) is widely used to detect biomolecular interactions; it has inherent advantages of being high-throughput, real-time, and label-free technique. However, its sensitivity needs essential improvement for practical applications. In this study, we developed a signal amplification strategy using antibody-quantum dot (QD) conjugates for the sensitive and quantitative detection of α-fetoprotein (AFP), carcinoembryonic antigen (CEA) and cytokeratin fragment 21-1 (CYFRA 21-1) in clinical samples. The use of a dual signal amplification strategy using AuNP-antibody and antibody-QD conjugates increased the signal amplification by 50-folds. The constructed SPR biosensor showed a detection limit as low as 0.1 ng/mL for AFP, CEA, and CYFRA 21-1. Moreover, the results obtained using this SPR biosensor were consistent with those obtained using the electrochemiluminescence method. Thus, the constructed SPR biosensor provides a highly sensitive and specific approach for the detection of tumor markers. This SPR biosensor can be expected to be readily applied for the detection of other tumor markers and can offer a potentially powerful solution for tumor screening. PMID:27615417

  18. Hyperpolarized xenon NMR and MRI signal amplification by gas extraction

    PubMed Central

    Zhou, Xin; Graziani, Dominic; Pines, Alexander

    2009-01-01

    A method is reported for enhancing the sensitivity of NMR of dissolved xenon by detecting the signal after extraction to the gas phase. We demonstrate hyperpolarized xenon signal amplification by gas extraction (Hyper-SAGE) in both NMR spectra and magnetic resonance images with time-of-flight information. Hyper-SAGE takes advantage of a change in physical phase to increase the density of polarized gas in the detection coil. At equilibrium, the concentration of gas-phase xenon is ≈10 times higher than that of the dissolved-phase gas. After extraction the xenon density can be further increased by several orders of magnitude by compression and/or liquefaction. Additionally, being a remote detection technique, the Hyper-SAGE effect is further enhanced in situations where the sample of interest would occupy only a small proportion of the traditional NMR receiver. Coupled with targeted xenon biosensors, Hyper-SAGE offers another path to highly sensitive molecular imaging of specific cell markers by detection of exhaled xenon gas. PMID:19805177

  19. Sensitive SERS detection of lead ions via DNAzyme based quadratic signal amplification.

    PubMed

    Tian, Aihua; Liu, Yu; Gao, Jian

    2017-08-15

    Highly sensitive detection of Pb 2+ is very necessary for water quality control, clinical toxicology, and industrial monitoring. In this work, a simple and novel DNAzyme-based SERS quadratic amplification method is developed for the detection of Pb 2+ . This strategy possesses some remarkable features compared to the conventional DNAzyme-based SERS methods, which are as follows: (i) Coupled DNAzyme-activated hybridization chain reaction (HCR) with bio barcodes; a quadratic amplification method is designed using the unique catalytic selectivity of DNAzyme. The SERS signal is significantly amplified. This method is rapid with a detection time of 2h. (ii) The problem of high background induced by excess bio barcodes is circumvented by using magnetic beads (MBs) as the carrier of signal-output products, and this sensing system is simple in design and can easily be carried out by simple mixing and incubation. Given the unique and attractive characteristics, a simple and universal strategy is designed to accomplish sensitive detection of Pb 2+ . The detection limit of Pb 2+ via SERS detection is 70 fM, with the linear range from 1.0×10 -13 M to 1.0×10 -7 M. The method can be further extended to the quantitative detection of a variety of targets by replacing the lead-responsive DNAzyme with other functional DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Long-distance communication and signal amplification in systemic acquired resistance

    PubMed Central

    Shah, Jyoti; Zeier, Jürgen

    2013-01-01

    Systemic acquired resistance (SAR) is an inducible defense mechanism in plants that confers enhanced resistance against a variety of pathogens. SAR is activated in the uninfected systemic (distal) organs in response to a prior (primary) infection elsewhere in the plant. SAR is associated with the activation of salicylic acid (SA) signaling and the priming of defense responses for robust activation in response to subsequent infections. The activation of SAR requires communication by the primary infected tissues with the distal organs. The vasculature functions as a conduit for the translocation of factors that facilitate long-distance intra-plant communication. In recent years, several metabolites putatively involved in long-distance signaling have been identified. These include the methyl ester of SA (MeSA), the abietane diterpenoid dehydroabietinal (DA), the dicarboxylic acid azelaic acid (AzA), and a glycerol-3-phosphate (G3P)-dependent factor. Long-distance signaling by some of these metabolites also requires the lipid-transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE 1). The relative contribution of these factors in long-distance signaling is likely influenced by environmental conditions, for example light. In the systemic leaves, the AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1)-dependent production of the lysine catabolite pipecolic acid (Pip), FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) signaling, as well as SA synthesis and downstream signaling are required for the activation of SAR. This review summarizes the involvement and interaction between long-distance SAR signals and details the recently discovered role of Pip in defense amplification and priming that allows plants to acquire immunity at the systemic level. Recent advances in SA signaling and perception are also highlighted. PMID:23440336

  1. Weak signal amplification and detection by higher-order sensory neurons.

    PubMed

    Jung, Sarah N; Longtin, Andre; Maler, Leonard

    2016-04-01

    Sensory systems must extract behaviorally relevant information and therefore often exhibit a very high sensitivity. How the nervous system reaches such high sensitivity levels is an outstanding question in neuroscience. Weakly electric fish (Apteronotus leptorhynchus/albifrons) are an excellent model system to address this question because detailed background knowledge is available regarding their behavioral performance and its underlying neuronal substrate. Apteronotus use their electrosense to detect prey objects. Therefore, they must be able to detect electrical signals as low as 1 μV while using a sensory integration time of <200 ms. How these very weak signals are extracted and amplified by the nervous system is not yet understood. We studied the responses of cells in the early sensory processing areas, namely, the electroreceptor afferents (EAs) and pyramidal cells (PCs) of the electrosensory lobe (ELL), the first-order electrosensory processing area. In agreement with previous work we found that EAs cannot encode very weak signals with a spike count code. However, PCs can encode prey mimic signals by their firing rate, revealing a huge signal amplification between EAs and PCs and also suggesting differences in their stimulus encoding properties. Using a simple leaky integrate-and-fire (LIF) model we predict that the target neurons of PCs in the midbrain torus semicircularis (TS) are able to detect very weak signals. In particular, TS neurons could do so by assuming biologically plausible convergence rates as well as very simple decoding strategies such as temporal integration, threshold crossing, and combining the inputs of PCs. Copyright © 2016 the American Physiological Society.

  2. Weak signal amplification and detection by higher-order sensory neurons

    PubMed Central

    Longtin, Andre; Maler, Leonard

    2016-01-01

    Sensory systems must extract behaviorally relevant information and therefore often exhibit a very high sensitivity. How the nervous system reaches such high sensitivity levels is an outstanding question in neuroscience. Weakly electric fish (Apteronotus leptorhynchus/albifrons) are an excellent model system to address this question because detailed background knowledge is available regarding their behavioral performance and its underlying neuronal substrate. Apteronotus use their electrosense to detect prey objects. Therefore, they must be able to detect electrical signals as low as 1 μV while using a sensory integration time of <200 ms. How these very weak signals are extracted and amplified by the nervous system is not yet understood. We studied the responses of cells in the early sensory processing areas, namely, the electroreceptor afferents (EAs) and pyramidal cells (PCs) of the electrosensory lobe (ELL), the first-order electrosensory processing area. In agreement with previous work we found that EAs cannot encode very weak signals with a spike count code. However, PCs can encode prey mimic signals by their firing rate, revealing a huge signal amplification between EAs and PCs and also suggesting differences in their stimulus encoding properties. Using a simple leaky integrate-and-fire (LIF) model we predict that the target neurons of PCs in the midbrain torus semicircularis (TS) are able to detect very weak signals. In particular, TS neurons could do so by assuming biologically plausible convergence rates as well as very simple decoding strategies such as temporal integration, threshold crossing, and combining the inputs of PCs. PMID:26843601

  3. A split recognition mode combined with cascade signal amplification strategy for highly specific, sensitive detection of microRNA.

    PubMed

    Wang, Rui; Wang, Lei; Zhao, Haiyan; Jiang, Wei

    2016-12-15

    MicroRNAs (miRNAs) are vital for many biological processes and have been regarded as cancer biomarkers. Specific and sensitive detection of miRNAs is essential for cancer diagnosis and therapy. Herein, a split recognition mode combined with cascade signal amplification strategy is developed for highly specific and sensitive detection of miRNA. The split recognition mode possesses two specific recognition processes, which are based on toehold-mediated strand displacement reaction (TSDR) and direct hybridization reaction. Two recognition probes, hairpin probe (HP) with overhanging toehold domain and assistant probe (AP), are specially designed. Firstly, the toehold domain of HP and AP recognize part of miRNA simultaneously, accompanied with TSDR to unfold the HP and form the stable DNA Y-shaped junction structure (YJS). Then, the AP in YJS can further act as primer to initiate strand displacement amplification, releasing numerous trigger sequences. Finally, the trigger sequences hybridize with padlock DNA to initiate circular rolling circle amplification and generate enhanced fluorescence responses. In this strategy, the dual recognition effect of split recognition mode guarantees the excellent selectivity to discriminate let-7b from high-homology sequences. Furthermore, the high amplification efficiency of cascade signal amplification guarantees a high sensitivity with the detection limit of 3.2 pM and the concentration of let-7b in total RNA sample extracted from Hela cells is determined. These results indicate our strategy will be a promising miRNA detection strategy in clinical diagnosis and disease treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Ultrasensitive lateral-flow assays based on quantum dot encapsulations with signal amplification

    NASA Astrophysics Data System (ADS)

    Li, Xue; Gong, Xiaoqun; Zhang, Bo; Liu, Yajuan; Chang, Jin; Zhang, Xuening

    2018-05-01

    Lateral-flow assays (LFAs), with its convenience and low cost, promise to become the in-home test format for early diagnosis and monitoring of tumor marker. However, the insufficient signal intensity was generated by signal reporters reducing the sensitivity of this format. In this study, a novel nanoscale signal reporter capable of amplifying the fluorescence signal is fabricated by encapsulating quantum dots (QDs) into modified tri-copolymer (poly(tert-butyl acrylate-co-ethyl acrylate-co-methacrylic acid)) (ODA- g-tri-copolymer). The amplified signal varied by simply adjusting the ratio of QDs to the ODA- g-tri-copolymer for obtaining QD nanospheres with high QD loading. They exhibits outstanding stability compared to the individual QDs both in the biological buffer and strong acid solutions. Here, human chorionic gonadotrophin (HCG) is employed as the model protein of LFAs. The results show that the detection limit of the QD nanospheres is pushed down to 0.016 IU/L, which is about 38.5 times enhanced compared to the individual QD-based LFAs without any signal amplifying. The ultrasensitive LFAs were attributed to the signal amplification strategy, and their efficiency and robustness demonstrated the great potential in clinical applications. [Figure not available: see fulltext.

  5. Amplified electrochemiluminescence detection of DNA based on novel quantum dots signal probe by multiple cycling amplification strategy.

    PubMed

    Tan, Lu; Ge, Junjun; Jiao, Meng; Jie, Guifen; Niu, Shuyan

    2018-06-01

    In the present work, we designed a unique enzyme-aided multiple amplification strategy for sensitive electrochemiluminescence (ECL) detection of DNA by using the amplified gold nanoparticles (GNPS)-polyamidoamine (PAMAM)-CdSe quantum dots (QDs) signal probe. Firstly, the novel GNPS-PAMAM dendrimers nanostructure with good biocompatibility and electroconductibility contains many amino groups, which can load a large number of CdSe QDs to develop amplified ECL signal probe. Then, the presence of target DNA activated the enzyme-assisted polymerization strand-displacement cycling reaction, and a large number of the hairpin template was opened. Subsequently, the opened stem further interacted with the capture hairpin (HP) DNA on the electrode, and the GNPS-PAMAM-CdSe signal probe hybridized with the exposed stem of the HP to trigger the second new polymerization reaction. Meanwhile, the first cycle was generating abundant DNA triggers which could directly open the template. As a result of the cascade amplification technique, a large number of CdSe QDs signal probe could be assembled on the electrode, generating much amplified ECL signal for sensitive detection of target DNA. Thus, this novel QDs-based amplified ECL strategy holds great promise for DNA detection and can be further exploited for sensing applications in clinical diagnostics. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. An enzyme-free flow cytometric bead assay for the sensitive detection of microRNAs based on click nucleic acid ligation-mediated signal amplification.

    PubMed

    Qi, Yan; Qiu, Liying; Fan, Wenjiao; Liu, Chenghui; Li, Zhengping

    2017-08-07

    A versatile flow cytometric bead assay (FCBA) coupled with a completely enzyme-free signal amplification mechanism is developed for the sensitive detection of microRNAs (miRNAs). This new strategy integrates click chemistry-mediated ligation chain reaction (CLCR) with hybridization chain reaction (HCR) for enzyme-free signal amplification on magnetic beads (MBs), and a flow cytometer for the robust fluorescence readout of the MBs. Firstly, target miRNA can initiate CLCR on the surface of MBs based on the click chemical ligation between dibenzocyclooctyne (DBCO)- and azide-modified single-stranded DNA (ssDNA) probes, and the amount of ligated ssDNA sequences on the MBs will be proportional to the dosage of target miRNA. Afterward, each of the ligated ssDNA products can trigger a cascade chain reaction of hybridization events between two alternating fluorophore-tagged hairpin probes, resulting in another signal amplification pathway with an amplified accumulation of fluorophores on the MBs. Finally, the fluorophore-anchored MBs are directly and rapidly analyzed by using a flow cytometer without any separation or elution processes. Herein, the click nucleic acid ligation only occurs on the surface of MBs, so the nonspecific ligations are greatly inhibited compared with that of ligation reaction performed in homogeneous solution. Furthermore, the signal amplification by CLCR-HCR is highly efficient but totally enzyme-free, which may overcome the potential drawbacks of conventional enzyme-catalyzed signal amplification protocols and lead to a high sensitivity. The CLCR-HCR-based FCBA has pushed the detection limit of let-7a miRNA down to the femtomolar (fM) level, showing great potential in miRNA-related biological studies and disease diagnosis.

  7. Signal-off Electrochemiluminescence Biosensor Based on Phi29 DNA Polymerase Mediated Strand Displacement Amplification for MicroRNA Detection.

    PubMed

    Chen, Anyi; Gui, Guo-Feng; Zhuo, Ying; Chai, Ya-Qin; Xiang, Yun; Yuan, Ruo

    2015-06-16

    A target induced cycling strand displacement amplification (SDA) mediated by phi29 DNA polymerase (phi29) was first investigated and applied in a signal-off electrochemiluminescence (ECL) biosensor for microRNA (miRNA) detection. Herein, the target miRNA triggered the phi29-mediated SDA which could produce amounts of single-stranded DNA (assistant probe) with accurate and comprehensive nucleotide sequence. Then, the assistant probe hybridized with the capture probe and the ferrocene-labeled probe (Fc-probe) to form a ternary "Y" structure for ECL signal quenching by ferrocene. Therefore, the ECL intensity would decrease with increasing concentration of the target miRNA, and the sensitivity of biosensor would be promoted on account of the efficient signal amplification of the target induced cycling reaction. Besides, a self-enhanced Ru(II) ECL system was designed to obtain a stable and strong initial signal to further improve the sensitivity. The ECL assay for miRNA-21 detection is developed with excellent sensitivity of a concentration variation from 10 aM to 1.0 pM and limit of detection down to 3.3 aM.

  8. Quenching of unincorporated amplification signal reporters in reverse-transcription loop-mediated isothermal amplification enabling bright, single-step, closed-tube, and multiplexed detection of RNA viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, Cameron S.; Light, Yooli K.; Koh, Chung -Yan

    Reverse-transcription-loop-mediated isothermal amplification (RT-LAMP) has frequently been proposed as an enabling technology for simplified diagnostic tests for RNA viruses. However, common detection techniques used for LAMP and RT-LAMP have drawbacks, including poor discrimination capability, inability to multiplex targets, high rates of false positives, and (in some cases) the requirement of opening reaction tubes postamplification. Here, we present a simple technique that allows closed-tube, target-specific detection, based on inclusion of a dye-labeled primer that is incorporated into a target-specific amplicon if the target is present. A short, complementary quencher hybridizes to unincorporated primer upon cooling down at the end of themore » reaction, thereby quenching fluorescence of any unincorporated primer. Our technique, which we term QUASR (for quenching of unincorporated amplification signal reporters, read “quasar”), does not significantly reduce the amplification efficiency or sensitivity of RT-LAMP. Equipped with a simple LED excitation source and a colored plastic gel filter, the naked eye or a camera can easily discriminate between positive and negative QUASR reactions, which produce a difference in signal of approximately 10:1 without background subtraction. We demonstrate that QUASR detection is compatible with complex sample matrices such as human blood, using a novel LAMP primer set for bacteriophage MS2 (a model RNA virus particle). As a result, we demonstrate single-tube duplex detection of West Nile virus (WNV) and chikungunya virus (CHIKV) RNA.« less

  9. Quenching of unincorporated amplification signal reporters in reverse-transcription loop-mediated isothermal amplification enabling bright, single-step, closed-tube, and multiplexed detection of RNA viruses

    DOE PAGES

    Ball, Cameron S.; Light, Yooli K.; Koh, Chung -Yan; ...

    2016-03-16

    Reverse-transcription-loop-mediated isothermal amplification (RT-LAMP) has frequently been proposed as an enabling technology for simplified diagnostic tests for RNA viruses. However, common detection techniques used for LAMP and RT-LAMP have drawbacks, including poor discrimination capability, inability to multiplex targets, high rates of false positives, and (in some cases) the requirement of opening reaction tubes postamplification. Here, we present a simple technique that allows closed-tube, target-specific detection, based on inclusion of a dye-labeled primer that is incorporated into a target-specific amplicon if the target is present. A short, complementary quencher hybridizes to unincorporated primer upon cooling down at the end of themore » reaction, thereby quenching fluorescence of any unincorporated primer. Our technique, which we term QUASR (for quenching of unincorporated amplification signal reporters, read “quasar”), does not significantly reduce the amplification efficiency or sensitivity of RT-LAMP. Equipped with a simple LED excitation source and a colored plastic gel filter, the naked eye or a camera can easily discriminate between positive and negative QUASR reactions, which produce a difference in signal of approximately 10:1 without background subtraction. We demonstrate that QUASR detection is compatible with complex sample matrices such as human blood, using a novel LAMP primer set for bacteriophage MS2 (a model RNA virus particle). As a result, we demonstrate single-tube duplex detection of West Nile virus (WNV) and chikungunya virus (CHIKV) RNA.« less

  10. Quenching of Unincorporated Amplification Signal Reporters in Reverse-Transcription Loop-Mediated Isothermal Amplification Enabling Bright, Single-Step, Closed-Tube, and Multiplexed Detection of RNA Viruses.

    PubMed

    Ball, Cameron S; Light, Yooli K; Koh, Chung-Yan; Wheeler, Sarah S; Coffey, Lark L; Meagher, Robert J

    2016-04-05

    Reverse-transcription-loop-mediated isothermal amplification (RT-LAMP) has frequently been proposed as an enabling technology for simplified diagnostic tests for RNA viruses. However, common detection techniques used for LAMP and RT-LAMP have drawbacks, including poor discrimination capability, inability to multiplex targets, high rates of false positives, and (in some cases) the requirement of opening reaction tubes postamplification. Here, we present a simple technique that allows closed-tube, target-specific detection, based on inclusion of a dye-labeled primer that is incorporated into a target-specific amplicon if the target is present. A short, complementary quencher hybridizes to unincorporated primer upon cooling down at the end of the reaction, thereby quenching fluorescence of any unincorporated primer. Our technique, which we term QUASR (for quenching of unincorporated amplification signal reporters, read "quasar"), does not significantly reduce the amplification efficiency or sensitivity of RT-LAMP. Equipped with a simple LED excitation source and a colored plastic gel filter, the naked eye or a camera can easily discriminate between positive and negative QUASR reactions, which produce a difference in signal of approximately 10:1 without background subtraction. We demonstrate that QUASR detection is compatible with complex sample matrices such as human blood, using a novel LAMP primer set for bacteriophage MS2 (a model RNA virus particle). Furthermore, we demonstrate single-tube duplex detection of West Nile virus (WNV) and chikungunya virus (CHIKV) RNA.

  11. Novel One-Tube-One-Step Real-Time Methodology for Rapid Transcriptomic Biomarker Detection: Signal Amplification by Ternary Initiation Complexes.

    PubMed

    Fujita, Hiroto; Kataoka, Yuka; Tobita, Seiji; Kuwahara, Masayasu; Sugimoto, Naoki

    2016-07-19

    We have developed a novel RNA detection method, termed signal amplification by ternary initiation complexes (SATIC), in which an analyte sample is simply mixed with the relevant reagents and allowed to stand for a short time under isothermal conditions (37 °C). The advantage of the technique is that there is no requirement for (i) heat annealing, (ii) thermal cycling during the reaction, (iii) a reverse transcription step, or (iv) enzymatic or mechanical fragmentation of the target RNA. SATIC involves the formation of a ternary initiation complex between the target RNA, a circular DNA template, and a DNA primer, followed by rolling circle amplification (RCA) to generate multiple copies of G-quadruplex (G4) on a long DNA strand like beads on a string. The G4s can be specifically fluorescence-stained with N(3)-hydroxyethyl thioflavin T (ThT-HE), which emits weakly with single- and double-stranded RNA/DNA but strongly with parallel G4s. An improved dual SATIC system, which involves the formation of two different ternary initiation complexes in the RCA process, exhibited a wide quantitative detection range of 1-5000 pM. Furthermore, this enabled visual observation-based RNA detection, which is more rapid and convenient than conventional isothermal methods, such as reverse transcription-loop-mediated isothermal amplification, signal mediated amplification of RNA technology, and RNA-primed rolling circle amplification. Thus, SATIC methodology may serve as an on-site and real-time measurement technique for transcriptomic biomarkers for various diseases.

  12. Polymerization-based signal amplification under ambient conditions with thirty-five second reaction times.

    PubMed

    Kaastrup, Kaja; Sikes, Hadley D

    2012-10-21

    Although polymerization-based amplification (PBA) has demonstrated promise as an inexpensive technique for use in molecular diagnostics, oxygen inhibition of radical photopolymerization has hindered its implementation in point-of-care devices. The addition of 0.3-0.7 μM eosin to an aqueous acrylate monomer solution containing a tertiary amine allows an interfacial polymerization reaction to proceed in air only near regions of a test surface where additional eosin initiators coupled to proteins have been localized as a function of molecular recognition events. The dose of light required for the reaction is inversely related to eosin concentration. This system achieves sensitivities comparable to those reported for inert gas-purged systems and requires significantly shorter reaction times. We provide several comparisons of this system with other implementations of polymerization-based amplification.

  13. Porous platinum nanotubes labeled with hemin/G-quadruplex based electrochemical aptasensor for sensitive thrombin analysis via the cascade signal amplification.

    PubMed

    Sun, Aili; Qi, Qingan; Wang, Xuannian; Bie, Ping

    2014-07-15

    For the first time, a sensitive electrochemical aptasensor for thrombin (TB) was developed by using porous platinum nanotubes (PtNTs) labeled with hemin/G-quadruplex and glucose dehydrogenase (GDH) as labels. Porous PtNTs with large surface area exhibited the peroxidase-like activity. Coupling with GDH and hemin/G-quadruplex as NADH oxidase and HRP-mimicking DNAzyme, the cascade signal amplification was achieved by the following ways: in the presence of glucose and NAD(+) in the working buffer, GDH electrocatalyzed the oxidation of glucose with the production of NADH. Then, hemin/G-quadruplex as NADH oxidase catalyzed the oxidation of NADH to in situ generate H2O2. Based on the corporate electrocatalysis of PtNTs and hemin/G-quadruplex toward H2O2, the electrochemical signal was significantly amplified, allowing the detection limit of TB down to 0.15 pM level. Moreover, the proposed strategy was simple because the intercalated hemin offered the readout signal, avoiding the adding of additional redox mediator as signal donator. Such an electrochemical aptasensor is highly promising for sensitive detection of other proteins in clinical diagnostics. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Highly sensitive immunosensing of prostate specific antigen using poly cysteine caped by graphene quantum dots and gold nanoparticle: A novel signal amplification strategy.

    PubMed

    Malekzad, Hediyeh; Hasanzadeh, Mohammad; Shadjou, Nasrin; Jouyban, Abolghasem

    2017-12-01

    A mediator-free electrochemical immunosensor for quantitation of prostate specific antigen (PSA) based on dual signal amplification strategy was fabricated. In this work, PSA-antibody (anti-PSA) was immobilized onto a green and biocompatible nanocomposite containing poly l-cysteine (P-Cys) as conductive matrix and graphene quantum dots (GQDs)/gold nanoparticles (GNPs) as dual signal amplification elements. Therefore, a novel multilayer film based on P-Cys, GQDs, and GNPs was exploited to develop a highly sensitive amperometric immunosensor for detection of PSA. Fully electrochemical methodology was used to prepare a new transducer on a gold surface which provided a high surface area to immobilize a high amount of the anti-PSA. Importantly, GNPs prepared by soft template synthesized method lead to compact morphology was achieved. The surface morphology of electrode surface was characterized by high-resolution field emission scanning electron microscope (FE-SEM) and energy dispersive spectroscopy (EDX). Chemical compositions of the gold nanoparticles were analysed by an EDX. The immunosensor was employed for the detection of PSA in physiological pH. Under optimized condition the calibration curve for PSA concentration was linear up to 2-9pgmL -1 with lower limit of quantification of 1.8pgmL -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  15. NASBA: A detection and amplification system uniquely suited for RNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sooknanan, R.; Malek, L.T.

    1995-06-01

    The invention of PCR (polymerase chain reaction) has revolutionized our ability to amplify and manipulate a nucleic acid sequence in vitro. The commercial rewards of this revolution have driven the development of other nuclei acid amplification and detection methodologies. This has created an alphabet soup of technologies that use different amplification methods, including NASBA (nucleic acid sequence-based amplification), LCR (ligase chain reaction), SDA (strand displacement amplification), QBR (Q-beta replicase), CPR (cycling probe reaction), and bDNA (branched DNA). Despite the differences in their processes, these amplification systems can be separated into two broad categories based on how they achieve their goal:more » sequence-based amplification systems, such as PCR, NASBA, and SDA, amplify a target nucleic acid sequence. Signal-based amplification systems, such as LCR, QBR, CPR and bDNA, amplify or alter a signal from a detection reaction that is target-dependent. While the various methods have relative strengths and weaknesses, only NASBA offers the unique ability to homogeneously amplify an RNA analyte in the presence of homologous genomic DNA under isothermal conditions. Since the detection of RNA sequences almost invariably measures biological activity, it is an excellent prognostic indicator of activities as diverse as virus production, gene expression, and cell viability. The isothermal nature of the reaction makes NASBA especially suitable for large-scale manual screening. These features extend NASBA`s application range from research to commercial diagnostic applications. Field test kits are presently under development for human diagnostics as well as the burgeoning fields of food and environmental diagnostic testing. These developments suggest future integration of NASBA into robotic workstations for high-throughput screening as well. 17 refs., 1 tab.« less

  16. A novel signal amplification technology for ELISA based on catalyzed reporter deposition. Demonstration of its applicability for measuring aflatoxin B(1).

    PubMed

    Bhattacharya, D; Bhattacharya, R; Dhar, T K

    1999-11-19

    In an earlier communication we have described a novel signal amplification technology termed Super-CARD, which is able to significantly improve antigen detection sensitivity in conventional Dot-ELISA by approximately 10(5)-fold. The method utilizes hitherto unreported synthesized electron rich proteins containing multiple phenolic groups which, when immobilized over a solid phase as blocking agent, markedly increases the signal amplification capability of the existing CARD method (Bhattacharya, R., Bhattacharya, D., Dhar, T.K., 1999. A novel signal amplification technology based on catalyzed reporter deposition and its application in a Dot-ELISA with ultra high sensitivity. J. Immunol. Methods 227, 31.). In this paper we describe the utilization of this Super-CARD amplification technique in ELISA and its applicability for the rapid determination of aflatoxin B(1) (AFB(1)) in infected seeds. Using this method under identical conditions, the increase in absorbance over the CARD method was approximately 400%. The limit of detection of AFB(1) by this method was 0.1 pg/well, the sensitivity enhancement being 5-fold over the optimized CARD ELISA. Furthermore, the total incubation time was reduced to 16 min compared to 50 min for the CARD method. Assay specificity was not adversely affected and the amount of AFB(1) measured in seed extracts correlated well with the values obtained by conventional ELISA.

  17. Prevention effect of rare ginsenosides against stress-hormone induced MTOC amplification

    PubMed Central

    Lee, Jee-Hyun; Cheong, Kyu Jin; Jung, Youn-Sang; Woo, Tae-Gyun; Yoon, Min-Ho; Oh, Ah-Young; Kang, So-Mi; Lee, Chunghui; Sun, Hokeun; Hwang, Jihwan; Song, Gyu-Yong; Park, Bum-Joon

    2016-01-01

    Stress has been suggested as one of important cause of human cancer without molecular biological evidence. Thus, we test the effect of stress-related hormones on cell viability and mitotic fidelity. Similarly to estrogen, stress hormone cortisol and its relative cortisone increase microtubule organizing center (MTOC) number through elevated expression of γ-tubulin and provide the Taxol resistance to human cancer cell lines. However, these effects are achieved by glucocorticoid hormone receptor (GR) but not by estrogen receptor (ER). Since ginsenosides possess steroid-like structure, we hypothesized that it would block the stress or estrogen-induced MTOC amplification and Taxol resistance. Among tested chemicals, rare ginsenoside, CSH1 (Rg6) shows obvious effect on inhibition of MTOC amplification, γ-tubulin induction and Taxol resistance. Comparing to Fulvestant (FST), ER-α specific inhibitor, this chemical can block the cortisol/cortisone-induced MTOC deregulation as well as ER-α signaling. Our results suggest that stress hormone induced tumorigenesis would be achieved by MTOC amplification, and CSH1 would be useful for prevention of stress-hormone or steroid hormone-induced chromosomal instability. PMID:27147573

  18. EzyAmp signal amplification cascade enables isothermal detection of nucleic acid and protein targets.

    PubMed

    Linardy, Evelyn M; Erskine, Simon M; Lima, Nicole E; Lonergan, Tina; Mokany, Elisa; Todd, Alison V

    2016-01-15

    Advancements in molecular biology have improved the ability to characterize disease-related nucleic acids and proteins. Recently, there has been an increasing desire for tests that can be performed outside of centralised laboratories. This study describes a novel isothermal signal amplification cascade called EzyAmp (enzymatic signal amplification) that is being developed for detection of targets at the point of care. EzyAmp exploits the ability of some restriction endonucleases to cleave substrates containing nicks within their recognition sites. EzyAmp uses two oligonucleotide duplexes (partial complexes 1 and 2) which are initially cleavage-resistant as they lack a complete recognition site. The recognition site of partial complex 1 can be completed by hybridization of a triggering oligonucleotide (Driver Fragment 1) that is generated by a target-specific initiation event. Binding of Driver Fragment 1 generates a completed complex 1, which upon cleavage, releases Driver Fragment 2. In turn, binding of Driver Fragment 2 to partial complex 2 creates completed complex 2 which when cleaved releases additional Driver Fragment 1. Each cleavage event separates fluorophore quencher pairs resulting in an increase in fluorescence. At this stage a cascade of signal production becomes independent of further target-specific initiation events. This study demonstrated that the EzyAmp cascade can facilitate detection and quantification of nucleic acid targets with sensitivity down to aM concentration. Further, the same cascade detected VEGF protein with a sensitivity of 20nM showing that this universal method for amplifying signal may be linked to the detection of different types of analytes in an isothermal format. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Multiple signal amplification strategies for ultrasensitive label-free electrochemical immunoassay for carbohydrate antigen 24-2 based on redox hydrogel.

    PubMed

    Tang, Zhongxue; Fu, Yuanyuan; Ma, Zhanfang

    2017-05-15

    In this work, multiple signal amplification strategies for ultrasensitive label-free electrochemical immunoassay for carbohydrate antigen 24-2 (CA242) were developed using redox sodium alginate-Pb 2+ -graphene oxide (SA-Pb 2+ -GO) hydrogel. The SA-Pb 2+ -GO hydrogel was synthesised by simply mixing SA, GO, and Pb 2+ and then implemented as a novel redox species with a strong current signal at -0.46V (vs. Ag/AgCl). After the three-dimensional and porous SA-Pb 2+ -GO hydrogel was in situ generated on a glassy carbon electrode (GCE), chitosan was adsorbed on the obtained electrode to further enrich Pb 2+ . When chitosan-Pb 2+ /SA-Pb 2+ -GO/GCE was incubated with anti-CA242 using glutaraldehyde and blocked by bovine serum albumin, the immunoassay platform for CA242 was obtained. Owing to the addition of GO, the obtained conductive SA-GO/GCE was beneficial for signal amplification. After incubating SA-GO/GCE with excessive amounts of Pb 2+ , the resistance of SA-Pb 2+ -GO/GCE further decreased and a strong redox signal was obtained. The chitosan fixed by electrostatic adsorption resulted in further adsorption of Pb 2+ , behaving as further amplifying the signal and improving conductivity. In this case, multiple signal amplification strategies were involved in the proposed immunosensor for the ultrasensitive detection of CA242. Under the optimal conditions, the proposed immunosensor exhibited a wide linear range from 0.005UmL -1 to 500UmL -1 with an ultralow detection limit of 0.067mUmL -1 . In comparison to previous works, the sensitivity of this method was 32.98μA (log 10 C CA242 ) -1 , which was a five-fold increase from the previous works. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Sensitive detection of microRNA in complex biological samples by using two stages DSN-assisted target recycling signal amplification method.

    PubMed

    Zhang, Kai; Wang, Ke; Zhu, Xue; Xu, Fei; Xie, Minhao

    2017-01-15

    MicroRNA (miRNA) has become an important biomarker candidate for cancer diagnosis, prognosis, and therapy. In this study, we have developed a novel fluorescence method for sensitive and specific miRNA detection via duplex specific nuclease (DSN) signal amplification and demonstrated its practical application in biological samples. Malachite green (MG) was employed as a "label-free" signal transducer since fluorescence of MG could be enhanced by 100-fold when MG were binding to a G-quadruplex structure formed within the d(G 2 T) 13 G sequence. The proposed signal amplification strategy is an integrated "biological circuit" designed to initiate a cascade of enzymatic reactions in order to detect, amplify, and measure a specific miRNA sequence by using the isothermal cleavage property of a DSN. The circuit is composed of two molecular switches operating in series: the amplification reaction activated by a specific miRNA and the strand-displacement polymerization reaction designed to initiate molecular beacon-assisted amplification and signal transduction by using MG/G-quadruplex complex. The hsa-miR-141 (miR141) was chosen as a target miRNA because its level specifically abnormal in a wide range of common human cancers including breast, lung, colon, and prostate cancer. The proposed method allowed quantitative sequence-specific detection of miR141 (with a detection limit of 1.03pM) in a dynamic range from 1pM to 10μM, with an excellent ability to discriminate differences in miRNAs. Moreover, the detection assay was applied to quantify miR141 in cancerous cell lysates. On the basis of these findings, we believe that this proposed sensitive and specific assay has great potential as a miRNA quantification method for use in biomedical research and clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Disinhibition of the extracellular-signal-regulated kinase restores the amplification of circadian rhythms by lithium in cells from bipolar disorder patients.

    PubMed

    McCarthy, Michael J; Wei, Heather; Landgraf, Dominic; Le Roux, Melissa J; Welsh, David K

    2016-08-01

    Bipolar disorder (BD) is characterized by depression, mania, and circadian rhythm abnormalities. Lithium, a treatment for BD stabilizes mood and increases circadian rhythm amplitude. However, in fibroblasts grown from BD patients, lithium has weak effects on rhythm amplitude compared to healthy controls. To understand the mechanism by which lithium differentially affects rhythm amplitude in BD cells, we investigated the extracellular-signal-regulated kinase (ERK) and related signaling molecules linked to BD and circadian rhythms. In fibroblasts from BD patients, controls and mice, we assessed the contribution of the ERK pathway to lithium-induced circadian rhythm amplification. Protein analyses revealed low phospho-ERK1/2 (p-ERK) content in fibroblasts from BD patients vs. Pharmacological inhibition of ERK1/2 by PD98059 attenuated the rhythm amplification effect of lithium, while inhibition of two related kinases, c-Jun N-terminal kinase (JNK), and P38 did not. Knockdown of the transcription factors CREB and EGR-1, downstream effectors of ERK1/2, reduced baseline rhythm amplitude, but did not alter rhythm amplification by lithium. In contrast, ELK-1 knockdown amplified rhythms, an effect that was not increased further by the addition of lithium, suggesting this transcription factor may regulate the effect of lithium on amplitude. Augmentation of ERK1/2 signaling through DUSP6 knockdown sensitized NIH3T3 cells to rhythm amplification by lithium. In BD fibroblasts, DUSP6 knockdown reversed the BD rhythm phenotype, restoring the ability of lithium to increase amplitude in these cells. We conclude that the inability of lithium to regulate circadian rhythms in BD may reflect reduced ERK activity, and signaling through ELK-1. Published by Elsevier B.V.

  2. Nearly noiseless amplification of microwave signals with a Josephson parametric amplifier

    NASA Astrophysics Data System (ADS)

    Castellanos-Beltran, Manuel

    2009-03-01

    A degenerate parametric amplifier transforms an incident coherent state by amplifying one of its quadrature components while deamplifying the other. This transformation, when performed by an ideal parametric amplifier, is completely deterministic and reversible; therefore the amplifier in principle can be noiseless. We attempt to realize a noiseless amplifier of this type at microwave frequencies with a Josephson parametric amplifier (JPA). To this end, we have built a superconducting microwave cavity containing many dc-SQUIDs. This arrangement creates a non-linear medium in a cavity and it is closely analogous to an optical parametric amplifier. In my talk, I will describe the current performance of this circuit, where I show I can amplify signals with less added noise than a quantum-limited amplifier that amplifies both quadratures. In addition, the JPA also squeezes the electromagnetic vacuum fluctuations by 10 dB. Finally, I will discuss our effort to put two such amplifiers in series in order to undo the first stage of squeezing with a second stage of amplification, demonstrating that the amplification process is truly reversible.[4pt] M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale and K. W. Lehnert, Nature Physics, published on line, http://dx.doi.org/10.1038/nphys1090 (2008).

  3. Enhanced signal-to-noise ratios in frog hearing can be achieved through amplitude death

    PubMed Central

    Ahn, Kang-Hun

    2013-01-01

    In the ear, hair cells transform mechanical stimuli into neuronal signals with great sensitivity, relying on certain active processes. Individual hair cell bundles of non-mammals such as frogs and turtles are known to show spontaneous oscillation. However, hair bundles in vivo must be quiet in the absence of stimuli, otherwise the signal is drowned in intrinsic noise. Thus, a certain mechanism is required in order to suppress intrinsic noise. Here, through a model study of elastically coupled hair bundles of bullfrog sacculi, we show that a low stimulus threshold and a high signal-to-noise ratio (SNR) can be achieved through the amplitude death phenomenon (the cessation of spontaneous oscillations by coupling). This phenomenon occurs only when the coupled hair bundles have inhomogeneous distribution, which is likely to be the case in biological systems. We show that the SNR has non-monotonic dependence on the mass of the overlying membrane, and find out that the SNR has maximum value in the region of amplitude death. The low threshold of stimulus through amplitude death may account for the experimentally observed high sensitivity of frog sacculi in detecting vibration. The hair bundles' amplitude death mechanism provides a smart engineering design for low-noise amplification. PMID:23883956

  4. Nanogold-functionalized DNAzyme concatamers with redox-active intercalators for quadruple signal amplification of electrochemical immunoassay.

    PubMed

    Zhou, Jun; Lai, Wenqiang; Zhuang, Junyang; Tang, Juan; Tang, Dianping

    2013-04-10

    A novel and in situ amplified immunoassay strategy with quadruple signal amplification was designed for highly efficient electrochemical detection of low-abundance proteins (carcinoembryonic antigen, CEA, as a model) by using nanogold-functionalized DNAzyme concatamers with redox-active intercalators. To construct such an in situ amplification system, streptavidin-labeled gold nanoparticles (AuNP-SA) were initially used for the labelling of initiator strands (S0) and detection antibody (mAb2) with a large ratio (mAb2-AuNP-S0), and then two auxiliary DNA strands S1 and S2 were designed for in situ propagation of DNAzyme concatamers with the hemin/G-quadruplex format. The quadruple signal amplification was implemented by using the avidin-biotin chemistry, nanogold labels, DNA concatamers, and DNAzymes. In the presence of target CEA, the sandwiched immunocomplex was formed between the immobilized primary antibodies on the electrode and the conjugated detection antibodies on the mAb2-AuNP-S0. The carried S0 initiator strands could progress a chain reaction of hybridization events between alternating S1/S2 DNA strands to form a nicked double-helix. Upon addition of hemin, the hemin-binding aptamers could be bound to form the hemin/G-quadruplex-based DNAzymes. The formed double-helix DNA polymers could cause the intercalation of numerous electroactive methylene blue molecules. During the electrochemical measurement, the formed DNAzymes could catalyze the reduction of H2O2 in the solution to amplify the electrochemical signal of the intercalated methylene blue. Under optimal conditions, the electrochemical immunoassay exhibited a wide dynamic range of 1.0 fg mL(-1) to 20 ng mL(-1) toward CEA standards with a low detection limit of 0.5 fg mL(-1). Intra-assay and inter-assay coefficients of variation (CV) were less than 8.5% and 11.5%, respectively. No significant differences at the 0.05 significance level were encountered in the analysis of 14 clinical serum specimens

  5. All-optical simultaneous multichannel quadrature phase shift keying signal regeneration based on phase-sensitive amplification

    NASA Astrophysics Data System (ADS)

    Wang, Hongxiang; Wang, Qi; Bai, Lin; Ji, Yuefeng

    2018-01-01

    A scheme is proposed to realize the all-optical phase regeneration of four-channel quadrature phase shift keying (QPSK) signal based on phase-sensitive amplification. By utilizing conjugate pump and common pump in a highly nonlinear optical fiber, degenerate four-wave mixing process is observed, and QPSK signals are regenerated. The number of waves is reduced to decrease the cross talk caused by undesired nonlinear interaction during the coherent superposition process. In addition, to avoid the effect of overlapping frequency, frequency spans between pumps and signals are set to be nonintegral multiples. Optical signal-to-noise ratio improvement is validated by bit error rate measurements. Compared with single-channel regeneration, multichannel regeneration brings 0.4-dB OSNR penalty when the value of BER is 10-3, which shows the cross talk in regeneration process is negligible.

  6. Photon number amplification/duplication through parametric conversion

    NASA Technical Reports Server (NTRS)

    Dariano, G. M.; Macchiavello, C.; Paris, M.

    1993-01-01

    The performance of parametric conversion in achieving number amplification and duplication is analyzed. It is shown that the effective maximum gains G(sub *) remain well below their integer ideal values, even for large signals. Correspondingly, one has output Fano factors F(sub *) which are increasing functions of the input photon number. On the other hand, in the inverse (deamplifier/recombiner) operating mode quasi-ideal gains G(sub *) and small factors F(sub *) approximately equal to 10 percent are obtained. Output noise and non-ideal gains are ascribed to spontaneous parametric emission.

  7. Strand Displacement Amplification Reaction on Quantum Dot-Encoded Silica Bead for Visual Detection of Multiplex MicroRNAs.

    PubMed

    Qu, Xiaojun; Jin, Haojun; Liu, Yuqian; Sun, Qingjiang

    2018-03-06

    The combination of microbead array, isothermal amplification, and molecular signaling enables the continuous development of next-generation molecular diagnostic techniques. Herein we reported the implementation of nicking endonuclease-assisted strand displacement amplification reaction on quantum dots-encoded microbead (Qbead), and demonstrated its feasibility for multiplexed miRNA assay in real sample. The Qbead featured with well-defined core-shell superstructure with dual-colored quantum dots loaded in silica core and shell, respectively, exhibiting remarkably high optical encoding stability. Specially designed stem-loop-structured probes were immobilized onto the Qbead for specific target recognition and amplification. In the presence of low abundance of miRNA target, the target triggered exponential amplification, producing a large quantity of stem-G-quadruplexes, which could be selectively signaled by a fluorescent G-quadruplex intercalator. In one-step operation, the Qbead-based isothermal amplification and signaling generated emissive "core-shell-satellite" superstructure, changing the Qbead emission-color. The target abundance-dependent emission-color changes of the Qbead allowed direct, visual detection of specific miRNA target. This visualization method achieved limit of detection at the subfemtomolar level with a linear dynamic range of 4.5 logs, and point-mutation discrimination capability for precise miRNA analyses. The array of three encoded Qbeads could simultaneously quantify three miRNA biomarkers in ∼500 human hepatoma carcinoma cells. With the advancements in ease of operation, multiplexing, and visualization capabilities, the isothermal amplification-on-Qbead assay could potentially enable the development of point-of-care diagnostics.

  8. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    PubMed

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.

  9. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs

    PubMed Central

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Žel, Jana; Gruden, Kristina

    2008-01-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1–25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification. PMID:18710880

  10. Detection of MET amplification in gastroesophageal tumor specimens using IQFISH

    PubMed Central

    Nielsen, Karsten Bork; Mollerup, Jens; Jepsen, Anna; Go, Ning

    2017-01-01

    Background The gene mesenchymal epithelial transition factor (MET) is a proto-oncogene that encodes a transmembrane receptor with intrinsic tyrosine kinase activity known as Met or cMet. MET is found to be amplified in several human cancers including gastroesophageal cancer. Methods Here we report the MET amplification prevalence data from 159 consecutive tumor specimens from patients with gastric (G), gastroesophageal junction (GEJ) and esophageal (E) adenocarcinoma, using a novel fluorescence in situ hybridization (FISH) assay, MET/CEN-7 IQFISH Probe Mix [an investigational use only (IUO) assay]. MET amplification was defined as a MET/CEN-7 ratio ≥2.0. Furthermore, the link between the MET signal distribution and amplification status was investigated. Results The prevalence of MET amplification was found to be 6.9%. The FISH assay demonstrated a high inter-observer reproducibility. The inter-observer results showed a 100% overall agreement with respect to the MET status (amplified/non-amplified). The inter-observer CV was estimated to 11.8% (95% CI: 10.2–13.4). For the signal distribution, the inter-observer agreement was reported to be 98.7%. We also report an association of MET amplification and a unique signal distribution pattern in the G/GEJ/E tumor specimens. We found that the prevalence of MET amplification was markedly higher in tumors specimens with a heterogeneous (66.7%) versus homogeneous (2.0%) signal distribution. Furthermore, specimens with a heterogeneous signal distribution had a statically significantly higher median MET/CEN-7 ratio (2.35 versus 1.04; P<0.0001). Conclusions The novel FISH assay showed a high inter-observer reproducibility both with respect to amplification status and signal distribution. Based on the finding in the study it is suggested that MET amplification mainly is associated with tumor cells that is represented by a heterogonous growth pattern. PMID:29285491

  11. Detection of MET amplification in gastroesophageal tumor specimens using IQFISH.

    PubMed

    Jørgensen, Jan Trøst; Nielsen, Karsten Bork; Mollerup, Jens; Jepsen, Anna; Go, Ning

    2017-12-01

    The gene mesenchymal epithelial transition factor ( MET ) is a proto-oncogene that encodes a transmembrane receptor with intrinsic tyrosine kinase activity known as Met or cMet. MET is found to be amplified in several human cancers including gastroesophageal cancer. Here we report the MET amplification prevalence data from 159 consecutive tumor specimens from patients with gastric (G), gastroesophageal junction (GEJ) and esophageal (E) adenocarcinoma, using a novel fluorescence in situ hybridization (FISH) assay, MET /CEN-7 IQFISH Probe Mix [an investigational use only (IUO) assay]. MET amplification was defined as a MET /CEN-7 ratio ≥2.0. Furthermore, the link between the MET signal distribution and amplification status was investigated. The prevalence of MET amplification was found to be 6.9%. The FISH assay demonstrated a high inter-observer reproducibility. The inter-observer results showed a 100% overall agreement with respect to the MET status (amplified/non-amplified). The inter-observer CV was estimated to 11.8% (95% CI: 10.2-13.4). For the signal distribution, the inter-observer agreement was reported to be 98.7%. We also report an association of MET amplification and a unique signal distribution pattern in the G/GEJ/E tumor specimens. We found that the prevalence of MET amplification was markedly higher in tumors specimens with a heterogeneous (66.7%) versus homogeneous (2.0%) signal distribution. Furthermore, specimens with a heterogeneous signal distribution had a statically significantly higher median MET /CEN-7 ratio (2.35 versus 1.04; P<0.0001). The novel FISH assay showed a high inter-observer reproducibility both with respect to amplification status and signal distribution. Based on the finding in the study it is suggested that MET amplification mainly is associated with tumor cells that is represented by a heterogonous growth pattern.

  12. Inefficiency of Signal Amplification by Post-selection

    NASA Astrophysics Data System (ADS)

    Tanaka, Saki; Yamamoto, Naoki

    Basing the two-state vector formalism, Aharonov, Albert and Vaidman found a measurement way such that spin 1/2 particle can turn out 100 [1]. The measurement result is called weak value and this value depends on pre-and post- selected states. The weak value becomes infinitely large when the post- selected state is orthogonal to pre-selected state. By using this feature, the weak measurement has been applied to amplification technique. However, the success of the post-selection depends on luck and this technique does not always work. We take into account of loss by post-selection, and evaluate this amplification by quantum estimation theory. As a result, we get an inequality which means that post-selection does not improve estate accuracy when the number of states is limited.

  13. Development of an efficient signal amplification strategy for label-free enzyme immunoassay using two site-specific biotinylated recombinant proteins.

    PubMed

    Tang, Jin-Bao; Tang, Ying; Yang, Hong-Ming

    2015-02-15

    Constructing a recombinant protein between a reporter enzyme and a detector protein to produce a homogeneous immunological reagent is advantageous over random chemical conjugation. However, the approach hardly recombines multiple enzymes in a difunctional fusion protein, which results in insufficient amplification of the enzymatic signal, thereby limiting its application in further enhancement of analytical signal. In this study, two site-specific biotinylated recombinant proteins, namely, divalent biotinylated alkaline phosphatase (AP) and monovalent biotinylated ZZ domain, were produced by employing the Avitag-BirA system. Through the high streptavidin (SA)-biotin interaction, the divalent biotinylated APs were clustered in the SA-biotin complex and then incorporated with the biotinylated ZZ. This incorporation results in the formation of a functional macromolecule that involves numerous APs, thereby enhancing the enzymatic signal, and in the production of several ZZ molecules for the interaction with immunoglobulin G (IgG) antibody. The advantage of this signal amplification strategy is demonstrated through ELISA, in which the analytical signal was substantially enhanced, with a 32-fold increase in the detection sensitivity compared with the ZZ-AP fusion protein approach. The proposed immunoassay without chemical modification can be an alternative strategy to enhance the analytical signals in various applications involving immunosensors and diagnostic chips, given that the label-free IgG antibody is suitable for the ZZ protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Extending the Scope of 19F Hyperpolarization through Signal Amplification by Reversible Exchange in MRI and NMR Spectroscopy

    PubMed Central

    Olaru, Alexandra M.; Robertson, Thomas B. R.; Lewis, Jennifer S.; Antony, Alex; Iali, Wissam

    2017-01-01

    Abstract Fluorinated ligands have a variety of uses in chemistry and industry, but it is their medical applications as 18F‐labelled positron emission tomography (PET) tracers where they are most visible. In this work, we illustrate the potential of using 19F‐containing ligands as future magnetic resonance imaging (MRI) contrast agents and as probes in magnetic resonance spectroscopy studies by significantly increasing their magnetic resonance detectability through the signal amplification by reversible exchange (SABRE) hyperpolarization method. We achieve 19F SABRE polarization in a wide range of molecules, including those essential to medication, and analyze how their steric bulk, the substrate loading, polarization transfer field, pH, and rate of ligand exchange impact the efficiency of SABRE. We conclude by presenting 19F MRI results in phantoms, which demonstrate that many of these agents show great promise as future 19F MRI contrast agents for diagnostic investigations. PMID:29318102

  15. Simple and Sensitive Quantification of MicroRNAs via PS@Au Microspheres-Based DNA Probes and DSN-Assisted Signal Amplification Platform.

    PubMed

    Zhao, Qian; Piao, Jiafang; Peng, Weipan; Wang, Yang; Zhang, Bo; Gong, Xiaoqun; Chang, Jin

    2018-01-31

    Identifying the microRNA (miRNA) expression level can provide critical information for early diagnosis of cancers or monitoring the cancer therapeutic efficacy. This paper focused on a kind of gold-nanoparticle-coated polystyrene microbeads (PS@Au microspheres)-based DNA probe as miRNA capture and duplex-specific nuclease (DSN) signal amplification platform based on an RGB value readout for detection of miRNAs. In virtue of the outstanding selectivity and simple experimental operation, 5'-fluorochrome-labeled molecular beacons (MBs) were immobilized on PS@Au microspheres via their 3'-thiol, in the wake of the fluorescence quenching by nanoparticle surface energy transfer (NSET). Target miRNAs were captured by the PS@Au microspheres-based DNA probe through DNA/RNA hybridization. DSN enzyme subsequently selectively cleaved the DNA to recycle the target miRNA and release of fluorophores, thereby triggering the signal amplification with more free fluorophores. The RGB value measurement enabled a detection limit of 50 fM, almost 4 orders of magnitude lower than PS@Au microspheres-based DNA probe detection without DSN. Meanwhile, by different encoding of dyes, miRNA-21 and miRNA-10b were simultaneously detected in the same sample. Considering the ability for quantitation, high sensitivity, and convenient merits, the PS@Au microspheres-based DNA probe and DSN signal amplification platform supplied valuable information for early diagnosis of cancers.

  16. Randomness Amplification under Minimal Fundamental Assumptions on the Devices

    NASA Astrophysics Data System (ADS)

    Ramanathan, Ravishankar; Brandão, Fernando G. S. L.; Horodecki, Karol; Horodecki, Michał; Horodecki, Paweł; Wojewódka, Hanna

    2016-12-01

    Recently, the physically realistic protocol amplifying the randomness of Santha-Vazirani sources producing cryptographically secure random bits was proposed; however, for reasons of practical relevance, the crucial question remained open regarding whether this can be accomplished under the minimal conditions necessary for the task. Namely, is it possible to achieve randomness amplification using only two no-signaling components and in a situation where the violation of a Bell inequality only guarantees that some outcomes of the device for specific inputs exhibit randomness? Here, we solve this question and present a device-independent protocol for randomness amplification of Santha-Vazirani sources using a device consisting of two nonsignaling components. We show that the protocol can amplify any such source that is not fully deterministic into a fully random source while tolerating a constant noise rate and prove the composable security of the protocol against general no-signaling adversaries. Our main innovation is the proof that even the partial randomness certified by the two-party Bell test [a single input-output pair (u* , x* ) for which the conditional probability P (x*|u*) is bounded away from 1 for all no-signaling strategies that optimally violate the Bell inequality] can be used for amplification. We introduce the methodology of a partial tomographic procedure on the empirical statistics obtained in the Bell test that ensures that the outputs constitute a linear min-entropy source of randomness. As a technical novelty that may be of independent interest, we prove that the Santha-Vazirani source satisfies an exponential concentration property given by a recently discovered generalized Chernoff bound.

  17. Exonuclease III-assisted cascade signal amplification strategy for label-free and ultrasensitive electrochemical detection of nucleic acids.

    PubMed

    Xiong, Erhu; Yan, Xiaoxia; Zhang, Xiaohua; Liu, Yunqing; Zhou, Jiawan; Chen, Jinhua

    2017-01-15

    In this work, a simple, signal-on and label-free electrochemical biosensor for ultrasensitive DNA detection is reported on the basis of an autocatalytic and exonuclease III (Exo III)-assisted cascade signal amplification strategy. In the presence of target DNA (T-DNA), the hybridization between the 3'-protruding DNA fragment of hairpin DNA probe (HP1) and T-DNA triggered the Exo III cleavage process, accompanied by the releasing of T-DNA and autonomous generation of new DNA fragment which was used for the successive hybridization with the another hairpin DNA (HP2) on the electrode. After the Exo III cleavage process, numerous quadruplex-forming oligomers which caged in HP2 were liberated on the electrode surface and folded into G-quadruplex-hemin complexes with the help of K + and hemin to give a remarkable electrochemical response. As a result, a low detection limit of 4.83fM with an excellent selectivity toward T-DNA was achieved. The developed electrochemical biosensor should be further extended for the detection of a wide spectrum of analytes and has great potential for the development of ultrasensitive biosensing platform for early diagnosis in gene-related diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Noiseless amplification of weak coherent fields exploiting energy fluctuations of the field

    NASA Astrophysics Data System (ADS)

    Partanen, Mikko; Häyrynen, Teppo; Oksanen, Jani; Tulkki, Jukka

    2012-12-01

    Quantum optics dictates that amplification of a pure state by any linear deterministic amplifier always introduces noise in the signal and results in a mixed output state. However, it has recently been shown that noiseless amplification becomes possible if the requirement of a deterministic operation is relaxed. Here we propose and analyze a noiseless amplification scheme where the energy required to amplify the signal originates from the stochastic fluctuations in the field itself. In contrast to previous amplification setups, our setup shows that a signal can be amplified even if no energy is added to the signal from external sources. We investigate the relation between the amplification and its success rate as well as the statistics of the output states after successful and failed amplification processes. Furthermore, we also optimize the setup to find the maximum success rates in terms of the reflectivities of the beam splitters used in the setup and discuss the relation of our setup with the previous setups.

  19. [Investigation of RNA viral genome amplification by multiple displacement amplification technique].

    PubMed

    Pang, Zheng; Li, Jian-Dong; Li, Chuan; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases, a negative-strand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus, and a positive-strand RNA virus-dengue virus, were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples. Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads, after a series of reactions were sequentially processed, single-strand cDNA, double-strand cDNA, double-strand cDNA treated with ligation without or with supplemental RNA were generated, then a Phi29 DNA polymerase depended isothermal amplification was employed, and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods. The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited, while the fold increases of double-strand cDNA templates treated with ligation could be up to 6 X 10(3), even 2 X 10(5) when supplemental RNA existed, and better results were obtained when viral RNA loads were lower. A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved, which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.

  20. Amplification and oscillations in the FAK/Src kinase system during integrin signaling.

    PubMed

    Caron-Lormier, G; Berry, H

    2005-01-21

    Integrin signaling is a major pathway of cell adhesion to extracellular matrices that regulates many physiological cell behaviors such as cell proliferation, migration or differentiation and is implied in pathologies such as tumor invasion. In this paper, we focused on the molecular system formed by the two kinases FAK (focal adhesion kinase) and Src, which undergo auto- and co-activation during early steps of integrin signaling. The system is modelled using classical kinetic equations and yields a set of three nonlinear ordinary differential equations describing the dynamics of the different phosphorylation forms of FAK. Analytical and numerical analysis of these equations show that this system may in certain cases amplify incoming signals from the integrins. A quantitative condition is obtained, which indicates that the total FAK charge in the system acts as a critical mass that must be exceeded for amplification to be effective. Furthermore, we show that when FAK activity is lower than Src activity, spontaneous oscillations of FAK phosphorylation forms may appear. The oscillatory behavior is studied using bifurcation and stability diagrams. We finally discuss the significance of this behavior with respect to recent experimental results evidencing FAK dynamics.

  1. Ultrasensitive detection of nucleic acids and proteins using quartz crystal microbalance and surface plasmon resonance sensors based on target-triggering multiple signal amplification strategy.

    PubMed

    Sun, Wenbo; Song, Weiling; Guo, Xiaoyan; Wang, Zonghua

    2017-07-25

    In this study, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) sensors were combined with template enhanced hybridization processes (TEHP), rolling circle amplification (RCA) and biocatalytic precipitation (BCP) for ultrasensitive detection of DNA and protein. The DNA complementary to the aptamer was released by the specific binding of the aptamer to the target protein and then hybridized with the capture probe and the assistant DNA to form a ternary "Y" junction structure. The initiation chain was generated by the template-enhanced hybridization process which leaded to the rolling circle amplification reaction, and a large number of repeating unit sequences were formed. Hybridized with the enzyme-labeled probes, the biocatalytic precipitation reaction was further carried out, resulting in a large amount of insoluble precipitates and amplifying the detection signal. Under the optimum conditions, detection limits as low as 43 aM for target DNA and 53 aM for lysozyme were achieved. In addition, this method also showed good selectivity and sensitivity in human serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Label-Free and Sensitive Fluorescent Qualitative Assay for Bisphenol A Based on Rolling Circle Amplification/Exonuclease III-Combined Cascade Amplification.

    PubMed

    Li, Xia; Song, Juan; Xue, Qing-Wang; You, Fu-Heng; Lu, Xia; Kong, Yan-Cong; Ma, Shu-Yi; Jiang, Wei; Li, Chen-Zhong

    2016-10-21

    Bisphenol A (BPA) detection in drinking water and food packaging materials has attracted much attention since the discovery that BPA can interfere with normal physiological processes and cause adverse health effects. Here, we constructed a label-free aptamer fluorescent assay for selective and sensitive detection of BPA based on the rolling circle amplification (RCA)/Exonuclease III (Exo III)-combined cascade amplification strategy. First, the duplex DNA probe (RP) with anti-BPA aptamer and trigger sequence was designed for BPA recognition and signal amplification. Next, under the action of BPA, the trigger probe was liberated from RP to initiate RCA reaction as primary amplification. Subsequently, the RCA products were used to trigger Exo III assisted secondary amplification with the help of hairpin probes, producing plenty of "G-quadruplex" in lantern-like structures. Finally, the continuously enriched "G-quadruplex lanterns" were lightened by zinc(II)-protoporphyrin IX (ZnPPIX) generating enhanced fluorescence signals. By integrating the primary RCA and secondary Exo III mediated cascade amplification strategy, this method displayed an excellent sensitivity with the detection limits of 5.4 × 10 -17 M. In addition, the anti-BPA aptamer exhibits high recognition ability with BPA, guaranteeing the specificity of detection. The reporter signal probe (G-quadruplex with ZnPPIX) provides a label-free fluorescence signals readout without complicated labeling procedures, making the method simple in design and cost-effective in operation. Moreover, environmental samples analysis was also performed, suggesting that our strategy was reliable and had a great potential application in environmental monitoring.

  3. A Label-Free and Sensitive Fluorescent Qualitative Assay for Bisphenol A Based on Rolling Circle Amplification/Exonuclease III-Combined Cascade Amplification

    PubMed Central

    Li, Xia; Song, Juan; Xue, Qing-Wang; You, Fu-Heng; Lu, Xia; Kong, Yan-Cong; Ma, Shu-Yi; Jiang, Wei; Li, Chen-Zhong

    2016-01-01

    Bisphenol A (BPA) detection in drinking water and food packaging materials has attracted much attention since the discovery that BPA can interfere with normal physiological processes and cause adverse health effects. Here, we constructed a label-free aptamer fluorescent assay for selective and sensitive detection of BPA based on the rolling circle amplification (RCA)/Exonuclease III (Exo III)-combined cascade amplification strategy. First, the duplex DNA probe (RP) with anti-BPA aptamer and trigger sequence was designed for BPA recognition and signal amplification. Next, under the action of BPA, the trigger probe was liberated from RP to initiate RCA reaction as primary amplification. Subsequently, the RCA products were used to trigger Exo III assisted secondary amplification with the help of hairpin probes, producing plenty of “G-quadruplex” in lantern-like structures. Finally, the continuously enriched “G-quadruplex lanterns” were lightened by zinc(II)-protoporphyrin IX (ZnPPIX) generating enhanced fluorescence signals. By integrating the primary RCA and secondary Exo III mediated cascade amplification strategy, this method displayed an excellent sensitivity with the detection limits of 5.4 × 10−17 M. In addition, the anti-BPA aptamer exhibits high recognition ability with BPA, guaranteeing the specificity of detection. The reporter signal probe (G-quadruplex with ZnPPIX) provides a label-free fluorescence signals readout without complicated labeling procedures, making the method simple in design and cost-effective in operation. Moreover, environmental samples analysis was also performed, suggesting that our strategy was reliable and had a great potential application in environmental monitoring. PMID:28335318

  4. Electrochemical sensor for glutathione detection based on mercury ion triggered hybridization chain reaction signal amplification.

    PubMed

    Wang, Yonghong; Jiang, Lun; Leng, Qinggang; Wu, Yaohui; He, Xiaoxiao; Wang, Kemin

    2016-03-15

    In this work, we design a new simple and highly sensitive strategy for electrochemical detection of glutathione (GSH) via mercury ion (Hg(2+)) triggered hybridization chain reaction (HCR) signal amplification. It is observed that in the absence of GSH, a specific thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination can fold into hairpin structures. While in the presence of GSH, it thus can be chelated with Hg(2+), resulting in Hg(2+) released from the T-Hg(2+)-T hairpin complex which then forms into ssDNA structure to further hybridize with the surface-immobilized capture DNA probe on the gold electrode with a sticky tail left. The presence of two hairpin helper probes through HCR leads to the formation of extended dsDNA superstructure on the electrode surface, which therefore causes the intercalation of numerous electroactive species ([Ru(NH3)6](3+)) into the dsDNA grooves, followed by a significantly amplified signal output whose intensity is related to the concentration of the GSH. Taking advantage of merits of enzyme-free amplification power of the HCR, the inherent high sensitivity of the electrochemical technique, and label-free detection which utilizes an electroactive species as a signaling molecule that binds to the anionic phosphate backbone of DNA strands via electrostatic force, not only does the proposed strategy enable sensitive detection of GSH, but show high selectivity against other amino acid, making our method a simple and sensitive addition to the amplified GSH detection. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Multivalent Bifunctional Chelator Scaffolds for Gallium-68 Based Positron Emission Tomography Imaging Probe Design: Signal Amplification via Multivalency

    PubMed Central

    Singh, Ajay N.; Liu, Wei; Hao, Guiyang; Kumar, Amit; Gupta, Anjali; Öz, Orhan K.; Hsieh, Jer-Tsong; Sun, Xiankai

    2011-01-01

    The role of the multivalent effect has been well recognized in the design of molecular imaging probes towards the desired imaging signal amplification. Recently we reported a bifunctional chelator (BFC) scaffold design, which provides a simple and versatile approach to impart multivalency to radiometal based nuclear imaging probes. In this work, we report a series of BFC scaffolds (tBu3-1-COOH, tBu3-2-(COOH)2 and tBu3-3-(COOH)3) constructed on the framework of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) for 68Ga-based PET probe design and signal amplification via multivalent effect. For proof of principle, a known integrin αvβ3 specific ligand (c(RGDyK)) was used to build the corresponding NOTA conjugates (H31, H32, and H33), which present 1 – 3 copies of c(RGDyK) peptide, respectively, in a systematic manner. Using the integrin αvβ3 binding affinities (IC50 values), the enhanced specific binding was observed for multivalent conjugates (H32: 43.9 ± 16.1 nM; H33: 14.7 ± 5.0 nM) as compared to their monovalent counterpart (H31: 171 ± 60 nM) and the intact c(RGDyK) peptide (204 ± 76 nM). The obtained conjugates were efficiently labeled with 68Ga3+ within 30 min at room temperature in high radiochemical yields (> 95%). The in vivo evaluation of the labeled conjugates, 68Ga-1, 68Ga-2 and 68Ga-3, was performed using male severe combined immunodeficiency (SCID) mice bearing integrin αvβ3 positive PC-3 tumor xenografts (n = 3). All 68Ga -labeled conjugates showed high in vivo stability with no detectable metabolites found by radio-HPLC within 2 h post-injection (p.i.). The PET signal amplification in PC-3 tumor by multivalent effect was clearly displayed by the tumor uptake of the 68Ga-labeled conjugates (68Ga-3: 2.55 ± 0.50%ID/g; 68Ga-2: 1.90 ± 0.10 %ID/g; 68Ga-1: 1.66 ± 0.15 %ID/g) at 2 h p.i. In summary, we have designed and synthesized a series of NOTA-based BFC scaffolds with signal amplification properties, which may find potential applications

  6. Polydopamine nanotube mediated fluorescent biosensor for Hg(ii) determination through exonuclease III-assisted signal amplification.

    PubMed

    A, Ravikumar; P, Panneerselvam

    2018-05-29

    We describe a highly sensitive fluorescence biosensor incorporating polydopamine nanotubes (PDNTs) based on the mechanism of exonuclease III (Exo III) assisted signal amplification for the determination of Hg2+ in aqueous solution. Fluorescent probes of FAM labeled ssDNA (FAM-ssDNA) adsorbed on the PDNTs act as an efficient quencher. In the presence of Hg2+, the FAM-ssDNA can bind to Hg2+ to form double stranded DNA (dsDNA) via the formation of T-Hg2+-T base pairs. Then, the dsDNA was removed from the surface of the PDNTs to restore the fluorescence. The release of the dsDNA was triggered by Exo III digestion. At the same time, the liberated Hg2+ mediates a new cycle of digestion. This assay is ultrasensitive for the selective recognition of Hg2+, and a detection limit as low as 10 pM was achieved. In addition, the fluorescent biosensing system also displays remarkable specificity to Hg2+ in the presence of other possible competing ions. This approach was applied to the determination of Hg2+ in real water samples with good recovery and high efficiency for practical analysis.

  7. Sensitive and fast detection of fructose in complex media via symmetry breaking and signal amplification using surface-enhanced Raman spectroscopy.

    PubMed

    Sun, Fang; Bai, Tao; Zhang, Lei; Ella-Menye, Jean-Rene; Liu, Sijun; Nowinski, Ann K; Jiang, Shaoyi; Yu, Qiuming

    2014-03-04

    A new strategy is proposed to sensitively and rapidly detect analytes with weak Raman signals in complex media using surface-enhanced Raman spectroscopy (SERS) via detecting the SERS signal changes of the immobilized probe molecules on SERS-active substrates upon binding of the analytes. In this work, 4-mercaptophenylboronic acid (4-MPBA) was selected as the probe molecule which was immobilized on the gold surface of a quasi-three-dimensional plasmonic nanostructure array (Q3D-PNA) SERS substrate to detect fructose. The molecule of 4-MPBA possesses three key functions: molecule recognition and reversible binding of the analyte via the boronic acid group, amplification of SERS signals by the phenyl group and thus shielding of the background noise of complex media, and immobilization on the surface of SERS-active substrates via the thiol group. Most importantly, the symmetry breaking of the 4-MPBA molecule upon fructose binding leads to the change of area ratio between totally symmetric 8a ring mode and nontotally symmetric 8b ring mode, which enables the detection. The detection curves were obtained in phosphate-buffered saline (PBS) and in undiluted artificial urine at clinically relevant concentrations, and the limit of detection of 0.05 mM was achieved.

  8. Trichotomous noise controlled signal amplification in a generalized Verhulst model

    NASA Astrophysics Data System (ADS)

    Mankin, Romi; Soika, Erkki; Lumi, Neeme

    2014-10-01

    The long-time limit of the probability distribution and statistical moments for a population size are studied by means of a stochastic growth model with generalized Verhulst self-regulation. The effect of variable environment on the carrying capacity of a population is modeled by a multiplicative three-level Markovian noise and by a time periodic deterministic component. Exact expressions for the moments of the population size have been calculated. It is shown that an interplay of a small periodic forcing and colored noise can cause large oscillations of the mean population size. The conditions for the appearance of such a phenomenon are found and illustrated by graphs. Implications of the results on models of symbiotic metapopulations are also discussed. Particularly, it is demonstrated that the effect of noise-generated amplification of an input signal gets more pronounced as the intensity of symbiotic interaction increases.

  9. Photoelectrochemical Bioanalysis Platform for Cells Monitoring Based on Dual Signal Amplification Using in Situ Generation of Electron Acceptor Coupled with Heterojunction.

    PubMed

    Li, Ruyan; Zhang, Yue; Tu, Wenwen; Dai, Zhihui

    2017-07-12

    By using in situ generation of electron acceptor coupled with heterojunction as dual signal amplification, a simple photoelectrochemical (PEC) bioanalysis platform was designed. The synergic effect between the photoelectrochemical (PEC) activities of carbon nitride (C 3 N 4 ) nanosheets and PbS quantum dots (QDs) achieved almost nine-fold photocurrent intensity increment compared with the C 3 N 4 alone. After the G-quadruplex/hemin/Pt nanoparticles (NPs) with catalase-like activity toward H 2 O 2 were introduced, oxygen was in situ generated and acted as electron donor by improving charge separation efficiency and further enhancing photocurrent response. The dually amplified signal made enough sensitivity for monitoring H 2 O 2 released from live cells. The photocathode was prepared by the stepwise assembly of C 3 N 4 nanosheets and PbS QDs on indium tin oxide (ITO) electrode, which was characterized by scanning electron microscope. A signal-on protocol was achieved for H 2 O 2 detection in vitro due to the relevance of photocurrent on the concentration of H 2 O 2 . Under the optimized condition, the fabricated PEC bioanalysis platform exhibited a linear range of 10-7000 μM with a detection limit of 1.05 μM at S/N of 3. Besides, the bioanalysis platform displayed good selectivity against other reductive biological species. By using HepG2 cells as a model, a dual signal amplifying PEC bioanalysis platform for monitoring cells was developed. The bioanalysis platform was successfully applied to the detection of H 2 O 2 release from live cells, which provided a novel method for cells monitoring and would have prospect in clinical assay.

  10. Self-locked aptamer probe mediated cascade amplification strategy for highly sensitive and selective detection of protein and small molecule.

    PubMed

    Li, Wei; Jiang, Wei; Wang, Lei

    2016-10-12

    In this work, a novel self-locked aptamer probe mediated cascade amplification strategy has been constructed for highly sensitive and specific detection of protein. First, the self-locked aptamer probe was designed with three functions: one was specific molecular recognition attributed to the aptamer sequence, the second was signal transduction owing to the transduction sequence, and the third was self-locking through the hybridization of the transduction sequence and part of the aptamer sequence. Then, the aptamer sequence specific recognized the target and folded into a three-way helix junction, leading to the release of the transduction sequence. Next, the 3'-end of this three-way junction acted as primer to trigger the strand displacement amplification (SDA), yielding a large amount of primers. Finally, the primers initiated the dual-exponential rolling circle amplification (DE-RCA) and generated numerous G-quadruples sequences. By inserting the fluorescent dye N-methyl mesoporphyrin IX (NMM), enhanced fluorescence signal was achieved. In this strategy, the self-locked aptamer probe was more stable to reduce the interference signals generated by the uncontrollable folding in unbounded state. Through the cascade amplification of SDA and DE-RCA, the sensitivity was further improved with a detection limit of 3.8 × 10(-16) mol/L for protein detection. Furthermore, by changing the aptamer sequence of the probe, sensitive and selective detection of adenosine has been also achieved, suggesting that the proposed strategy has good versatility and can be widely used in sensitive and selective detection of biomolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Achieving High Levels of NMR-Hyperpolarization in Aqueous Media With Minimal Catalyst Contamination Using SABRE.

    PubMed

    Iali, Wissam; Olaru, Alexandra M; Green, Gary G R; Duckett, Simon B

    2017-08-04

    Signal amplification by reversible exchange (SABRE) is shown to allow access to strongly enhanced 1 H NMR signals in a range of substrates in aqueous media. To achieve this outcome, phase-transfer catalysis is exploited, which leads to less than 1.5×10 -6  mol dm -3 of the iridium catalyst in the aqueous phase. These observations reflect a compelling route to produce a saline-based hyperpolarized bolus in just a few seconds for subsequent in vivo MRI monitoring. The new process has been called catalyst separated hyperpolarization through signal amplification by reversible exchange or CASH-SABRE. We illustrate this method for the substrates pyrazine, 5-methylpyrimidine, 4,6-d 2 -methyl nicotinate, 4,6-d 2 -nicotinamide and pyridazine achieving 1 H signal gains of approximately 790-, 340-, 3000-, 260- and 380-fold per proton at 9.4 T at the time point at which phase separation is complete. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Ternary Surface Monolayers for Ultrasensitive (Zeptomole) Amperometric Detection of Nucleic-Acid Hybridization without Signal Amplification

    PubMed Central

    Wu, Jie; Campuzano, Susana; Halford, Colin; Haake, David A.; Wang, Joseph

    2010-01-01

    A ternary surface monolayer, consisting of co-assembled thiolated capture probe (SHCP) mercaptohexanol (MCH) and dithiothreitol (DTT), is shown to offer dramatic improvements in the signal-to-noise characteristics of electrochemical DNA hybridization biosensors based on common self-assembled monolayers (SAMs). Remarkably low detection limits down to 40 zmole (in 4 μL samples) as well as only 1 CFU E. coli per sensor are thus obtained without any additional amplification step in connection to the commonly used horseradish peroxidase/3,3′,5,5′-tetramethylbenzidine (HRP/TMB) system. Such dramatic improvements in the detection limits (compared to common binary alkanethiol interfaces and to most electrochemical DNA sensing strategies without target or signal amplification) are attributed primarily to the remarkably higher resistance to non-specific adsorption. This reflects the highly compact layer (with lower pinhole density) produced by the coupling of the cyclic- and linear-configuration ‘backfillers’ that leads to a remarkably low background noise even in the presence of complex sample matrices. A wide range of surface compositions have been investigated and the ternary mixed monolayer has been systematically optimized. Detailed impedance spectroscopy and cyclic voltammetric studies shed useful insights into the surface coverage. The impressive sensitivity and high specificity of the simple developed methodology indicate great promise for a wide range of nucleic acid testing, including clinical diagnostics, biothreat detection, food safety and forensic analysis. PMID:20883023

  13. Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification.

    PubMed

    Wu, Jie; Campuzano, Susana; Halford, Colin; Haake, David A; Wang, Joseph

    2010-11-01

    A ternary surface monolayer, consisting of coassembled thiolated capture probe, mercaptohexanol and dithiothreitol, is shown to offer dramatic improvements in the signal-to-noise characteristics of electrochemical DNA hybridization biosensors based on common self-assembled monolayers. Remarkably low detection limits down to 40 zmol (in 4 μL samples) as well as only 1 CFU Escherichia coli per sensor are thus obtained without any additional amplification step in connection to the commonly used horseradish peroxidase/3,3',5,5'-tetramethylbenzidine system. Such dramatic improvements in the detection limits (compared to those of common binary alkanethiol interfaces and to those of most electrochemical DNA sensing strategies without target or signal amplification) are attributed primarily to the remarkably higher resistance to nonspecific adsorption. This reflects the highly compact layer (with lower pinhole density) produced by the coupling of the cyclic- and linear-configuration "backfillers" that leads to a remarkably low background noise even in the presence of complex sample matrixes. A wide range of surface compositions have been investigated, and the ternary mixed monolayer has been systematically optimized. Detailed impedance spectroscopy and cyclic voltammetric studies shed useful insights into the surface coverage. The impressive sensitivity and high specificity of the simple developed methodology indicate great promise for a wide range of nucleic acid testing, including clinical diagnostics, biothreat detection, food safety, and forensic analysis.

  14. Can Anomalous Amplification be Attained without Postselection?

    PubMed

    Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I; Howell, John C

    2016-03-11

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.

  15. Can Anomalous Amplification be Attained without Postselection?

    NASA Astrophysics Data System (ADS)

    Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I.; Howell, John C.

    2016-03-01

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.

  16. Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification.

    PubMed

    Wang, Ye; Gan, Ning; Zhou, You; Li, Tianhua; Hu, Futao; Cao, Yuting; Chen, Yinji

    2017-11-15

    Novel label-free and multiplex aptasensors have been developed for simultaneous detection of several antibiotics based on a microchip electrophoresis (MCE) platform and target catalyzed hairpin assembly (CHA) for signal amplification. Kanamycin (Kana) and oxytetracycline (OTC) were employed as models for testing the system. These aptasensors contained six DNA strands termed as Kana aptamer-catalysis strand (Kana apt-C), Kana inhibit strand (Kana inh), OTC aptamer-catalysis strand (OTC apt-C), OTC inhibit strand (OTC inh), hairpin structures H1 and H2 which were partially complementary. Upon the addition of Kana or OTC, the binding event of aptamer and target triggered the self-assembly between H1 and H2, resulting in the formation of many H1-H2 complexes. They could show strong signals which represented the concentration of Kana or OTC respectively in the MCE system. With the help of the well-designed and high-quality CHA amplification, the assay could yield 300-fold amplified signal comparing that from non-amplified system. Under optimal conditions, this assay exhibited a linear correlation in the ranges from 0.001ngmL -1 to 10ngmL -1 , with the detection limits of 0.7pgmL -1 and 0.9pgmL -1 (S/N=3) toward Kana and OTC, respectively. The platform has the following advantages: firstly, the aptamer probes can be fabricated easily without labeling signal tags for MCE detection; Secondly, the targets can just react with probes and produce the amplified signal in one-pot. Finally, the targets can be simultaneously detected within 10min in different channels, thus high-throughput measurement can be achieved. Based on this work, it is estimated that this detection platform will be universally served as a simple, sensitive and portable platform for antibiotic contaminants detection in biological and environmental samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Electrochemical biosensor based on enzyme substrate as a linker: Application for aldolase activity with pectin-thionine complex as recognization element and signal amplification probe.

    PubMed

    Wang, Xiaonan; Wang, Meiwen; Zhang, Yuanyuan; Miao, Xiaocao; Huang, Yuanyuan; Zhang, Juan; Sun, Lizhou

    2016-09-15

    A new strategy to fabricate electrochemical biosensor is reported based on the linkage of enzyme substrate, thereby an electrochemical method to detect aldolase activity is established using pectin-thionine complex (PTC) as recognization element and signal probe. The linkage effect of fructose-1,6-bisphosphate (FBP), the substrate of aldolase, can be achieved via its strong binding to magnetic nanoparticles (MNPs)/aminophenylboronic acid (APBA) and the formation of phosphoramidate bond derived from its reaction with p-phenylenediamine (PDA) on the surface of electrode. Aldolase can reversibly catalyze the substrates into the products which have no binding capacity with MNPs/APBA, resulting in the exposure of the corresponding binding sites and its subsequent recognization on signal probe. Meanwhile, signal amplification can be accomplished by using the firstly prepared PTC which can bind with MNPs/APBA, and accuracy can be strengthened through magnetic separation. With good precision and accuracy, the established sensor may be extended to other proteins with reversible catalyzed ability. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. [Application of recombinase polymerase amplification in the detection of Pseudomonas aeruginosa].

    PubMed

    Jin, X J; Gong, Y L; Yang, L; Mo, B H; Peng, Y Z; He, P; Zhao, J N; Li, X L

    2018-04-20

    Objective: To establish an optimized method of recombinase polymerase amplification (RPA) to rapidly detect Pseudomonas aeruginosa in clinic. Methods: (1) The DNA templates of one standard Pseudomonas aeruginosa strain was extracted and detected by polymerase chain reaction (PCR), real-time fluorescence quantitative PCR and RPA. Time of sample loading, time of amplification, and time of detection of the three methods were recorded. (2) One standard Pseudomonas aeruginosa strain was diluted in 7 concentrations of 1×10(7,) 1×10(6,) 1×10(5,) 1×10(4,) 1×10(3,) 1×10(2,) and 1×10(1) colony forming unit (CFU)/mL after recovery and cultivation. The DNA templates of Pseudomonas aeruginosa and negative control strain Pseudomonas putida were extracted and detected by PCR, real-time fluorescence quantitative PCR, and RPA separately. The sensitivity of the three methods in detecting Pseudomonas aeruginosa was analyzed. (3) The DNA templates of one standard Pseudomonas aeruginosa strain and four negative control strains ( Staphylococcus aureus, Acinetobacter baumanii, Candida albicans, and Pseudomonas putida ) were extracted separately, and then they were detected by PCR, real-time fluorescence quantitative PCR, and RPA. The specificity of the three methods in detecting Pseudomonas aeruginosa was analyzed. (4) The DNA templates of 28 clinical strains of Pseudomonas aeruginosa preserved in glycerin, 1 clinical strain of which was taken by cotton swab, and negative control strain Pseudomonas putida were extracted separately, and then they were detected by RPA. Positive amplification signals of the clinical strains were observed, and the detection rate was calculated. All experiments were repeated for 3 times. Sensitivity results were analyzed by GraphPad Prism 5.01 statistical software. Results: (1) The loading time of RPA, PCR, and real-time fluorescence quantitative PCR for detecting Pseudomonas aeruginosa were all 20 minutes. In PCR, time of amplification was 98 minutes

  19. Hybrid chirped pulse amplification system

    DOEpatents

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  20. Dual Signal Amplification Using Gold Nanoparticles-Enhanced Zinc Selenide Nanoflakes and P19 Protein for Ultrasensitive Photoelectrochemical Biosensing of MicroRNA in Cell.

    PubMed

    Tu, Wenwen; Cao, Huijuan; Zhang, Long; Bao, Jianchun; Liu, Xuhui; Dai, Zhihui

    2016-11-01

    Using Au nanoparticles (NPs)-decorated, water-soluble, ZnSe-COOH nanoflakes (NFs), an ultrasensitive photoelectrochemical (PEC) biosensing strategy based on the dual signal amplification was proposed. As a result of the localized surface plasmon resonance (SPR) of Au NPs, the ultraviolet-visible absorption spectrum of Au NPs overlapped with emission spectrum of ZnSe-COOH NFs, which generated efficient resonant energy transfer (RET) between ZnSe-COOH NFs and Au NPs. The RET improved photoelectric conversion efficiency of ZnSe-COOH NFs and significantly amplified PEC signal. Taking advantage of the specificity and high affinity of p19 protein for 21-23 bp double-stranded RNA, p19 protein was introduced. P19 protein could generate remarkable steric hindrance, which blocked interfacial electron transfer and impeded the access of the ascorbic acid to electrode surface for scavenging holes. This led to the dramatic decrease of photocurrent intensity and the amplification of PEC signal change versus concentration change of target. Using microRNA (miRNA)-122a as a model analyte, an ultrasensitive signal-off PEC biosensor for miRNA detection was developed under 405 nm irradiation at -0.30 V. Owing to RET and remarkable steric hindrance of p19 protein as dual signal amplification, the proposed strategy exhibited a wide linear range from 350 fM to 5 nM, with a low detection limit of 153 fM. It has been successfully applied to analyze the level of miRNA-122a in HeLa cell, which would have promising prospects for early diagnosis of tumor.

  1. Weak Value Amplification of a Post-Selected Single Photon

    NASA Astrophysics Data System (ADS)

    Hallaji, Matin

    Weak value amplification (WVA) is a measurement technique in which the effect of a pre- and post-selected system on a weakly interacting probe is magnified. In this thesis, I present the first experimental observation of WVA of a single photon. We observed that a signal photon --- sent through a polarization interferometer and post-selected by photodetection in the almost-dark port --- can act like eight photons. The effect of this single photon is measured as a nonlinear phase shift on a separate laser beam. The interaction between the two is mediated by a sample of laser- cooled 85Rb atoms. Electromagnetically induced transparency (EIT) is used to enhance the nonlinearity and overcome resonant absorption. I believe this work to be the first demonstration of WVA where a deterministic interaction is used to entangle two distinct optical systems. In WVA, the amplification is contingent on discarding a large portion of the original data set. While amplification increases measurement sensitivity, discarding data worsens it. Questioning whether these competing effects conspire to improve or diminish measurement accuracy has resulted recently in controversy. I address this question by calculating the maximum amount of information achievable with the WVA technique. By comparing this information to that achievable by the standard technique, where no post-selection is employed, I show that the WVA technique can be advantageous under a certain class of noise models. Finally, I propose a way to optimally apply the WVA technique.

  2. Organic field effect transistor with ultra high amplification

    NASA Astrophysics Data System (ADS)

    Torricelli, Fabrizio

    2016-09-01

    High-gain transistors are essential for the large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show organic transistors fabricated on plastic foils enabling unipolar amplifiers with ultra-gain. The proposed approach is general and opens up new opportunities for ultra-large signal amplification in organic circuits and sensors.

  3. Achieving 1% NMR polarization in water in less than 1 min using SABRE

    NASA Astrophysics Data System (ADS)

    Zeng, Haifeng; Xu, Jiadi; McMahon, Michael T.; Lohman, Joost A. B.; van Zijl, Peter C. M.

    2014-09-01

    The development of biocompatible hyperpolarized media is a crucial step towards application of hyperpolarization in vivo. This article describes the achievement of 1% hyperpolarization of 3-amino-1,2,4-triazine protons in water using the parahydrogen induced polarization technique based on signal amplification by reversible exchange (SABRE). Polarization was achieved in less than 1 min.

  4. Enzyme-free detection of sequence-specific microRNAs based on nanoparticle-assisted signal amplification strategy.

    PubMed

    Li, Ru-Dong; Wang, Qian; Yin, Bin-Cheng; Ye, Bang-Ce

    2016-03-15

    Developing direct and convenient methods for microRNAs (miRNAs) analysis is of great significance in understanding biological functions of miRNAs, and early diagnosis of cancers. We have developed a rapid, enzyme-free method for miRNA detection based on nanoparticle-assisted signal amplification coupling fluorescent metal nanoclusters as signal output. The proposed method involves two processes: target miRNA-mediated nanoparticle capture, which consists of magnetic microparticle (MMP) probe and CuO nanoparticle (NP) probe, and nanoparticle-mediated amplification for signal generation, which consists of fluorescent DNA-Cu/Ag nanocluster (NC) and 3-mercaptopropionic acid (MPA). In the presence of target miRNA, MMP probe and NP probe sandwich-capture the target miRNA via their respective complementary sequence. The resultant sandwich complex (MMP probe-miRNA-CuO NP probe) is separated using a magnetic field and further dissolved by acidolysis to turn CuO NP into a great amount of copper (II) ions (Cu(2+)). Cu(2+) could disrupt the interactions between thiol moiety of MPA and the fluorescent Cu/Ag NCs by preferentially reacting with MPA to form a disulfide compound as intermediate. By this way, the fluorescence emission of the DNA-Cu/Ag NCs in the presence of MPA increases upon the increasing concentration of Cu(2+), which is directly proportional to the amount of target miRNA. The proposed method allows quantitative detection of a liver-specific miR-221-5p in the range of 5 pM to 1000 pM with a detection limit of ~0.73 pM, and shows a good ability to discriminate single-base difference. Moreover, the detection assay can be applied to detect miRNA in cancerous cell lysates in excellent agreement with that from a commercial miRNA detection kit. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Optical pulse synthesis using brillouin selective sideband amplification

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2002-01-01

    Techniques for producing optical pulses based on Brillouin selective sideband amplification by using a common modulation control signal to modulate both a signal beam to produce multiple sideband signals and a single pump beam to produce multiple pump beams.

  6. An evaluation of tyramide signal amplification and archived fixed and frozen tissue in microarray gene expression analysis

    PubMed Central

    Karsten, Stanislav L.; Van Deerlin, Vivianna M. D.; Sabatti, Chiara; Gill, Lisa H.; Geschwind, Daniel H.

    2002-01-01

    Archival formalin-fixed, paraffin-embedded and ethanol-fixed tissues represent a potentially invaluable resource for gene expression analysis, as they are the most widely available material for studies of human disease. Little data are available evaluating whether RNA obtained from fixed (archival) tissues could produce reliable and reproducible microarray expression data. Here we compare the use of RNA isolated from human archival tissues fixed in ethanol and formalin to frozen tissue in cDNA microarray experiments. Since an additional factor that can limit the utility of archival tissue is the often small quantities available, we also evaluate the use of the tyramide signal amplification method (TSA), which allows the use of small amounts of RNA. Detailed analysis indicates that TSA provides a consistent and reproducible signal amplification method for cDNA microarray analysis, across both arrays and the genes tested. Analysis of this method also highlights the importance of performing non-linear channel normalization and dye switching. Furthermore, archived, fixed specimens can perform well, but not surprisingly, produce more variable results than frozen tissues. Consistent results are more easily obtainable using ethanol-fixed tissues, whereas formalin-fixed tissue does not typically provide a useful substrate for cDNA synthesis and labeling. PMID:11788730

  7. Horizontal localization and speech intelligibility with bilateral and unilateral hearing aid amplification.

    PubMed

    Köbler, S; Rosenhall, U

    2002-10-01

    Speech intelligibility and horizontal localization of 19 subjects with mild-to-moderate hearing loss were studied in order to evaluate the advantages and disadvantages of bilateral and unilateral hearing aid (HA) fittings. Eight loudspeakers were arranged in a circular array covering the horizontal plane around the subjects. Speech signals of a sentence test were delivered by one, randomly chosen, loudspeaker. At the same time, the other seven loudspeakers emitted noise with the same long-term average spectrum as the speech signals. The subjects were asked to repeat the speech signal and to point out the corresponding loudspeaker. Speech intelligibility was significantly improved by HAs, bilateral amplification being superior to unilateral. Horizontal localization could not be improved by HA amplification. However, bilateral HAs preserved the subjects' horizontal localization, whereas unilateral amplification decreased their horizontal localization abilities. Front-back confusions were common in the horizontal localization test. The results indicate that bilateral HA amplification has advantages compared with unilateral amplification.

  8. Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application.

    PubMed

    Zhou, Hong; Liu, Jing; Xu, Jing-Juan; Zhang, Shu-Sheng; Chen, Hong-Yuan

    2018-03-21

    Modern optical detection technology plays a critical role in current clinical detection due to its high sensitivity and accuracy. However, higher requirements such as extremely high detection sensitivity have been put forward due to the clinical needs for the early finding and diagnosing of malignant tumors which are significant for tumor therapy. The technology of isothermal amplification with nucleic acids opens up avenues for meeting this requirement. Recent reports have shown that a nucleic acid amplification-assisted modern optical sensing interface has achieved satisfactory sensitivity and accuracy, high speed and specificity. Compared with isothermal amplification technology designed to work completely in a solution system, solid biosensing interfaces demonstrated better performances in stability and sensitivity due to their ease of separation from the reaction mixture and the better signal transduction on these optical nano-biosensing interfaces. Also the flexibility and designability during the construction of these nano-biosensing interfaces provided a promising research topic for the ultrasensitive detection of cancer diseases. In this review, we describe the construction of the burgeoning number of optical nano-biosensing interfaces assisted by a nucleic acid amplification strategy, and provide insightful views on: (1) approaches to the smart fabrication of an optical nano-biosensing interface, (2) biosensing mechanisms via the nucleic acid amplification method, (3) the newest strategies and future perspectives.

  9. ASC filament formation serves as a signal amplification mechanism for inflammasomes

    PubMed Central

    Dick, Mathias S.; Sborgi, Lorenzo; Rühl, Sebastian; Hiller, Sebastian; Broz, Petr

    2016-01-01

    A hallmark of inflammasome activation is the ASC speck, a micrometre-sized structure formed by the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD), which consists of a pyrin domain (PYD) and a caspase recruitment domain (CARD). Here we show that assembly of the ASC speck involves oligomerization of ASCPYD into filaments and cross-linking of these filaments by ASCCARD. ASC mutants with a non-functional CARD only assemble filaments but not specks, and moreover disrupt endogenous specks in primary macrophages. Systematic site-directed mutagenesis of ASCPYD is used to identify oligomerization-deficient ASC mutants and demonstrate that ASC speck formation is required for efficient processing of IL-1β, but dispensable for gasdermin-D cleavage and pyroptosis induction. Our results suggest that the oligomerization of ASC creates a multitude of potential caspase-1 activation sites, thus serving as a signal amplification mechanism for inflammasome-mediated cytokine production. PMID:27329339

  10. Miniaturized isothermal nucleic acid amplification, a review.

    PubMed

    Asiello, Peter J; Baeumner, Antje J

    2011-04-21

    Micro-Total Analysis Systems (µTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.

  11. Dual-cyclical nucleic acid strand-displacement polymerization based signal amplification system for highly sensitive determination of p53 gene.

    PubMed

    Xu, Jianguo; Wu, Zai-Sheng; Li, Hongling; Wang, Zhenmeng; Le, Jingqing; Zheng, Tingting; Jia, Lee

    2016-12-15

    In the present study, we proposed a novel dual-cyclical nucleic acid strand-displacement polymerization (dual-CNDP) based signal amplification system for highly sensitive determination of tumor suppressor genes. The system primarily consisted of a signaling hairpin probe (SHP), a label-free hairpin probe (LHP) and an initiating primer (IP). The presence of target DNA was able to induce one CNDP through continuous process of ligation, polymerization and nicking, leading to extensively accumulation of two nicked triggers (NT1 and NT2). Intriguingly, the NT1 could directly hybridize SHP, while the NT2 could act as the target analog to induce another CNDP. The resulting dual-CNDP contributed the striking signal amplification, and only a very weak blank noise existed since the ligation template of target was not involved. In this case, the target could be detected in a wide linear range (5 orders of magnitude), and a low detection limit (78 fM) was obtained, which is superior to most of the existing fluorescent methods. Moreover, the dual-CNDP sensing system provided a high selectivity towards target DNA against mismatched target and was successfully applied to analysis of target gene extracted from cancer cells or in human serum-contained samples, indicating its great potential for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Multiplexed protein profiling on microarrays by rolling-circle amplification

    PubMed Central

    Schweitzer, Barry; Roberts, Scott; Grimwade, Brian; Shao, Weiping; Wang, Minjuan; Fu, Qin; Shu, Quiping; Laroche, Isabelle; Zhou, Zhimin; Tchernev, Velizar T.; Christiansen, Jason; Velleca, Mark; Kingsmore, Stephen F.

    2010-01-01

    Fluorescent-sandwich immunoassays on microarrays hold appeal for proteomics studies, because equipment and antibodies are readily available, and assays are simple, scalable, and reproducible. The achievement of adequate sensitivity and specificity, however, requires a general method of immunoassay amplification. We describe coupling of isothermal rolling-circle amplification (RCA) to universal antibodies for this purpose. A total of 75 cytokines were measured simultaneously on glass arrays with signal amplification by RCA with high specificity, femtomolar sensitivity, 3 log quantitative range, and economy of sample consumption. A 51-feature RCA cytokine glass array was used to measure secretion from human dendritic cells (DCs) induced by lipopolysaccharide (LPS) or tumor necrosis factor-α (TNF-α). As expected, LPS induced rapid secretion of inflammatory cytokines such as macrophage inflammatory protein (MIP)-1β, interleukin (IL)-8, and interferon-inducible protein (IP)-10. We found that eotaxin-2 and I-309 were induced by LPS; in addition, macrophage-derived chemokine (MDC), thymus and activation-regulated chemokine (TARC), soluble interleukin 6 receptor (sIL-6R), and soluble tumor necrosis factor receptor I (sTNF-RI) were induced by TNF-α treatment. Because microarrays can accommodat ~1,000 sandwich immunoassays of this type, a relatively small number of RCA microarrays seem to offer a tractable approach for proteomic surveys. PMID:11923841

  13. Simple and rapid chemiluminescence aptasensor for Hg2+ in contaminated samples: A new signal amplification mechanism.

    PubMed

    Qi, Yingying; Xiu, Fu-Rong; Yu, Gending; Huang, Lili; Li, Baoxin

    2017-01-15

    Detection of ultralow concentration of heavy metal ion Hg 2+ is important for human health protection and environment monitoring because of the gradual accumulation in environmental and biological fields. Herein, we report a convenient chemiluminescence (CL) biosensing platform for ultrasensitive Hg 2+ detection by signal amplification mechanism from positively charged gold nanoparticles ((+)AuNPs). It is based on (+)AuNPs charge effect and aptamer conformation change induced by target to stimulate the generation of CL in the presence of H 2 O 2 and luminol without high salt medium. Notably particularly, the typical problem of the high salt medium from (-) AuNPs system, like influencing aptamers' bind with target and hindering CL reaction can be effectively addressed through the direct introduction of (+)AuNPs. Therefore, the proposed biosensing exhibits a high sensitivity toward target Hg 2+ with a detection limit of 16 pM, which is far below the limit (10nM) defined by the U.S. Environmental Protection Agency in drinkable water, and is about 10-fold lower than the previously reported aptamer-based assays for Hg 2+ . This sensing platform provides a simple, rapid, and cost-effective approach for label-free sensitive detection of Hg 2+ . Moreover, it is universal for the detection of other targets. Undoubtedly, such a direct utilizing of (+)AuNPs' charge effect will provide a new signal amplification way for label-free aptamer-based CL analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Achieving 1% NMR polarization in water in less than 1min using SABRE.

    PubMed

    Zeng, Haifeng; Xu, Jiadi; McMahon, Michael T; Lohman, Joost A B; van Zijl, Peter C M

    2014-09-01

    The development of biocompatible hyperpolarized media is a crucial step towards application of hyperpolarization in vivo. This article describes the achievement of 1% hyperpolarization of 3-amino-1,2,4-triazine protons in water using the parahydrogen induced polarization technique based on signal amplification by reversible exchange (SABRE). Polarization was achieved in less than 1 min. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification

    NASA Astrophysics Data System (ADS)

    Bai, Lijuan; Chai, Yaqin; Pu, Xiaoyun; Yuan, Ruo

    2014-02-01

    Endotoxin, also known as lipopolysaccharide (LPS), is able to induce a strong immune response on its internalization into mammalian cells. To date, aptamer-based biosensors for LPS detection have been rarely reported. This work describes a new signal-on electrochemical aptasensor for the ultrasensitive detection of LPS by combining the three-way DNA hybridization process and nanotechnology-based amplification. With the help of DNA1 (associated with the concentration of target LPS), the capture probe hybridizes with DNA1 and the assistant probe to open its hairpin structure and form a ternary ``Y'' junction structure. The DNA1 can be released from the structure in the presence of nicking endonuclease to initiate the next hybridization process. Then a great deal of cleaved capture probe produced in the cyclic process can bind with DNA2-nanocomposite, which contains the electroactive toluidine blue (Tb) with the amplification materials graphene (Gra) and gold nanoparticles (AuNPs). Thus, an enhanced electrochemical signal can be easily read out. With the cascade signal amplification, this newly designed protocol provides an ultrasensitive electrochemical detection of LPS down to the femtogram level (8.7 fg mL-1) with a linear range of 6 orders of magnitude (from 10 fg mL-1 to 50 ng mL-1). Moreover, the high sensitivity and specificity make this method versatile for the detection of other biomolecules by changing the corresponding sequences of the capture probe and the assistant probe.

  16. An Intrinsically Digital Amplification Scheme for Hearing Aids

    NASA Astrophysics Data System (ADS)

    Blamey, Peter J.; Macfarlane, David S.; Steele, Brenton R.

    2005-12-01

    Results for linear and wide-dynamic range compression were compared with a new 64-channel digital amplification strategy in three separate studies. The new strategy addresses the requirements of the hearing aid user with efficient computations on an open-platform digital signal processor (DSP). The new amplification strategy is not modeled on prior analog strategies like compression and linear amplification, but uses statistical analysis of the signal to optimize the output dynamic range in each frequency band independently. Using the open-platform DSP processor also provided the opportunity for blind trial comparisons of the different processing schemes in BTE and ITE devices of a high commercial standard. The speech perception scores and questionnaire results show that it is possible to provide improved audibility for sound in many narrow frequency bands while simultaneously improving comfort, speech intelligibility in noise, and sound quality.

  17. Rapid and Sensitive Detection of Norovirus Genomes in Oysters by a Two-Step Isothermal Amplification Assay System Combining Nucleic Acid Sequence-Based Amplification and Reverse Transcription-Loop-Mediated Isothermal Amplification Assays▿

    PubMed Central

    Fukuda, Shinji; Sasaki, Yukie; Seno, Masato

    2008-01-01

    We developed a two-step isothermal amplification assay system, which achieved the detection of norovirus (NoV) genomes in oysters with a sensitivity similar to that of reverse transcription-seminested PCR. The time taken for the amplification of NoV genomes from RNA extracts was shortened to about 3 h. PMID:18456857

  18. A Graphene-enhanced imaging of microRNA with enzyme-free signal amplification of catalyzed hairpin assembly in living cells.

    PubMed

    Liu, Haiyun; Tian, Tian; Ji, Dandan; Ren, Na; Ge, Shenguang; Yan, Mei; Yu, Jinghua

    2016-11-15

    In situ imaging of miRNA in living cells could help us to monitor the miRNA expression in real time and obtain accurate information for studying miRNA related bioprocesses and disease. Given the low-level expression of miRNA, amplification strategies for intracellular miRNA are imperative. Here, we propose an amplification strategy with a non-destructive enzyme-free manner in living cells using catalyzed hairpin assembly (CHA) based on graphene oxide (GO) for cellular miRNA imaging. The enzyme-free CHA exhibits stringent recognition and excellent signal amplification of miRNA in the living cells. GO is a good candidate as a fluorescence quencher and cellular carrier. Taking the advantages of the CHA and GO, we can monitor the miRNA at low level in living cells with a simple, sensitive and real-time manner. Finally, imaging of miRNAs in the different expression cells is realized. The novel method could supply an effective tool to visualize intracellular low-level miRNAs and help us to further understand the role of miRNAs in cellular processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Electrochemical biosensor based on functional composite nanofibers for detection of K-ras gene via multiple signal amplification strategy.

    PubMed

    Wang, Xiaoying; Shu, Guofang; Gao, Chanchan; Yang, Yu; Xu, Qian; Tang, Meng

    2014-12-01

    An electrochemical biosensor based on functional composite nanofibers for hybridization detection of specific K-ras gene that is highly associated with colorectal cancer via multiple signal amplification strategy has been developed. The carboxylated multiwalled carbon nanotubes (MWCNTs) doped nylon 6 (PA6) composite nanofibers (MWCNTs-PA6) was prepared using electrospinning, which served as the nanosized backbone for thionine (TH) electropolymerization. The functional composite nanofibers [MWCNTs-PA6-PTH, where PTH is poly(thionine)] used as supporting scaffolds for single-stranded DNA1 (ssDNA1) immobilization can dramatically increase the amount of DNA attachment and the hybridization sensitivity. Through the hybridization reaction, a sandwich format of ssDNA1/K-ras gene/gold nanoparticle-labeled ssDNA2 (AuNPs-ssDNA2) was fabricated, and the AuNPs offered excellent electrochemical signal transduction. The signal amplification was further implemented by forming network-like thiocyanuric acid/gold nanoparticles (TA/AuNPs). A significant sensitivity enhancement was obtained; the detection limit was down to 30fM, and the discriminations were up to 54.3 and 51.9% between the K-ras gene and the one-base mismatched sequences including G/C and A/T mismatched bases, respectively. The amenability of this method to the analyses of K-ras gene from the SW480 colorectal cancer cell lysates was demonstrated. The results are basically consistent with those of the K-ras Kit (HRM: high-resolution melt). The method holds promise for the diagnosis and management of cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis.

    PubMed

    Yan, Kun; Liu, Yi; Guan, Yongguang; Bhokisham, Narendranath; Tsao, Chen-Yu; Kim, Eunkyoung; Shi, Xiao-Wen; Wang, Qin; Bentley, William E; Payne, Gregory F

    2018-05-22

    Antibodies are common recognition elements for molecular detection but often the signals generated by their stoichiometric binding must be amplified to enhance sensitivity. Here, we report that an electrode coated with a catechol-chitosan redox capacitor can amplify the electrochemical signal generated from an alkaline phosphatase (AP) linked immunoassay. Specifically, the AP product p-aminophenol (PAP) undergoes redox-cycling in the redox capacitor to generate amplified oxidation currents. We estimate an 8-fold amplification associated with this redox-cycling in the capacitor (compared to detection by a bare electrode). Importantly, this capacitor-based amplification is generic and can be coupled to existing amplification approaches based on enzyme-linked catalysis or magnetic nanoparticle-based collection/concentration. Thus, the capacitor should enhance sensitivities in conventional immunoassays and also provide chemical to electrical signal transduction for emerging applications in molecular communication. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Modified beacon probe assisted dual signal amplification for visual detection of microRNA.

    PubMed

    Sun, Xiuwei; Ying, Na; Ju, Chuanjing; Li, Zhongyi; Xu, Na; Qu, Guijuan; Liu, Wensen; Wan, Jiayu

    2018-06-01

    In a recent study, we reported a novel assay for the detection of microRNA-21 based on duplex-specific nuclease (DSN)-assisted isothermal cleavage and hybridization chain reaction (HCR) dual signal amplification. The Fam modified double-stranded DNA products were generated after the HCR, another biotin modified probe was digested by DSN and released from the magnetic beads after the addition of the target miRNA. The released sequence was then combined with HCR products to form a double-tagging dsDNA, which can be recognized by the lateral flow strips. In this study, we introduced a 2-OMethyl-RNA modified beacon probe (2-OMe-MB) to make some improvements based on the previous study. Firstly, the substitution of modified probe combined on magnetic beads avoids the fussy washing steps for the separation of un-reacted probes. Furthermore, the modification of 2-OMe on the stem of the probe avoided the unnecessary cleavage by DSN, which greatly reduce the background signal. Compared to the previous work, these improvements save us a lot of steps but possess the comparable sensitivity and selectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Ferrocenemonocarboxylic-HRP@Pt nanoparticles labeled RCA for multiple amplification of electro-immunosensing.

    PubMed

    Su, Huilan; Yuan, Ruo; Chai, Yaqin; Mao, Li; Zhuo, Ying

    2011-07-15

    A multiple amplification immunoassay was proposed to detect alpha-fetoprotein (AFP), which was based on ferrocenemonocarboxylic-HRP conjugated on Pt nanoparticles as labels for rolling circle amplification (RCA). Firstly, the capture antibody (anti-AFP) was immobilized on glass carbon electrode (GCE) deposited nano-sized gold particles. After a typical immuno-sandwich protocol, primary DNA was immobilized by labeling secondary antibody, which acted as a precursor to initiate RCA. The products of RCA provide large amount of sites to link detection DNAs, which were labeled by signal probes (ferrocenemonocarboxylic) and horseradish peroxidase (HRP). Moreover, the enzymatic amplification signals could be produced by the catalysis of HRP and Pt nanoparticles with the addition of H₂O₂. These lead to multiple amplification signals monitoring by electrochemical instrument and further resulted in high sensitivity of the immunoassay with the detection limit of 1.7 pg/mL. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Highly sensitive electrochemical detection of cocaine on graphene/AuNP modified electrode via catalytic redox-recycling amplification.

    PubMed

    Jiang, Bingying; Wang, Min; Chen, Ying; Xie, Jiaqing; Xiang, Yun

    2012-02-15

    We demonstrated a new strategy for highly sensitive electrochemical detection of cocaine by using two engineered aptamers in connection to redox-recycling signal amplification. The graphene/AuNP nanocomposites were electrochemically deposited on a screen printed carbon electrode to enhance the electron transfers. The cocaine primary binding aptamers were self-assembled on the electrode surface through sulfur-Au interactions. The presence of the target cocaine and the biotin-modified secondary binding aptamers leads to the formation of sandwich complexes on the electrode surface. The streptavidin-conjugated alkaline phosphatases (ALPs) were used as labels to generate quantitative signals. The addition of the ALP substrate and the co-reactant NADH results in the formation of a redox cycle between the enzymatic product and the electrochemically oxidized species and the signal is thus significantly amplified. Because of the effective modification of the sensing surface and signal amplification, low nanomolar (1 nM) detection limit for cocaine is achieved. The proposed aptamer-based sandwich sensing approach for amplified detection of cocaine thus opens new opportunities for highly sensitive determination of other small molecules. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A highly sensitive SPRi biosensing strategy for simultaneous detection of multiplex miRNAs based on strand displacement amplification and AuNP signal enhancement.

    PubMed

    Wei, Xiaotong; Duan, Xiaolei; Zhou, Xiaoyan; Wu, Jiangling; Xu, Hongbing; Min, Xun; Ding, Shijia

    2018-06-07

    Herein, a dual channel surface plasmon resonance imaging (SPRi) biosensor has been developed for the simultaneous and highly sensitive detection of multiplex miRNAs based on strand displacement amplification (SDA) and DNA-functionalized AuNP signal enhancement. In the presence of target miRNAs (miR-21 or miR-192), the miRNAs could specifically hybridize with the corresponding hairpin probes (H) and initiate the SDA, resulting in massive triggers. Subsequently, the two parts of the released triggers could hybridize with capture probes (CP) and DNA-functionalized AuNPs, assembling DNA sandwiches with great mass on the chip surface. A significantly amplified SPR signal readout was achieved. This established biosensing method was capable of simultaneously detecting multiplex miRNAs with a limit of detection down to 0.15 pM for miR-21 and 0.22 pM for miR-192. This method exhibited good specificity and acceptable reproducibility. Moreover, the developed method was applied to the determination of target miRNAs in a complex matrix. Thus, this developed SPRi biosensing method may present a potential alternative tool for miRNA detection in biomedical research and clinical diagnosis.

  5. Label-free and ultrasensitive fluorescence detection of cocaine based on a strategy that utilizes DNA-templated silver nanoclusters and the nicking endonuclease-assisted signal amplification method.

    PubMed

    Zhang, Kai; Wang, Ke; Zhu, Xue; Zhang, Jue; Xu, Lan; Huang, Biao; Xie, Minhao

    2014-01-07

    A general and reliable strategy for the detection of cocaine was proposed utilizing DNA-templated silver nanoclusters as signal indicators and the nicking endonuclease-assisted signal amplification method. This strategy can detect cocaine specifically with a detection limit as low as 2 nM by using a small volume of 5 μL.

  6. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.

    PubMed

    Longhi, Stefano

    2016-04-15

    Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.

  7. A Simple Power Law Governs Many Sensory Amplifications and Multisensory Enhancements.

    PubMed

    Billock, Vincent A; Havig, Paul R

    2018-05-16

    When one sensory response occurs in the presence of a different sensory stimulation, the sensory response is often amplified. The variety of sensory enhancement data tends to obscure the underlying rules, but it has long been clear that weak signals are usually amplified more than strong ones (the Principle of Inverse Effectiveness). Here we show that for many kinds of sensory amplification, the underlying law is simple and elegant: the amplified response is a power law of the unamplified response, with a compressive exponent that amplifies weak signals more than strong. For both psychophysics and cortical electrophysiology, for both humans and animals, and for both sensory integration and enhancement within a sense, gated power law amplification (amplification of one sense triggered by the presence of a different sensory signal) is often sufficient to explain sensory enhancement.

  8. Amplification of the signal in triode structures of ion detectors based on 6H-SIC epitaxial films

    NASA Astrophysics Data System (ADS)

    Lebedev, A. A.; Strokan, N. B.; Ivanov, A. M.; Davydov, D. V.; Savkina, N. S.; Bogdanova, E. V.; Kuznetsov, A. N.; Yakimova, R.

    2001-12-01

    The possibility of about 50 times the inneramplification of signals in SiC-based detectors of short-range ions is shown. The detector has an n-p-n+-like structure, where the p-type base was grown epitaxially on a 6H n+-SiC substrate. To complete the structure a Schottky barrier was made on top. Detector parameters were investigated in a "floating base" regime. Alpha particles from 244Cm were used and the augmentation of signal (E) with increasing applied voltage (U) was investigated. A superlinear increase of E was observed with a significant (tens of times) amplification of the introduced by the alpha particle nonequilibrium charge. It was also found that the nonuniformity of the diffusion-drift carrier transport parameters in the films does not exceed 10%.

  9. Gγ recruitment system incorporating a novel signal amplification circuit to screen transient protein-protein interactions.

    PubMed

    Fukuda, Nobuo; Ishii, Jun; Kondo, Akihiko

    2011-09-01

    Weak and transient protein-protein interactions are associated with biological processes, but many are still undefined because of the difficulties in their identification. Here, we describe a redesigned method to screen transient protein-protein interactions by using a novel signal amplification circuit, which is incorporated into yeast to artificially magnify the signal responding to the interactions. This refined method is based on the previously established Gγ recruitment system, which utilizes yeast G-protein signaling and mating growth selection to screen interacting protein pairs. In the current study, to test the capability of our method, we chose mutants of the Z-domain derived from Staphylococcus aureus protein A as candidate proteins, and the Fc region of human IgG as the counterpart. By introduction of an artificial signal amplifier into the previous Gγ recruitment system, the signal transduction responding to transient interactions between Z-domain mutants and the Fc region with significantly low affinity (8.0 × 10(3) M(-1)) was successfully amplified in recombinant haploid yeast cells. As a result of zygosis with the opposite mating type of wild-type haploid cells, diploid colonies were vigorously and selectively generated on the screening plates, whereas our previous system rarely produced positive colonies. This new approach will be useful for exploring the numerous transient interactions that remain undefined because of the lack of powerful screening tools for their identification. © 2011 The Authors Journal compilation © 2011 FEBS.

  10. A high-sensitivity electrochemical aptasensor of carcinoembryonic antigen based on graphene quantum dots-ionic liquid-nafion nanomatrix and DNAzyme-assisted signal amplification strategy.

    PubMed

    Huang, Jing-Yi; Zhao, Lang; Lei, Wan; Wen, Wei; Wang, Yi-Jia; Bao, Ting; Xiong, Hua-Yu; Zhang, Xiu-Hua; Wang, Sheng-Fu

    2018-01-15

    In this work, we have developed an electrochemical aptasensor for high-sensitivity determination of carcinoembryonic antigen (CEA) based on lead ion (Pb 2+ )-dependent DNAzyme-assisted signal amplification and graphene quantum dot-ionic liquid-nafion (GQDs-IL-NF) composite film. We designed hairpin DNA containing CEA-specific aptamers and DNAzyme chains. In the presence of CEA, hairpin DNA recognized the target and performed a DNAzyme-assisted signal amplification reaction to yield a large number of single-stranded DNA. The GQDs-IL-NF composite film was immobilized on the glassy carbon electrode for the interaction with single-stranded DNA through noncovalent π-π stacking interaction. Therefore, the methylene blue-labeled substrate DNA (MB-substrate) was fixed on the electrode and exhibited an initial electrochemical signal. Under optimal conditions, the response current change was proportional to the concentration of CEA, demonstrating a wide linear range from 0.5fgmL -1 to 0.5ngmL -1 , with a low detection limit of 0.34fgmL -1 . Furthermore, the proposed aptasensor was successfully applied in determining CEA in serum samples, showing its superior prospects in clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Antigen retrieval, blocking, detection and visualisation systems in immunohistochemistry: a review and practical evaluation of tyramide and rolling circle amplification systems.

    PubMed

    Warford, Anthony; Akbar, Hameed; Riberio, Deise

    2014-11-01

    To achieve specificity and sensitivity using immunohistochemistry it is necessary to combine the application of validated primary antibodies with optimised pre-treatment, detection and visualisation steps. The influence of these surrounding procedures is reviewed. A practical evaluation of tyramide signal amplification and rolling circle amplification detection methods is provided in which formalin fixed paraffin embedded sections of adenocarcinomas of breast, colon and lung together with squamous metaplasia of lung were immunostained with CD20 and CK19 primary antibodies. The results indicate that the detection systems are of comparable sensitivity and specificity. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Label-free and sensitive fluorescence detection of nucleic acid, based on combination of a graphene oxid /SYBR green I dye platform and polymerase assisted signal amplification

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao; Xing, Da

    2012-12-01

    A new label-free isothermal fluorescence amplification detection for nucleic acid has been developed. In this paper, we first developed a novel sensitive and specific detection platform with an unmodified hairpin probe (HP) combination of the graphene oxid (GO)/ SYBR green I dye (SG), which was relied on the selective principle of adsorption and the high quenching efficiency of GO. Then for the application of this new strategy, we used Mirco RNA-21 (Mir-21) as the target to evaluate this working principle of our design. When the target was hybridizing with the HP and inducing its conformation of change, an efficient isothermal circular strand-displacement polymerization reaction was activating to assist the first signal amplification. In this format, the formed complex conformation of DNA would interact with its high affinity dye, then detached from the surface of GO after incubating with the platform of GO/intercalating dye. This reaction would accompany with obvious fluorescence recovery, and accomplish farther signal enhancement by a mass of intercalating dye inserting into the minor groove of the long duplex replication product. By taking advantage of the multiple amplification of signal, this method exerted substantial enhancement in sensitivity and could be used for rapid and selective detection of Mir-21 with attomole range. It is expected that this cost-effective GO based sensor might hold considerable potential to apply in bioanalysis studies.

  13. In-field Raman amplification on coherent optical fiber links for frequency metrology.

    PubMed

    Clivati, C; Bolognini, G; Calonico, D; Faralli, S; Mura, A; Levi, F

    2015-04-20

    Distributed Raman amplification (DRA) is widely exploited for the transmission of broadband, modulated signals used in data links, but not yet in coherent optical links for frequency metrology, where the requirements are rather different. After preliminary tests on fiber spools, in this paper we deeper investigate Raman amplification on deployed in-field optical metrological links. We actually test a Doppler-stabilized optical link both on a 94 km-long metro-network implementation with multiplexed ITU data channels and on a 180 km-long dedicated fiber haul connecting two cities, where DRA is employed in combination with Erbium-doped fiber amplification (EDFA). The performance of DRA is detailed in both experiments, indicating that it does not introduce noticeable penalties for the metrological signal or for the ITU data channels. We hence show that Raman amplification of metrological signals can be compatible with a wavelength division multiplexing architecture and that it can be used as an alternative or in combination with dedicated bidirectional EDFAs. No deterioration is noticed in the coherence properties of the delivered signal, which attains frequency instability at the 10(-19) level in both cases. This study can be of interest also in view of the undergoing deployment of continental fiber networks for frequency metrology.

  14. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. II. Isothermal signal amplification in process of DNA analysis by minisequencing].

    PubMed

    Dmitrienko, E V; Khomiakova, E A; Pyshnaia; Bragin, A G; Vedernikov, V E; Pyshnyĭ, D V

    2010-01-01

    The isothermal amplification of reporter signal via limited probe extension (minisequencing) upon hybridization of nucleic acids has been studied. The intensity of reporter signal has been shown to increase due to enzymatic labeling of multiple probes upon consecutive hybridization with one DNA template both in homophase and heterophase assays using various kinds of detection signal: radioisotope label, fluorescent label, and enzyme-linked assay. The kinetic scheme of the process has been proposed and kinetic parameters for each step have been determined. The signal intensity has been shown to correlate with physicochemical characteristics of both complexes: probe/DNA and product/DNA. The maximum intensity has been observed at minimal difference between the thermodynamic stability of these complexes, provided the reaction temperature has been adjusted near their melting temperature values; rising or lowering the reaction temperature reduces the amount of reporting product. The signal intensity has been shown to decrease significantly upon hybridization with the DNA template containing single-nucleotide mismatches. Limited probe extension assay is useful not only for detection of DNA template but also for its quantitative characterization.

  15. The Feasibility of Formation and Kinetics of NMR Signal Amplification by Reversible Exchange (SABRE) at High Magnetic Field (9.4 T)

    PubMed Central

    2015-01-01

    1H NMR signal amplification by reversible exchange (SABRE) was observed for pyridine and pyridine-d5 at 9.4 T, a field that is orders of magnitude higher than what is typically utilized to achieve the conventional low-field SABRE effect. In addition to emissive peaks for the hydrogen spins at the ortho positions of the pyridine substrate (both free and bound to the metal center), absorptive signals are observed from hyperpolarized orthohydrogen and Ir-complex dihydride. Real-time kinetics studies show that the polarization build-up rates for these three species are in close agreement with their respective 1H T1 relaxation rates at 9.4 T. The results suggest that the mechanism of the substrate polarization involves cross-relaxation with hyperpolarized species in a manner similar to the spin-polarization induced nuclear Overhauser effect. Experiments utilizing pyridine-d5 as the substrate exhibited larger enhancements as well as partial H/D exchange for the hydrogen atom in the ortho position of pyridine and concomitant formation of HD molecules. While the mechanism of polarization enhancement does not explicitly require chemical exchange of hydrogen atoms of parahydrogen and the substrate, the partial chemical modification of the substrate via hydrogen exchange means that SABRE under these conditions cannot rigorously be referred to as a non-hydrogenative parahydrogen induced polarization process. PMID:24528143

  16. The feasibility of formation and kinetics of NMR signal amplification by reversible exchange (SABRE) at high magnetic field (9.4 T).

    PubMed

    Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V; He, Ping; Groome, Kirsten A; Best, Quinn A; Shi, Fan; Goodson, Boyd M; Shchepin, Roman V; Coffey, Aaron M; Waddell, Kevin W; Chekmenev, Eduard Y

    2014-03-05

    (1)H NMR signal amplification by reversible exchange (SABRE) was observed for pyridine and pyridine-d5 at 9.4 T, a field that is orders of magnitude higher than what is typically utilized to achieve the conventional low-field SABRE effect. In addition to emissive peaks for the hydrogen spins at the ortho positions of the pyridine substrate (both free and bound to the metal center), absorptive signals are observed from hyperpolarized orthohydrogen and Ir-complex dihydride. Real-time kinetics studies show that the polarization build-up rates for these three species are in close agreement with their respective (1)H T1 relaxation rates at 9.4 T. The results suggest that the mechanism of the substrate polarization involves cross-relaxation with hyperpolarized species in a manner similar to the spin-polarization induced nuclear Overhauser effect. Experiments utilizing pyridine-d5 as the substrate exhibited larger enhancements as well as partial H/D exchange for the hydrogen atom in the ortho position of pyridine and concomitant formation of HD molecules. While the mechanism of polarization enhancement does not explicitly require chemical exchange of hydrogen atoms of parahydrogen and the substrate, the partial chemical modification of the substrate via hydrogen exchange means that SABRE under these conditions cannot rigorously be referred to as a non-hydrogenative parahydrogen induced polarization process.

  17. Performance evaluation of radiation sensors with internal signal amplification based on the BJT effect

    NASA Astrophysics Data System (ADS)

    Bosisio, Luciano; Batignani, Giovanni; Bettarini, Stefano; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Giacomini, Gabriele; Piemonte, Claudio; Verzellesi, Giovanni; Zorzi, Nicola

    2006-11-01

    Prototypes of ionizing radiation detectors with internal signal amplification based on the bipolar transistor effect have been fabricated at ITC-irst (Trento, Italy). Results from the electrical characterization and preliminary functional tests of the devices have been previously reported. Here, we present a more detailed investigation of the performance of this type of detector, with particular attention to their noise and rate limits. Measurements of the signal waveform and of the gain versus frequency dependence are performed by illuminating the devices with, respectively, pulsed or sinusoidally modulated IR light. Pulse height spectra of X-rays from an Am241 source have been taken with very simple front-end electronics (an LF351 operational amplifier) or by directly reading with an oscilloscope the voltage drop across a load resistor connected to the emitter. An equivalent noise charge (referred to input) of 380 electrons r.m.s. has been obtained with the first setup for a small device, with an active area of 0.5×0.5 mm2 and a depleted thickness of 0.6 mm. The corresponding power dissipation in the BJT was 17 μW. The performance limitations of the devices are discussed.

  18. A large ungated TPC with GEM amplification

    NASA Astrophysics Data System (ADS)

    Berger, M.; Ball, M.; Fabbietti, L.; Ketzer, B.; Arora, R.; Beck, R.; Böhmer, F. V.; Chen, J.-C.; Cusanno, F.; Dørheim, S.; García, F.; Hehner, J.; Herrmann, N.; Höppner, C.; Kaiser, D.; Kis̆, M.; Kleipa, V.; Konorov, I.; Kunkel, J.; Kurz, N.; Leifels, Y.; Müllner, P.; Münzer, R.; Neubert, S.; Rauch, J.; Schmidt, C. J.; Schmitz, R.; Soyk, D.; Vandenbroucke, M.; Voss, B.; Walther, D.; Zmeskal, J.

    2017-10-01

    A Time Projection Chamber (TPC) is an ideal device for the detection of charged particle tracks in a large volume covering a solid angle of almost 4 π. The high density of hits on a given particle track facilitates the task of pattern recognition in a high-occupancy environment and in addition provides particle identification by measuring the specific energy loss for each track. For these reasons, TPCs with Multiwire Proportional Chamber (MWPC) amplification have been and are widely used in experiments recording heavy-ion collisions. A significant drawback, however, is the large dead time of the order of 1 ms per event generated by the use of a gating grid, which is mandatory to prevent ions created in the amplification region from drifting back into the drift volume, where they would severely distort the drift path of subsequent tracks. For experiments with higher event rates this concept of a conventional TPC operating with a triggered gating grid can therefore not be applied without a significant loss of data. A continuous readout of the signals is the more appropriate way of operation. This, however, constitutes a change of paradigm with considerable challenges to be met concerning the amplification region, the design and bandwidth of the readout electronics, and the data handling. A mandatory prerequisite for such an operation is a sufficiently good suppression of the ion backflow from the avalanche region, which otherwise limits the tracking and particle identification capabilities of such a detector. Gas Electron Multipliers (GEM) are a promising candidate to combine excellent spatial resolution with an intrinsic suppression of ions. In this paper we describe the design, construction and the commissioning of a large TPC with GEM amplification and without gating grid (GEM-TPC). The design requirements have driven innovations in the construction of a light-weight field-cage, a supporting media flange, the GEM amplification and the readout system, which are

  19. Spin noise amplification and giant noise in optical microcavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.

    2015-06-14

    When studying the spin-noise-induced fluctuations of Kerr rotation in a quantum-well microcavity, we have found a dramatic increase of the noise signal (by more than two orders of magnitude) in the vicinity of anti-crossing of the polariton branches. The effect is explained by nonlinear optical instability of the microcavity giving rise to the light-power-controlled amplification of the polarization noise signal. In the framework of the developed model of built-in amplifier, we also interpret the nontrivial spectral and intensity-related properties of the observed noise signal below the region of anti-crossing of polariton branches. The discovered effect of optically controllable amplification ofmore » broadband polarization signals in microcavities in the regime of optical instability may be of interest for detecting weak oscillations of optical anisotropy in fundamental research and for other applications in optical information processing.« less

  20. Hedgehog signaling pathway in neuroblastoma differentiation.

    PubMed

    Souzaki, Ryota; Tajiri, Tatsuro; Souzaki, Masae; Kinoshita, Yoshiaki; Tanaka, Sakura; Kohashi, Kenichi; Oda, Yoshinao; Katano, Mitsuo; Taguchi, Tomoaki

    2010-12-01

    The hedgehog (Hh) signaling pathway is activated in some adult cancers. On the other hand, the Hh signaling pathway plays an important role in the development of the neural crest in embryos. The aim of this study is to show the activation of Hh signaling pathway in neuroblastoma (NB), a pediatric malignancy arising from neural crest cells, and to reveal the meaning of the Hh signaling pathway in NB development. This study analyzed the expression of Sonic hedgehog (Shh), GLI1, and Patched 1 (Ptch1), transactivators of Hh signaling pathway, by immunohistochemistry in 82 NB and 10 ganglioneuroblastoma cases. All 92 cases were evaluated for the status of MYCN amplification. Of the 92 cases, 67 (73%) were positive for Shh, 62 cases (67%) were positive for GLI1, and 73 cases (79%) were positive for Ptch1. Only 2 (10%) of the 20 cases with MYCN amplification were positive for Shh and GLI1, and 4 cases (20%) were positive for Ptch1 (MYCN amplification vs no MYCN amplification, P ≦ .01). The percentage of GLI1-positive cells in the cases with INSS stage 1 without MYCN amplification was significantly higher than that with INSS stage 4. Of 72 cases without MYCN amplification, 60 were GLI1-positive. Twelve cases were GLI1-negative, and the prognosis of the GLI1-positive cases was significantly better than that of the GLI1-negative cases (P = .015). Most of NBs without MYCN amplification were positive for Shh, GLI1, and Ptch1. In the cases without MYCN amplification, the high expression of GLI1 was significantly associated with early clinical stage and a good prognosis of the patients. In contrast to adult cancers, the activation of the Hh signaling pathway in NB may be associated with the differentiation of the NB. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. HER-2 amplification in tubular carcinoma of the breast.

    PubMed

    Oakley, Gerard J; Tubbs, Raymond R; Crowe, Joseph; Sebek, Bruce; Budd, G Thomas; Patrick, Rebecca J; Procop, Gary W

    2006-07-01

    The prognostic and therapeutic implications of HER-2 gene amplification and estrogen and progesterone receptor status in breast cancer are well described. To address the relative paucity of information concerning HER-2 amplification for tubular carcinomas, we assessed the frequency of gene amplification in 55 tubular carcinomas of the breast from 54 patients, 5 of which had axillary node metastases. The HER-2 gene copy number was assessed by fluorescence in situ hybridization for the majority of tumors analyzed, whereas estrogen and progesterone receptor status was achieved by immunohistochemical analysis. HER-2 gene amplification was not observed in any of the tumors examined, and most were estrogen receptor-positive. This HER-2 gene amplification frequency was significantly lower than the frequency of gene amplification previously reported for all invasive ductal carcinoma of no special type (P < .01). HER-2 gene amplification likely occurs infrequently, or not at all, in tubular carcinomas of the breast, whereas most express estrogen receptors.

  2. Short-pulse amplification by strongly coupled stimulated Brillouin scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Matthew R., E-mail: mredward@princeton.edu; Mikhailova, Julia M.; Jia, Qing

    2016-08-15

    We examine the feasibility of strongly coupled stimulated Brillouin scattering as a mechanism for the plasma-based amplification of sub-picosecond pulses. In particular, we use fluid theory and particle-in-cell simulations to compare the relative advantages of Raman and Brillouin amplification over a broad range of achievable parameters.

  3. A sensitive colorimetric assay system for nucleic acid detection based on isothermal signal amplification technology.

    PubMed

    Hu, Bo; Guo, Jing; Xu, Ying; Wei, Hua; Zhao, Guojie; Guan, Yifu

    2017-08-01

    Rapid and accurate detection of microRNAs in biological systems is of great importance. Here, we report the development of a visual colorimetric assay which possesses the high amplification capabilities and high selectivity of the rolling circle amplification (RCA) method and the simplicity and convenience of gold nanoparticles used as a signal indicator. The designed padlock probe recognizes the target miRNA and is circularized, and then acts as the template to extend the target miRNA into a long single-stranded nucleotide chain of many tandem repeats of nucleotide sequences. Next, the RCA product is hybridized with oligonucleotides tagged onto gold nanoparticles. This interaction leads to the aggregation of gold nanoparticles, and the color of the system changes from wine red to dark blue according to the abundance of miRNA. A linear correlation between fluorescence and target oligonucleotide content was obtained in the range 0.3-300 pM, along with a detection limit of 0.13 pM (n = 7) and a RSD of 3.9% (30 pM, n = 9). The present approach provides a simple, rapid, and accurate visual colorimetric assay that allows sensitive biodetection and bioanalysis of DNA and RNA nucleotides of interest in biologically important samples. Graphical abstract The colorimetric assay system for analyzing target oligonucleotides.

  4. Amplification of Angular Rotations Using Weak Measurements

    NASA Astrophysics Data System (ADS)

    Magaña-Loaiza, Omar S.; Mirhosseini, Mohammad; Rodenburg, Brandon; Boyd, Robert W.

    2014-05-01

    We present a weak measurement protocol that permits a sensitive estimation of angular rotations based on the concept of weak-value amplification. The shift in the state of a pointer, in both angular position and the conjugate orbital angular momentum bases, is used to estimate angular rotations. This is done by an amplification of both the real and imaginary parts of the weak-value of a polarization operator that has been coupled to the pointer, which is a spatial mode, via a spin-orbit coupling. Our experiment demonstrates the first realization of weak-value amplification in the azimuthal degree of freedom. We have achieved effective amplification factors as large as 100, providing a sensitivity that is on par with more complicated methods that employ quantum states of light or extremely large values of orbital angular momentum.

  5. Quantification of α-tubulin isotypes by sandwich ELISA with signal amplification through biotinyl-tyramide or immuno-PCR.

    PubMed

    Dráberová, Eduarda; Stegurová, Lucie; Sulimenko, Vadym; Hájková, Zuzana; Dráber, Petr; Dráber, Pavel

    2013-09-30

    Microtubules formed by αβ-tubulin dimers represent cellular structures that are indispensable for the maintenance of cell morphology and for cell motility generation. Microtubules in intact cells are in highly regulated equilibrium with cellular pools of soluble tubulin dimers. Sensitive, reproducible and rapid assays are necessary to monitor tubulin changes in cytosolic pools after treatment with anti-mitotic drugs, during the cell cycle or activation and differentiation events. Here we describe new assays for α-tubulin quantification. The assays are based on sandwich ELISA, and the signal is amplified with biotinyl-tyramide or immuno-PCR. Matching monoclonal antibody pair recognizes phylogenetically highly conserved epitopes localized outside the C-terminal isotype-defining region. This makes it possible to detect α-tubulin isotypes in different cell types of various species. Biotinyl-tyramide amplification and immuno-PCR amplification enable detection of tubulin at concentrations 2.5ng/ml and 0.086ng/ml, respectively. Immuno-PCR detection shows enhanced sensitivity and wider dynamic range when compared to ELISA with biotinyl-tyramide detection. Our results on taxol-treated and activated bone marrow-derived mast cells demonstrate, that the assays allow sensitive quantification of tubulin in complex biological fluids. © 2013.

  6. Hyperbranched Hybridization Chain Reaction for Triggered Signal Amplification and Concatenated Logic Circuits.

    PubMed

    Bi, Sai; Chen, Min; Jia, Xiaoqiang; Dong, Ying; Wang, Zonghua

    2015-07-06

    A hyper-branched hybridization chain reaction (HB-HCR) is presented herein, which consists of only six species that can metastably coexist until the introduction of an initiator DNA to trigger a cascade of hybridization events, leading to the self-sustained assembly of hyper-branched and nicked double-stranded DNA structures. The system can readily achieve ultrasensitive detection of target DNA. Moreover, the HB-HCR principle is successfully applied to construct three-input concatenated logic circuits with excellent specificity and extended to design a security-mimicking keypad lock system. Significantly, the HB-HCR-based keypad lock can alarm immediately if the "password" is incorrect. Overall, the proposed HB-HCR with high amplification efficiency is simple, homogeneous, fast, robust, and low-cost, and holds great promise in the development of biosensing, in the programmable assembly of DNA architectures, and in molecular logic operations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Enzyme- and label-free electrochemical aptasensor for kanamycin detection based on double stir bar-assisted toehold-mediated strand displacement reaction for dual-signal amplification.

    PubMed

    Hong, Feng; Chen, Xixue; Cao, Yuting; Dong, Youren; Wu, Dazhen; Hu, Futao; Gan, Ning

    2018-07-30

    It is critically important to detect antibiotic residues for monitoring food safety. In this study, an enzyme- and label-free electrochemical aptasensor for antibiotics, with kanamycin (Kana) as a typical analyte, was developed based on a double stir bar-assisted toehold-mediated strand displacement reaction (dSB-TMSDR) for dual-signal amplification. First, we modified two gold electrodes (E-1 and E-2) with different DNA probes (S1/S2 hybrid probe in E-1 and DNA fuel strand S3 in E-2). In the presence of Kana, an S1/S2 probe can be disassembled from E-1 to form an S2/Kana complex in supernatant. The S2/Kana could react with S3 on E-2 to form S2/S3 hybrid and release Kana through TMSDR. After then, the target recycling was triggered. Subsequently, the formed S2/S3 hybrid can also trigger a hybridization chain reaction (HCR). Consequently, the dual-signal amplification strategy was established, which resulted in many long dsDNA chains on E-2. The chains can associate with methylene blue (MB) as redox probes to produce a current response for the quantification of Kana. The assay exhibited high sensitivity and specificity with a detection limit at 16 fM Kana due to the dual-signal amplification. The double stir bars system can both increase phase separation and prevent leakage of DNA fuel to reduce background interference. Moreover, it allows flexible sequence design of the TMSDR probes. The assay was successfully employed to detect Kana residues in food and showed potential application value in food safety detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Amplification in Double Heterostructure GaAs Lasers.

    DTIC Science & Technology

    1981-03-15

    done, for example, in the book by Siegman . When the laser signal which is to be amplified is a single mode, it is important to include the possibility...k A’AD-A097 862 AEROSPACE CORP EL SEGUNDO CA ELECTRONICS RESEARCH LAP) P 5 20/5 I AMPLIFICATION IN DOUBLE HETEROSTRUCTURE GAAS LASERS .(U IMAR al E...GARMIRE, M CHANG F04701-80-C-0081I UNCLASSIFIED TR GO81(6930 03)-2 SD-TA8-30 NL Amplification in Double Heterostructure GaAs Lasers E. GARMIRE nd M

  9. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    PubMed

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  10. Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies.

    PubMed

    Mittal, Sunil; Kaur, Hardeep; Gautam, Nandini; Mantha, Anil K

    2017-02-15

    Breast cancer is highly prevalent in females and accounts for second highest number of deaths, worldwide. Cumbersome, expensive and time consuming detection techniques presently available for detection of breast cancer potentiates the need for development of novel, specific and ultrasensitive devices. Biosensors are the promising and selective detection devices which hold immense potential as point of care (POC) tools. Present review comprehensively scrutinizes various breast cancer biosensors developed so far and their technical evaluation with respect to efficiency and potency of selected bioreceptors and biotransducers. Use of glycoproteins, DNA biomarkers, micro-RNA, circulatory tumor cells (CTC) and some potential biomarkers are introduced briefly. The review also discusses various strategies used in signal amplification such as nanomaterials, redox mediators, p19 protein, duplex specific nucleases (DSN) and redox cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Ultrasensitive Electrochemical Detection of Glycoprotein Based on Boronate Affinity Sandwich Assay and Signal Amplification with Functionalized SiO2@Au Nanocomposites.

    PubMed

    You, Min; Yang, Shuai; Tang, Wanxin; Zhang, Fan; He, Pin-Gang

    2017-04-26

    Herein we propose a multiple signal amplification strategy designed for ultrasensitive electrochemical detection of glycoproteins. This approach introduces a new type of boronate-affinity sandwich assay (BASA), which was fabricated by using gold nanoparticles combined with reduced graphene oxide (AuNPs-GO) to modify sensing surface for accelerating electron transfer, the composite of molecularly imprinted polymer (MIP) including 4-vinylphenylboronic acid (VPBA) for specific capturing glycoproteins, and SiO 2 nanoparticles carried gold nanoparticles (SiO 2 @Au) labeled with 6-ferrocenylhexanethiol (FcHT) and 4-mercaptophenylboronic acid (MPBA) (SiO 2 @Au/FcHT/MPBA) as tracing tag for binding glycoprotein and generating electrochemical signal. As a sandwich-type sensing, the SiO 2 @Au/FcHT/MPBA was captured by glycoprotein on the surface of imprinting film for further electrochemical detection in 0.1 M PBS (pH 7.4). Using horseradish peroxidase (HRP) as a model glycoprotein, the proposed approach exhibited a wide linear range from 1 pg/mL to 100 ng/mL, with a low detection limit of 0.57 pg/mL. To the best of our knowledge, this is first report of a multiple signal amplification approach based on boronate-affinity molecularly imprinted polymer and SiO 2 @Au/FcHT/MPBA, exhibiting greatly enhanced sensitivity for glycoprotein detection. Furthermore, the newly constructed BASA based glycoprotein sensor demonstrated HRP detection in real sample, such as human serum, suggesting its promising prospects in clinical diagnostics.

  12. An Enzyme-Free Signal Amplification Technique for Ultrasensitive Colorimetric Assay of Disease Biomarkers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Haihang; Yang, Kuikun; Tao, Jing

    Enzyme-based colorimetric assays have been widely used in research labs and clinical diagnosis for decades. Nevertheless, as constrained by the performance of enzymes, their detection sensitivity has not been substantially improved in recent years, which inhibits many critical applications such as early detection of cancers. In this work, we demonstrate an enzyme-free signal amplification technique, based on gold vesicles encapsulated with Pd-Ir nanoparticles as peroxidase mimics, for colorimetric assay of disease biomarkers with significantly enhanced sensitivity. This technique overcomes the intrinsic limitations of enzymes, thanks to the superior catalytic efficiency of peroxidase mimics and the efficient loading and release ofmore » these mimics. Using human prostate surface antigen as a model biomarker, we demonstrated that the enzyme-free assay could reach a limit of detection at the femtogram/mL level, which is over 10 3-fold lower than that of conventional enzyme-based assay when the same antibodies and similar procedure were used.« less

  13. An Enzyme-Free Signal Amplification Technique for Ultrasensitive Colorimetric Assay of Disease Biomarkers

    DOE PAGES

    Ye, Haihang; Yang, Kuikun; Tao, Jing; ...

    2017-01-30

    Enzyme-based colorimetric assays have been widely used in research labs and clinical diagnosis for decades. Nevertheless, as constrained by the performance of enzymes, their detection sensitivity has not been substantially improved in recent years, which inhibits many critical applications such as early detection of cancers. In this work, we demonstrate an enzyme-free signal amplification technique, based on gold vesicles encapsulated with Pd-Ir nanoparticles as peroxidase mimics, for colorimetric assay of disease biomarkers with significantly enhanced sensitivity. This technique overcomes the intrinsic limitations of enzymes, thanks to the superior catalytic efficiency of peroxidase mimics and the efficient loading and release ofmore » these mimics. Using human prostate surface antigen as a model biomarker, we demonstrated that the enzyme-free assay could reach a limit of detection at the femtogram/mL level, which is over 10 3-fold lower than that of conventional enzyme-based assay when the same antibodies and similar procedure were used.« less

  14. A catalytic and dual recycling amplification ATP sensor based on target-driven allosteric structure switching of aptamer beacons.

    PubMed

    Peng, Ying; Li, Daxiu; Yuan, Ruo; Xiang, Yun

    2018-05-15

    Abnormal concentrations of ATP are associated with many diseases and cancers, and quantitative detection of ATP is thus of great importance for disease diagnosis and prognosis. In the present work, we report a new dual recycling amplification sensor integrated with catalytic hairpin assembly (CHA) to achieve high sensitivity for fluorescent detection of ATP. The association of the target ATP with the aptamer beacons causes the allosteric structure switching of the aptamer beacons to expose the toehold regions, which hybridize with and unfold the fluorescently quenched hairpin signal probes (HP1) to recycle the target ATP and to trigger CHA between HP1 and the secondary hairpin probes (HP2) to form HP1/HP2 duplexes. Due to the recycling amplification, the presence of ATP leads to the formation of many HP1/HP2 duplexes, generating dramatically amplified fluorescent signals for sensitive detection of ATP. Under optimal experimental conditions, our sensor linearly responds to ATP in the range from 25 to 600nM with a calculated detection limit of 8.2nM. Furthermore, the sensor shows a high selectivity and can also be used to detect ATP in human serums to realize its application for real samples. With the distinct advantage of significant signal amplification without the involvement of any nanomaterial and enzyme, the developed sensor thus holds great potential for simple and sensitive detection of different small molecules and proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Laser light triggers increased Raman amplification in the regime of nonlinear Landau damping

    PubMed Central

    Depierreux, S.; Yahia, V.; Goyon, C.; Loisel, G.; Masson-Laborde, P. -E.; Borisenko, N.; Orekhov, A.; Rosmej, O.; Rienecker, T.; Labaune, C.

    2014-01-01

    Stimulated Raman backscattering (SRS) has many unwanted effects in megajoule-scale inertially confined fusion (ICF) plasmas. Moreover, attempts to harness SRS to amplify short laser pulses through backward Raman amplification have achieved limited success. In high-temperature fusion plasmas, SRS usually occurs in a kinetic regime where the nonlinear response of the Langmuir wave to the laser drive and its host of complicating factors make it difficult to predict the degree of amplification that can be achieved under given experimental conditions. Here we present experimental evidence of reduced Landau damping with increasing Langmuir wave amplitude and determine its effects on Raman amplification. The threshold for trapping effects to influence the amplification is shown to be very low. Above threshold, the complex SRS dynamics results in increased amplification factors, which partly explains previous ICF experiments. These insights could aid the development of more efficient backward Raman amplification schemes in this regime. PMID:24938756

  16. Morphology-Controlled 9,10-Diphenylanthracene Nanoblocks as Electrochemiluminescence Emitters for MicroRNA Detection with One-Step DNA Walker Amplification.

    PubMed

    Liu, Jia-Li; Tang, Zhi-Ling; Zhang, Jia-Qi; Chai, Ya-Qin; Zhuo, Ying; Yuan, Ruo

    2018-04-17

    The electrochemiluminescence (ECL) properties of polycyclic aromatic hydrocarbons (PAHs) are excellent on account of the high photoluminescence quantum yield. However, the poor solubility and radical instability of PAHs in the aqueous solution severely restricted further biological application. Here 9,10-diphenylanthracene (DPA) nanoblocks (NBs) with good dispersibility and stability in aqueous solution were prepared according to morphology-controlled technology employing water-soluble polymers as a protectant. Furthermore, an ECL "off-on" switch biosensor was developed based on a novel ECL ternary system with DPA NBs as luminophore, dissolved O 2 as coreactant, and Pt-Ag alloy nanoflowers as the coreaction accelerator, which achieved a high-intense initial ECL signal. Subsequently, the Fc-DNA as ECL signal quencher was assembled on the electrode surface to quench the initial ECL signal for a "signal-off" state. Meanwhile, DNA swing arm was modified on the electrode surface for one-step DNA walker amplification. Interestingly, in the presence of miRNA-141 and T7 Exo, the one-step DNA walker amplification was executed to recover a strong ECL signal as a "signal-on" state by the digestion of Fc-DNA. Thus the developed ECL "off-on" switch biosensor possesses a detection limit down to 29.5 aM for ultrasensitive detection of miRNA-141, which is expected to be applicable to the detection of miRNA in clinic tumor cells.

  17. A surface-confined DNA assembly amplification strategy on DNA nanostructural scaffold for electrochemiluminescence biosensing.

    PubMed

    Feng, Qiu-Mei; Guo, Yue-Hua; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-02-15

    A critical challenge in surface-based DNA assembly amplification is the reduced accessibility of DNA strands arranged on a heterogeneous surface compared to that in homogeneous solution. Here, a novel in situ surface-confined DNA assembly amplification electrochemiluminescence (ECL) biosensor based on DNA nanostructural scaffold was presented. In this design, a stem-loop structural DNA segment (Hairpin 1) was constructed on the vertex of DNA nanostructural scaffold as recognition probe. In the present of target DNA, the hairpin structure changed to rod-like through complementary hybridization with target DNA, resulting in the formation of Hairpin 1:target DNA. When the obtained Hairpin 1:target DNA met Hairpin 2 labeled with glucose oxidase (GOD), the DNA cyclic amplification was activated, releasing target DNA into homogeneous solution for the next recycling. Thus, the ECL signal of Ru(bpy) 3 2+ -TPrA system was quenched by H 2 O 2 , the product of GOD catalyzing glucose. As a result, this proposed method achieved a linear range response from 50 aM to 10 pM with lower detection limit of 20 aM. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Ultrasensitive photoelectrochemical biosensor for the detection of HTLV-I DNA: A cascade signal amplification strategy integrating λ-exonuclease aided target recycling with hybridization chain reaction and enzyme catalysis.

    PubMed

    Shi, Xiao-Mei; Fan, Gao-Chao; Tang, Xueying; Shen, Qingming; Zhu, Jun-Jie

    2018-06-30

    Sensitive and specific detection of DNA is of great significance for clinical diagnosis. In this paper, an effective cascade signal amplification strategy was introduced into photoelectrochemical (PEC) biosensor for ultrasensitive detection of human T-cell lymphotropic virus type I (HTLV-I) DNA. This proposed signal amplification strategy integrates λ-exonuclease (λ-Exo) aided target recycling with hybridization chain reaction (HCR) and enzyme catalysis. In the presence of target DNA (tDNA) of HTLV-I, the designed hairpin DNA (h 1 DNA) hybridized with tDNA, subsequently recognized and cleaved by λ-Exo to set free tDNA. With the λ-Exo aided tDNA recycling, an increasing number of DNA fragments (output DNA, oDNA) were released from the digestion of h 1 DNA. Then, triggered by the hybridization of oDNA with capture DNA (cDNA), numerous biotin-labeled hairpin DNAs (h 2 DNA and h 3 DNA) could be loaded onto the photoelectrode via the HCR. Finally, avidin-labeled alkaline phosphatase (avidin-ALP) could be introduced onto the electrode by specific interaction between biotin and avidin. The ALP could catalyze dephosphorylation of phospho-L-ascorbic acid trisodium salt (AAP) to generate an efficient electron donor of ascorbic acid (AA), and thereby greatly increasing the photocurrent signal. By utilizing the proposed cascade signal amplification strategy, the fabricated PEC biosensor exhibited an ultrasensitive and specific detection of HTLV-I DNA down to 11.3 aM, and it also offered an effective strategy to detect other DNAs at ultralow levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Interference effects in a cavity for optical amplification

    NASA Astrophysics Data System (ADS)

    Cardimona, D. A.; Alsing, P. M.

    2009-08-01

    In space situational awareness scenarios, the objects needed to be characterized and identified are usually quite far away and quite dim. Thus, optical detectors need to be able to sense these very dim optical signals. Quantum interference in a three-level system can lead to amplification of optical signals. If we put a three-level system into a cavity tuned to the frequency of an incoming optical signal, we anticipate the amplification possibilities should be increased proportional to the quality factor of the cavity. Our vision is to utilize quantum dots in photonic crystal cavities, but as a stepping stone we first investigate a simple three-level system in a free-space optical cavity. We investigate quantum interference and classical interference effects when a three-level system interacts with both a cavity field mode and an external driving field mode. We find that under certain circumstances the cavity field evolves to be equal in magnitude to, but 180° out-of-phase with the external pump field when the pump field frequency equals the cavity frequency. At this point the resonance fluorescence from the atom in the cavity goes to zero due to a purely classical interference effect between the two out-of-phase fields. This is quite different from the quantum interference that occurs under the right circumstances, when the state populations are coherently driven into a linear combination that is decoupled from any applied field - and population is trapped in the excited states, thus allowing for a population inversion and an amplification of incoming optical signals.

  20. Brillouin Amplification--A Powerful New Scheme for Microwave Photonic Communications

    NASA Technical Reports Server (NTRS)

    Yao, S.; Maleki, L.

    1997-01-01

    We introduce the Brillouin selective sideband amplification technique and demonstrate many important applications of this technique in photonic microwave systems, including efficient phase modulation to amplitude modulation conversion, photonic frequency multiplication, photonic signal mixing with gain, and frequency multiplied signal up conversion.

  1. Hairpin DNA Switch for Ultrasensitive Spectrophotometric Detection of DNA Hybridization Based on Gold Nanoparticles and Enzyme Signal Amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Youyu; Tang, Zhiwen; Wang, Jun

    2010-08-01

    A novel DNA detection platform based on a hairpin-DNA switch, nanoparticles, and enzyme signal amplification for ultrasensitive detection of DNA hybridization has been developed in this work. In this DNA assay, a “stem-loop” DNA probe dually labeled with a thiol at its 5’ end and a biotin at its 3’ end, respectively, was used. This probe was immobilized on the gold nanoparticles (AuNPs) anchored by a protein, globulin, on a 96-well microplate. In the absence of target DNA, the immobilized probe with the stem-loop structure shields the biotin from being approached by a bulky horseradish peroxidase linked-avidin (avidin-HRP) conjugate duemore » to the steric hindrance. However, in the presence of target DNA, the hybridization between the hairpin DNA probe and the target DNA causes significant conformational change of the probe, which forces biotin away from the surface of AuNPs. As a result, the biotin becomes accessible by the avidin-HRP, and the target hybridization event can be sensitively detected via the HRP catalyzed substrate 3, 3', 5, 5'-tetramethylbenzidine using spectrophometric method. Some experimental parameters governing the performance of the assay have been optimized. At optimal conditions, this DNA assay can detect DNA at the concentration of femtomolar level by means of a signal amplification strategy based on the combination of enzymes and nanoparticles. This approach also has shown excellent specificity to distinguish single-base mismatches of DNA targets because of the intrinsic high selectivity of the hairpin DNA probe.« less

  2. Development and significance of a fetal electrocardiogram recorded by signal-averaged high-amplification electrocardiography.

    PubMed

    Hayashi, Risa; Nakai, Kenji; Fukushima, Akimune; Itoh, Manabu; Sugiyama, Toru

    2009-03-01

    Although ultrasonic diagnostic imaging and fetal heart monitors have undergone great technological improvements, the development and use of fetal electrocardiograms to evaluate fetal arrhythmias and autonomic nervous activity have not been fully established. We verified the clinical significance of the novel signal-averaged vector-projected high amplification ECG (SAVP-ECG) method in fetuses from 48 gravidas at 32-41 weeks of gestation and in 34 neonates. SAVP-ECGs from fetuses and newborns were recorded using a modified XYZ-leads system. Once noise and maternal QRS waves were removed, the P, QRS, and T wave intervals were measured from the signal-averaged fetal ECGs. We also compared fetal and neonatal heart rates (HRs), coefficients of variation of heart rate variability (CV) as a parasympathetic nervous activity, and the ratio of low to high frequency (LF/HF ratio) as a sympathetic nervous activity. The rate of detection of a fetal ECG by SAVP-ECG was 72.9%, and the fetal and neonatal QRS and QTc intervals were not significantly different. The neonatal CVs and LF/HF ratios were significantly increased compared with those in the fetus. In conclusion, we have developed a fetal ECG recording method using the SAVP-ECG system, which we used to evaluate autonomic nervous system development.

  3. Evidence of high-elevation amplification versus Arctic amplification

    NASA Astrophysics Data System (ADS)

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world’s high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction.

  4. Evidence of high-elevation amplification versus Arctic amplification

    PubMed Central

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961–2010 period, we find that the warming for the world’s high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction. PMID:26753547

  5. Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification.

    PubMed

    Yao, Xin; Li, Xin; Toledo, Freddy; Zurita-Lopez, Cecilia; Gutova, Margarita; Momand, Jamil; Zhou, Feimeng

    2006-07-15

    Oligonucleotide (ODN)-capped gold nanoparticles (Au-NPs) were used in a sandwich assay of ODN or polynucleotide by a flow injection surface plasmon resonance (SPR). A carboxylated dextran film was immobilized onto the SPR sensor surface to eliminate nonspecific adsorption of ODN-capped Au-NPs. The tandem use of signal amplification via the adlayer of the ODN-capped Au-NPs and the differential signal detection by the bicell detector on the SPR resulted in a remarkable DNA detection level. A 39-mer target at a quantity as low as 2.1 x 10(-20)mol, corresponding to 1.38 fM in a 15 microl solution, can be measured. To our knowledge, both the concentration and quantity detection levels are the lowest among all the gene analyses conducted with SPR to this point. The method is shown to be reproducible (relative standard deviation values <16%) and to possess high sequence specificity. It is also demonstrated to be viable for sequence-specific p53 cDNA analysis. The successful elimination of nonspecific adsorption of, and the signal amplification by, ODN-capped Au-NPs renders the SPR attractive for cases where the DNA concentration is extremely low and the sample availability is severely limited.

  6. Innately activated TLR4 signal in the nucleus accumbens is sustained by CRF amplification loop and regulates impulsivity.

    PubMed

    Balan, Irina; Warnock, Kaitlin T; Puche, Adam; Gondre-Lewis, Marjorie C; Aurelian, Laure

    2018-03-01

    Cognitive impulsivity is a heritable trait believed to represent the behavior that defines the volition to initiate alcohol drinking. We have previously shown that a neuronal Toll-like receptor 4 (TLR4) signal located in the central amygdala (CeA) and ventral tegmental area (VTA) controls the initiation of binge drinking in alcohol-preferring P rats, and TLR4 expression is upregulated by alcohol-induced corticotropin-releasing factor (CRF) at these sites. However, the function of the TLR4 signal in the nucleus accumbens shell (NAc-shell), a site implicated in the control of reward, drug-seeking behavior and impulsivity and the contribution of other signal-associated genes, are still poorly understood. Here we report that P rats have an innately activated TLR4 signal in NAc-shell neurons that co-express the α2 GABA A receptor subunit and CRF prior to alcohol exposure. This signal is not present in non-alcohol drinking NP rats. The TLR4 signal is sustained by a CRF amplification loop, which includes TLR4-mediated CRF upregulation through PKA/CREB activation and CRF-mediated TLR4 upregulation through the CRF type 1 receptor (CRFR1) and the MAPK/ERK pathway. NAc-shell Infusion of a neurotropic, non-replicating herpes simplex virus vector for TLR4-specific small interfering RNA (pHSVsiTLR4) inhibits TLR4 expression and cognitive impulsivity, implicating the CRF-amplified TLR4 signal in impulsivity regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Aptamer/Au nanoparticles/cobalt sulfide nanosheets biosensor for 17β-estradiol detection using a guanine-rich complementary DNA sequence for signal amplification.

    PubMed

    Huang, Ke-Jing; Liu, Yu-Jie; Zhang, Ji-Zong; Cao, Jun-Tao; Liu, Yan-Ming

    2015-05-15

    We have developed a sensitive sensing platform for 17β-estradiol by combining the aptamer probe and hybridization reaction. In this assay, 2-dimensional cobalt sulfide nanosheet (CoS) was synthesized by a simple hydrothermal method with L-cysteine as sulfur donor. An electrochemical aptamer biosensor was constructed by assembling a thiol group tagged 17β-estradiol aptamer on CoS and gold nanoparticles (AuNPs) modified electrode. Methylene blue was applied as a tracer and a guanine-rich complementary DNA sequence was designed to bind with the unbound 17β-estradiol aptamer for signal amplification. The binding of guanine-rich DNA to the aptamer was inhibited when the aptamer captured 17β-estradiol. Using guanine-rich DNA in the assay greatly amplified the redox signal of methylene blue bound to the detection probe. The CoS/AuNPs film formed on the biosensor surface appeared to be a good conductor for accelerating the electron transfer. The method demonstrated a high sensitivity of detection with the dynamic concentration range spanning from 1.0×10(-9) to 1.0×10(-12) M and a detection limit of 7.0×10(-13) M. Besides, the fabricated biosensor exhibited good selectivity toward 17β-estradiol even when interferents were presented at 100-fold concentrations. Our attempt will extend the application of the CoS nanosheet and this signal amplification assay to biosensing areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. An aptasensor for staphylococcus aureus based on nicking enzyme amplification reaction and rolling circle amplification.

    PubMed

    Xu, Jingguo; Guo, Jia; Maina, Sarah Wanjiku; Yang, Yumeng; Hu, Yimin; Li, Xuanxuan; Qiu, Jiarong; Xin, Zhihong

    2018-05-15

    An ultra-sensitive aptamer-based biosensor for the detection of staphylococcus aureus was established by adopting the nicking enzyme amplification reaction (NEAR) and the rolling circle amplification (RCA) technologies. Aptamer-probe (AP), containing an aptamer and a probe sequence, was developed to act as the recognition unit of the biosensor, which was specifically bound to S. aureus. The probe was released from AP and initiated into the subsequent DNA amplification reactions where S. aureus was present, converting the detection of S. aureus to the investigation of probe oligonucleotide. The RCA amplification products contained a G-quadruplex motif and formed a three dimensional structure in presence of hemin. The G4/hemin complex showed horseradish peroxidase (HRP)-mimic activity and catalyzed the chemiluminescence reaction of luminol mediated by H 2 O 2 . The results showed that the established biosensor could detect S. aureus specifically with a good linear correlation at 5-10 4  CFU/mL. The signal values based on NEAR-RCA two-step cycle were boosted acutely, much higher than that relied on one-cycle magnification. The limit of detection (LoD) was determined to be as low as 5 CFU/mL. The established aptasensor exhibited a good discrimination of living against dead S. aureus, and can be applied to detect S. aureus in the food industry. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Amplification and Demultiplexing in Insulin-regulated Akt Protein Kinase Pathway in Adipocytes*

    PubMed Central

    Tan, Shi-Xiong; Ng, Yvonne; Meoli, Christopher C.; Kumar, Ansu; Khoo, Poh-Sim; Fazakerley, Daniel J.; Junutula, Jagath R.; Vali, Shireen; James, David E.; Stöckli, Jacqueline

    2012-01-01

    Akt plays a major role in insulin regulation of metabolism in muscle, fat, and liver. Here, we show that in 3T3-L1 adipocytes, Akt operates optimally over a limited dynamic range. This indicates that Akt is a highly sensitive amplification step in the pathway. With robust insulin stimulation, substantial changes in Akt phosphorylation using either pharmacologic or genetic manipulations had relatively little effect on Akt activity. By integrating these data we observed that half-maximal Akt activity was achieved at a threshold level of Akt phosphorylation corresponding to 5–22% of its full dynamic range. This behavior was also associated with lack of concordance or demultiplexing in the behavior of downstream components. Most notably, FoxO1 phosphorylation was more sensitive to insulin and did not exhibit a change in its rate of phosphorylation between 1 and 100 nm insulin compared with other substrates (AS160, TSC2, GSK3). Similar differences were observed between various insulin-regulated pathways such as GLUT4 translocation and protein synthesis. These data indicate that Akt itself is a major amplification switch in the insulin signaling pathway and that features of the pathway enable the insulin signal to be split or demultiplexed into discrete outputs. This has important implications for the role of this pathway in disease. PMID:22207758

  10. The G1 phase Cdks regulate the centrosome cycle and mediate oncogene-dependent centrosome amplification

    PubMed Central

    2011-01-01

    Because centrosome amplification generates aneuploidy and since centrosome amplification is ubiquitous in human tumors, a strong case is made for centrosome amplification being a major force in tumor biogenesis. Various evidence showing that oncogenes and altered tumor suppressors lead to centrosome amplification and aneuploidy suggests that oncogenes and altered tumor suppressors are a major source of genomic instability in tumors, and that they generate those abnormal processes to initiate and sustain tumorigenesis. We discuss how altered tumor suppressors and oncogenes utilize the cell cycle regulatory machinery to signal centrosome amplification and aneuploidy. PMID:21272329

  11. Phase-sensitive, through-amplification with a double-pumped JPC

    NASA Astrophysics Data System (ADS)

    Sliwa, K. M.; Hatridge, M.; Frattini, N. E.; Narla, A.; Shankar, S.; Devoret, M. H.

    The Josephson Parametric Converter (JPC) is now routinely used as a quantum-limited signal processing device for superconducting qubit experiments. The JPC consists of two modes, the signal and the idler, that are coupled by a ring of Josephson junctions that implements a non-degenerate, three-wave mixing process. This device is conventionally operated as either a phase-preserving parametric amplifier, or a coherent frequency converter, by pumping it at the sum or difference of the signal and idler frequencies, respectively. Here we present a novel double-pumping scheme based on theory by Metelmann and Clerk where a coherent conversion process and a gain process are simultaneously imposed between the signal and idler modes. The interference of these two processes results in a phase-sensitive amplifier with only forward gain, and which breaks the traditional gain-bandwidth limit of parametric amplification. We present results on phase-sensitive amplification with increased bandwidth, and on noise performance and dynamic range that are comparable to the traditional mode of operation. Work supported by ARO, AFOSR, NSF and YINQE.

  12. Weak-value amplification as an optimal metrological protocol

    NASA Astrophysics Data System (ADS)

    Alves, G. Bié; Escher, B. M.; de Matos Filho, R. L.; Zagury, N.; Davidovich, L.

    2015-06-01

    The implementation of weak-value amplification requires the pre- and postselection of states of a quantum system, followed by the observation of the response of the meter, which interacts weakly with the system. Data acquisition from the meter is conditioned to successful postselection events. Here we derive an optimal postselection procedure for estimating the coupling constant between system and meter and show that it leads both to weak-value amplification and to the saturation of the quantum Fisher information, under conditions fulfilled by all previously reported experiments on the amplification of weak signals. For most of the preselected states, full information on the coupling constant can be extracted from the meter data set alone, while for a small fraction of the space of preselected states, it must be obtained from the postselection statistics.

  13. Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing

    NASA Astrophysics Data System (ADS)

    Yin, Yanchun

    QPA in the spatial domain has also been studied as a method to enhance the spatial resolution of imaging systems. A detailed model has been developed for achieving both super-resolution and detection of phase-amplified light. The imaging resolution problem considered here is treated as a binary hypotheses testing problem. Resolution enhancement is achieved by magnification of the angular separation of two targets in the sub-Rayleigh regime. The detection model includes optimization of detector segmentation, detector noise, and detection in both the spatial and the spatial frequency domain, which provide strategies for the optimization of the signal-to-noise ratio that take advantage of both the change of the field distribution and the change of energy of the signal in the QPA process. Proof-of-principle experiments have been conducted in the spatial domain. For the first time, beam angular amplification has been demonstrated, and the experimental result is in good agreement with simulations. The experimental demonstration has been achieved by observing the correlation of amplitude and angular phase in the phase-sensitive three-wave mixing process using ultrashort laser pulses and utilizing a type I three-wave mixing process. Several diagnostics have been developed and employed in the experimental measurements, including the near-field diagnostic, the far-field diagnostic, and the interferometry diagnostic. They have all been used to confirm the existence and study the properties of the QPA process on a shot-to-shot basis. Specifically, amplitude was measured in the near-field diagnostic, while the angular phase was indirectly measured in the far-field diagnostic by determining the position of the beam centroid. Interferometric measurements have been found to be of insufficient accuracy for this measurement in the way they were implemented. The demonstration of beam angular amplification by use of QPA lays the foundation for future integrated demonstration of imaging

  14. Signal-enhancer molecules encapsulated liposome as a valuable sensing and amplification platform combining the aptasensor for ultrasensitive ECL immunoassay.

    PubMed

    Mao, Li; Yuan, Ruo; Chai, Yaqin; Zhuo, Ying; Xiang, Yun

    2011-06-15

    An innovatory ECL immunoassay strategy was proposed to detect the newly developing heart failure biomarker N-terminal pro-brain natriuretic peptide (NT-proBNP). Firstly, this strategy used small molecules encapsulated liposome as immune label to construct a sandwich immune sensing platform for NT-proBNP. Then the ECL aptasensor was prepared to collect and detect the small molecules released from the liposome. Finally, based on the ECL signal changes caused by the small molecules, the ECL signal indirectly reflected the level of NT-proBNP antigen. In this experiment, the cocaine was chosen as the proper small molecule that can act as signal-enhancer to enhance the ECL of Ru(bpy)(3)(2+). The cocaine-encapsulated liposomes were successfully characterized by TEM. The quantificational calculation proved the ∼5.3×10(3) cocaine molecules per liposome enough to perform the assignment of signal amplification. The cocaine-binding ECL aptasensor further promoted the work aimed at amplifying signal. The performance of NT-proBNP assay by the proposed strategy exhibited high sensitivity and high specificities with a linear relationship over 0.01-500 ng mL(-1) range, and a detection limit down to 0.77 pg mL(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  16. Sensitive electrochemical immunosensor for α-synuclein based on dual signal amplification using PAMAM dendrimer-encapsulated Au and enhanced gold nanoparticle labels.

    PubMed

    An, Yarui; Jiang, Xiaoli; Bi, Wenji; Chen, Hua; Jin, Litong; Zhang, Shengping; Wang, Chuangui; Zhang, Wen

    2012-02-15

    A novel electrochemical immunosensor for sensitive detection of α-synuclein (α-SYN), a very important neuronal protein, has been developed based on dual signal amplification strategy. Herein, G4-polyamidoamine dendrimer-encapsulated Au nanoparticles (PAMAM-Au nanocomposites) were covalently bound on the poly-o-aminobenzoic acid (poly-o-ABA), which was initially electropolymerized on the electrode surface to perform abundant carboxyl groups. The formed immunosensor platform, PAMAM-Au, was proved to provide numerous amino groups to allow highly dense immobilization of antigen, and facilitate the improvement of electrochemical responses as well. Subsequently, the enhanced gold nanoparticle labels ({HRP-Ab(2)-GNPs}) were fabricated by immobilizing horseradish peroxidase-secondary antibody (HRP-Ab(2)) on the surface of gold nanoparticles (GNPs). After an immunoassay process, the {HRP-Ab(2)-GNPs} labels were introduced onto the electrode surface, and produced an electrocatalytic response by reduction of hydrogen peroxide (H(2)O(2)) in the presence of enzymatically oxidized thionine. On the basis of the dual signal amplification of PAMAM-Au and {HRP-Ab(2)-GNPs} labels, the designed immunosensor displayed an excellent analytical performance with high sensitivity and stability. This developed strategy was successfully proved as a simple, cost-effective method, and could be easily extended to other protein analysis schemes. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Optical Pattern Recognition With Self-Amplification

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1994-01-01

    In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.

  18. High peak-power kilohertz laser system employing single-stage multi-pass amplification

    DOEpatents

    Shan, Bing; Wang, Chun; Chang, Zenghu

    2006-05-23

    The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.

  19. Droplet-Free Digital Enzyme-Linked Immunosorbent Assay Based on a Tyramide Signal Amplification System.

    PubMed

    Akama, Kenji; Shirai, Kentaro; Suzuki, Seigo

    2016-07-19

    Digital enzyme-linked immunosorbent assay (ELISA) is a single molecule counting technology and is one of the most sensitive immunoassay methods. The key aspect of this technology is to concentrate enzyme reaction products from a single target molecule in femtoliter droplets. This study presents a novel Digital ELISA that does not require droplets; instead, enzyme reaction products are concentrated using a tyramide signal amplification system. In our method, tyramide substrate reacts with horseradish peroxidase (HRP) labeled with an immunocomplex on beads, and the substrate is converted into short-lived radical intermediates. By adjusting the bead concentration in the HRP-tyramide reaction and conducting the reaction using freely moving beads, tyramide radicals are deposited only on beads labeled with HRP and there is no diffusion to other beads. Consequently, the fluorescence signal is localized on a portion of the beads, making it possible to count the number of labeled beads digitally. The performance of our method was demonstrated by detecting hepatitis B surface antigen with a limit of detection of 0.09 mIU/mL (139 aM) and a dynamic range of over 4 orders of magnitude. The obtained limit of detection represents a >20-fold higher sensitivity than conventional ELISA. Our method has potential applications in simple in vitro diagnostic systems for detecting ultralow concentrations of protein biomarkers.

  20. Sensitive detection of microRNAs based on the conversion of colorimetric assay into electrochemical analysis with duplex-specific nuclease-assisted signal amplification

    PubMed Central

    Xia, Ning; Liu, Ke; Zhou, Yingying; Li, Yuanyuan; Yi, Xinyao

    2017-01-01

    miRNAs have emerged as new biomarkers for the detection of a wide variety of cancers. By employing duplex-specific nuclease for signal amplification and gold nanoparticles (AuNPs) as the carriers of detection probes, a novel electrochemical assay of miRNAs was performed. The method is based on conversion of the well-known colorimetric assay into electrochemical analysis with enhanced sensitivity. DNA capture probes immobilized on the electrode surface and ferrocene (Fc)-labeled DNA detection probes (denoted “Fc-DNA-Fc”) presented in the solution induced the assembly of positively charged AuNPs on the electrode surface through the electrostatic interaction. As a result, a large number of Fc-DNA-Fc molecules were attached on the electrode surface, thus amplifying the electrochemical signal. When duplex-specific nuclease was added to recycle the process of miRNA-initiated digestion of the immobilized DNA probes, Fc-DNA-Fc-induced assembly of AuNPs on the electrode surface could not occur. This resulted in a significant fall in the oxidation current of Fc. The current was found to be inversely proportional to the concentration of miRNAs in the range of 0–25 fM, and a detection limit of 0.1 fM was achieved. Moreover, this work presents a new method for converting colorimetric assays into sensitive electrochemical analyses, and thus would be valuable for design of novel chemical/biosensors. PMID:28761341

  1. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.

    PubMed

    Wang, Ping; Zhang, Tonghuan; Yang, Taoyi; Jin, Nan; Zhao, Yanjun; Fan, Aiping

    2014-08-07

    A highly sensitive and selective chemiluminescent (CL) biosensor for adenosine triphosphate (ATP) was developed by taking advantage of the ATP-dependent enzymatic reaction (ATP-DER), the powerful signal amplification capability of rolling circle amplification (RCA), and hydroxylamine-amplified gold nanoparticles (Au NPs). The strategy relies on the ability of ATP, a cofactor of T4 DNA ligase, to trigger the ligation-RCA reaction. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction between the two ends of the padlock probe, producing a closed circular DNA template that initiates the RCA reaction with phi29 DNA polymerase and dNTP. Therein, many complementary copies of the circular template can be generated. The ATP-DER is eventually converted into a detectable CL signal after a series of processes, including gold probe hybridization, hydroxylamine amplification, and oxidative gold metal dissolution coupled with a simple and sensitive luminol CL reaction. The CL signal is directly proportional to the ATP level. The results showed that the detection limit of the assay is 100 pM of ATP, which compares favorably with those of other ATP detection techniques. In addition, by taking advantage of ATP-DER, the proposed CL sensing system exhibits extraordinary specificity towards ATP and could distinguish the target molecule ATP from its analogues. The proposed method provides a new and versatile platform for the design of novel DNA ligation reaction-based CL sensing systems for other cofactors. This novel ATP-DER based CL sensing system may find wide applications in clinical diagnosis as well as in environmental and biomedical fields.

  2. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.

    PubMed

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-31

    Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.

    PubMed

    Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao

    2014-10-15

    Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.

  4. A functional glycoprotein competitive recognition and signal amplification strategy for carbohydrate-protein interaction profiling and cell surface carbohydrate expression evaluation

    NASA Astrophysics Data System (ADS)

    Wang, Yangzhong; Chen, Zhuhai; Liu, Yang; Li, Jinghong

    2013-07-01

    A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 1010. The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes.A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and

  5. A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification.

    PubMed

    Xiao, Kunyi; Liu, Juan; Chen, Hui; Zhang, Song; Kong, Jilie

    2017-05-15

    A label-free and high-efficient graphene oxide (GO)-based aptasensor was developed for the detection of low quantity cancer cells based on cell-triggered cyclic enzymatic signal amplification (CTCESA). In the absence of target cells, hairpin aptamer probes (HAPs) and dye-labeled linker DNAs stably coexisted in solution, and the fluorescence was quenched by the GO-based FÖrster resonance energy transfer (FRET) process. In the presence of target cells, the specific binding of HAPs with the target cells triggered a conformational alternation, which resulted in linker DNA complementary pairing and cleavage by nicking endonuclease-strand scission cycles. Consequently, more cleaved fragments of linker DNAs with more the terminal labeled dyes could show the enhanced fluorescence because these cleaved DNA fragments hardly combine with GOs and prevent the FRET process. Fluorescence analysis demonstrated that this GO-based aptasensor exhibited selective and sensitive response to the presence of target CCRF-CEM cells in the concentration range from 50 to 10 5 cells. The detection limit of this method was 25 cells, which was approximately 20 times lower than the detection limit of normal fluorescence aptasensors without amplification. With high sensitivity and specificity, it provided a simple and cost-effective approach for early cancer diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Envelope matching for enhanced backward Raman amplification by using self-ionizing plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. M.; Zhang, B.; Hong, W.

    2014-12-15

    Backward Raman amplification (BRA) in plasmas has been promoted as a means for generating ultrapowerful laser pulses. For the purpose of achieving the maximum intensities over the shortest distances, an envelope matching between the seed pulse and the amplification gain is required, i.e., the seed pulse propagates at the same velocity with the gain such that the peak of the seed pulse can always enjoy the maximum gain. However, such an envelope matching is absent in traditional BRA because in the latter the amplification gain propagates at superluminous velocity while the seed pulse propagates at the group velocity, which ismore » less than the speed of light. It is shown here that, by using self-ionizing plasmas, the speed of the amplification gain can be well reduced to reach the envelope matching regime. This results in a favorable BRA process, in which higher saturated intensity, shorter interaction length and higher energy-transfer efficiency are achieved.« less

  7. Ultrasensitive Detection of Low-Abundance Surface-Marker Protein using Isothermal Rolling Circle Amplification in Microfluidic Nano-Liter Platform

    PubMed Central

    Konry, Tania; Yarmush, Joel M.; Irimia, Daniel

    2011-01-01

    With advances in immunology and cancer biology, there is an unmet need for increasingly sensitive systems to monitor the expression of specific cell markers for the development of new diagnostic and therapeutic tools. To address this challenge, we have applied a highly sensitive labeling method that translates antigen-antibody recognition processes into DNA detection event that can be greatly amplified via isothermal Rolling Circle Amplification (RCA). By merging the single-molecule detection power of RCA reaction with microfluidic technology we were able to demonstrate that identification of specific protein markers can be achieved on tumor cell surface in miniaturized nano-liter reaction droplets. Furthermore, this combined approach of signal amplification in a microfluidic format could extend the utility of existing methods by reducing sample and reagent consumption and enhancing the sensitivities and specificities for various applications, including early diagnosis of cancer. PMID:21294269

  8. Hyperpolarization of “Neat” Liquids by NMR Signal Amplification by Reversible Exchange

    PubMed Central

    2016-01-01

    We report NMR Signal Amplification by Reversible Exchange (SABRE) hyperpolarization of the rare isotopes in “neat” liquids, each composed only of an otherwise pure target compound with isotopic natural abundance (n.a.) and millimolar concentrations of dissolved catalyst. Pyridine (Py) or Py derivatives are studied at 0.4% isotopic natural abundance 15N, deuterated, 15N enriched, and in various combinations using the SABRE-SHEATH variant (microTesla magnetic fields to permit direct 15N polarization from parahydrogen via reversible binding and exchange with an Ir catalyst). We find that the dilute n.a. 15N spin bath in Py still channels spin order from parahydrogen to dilute 15N spins, without polarization losses due to the presence of 14N or 2H. We demonstrate P15N ≈ 1% (a gain of 2900 fold relative to thermal polarization at 9.4 T) at high substrate concentrations. This fundamental finding has a significant practical benefit for screening potentially hyperpolarizable contrast agents without labeling. The capability of screening at n.a. level of 15N is demonstrated on examples of mono- and dimethyl-substituted Py (picolines and lutidines previously identified as promising pH sensors), showing that the presence of a methyl group in the ortho position significantly decreases SABRE hyperpolarization. PMID:26029349

  9. Coherent Spin Amplification Using a Beam Splitter

    NASA Astrophysics Data System (ADS)

    Yan, Chengyu; Kumar, Sanjeev; Thomas, Kalarikad; See, Patrick; Farrer, Ian; Ritchie, David; Griffiths, Jonathan; Jones, Geraint; Pepper, Michael

    2018-03-01

    We report spin amplification using a capacitive beam splitter in n -type GaAs where the spin polarization is monitored via a transverse electron focusing measurement. It is shown that partially spin-polarized current injected by the emitter can be precisely controlled, and the spin polarization associated with it can be amplified by the beam splitter, such that a considerably high spin polarization of around 50% can be obtained. Additionally, the spin remains coherent as shown by the observation of quantum interference. Our results illustrate that spin-polarization amplification can be achieved in materials without strong spin-orbit interaction.

  10. Fibroblast growth factor receptor 1 gene amplification is associated with poor survival in patients with resected esophageal squamous cell carcinoma

    PubMed Central

    Kim, Dae Joon; Lee, Chang-Geol; Hur, Jin; Chung, Hyunsoo; Park, Jun Chul; Jung, Da Hyun; Shin, Sung Kwan; Lee, Sang Kil; Lee, Yong Chan; Kim, Hye Ryun; Moon, Yong Wha; Kim, Joo Hang; Shim, Young Mog; Jewell, Susan S.; Kim, Hyunki; Choi, Yoon-La; Cho, Byoung Chul

    2015-01-01

    To investigate the frequency and the prognostic impact of fibroblast growth factor receptor 1 (FGFR1) gene amplification in 526 curatively resected esophageal squamous cell carcinoma (ESCC). Using fluorescent in situ hybridization, high amplification was defined by an FGFR1/centromer 8 ratio is ≥ 2.0, or average number of FGFR1 signals/tumor cell nucleus ≥ 6.0, or percentage of tumor cells containing ≥ 15 FGFR1 signals or large cluster in ≥ 10%. Low amplification was defined by ≥ 5 FGFR1 signals in ≥ 50%. FGFR2 and FGFR3 mutations were assessed by direct sequencing in 388 cases and no mutation was detected. High and low amplification were detected in 8.6% and 1.1%, respectively. High FGFR1 amplification had significantly shorter disease-free survival (34.0 vs 158.5 months P=0.019) and overall survival (52.2 vs not reached P=0.022) than low/no amplification group. After adjusting for sex, smoking, stage, histology, and adjuvant treatment, high FGFR1 amplification had a greater risk of recurrence (adjusted hazard ratio [AHR], 1.6; P=0.029) and death (AHR, 1.53; P=0.050). High amplification was significantly higher in current smokers than former and never-smokers (Ptrend<0.001) and increased proportional to smoking dosage. High FGFR1 amplification is a frequent oncogenic alteration and an independent poor prognostic factor in resected ESCC. PMID:25537505

  11. Target-catalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum.

    PubMed

    Li, Yuliang; Yu, Chao; Yang, Bo; Liu, Zhirui; Xia, Peiyuan; Wang, Qian

    2018-04-15

    Herein, a new type of multifunctional iron based metal-organic frameworks (PdNPs@Fe-MOFs) has been synthesized by assembly palladium nanoparticles on the surface of Fe-MIL-88NH 2 MOFs microcrystals, and first applied in electrochemical biosensor for ultrasensitive detection of microRNA-122 (miR-122, a biomarker of drug-induced liver injury). The nanohybrids have not only been utilized as ideal nanocarriers for immobilization of signal probes, but also used as redox probes and electrocatalysts. In this biosensor, two hairpin probes were designed as capture probes and signal probes, respectively. The nanohybrids conjugated with streptavidin and biotinylated signal probes were used as the tracer labels, target miR-122 was sandwiched between the tracer labels and thiol-terminated capture probes inserted in MCH monolayer on the gold nanoparticles-functionalized nitrogen-doped graphene sheets (AuNPs@N-G) modified electrode. Based on target-catalyzed hairpin assembly, target miR-122 could trigger the hybridization of capture probes and signal probes to further be released to initiate the next reaction process resulted in numerous tracer indicators anchored onto the sensing interfaces. Thus, the detection signal could be dramatically enhanced towards the electrocatalytic oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of H 2 O 2 owing to the intrinsic and intriguing peroxidase-like activity of the nanohybrids. With the assist of target-catalyzed hairpin assembly and PdNPs@Fe-MOFs mimetic co-reaction for signal amplification, a wide detection range from 0.01fM to 10pM was achieved with a low detection limit of 0.003fM (S/N =3). Furthermore, the proposed biosensor exhibited excellent specificity and recovery in spiked serum samples, and was successfully used for detecting miR-122 in real biological samples, which provided a rapid and efficient method for detecting drug-induced liver injury at an early stage. Copyright © 2017. Published by Elsevier B.V.

  12. Broadband Amplification of Low-Terahertz Signals Using Axis-Encircling Electrons in a Helically Corrugated Interaction Region

    NASA Astrophysics Data System (ADS)

    He, W.; Donaldson, C. R.; Zhang, L.; Ronald, K.; Phelps, A. D. R.; Cross, A. W.

    2017-11-01

    Experimental results are presented of a broadband, high power, gyrotron traveling wave amplifier (gyro-TWA) operating in the (75-110)-GHz frequency band and based on a helically corrugated interaction region. The second harmonic cyclotron mode of a 55-keV, 1.5-A, axis-encircling electron beam is used to resonantly interact with a traveling TE21 -like eigenwave achieving broadband amplification. The gyro-TWA demonstrates a 3-dB gain bandwidth of at least 5.5 GHz in the experimental measurement with 9 GHz predicted for a wideband drive source with a measured unsaturated output power of 3.4 kW and gain of 36-38 dB. The approach may allow a gyro-TWA to operate at 1 THz.

  13. Amplification and noise properties of an erbium-doped multicore fiber amplifier.

    PubMed

    Abedin, K S; Taunay, T F; Fishteyn, M; Yan, M F; Zhu, B; Fini, J M; Monberg, E M; Dimarcello, F V; Wisk, P W

    2011-08-15

    A multicore erbium-doped fiber (MC-EDF) amplifier for simultaneous amplification in the 7-cores has been developed, and the gain and noise properties of individual cores have been studied. The pump and signal radiation were coupled to individual cores of MC-EDF using two tapered fiber bundled (TFB) couplers with low insertion loss. For a pump power of 146 mW, the average gain achieved in the MC-EDF fiber was 30 dB, and noise figure was less than 4 dB. The net useful gain from the multicore-amplifier, after taking into consideration of all the passive losses, was about 23-27 dB. Pump induced ASE noise transfer between the neighboring channel was negligible. © 2011 Optical Society of America

  14. MET amplification as a potential therapeutic target in gastric cancer

    PubMed Central

    Kawakami, Hisato; Okamoto, Isamu; Arao, Tokuzo; Okamoto, Wataru; Matsumoto, Kazuko; Taniguchi, Hirokazu; Kuwata, Kiyoko; Yamaguchi, Haruka; Nishio, Kazuto; Nakagawa, Kazuhiko; Yamada, Yasuhide

    2013-01-01

    Our aim was to investigate both the prevalence of MET amplification in gastric cancer as well as the potential of this genetic alteration to serve as a therapeutic target in gastric cancer. MET amplification was assessed by initial screening with a PCR-based copy number assay followed by confirmatory FISH analysis in formalin-fixed, paraffin-embedded specimens of gastric cancer obtained at surgery. The effects of MET tyrosine kinase inhibitors (MET-TKIs) in gastric cancer cells with or without MET amplification were also examined. The median MET copy number in 266 cases of gastric cancer was 1.7, with a range of 0.41 to 21.3. We performed FISH analysis for the 15 cases with the highest MET copy numbers. MET amplification was confirmed in the four assessable cases with a MET copy number of at least 4, whereas MET amplification was not detected in those with a gene copy number of <4. The prevalence of MET amplification was thus 1.5% (4 out of 266 cases). Inhibition of MET by MET-TKIs resulted in the induction of apoptosis accompanied by attenuation of downstream MET signaling in gastric cancer cell lines with MET amplification but not in those without this genetic change. MET amplification identifies a small but clinically important subgroup of gastric cancer patients who are likely to respond to MET-TKIs. Furthermore, screening with a PCR-based copy number assay is an efficient way to reduce the number of patients requiring confirmation of MET amplification by FISH analysis. PMID:23327903

  15. Frequency-degenerate phase-sensitive optical parametric amplification based on four-wave mixing in graphene–silicon slot waveguide

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing

    2018-06-01

    The phase-sensitive amplification process of a hybrid graphene–silicon (HyGS) slot waveguide with trilayers of graphene is investigated in this paper. Numerical simulation shows that a relatively high extinction ratio (42 dB) is achieved, because of the ultrahigh nonlinear coefficients, with a waveguide length of only 680 µm. In addition, the graphene layer provides the possibility of modulating the phase status and gain of the output signal. This study is expected to be highly beneficial to applications such as integrated optics and graphene-related active optical devices.

  16. Parametric amplification of orbital angular momentum beams based on light-acoustic interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wei, E-mail: wei-g@163.com, E-mail: zhuzhihandd@sina.com; Mu, Chunyuan; Yang, Yuqiang

    A high fidelity amplification of beams carrying orbital angular momentum (OAM) is very crucial for OAM multiplexing and other OAM-based applications. Here, we report a demonstration of stimulated Brillouin amplification for OAM beams, and the energy conversion efficiency of photon-phonon coupling and the phase structure of amplified signals are investigated in collinear and noncollinear frame systems, respectively. Our results demonstrate that the OAM signals can be efficiently amplified without obvious noise introduced, and the modes of output signal are independent of the pump modes or the geometrical frames. Meanwhile, an OAM state depending on the optical modes and the geometricalmore » frames is loaded into phonons by coherent light-acoustic interaction, which reveals more fundamental significance and a great application potential in OAM-multiplexing.« less

  17. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope

    PubMed Central

    Nitzan, Sarah H.; Zega, Valentina; Li, Mo; Ahn, Chae H.; Corigliano, Alberto; Kenny, Thomas W.; Horsley, David A.

    2015-01-01

    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes. PMID:25762243

  18. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope.

    PubMed

    Nitzan, Sarah H; Zega, Valentina; Li, Mo; Ahn, Chae H; Corigliano, Alberto; Kenny, Thomas W; Horsley, David A

    2015-03-12

    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes.

  19. Long-distance fiber Bragg grating sensor system with a high optical signal-to-noise ratio based on a tunable fiber ring laser configuration.

    PubMed

    Rao, Yun-Jiang; Ran, Zeng-Ling; Chen, Rong-Rui

    2006-09-15

    A novel tunable fiber ring laser configuration with a combination of bidirectional Raman amplification and dual erbium-doped fiber (EDF) amplification is proposed for realizing high optical signal-to-noise ratio (SNR), long-distance, quasi-distributed fiber Bragg grating (FBG) sensing systems with large capacities and low cost. The hybrid Raman-EDF amplification configuration arranged in the ring laser can enhance the optical SNR of FBG sensor signals significantly owing to the good combination of the high gain of the erbium-doped fiber amplifier (EDFA) and the low noise of the Raman amplification. Such a sensing system can support a large number of FBG sensors because of the use of a tunable fiber Fabry-Perot filter located within the ring laser and spatial division multiplexing for expansion of sensor channels. Experimental results show that an excellent optical SNR of approximately 60 dB has been achieved for a 50 km transmission distance with a low Raman pump power of approximately 170 mW at a wavelength of 1455 nm and a low EDFA pump power of approximately 40 mW at a wavelength of 980 nm, which is the highest optical SNR achieved so far for a 50 km long FBG sensor system, to our knowledge.

  20. Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations

    NASA Astrophysics Data System (ADS)

    Samoilov, Michael; Plyasunov, Sergey; Arkin, Adam P.

    2005-02-01

    Stochastic effects in biomolecular systems have now been recognized as a major physiologically and evolutionarily important factor in the development and function of many living organisms. Nevertheless, they are often thought of as providing only moderate refinements to the behaviors otherwise predicted by the classical deterministic system description. In this work we show by using both analytical and numerical investigation that at least in one ubiquitous class of (bio)chemical-reaction mechanisms, enzymatic futile cycles, the external noise may induce a bistable oscillatory (dynamic switching) behavior that is both quantitatively and qualitatively different from what is predicted or possible deterministically. We further demonstrate that the noise required to produce these distinct properties can itself be caused by a set of auxiliary chemical reactions, making it feasible for biological systems of sufficient complexity to generate such behavior internally. This new stochastic dynamics then serves to confer additional functional modalities on the enzymatic futile cycle mechanism that include stochastic amplification and signaling, the characteristics of which could be controlled by both the type and parameters of the driving noise. Hence, such noise-induced phenomena may, among other roles, potentially offer a novel type of control mechanism in pathways that contain these cycles and the like units. In particular, observations of endogenous or externally driven noise-induced dynamics in regulatory networks may thus provide additional insight into their topology, structure, and kinetics. network motif | signal transduction | chemical reaction | synthetic biology | systems biology

  1. A sensitive detection assay based on signal amplification technology for Alzheimer's disease's early biomarker in exosome.

    PubMed

    Zhou, Jie; Meng, Lingchang; Ye, Weiran; Wang, Qiaolei; Geng, Shizhen; Sun, Chong

    2018-08-31

    Alzheimer's disease (AD) considered as the third health "killer" has seriously threatened the health of the elderly. However, the modern diagnostic strategies of AD present several disadvantages: the low accuracy and specificity resulting in some false-negative diagnoses, and the poor sensitivity leading to a delayed treatment. In view of this situation, a enzyme-free and target-triggered signal amplification strategy, based on graphene oxide (GO) and entropy-driven strand displacement reaction (ESDR) principle, was proposed. In this strategy, when the hairpin structure probes (H)specially binds with beta-amyloid-(1-42) oligomers (Aβ42 oligomers), it's structure will be opened, causing the bases complementary to FAM-labeled replacement probes R (R1 and R2) exposed. At this time, R1 and R2 will hybridize with H, resulting in the bound Aβ42 oligomers released. The released Aβ42 oligomers would participate in the next cycle reaction, making the signal amplified. As a quencher, GO could absorb the free single-stranded DNA R1 and R2 and quench their fluorescence; however, the DNA duplex still exists free and keeps its signal-on. Through the detection of Aβ42 oligomers in exosomes, this ultrasensitive detection method with the advantages of low limit of detection (LOD, 20 pM), great accuracy, excellent precision and convenience provides an excellent prospect for AD's early diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Exponential isothermal amplification of nucleic acids and amplified assays for proteins, cells, and enzyme activities.

    PubMed

    Reid, Michael S; Le, X Chris; Zhang, Hongquan

    2018-04-27

    Isothermal exponential amplification techniques, such as strand-displacement amplification (SDA), rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), helicase-dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on-site, point-of-care, and in-situ assay applications. These amplification techniques eliminate the need for temperature cycling required for polymerase chain reaction (PCR) while achieving comparable amplification yield. We highlight here recent advances in exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. We discuss design strategies, enzyme reactions, detection techniques, and key features. Incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from non-specific template interactions, must be addressed to further improve isothermal and exponential amplification techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Target-regulated proximity hybridization with three-way DNA junction for in situ enhanced electronic detection of marine biotoxin based on isothermal cycling signal amplification strategy.

    PubMed

    Liu, Bingqian; Chen, Jinfeng; Wei, Qiaohua; Zhang, Bing; Zhang, Lan; Tang, Dianping

    2015-07-15

    A new signal amplification strategy based on target-regulated DNA proximity hybridization (TRPH) reaction accompanying formation of three-way DNA junction was designed for electronic detection of Microcystin-LR (MC-LR used in this case), coupling with junction-induced isothermal cycling signal amplification. Initially, a sandwiched-type immunoreaction was carried out in a low-cost PCR tube between anti-MC-LR mAb1 antibody-labeled DNA1 (mAb1-DNA1) and anti-MC-LR mAb2-labeled DNA2 (mAb2-DNA2) in the presence of target to form a three-way DNA junction. Then, the junction could undergo an unbiased strand displacement reaction on an h-like DNA nanostructure-modified electrode (labeled with methylene blue redox tag on the short DNA strand), thereby resulting in the dissociation of methylene blue-labeled signal DNA from the electrode. The newly formed double-stranded DNA could be cleaved again by exonuclease III, and the released three-way DNA junction retriggered the strand-displacement reaction with h-like DNA nanostructures for junction recycling. During the strand-displacement reaction, numerous methylene blue-labeled DNA strands were far away from the electrode, thus decreasing the detectable electrochemical signal within the applied potentials. Under optimal conditions, the TRPH-based immunosensing system exhibited good electrochemical responses for detecting target MC-LR at a concentration as low as 1.0ngkg(-1) (1.0ppt). Additionally, the precision, reproducibility, specificity and method accuracy were also investigated with acceptable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Luminescence-Functionalized Metal-Organic Frameworks Based on a Ruthenium(II) Complex: A Signal Amplification Strategy for Electrogenerated Chemiluminescence Immunosensors.

    PubMed

    Xiong, Cheng-Yi; Wang, Hai-Jun; Liang, Wen-Bin; Yuan, Ya-Li; Yuan, Ruo; Chai, Ya-Qin

    2015-06-26

    Novel luminescence-functionalized metal-organic frameworks (MOFs) with superior electrogenerated chemiluminescence (ECL) properties were synthesized based on zinc ions as the central ions and tris(4,4'-dicarboxylicacid-2,2'-bipyridyl)ruthenium(II) dichloride ([Ru(dcbpy)3](2+)) as the ligands. For potential applications, the synthesized MOFs were used to fabricate a "signal-on" ECL immunosensor for the detection of N-terminal pro-B-type natriuretic peptide (NT-proBNP). As expected, enhanced ECL signals were obtained through a simple fabrication strategy because luminescence-functionalized MOFs not only effectively increased the loading of [Ru(dcbpy)3](2+), but also served as a loading platform in the ECL immunosensor. Furthermore, the proposed ECL immunosensor had a wide linear range from 5 pg mL(-1) to 25 ng mL(-1) and a relatively low detection limit of 1.67 pg mL(-1) (signal/noise=3). The results indicated that luminescence-functionalized MOFs provided a novel amplification strategy in the construction of ECL immunosensors and might have great prospects for application in bioanalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. New Technologies in Amplification: Applications to the Pediatric Population.

    ERIC Educational Resources Information Center

    Kopun, Judy

    1995-01-01

    Discussion of technological advances in amplification for children with hearing impairments focuses on the advantages and limitations of fitting children with devices that have features such as dynamic-range compression, multiband signal processing, multimemory capability, digital feedback reduction, and frequency transposition. (Author/DB)

  6. DNAzyme-functionalized gold-palladium hybrid nanostructures for triple signal amplification of impedimetric immunosensor.

    PubMed

    Hou, Li; Gao, Zhuangqiang; Xu, Mingdi; Cao, Xia; Wu, Xiaoping; Chen, Guonan; Tang, Dianping

    2014-04-15

    A highly sensitive and selective impedimetric immunosensor with triple signal amplification was designed for ultrasensitive detection of prostate-specific antigen (PSA) by using anti-PSA antibody and DNAzyme-functionalized gold-palladium hybrid nanotags (Ab2-AuPd-DNA). The signal was amplified based on the Ab2-AuPd-DNA toward the catalytic precipitation of 4-choloro-1-naphthol (4-CN). DNAzyme (as a kind of peroxidase mimic) could catalyze the oxidation of 4-CN, whilst AuPd hybrid nanostructures could not only provide a large surface coverage for immobilization of biomolecules but also promote 4-CN oxidation to some extent. The produced insoluble benzo-4-chlorohexadienone via 4-CN was coated on the electrode surface, and hindered the electron transfer between the solution and the electrode, thereby increasing the Faradaic impedance of the base electrode. Three labeling strategies including Ab2-AuNP, Ab2-AuPd and Ab2-AuPd-DNA were investigated for determination of PSA, and improved analytical features were obtained with the Ab2-AuPd-DNA strategy. Under optimal conditions, the dynamic concentration range of the impedimetric immunosensor spanned from 1.0 pg mL(-1) to 50 ng mL(-1) PSA with a detection limit of 0.73 pg mL(-1). Intra- and inter-assay coefficients of variation were below 8.5% and 9.5%, respectively. Importantly, no significant differences at the 0.05 significance level were encountered in the analysis of 6 clinical serum specimens and 6 diluted standards between the impedimetric immunosensor and the commercialized electrochemiluminescent method for PSA detection. © 2013 Published by Elsevier B.V.

  7. Cascade DNA nanomachine and exponential amplification biosensing.

    PubMed

    Xu, Jianguo; Wu, Zai-Sheng; Shen, Weiyu; Xu, Huo; Li, Hongling; Jia, Lee

    2015-11-15

    DNA is a versatile scaffold for the assembly of multifunctional nanostructures, and potential applications of various DNA nanodevices have been recently demonstrated for disease diagnosis and treatment. In the current study, a powerful cascade DNA nanomachine was developed that can execute the exponential amplification of p53 tumor suppressor gene. During the operation of the newly-proposed DNA nanomachine, dual-cyclical nucleic acid strand-displacement polymerization (dual-CNDP) was ingeniously introduced, where the target trigger is repeatedly used as the fuel molecule and the nicked fragments are dramatically accumulated. Moreover, each displaced nicked fragment is able to activate the another type of cyclical strand-displacement amplification, increasing exponentially the value of fluorescence intensity. Essentially, one target binding event can induce considerable number of subsequent reactions, and the nanodevice was called cascade DNA nanomachine. It can implement several functions, including recognition element, signaling probe, polymerization primer and template. Using the developed autonomous operation of DNA nanomachine, the p53 gene can be quantified in the wide concentration range from 0.05 to 150 nM with the detection limit of 50 pM. If taking into account the final volume of mixture, the detection limit is calculated as lower as 6.2 pM, achieving an desirable assay ability. More strikingly, the mutant gene can be easily distinguished from the wild-type one. The proof-of-concept demonstrations reported herein is expected to promote the development and application of DNA nanomachine, showing great potential value in basic biology and medical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Experimental demonstration of spatially coherent beam combining using optical parametric amplification.

    PubMed

    Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki

    2010-07-05

    We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.

  9. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection.

    PubMed

    Wang, Hui; Chen, Hui; Huang, Zhipeng; Li, Tengda; Deng, Anmei; Kong, Jilie

    2018-07-01

    Exosomes have proved to be an effective cancer biomarker with significant potential, and several cell-specific molecules have been found in colorectal cancer (CRC) exosomes. Nevertheless, it is challenging to use exosomes in clinical lab diagnostics due to their nanoscale and the lack of a convenient and effective detection platform. Here, we developed a DNase I enzyme-aided fluorescence amplification method for CRC exosome detection, based on graphene oxide (GO)-DNA aptamer (CD63 and EpCAM aptamers) interactions. The fluorescence of fluorophore-labeled aptamers quenched by GO, recovered after incubation with samples containing CRC exosomes. The DNase I enzyme digested the single-stranded DNA aptamers on the exosome surface and the exosomes were able to interact with more fluorescent aptamer probes, resulting in an increase of signal amplification. The limit of detection for CRC exosomes is 2.1 × 10 4 particles/μl. Consequently, a rapid and effective method with high sensitivity was established. The method was verified in 19 clinical blood serum samples to distinguish healthy and CRC patients, showing significant diagnostic power. Moreover, it can be expanded to other kinds of cancer exosomes, in addition to CRC. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Photoelectrochemical DNA Biosensor Based on Dual-Signal Amplification Strategy Integrating Inorganic-Organic Nanocomposites Sensitization with λ-Exonuclease-Assisted Target Recycling.

    PubMed

    Shi, Xiao-Mei; Fan, Gao-Chao; Shen, Qingming; Zhu, Jun-Jie

    2016-12-28

    Sensitive and accurate analysis of DNA is crucial to better understanding of DNA functions and early diagnosis of fatal disease. Herein, an enhanced photoelectrochemical (PEC) DNA biosensor was proposed based on dual-signal amplification via coupling inorganic-organic nanocomposites sensitization with λ-exonuclease (λ-Exo)-assisted target recycling. The short DNA sequence about chronic myelogenous leukemia (CML, type b3a2) was selected as target DNA (tDNA). ZnO nanoplates were deposited with CdS nanocrystals to form ZnO/CdS hetero-nanostructure, and it was used as PEC substrate for immobilizing hairpin DNA (hDNA). CdTe quantum dots (QDs) covalently linked with meso-tetra(4-carboxyphenyl)porphine (TCPP) to form CdTe/TCPP inorganic-organic nanocomposites, which were utilized as sensitization agents labeling at the terminal of probe DNA (pDNA). When the hDNA-modified sensing electrode was incubated with tDNA and λ-Exo, hDNA hybridized with tDNA, and meanwhile it could be recognized and cleaved by λ-Exo, resulting in the release of tDNA. The rest of nonhybridized hDNA would continuously hybridize with the released tDNA, cleave by λ-Exo, and set free the tDNA again. After λ-Exo-assisted tDNA recycling, more amounts of short DNA (sDNA) fragments coming from digestion of hDNA produced on the electrode and hybridized with CdTe/TCPP-labeled pDNA (pDNA-CdTe/TCPP conjugates). In this case, the sensitization of CdTe/TCPP inorganic-organic nanocomposites occurred, which evidently extend the absorption range and strengthened the absorption intensity of light energy, and accordingly the photocurrent signal significantly promoted. Through introducing the dual-signal amplification tactics, the developed PEC assay allowed a low calculated detection limit of 25.6 aM with a wide detection scope from 0.1 fM to 5 pM for sensitive and selective determination of tDNA.

  11. Ultra-flat wideband single-pump Raman-enhanced parametric amplification.

    PubMed

    Gordienko, V; Stephens, M F C; El-Taher, A E; Doran, N J

    2017-03-06

    We experimentally optimize a single pump fiber optical parametric amplifier in terms of gain spectral bandwidth and gain variation (GV). We find that optimal performance is achieved with the pump tuned to the zero-dispersion wavelength of dispersion stable highly nonlinear fiber (HNLF). We demonstrate further improvement of parametric gain bandwidth and GV by decreasing the HNLF length. We discover that Raman and parametric gain spectra produced by the same pump may be merged together to enhance overall gain bandwidth, while keeping GV low. Consequently, we report an ultra-flat gain of 9.6 ± 0.5 dB over a range of 111 nm (12.8 THz) on one side of the pump. Additionally, we demonstrate amplification of a 60 Gbit/s QPSK signal tuned over a portion of the available bandwidth with OSNR penalty less than 1 dB for Q2 below 14 dB.

  12. Organo-erbium systems for optical amplification at telecommunications wavelengths.

    PubMed

    Ye, H Q; Li, Z; Peng, Y; Wang, C C; Li, T Y; Zheng, Y X; Sapelkin, A; Adamopoulos, G; Hernández, I; Wyatt, P B; Gillin, W P

    2014-04-01

    Modern telecommunications rely on the transmission and manipulation of optical signals. Optical amplification plays a vital part in this technology, as all components in a real telecommunications system produce some loss. The two main issues with present amplifiers, which rely on erbium ions in a glass matrix, are the difficulty in integration onto a single substrate and the need of high pump power densities to produce gain. Here we show a potential organic optical amplifier material that demonstrates population inversion when pumped from above using low-power visible light. This system is integrated into an organic light-emitting diode demonstrating that electrical pumping can be achieved. This opens the possibility of direct electrically driven optical amplifiers and optical circuits. Our results provide an alternative approach to producing low-cost integrated optics that is compatible with existing silicon photonics and a different route to an effective integrated optics technology.

  13. Gold nanoparticles and the corresponding filter membrane as chemosensors and adsorbents for dual signal amplification detection and fast removal of mercury(ii).

    PubMed

    Chen, Gaosong; Hai, Jun; Wang, Hao; Liu, Weisheng; Chen, Fengjuan; Wang, Baodui

    2017-03-02

    Nowadays, the development of a multifunction system for the simultaneous multiple signal amplification detection and fast removal of Hg 2+ remains a major challenge. Herein, we for the first time used gold nanoparticles (Au NPs) and the corresponding filter membrane as chemosensors and adsorbents for dual signal amplification detection and fast removal of Hg 2+ . Such a system was based on the formation of gold amalgam and a gold amalgam-based reaction between rhodamine B (RhB) and NaBH 4 with fluorescence and colorimetric sensing functions. When the gold amalgam catalyzes the reduction of RhB, the red color and orange fluorescence of RhB gradually changed to colorless by switching the amount of Hg 2+ deposited on 13 nm Au NPs. The detection limit of the fluorescence assay and colorimetric assay is 1.16 nM and 2.54 nM for Hg 2+ , respectively. Interestingly, the color and fluorescence of RhB could be recovered when the above colorless reaction solution was exposed to air for about 2 hours. Taking advantage of the above optical phenomenon, a recyclable paper-based sensor has been developed by immobilizing the Au NPs and RhB dye on filter paper and has been successfully used for detection of Hg 2+ in real water samples. In addition, the filter membrane immobilized Au NPs could allow fast removal of mercury ions in Yellow river water and tap water with the removal efficiency close to 99%.

  14. Photoelectrochemical sensitive detection of insulin based on CdS/polydopamine co-sensitized WO3 nanorod and signal amplification of carbon nanotubes@polydopamine.

    PubMed

    Wang, Rongyu; Ma, Hongmin; Zhang, Yong; Wang, Qi; Yang, Zhongping; Du, Bin; Wu, Dan; Wei, Qin

    2017-10-15

    An ultrasensitive photoelectrochemical sandwich immunosensor was designed for detection of insulin based on WO 3 /CdS/polydopamine (WO 3 /CdS/PDA) co-sensitized and PDA@carbon nanotubes (PDA@CNT) conjugates for signal amplification. The CdS nanoparticles were first deposited on the WO 3 nanorods via sequential chemical bath deposition to form the WO 3 /CdS structure to enhance photocurrent. Then equipped with PDA to form the WO 3 /CdS/PDA photosensitive structure. The PDA was used not only to reduce the toxicity of CdS but also adsorb insulin primary antibodies (Ab 1 ). Meanwhile, insulin secondary antibodies (Ab 2 ) were decorated by PDA@CNT conjugates for signal amplification and further enhance photocurrent. Different photocurrent intensities were obtained by the photoelectrochemical workstation at applied bias of 0V due to the different amount of the PDA@CNT conjugates introduced by the different concentrations of insulin. A good linear relationship was obtained between the increased photocurrent and insulin concentrations range from 0.01ngmL -1 to 50ngmL -1 . And a detection limit of 2.8pgmL -1 was obtained. The proposed sensor was applied to the determination of the insulin in human serum sample, and satisfactory results were obtained. The sensor presented good specificity, reproducibility and stability, thus it might find application in the clinical diagnosis of insulin or other biomarkers in the near future. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Influence of interfacial Dzyaloshinskii-Moriya interaction on the parametric amplification of spin waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verba, Roman, E-mail: verrv@ukr.net; Tiberkevich, Vasil; Slavin, Andrei

    2015-09-14

    The influence of the interfacial Dzyaloshinskii-Moriya interaction (IDMI) on the parametric amplification of spin waves propagating in ultrathin ferromagnetic film is considered theoretically. It is shown that the IDMI changes the relation between the group velocities of the signal and idler spin waves in a parametric amplifier, which may result in the complete vanishing of the reversed idler wave. In the optimized case, the idler spin wave does not propagate from the pumping region at all, which increases the efficiency of the amplification of the signal wave and suppresses the spurious impact of the idler waves on neighboring spin-wave processingmore » devices.« less

  16. Amplification through chaotic synchronization in spatially extended beam-plasma systems

    NASA Astrophysics Data System (ADS)

    Moskalenko, Olga I.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2017-12-01

    In this paper, we have studied the relationship between chaotic synchronization and microwave signal amplification in coupled beam-plasma systems. We have considered a 1D particle-in-cell numerical model of unidirectionally coupled beam-plasma oscillatory media being in the regime of electron pattern formation. We have shown the significant gain of microwave oscillation power in coupled beam-plasma media being in the different regimes of generation. The discovered effect has a close connection with the chaotic synchronization phenomenon, so we have observed that amplification appears after the onset of the complete time scale synchronization regime in the analyzed coupled spatially extended systems. We have also provided the numerical study of physical processes in the chain of beam-plasma systems leading to the chaotic synchronization and the amplification of microwave oscillations power, respectively.

  17. 2D dynamic studies combined with the surface curvature analysis to predict Arias Intensity amplification

    NASA Astrophysics Data System (ADS)

    Torgoev, Almaz; Havenith, Hans-Balder

    2016-07-01

    A 2D elasto-dynamic modelling of the pure topographic seismic response is performed for six models with a total length of around 23.0 km. These models are reconstructed from the real topographic settings of the landslide-prone slopes situated in the Mailuu-Suu River Valley, Southern Kyrgyzstan. The main studied parameter is the Arias Intensity (Ia, m/sec), which is applied in the GIS-based Newmark method to regionally map the seismically-induced landslide susceptibility. This method maps the Ia values via empirical attenuation laws and our studies investigate a potential to include topographic input into them. Numerical studies analyse several signals with varying shape and changing central frequency values. All tests demonstrate that the spectral amplification patterns directly affect the amplification of the Ia values. These results let to link the 2D distribution of the topographically amplified Ia values with the parameter called as smoothed curvature. The amplification values for the low-frequency signals are better correlated with the curvature smoothed over larger spatial extent, while those values for the high-frequency signals are more linked to the curvature with smaller smoothing extent. The best predictions are provided by the curvature smoothed over the extent calculated according to Geli's law. The sample equations predicting the Ia amplification based on the smoothed curvature are presented for the sinusoid-shape input signals. These laws cannot be directly implemented in the regional Newmark method, as 3D amplification of the Ia values addresses more problem complexities which are not studied here. Nevertheless, our 2D results prepare the theoretical framework which can potentially be applied to the 3D domain and, therefore, represent a robust basis for these future research targets.

  18. High-power Femtosecond Optical Parametric Amplification at 1 kHz in BiB(3)O(6) pumped at 800 nm.

    PubMed

    Petrov, Valentin; Noack, Frank; Tzankov, Pancho; Ghotbi, Masood; Ebrahim-Zadeh, Majid; Nikolov, Ivailo; Buchvarov, Ivan

    2007-01-22

    Substantial power scaling of a travelling-wave femtosecond optical parametric amplifier, pumped near 800 nm by a 1 kHz Ti:sapphire laser amplifier, is demonstrated using monoclinic BiB(3)O(6) in a two stage scheme with continuum seeding. Total energy output (signal plus idler) exceeding 1 mJ is achieved, corresponding to an intrinsic conversion efficiency of approximately 32% for the second stage. The tunability extends from 1.1 to 2.9 microm. The high parametric gain and broad amplification bandwidth of this crystal allowed the maintenance of the pump pulse duration, leading to pulse lengths less than 140 fs, both for the signal and idler pulses, even at such high output levels.

  19. Genome amplification of single sperm using multiple displacement amplification.

    PubMed

    Jiang, Zhengwen; Zhang, Xingqi; Deka, Ranjan; Jin, Li

    2005-06-07

    Sperm typing is an effective way to study recombination rate on a fine scale in regions of interest. There are two strategies for the amplification of single meiotic recombinants: repulsion-phase allele-specific PCR and whole genome amplification (WGA). The former can selectively amplify single recombinant molecules from a batch of sperm but is not scalable for high-throughput operation. Currently, primer extension pre-amplification is the only method used in WGA of single sperm, whereas it has limited capacity to produce high-coverage products enough for the analysis of local recombination rate in multiple large regions. Here, we applied for the first time a recently developed WGA method, multiple displacement amplification (MDA), to amplify single sperm DNA, and demonstrated its great potential for producing high-yield and high-coverage products. In a 50 mul reaction, 76 or 93% of loci can be amplified at least 2500- or 250-fold, respectively, from single sperm DNA, and second-round MDA can further offer >200-fold amplification. The MDA products are usable for a variety of genetic applications, including sequencing and microsatellite marker and single nucleotide polymorphism (SNP) analysis. The use of MDA in single sperm amplification may open a new era for studies on local recombination rates.

  20. Methods and devices based on brillouin selective sideband amplification

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2003-01-01

    Opto-electronic devices and techniques using Brillouin scattering to select a sideband in a modulated optical carrier signal for amplification. Two lasers respectively provide a carrier signal beam and a Brillouin pump beam which are fed into an Brillouin optical medium in opposite directions. The relative frequency separation between the lasers is adjusted to align the frequency of the backscattered Brillouin signal with a desired sideband in the carrier signal to effect a Brillouin gain on the sideband. This effect can be used to implement photonic RF signal mixing and conversion with gain, conversion from phase modulation to amplitude modulation, photonic RF frequency multiplication, optical and RF pulse generation and manipulation, and frequency-locking of lasers.

  1. Double-probe signal enhancing strategy for toxin aptasensing based on rolling circle amplification.

    PubMed

    Tong, Ping; Zhao, Wei-Wei; Zhang, Lan; Xu, Jing-Juan; Chen, Hong-Yuan

    2012-03-15

    On the basis of aptamer-based rolling circle amplification (RCA) and magnetic beads (MBs), a highly sensitive electrochemical method was developed for the determination of Ochratoxin A (OTA). Initially, an amino-modified capture DNA was immobilized onto MBs for the following hybridization with an OTA aptamer and a phosphate labeled padlock DNA. In the presence of OTA, the aptamer would dissociate from the bioconjugate, and the padlock DNA would subsequently hybridize with the capture DNA to form a circular template with the aid of the T4 ligase. Next, capture DNA would act as primer to initiate a linear RCA reaction and hence generate a long tandem repeated sequences by phi29 DNA polymerase and dNTPs. Then, two quantum dots (QDs) labeled DNA probes were tagged on the resulted RCA product to indicate the OTA recognition event by electrochemical readout. This strategy, based on the novel design of OTA-mediated DNA circularization, the combination of RCA and double signal probes introduction, could detect OTA down to the level of 0.2 pg mL(-1) with a dynamic range spanning more than 4 orders of magnitude. The proposed approach is tested to determine OTA in red wines and shows good application potential in real samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Space Optical Communications Using Laser Beam Amplification

    NASA Technical Reports Server (NTRS)

    Agrawal, Govind

    2015-01-01

    The Space Optical Communications Using Laser Beam Amplification (SOCLBA) project will provide a capability to amplify a laser beam that is received in a modulating retro-reflector (MRR) located in a satellite in low Earth orbit. It will also improve the pointing procedure between Earth and spacecraft terminals. The technology uses laser arrays to strengthen the reflected laser beam from the spacecraft. The results of first year's work (2014) show amplification factors of 60 times the power of the signal beam. MMRs are mirrors that reflect light beams back to the source. In space optical communications, a high-powered laser interrogator beam is directed from the ground to a satellite. Within the satellite, the beam is redirected back to ground using the MMR. In the MMR, the beam passes through modulators, which encode a data signal onto the returning beam. MMRs can be used in small spacecraft for optical communications. The SOCLBA project is significant to NASA and small spacecraft due to its application to CubeSats for optical data transmission to ground stations, as well as possible application to spacecraft for optical data transmission.

  3. Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction.

    PubMed

    Shi, Chao; Ge, Yujie; Gu, Hongxi; Ma, Cuiping

    2011-08-15

    Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Divided-pulse nonlinear amplification and simultaneous compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Qiang; Zhang, Qingshan; Sun, Tingting

    2015-03-09

    We report on a fiber laser system delivering 122 fs pulse duration and 600 mW average power at 1560 nm by the interplay between divided pulse amplification and nonlinear pulse compression. A small-core double-clad erbium-doped fiber with anomalous dispersion carries out the pulse amplification and simultaneously compresses the laser pulses such that a separate compressor is no longer necessary. A numeric simulation reveals the existence of an optimum fiber length for producing transform-limited pulses. Furthermore, frequency doubling to 780 nm with 240 mW average power and 98 fs pulse duration is achieved by using a periodically poled lithium niobate crystal at roommore » temperature.« less

  5. Proximity-dependent isothermal cycle amplification for small-molecule detection based on surface enhanced Raman scattering.

    PubMed

    Li, Ying; Zeng, Yan; Mao, Yaning; Lei, Chengcun; Zhang, Shusheng

    2014-01-15

    A novel proximity-dependent isothermal cycle amplification (PDICA) strategy has been proposed and successfully used for the determination of cocaine coupled with surface enhanced Raman scattering (SERS). For enhancing the SERS signal, Raman dye molecules modified bio-barcode DNA and gold nanoparticles (AuNPs) are used to prepare the Raman probes. Magnetic beads (MBs) are used as the carrier of amplification template and signal output products for circumventing the problem of high background induced by excess bio-barcode DNA. In the presence of target molecules, two label-free proximity probes can hybridize with each other and subsequently opens the hairpin connector-probe to perform the PDICA reaction including the target recycling amplification and strand-displacement amplification. As a result, abundant AuNPs Raman probes can be anchored on the surface of MBs and a low detection limit of 0.1 nM for cocaine is obtained. This assay also exhibits an excellent selectivity and has been successfully performed in human serum, which confirms the reliability and practicality of this protocol. © 2013 Elsevier B.V. All rights reserved.

  6. DNA typing by microbead arrays and PCR-SSP: apparent false-negative or -positive hybridization or amplification signals disclose new HLA-B and -DRB1 alleles.

    PubMed

    Rahal, M; Kervaire, B; Villard, J; Tiercy, J-M

    2008-03-01

    Human leukocyte antigen (HLA) typing by polymerase chain reaction-sequence-specific oligonucleotide (PCR-SSO) hybridization on solid phase (microbead assay) or polymerase chain reaction-sequence-specific primers (PCR-SSP) requires interpretation softwares to detect all possible allele combinations. These programs propose allele calls by taking into account false-positive or false-negative signal(s). The laboratory has the option to validate typing results in the presence of strongly cross-reacting or apparent false-negative signals. Alternatively, these seemingly aberrant signals may disclose novel variants. We report here four new HLA-B (B*5620 and B*5716) and HLA-DRB1 alleles (DRB1*110107 and DRB1*1474) that were detected by apparent false-negative or -positive hybridization or amplification patterns, and ultimately resolved by sequencing. To avoid allele misassignments, a comprehensive evaluation of acquired data as documented in a quality assurance system is therefore required to confirm unambiguous typing interpretation.

  7. Amplification without instability: applying fluid dynamical insights in chemistry and biology

    NASA Astrophysics Data System (ADS)

    McCoy, Jonathan H.

    2013-11-01

    While amplification of small perturbations often arises from instability, transient amplification is possible locally even in asymptotically stable systems. That is, knowledge of a system's stability properties can mislead one's intuition for its transient behaviors. This insight, which has an interesting history in fluid dynamics, has more recently been rediscovered in ecology. Surprisingly, many nonlinear fluid dynamical and ecological systems share linear features associated with transient amplification of noise. This paper aims to establish that these features are widespread in many other disciplines concerned with noisy systems, especially chemistry, cell biology and molecular biology. Here, using classic nonlinear systems and the graphical language of network science, we explore how the noise amplification problem can be reframed in terms of activatory and inhibitory interactions between dynamical variables. The interaction patterns considered here are found in a great variety of systems, ranging from autocatalytic reactions and activator-inhibitor systems to influential models of nerve conduction, glycolysis, cell signaling and circadian rhythms.

  8. Visualization of mcr mRNA in a methanogen by fluorescence in situ hybridization with an oligonucleotide probe and two-pass tyramide signal amplification (two-pass TSA-FISH).

    PubMed

    Kubota, Kengo; Ohashi, Akiyoshi; Imachi, Hiroyuki; Harada, Hideki

    2006-09-01

    Two-pass tyramide signal amplification-fluorescence in situ hybridization (two-pass TSA-FISH) with a horseradish peroxidase (HRP)-labeled oligonucleotide probe was applied to detect prokaryotic mRNA. In this study, mRNA of a key enzyme for methanogenesis, methyl coenzyme M reductase (mcr), in Methanococcus vannielii was targeted. Applicability of mRNA-targeted probes to in situ hybridization was verified by Clone-FISH. It was observed that sensitivity of two-pass TSA-FISH was significantly higher than that of TSA-FISH, which was further increased by the addition of dextran sulphate in TSA working solution. Signals from two-pass TSA-FISH were more reliable compared to the weak, spotty signals yielded by TSA-FISH.

  9. Electrochemical immunosensor with nanocellulose-Au composite assisted multiple signal amplification for detection of avian leukosis virus subgroup J.

    PubMed

    Liu, Chao; Dong, Jing; Waterhouse, Geoffrey I N; Cheng, Ziqiang; Ai, Shiyun

    2018-03-15

    A sensitive sandwich-type electrochemical immunosensor was developed for the detection of avian leukosis virus subgroup J (ALV-J), which benefitted from multiple signal amplification involving graphene-perylene-3,4,9,10-tetracarboxylic acid nanocomposites (GR-PTCA), nanocellulose-Au NP composites (NC-Au) and the alkaline phosphatase (ALP) catalytic reaction. GR-PTCA nanocomposites on glassy carbon electrodes served as the immunosensor platform. Due to their excellent electrical conductivity and abundant polycarboxylic sites, the GR-PTCA nanocomposites allowed fast electron transfer and good immobilization of primary antibodies, thereby affording a strong immunosensor signal in the presence of ALV-J. The detected signal could be further amplified by the introduction of NC-Au composites as a carrier of secondary antibodies (Ab 2 ) and by harnessing the catalytic properties of Au and ALP. Under optimized testing conditions, the electrochemical immunosensor displayed excellent analytical performance for the detection of ALV-J, showing a linear current response from 10 2.08 to 10 4.0 TCID 50 /mL (TCID 50 : 50% tissue culture infective dose) with a low detection limit of 10 1.98 TCID 50 /mL (S/N = 3). In addition to high sensitivity, the immunosensor showed very good selectivity, reproducibility and operational stability, demonstrating potential application for the quantitative detection of ALV-J in clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sound-Field Amplification: Preliminary Information Regarding Special Education Referrals

    ERIC Educational Resources Information Center

    Flexer, C.; Long, S.

    2004-01-01

    In this clinical exchange, the authors discuss acoustic accessibility and sound-field amplification in general education classrooms. They bridge theory to practice by presenting preliminary information from two different school systems demonstrating how an improved signal-to-noise ratio can have a positive impact on special education referrals.

  11. On the amplification of magnetic fields in cosmic filaments and galaxy clusters

    NASA Astrophysics Data System (ADS)

    Vazza, F.; Brüggen, M.; Gheller, C.; Wang, P.

    2014-12-01

    The amplification of primordial magnetic fields via a small-scale turbulent dynamo during structure formation might be able to explain the observed magnetic fields in galaxy clusters. The magnetization of more tenuous large-scale structures such as cosmic filaments is more uncertain, as it is challenging for numerical simulations to achieve the required dynamical range. In this work, we present magnetohydrodynamical cosmological simulations on large uniform grids to study the amplification of primordial seed fields in the intracluster medium (ICM) and in the warm-hot-intergalactic medium (WHIM). In the ICM, we confirm that turbulence caused by structure formation can produce a significant dynamo amplification, even if the amplification is smaller than what is reported in other papers. In the WHIM inside filaments, we do not observe significant dynamo amplification, even though we achieve Reynolds numbers of Re ˜ 200-300. The maximal amplification for large filaments is of the order of ˜100 for the magnetic energy, corresponding to a typical field of a few ˜nG starting from a primordial weak field of 10-10 G (comoving). In order to start a small-scale dynamo, we found that a minimum of ˜102 resolution elements across the virial radius of galaxy clusters was necessary. In filaments we could not find a minimum resolution to set off a dynamo. This stems from the inefficiency of supersonic motions in the WHIM in triggering solenoidal modes and small-scale twisting of magnetic field structures. Magnetic fields this small will make it hard to detect filaments in radio observations.

  12. Differential transimpedance amplifier circuit for correlated differential amplification

    DOEpatents

    Gresham, Christopher A [Albuquerque, NM; Denton, M Bonner [Tucson, AZ; Sperline, Roger P [Tucson, AZ

    2008-07-22

    A differential transimpedance amplifier circuit for correlated differential amplification. The amplifier circuit increase electronic signal-to-noise ratios in charge detection circuits designed for the detection of very small quantities of electrical charge and/or very weak electromagnetic waves. A differential, integrating capacitive transimpedance amplifier integrated circuit comprising capacitor feedback loops performs time-correlated subtraction of noise.

  13. Boronic Acid Functionalized Au Nanoparticles for Selective MicroRNA Signal Amplification in Fiber-Optic Surface Plasmon Resonance Sensing System.

    PubMed

    Qian, Siyu; Lin, Ming; Ji, Wei; Yuan, Huizhen; Zhang, Yang; Jing, Zhenguo; Zhao, Jianzhang; Masson, Jean-François; Peng, Wei

    2018-05-25

    MicroRNA (miRNA) regulates gene expression and plays a fundamental role in multiple biological processes. However, if both single-stranded RNA and DNA can bind with capture DNA on the sensing surface, selectively amplifying the complementary RNA signal is still challenging for researchers. Fiber-optic surface plasmon resonance (SPR) sensors are small, accurate, and convenient tools for monitoring biological interaction. In this paper, we present a high sensitivity microRNA detection technique using phenylboronic acid functionalized Au nanoparticles (PBA-AuNPs) in fiber-optic SPR sensing systems. Due to the inherent difficulty directly detecting the hybridized RNA on the sensing surface, the PBA-AuNPs were used to selectively amplify the signal of target miRNA. The result shows that the method has high selectivity and sensitivity for miRNA, with a detection limit at 2.7 × 10 -13 M (0.27 pM). This PBA-AuNPs amplification strategy is universally applicable for RNA detection with various sensing technologies, such as surface-enhanced Raman spectroscopy and electrochemistry, among others.

  14. CuO-induced signal amplification strategy for multiplexed photoelectrochemical immunosensing using CdS sensitized ZnO nanotubes arrays as photoactive material and AuPd alloy nanoparticles as electron sink.

    PubMed

    Sun, Guoqiang; Zhang, Yan; Kong, Qingkun; Zheng, Xiaoxiao; Yu, Jinghua; Song, Xianrang

    2015-04-15

    In this work, multiplexed photoelectrochemical (PEC) immunoassays are introduced into an indium tin oxide (ITO) device. Firstly, the ITO device is fabricated using a simple acid etch treatment method. Secondly, AuPd alloy nanoparticles are electro-deposited on ITO working electrodes as electron sink to construct the immunosensor platform. After that, ZnO nanotubes (ZNTs) arrays are synthesized via chemical etching of ZnO nanorods that are grown on AuPd surface by electrochemical deposition method. Subsequently, CdS is electro-deposited on ZNTs arrays and used as photoactive material. Then, CuO nanoseeds are labeled with signal antibodies and firstly used as PEC signal amplification label. The introduction of CuO brings signal amplification because of the conduction band (CB) of both CuO and ZnO are lower than that of CdS, CuO will compete the photo-induced electrons in CB of CdS with ZnO, leading to the decrease of the photocurrent intensity. Using cancer antigen 125, prostate specific antigen and α-fetoprotein as model analytes, the proposed immunoassay exhibits excellent precision and sensitivity. Meanwhile, this work provides a promising, addressable and simple strategy for the multi-detection of tumor markers. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Pt NPs and DNAzyme functionalized polymer nanospheres as triple signal amplification strategy for highly sensitive electrochemical immunosensor of tumour marker.

    PubMed

    Chang, Honghong; Zhang, Haochun; Lv, Jia; Zhang, Bing; Wei, Wenlong; Guo, Jingang

    2016-12-15

    Highly sensitive determination of tumour markers is the key for early diagnosis of cancer. Herein, triple signal amplification strategy resulting from polymer nanospheres, Pt NPs, and DNAzyme was proposed in the developed electrochemical immunosensor. First, electroactive polymer nanospheres were synthesized by infinite coordination polymerization of ferrocenedicarboxylic acid, which could generate strong electrochemical signals due to plentiful ferrocene molecules. Further, the polymer nanospheres were functionalized by Pt NPs and DNAzyme (hemin/G-quadruplex) with the ability of catalyzing H2O2, which contributes to enhance the electrochemical signals. The prepared conjugations were characterized by transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy (EDX). And the process of preparation was monitored by zeta potential. Based on the sandwich-type immunoassay, the electrochemical immunosensor was constructed employing the conjugations as signal tags. Under optimal conditions, the DPV peak increased with the increasing of alpha fetal protein (AFP) concentration, and the linear range was from 0.1pgmL(-1) to 100ngmL(-1) with low detection limit of 0.086pgmL(-1). Meanwhile, the designed immunosensor exhibited excellent selectivity and anti-interference property, good reproducibility and stability. More importantly, there were no significant differences in analyzing real clinical samples between designed immunosensor and commercial ELISA. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene.

    PubMed

    Xu, Huo; Jiang, Yifan; Liu, Dengyou; Liu, Kai; Zhang, Yafeng; Yu, Suhong; Shen, Zhifa; Wu, Zai-Sheng

    2018-06-29

    The sensitive detection of cancer-related genes is of great significance for early diagnosis and treatment of human cancers, and previous isothermal amplification sensing systems were often based on the reuse of target DNA, the amplification of enzymatic products and the accumulation of reporting probes. However, no reporting probes are able to be transformed into target species and in turn initiate the signal of other probes. Herein we reported a simple, isothermal and highly sensitive homogeneous assay system for tumor suppressor p53 gene detection based on a new autonomous DNA machine, where the signaling probe, molecular beacon (MB), was able to execute the function similar to target DNA besides providing the common signal. In the presence of target p53 gene, the operation of DNA machine can be initiated, and cyclical nucleic acid strand-displacement polymerization (CNDP) and nicking/polymerization cyclical amplification (NPCA) occur, during which the MB was opened by target species and cleaved by restriction endonuclease. In turn, the cleaved fragments could activate the next signaling process as target DNA did. According to the functional similarity, the cleaved fragment was called twin target, and the corresponding fashion to amplify the signal was named twin target self-amplification. Utilizing this newly-proposed DNA machine, the target DNA could be detected down to 0.1 pM with a wide dynamic range (6 orders of magnitude) and single-base mismatched targets were discriminated, indicating a very high assay sensitivity and good specificity. In addition, the DNA machine was not only used to screen the p53 gene in complex biological matrix but also was capable of practically detecting genomic DNA p53 extracted from A549 cell line. This indicates that the proposed DNA machine holds the potential application in biomedical research and early clinical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Organic electrochemical transistor based immunosensor for prostate specific antigen (PSA) detection using gold nanoparticles for signal amplification.

    PubMed

    Kim, Duck-Jin; Lee, Nae-Eung; Park, Joon-Shik; Park, In-Jun; Kim, Jung-Gu; Cho, Hyoung J

    2010-07-15

    We demonstrated a highly sensitive organic electrochemical transistor (OECT) based immunosensor with a low detection limit for prostate specific antigen/alpha1-antichymotrypsin (PSA-ACT) complex. The poly(styrenesulfonate) doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) based OECT with secondary antibody conjugated gold nanoparticles (AuNPs) provided a detection limit of the PSA-ACT complex as low as 1pg/ml, as well as improved sensitivity and a dynamic range, due to the role of AuNPs in the signal amplification. The sensor performances were particularly improved in the lower concentration range where the detection is clinically important for the preoperative diagnosis and screening of prostate cancer. This result shows that the OECT-based immunosensor can be used as a transducer platform acceptable to the point-of-care (POC) diagnostic systems and demonstrates adaptability of organic electronics to clinical applications. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Ultrahigh contrast from a frequency-doubled chirped-pulse-amplification beamline.

    PubMed

    Hillier, David; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hopps, Nicholas; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-06-20

    This paper describes frequency-doubled operation of a high-energy chirped-pulse-amplification beamline. Efficient type-I second-harmonic generation was achieved using a 3 mm thick 320 mm aperture KDP crystal. Shots were fired at a range of energies achieving more than 100 J in a subpicosecond, 527 nm laser pulse with a power contrast of 10(14).

  19. [Prognostic significance of MYCN amplification in children neuroblastic tumors].

    PubMed

    Niu, Huilin; Xu, Tao; Wang, Fenghua; Chen, Zhengrong; Gao, Qiu; Yi, Peng; Xia, Jianqing

    2015-02-01

    To summarize the clinicopathologic features of neuroblastic tumors (NT), and to explore the prognostic significance of MYCN amplification in NT. The clinicopathologic data of 267 NT were reviewed. MYCN gene amplification was detected by fluorescence in situ hybridization (FISH) in 119 cases and the relationship with pathological characteristics and prognostic significance were analyzed. The study included 267 cases of children NT from patients aged from 1 day to 13 years (median 27 months). The male to female ratio was 1.43. There were 38 cases (14.2%), 43 cases (16.1%), 71 cases (26.6%), and 115 cases (43.1%) of INSS stages I, II, III and IV respectively.Favorable histology group had 157 cases (59.9%); unfavorable histology group had 110 cases (40.1%).Of the 119 NT cases with MYCN FISH performed, 18 cases (15.1%) showed amplification and the signal ratio of MYCN to CEP2 was 4.08-43.29. One hundred and one cases of non-amplified MYCN included MYCN gain in 79 cases (66.3%) and MYCN negative in 22 cases (18.5%). MYCN expression showed significant difference (P = 0.000) between ages, gender, NT type and MKI, but not INPC and clinical stage (P > 0.05).Of the 18 cases with MYCN amplification, 3 were undifferentiated, and 15 poorly differentiated; 17 had high MKI and one moderate MKI. All 18 cases were in unfavorable histology group; the overall survival rate was 3/18, with an average survival time of (17.9 ± 2.4) months.Of the 101 MYCN non-amplification cases, the overall survival rate was 68.3% (69/101), with an average survival time of (29.8 ± 1.3) months. Survival analysis showed the cases with MYCN amplification had worse prognosis (P < 0.05). NT were commonly diagnosed in early ages and easily to metastasize. Most of cases with favorable histology. The cases of MYCN amplification showed unfavorable histology, and the majority cases with high MKI; The patients with MYCN gene amplification had poor prognosis.

  20. Ultrasensitive electrochemiluminescent aptasensor for ochratoxin A detection with the loop-mediated isothermal amplification.

    PubMed

    Yuan, Yali; Wei, Shiqiang; Liu, Guangpeng; Xie, Shunbi; Chai, Yaqin; Yuan, Ruo

    2014-02-06

    In this study, we for the first time presented an efficient, accurate, rapid, simple and ultrasensitive detection system for small molecule ochratoxin A (OTA) by using the integration of loop-mediated isothermal amplification (LAMP) technique and subsequently direct readout of LAMP amplicons with a signal-on electrochemiluminescent (ECL) system. Firstly, the dsDNA composed by OTA aptamer and its capture DNA were immobilized on the electrode. After the target recognition, the OTA aptamer bond with target OTA and subsequently left off the electrode, which effectively decreased the immobilization amount of OTA aptamer on electrode. Then, the remaining OTA aptamers on the electrode served as inner primer to initiate the LAMP reaction. Interestingly, the LAMP amplification was detected by monitoring the intercalation of DNA-binding Ru(phen)3(2+) ECL indictors into newly formed amplicons with a set of integrated electrodes. The ECL indictor Ru(phen)3(2+) binding to amplicons caused the reduction of the ECL intensity due to the slow diffusion of Ru(phen)3(2+)-amplicons complex to the electrode surface. Therefore, the presence of more OTA was expected to lead to the release of more OTA aptamer, which meant less OTA aptamer remained on electrode for producing LAMP amplicons, resulting in less Ru(phen)3(2+) interlaced into the formed amplicons within a fixed Ru(phen)3(2+) amount with an obviously increased ECL signal input. As a result, a detection limit as low as 10 fM for OTA was achieved. The aptasensor also has good reproducibility and stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Multiplex detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.

    PubMed

    Liu, Yacui; Zhang, Jiangyan; Tian, Jingxiao; Fan, Xiaofei; Geng, Hao; Cheng, Yongqiang

    2017-01-01

    A simple, highly sensitive, and specific assay was developed for the homogeneous and multiplex detection of microRNAs (miRNAs) by combining molecular beacon (MB) probes and T7 exonuclease-assisted cyclic amplification. An MB probe with five base pairs in the stem region without special modification can effectively prevent the digestion by T7 exonuclease. Only in the presence of target miRNA is the MB probe hybridized with the target miRNA, and then digested by T7 exonuclease in the 5' to 3' direction. At the same time, the target miRNA is released and subsequently initiates the nuclease-assisted cyclic digestion process, generating enhanced fluorescence signal significantly. The results show that the combination of T7 exonuclease-assisted cyclic amplification reaction and MB probe possesses higher sensitivity for miRNA detection. Moreover, multiplex detection of miRNAs was successfully achieved by designing two MB probes labeled with FAM and Cy3, respectively. As a result, the method opens a new pathway for the sensitive and multiplex detection of miRNAs as well as clinical diagnosis. Graphical Abstract A simple, highly sensitive, and specific assay was developed for the detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.

  2. Reduced graphene oxide decorated with gold nanoparticle as signal amplification element on ultra-sensitive electrochemiluminescence determination of caspase-3 activity and apoptosis using peptide based biosensor

    PubMed Central

    Khalilzadeh, Balal; Shadjou, Nasrin; Afsharan, Hadi; Eskandani, Morteza; Nozad Charoudeh, Hojjatollah; Rashidi, Mohammad-Reza

    2016-01-01

    Introduction:Growing demands for ultrasensitive biosensing have led to the development of numerous signal amplification strategies. In this report, a novel electrochemiluminescence (ECL) method was developed for the detection and determination of caspase-3 activity based on reduced graphene oxide sheets decorated by gold nanoparticles as signal amplification element and horseradish peroxidase enzyme (HRP) as ECL intensity enhancing agent. Methods: The ECL intensity of the luminol was improved by using the streptavidin coated magnetic beads and HRP in the presence of hydrogen peroxide. The cleavage behavior of caspase-3 was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques using biotinylated peptide (DEVD containing peptide) which was coated on reduced graphene oxide decorated with gold nanoparticle. The surface modification of graphene oxide was successfully confirmed by FTIR, UV-vis and x-ray spectroscopy. Results: ECL based biosensor showed that the linear dynamic range (LDR) and the lower limit of quantification (LLOQ) were 0.5-100 and 0.5 femtomolar (fM), respectively. Finally, the performance of the engineered peptide based biosensor was validated in the A549 cell line as real samples. Conclusion: The prepared peptide based biosensor could be considered as an excellent candidate for early detection of apoptosis, cell turnover, and cancer related diseases. PMID:27853677

  3. Discovery of a photoresponse amplification mechanism in compensated PN junctions

    NASA Astrophysics Data System (ADS)

    Zhou, Yuchun; Liu, Yu-Hsin; Rahman, Samia N.; Hall, David; Sham, L. J.; Lo, Yu-Hwa

    2015-01-01

    We report the experimental evidence of uncovering a photoresponse amplification mechanism in heavily doped, partially compensated silicon p-n junctions under very low bias voltage. We show that the observed photocurrent gain occurs at a bias that is more than an order of magnitude below the threshold voltage for conventional impact ionization. Moreover, contrary to the case of avalanche detectors and p-i-n diodes, the amplified photoresponse is enhanced rather than suppressed with increasing temperature. These distinctive characteristics lead us to hypothesize that the inelastic scattering between energetic electrons (holes) and the ionized impurities in the depletion and charge neutral regions of the p-n junction in a cyclic manner plays a significant role in the amplification process. Such an internal signal amplification mechanism, which occurs at much lower bias than impact ionization and favors room temperature over cryogenic temperature, makes it promising for practical device applications.

  4. A Sensitive Branched DNA HIV-1 Signal Amplification Viral Load Assay with Single Day Turnaround

    PubMed Central

    Baumeister, Mark A.; Zhang, Nan; Beas, Hilda; Brooks, Jesse R.; Canchola, Jesse A.; Cosenza, Carlo; Kleshik, Felix; Rampersad, Vinod; Surtihadi, Johan; Battersby, Thomas R.

    2012-01-01

    Branched DNA (bDNA) is a signal amplification technology used in clinical and research laboratories to quantitatively detect nucleic acids. An overnight incubation is a significant drawback of highly sensitive bDNA assays. The VERSANT® HIV-1 RNA 3.0 Assay (bDNA) (“Versant Assay”) currently used in clinical laboratories was modified to allow shorter target incubation, enabling the viral load assay to be run in a single day. To dramatically reduce the target incubation from 16–18 h to 2.5 h, composition of only the “Lysis Diluent” solution was modified. Nucleic acid probes in the assay were unchanged. Performance of the modified assay (assay in development; not commercially available) was evaluated and compared to the Versant Assay. Dilution series replicates (>950 results) were used to demonstrate that analytical sensitivity, linearity, accuracy, and precision for the shorter modified assay are comparable to the Versant Assay. HIV RNA-positive clinical specimens (n = 135) showed no significant difference in quantification between the modified assay and the Versant Assay. Equivalent relative quantification of samples of eight genotypes was demonstrated for the two assays. Elevated levels of several potentially interfering endogenous substances had no effect on quantification or specificity of the modified assay. The modified assay with drastically improved turnaround time demonstrates the viability of signal-amplifying technology, such as bDNA, as an alternative to the PCR-based assays dominating viral load monitoring in clinical laboratories. Highly sensitive bDNA assays with a single day turnaround may be ideal for laboratories with especially stringent cost, contamination, or reliability requirements. PMID:22479381

  5. A sensitive branched DNA HIV-1 signal amplification viral load assay with single day turnaround.

    PubMed

    Baumeister, Mark A; Zhang, Nan; Beas, Hilda; Brooks, Jesse R; Canchola, Jesse A; Cosenza, Carlo; Kleshik, Felix; Rampersad, Vinod; Surtihadi, Johan; Battersby, Thomas R

    2012-01-01

    Branched DNA (bDNA) is a signal amplification technology used in clinical and research laboratories to quantitatively detect nucleic acids. An overnight incubation is a significant drawback of highly sensitive bDNA assays. The VERSANT® HIV-1 RNA 3.0 Assay (bDNA) ("Versant Assay") currently used in clinical laboratories was modified to allow shorter target incubation, enabling the viral load assay to be run in a single day. To dramatically reduce the target incubation from 16-18 h to 2.5 h, composition of only the "Lysis Diluent" solution was modified. Nucleic acid probes in the assay were unchanged. Performance of the modified assay (assay in development; not commercially available) was evaluated and compared to the Versant Assay. Dilution series replicates (>950 results) were used to demonstrate that analytical sensitivity, linearity, accuracy, and precision for the shorter modified assay are comparable to the Versant Assay. HIV RNA-positive clinical specimens (n = 135) showed no significant difference in quantification between the modified assay and the Versant Assay. Equivalent relative quantification of samples of eight genotypes was demonstrated for the two assays. Elevated levels of several potentially interfering endogenous substances had no effect on quantification or specificity of the modified assay. The modified assay with drastically improved turnaround time demonstrates the viability of signal-amplifying technology, such as bDNA, as an alternative to the PCR-based assays dominating viral load monitoring in clinical laboratories. Highly sensitive bDNA assays with a single day turnaround may be ideal for laboratories with especially stringent cost, contamination, or reliability requirements.

  6. Enzyme-catalysed deposition of ultrathin silver shells on gold nanorods: a universal and highly efficient signal amplification strategy for translating immunoassay into a litmus-type test.

    PubMed

    Yang, Xinjian; Gao, Zhiqiang

    2015-04-25

    On the basis of enzyme-catalysed reduction of silver ions and consequent deposition of ultrathin silver shells on gold nanorods, a highly efficient signal amplification method for immunoassay is developed. For a model analyte prostate-specific antigen, a 10(4)-fold improvement over conventional enzyme-linked immunosorbent assay is accomplished by leveraging on the cumulative nature of the enzymatic reaction and the sensitive response of plasnomic gold nanorods to the deposition the silver shells.

  7. Enhanced detection of Rickettsia species in Ixodes pacificus using highly sensitive fluorescence in situ hybridization coupled with Tyramide Signal Amplification.

    PubMed

    Bagheri, Ghazaleh; Lehner, Jeremy D; Zhong, Jianmin

    2017-10-01

    Ixodes pacificus is a host of many bacteria including Rickettsia species phylotypes G021 and G022. As part of the overall goal of understanding interactions of phylotypes with their tick host, this study focused on molecular detection of rickettsiae in ovarian and midgut tissue of I. pacificus by fluorescent in situ hybridization (FISH), PCR, and ultrastructural analysis. Of three embedding media (Technovit 8100, Unicryl, and paraffin) tested for generating thin sections, tissues embedded in paraffin resulted in the visualization of bacteria with low autofluorescence in FISH. Digoxigenin-labeled probes were used in FISH to intensify bacterial hybridization signals using Tyramide Signal Amplification reaction. Using this technique, rickettsiae were detected in the cytoplasm of oocytes of I. pacificus. The presence of rickettsiae in the ovary and midgut was further confirmed by PCR and transmission electron microscopic analysis. Overall, the methods in this study can be used to identify locations of tick-borne bacteria in tick tissues and understand transmission routes of bacterial species in ticks. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Tyramide Signal Amplification Permits Immunohistochemical Analyses of Androgen Receptors in the Rat Prefrontal Cortex

    PubMed Central

    Low, Katelyn L.; Ma, Chunqi; Soma, Kiran K.

    2017-01-01

    Research on neural androgen receptors (ARs) has traditionally focused on brain regions that regulate reproductive and aggressive behaviors, such as the hypothalamus and amygdala. Although many cells in the prefrontal cortex (PFC) also express ARs, the number of ARs per cell appears to be much lower, and thus, AR immunostaining is often hard to detect and quantify in the PFC. Here, we demonstrate that biotin tyramide signal amplification (TSA) dramatically increases AR immunoreactivity in the rat brain, including critical regions of the PFC such as the medial PFC (mPFC) and orbitofrontal cortex (OFC). We show that TSA is useful for AR detection with both chromogenic and immunofluorescent immunohistochemistry. Double-labeling studies reveal that AR+ cells in the PFC and hippocampus are NeuN+ but not GFAP+ and thus primarily neuronal. Finally, in gonadally intact rats, more AR+ cells are present in the mPFC and OFC of males than of females. Future studies can use TSA to further examine AR immunoreactivity across ages, sexes, strains, and different procedures (e.g., fixation methods). In light of emerging evidence for the androgen regulation of executive function and working memory, these results may help understand the distribution and roles of ARs in the PFC. PMID:28438093

  9. Self similar solution of superradiant amplification of ultrashort laser pulses in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moghadasin, H.; Niknam, A. R., E-mail: a-niknam@sbu.ac.ir; Shokri, B.

    2015-05-15

    Based on the self-similar method, superradiant amplification of ultrashort laser pulses by the counterpropagating pump in a plasma is investigated. Here, we present a governing system of partial differential equations for the signal pulse and the motion of the electrons. These equations are transformed to ordinary differential equations by the self-similar method and numerically solved. It is found that the increase of the signal intensity is proportional to the square of the propagation distance and the signal frequency has a red shift. Also, depending on the pulse width, the signal breaks up into a train of short pulses or itsmore » duration decreases with the inverse square root of the distance. Moreover, we identified two distinct categories of the electrons by the phase space analysis. In the beginning, one of them is trapped in the ponderomotive potential well and oscillates while the other is untrapped. Over time, electrons of the second kind also join to the trapped electrons. In the potential well, the electrons are bunched to form an electron density grating which reflects the pump pulse into the signal pulse. It is shown that the backscattered intensity is enhanced with the increase of the electron bunching parameter which leads to the enhanced efficiency of superradiant amplification.« less

  10. Uniform amplification of phage display libraries in monodisperse emulsions.

    PubMed

    Matochko, Wadim L; Ng, Simon; Jafari, Mohammad R; Romaniuk, Joseph; Tang, Sindy K Y; Derda, Ratmir

    2012-09-01

    In this paper, we describe a complete experimental setup for the uniform amplification of libraries of phage. Uniform amplification, which multiplies every phage clone by the same amount irrespective of the growth rate of the clone is essential for phage-display screening. Amplification of phage libraries in a common solution is often non-uniform: it favors fast-growing clones and eliminates those that grow slower. This competition leads to elimination of many useful binding clones, and it is a major barrier to identification of ligands for targets with multiple binding sites such as cells, tissues, or mixtures of proteins. Uniform amplification is achieved by encapsulating individual phage clones into isolated compartments (droplets) of identical volume. Each droplet contains culture medium and an excess of host (Escherichia coli). Here, we describe microfluidics devices that generate mono-disperse droplet-based compartments, and optimal conditions for amplification of libraries of different size. We also describe the detailed synthesis of a perfluoro surfactant, which gives droplets exceptional stability. Droplets stabilized by this compound do not coalesce after many hours in shaking culture. We identified a commercially available compound (Krytox), which destabilizes these droplets to recover the amplified libraries. Overall, uniform amplification is a sequence of three simple steps: (1) encapsulation of mixture of phage and bacteria in droplets using microfluidics; (2) incubation of droplets in a shaking culture; (3) destabilization of droplets to harvest the amplified phage. We anticipate that this procedure can be easily adapted in any academic or industrial laboratory that uses phage display. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Collective Signal Processing in Cluster Chemotaxis: Roles of Adaptation, Amplification, and Co-attraction in Collective Guidance

    PubMed Central

    Camley, Brian A.; Zimmermann, Juliane; Levine, Herbert; Rappel, Wouter-Jan

    2016-01-01

    Single eukaryotic cells commonly sense and follow chemical gradients, performing chemotaxis. Recent experiments and theories, however, show that even when single cells do not chemotax, clusters of cells may, if their interactions are regulated by the chemoattractant. We study this general mechanism of “collective guidance” computationally with models that integrate stochastic dynamics for individual cells with biochemical reactions within the cells, and diffusion of chemical signals between the cells. We show that if clusters of cells use the well-known local excitation, global inhibition (LEGI) mechanism to sense chemoattractant gradients, the speed of the cell cluster becomes non-monotonic in the cluster’s size—clusters either larger or smaller than an optimal size will have lower speed. We argue that the cell cluster speed is a crucial readout of how the cluster processes chemotactic signals; both amplification and adaptation will alter the behavior of cluster speed as a function of size. We also show that, contrary to the assumptions of earlier theories, collective guidance does not require persistent cell-cell contacts and strong short range adhesion. If cell-cell adhesion is absent, and the cluster cohesion is instead provided by a co-attraction mechanism, e.g. chemotaxis toward a secreted molecule, collective guidance may still function. However, new behaviors, such as cluster rotation, may also appear in this case. Co-attraction and adaptation allow for collective guidance that is robust to varying chemoattractant concentrations while not requiring strong cell-cell adhesion. PMID:27367541

  12. Signal-transducing proteins for nanoelectronics.

    PubMed

    Pichierri, Fabio

    2006-12-01

    This aim of this article is to provide novel paradigms for 21st century nanoelectronics by taking inspiration from the biology of signal transduction events where Nature has solved many complex problems, particularly those concerned with signal integration and amplification.

  13. Enhanced Amplification and Fan-Out Operation in an All-Magnetic Transistor

    PubMed Central

    Barman, Saswati; Saha, Susmita; Mondal, Sucheta; Kumar, Dheeraj; Barman, Anjan

    2016-01-01

    Development of all-magnetic transistor with favorable properties is an important step towards a new paradigm of all-magnetic computation. Recently, we showed such possibility in a Magnetic Vortex Transistor (MVT). Here, we demonstrate enhanced amplification in MVT achieved by introducing geometrical asymmetry in a three vortex sequence. The resulting asymmetry in core to core distance in the three vortex sequence led to enhanced amplification of the MVT output. A cascade of antivortices travelling in different trajectories including a nearly elliptical trajectory through the dynamic stray field is found to be responsible for this amplification. This asymmetric vortex transistor is further used for a successful fan-out operation, which gives large and nearly equal gains in two output branches. This large amplification in magnetic vortex gyration in magnetic vortex transistor is proposed to be maintained for a network of vortex transistor. The above observations promote the magnetic vortex transistors to be used in complex circuits and logic operations. PMID:27624662

  14. High amplification of FGFR1 gene is a delayed poor prognostic factor in early stage ESCC patients

    PubMed Central

    Song, Qi; Liu, Yalan; Jiang, Dongxian; Wang, Haixing; Huang, Jie; Xu, Yifan; Sujie, Akesu; Zeng, Haiying; Xu, Chen; Hou, Yingyong

    2017-01-01

    Amplification of the fibroblast growth factor receptor 1 (FGFR1) is believed to predict response to FGFR inhibitors. The aim of this study was to investigate the frequency and the prognostic impact of FGFR1 amplification in patients with resected esophageal squamous cell carcinoma (ESCC) by using fluorescent in situ hybridization. Microarrayed paraffin embedded blocks were constructed, and the cohort of tissues came from 506 patients with ESCC. FGFR1 high amplification (FGFR1high) was defined by an FGFR1/centromere 8 ratio of ≥ 2.0, or average number of FGFR1 signals/tumor cell nucleus ≥ 6.0, or percentage of tumor cells containing ≥ 15 FGFR1 signals, or large cluster in ≥ 10% of cancer cells. FGFR1 low amplification was defined by ≥ 5 FGFR1 signals in ≥ 50% of cancer cells. Kaplan-Meier curves with log-rank tests and Cox proportional hazards model were used to analyze patients’ survival. Among 506 patients, high amplification, low amplification, and disomy were detected in 8.7%, 3.6% and 87.7%, respectively. In general, the FGFR1high group trended towards worse disease-free survival (DFS) and overall survival (OS) compared to the FGFR1 low amplification/disomy (FGFR1low/disomy) group (DFS, P=0.108; OS, P=0.112), but this trend was amplified for patients with DFS ≥ 30 months (DFS, P=0.009; OS, P=0.007). Furthermore, when patients were stratified into stage I-II and stage III-IV, the FGFR1high group directly presented with adverse DFS and OS than the FGFR1low/disomy group in stage I-II patients (DFS, P=0.019; OS, P=0.034), especially with DFS ≥ 30 months (DFS, P=0.002; OS, P=0.001). However, for patients in stage III-IV, FGFR1high had no effect on prognosis regardless of DFS time. FGFR1high occurs in a minority of ESCC, and it predicts delayed poor prognosis in stage I and II ESCC patients. PMID:29088806

  15. A novel restriction endonuclease GlaI for rapid and highly sensitive detection of DNA methylation coupled with isothermal exponential amplification reaction.

    PubMed

    Sun, Yueying; Sun, Yuanyuan; Tian, Weimin; Liu, Chenghui; Gao, Kejian; Li, Zhengping

    2018-02-07

    Sensitive and accurate detection of site-specific DNA methylation is of critical significance for early diagnosis of human diseases, especially cancers. Herein, for the first time we employ a novel methylation-dependent restriction endonuclease GlaI to detect site-specific DNA methylation in a highly specific and sensitive way by coupling with isothermal exponential amplification reaction (EXPAR). GlaI can only cut the methylated target site with excellent selectivity but leave the unmethylated DNA intact. Then the newly exposed end fragments of methylated DNA can trigger EXPAR for highly efficient signal amplification while the intact unmethylated DNA will not initiate EXPAR at all. As such, only the methylated DNA is quantitatively and faithfully reflected by the real-time fluorescence signal of the GlaI-EXPAR system, and the potential false positive interference from unmethylated DNA can be effectively eliminated. Therefore, by integrating the unique features of GlaI for highly specific methylation discrimination and EXPAR for rapid and powerful signal amplification, the elegant GlaI-EXPAR assay allows the direct quantification of methylated DNA with ultrahigh sensitivity and accuracy. The detection limit of methylated DNA target has been pushed down to the aM level and the whole detection process of GlaI-EXPAR can be accomplished within a short time of 2 h. More importantly, ultrahigh specificity is achieved and as low as 0.01% methylated DNA can be clearly identified in the presence of a large excess of unmethylated DNA. This GlaI-EXPAR is also demonstrated to be capable of determining site-specific DNA methylations in real genomic DNA samples. Sharing the distinct advantages of ultrahigh sensitivity, outstanding specificity and facile operation, this new GlaI-EXPAR strategy may provide a robust and reliable platform for the detection of site-specific DNA methylations with low abundances.

  16. Discovery of a photoresponse amplification mechanism in compensated PN junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuchun; Rahman, Samia N.; Hall, David

    2015-01-19

    We report the experimental evidence of uncovering a photoresponse amplification mechanism in heavily doped, partially compensated silicon p-n junctions under very low bias voltage. We show that the observed photocurrent gain occurs at a bias that is more than an order of magnitude below the threshold voltage for conventional impact ionization. Moreover, contrary to the case of avalanche detectors and p-i-n diodes, the amplified photoresponse is enhanced rather than suppressed with increasing temperature. These distinctive characteristics lead us to hypothesize that the inelastic scattering between energetic electrons (holes) and the ionized impurities in the depletion and charge neutral regions ofmore » the p-n junction in a cyclic manner plays a significant role in the amplification process. Such an internal signal amplification mechanism, which occurs at much lower bias than impact ionization and favors room temperature over cryogenic temperature, makes it promising for practical device applications.« less

  17. A Nanoporous Alumina Membrane Based Electrochemical Biosensor for Histamine Determination with Biofunctionalized Magnetic Nanoparticles Concentration and Signal Amplification

    PubMed Central

    Ye, Weiwei; Xu, Yifan; Zheng, Lihao; Zhang, Yu; Yang, Mo; Sun, Peilong

    2016-01-01

    Histamine is an indicator of food quality and indispensable in the efficient functioning of various physiological systems. Rapid and sensitive determination of histamine is urgently needed in food analysis and clinical diagnostics. Traditional histamine detection methods require qualified personnel, need complex operation processes, and are time-consuming. In this study, a biofunctionalized nanoporous alumina membrane based electrochemical biosensor with magnetic nanoparticles (MNPs) concentration and signal amplification was developed for histamine determination. Nanoporous alumina membranes were modified by anti-histamine antibody and integrated into polydimethylsiloxane (PDMS) chambers. The specific antibody modified MNPs were used to concentrate histamine from samples and transferred to the antibody modified nanoporous membrane. The MNPs conjugated to histamine were captured in the nanopores via specific reaction between histamine and anti-histamine antibody, resulting in a blocking effect that was amplified by MNPs in the nanopores. The blockage signals could be measured by electrochemical impedance spectroscopy across the nanoporous alumina membrane. The sensing platform had great sensitivity and the limit of detection (LOD) reached as low as 3 nM. This biosensor could be successfully applied for histamine determination in saury that was stored in frozen conditions for different hours, presenting a potentially novel, sensitive, and specific sensing system for food quality assessment and safety support. PMID:27782087

  18. Ultrasensitive electrochemical immunoassay of staphylococcal enterotoxin B in food using enzyme-nanosilica-doped carbon nanotubes for signal amplification.

    PubMed

    Tang, Dianping; Tang, Juan; Su, Biling; Chen, Guonan

    2010-10-27

    A new sandwich-type electrochemical immunoassay for ultrasensitive detection of staphylococcal enterotoxin B (SEB) in food was developed using horseradish peroxidase-nanosilica-doped multiwalled carbon nanotubes (HRPSiCNTs) for signal amplification. Rabbit polyclonal anti-SEB antibodies immobilized on the screen-printed carbon electrode (SPCE) and covalently bound to the HRPSiCNTs were used as capture antibodies and detection antibodies, respectively. In the presence of SEB analyte, the sandwich-type immunocomplex could be formed between the immobilized anti-SEB on the SPCE and anti-SEB-labeled HRPSiCNTs, and the carried HRP could catalyze the electrochemical reduction of H2O2 with the help of thionine. The high content of HRP in the HRPSiCNTs could greatly amplify the electrochemical signal. Under optimal conditions, the reduction current increased with the increase of SEB in the sample, and exhibited a dynamic range of 0.05-15 ng/mL with a low detection limit (LOD) of 10 pg/mL SEB (at 3σ). Intra- and interassay coefficients of variation were below 10%. In addition, the assay was evaluated with SEB spiked samples including watermelon juice, soymilk, apple juice, and pork food, receiving excellent correlation with results from commercially available enzyme-linked immunosorbent assay (ELISA).

  19. Use of Sequence-Independent, Single-Primer-Amplification (SISPA) for rapid detection, identification, and characterization of avian RNA viruses

    USDA-ARS?s Scientific Manuscript database

    Current technologies with next generation sequencing have revolutionized metagenomics analysis of clinical samples. To achieve the non-selective amplification and recovery of low abundance genetic sequences, a simplified Sequence-Independent, Single-Primer Amplification (SISPA) technique in combinat...

  20. Construction Strategy for an Internal Amplification Control for Real-Time Diagnostic Assays Using Nucleic Acid Sequence-Based Amplification: Development and Clinical Application

    PubMed Central

    Rodríguez-Lázaro, David; D'Agostino, Martin; Pla, Maria; Cook, Nigel

    2004-01-01

    An important analytical control in molecular amplification-based methods is an internal amplification control (IAC), which should be included in each reaction mixture. An IAC is a nontarget nucleic acid sequence which is coamplified simultaneously with the target sequence. With negative results for the target nucleic acid, the absence of an IAC signal indicates that amplification has failed. A general strategy for the construction of an IAC for inclusion in molecular beacon-based real-time nucleic acid sequence-based amplification (NASBA) assays is presented. Construction proceeds in two phases. In the first phase, a double-stranded DNA molecule that contains nontarget sequences flanked by target sequences complementary to the NASBA primers is produced. At the 5′ end of this DNA molecule is a T7 RNA polymerase binding sequence. In the second phase of construction, RNA transcripts are produced from the DNA by T7 RNA polymerase. This RNA is the IAC; it is amplified by the target NASBA primers and is detected by a molecular beacon probe complementary to the internal nontarget sequences. As a practical example, an IAC for use in an assay for the detection of Mycobacterium avium subsp. paratuberculosis is described, its incorporation and optimization within the assay are detailed, and its application to spiked and natural clinical samples is shown to illustrate the correct interpretation of the diagnostic results. PMID:15583319

  1. Direct RNA detection without nucleic acid purification and PCR: Combining sandwich hybridization with signal amplification based on branched hybridization chain reaction.

    PubMed

    Xu, Yao; Zheng, Zhi

    2016-05-15

    We have developed a convenient, robust and low-cost RNA detection system suitable for high-throughput applications. This system uses a highly specific sandwich hybridization to capture target RNA directly onto solid support, followed by on-site signal amplification via 2-dimensional, branched hybridizing chain polymerization through toehold-mediated strand displacement reaction. The assay uses SYBR Green to detect targets at concentrations as low as 1 pM, without involving nucleic acid purification or any enzymatic reaction, using ordinary oligonucleotides without modification or labeling. The system was demonstrated in the detection of malaria RNA in blood and GAPDH gene expression in cell lysate. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Novel electrochemiluminescence of perylene derivative and its application to mercury ion detection based on a dual amplification strategy.

    PubMed

    Zhao, Jing; Lei, Yan-Mei; Chai, Ya-Qin; Yuan, Ruo; Zhuo, Ying

    2016-12-15

    In this paper, a novel covalently crosslinked perylene derivative (PTC-PEI) composed of polyethylenimine (PEI) and perylenetetracarboxylic acid (PTCA) has been first investigated for cathodic electrochemiluminescence (ECL) in an aqueous system with dissolved O2 as coreactant. The promising novel ECL materials of PTC-PEI exhibited admirable physical and chemical stability and high ECL intensity, which held an alternative way to construct ECL sensor with improved sensitivity. Thus, it was applied to construct a dual amplified "signal-on" mercury ion (Hg(2+)) sensor by the employment of nicking endonuclease (NEase)-assisted target recycling and rolling circle amplification (RCA) for signal amplification. Herein, a long G-rich sequence was generated by RCA process to capture abundant hemin on the electrode surface, and then a significantly amplified ECL signal of PTC-PEI was obtained. Based on dual signal amplification strategy, the devised sensor showed a linear range from 0.1pM to 0.1μΜ with a detection limit down to 33fM (S/N=3), and was successfully used in the direct detection of real water sample with high sensitivity and selectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Pretreatment Dynamic Susceptibility Contrast MRI Perfusion in Glioblastoma: Prediction of EGFR Gene Amplification.

    PubMed

    Gupta, A; Young, R J; Shah, A D; Schweitzer, A D; Graber, J J; Shi, W; Zhang, Z; Huse, J; Omuro, A M P

    2015-06-01

    Molecular and genetic testing is becoming increasingly relevant in GBM. We sought to determine whether dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) perfusion imaging could predict EGFR-defined subtypes of GBM. We retrospectively identified 106 consecutive glioblastoma (GBM) patients with known EGFR gene amplification, and a subset of 65 patients who also had known EGFRvIII gene mutation status. All patients underwent T2* DSC MRI perfusion. DSC perfusion maps and T2* signal intensity time curves were evaluated, and the following measures of tumor perfusion were recorded: (1) maximum relative cerebral blood volume (rCBV), (2) relative peak height (rPH), and (3) percent signal recovery (PSR). The imaging metrics were correlated to EGFR gene amplification and EGFRvIII mutation status using univariate analyses. EGFR amplification was present in 44 (41.5 %) subjects and absent in 62 (58.5 %). Among the 65 subjects who had undergone EGFRvIII mutation transcript analysis, 18 subjects (27.7 %) tested positive for the EGFRvIII mutation, whereas 47 (72.3 %) did not. Higher median rCBV (3.31 versus 2.62, p = 0.01) and lower PSR (0.70 versus 0.78, p = 0.03) were associated with high levels of EGFR amplification. Higher median rPH (3.68 versus 2.76, p = 0.03) was associated with EGFRvIII mutation. DSC MRI perfusion may have a role in identifying patients with EGFR gene amplification and EGFRvIII gene mutation status, potential targets for individualized treatment protocols. Our results raise the need for further investigation for imaging biomarkers of genetically unique GBM subtypes.

  4. Amplification of trace amounts of nucleic acids

    DOEpatents

    Church, George M [Brookline, MA; Zhang, Kun [Brighton, MA

    2008-06-17

    Methods of reducing background during amplification of small amounts of nucleic acids employ careful analysis of sources of low level contamination. Ultraviolet light can be used to reduce nucleic acid contaminants in reagents and equipment. "Primer-dimer" background can be reduced by judicious design of primers. We have shown clean signal-to-noise with as little as starting material as one single human cell (.about.6 picogram), E. coli cell (.about.5 femtogram) or Prochlorococcus cell (.about.3 femtogram).

  5. Non-biased and efficient global amplification of a single-cell cDNA library

    PubMed Central

    Huang, Huan; Goto, Mari; Tsunoda, Hiroyuki; Sun, Lizhou; Taniguchi, Kiyomi; Matsunaga, Hiroko; Kambara, Hideki

    2014-01-01

    Analysis of single-cell gene expression promises a more precise understanding of molecular mechanisms of a living system. Most techniques only allow studies of the expressions for limited numbers of gene species. When amplification of cDNA was carried out for analysing more genes, amplification biases were frequently reported. A non-biased and efficient global-amplification method, which uses a single-cell cDNA library immobilized on beads, was developed for analysing entire gene expressions for single cells. Every step in this analysis from reverse transcription to cDNA amplification was optimized. By removing degrading excess primers, the bias due to the digestion of cDNA was prevented. Since the residual reagents, which affect the efficiency of each subsequent reaction, could be removed by washing beads, the conditions for uniform and maximized amplification of cDNAs were achieved. The differences in the amplification rates for randomly selected eight genes were within 1.5-folds, which could be negligible for most of the applications of single-cell analysis. The global amplification gives a large amount of amplified cDNA (>100 μg) from a single cell (2-pg mRNA), and that amount is enough for downstream analysis. The proposed global-amplification method was used to analyse transcript ratios of multiple cDNA targets (from several copies to several thousand copies) quantitatively. PMID:24141095

  6. Reverse strand-displacement amplification strategy for rapid detection of p53 gene.

    PubMed

    Wang, Lisha; Han, Ying; Xiao, Shuai; Lv, Sha; Wang, Cong; Zhang, Nan; Wang, Zhengyong; Tang, Yongqiong; Li, Hongbo; Lyu, Jianxin; Xu, Huo; Shen, Zhifa

    2018-09-01

    The development of rapid approaches to detect prognostic markers is significant in reducing the morbidity and mortality of cancer. In this paper, we describe a rapid and specific biosensing platform for target DNA (p53 gene as a model) detection based on reverse strand displacement amplification (R-SDA). When the p53 gene is added, multifuctional molecular beacon (MMB) is unfolded via the hybridization with p53 gene. With the assist of Klenow fragment (KF) and Nt.BbvCI (the nicking endonuclease), p53 gene recycling could be initiated and considerable amount of complementary sequences for the MMBs (Nicked fragments, NFs) could be formed, generating enhanced fluorescence signal. Using this amplification strategy, the proposed biosensor displays the detection limit of 1 nM and a wide linear range from 1 to 100 nM, even if only one type of probe is involved. Notably, remarkable detection specificity for single-base mismatched target p53 gene is achieved. Moreover, the described biosensor also exhibited the stability in real biological samples (human serum). The rapid detection strategy can be performed less than 30 min without harsh reaction conditions or expensive nanoparticles. This biosensor shows great potential for application in clinic assay, especially, for early cancer diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Raman Amplification and Tunable Pulse Delays in Silicon Waveguides

    NASA Astrophysics Data System (ADS)

    Rukhlenko, Ivan D.; Garanovich, Ivan L.; Premaratne, Malin; Sukhorukov, Andrey A.; Agrawal, Govind P.

    2010-10-01

    The nonlinear process of stimulated Raman scattering is important for silicon photonics as it enables optical amplification and lasing. However, generally employed numerical approaches provide very little insight into the contribution of different silicon Raman amplifier (SRA) parameters. In this paper, we solve the coupled pump-signal equations analytically and derive an exact formula for the envelope of a signal pulse when picosecond optical pulses are amplified inside a SRA pumped by a continuous-wave laser beam. Our solution is valid for an arbitrary pulse shape and fully accounts for the Raman gain-dispersion effects, including temporal broadening and group-velocity reduction. Our results are useful for optimizing the performance of SRAs and for engineering controllable signal delays.

  8. Tuning and amplification strategies for intravascular imaging coils.

    PubMed

    Yak, Nicolas; Anderson, Kevan J T; Wright, Graham A

    2012-11-01

    The manufacturing of intravascular imaging coils poses several challenges. Due to their size, it can be difficult to incorporate local matching networks and signal amplifiers. The goal of this study is to investigate tuning and amplification strategies for intravascular coils and to assess the signal-to-noise benefits of incorporating a matching network and/or miniature amplifier into catheter-based intravascular imaging devices at various locations in the signal chain. The results suggest that the use of a low-noise amplifier close to the receiving coil enables the use of miniature coaxial cables to be used despite being noisy. Moreover, an improvement in the signal-to-noise ratio of over 75% is presented over conventional intravascular coil configurations where the matching circuit and low-noise amplifier are placed at the proximal end. Therefore, designing devices for intravascular applications capable of generating high signal-to-noise ratio images becomes more feasible, also allowing for significant reductions in scan time. Copyright © 2011 Wiley Periodicals, Inc.

  9. High-performance and versatile electrochemical aptasensor based on self-supported nanoporous gold microelectrode and enzyme-induced signal amplification.

    PubMed

    Shi, Lei; Rong, Xiaojiao; Wang, Yan; Ding, Shiming; Tang, Wanying

    2018-04-15

    Herein, novel and versatile electrochemical aptasensors were constructed on a self-supported nanoporous gold (np-Au) microelectrode, integrating with an exonuclease III (Exo III) induced signal amplification strategy. Self-supported np-Au microelectrode with 3D bicontinuous nanoporous structures possesses tremendously large specific area, clean surface, high stability and biocompatibility, bringing about significant advantages in both molecular recognition and signal response. As paradigms, two analytes of bisphenol A (BPA) and ochratoxin A (OTA) were selected to demonstrate the superiority and versatility of designed aptasensors. Trace amounts of mDNA (associated with BPA or OTA concentration) hybridized with cDNA strands assembled on np-Au microelectrode, activating the cleavage reaction with Exo III. Thus, cDNA was digested and mDNA was released to undergo a new hybridization and cleavage cycle. Finally, residual cDNA strands were recognized by methylene blue labelled rDNA/AuNPs with the assistance of hDNA to generate the electrochemical signals, which were used to quantitatively monitor targets. Under the optimized conditions, prepared aptasensors exhibited wide linear ranges (25pg/mL to 2ng/mL for BPA, 10pg/mL to 5ng/mL for OTA) with ultralow detection limits (10pg/mL for BPA, 5pg/mL for OTA), excellent selectivity and stability, and reliable detection in real samples. This work opens a new horizon for constructing promising electrochemical aptasensors for environmental monitoring, medical diagnostics and food safety. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Enhanced solid-phase recombinase polymerase amplification and electrochemical detection.

    PubMed

    Del Río, Jonathan Sabaté; Lobato, Ivan Magriñà; Mayboroda, Olena; Katakis, Ioanis; O'Sullivan, Ciara K

    2017-05-01

    Recombinase polymerase amplification (RPA) is an elegant method for the rapid, isothermal amplification of nucleic acids. Here, we elucidate the optimal surface chemistry for rapid and efficient solid-phase RPA, which was fine-tuned in order to obtain a maximum signal-to-noise ratio, defining the optimal DNA probe density, probe-to-lateral spacer ratio (1:0, 1:1, 1:10 and 1:100) and length of a vertical spacer of the probe as well as investigating the effect of different types of lateral spacers. The use of different labelling strategies was also examined in order to reduce the number of steps required for the analysis, using biotin or horseradish peroxidase-labelled reverse primers. Optimisation of the amplification temperature used and the use of surface blocking agents were also pursued. The combination of these changes facilitated a significantly more rapid amplification and detection protocol, with a lowered limit of detection (LOD) of 1 · 10 -15 M. The optimised protocol was applied to the detection of Francisella tularensis in real samples from hares and a clear correlation with PCR and qPCR results observed and the solid-phase RPA demonstrated to be capable of detecting 500 fM target DNA in real samples. Graphical abstract Relative size of thiolated lateral spacers tested versus the primer and the uvsx recombinase protein.

  11. Phase-preserving wavefront amplification at 590 nm by stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Wick, D. V.; Gruneisen, M. T.; Peterson, P. R.

    1998-03-01

    This paper presents an experimental demonstration of high-gain optical-wavefront amplification by stimulated Raman scattering near the D 1 resonance in atomic sodium vapor. Single-pass weak-field gain of nearly 400 is achieved with only 800 mW of pump power. Through judicious focusing, the weak wavefront is confined to the central region of the focused pump wave where saturation of the dispersion profile minimizes phase distortions due to self-focusing effects. Phase-preserving amplification is demonstrated by interferometric measurements of an amplified TEM 00 wavefront.

  12. Optical back propagation for fiber optic networks with hybrid EDFA Raman amplification.

    PubMed

    Liang, Xiaojun; Kumar, Shiva

    2017-03-06

    We have investigated an optical back propagation (OBP) method to compensate for propagation impairments in fiber optic networks with lumped Erbium doped fiber amplifier (EDFA) and/or distributed Raman amplification. An OBP module consists of an optical phase conjugator (OPC), optical amplifiers and dispersion varying fibers (DVFs). We derived a semi-analytical expression that calculates the dispersion profile of DVF. The OBP module acts as a nonlinear filter that fully compensates for the nonlinear distortions due to signal propagation in a transmission fiber, and is applicable for fiber optic networks with reconfigurable optical add-drop multiplexers (ROADMs). We studied a wavelength division multiplexing (WDM) network with 3000 km transmission distance and 64-quadrature amplitude modulation (QAM) modulation. OBP brings 5.8 dB, 5.9 dB and 6.1 dB Q-factor gains over linear compensation for systems with full EDFA amplification, hybrid EDFA/Raman amplification, and full Raman amplification, respectively. In contrast, digital back propagation (DBP) or OPC-only systems provide only 0.8 ~ 1.5 dB Q-factor gains.

  13. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities.

    PubMed

    Wu, Yushu; Yan, Ping; Xu, Xiaowen; Jiang, Wei

    2016-03-07

    Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses.

  14. The μ-RWELL: A compact, spark protected, single amplification-stage MPGD

    NASA Astrophysics Data System (ADS)

    Poli Lener, M.; Bencivenni, G.; de Olivera, R.; Felici, G.; Franchino, S.; Gatta, M.; Maggi, M.; Morello, G.; Sharma, A.

    2016-07-01

    In this work we present two innovative architectures of resistive MPGDs based on the WELL-amplification concept: - the micro-Resistive WELL (μ-RWELL) is a compact spark-protected single amplification-stage Micro-Pattern Gas Detector (MPGD). The amplification stage, realized with a structure very similar to a GEM foil (called WELL), is embedded through a resistive layer in the readout board. A cathode electrode, defining the gas conversion/drift gap, completes the detector mechanics. The new architecture, showing an excellent space resolution, 50 μm, is a very compact device, robust against discharges and exhibiting a large gain (>104), simple to construct and easy for engineering and then suitable for large area tracking devices as well as digital calorimeters. - the Fast Timing Micro-pattern (FTM): a new device with an architecture based on a stack of several coupled full-resistive layers where drift and multiplication stages (WELL type) alternate in the structure. The signals from each multiplication stage can be read out from any external readout boards through the capacitive couplings, providing a signal with a gain of 104-105. The main advantage of this new device is the improvement of the timing provided by the competition of the ionization processes in the different drift regions, which can be exploited for fast timing at the high luminosity accelerators (e.g. HL-LHC upgrade) as well as for applications like medical imaging.

  15. An ion-gated bipolar amplifier for ion sensing with enhanced signal and improved noise performance

    NASA Astrophysics Data System (ADS)

    Zhang, Da; Gao, Xindong; Chen, Si; Norström, Hans; Smith, Ulf; Solomon, Paul; Zhang, Shi-Li; Zhang, Zhen

    2014-08-01

    This work presents a proof-of-concept ion-sensitive device operating in electrolytes. The device, i.e., an ion-gated bipolar amplifier (IGBA), consists of a modified ion-sensitive field-effect transistor (ISFET) intimately integrated with a vertical bipolar junction transistor for immediate current amplification without introducing additional noise. With the current non-optimized design, the IGBA is already characterized by a 70-fold internal amplification of the ISFET output signal. This signal amplification is retained when the IGBA is used for monitoring pH variations. The tight integration significantly suppresses the interference of the IGBA signal by external noise, which leads to an improvement in signal-to-noise performance compared to its ISFET reference. The IGBA concept is especially suitable for biochips with millions of electric sensors that are connected to peripheral readout circuitry via extensive metallization which may in turn invite external interferences leading to contamination of the signal before it reaches the first external amplification stage.

  16. Visual and highly sensitive detection of cancer cells by a colorimetric aptasensor based on cell-triggered cyclic enzymatic signal amplification.

    PubMed

    Zhang, Xianxia; Xiao, Kunyi; Cheng, Liwei; Chen, Hui; Liu, Baohong; Zhang, Song; Kong, Jilie

    2014-06-03

    Rapid and efficient detection of cancer cells at their earliest stages is one of the central challenges in cancer diagnostics. We developed a simple, cost-effective, and highly sensitive colorimetric method for visually detecting rare cancer cells based on cell-triggered cyclic enzymatic signal amplification (CTCESA). In the absence of target cells, hairpin aptamer probes (HAPs) and linker DNAs stably coexist in solution, and the linker DNA assembles DNA-AuNPs, producing a purple solution. In the presence of target cells, the specific binding of HAPs to the target cells triggers a conformational switch that results in linker DNA hybridization and cleavage by nicking endonuclease-strand scission cycles. Consequently, the cleaved fragments of linker DNA can no longer assemble into DNA-AuNPs, resulting in a red color. UV-vis spectrometry and photograph analyses demonstrated that this CTCESA-based method exhibited selective and sensitive colorimetric responses to the presence of target CCRF-CEM cells, which could be detected by the naked eye. The linear response for CCRF-CEM cells in a concentration range from 10(2) to 10(4) cells was obtained with a detection limit of 40 cells, which is approximately 20 times lower than the detection limit of normal AuNP-based methods without amplification. Given the high specificity and sensitivity of CTCESA, this colorimetric method provides a sensitive, label-free, and cost-effective approach for early cancer diagnosis and point-to-care applications.

  17. Gene amplification during myogenic differentiation

    PubMed Central

    Fischer, Ulrike; Ludwig, Nicole; Raslan, Abdulrahman; Meier, Carola; Meese, Eckart

    2016-01-01

    Gene amplifications are mostly an attribute of tumor cells and drug resistant cells. Recently, we provided evidence for gene amplifications during differentiation of human and mouse neural progenitor cells. Here, we report gene amplifications in differentiating mouse myoblasts (C2C12 cells) covering a period of 7 days including pre-fusion, fusion and post-fusion stages. After differentiation induction we found an increase in copy numbers of CDK4 gene at day 3, of NUP133 at days 4 and 7, and of MYO18B at day 4. The amplification process was accompanied by gamma-H2AX foci that are indicative of double stand breaks. Amplifications during the differentiating process were also found in primary human myoblasts with the gene CDK4 and NUP133 amplified both in human and mouse myoblasts. Amplifications of NUP133 and CDK4 were also identified in vivo on mouse transversal cryosections at stage E11.5. In the course of myoblast differentiation, we found amplifications in cytoplasm indicative of removal of amplified sequences from the nucleus. The data provide further evidence that amplification is a fundamental mechanism contributing to the differentiation process in mammalians. PMID:26760505

  18. Weak value amplification considered harmful

    NASA Astrophysics Data System (ADS)

    Ferrie, Christopher; Combes, Joshua

    2014-03-01

    We show using statistically rigorous arguments that the technique of weak value amplification does not perform better than standard statistical techniques for the tasks of parameter estimation and signal detection. We show that using all data and considering the joint distribution of all measurement outcomes yields the optimal estimator. Moreover, we show estimation using the maximum likelihood technique with weak values as small as possible produces better performance for quantum metrology. In doing so, we identify the optimal experimental arrangement to be the one which reveals the maximal eigenvalue of the square of system observables. We also show these conclusions do not change in the presence of technical noise.

  19. A Sweet Spot for Molecular Diagnostics: Coupling Isothermal Amplification and Strand Exchange Circuits to Glucometers

    NASA Astrophysics Data System (ADS)

    Du, Yan; Hughes, Randall A.; Bhadra, Sanchita; Jiang, Yu Sherry; Ellington, Andrew D.; Li, Bingling

    2015-06-01

    Strand exchange nucleic acid circuitry can be used to transduce isothermal nucleic acid amplification products into signals that can be readable on an off-the-shelf glucometer. Loop-mediated isothermal amplification (LAMP) is limited by the accumulation of non-specific products, but nucleic acid circuitry can be used to probe and distinguish specific amplicons. By combining this high temperature isothermal amplification method with a thermostable invertase, we can directly transduce Middle-East respiratory syndrome coronavirus and Zaire Ebolavirus templates into glucose signals, with a sensitivity as low as 20-100 copies/μl, equating to atto-molar (or low zepto-mole). Virus from cell lysates and synthetic templates could be readily amplified and detected even in sputum or saliva. An OR gate that coordinately triggered on viral amplicons further guaranteed fail-safe virus detection. The method describes has potential for accelerating point-of-care applications, in that biological samples could be applied to a transducer that would then directly interface with an off-the-shelf, approved medical device.

  20. Four photon parametric amplification. [in unbiased Josephson junction

    NASA Technical Reports Server (NTRS)

    Parrish, P. T.; Feldman, M. J.; Ohta, H.; Chiao, R. Y.

    1974-01-01

    An analysis is presented describing four-photon parametric amplification in an unbiased Josephson junction. Central to the theory is the model of the Josephson effect as a nonlinear inductance. Linear, small signal analysis is applied to the two-fluid model of the Josephson junction. The gain, gain-bandwidth product, high frequency limit, and effective noise temperature are calculated for a cavity reflection amplifier. The analysis is extended to multiple (series-connected) junctions and subharmonic pumping.

  1. Gold nanoparticle labeling with tyramide signal amplification for highly sensitive detection of alpha fetoprotein in human serum by ICP-MS.

    PubMed

    Li, Xiaoting; Chen, Beibei; He, Man; Xiao, Guangyang; Hu, Bin

    2018-01-01

    In this work, we developed an immunoassay based on tyramide signal amplification (TSA) and gold nanoparticles (Au NPs) labeling for highly sensitive detection of alpha fetoprotein (AFP) by inductively coupled plasma mass spectrometry (ICP-MS). AFP was captured by anti-AFP1 coating on the 96-well plate and labeled by anti-AFP2-horseradish peroxidase (HRP), in which the HRP can catalyze the deposition of biotinylated tyramine on the nearby protein. Then the streptavidin (SA)-Au NPs was labeled on the deposited biotinylated tyramine as the intensive signal probe for ICP-MS measurement. Under the optimal experimental conditions, the limit of detection of the developed method for AFP was 1.85pg/mL and the linear range was 0.005-2ng/mL. The relative standard deviation for seven replicate detections of 0.01ng/mL AFP was 5.2%. The proposed method was successfully applied to the detection of AFP in human serum with good recoveries. This strategy is highly sensitive and easy to operate, and can be extended to the sensitive detection of other biomolecules in human serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  3. Irreversible Catalyst Activation Enables Hyperpolarization and Water Solubility for NMR Signal Amplification by Reversible Exchange

    PubMed Central

    2015-01-01

    Activation of a catalyst [IrCl(COD)(IMes)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene; COD = cyclooctadiene)] for signal amplification by reversible exchange (SABRE) was monitored by in situ hyperpolarized proton NMR at 9.4 T. During the catalyst-activation process, the COD moiety undergoes hydrogenation that leads to its complete removal from the Ir complex. A transient hydride intermediate of the catalyst is observed via its hyperpolarized signatures, which could not be detected using conventional nonhyperpolarized solution NMR. SABRE enhancement of the pyridine substrate can be fully rendered only after removal of the COD moiety; failure to properly activate the catalyst in the presence of sufficient substrate can lead to irreversible deactivation consistent with oligomerization of the catalyst molecules. Following catalyst activation, results from selective RF-saturation studies support the hypothesis that substrate polarization at high field arises from nuclear cross-relaxation with hyperpolarized 1H spins of the hydride/orthohydrogen spin bath. Importantly, the chemical changes that accompanied the catalyst’s full activation were also found to endow the catalyst with water solubility, here used to demonstrate SABRE hyperpolarization of nicotinamide in water without the need for any organic cosolvent—paving the way to various biomedical applications of SABRE hyperpolarization methods. PMID:25372972

  4. Amplification of unscheduled DNA synthesis signal enables fluorescence-based single cell quantification of transcription-coupled nucleotide excision repair

    PubMed Central

    Wienholz, Franziska; Vermeulen, Wim

    2017-01-01

    Abstract Nucleotide excision repair (NER) comprises two damage recognition pathways: global genome NER (GG-NER) and transcription-coupled NER (TC-NER), which remove a wide variety of helix-distorting lesions including UV-induced damage. During NER, a short stretch of single-stranded DNA containing damage is excised and the resulting gap is filled by DNA synthesis in a process called unscheduled DNA synthesis (UDS). UDS is measured by quantifying the incorporation of nucleotide analogues into repair patches to provide a measure of NER activity. However, this assay is unable to quantitatively determine TC-NER activity due to the low contribution of TC-NER to the overall NER activity. Therefore, we developed a user-friendly, fluorescence-based single-cell assay to measure TC-NER activity. We combined the UDS assay with tyramide-based signal amplification to greatly increase the UDS signal, thereby allowing UDS to be quantified at low UV doses, as well as DNA-repair synthesis of other excision-based repair mechanisms such as base excision repair and mismatch repair. Importantly, we demonstrated that the amplified UDS is sufficiently sensitive to quantify TC-NER-derived repair synthesis in GG-NER-deficient cells. This assay is important as a diagnostic tool for NER-related disorders and as a research tool for obtaining new insights into the mechanism and regulation of excision repair. PMID:28088761

  5. Parallel pumping for magnon spintronics: Amplification and manipulation of magnon spin currents on the micron-scale

    NASA Astrophysics Data System (ADS)

    Brächer, T.; Pirro, P.; Hillebrands, B.

    2017-06-01

    Magnonics and magnon spintronics aim at the utilization of spin waves and magnons, their quanta, for the construction of wave-based logic networks via the generation of pure all-magnon spin currents and their interfacing with electric charge transport. The promise of efficient parallel data processing and low power consumption renders this field one of the most promising research areas in spintronics. In this context, the process of parallel parametric amplification, i.e., the conversion of microwave photons into magnons at one half of the microwave frequency, has proven to be a versatile tool to excite and to manipulate spin waves. Its beneficial and unique properties such as frequency and mode-selectivity, the possibility to excite spin waves in a wide wavevector range and the creation of phase-correlated wave pairs, have enabled the achievement of important milestones like the magnon Bose-Einstein condensation and the cloning and trapping of spin-wave packets. Parallel parametric amplification, which allows for the selective amplification of magnons while conserving their phase is, thus, one of the key methods of spin-wave generation and amplification. The application of parallel parametric amplification to CMOS-compatible micro- and nano-structures is an important step towards the realization of magnonic networks. This is motivated not only by the fact that amplifiers are an important tool for the construction of any extended logic network but also by the unique properties of parallel parametric amplification. In particular, the creation of phase-correlated wave pairs allows for rewarding alternative logic operations such as a phase-dependent amplification of the incident waves. Recently, the successful application of parallel parametric amplification to metallic microstructures has been reported which constitutes an important milestone for the application of magnonics in practical devices. It has been demonstrated that parametric amplification provides an

  6. Quantitation of HBV DNA in human serum using a branched DNA (bDNA) signal amplification assay.

    PubMed

    Hendricks, D A; Stowe, B J; Hoo, B S; Kolberg, J; Irvine, B D; Neuwald, P D; Urdea, M S; Perrillo, R P

    1995-11-01

    The aim of this study was to establish the performance characteristics of a nonradioisotopic branched DNA (bDNA) signal amplification assay for quantitation of hepatitis B virus (HBV) DNA in human serum. Quantitation was determined from a standard curve and expressed as HBV DNA equivalents/mL (Eq/mL; 285,000 Eq = 1 pg of double stranded HBV DNA). The bDNA assay exhibited a nearly four log dynamic range of quantitation and an analytical detection limit of approximately 100,000 Eq/mL. To ensure a specificity of 99.7%, the quantitation limit was set at 700,000 Eq/mL. The interassay percent coefficient of variance for quantification values ranged from 10% to 15% when performed by novice users with different sets of reagents. Using the bDNA assay, HBV DNA was detected in 94% to 100% of hepatitis B e antigen-positive specimens and 27% to 31% of hepatitis B e antigen-negative specimens from chronic HBV-infected patients. The bDNA assay may be useful as a prognostic and therapy monitoring tool for the management of HBV-infected patients undergoing antiviral treatment.

  7. Real-time quantitative PCR detection of circulating tumor cells using tag DNA mediated signal amplification strategy.

    PubMed

    Mei, Ting; Lu, Xuewen; Sun, Ning; Li, Xiaomei; Chen, Jitao; Liang, Min; Zhou, Xinke; Fang, Zhiyuan

    2018-06-05

    The level of circulating tumor cell (CTCs) is a reliable marker for tumor burden and malignant progression. Quantification of CTCs remains technically challenging due to the rarity of these cells in peripheral blood. In the present study, we established a real-time quantitative PCR (Q-PCR) based method for sensitive detection of CTCs without DNA extraction. Blood sample was first turned to erythrocyte lyses and then incubated with two antibodies, tag-DNA modified CK-19 antibody and magnetic beads conjugated EpCAM antibody. Tumor cells were further enriched by magnetic separation. Tag-DNA that immobilized on tumor cells through CK-19 antibodies were also retrieved, which was further quantified by Q-PCR. This assay was able to detect single tumor cell in a 5 mL blood sample. The detection rate of clinical tumor blood sample was 92.3%. Furthermore, CTC count in patient was correlated with tumor stage and tumor status. The signal amplification was based on tag DNA rather than tumor gene, which was independent of nucleic acid extraction. With high sensitivity and convenience, this method can be a good alternative for the determination of cancer progress. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. MET amplification, expression, and exon 14 mutations in colorectal adenocarcinoma.

    PubMed

    Zhang, Meng; Li, Guichao; Sun, Xiangjie; Ni, Shujuan; Tan, Cong; Xu, Midie; Huang, Dan; Ren, Fei; Li, Dawei; Wei, Ping; Du, Xiang

    2018-04-08

    MET amplification, expression, and splice mutations at exon 14 result in dysregulation of the MET signaling pathway. The aim of this study was to identify the relationship between MET amplification, protein or mRNA expression, and mutations in colorectal cancer (CRC). MET immunohistochemistry (IHC) was used for MET protein expression analysis and fluorescence in situ hybridization (FISH) was used for MET amplification detection. Both analyses were performed in tissue microarrays (TMA) containing 294 of colorectal adenocarcinoma tissue samples and 131 samples of adjacent normal epithelial tissue. MET mRNA expression was examined by real-time quantitative polymerase chain reaction (qRT-PCR) in 72 fresh colorectal adenocarcinoma tissue samples and adjacent normal colon tissue. PCR sequencing was performed to screen for MET exon 14 splice mutations in 59 fresh CRC tissue samples. Our results showed that MET protein expression was higher in colorectal tumor tissue than in adjacent normal intestinal epithelium. Positive MET protein expression was associated with significantly poorer overall survival (OS) and disease-free survival (DFS). Multivariate analysis revealed that positive MET protein expression was an independent risk factor for DFS, but not for OS. MET mRNA expression was upregulated in tumor tissues compared with the adjacent normal tissues. The incidence of MET amplification was 4.4%. None of the patients was positive for MET mutation. Collectively, MET was overexpressed in colorectal adenocarcinoma, and its positive protein expression predicted a poorer outcome in CRC patients. Furthermore, according to our results, MET amplification and 14 exon mutation are extremely rare events in colorectal adenocarcinoma. Copyright © 2018. Published by Elsevier Inc.

  9. An electrochemical biosensor for microRNA-196a detection based on cyclic enzymatic signal amplification and template-free DNA extension reaction with the adsorption of methylene blue.

    PubMed

    Guo, Jing; Yuan, Changjing; Yan, Qi; Duan, Qiuyue; Li, Xiaolu; Yi, Gang

    2018-05-15

    A simple and sensitive electrochemical biosensor was developed for microRNA-196a detection, which is of important diagnostic significance for pancreatic cancer. It was based on cyclic enzymatic signal amplification (CESA) and template-free DNA extension reaction. In the presence of microRNA-196a, duplex-specific nuclease (DSN) catalyzed the digestion of the 3'-PO 4 terminated capture probe (CP), resulting in the target recycling amplification. Meanwhile, the 3'-OH terminal of CP was exposed. Then, template-free DNA extension reaction was triggered by terminal deoxynucleotidyl transferase (TdT), producing amounts of single-stranded DNA (ssDNA). After ssDNA absorbed numerous methylene blue (MB), an ultrasensitive electrochemical readout was obtained. Based on this dual amplification mechanism, the proposed biosensor exhibited a high sensitivity for detection of microRNA-196a down to 15 aM with a linear range from 0.05 fM to 50 pM. This biosensor displayed high specificity, which could discriminate target microRNAs from one base mismatched microRNAs. It also showed good reproducibility and stability. Furthermore, it was successfully applied to the determination of microRNA-196a in plasma samples. In conclusion, with the excellent analytical performance, this biosensor might have the potential for application in clinical diagnostics of pancreatic cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Quantum-limited amplification with a nonlinear cavity detector

    NASA Astrophysics Data System (ADS)

    Laflamme, C.; Clerk, A. A.

    2011-03-01

    We consider the quantum measurement properties of a driven cavity with a Kerr-type nonlinearity that is used to amplify a dispersively coupled input signal. Focusing on an operating regime that is near a bifurcation point, we derive simple asymptotic expressions describing the cavity’s noise and response. We show that the cavity’s backaction and imprecision noise allow for quantum-limited linear amplification and position detection only if one is able to utilize the sizable correlations between these quantities. This is possible when one amplifies a nonresonant signal but is not possible in quantum nondemolition qubit detection. We also consider the possibility of using the nonlinear cavity’s backaction for cooling a mechanical mode.

  11. Benefits of the fiber optic versus the electret microphone in voice amplification.

    PubMed

    Kyriakou, Kyriaki; Fisher, Hélène R

    2013-01-01

    Voice disorders that result in reduced loudness may cause difficulty in communicating, socializing and participating in occupational activities. Amplification is often recommended in order to facilitate functional communication, reduce vocal load and avoid developing maladaptive compensatory behaviours. The most common microphone used with amplification systems is the electret microphone. One alternate form of microphone is the fiber optic microphone. To examine the benefits of the fiber optic (1190S) versus the electret (M04) microphone as measured by objective and subjective parameters in the amplification of a patient's voice with reduced loudness caused by neurological and/or respiratory-based problems. Eighteen patients with vocal fold paralysis, Parkinson's disease and/or chronic obstructive pulmonary disease (COPD) participated in the study. The study contained a measurement of intensity, amplitude perturbation and signal-to-noise ratio during a sustained vowel production and a measurement of intensity during conversation with the use of the two microphones simultaneously. It also included the completion of a questionnaire indicating the patient's satisfaction with each microphone. The fiber optic (1190S) microphone had better objective acoustic performance (i.e. lower amplitude perturbation, higher signal-to-noise ratio and higher intensity) than the electret (M04) microphone. It also had better patient subjective satisfaction (i.e. less conspicuousness, more voice clarity, less acoustic feedback, more loudness and more utilization) than the electret microphone. Patients with neurological and/or respiratory-based voice problems may more confidently and frequently use the fiber optic microphone to communicate, socialize and participate in occupational activities more easily. Speech-language pathologists may more confidently use or recommend the fiber optic microphone with amplification systems. © 2012 Royal College of Speech and Language Therapists.

  12. An ultrasensitive electrochemical biosensor for polynucleotide kinase assay based on gold nanoparticle-mediated lambda exonuclease cleavage-induced signal amplification.

    PubMed

    Cui, Lin; Li, Yueying; Lu, Mengfei; Tang, Bo; Zhang, Chun-Yang

    2018-01-15

    Polynucleotide kinase (PNK) plays an essential role in cellular nucleic acid metabolism and the cellular response to DNA damage. However, conventional methods for PNK assay suffer from low sensitivity and involve multiple steps. Herein, we develop a simply electrochemical method for sensitive detection of PNK activity on the basis of Au nanoparticle (AuNP)-mediated lambda exonuclease cleavage-induced signal amplification. We use [Ru(NH 3 ) 6 ] 3+ as the electrochemically active indicator and design two DNA strands (i.e., strand 1 and strand 2) to sense PNK. The assembly of strand 2 on the AuNP surface leads to the formation of AuNP-strand 2 conjugates which can be subsequently immobilized on the gold electrode through the hybridization of strand 1 with strand 2 for the generation of a high electrochemical signal. The presence of PNK induces the phosphorylation of the strand 2-strand 1 hybrid and the subsequent cleavage of double-stranded DNA (dsDNA) by lambda exonuclease, resulting in the release of AuNP-strand 2 conjugates and [Ru(NH 3 ) 6 ] 3+ from the gold electrode surface and consequently the decrease of electrochemical signal. The PNK activity can be simply monitored by the measurement of [Ru(NH 3 ) 6 ] 3+ peak current signal. This assay is very sensitive with a detection limit of as low as 7.762 × 10 -4 UmL -1 and exhibits a large dynamic range from 0.001 to 10UmL -1 . Moreover, this method can be used to screen the PNK inhibitors, and it shows excellent performance in real sample analysis, thus holding great potential for further applications in biological researches and clinic diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Nonphasematched broadband THz amplification and reshaping in a dispersive chi(3) medium.

    PubMed

    Koys, Martin; Noskovicova, Eva; Velic, Dusan; Lorenc, Dusan

    2017-06-12

    We theoretically investigate non-phasematched broadband THz amplification in dispersive chi(3) media. A short 100 fs pump pulse is interacting with a temporally matched second harmonic pulse and a weak THz signal through the four wave mixing process and a significant broadband THz amplification and reshaping is observed. The pulse evolution dynamics is explored by numerically solving a set of generalized Nonlinear Schroedinger equations. The influence of incident pulse chirp, pulse duration and the role of wavelength, THz seed frequency and losses are evaluated separately. It is found that a careful choice of incident parameters can provide a broadband THz output and/or a significant increase of THz peak power.

  14. Weak Value Amplification is Suboptimal for Estimation and Detection

    NASA Astrophysics Data System (ADS)

    Ferrie, Christopher; Combes, Joshua

    2014-01-01

    We show by using statistically rigorous arguments that the technique of weak value amplification does not perform better than standard statistical techniques for the tasks of single parameter estimation and signal detection. Specifically, we prove that postselection, a necessary ingredient for weak value amplification, decreases estimation accuracy and, moreover, arranging for anomalously large weak values is a suboptimal strategy. In doing so, we explicitly provide the optimal estimator, which in turn allows us to identify the optimal experimental arrangement to be the one in which all outcomes have equal weak values (all as small as possible) and the initial state of the meter is the maximal eigenvalue of the square of the system observable. Finally, we give precise quantitative conditions for when weak measurement (measurements without postselection or anomalously large weak values) can mitigate the effect of uncharacterized technical noise in estimation.

  15. Using signal amplification by reversible exchange (SABRE) to hyperpolarise 119Sn and 29Si NMR nuclei.

    PubMed

    Olaru, Alexandra M; Burt, Alister; Rayner, Peter J; Hart, Sam J; Whitwood, Adrian C; Green, Gary G R; Duckett, Simon B

    2016-12-13

    The hyperpolarisation of the 119 Sn and 29 Si nuclei in 5-(tributylstannyl)pyrimidine (A Sn ) and 5-(trimethylsilyl)pyrimidine (B Si ) is achieved through their reaction with [IrCl(COD)(IMes)] (1a) or [IrCl(COD)(SIMes)] (1b) and parahydrogen via the SABRE process. 1a exhibits superior activity in both cases. The two inequivalent pyrimidine proton environments of A Sn readily yielded signal enhancements totalling ∼2300-fold in its 1 H NMR spectrum at a field strength of 9.4 T, with the corresponding 119 Sn signal being 700 times stronger than normal. In contrast, B Si produced analogous 1 H signal gains of ∼2400-fold and a 29 Si signal that could be detected with a signal to noise ratio of 200 in a single scan. These sensitivity improvements allow NMR detection within seconds using micromole amounts of substrate and illustrate the analytical potential of this approach for high-sensitivity screening. Furthermore, after extended reaction times, a series of novel iridium trimers of general form [Ir(H) 2 Cl(NHC)(μ-pyrimidine-κN:κN')] 3 precipitate from these solutions whose identity was confirmed crystallographically for B Si .

  16. Paper-based immunosensor with signal amplification by enzyme-labeled anti-p16INK4a multifunctionalized gold nanoparticles for cervical cancer screening.

    PubMed

    Yokchom, Ruchuon; Laiwejpithaya, Somsak; Maneeprakorn, Weerakanya; Tapaneeyakorn, Satita; Rabablert, Jundee; Dharakul, Tararaj

    2018-04-01

    The aim of this study was to develop a paper-based immunosensor for cervical cancer screening, with signal amplification by multifunctionalized gold nanoparticles (AuNPs). The AuNPs were functionalized with a highly specific antibody to the p16 INK4a cancer biomarker. The signal was amplified using a combination of the peroxidase activity of horseradish peroxidase (HRP) enzyme-antibody conjugate and the peroxidase-like activity of the AuNPs. The immune complex of p16 INK4a protein and multifunctionalized AuNPs was deposited on the nitrocellulose membrane, and a positive result was generated by catalytic oxidation of peroxidase enzyme substrate 3,3',5,5'-Tetramethylbenzidine (TMB). The entire reaction occurred on the membrane within 30 min. Evaluation in clinical samples revealed 85.2% accuracy with a kappa coefficient of 0.69. This proof of concept study demonstrates the successful development of a highly accurate, paper-based immunosensor that is easy to interpret using the naked eye and that is suitable for cervical cancer screening in low-resource settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Gold Nanoparticles Used as Protein Scavengers Enhance Surface Plasmon Resonance Signal

    PubMed Central

    Ferreira de Macedo, Erenildo; Ducatti Formaggio, Daniela Maria; Salles Santos, Nivia; Batista Tada, Dayane

    2017-01-01

    Although several researchers had reported on methodologies for surface plasmon resonance (SPR) signal amplification based on the use of nanoparticles (NPs), the majority addressed the sandwich technique and low protein concentration. In this work, a different approach for SPR signal enhancement based on the use of gold NPs was evaluated. The method was used in the detection of two lectins, peanut agglutinin (PNA) and concanavalin A (ConA). Gold NPs were functionalized with antibodies anti-PNA and anti-ConA, and these NPs were used as protein scavengers in a solution. After being incubated with solutions of PNA or ConA, the gold NPs coupled with the collected lectins were injected on the sensor containing the immobilized antibodies. The signal amplification provided by this method was compared to the signal amplification provided by the direct coupling of PNA and ConA to gold NPs. Furthermore, both methods, direct coupling and gold NPs as protein scavengers, were compared to the direct detection of PNA and ConA in solution. Compared to the analysis of free protein, the direct coupling of PNA and ConA to gold NPs resulted in a signal amplification of 10–40-fold and a 13-fold decrease of the limit of detection (LOD), whereas the use of gold NPs as protein scavengers resulted in an SPR signal 40–50-times higher and an LOD 64-times lower. PMID:29186024

  18. Scintillation light detectors with Neganov Luke amplification

    NASA Astrophysics Data System (ADS)

    Isaila, C.; Boslau, O.; Coppi, C.; Feilitzsch, F. v.; Goldstraß, P.; Jagemann, T.; Jochum, J.; Kemmer, J.; Lachenmaier, T.; Lanfranchi, J.-C.; Pahlke, A.; Potzel, W.; Rau, W.; Stark, M.; Wernicke, D.; Westphal, W.

    2006-04-01

    For an active suppression of the gamma and electron background in the Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) dark matter experiment both phonons and scintillation light generated in a CaWO 4 crystal are detected simultaneously. The phonon signal is read out by a transition edge sensor (TES) on the CaWO 4 crystal. For light detection a silicon absorber equipped with a TES is employed. An efficient background discrimination requires very sensitive light detectors. The threshold can be improved by applying an electric field to the silicon crystal leading to an amplification of the thermal signal due to the Neganov-Luke effect. Measurements showing the improved sensitivity of the light detectors as well as future steps for reducing the observed extra noise will be presented.

  19. Ligation with Nucleic Acid Sequence–Based Amplification

    PubMed Central

    Ong, Carmichael; Tai, Warren; Sarma, Aartik; Opal, Steven M.; Artenstein, Andrew W.; Tripathi, Anubhav

    2012-01-01

    This work presents a novel method for detecting nucleic acid targets using a ligation step along with an isothermal, exponential amplification step. We use an engineered ssDNA with two variable regions on the ends, allowing us to design the probe for optimal reaction kinetics and primer binding. This two-part probe is ligated by T4 DNA Ligase only when both parts bind adjacently to the target. The assay demonstrates that the expected 72-nt RNA product appears only when the synthetic target, T4 ligase, and both probe fragments are present during the ligation step. An extraneous 38-nt RNA product also appears due to linear amplification of unligated probe (P3), but its presence does not cause a false-positive result. In addition, 40 mmol/L KCl in the final amplification mix was found to be optimal. It was also found that increasing P5 in excess of P3 helped with ligation and reduced the extraneous 38-nt RNA product. The assay was also tested with a single nucleotide polymorphism target, changing one base at the ligation site. The assay was able to yield a negative signal despite only a single-base change. Finally, using P3 and P5 with longer binding sites results in increased overall sensitivity of the reaction, showing that increasing ligation efficiency can improve the assay overall. We believe that this method can be used effectively for a number of diagnostic assays. PMID:22449695

  20. Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system

    NASA Astrophysics Data System (ADS)

    Si, Liu-Gang; Xiong, Hao; Zubairy, M. Suhail; Wu, Ying

    2017-03-01

    We analyze theoretically the features of the output field of a quadratically coupled optomechanical system, which is driven by a strong coupling field and a weak signal field, and in which the membrane (treated as a mechanical resonator) is excited by a weak coherent driving field with two-phonon resonance. We show that the system exhibits complex quantum coherent and interference effects resulting in transmission of the signal field from opacity to remarkable amplification. We also find that the total phase of the applied fields can significantly adjust the signal field's transmission spectrum. The study of the propagation of the signal field in such a quadratically coupled optomechanical system proves that the proposed device can operate as an optical transistor.

  1. Digital droplet multiple displacement amplification (ddMDA) for whole genome sequencing of limited DNA samples

    DOE PAGES

    Rhee, Minsoung; Light, Yooli K.; Meagher, Robert J.; ...

    2016-05-04

    Here, multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently,more » the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.« less

  2. Digital droplet multiple displacement amplification (ddMDA) for whole genome sequencing of limited DNA samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhee, Minsoung; Light, Yooli K.; Meagher, Robert J.

    Here, multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently,more » the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.« less

  3. Modeling and performance metrics of MIMO-SDM systems with different amplification schemes in the presence of mode-dependent loss.

    PubMed

    Antonelli, Cristian; Mecozzi, Antonio; Shtaif, Mark; Winzer, Peter J

    2015-02-09

    Mode-dependent loss (MDL) is a major factor limiting the achievable information rate in multiple-input multiple-output space-division multiplexed systems. In this paper we show that its impact on system performance, which we quantify in terms of the capacity reduction relative to a reference MDL-free system, may depend strongly on the operation of the inline optical amplifiers. This dependency is particularly strong in low mode-count systems. In addition, we discuss ways in which the signal-to-noise ratio of the MDL-free reference system can be defined and quantify the differences in the predicted capacity loss. Finally, we stress the importance of correctly accounting for the effect of MDL on the accumulation of amplification noise.

  4. Biomass changes and trophic amplification of plankton in a warmer ocean.

    PubMed

    Chust, Guillem; Allen, J Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason; Tsiaras, Kostas; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle; Daewel, Ute; Wakelin, Sarah L; Machu, Eric; Pushpadas, Dhanya; Butenschon, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris; Garçon, Veronique; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier

    2014-07-01

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  5. Noise removal in extended depth of field microscope images through nonlinear signal processing.

    PubMed

    Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J

    2013-04-01

    Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.

  6. Impulsions laser femtosecondes intenses à contraste élevé dans le bleu-vert par amplification directe dans un milieu gazeux

    NASA Astrophysics Data System (ADS)

    Uteza, O.; Tcheremiskine, V.; Clady, R.; Coustillier, G.; Sentis, M.; Spiga, Ph.; Mikheev, L. D.

    2005-06-01

    Cet article présente la conception d'une chaîne laser femtoseconde TW visible, associant (i) un oscillateur solide Ti:Sa opéré à 950 nm, (ii) un amplificateur optique à dérive de fréquence permettant l'amplification du signal à 950 nm au niveau de plusieurs dizaines de mJ, (iii) un système doubleur pour convertir le signal à 475 nm et l'injecter dans le milieu amplificateur XeF (C-A), (iv) un milieu gazeux excimères XeF (C-A) permettant l'amplification directe du signal à 475 nm à plusieurs centaines de mJ et ainsi l'obtention d'impulsions TW visibles à contraste élevé.

  7. An evaluation of direct PCR amplification

    PubMed Central

    Hall, Daniel E.; Roy, Reena

    2014-01-01

    Aim To generate complete DNA profiles from blood and saliva samples deposited on FTA® and non-FTA® paper substrates following a direct amplification protocol. Methods Saliva samples from living donors and blood samples from deceased individuals were deposited on ten different FTA® and non-FTA® substrates. These ten paper substrates containing body fluids were kept at room temperature for varying lengths of time ranging from one day to approximately one year. For all assays in this research, 1.2 mm punches were collected from each substrate containing one type of body fluid and amplified with reagents provided in the nine commercial polymerase chain reaction (PCR) amplification kits. The substrates were not subjected to purification reagent or extraction buffer prior to amplification. Results Success rates were calculated for all nine amplification kits and all ten substrates based on their ability to yield complete DNA profiles following a direct amplification protocol. Six out of the nine amplification kits, and four out of the ten paper substrates had the highest success rates overall. Conclusion The data show that it is possible to generate complete DNA profiles following a direct amplification protocol using both standard (non-direct) and direct PCR amplification kits. The generation of complete DNA profiles appears to depend more on the success of the amplification kit rather than the than the FTA®- or non-FTA®-based substrates. PMID:25559837

  8. Development of internal amplification controls for DNA profiling with the AmpFℓSTR(®) SGM Plus(®) kit.

    PubMed

    Zahra, Nathalie; Hadi, Sibte; Smith, Judith A; Iyengar, Arati; Goodwin, William

    2011-06-01

    DNA extracted from forensic samples can be degraded and also contain co-extracted contaminants that inhibit PCR. The effects of DNA degradation and PCR inhibition are often indistinguishable when examining a DNA profile. Two internal amplification controls (IACs) were developed to improve quality control of PCR using the AmpFℓSTR® SGM Plus® kit. The co-amplification of these controls with DNA samples was used to monitor amplification efficiency and detect PCR inhibitors. IAC fragments of 90 and 410 bp (IAC₉₀ and IAC₄₁₀) were generated from the plasmid pBR322 using tailed primers and then amplified with ROX-labelled primers. Co-amplification of IAC₉₀ and IAC₄₁₀ was performed with varying amounts of template DNA, degraded DNA and DNA contaminated with humic acid, heme and indigo dye. Both IAC₉₀ and IAC₄₁₀ were successfully amplified with human DNA without significantly affecting the quality of the DNA profile, even with DNA amounts lower than 0.5 ng. In the presence of inhibitors, the IAC₉₀ signal was still present after all human DNA loci fail to amplify; in contrast, the IAC₄₁₀ signal was reduced or absent at low levels of inhibition. Amplification of the two IACs provided an internal PCR control and allowed partial profiles caused by inhibition to be distinguished from degraded DNA profiles. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Direct detection of MeV-scale dark matter utilizing germanium internal amplification for the charge created by the ionization of impurities

    NASA Astrophysics Data System (ADS)

    Mei, D.-M.; Wang, G.-J.; Mei, H.; Yang, G.; Liu, J.; Wagner, M.; Panth, R.; Kooi, K.; Yang, Y.-Y.; Wei, W.-Z.

    2018-03-01

    Light, MeV-scale dark matter (DM) is an exciting DM candidate that is undetectable by current experiments. A germanium (Ge) detector utilizing internal charge amplification for the charge carriers created by the ionization of impurities is a promising new technology with experimental sensitivity for detecting MeV-scale DM. We analyze the physics mechanisms of the signal formation, charge creation, charge internal amplification, and the projected sensitivity for directly detecting MeV-scale DM particles. We present a design for a novel Ge detector at helium temperature (˜ 4 K) enabling ionization of impurities from DM impacts. With large localized E-fields, the ionized excitations can be accelerated to kinetic energies larger than the Ge bandgap at which point they can create additional electron-hole pairs, producing intrinsic amplification to achieve an ultra-low energy threshold of ˜ 0.1 eV for detecting low-mass DM particles in the MeV scale. Correspondingly, such a Ge detector with 1 kg-year exposure will have high sensitivity to a DM-nucleon cross section of ˜ 5 × 10^{-45} cm2 at a DM mass of ˜ 10 MeV/c2 and a DM-electron cross section of ˜ 5 × 10^{-46} cm2 at a DM mass of ˜ 1 MeV/c^2.

  10. A label-free fluorescent direct detection of live Salmonella typhimurium using cascade triple trigger sequences-regenerated strand displacement amplification and hairpin template-generated-scaffolded silver nanoclusters.

    PubMed

    Zhang, Peng; Liu, Hui; Li, Xiaocheng; Ma, Suzhen; Men, Shuai; Wei, Heng; Cui, Jingjing; Wang, Hongning

    2017-01-15

    The harm of Salmonella typhimurium (S. typhimurium) to public health mainly by the consumption of contaminated agricultural products or water stresses an urgent need for rapid detection methods to help control the spread of S. typhimurium. In this work, an intelligently designed sensor system took creative advantage of triple trigger sequences-regenerated strand displacement amplification and self-protective hairpin template-generated-scaffolded silver nanoclusters (AgNCs) for the first time. In the presence of live S. typhimurium, single-stranded trigger sequences were released from aptamer-trigger sequences complex, initiating a branch migration to open the hairpin template I containing complementary scaffolds of AgNCs. Then the first strand displacement amplification was induced to produce numerous scaffolds of AgNCs and reporter strands which initiated a branch migration to open the hairpin template II containing complementary scaffolds of AgNCs. Then the second strand displacement amplification was induced to generate numerous scaffolds of AgNCs and trigger sequences which initiated the third branch migration and strand displacement amplification to produce numerous scaffolds of AgNCs and reporter strands in succession. Cyclically, the reproduction of the trigger sequences and cascade successive production of scaffolds were achieved successfully, forming highly fluorescent AgNCs, thus providing significantly enhanced fluorescent signals to achieve ultrasensitive detection of live S. typhimurium down to 50 CFU/mL with a linear range from 10 2 to 10 7 CFU/mL. It is the first report on a fluorescent biosensor for detecting viable S. typhimurium directly, which can distinguish from heat denatured S. typhimurium. And it develops a new strategy to generate the DNA-scaffolds for forming AgNCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Masking Release in Children and Adults With Hearing Loss When Using Amplification

    PubMed Central

    McCreery, Ryan; Kopun, Judy; Lewis, Dawna; Alexander, Joshua; Stelmachowicz, Patricia

    2016-01-01

    Purpose This study compared masking release for adults and children with normal hearing and hearing loss. For the participants with hearing loss, masking release using simulated hearing aid amplification with 2 different compression speeds (slow, fast) was compared. Method Sentence recognition in unmodulated noise was compared with recognition in modulated noise (masking release). Recognition was measured for participants with hearing loss using individualized amplification via the hearing-aid simulator. Results Adults with hearing loss showed greater masking release than the children with hearing loss. Average masking release was small (1 dB) and did not depend on hearing status. Masking release was comparable for slow and fast compression. Conclusions The use of amplification in this study contrasts with previous studies that did not use amplification. The results suggest that when differences in audibility are reduced, participants with hearing loss may be able to take advantage of dips in the noise levels, similar to participants with normal hearing. Although children required a more favorable signal-to-noise ratio than adults for both unmodulated and modulated noise, masking release was not statistically different. However, the ability to detect a difference may have been limited by the small amount of masking release observed. PMID:26540194

  12. Microarray-based comparison of three amplification methods for nanogram amounts of total RNA

    PubMed Central

    Singh, Ruchira; Maganti, Rajanikanth J.; Jabba, Sairam V.; Wang, Martin; Deng, Glenn; Heath, Joe Don; Kurn, Nurith; Wangemann, Philine

    2007-01-01

    Gene expression profiling using microarrays requires microgram amounts of RNA, which limits its direct application for the study of nanogram RNA samples obtained using microdissection, laser capture microscopy, or needle biopsy. A novel system based on Ribo-SPIA technology (RS, Ovation-Biotin amplification and labeling system) was recently introduced. The utility of the RS system, an optimized prototype system for picogram RNA samples (pRS), and two T7-based systems involving one or two rounds of amplification (OneRA, Standard Protocol, or TwoRA, Small Sample Prototcol, version II) were evaluated in the present study. Mouse kidney (MK) and mouse universal reference (MUR) RNA samples, 0.3 ng to 10 μg, were analyzed using high-density Affymetrix Mouse Genome 430 2.0 GeneChip arrays. Call concordance between replicates, correlations of signal intensity, signal intensity ratios, and minimal fold increase necessary for significance were determined. All systems amplified partially overlapping sets of genes with similar signal intensity correlations. pRS amplified the highest number of genes from 10-ng RNA samples. We detected 24 of 26 genes verified by RT-PCR in samples prepared using pRS. TwoRA yielded somewhat higher call concordances than did RS and pRS (91.8% vs. 89.3% and 88.1%, respectively). Although all target preparation methods were suitable, pRS amplified the highest number of targets and was found to be suitable for amplification of as little as 0.3 ng of total RNA. In addition, RS and pRS were faster and simpler to use than the T7-based methods and resulted in the generation of cDNA, which is more stable than cRNA. PMID:15613496

  13. A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi.

    PubMed

    Tsai, Hsin-Yue; Chen, Chun-Chieh G; Conte, Darryl; Moresco, James J; Chaves, Daniel A; Mitani, Shohei; Yates, John R; Tsai, Ming-Daw; Mello, Craig C

    2015-01-29

    Effective silencing by RNA-interference (RNAi) depends on mechanisms that amplify and propagate the silencing signal. In some organisms, small-interfering RNAs (siRNAs) are amplified from target mRNAs by RNA-dependent RNA polymerase (RdRP). Both RdRP recruitment and mRNA silencing require Argonaute proteins, which are generally thought to degrade RNAi targets by directly cleaving them. However, in C. elegans, the enzymatic activity of the primary Argonaute, RDE-1, is not required for silencing activity. We show that RDE-1 can instead recruit an endoribonuclease, RDE-8, to target RNA. RDE-8 can cleave RNA in vitro and is needed for the production of 3' uridylated fragments of target mRNA in vivo. We also find that RDE-8 promotes RdRP activity, thereby ensuring amplification of siRNAs. Together, our findings suggest a model in which RDE-8 cleaves target mRNAs to mediate silencing, while generating 3' uridylated mRNA fragments to serve as templates for the RdRP-directed amplification of the silencing signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi

    PubMed Central

    Tsai, Hsin-Yue; Chen, Chun-Chieh G.; Conte, Darryl; Moresco, James J.; Chaves, Daniel A.; Mitani, Shohei; Yates, John R.; Tsai, Ming-Daw; Mello, Craig C.

    2015-01-01

    SUMMARY Effective silencing by RNA-interference (RNAi) depends on mechanisms that amplify and propagate the silencing signal. In some organisms, small-interfering (si) RNAs are amplified from target mRNAs by RNA-dependent RNA polymerase (RdRP). Both RdRP recruitment and mRNA silencing require Argonaute proteins, which are generally thought to degrade RNAi targets by directly cleaving them. However in C. elegans, the enzymatic activity of the primary Argonaute, RDE-1, is not required for silencing activity. We show that RDE-1 can instead recruit an endoribonuclease, RDE-8, to target RNA. RDE-8 can cleave RNA in vitro and is needed for the production of 3′ uridylated fragments of target mRNA in vivo. We also find that RDE-8 promotes RdRP activity, thereby ensuring amplification of siRNAs. Together, our findings suggest a model in which RDE-8 cleaves target mRNAs to mediate silencing, while generating 3’ uridylated mRNA fragments to serve as templates for the RdRP-directed amplification of the silencing signal. PMID:25635455

  15. Novel Insights on Thyroid-Stimulating Hormone Receptor Signal Transduction

    PubMed Central

    Neumann, Susanne; Grüters, Annette; Krude, Heiko

    2013-01-01

    The TSH receptor (TSHR) is a member of the glycoprotein hormone receptors, a subfamily of family A G protein-coupled receptors. The TSHR is of great importance for the growth and function of the thyroid gland. The TSHR and its endogenous ligand TSH are pivotal proteins with respect to a variety of physiological functions and malfunctions. The molecular events of TSHR regulation can be summarized as a process of signal transduction, including signal reception, conversion, and amplification. The steps during signal transduction from the extra- to the intracellular sites of the cell are not yet comprehensively understood. However, essential new insights have been achieved in recent years on the interrelated mechanisms at the extracellular region, the transmembrane domain, and intracellular components. This review contains a critical summary of available knowledge of the molecular mechanisms of signal transduction at the TSHR, for example, the key amino acids involved in hormone binding or in the structural conformational changes that lead to G protein activation or signaling regulation. Aspects of TSHR oligomerization, signaling promiscuity, signaling selectivity, phenotypes of genetic variations, and potential extrathyroidal receptor activity are also considered, because these are relevant to an understanding of the overall function of the TSHR, including physiological, pathophysiological, and pharmacological perspectives. Directions for future research are discussed. PMID:23645907

  16. A novel "signal-on/off" sensing platform for selective detection of thrombin based on target-induced ratiometric electrochemical biosensing and bio-bar-coded nanoprobe amplification strategy.

    PubMed

    Wang, Lanlan; Ma, Rongna; Jiang, Liushan; Jia, Liping; Jia, Wenli; Wang, Huaisheng

    2017-06-15

    A novel dual-signal ratiometric electrochemical aptasensor for highly sensitive and selective detection of thrombin has been designed on the basis of signal-on and signal-off strategy. Ferrocene labeled hairpin probe (Fc-HP), thrombin aptamer and methyl blue labeled bio-bar-coded AuNPs (MB-P3-AuNPs) were rationally introduced for the construction of the assay platform, which combined the advantages of the recognition of aptamer, the amplification of bio-bar-coded nanoprobe, and the ratiometric signaling readout. In the presence of thrombin, the interaction between thrombin and the aptamer leads to the departure of MB-P3-AuNPs from the sensing interface, and the conformation of the single stranded Fc-HP to a hairpin structure to take the Fc confined near the electrode surface. Such conformational changes resulted in the oxidation current of Fc increased and that of MB decreased. Therefore, the recognition event of the target can be dual-signal ratiometric electrochemical readout in both the "signal-off" of MB and the "signal-on" of Fc. The proposed strategy showed a wide linear detection range from 0.003 to 30nM with a detection limit of 1.1 pM. Moreover, it exhibits good performance of excellent selectivity, good stability, and acceptable fabrication reproducibility. By changing the recognition probe, this protocol could be easily expanded into the detection of other targets, showing promising potential applications in disease diagnostics and bioanalysis. Copyright © 2016. Published by Elsevier B.V.

  17. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification

    PubMed Central

    Craw, Pascal; Mackay, Ruth E.; Naveenathayalan, Angel; Hudson, Chris; Branavan, Manoharanehru; Sadiq, S. Tariq; Balachandran, Wamadeva

    2015-01-01

    Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings. PMID:26389913

  18. Increasing power and amplified spontaneous emission suppression for weak signal amplification in pulsed fiber amplifier

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Zhang, Hanwei; Wang, Xiaolin; Su, Rongtao; Ma, Pengfei; Zhou, Pu; Jiang, Zongfu

    2017-10-01

    In the pulsed fiber amplifiers with repetition frequency of several tens kHz, amplified spontaneous emission (ASE) is easy to build up because of the low repetition frequency and weak pulse signal. The ASE rises the difficulty to amplify the weak pulse signal effectively. We have demonstrated an all-fiber preamplifier stage structure to amplify a 40 kHz, 10 ns bandwidth (FWHM) weak pulse signal (299 μW) with center wavelength of 1062 nm. Compared synchronous pulse pump with continuous wave(CW) pump, the results indicate that synchronous pulse pump shows the better capability of increasing the output power than CW pump. In the condition of the same pump power, the output power of synchronous pulse pump is twice as high as CW pump. In order to suppress ASE, a longer gain fiber is utilized to reabsorb the ASE in which the wavelength is shorter than 1062nm. We amplified weak pulse signal via 0.8 m and 2.1 m gain fiber in synchronous pulse pump experiments respectively, and more ASE in the output spectra are observed in the 0.8 m gain fiber system. Due to the weaker ASE and consequent capability of higher pump power, the 2.1 m gain fiber is capable to achieve higher output power than shorter fiber. The output power of 2.1 m gain fiber case is limited by pump power.

  19. Ultrasensitive Faraday cage-type electrochemiluminescence assay for femtomolar miRNA-141 via graphene oxide and hybridization chain reaction-assisted cascade amplification.

    PubMed

    Lu, Jing; Wu, Lin; Hu, Yufang; Wang, Sui; Guo, Zhiyong

    2018-06-30

    In this study, a novel electrochemiluminescence (ECL) biosensor for sensitive detection of femtomolar miRNA-141 was constructed on the basis of Faraday cage-type strategy via graphene oxide (GO) and hybridization chain reaction (HCR)-assisted cascade amplification. A capture probe (CP) was immobilized on Fe 3 O 4 @SiO 2 @Au nanoparticles as capture unit, which could catch the miRNA-141, and the immobilization of the signal unit (Ru(phen) 3 2+ -HCR/GO) was allowed via nucleic acid hybridization. The prepared biosensor exhibited two advantages for signal amplification: firstly, GO could lap on the electrode surface directly, extending Outer Helmholtz Plane (OHP) of the sensor due to the large surface area and good electronic transport property; secondly, HCR-assisted cascade amplification was designed by anchoring all HCR products on the GO surface, then embedding Ru(phen) 3 2+ as a signal readout pathway. All these signal molecules could take part in electrochemical reactions, thus further enhancing the ECL signal drastically. Therefore, the proposed sensor constructed by integrating HCR with Faraday cage-type strategy displayed an ultrasensitive detection platform for the miRNA-141 with a low detection limit of 0.03 fM. In addition, this proposed biosensor provides a universal platform for analysis of other microRNAs. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Achieving metrological precision limits through postselection

    NASA Astrophysics Data System (ADS)

    Alves, G. Bié; Pimentel, A.; Hor-Meyll, M.; Walborn, S. P.; Davidovich, L.; Filho, R. L. de Matos

    2017-01-01

    Postselection strategies have been proposed with the aim of amplifying weak signals, which may help to overcome detection thresholds associated with technical noise in high-precision measurements. Here we use an optical setup to experimentally explore two different postselection protocols for the estimation of a small parameter: a weak-value amplification procedure and an alternative method that does not provide amplification but nonetheless is shown to be more robust for the sake of parameter estimation. Each technique leads approximately to the saturation of quantum limits for the estimation precision, expressed by the Cramér-Rao bound. For both situations, we show that parameter estimation is improved when the postselection statistics are considered together with the measurement device.

  1. Hairpin DNA-Templated Silver Nanoclusters as Novel Beacons in Strand Displacement Amplification for MicroRNA Detection.

    PubMed

    Zhang, Jingpu; Li, Chao; Zhi, Xiao; Ramón, Gabriel Alfranca; Liu, Yanlei; Zhang, Chunlei; Pan, Fei; Cui, Daxiang

    2016-01-19

    MicroRNA (miRNA) biomarkers display great potential for cancer diagnosis and prognosis. The development of rapid and specific methods for miRNA detection has become a hotspot. Herein, hairpin DNA-templated silver nanoclusters (AgNCs/HpDNA) were prepared and integrated into strand-displacement amplification (SDA) as a novel beacon for miRNA detection. The light-up platform was established based on guanine (G)-rich fluorescence enhancement that essentially converted the excitation/emission pair of AgNCs/HpDNAs from a shorter wavelength to a longer wavelength, and then achieved fluorescent enhancement at longer wavelength. On the basis of the validation of the method, the single and duplex detection were conducted in two plasma biomarkers (miR-16-5p and miR-19b-3p) for the diagnosis of gastric cancer. The probe (AgNCs/RED 16(7s)C) utilized for miR-16-5p detection adopted a better conformation with high specificity to recognize single-base mismatches by producing dramatically opposite signals (increase or decrease at 580 nm ex/640 nm em) while the probe (AgNCs/GRE 19b(5s)C) for miR-19b-3p generated dual signals (increase at 490 nm ex/570 nm em and decrease at 430 nm ex/530 nm em) with bright fluorescence in one reaction during the amplification, but unexpectedly was partially digested. This is for the first time to allow the generation of enhanced fluorescent AgNCs and the target recognition integrated into a single process, which offers great opportunity for specific miRNA detection in an easy and rapid way.

  2. Dynamics and control of DNA sequence amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marimuthu, Karthikeyan; Chakrabarti, Raj, E-mail: raj@pmc-group.com, E-mail: rajc@andrew.cmu.edu; Division of Fundamental Research, PMC Advanced Technology, Mount Laurel, New Jersey 08054

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reactionmore » are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.« less

  3. Questioning cochlear amplification

    NASA Astrophysics Data System (ADS)

    van der Heijden, Marcel; Versteegh, Corstiaen P. C.

    2015-12-01

    Thirty years ago it was hypothesized that motile processes inject mechanical energy into cochlear traveling waves. This mechanical amplification, alternatively described as negative damping, is invoked to explain both the sensitivity and the nonlinear compression of cochlear responses. There is a recent trend to present cochlear amplification as an established fact, even though the evidence is at most circumstantial and several thorny problems have remained unresolved. We analyze several of these issues, and present new basilar membrane recordings that allowed us to quantify cochlear energy flow. Specifically, we address the following questions: (1) Does auditory sensitivity require narrowband amplification? (2) Has the "RC problem" (lowpass filtering of outer hair cell receptor potential) been resolved? (3) Can OHC motility improve auditory sensitivity? (4) Is there a net power gain between neighboring locations on the basilar membrane? The analyses indicate that mechanical amplification in the cochlea is neither necessary nor useful, and that realizing it by known forms of motility would reduce sensitivity rather than enhance it. Finally, our experimental data show that the peaking of the traveling wave is realized by focusing the acoustic energy rather than amplifying it. (Abbreviations. BM: basilar membrane; CF: characteristic frequency; IHC: inner hair cell; ME: middle ear; MT; mechanotransducer; OHC: outer hair cell; SPL: sound pressure level.)

  4. Biomaterials in light amplification

    NASA Astrophysics Data System (ADS)

    Mysliwiec, Jaroslaw; Cyprych, Konrad; Sznitko, Lech; Miniewicz, Andrzej

    2017-03-01

    Biologically produced or inspired materials can serve as optical gain media, i.e. they can exhibit the phenomenon of light amplification. Some of these materials, under suitable dye-doping and optical pumping conditions, show lasing phenomena. The emerging branch of research focused on obtaining lasing action in highly disordered and highly light scattering materials, i.e. research on random lasing, is perfectly suited for biological materials. The use of biomaterials in light amplification has been extensively reported in the literature. In this review we attempt to report on progress in the development of biologically derived systems able to show the phenomena of light amplification and random lasing together with the contribution of our group to this field. The rich world of biopolymers modified with molecular aggregates and nanocrystals, and self-organized at the nanoscale, offers a multitude of possibilities for tailoring luminescent and light scattering properties that are not easily replicated in conventional organic or inorganic materials. Of particular importance and interest are light amplification and lasing, or random lasing studies in biological cells and tissues. In this review we will describe nucleic acids and their complexes employed as gain media due to their favorable optical properties and ease of manipulation. We will report on research conducted on various biomaterials showing structural analogy to nucleic acids such as fluorescent proteins, gelatins in which the first distributed feedback laser was realized, and also amyloids or silks, which, due to their dye-doped fiber-like structure, allow for light amplification. Other materials that were investigated in that respect include polysaccharides, like starch exhibiting favorable photostability in comparison to other biomaterials, and chitosan, which forms photonic crystals or cellulose. Light amplification and random lasing was not only observed in processed biomaterials but also in living

  5. Pitfalls using tyramide signal amplification (TSA) in the mouse gastrointestinal tract: endogenous streptavidin-binding sites lead to false positive staining.

    PubMed

    Horling, L; Neuhuber, W L; Raab, M

    2012-02-15

    Highly sensitive immunohistochemical detection systems such as tyramide signal amplification (TSA) are widely used, since they allow using two primary antibodies raised in the same species. Most of them are based on the streptavidin-biotin-peroxidase system and include streptavidin-coupled secondary antibodies. Using TSA in cryostat-sectioned tissues of mouse esophagus, we were puzzled by negative controls with unexpected staining mostly in the ganglionic areas. This prompted us to search for the causing agent and to include also other parts of the mouse gastrointestinal tract for comparison. Streptavidin-coupled antibodies bound to endogenous binding sites yet to be characterized, which are present throughout the mouse intestines. Staining was mainly localized around neuronal cell bodies of enteric ganglia. Thus, caution is warranted when applying streptavidin-coupled antibodies in the mouse gastrointestinal tract. The use of endogenous biotin-blocking kits combined with a prolonged post-fixation time could significantly reduce unintentional staining. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Precision phase estimation based on weak-value amplification

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaodong; Xie, Linguo; Liu, Xiong; Luo, Lan; Li, Zhaoxue; Zhang, Zhiyou; Du, Jinglei

    2017-02-01

    In this letter, we propose a precision method for phase estimation based on the weak-value amplification (WVA) technique using a monochromatic light source. The anomalous WVA significantly suppresses the technical noise with respect to the intensity difference signal induced by the phase delay when the post-selection procedure comes into play. The phase measured precision of this method is proportional to the weak-value of a polarization operator in the experimental range. Our results compete well with the wide spectrum light phase weak measurements and outperform the standard homodyne phase detection technique.

  7. Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schluck, F.; Lehmann, G.; Spatschek, K. H.

    Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process.more » First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.« less

  8. Clinical analysis by next-generation sequencing for NSCLC patients with MET amplification resistant to osimertinib.

    PubMed

    Wang, Yubo; Li, Li; Han, Rui; Jiao, Lin; Zheng, Jie; He, Yong

    2018-04-01

    The efficacy of osimertinib was compromised by the development of resistance mechanisms, such as MET amplification. However, cohort studies of osimertinib resistance mechanism, and the correlation of MET and progression-free survival (PFS) after osimertinib resistance have been poorly investigated. This study was carried out to study the acquired MET amplification after osimertinib resistance in advanced lung adenocarcinoma patients, and interrogate the correlation of clinical prognosis and MET amplification. We performed capture-based sequencing on longitudinal plasma and tissue samples obtained before osimertinib treatment and after resistance development from lung adenocarcinoma patients to investigate the underlying resistance mechanism. We also investigated the correlation of MET amplification and patient prognosis after osimertinib resistance using Kaplan-Meier analysis. Paired biopsies before osimertinib treatment and after the resistance development revealed underlying resistance mechanisms. In addition, a cohort of 13 patients who developed disease progression after osimertinib resistance was investigated. Patients with MET amplification after osimertinib resistance commonly had inferior median progression-free survival (mPFS) than patients without MET amplification appearance or increase (3.5 months vs. 9.9 months, p = .117). Patients in MET amplification group also displayed poor median overall survival (mOS) compared to MET amplification negative group (15.6 months vs. 30.7 months, p = .885). Furthermore, combinatorial treatment of first/third-generation EGFR-TKI and crizotinib was efficaciously administrated into two patients with newly acquired MET amplification after osimertinib resistance. Partial responses were achieved by them, both clinically and radiographically. We investigated the osimertinib resistance mechanism in a small cohort of lung adenocarcinoma patients, and demonstrated MET amplification was correlated with inferior PFS

  9. Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds.

    PubMed

    Nonogaki, Mariko; Sall, Khadidiatou; Nambara, Eiji; Nonogaki, Hiroyuki

    2014-05-01

    Abscisic acid is an essential hormone for seed dormancy. Our previous study using the plant gene switch system, a chemically induced gene expression system, demonstrated that induction of 9-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting ABA biosynthesis gene, was sufficient to suppress germination in imbibed Arabidopsis seeds. Here, we report development of an efficient experimental system that causes amplification of NCED expression during seed maturation. The system was created with a Triticum aestivum promoter containing ABA responsive elements (ABREs) and a Sorghum bicolor NCED to cause ABA-stimulated ABA biosynthesis and signaling, through a positive feedback mechanism. The chimeric gene pABRE:NCED enhanced NCED and ABF (ABRE-binding factor) expression in Arabidopsis Columbia-0 seeds, which caused 9- to 73-fold increases in ABA levels. The pABRE:NCED seeds exhibited unusually deep dormancy which lasted for more than 3 months. Interestingly, the amplified ABA pathways also caused enhanced expression of Arabidopsis NCED5, revealing the presence of positive feedback in the native system. These results demonstrated the robustness of positive feedback mechanisms and the significance of NCED expression, or single metabolic change, during seed maturation. The pABRE:NCED system provides an excellent experimental system producing dormant and non-dormant seeds of the same maternal origin, which differ only in zygotic ABA. The pABRE:NCED seeds contain a GFP marker which enables seed sorting between transgenic and null segregants and are ideal for comparative analysis. In addition to its utility in basic research, the system can also be applied to prevention of pre-harvest sprouting during crop production, and therefore contributes to translational biology. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  10. Profiling In Situ Microbial Community Structure with an Amplification Microarray

    PubMed Central

    Knickerbocker, Christopher; Bryant, Lexi; Golova, Julia; Wiles, Cory; Williams, Kenneth H.; Peacock, Aaron D.; Long, Philip E.

    2013-01-01

    The objectives of this study were to unify amplification, labeling, and microarray hybridization chemistries within a single, closed microfluidic chamber (an amplification microarray) and verify technology performance on a series of groundwater samples from an in situ field experiment designed to compare U(VI) mobility under conditions of various alkalinities (as HCO3−) during stimulated microbial activity accompanying acetate amendment. Analytical limits of detection were between 2 and 200 cell equivalents of purified DNA. Amplification microarray signatures were well correlated with 16S rRNA-targeted quantitative PCR results and hybridization microarray signatures. The succession of the microbial community was evident with and consistent between the two microarray platforms. Amplification microarray analysis of acetate-treated groundwater showed elevated levels of iron-reducing bacteria (Flexibacter, Geobacter, Rhodoferax, and Shewanella) relative to the average background profile, as expected. Identical molecular signatures were evident in the transect treated with acetate plus NaHCO3, but at much lower signal intensities and with a much more rapid decline (to nondetection). Azoarcus, Thaurea, and Methylobacterium were responsive in the acetate-only transect but not in the presence of bicarbonate. Observed differences in microbial community composition or response to bicarbonate amendment likely had an effect on measured rates of U reduction, with higher rates probable in the part of the field experiment that was amended with bicarbonate. The simplification in microarray-based work flow is a significant technological advance toward entirely closed-amplicon microarray-based tests and is generally extensible to any number of environmental monitoring applications. PMID:23160129

  11. G-quadruplex based Exo III-assisted signal amplification aptasensor for the colorimetric detection of adenosine.

    PubMed

    Xu, Lei; Shen, Xin; Li, Bingzhi; Zhu, Chunhong; Zhou, Xuemin

    2017-08-08

    Adenosine is an endogenous nucleotide pivotally involved in nucleic acid and energy metabolism. Its excessive existence may indicate tumorigenesis, typically lung cancer. Encouraged by its significance as the clinical biomarker, sensitive assay methods towards adenosine have been popularized, with high cost and tedious procedures as the inevitable defects. Herein, we report a label-free aptamer-based exonuclease III (Exo III) amplification colorimetric aptasensor for the highly sensitive and cost-effective detection of adenosine. The strategy employed two unlabeled hairpin DNA oligonucleotides (HP1 and HP2), where HP1 contained the aptamer towards adenosine and HP2 embedded the guanine-rich sequence (GRS). In the presence of adenosine, hairpin HP1 could form specific binding with adenosine and trigger the unfolding of HP1's hairpin structure. The resulting adenosine-HP1 complex could hybridize with HP2, generating the Exo III recognition site. After Exo III-assisted degradation, the GRS was released from HP2, and the adenosine-HP1 was released back to the solution to combine another HP2, inducing the cycling amplification. After multiple circulations, the released ample GRSs were induced to form G-quadruplex, further catalyzing the oxidation of TMB, yielding a color change which was finally mirrored in the absorbance change. On the contrary, the absence of adenosine failed to unfold HP1, remaining color unchanged eventually. Thanks to the amplification strategy, the limit of detection was lowered to 17 nM with a broad linear range from 50 nM to 6 μM. The proposed method was successfully applied to the detection of adenosine in biological samples and satisfying recoveries were acquired. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide-graphene composites and Exonuclease III assisted signal amplification.

    PubMed

    Huang, Ke-Jing; Shuai, Hong-Lei; Zhang, Ji-Zong

    2016-03-15

    A highly sensitive and ultrasensitive electrochemical aptasensor for platelet-derived growth factor BB (PDGF-BB) detection is fabricated based on layered molybdenum selenide-graphene (MoSe2-Gr) composites and Exonuclease III (Exo III)-aided signal amplification. MoSe2-Gr is prepared by a simple hydrothermal method and used as a promising sensing platform. Exo III has a specifical exo-deoxyribonuclease activity for duplex DNAs in the direction from 3' to 5' terminus, however its activity is limited on the duplex DNAs with more than 4 mismatched terminal bases at 3' ends. Herein, aptamer and complementary DNA (cDNA) sequences are designed with four thymine bases on 3' ends. In the presence of target protein, the aptamer associates with it and facilitates the formation of duplex DNA between cDNA and signal DNA. The duplex DNA then is digested by Exo III and releases cDNA, which hybridizes with signal DNA to perform a new cleavage process. Nevertheless, in the absence of target protein, the aptamer hybridizes with cDNA will inhibit the Exo III-assisted nucleotides cleavage. The signal DNA then hybridizes with capture DNA on the electrode. Subsequently, horse radish peroxidase is fixed on electrode by avidin-biotin reaction and then catalyzes hydrogen peroxide and hydroquinone to produce electrochemical response. Therefore, a bridge can be established between the concentration of target protein and the degree of the attenuation of the obtained signal, providing a quantitative measure of target protein with a broad detection range of 0.0001-1 nM and a detection limit of 20 fM. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    PubMed

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Directional Site Amplification Effect on Tarzana Hill, California

    NASA Astrophysics Data System (ADS)

    Graizer, V.; Shakal, A.

    2003-12-01

    Significantly amplified ground accelerations at the Tarzana Hill station were recorded during the 1987 Mw 5.9 Whittier Narrows and the 1994 Mw 6.7 Northridge earthquakes. Peak horizontal ground acceleration at the Tarzana station during the 1999 Mw 7.1 Hector Mine earthquake was almost twice as large as the accelerations recorded at nearby stations. The Tarzana site was drilled to a depth of 100 m. A low shear-wave velocity near the surface of 100 m/sec increasing to near 750 m/sec at 100 m depth was measured. The 20 m high hill was found to be well drained with a water table near 17 m. Modelo formation (extremely weathered at the surface to fresh at depth) underlies the hill. The subsurface geology and velocities obtained allow classification of this location as a soft-rock site. After the Northridge earthquake the California Strong Motion Instrumentation Program significantly increased instrumentation at Tarzana to study the unusual site amplification effect. Current instrumentation at Tarzana consists of an accelerograph at the top of Tarzana hill (Tarzana - Cedar Hill B), a downhole instrument at 60 m depth, and an accelerograph at the foot of the hill (Tarzana - Clubhouse), 180 m from the Cedar Hill B station. The original station, Tarzana - Cedar Hill Nursery A, was lost in 1999 due to construction. More than twenty events, including the Hector Mine earthquake, were recorded by all these instruments at Tarzana. Comparison of recordings and response spectra demonstrates strong directional resonance on the top of the hill in a direction perpendicular to the strike of the hill in the period range from 0.04 to 0.8 sec (1.2 to 25 Hz). There is practically no amplification from the bottom to the top of the hill for the component parallel to the strike of the hill. In contrast to accelerations recorded during the Hector Mine earthquake (high frequency part of seismic signal), displacements (relatively low frequency part of seismic signal) demonstrate almost no site

  15. Robust high-performance nanoliter-volume single-cell multiple displacement amplification on planar substrates.

    PubMed

    Leung, Kaston; Klaus, Anders; Lin, Bill K; Laks, Emma; Biele, Justina; Lai, Daniel; Bashashati, Ali; Huang, Yi-Fei; Aniba, Radhouane; Moksa, Michelle; Steif, Adi; Mes-Masson, Anne-Marie; Hirst, Martin; Shah, Sohrab P; Aparicio, Samuel; Hansen, Carl L

    2016-07-26

    The genomes of large numbers of single cells must be sequenced to further understanding of the biological significance of genomic heterogeneity in complex systems. Whole genome amplification (WGA) of single cells is generally the first step in such studies, but is prone to nonuniformity that can compromise genomic measurement accuracy. Despite recent advances, robust performance in high-throughput single-cell WGA remains elusive. Here, we introduce droplet multiple displacement amplification (MDA), a method that uses commercially available liquid dispensing to perform high-throughput single-cell MDA in nanoliter volumes. The performance of droplet MDA is characterized using a large dataset of 129 normal diploid cells, and is shown to exceed previously reported single-cell WGA methods in amplification uniformity, genome coverage, and/or robustness. We achieve up to 80% coverage of a single-cell genome at 5× sequencing depth, and demonstrate excellent single-nucleotide variant (SNV) detection using targeted sequencing of droplet MDA product to achieve a median allelic dropout of 15%, and using whole genome sequencing to achieve false and true positive rates of 9.66 × 10(-6) and 68.8%, respectively, in a G1-phase cell. We further show that droplet MDA allows for the detection of copy number variants (CNVs) as small as 30 kb in single cells of an ovarian cancer cell line and as small as 9 Mb in two high-grade serous ovarian cancer samples using only 0.02× depth. Droplet MDA provides an accessible and scalable method for performing robust and accurate CNV and SNV measurements on large numbers of single cells.

  16. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    PubMed

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  17. Improved multiple displacement amplification (iMDA) and ultraclean reagents.

    PubMed

    Motley, S Timothy; Picuri, John M; Crowder, Chris D; Minich, Jeremiah J; Hofstadler, Steven A; Eshoo, Mark W

    2014-06-06

    Next-generation sequencing sample preparation requires nanogram to microgram quantities of DNA; however, many relevant samples are comprised of only a few cells. Genomic analysis of these samples requires a whole genome amplification method that is unbiased and free of exogenous DNA contamination. To address these challenges we have developed protocols for the production of DNA-free consumables including reagents and have improved upon multiple displacement amplification (iMDA). A specialized ethylene oxide treatment was developed that renders free DNA and DNA present within Gram positive bacterial cells undetectable by qPCR. To reduce DNA contamination in amplification reagents, a combination of ion exchange chromatography, filtration, and lot testing protocols were developed. Our multiple displacement amplification protocol employs a second strand-displacing DNA polymerase, improved buffers, improved reaction conditions and DNA free reagents. The iMDA protocol, when used in combination with DNA-free laboratory consumables and reagents, significantly improved efficiency and accuracy of amplification and sequencing of specimens with moderate to low levels of DNA. The sensitivity and specificity of sequencing of amplified DNA prepared using iMDA was compared to that of DNA obtained with two commercial whole genome amplification kits using 10 fg (~1-2 bacterial cells worth) of bacterial genomic DNA as a template. Analysis showed >99% of the iMDA reads mapped to the template organism whereas only 0.02% of the reads from the commercial kits mapped to the template. To assess the ability of iMDA to achieve balanced genomic coverage, a non-stochastic amount of bacterial genomic DNA (1 pg) was amplified and sequenced, and data obtained were compared to sequencing data obtained directly from genomic DNA. The iMDA DNA and genomic DNA sequencing had comparable coverage 99.98% of the reference genome at ≥1X coverage and 99.9% at ≥5X coverage while maintaining both balance

  18. Technique for extending the range of a signal measuring circuit

    DOEpatents

    Chaprnka, Anthony G.; Sun, Shan C.; Vercellotti, Leonard C.

    1978-01-01

    An input signal supplied to a signal measuring circuit is either amplified or attenuated as necessary to establish the magnitude of the input signal within the defined dynamic range of the measuring circuit and the output signal developed by the measuring circuit is subsequently readjusted through amplification or attenuation to develop an output signal which corresponds to the magnitude of the initial input signal.

  19. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases.

    PubMed

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-05-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease.

  20. Nonenzymatic catalytic signal amplification for nucleic acid hybridization assays

    NASA Technical Reports Server (NTRS)

    Fan, Wenhong (Inventor); Han, Jie (Inventor); Cassell, Alan M. (Inventor)

    2006-01-01

    Devices, methods, and kits for amplifying the signal from hybridization reactions between nucleic acid probes and their cognate targets are presented. The devices provide partially-duplexed, immobilized probe complexes, spatially separate from and separately addressable from immobilized docking strands. Cognate target acts catalytically to transfer probe from the site of probe complex immobilization to the site of immobilized docking strand, generating a detectable signal. The methods and kits of the present invention may be used to identify the presence of cognate target in a fluid sample.

  1. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction.

    PubMed

    Liu, Lin; Xia, Ning; Liu, Huiping; Kang, Xiaojing; Liu, Xiaoshuan; Xue, Chan; He, Xiaoling

    2014-03-15

    MicroRNAs (miRNAs) are believed to be important for cancer diagnosis and prognosis, serving as reliable molecular biomarkers. In this work, we presented a label-free and highly sensitive electrochemical genosensor for miRNAs detection with the triple signal amplification of gold nanoparticles (AuNPs), alkaline phosphatase (ALP) and p-aminophenol (p-AP) redox cycling. The label-free strategy is based on the difference in the structures of RNA and DNA. Specifically, miRNAs were first captured by the pre-immobilized DNA probes on a gold electrode. Next, the cis-diol group of ribose sugar at the end of the miRNAs chain allowed 3-aminophenylboronic acid (APBA)/biotin-modified multifunctional AuNPs (denoted as APBA-biotin-AuNPs) to be attached through the formation of a boronate ester covalent bond, which facilitated the capture of streptavidin-conjugated alkaline phosphatase (SA-ALP) via the biotin-streptavidin interaction. After the addition of the 4-aminophenylphosphate (p-APP) substrate, the enzymatic conversion from p-APP to p-AP occurred. The resulting p-AP could be cycled by a chemical reducing reagent after its electro-oxidization on the electrode (known as p-AP redox cycling), thus enabling an increase in the anodic current. As a result, the current increased linearly with the miRNAs concentration over a range of 10 fM-5 pM, and a detection limit of 3 fM was achieved. We believe that this work will be valuable for the design of new types of label-free and sensitive electrochemical biosensors. © 2013 Published by Elsevier B.V.

  2. Josephson Parametric Amplifer Based on a Cavity-Embedded Cooper Pair Transistor

    NASA Astrophysics Data System (ADS)

    Li, Juliang; Rimberg, A. J.

    In this experiment a cavity-embedded Cooper-pair transistor (cCPT) is used as a Josephson parametric amplifier. The cCPT consists of a Cooper pair transistor placed at the voltage antinode of a 5.7 GHz shorted quarter-wave resonator so that the CPT provides a galvanic connection between the cavity's central conductor and ground plane, which forms a SQUID loop. Both the flux threading the loop as well as the gate charge can be modulated, and each can provide the parametric pumping. The reflected signal from the cCPT is further amplified by both SLUG and HEMT amplifiers for characterizing the parametric amplification. A first application of the parametric amplification is to improve the charge sensitivity of a single electron charge detector. This can be done either by pumping on a side band or by shifting the charge state of the cCPT near a bifurcation point. Stimulated emission has been also observed when the cCPT is pumped at twice the resonant frequency in the absence of an input signal. This could allow investigation of the dynamic Casimir effect as well as generation of non-classical photon states. Supported by Grants ARO W911NF-13-10377 and NSF DMR 1507400.

  3. Current state and future perspectives of loop-mediated isothermal amplification (LAMP)-based diagnosis of filamentous fungi and yeasts.

    PubMed

    Niessen, Ludwig

    2015-01-01

    Loop-mediated isothermal amplification is a rather novel method of enzymatic deoxyribonucleic acid amplification which can be applied for the diagnosis of viruses, bacteria, and fungi. Although firmly established in viral and bacterial diagnosis, the technology has only recently been applied to a noteworthy number of species in the filamentous fungi and yeasts. The current review gives an overview of the literature so far published on the topic by discussing the different groups of fungal organisms to which the method has been applied. Moreover, the method is described in detail as well as the different possibilities available for signal detection and quantification and sample preparation. Future perspective of loop-mediated isothermal amplification-based assays is discussed in the light of applicability for fungal diagnostics.

  4. Non-linear amplification of graded voltage signals in the first-order visual interneurons of the butterfly Papilio xuthus.

    PubMed

    Rusanen, Juha; Frolov, Roman; Weckström, Matti; Kinoshita, Michiyo; Arikawa, Kentaro

    2018-04-30

    Lamina monopolar cells (LMCs) are the first-order visual interneurons of insects and crustacea, primarily involved in achromatic vision. Here we investigated morphological and electrophysiological properties of LMCs in the butterfly Papilio xuthus Using intracellular recording coupled with dye injection, we found two types of LMCs. Cells with roundish terminals near the distal surface of the medulla demonstrating no or small depolarizing spikes were classified as L1/2. LMCs with elongated terminals deep in the medulla that showed prominent spiking were classified as L3/4. The majority of LMCs of both types had broad spectral sensitivities, peaking between 480 and 570 nm. Depending on the experimental conditions, spikes varied from small to action potential-like events, with their amplitudes and rates decreasing as stimulus brightness increased. When the eye was stimulated with naturalistic contrast-modulated time series, spikes were reliably triggered by high-contrast components of the stimulus. Spike-triggered average functions showed that spikes emphasize rapid membrane depolarizations. Our results suggest that spikes are mediated by voltage-activated Na + channels, which are mainly inactivated at rest. Strong local minima in the coherence functions of spiking LMCs indicate that the depolarizing conductance contributes to the amplification of graded responses even when detectable spikes are not evoked. We propose that the information transfer strategies of spiking LMCs change with light intensity. In dim light, both graded voltage signals and large spikes are used together without mutual interference, due to separate transmission bandwidths. In bright light, signals are non-linearly amplified by the depolarizing conductance in the absence of detectable spikes. © 2018. Published by The Company of Biologists Ltd.

  5. Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification.

    PubMed

    Hu, Yuhua; Xu, Xueqin; Liu, Qionghua; Wang, Ling; Lin, Zhenyu; Chen, Guonan

    2014-09-02

    A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16S rDNA of Bacillus subtilis) could be detected by the differential pulse voltammetry (DPV) in a range from 0.1 fM to 20 fM with the detection limit down to 0.08 fM at the 3s(blank) level. This electrochemical biosensor exhibits high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence, which may be expected to detect single-base mismatch and single nucleotide polymorphisms (SNPs). Moreover, the applicability of the designed biosensor for detecting the given DNA sequence from Bacillus subtilis was investigated. The result obtained by electrochemical method is approximately consistent with that by a real-time quantitative polymerase chain reaction detecting system (QPCR) with SYBR Green.

  6. Three-wave interaction solitons in optical parametric amplification.

    PubMed

    Ibragimov, E; Struthers, A A; Kaup, D J; Khaydarov, J D; Singer, K D

    1999-05-01

    This paper applies three-wave interaction (TWI)-soliton theory to optical parametric amplification when the signal, idler, and pump wave can all contain TWI solitons. We use an analogy between two different velocity regimes to compare the theory with output from an experimental synchronously pumped optical parametric amplifier. The theory explains the observed inability to compress the intermediate group-velocity wave and 20-fold pulse compression in this experiment. The theory and supporting numerics show that one can effectively control the shape and energy of the optical pulses by shifting the TWI solitons in the pulses.

  7. Numerical investigation of output beam quality in efficient broadband optical parametric chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Di; Xu, Lu; Liang, Xiao-Yan

    2017-01-01

    We theoretically analyzed output beam quality of broad bandwidth non-collinear optical parametric chirped pulse amplification (NOPCPA) in LiB3O5 (LBO) centered at 800 nm. With a three-dimensional numerical model, the influence of the pump intensity, pump and signal spatial modulations, and the walk-off effect on the OPCPA output beam quality are presented, together with conversion efficiency and the gain spectrum. The pump modulation is a dominant factor that affects the output beam quality. Comparatively, the influence of signal modulation is insignificant. For a low-energy system with small beam sizes, walk-off effect has to be considered. Pump modulation and walk-off effect lead to asymmetric output beam profile with increased modulation. A special pump modulation type is found to optimize output beam quality and efficiency. For a high-energy system with large beam sizes, the walk-off effect can be neglected, certain back conversion is beneficial to reduce the output modulation. A trade-off must be made between the output beam quality and the conversion efficiency, especially when the pump modulation is large since. A relatively high conversion efficiency and a low output modulation are both achievable by controlling the pump modulation and intensity.

  8. Robust interferometry against imperfections based on weak value amplification

    NASA Astrophysics Data System (ADS)

    Fang, Chen; Huang, Jing-Zheng; Zeng, Guihua

    2018-06-01

    Optical interferometry has been widely used in various high-precision applications. Usually, the minimum precision of an interferometry is limited by various technical noises in practice. To suppress such kinds of noises, we propose a scheme which combines the weak measurement with the standard interferometry. The proposed scheme dramatically outperforms the standard interferometry in the signal-to-noise ratio and the robustness against noises caused by the optical elements' reflections and the offset fluctuation between two paths. A proof-of-principle experiment is demonstrated to validate the amplification theory.

  9. A sensitive electrochemical biosensor for detection of protein kinase A activity and inhibitors based on Phos-tag and enzymatic signal amplification.

    PubMed

    Yin, Huanshun; Wang, Mo; Li, Bingchen; Yang, Zhiqing; Zhou, Yunlei; Ai, Shiyun

    2015-01-15

    A simple, highly sensitive and selective electrochemical assay is developed for the detection of protein kinase A (PKA) activity based on the specific recognition utility of Phos-tag for kinase-induced phosphopeptides and enzymatic signal amplification. When the substrate peptide was phosphorylated by PKA reaction, they could specifically bind with Phos-tag-biotin in the presence of Zn(2+) through the formation of a specific noncovalent complex with the phosphomonoester dianion in phosphorylated peptides. Through the further specific interaction between biotin and avidin, avidin functionalized horseradish peroxidase (HRP) can be captured on the electrode surface. Under the catalytic effect of HRP, a sensitive electrochemical signal for benzoquinone was obtained, which was related to PKA activity. Under the optimal experiment conditions, the proposed electrochemical method presented dynamic range from 0.5 to 25 unit/mL with low detection limit of 0.15 unit/mL. This new detection strategy was also successfully applied to analyze the inhibition effect of inhibitors (ellagic acid and H-89) on PKA activity and monitored the PKA activity in cell lysates. Therefore, this Phos-tag-based electrochemical assay offers an alternative platform for PKA activity assay and inhibitor screening, and thus it might be a valuable tool for development of targeted therapy and clinical diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs)

    PubMed Central

    Qi, Xiaoquan; Bakht, Saleha; Devos, Katrien M.; Gale, Mike D.; Osbourn, Anne

    2001-01-01

    A flexible, non-gel-based single nucleotide polymorphism (SNP) detection method is described. The method adopts thermostable ligation for allele discrimination and rolling circle amplification (RCA) for signal enhancement. Clear allelic discrimination was achieved after staining of the final reaction mixtures with Cybr-Gold and visualisation by UV illumination. The use of a compatible buffer system for all enzymes allows the reaction to be initiated and detected in the same tube or microplate well, so that the experiment can be scaled up easily for high-throughput detection. Only a small amount of DNA (i.e. 50 ng) is required per assay, and use of carefully designed short padlock probes coupled with generic primers and probes make the SNP detection cost effective. Biallelic assay by hybridisation of the RCA products with fluorescence dye-labelled probes is demonstrated, indicating that ligation-RCA (L-RCA) has potential for multiplexed assays. PMID:11713336

  11. Solid-Phase Nucleic Acid Sequence-Based Amplification and Length-Scale Effects during RNA Amplification.

    PubMed

    Ma, Youlong; Teng, Feiyue; Libera, Matthew

    2018-06-05

    Solid-phase oligonucleotide amplification is of interest because of possible applications to next-generation sequencing, multiplexed microarray-based detection, and cell-free synthetic biology. Its efficiency is, however, less than that of traditional liquid-phase amplification involving unconstrained primers and enzymes, and understanding how to optimize the solid-phase amplification process remains challenging. Here, we demonstrate the concept of solid-phase nucleic acid sequence-based amplification (SP-NASBA) and use it to study the effect of tethering density on amplification efficiency. SP-NASBA involves two enzymes, avian myeloblastosis virus reverse transcriptase (AMV-RT) and RNase H, to convert tethered forward and reverse primers into tethered double-stranded DNA (ds-DNA) bridges from which RNA - amplicons can be generated by a third enzyme, T7 RNA polymerase. We create microgels on silicon surfaces using electron-beam patterning of thin-film blends of hydroxyl-terminated and biotin-terminated poly(ethylene glycol) (PEG-OH, PEG-B). The tethering density is linearly related to the PEG-B concentration, and biotinylated primers and molecular beacon detection probes are tethered to streptavidin-activated microgels. While SP-NASBA is very efficient at low tethering densities, the efficiency decreases dramatically with increasing tethering density due to three effects: (a) a reduced hybridization efficiency of tethered molecular beacon detection probes; (b) a decrease in T7 RNA polymerase efficiency; (c) inhibition of T7 RNA polymerase activity by AMV-RT.

  12. Asymmetric Nanopore Electrode-Based Amplification for Electron Transfer Imaging in Live Cells.

    PubMed

    Ying, Yi-Lun; Hu, Yong-Xu; Gao, Rui; Yu, Ru-Jia; Gu, Zhen; Lee, Luke P; Long, Yi-Tao

    2018-04-25

    Capturing real-time electron transfer, enzyme activity, molecular dynamics, and biochemical messengers in living cells is essential for understanding the signaling pathways and cellular communications. However, there is no generalizable method for characterizing a broad range of redox-active species in a single living cell at the resolution of cellular compartments. Although nanoelectrodes have been applied in the intracellular detection of redox-active species, the fabrication of nanoelectrodes to maximize the signal-to-noise ratio of the probe remains challenging because of the stringent requirements of 3D fabrication. Here, we report an asymmetric nanopore electrode-based amplification mechanism for the real-time monitoring of NADH in a living cell. We used a two-step 3D fabrication process to develop a modified asymmetric nanopore electrode with a diameter down to 90 nm, which allowed for the detection of redox metabolism in living cells. Taking advantage of the asymmetric geometry, the above 90% potential drop at the two terminals of the nanopore electrode converts the faradaic current response into an easily distinguishable bubble-induced transient ionic current pattern. Therefore, the current signal was amplified by at least 3 orders of magnitude, which was dynamically linked to the presence of trace redox-active species. Compared to traditional wire electrodes, this wireless asymmetric nanopore electrode exhibits a high signal-to-noise ratio by increasing the current resolution from nanoamperes to picoamperes. The asymmetric nanopore electrode achieves the highly sensitive and selective probing of NADH concentrations as low as 1 pM. Moreover, it enables the real-time nanopore monitoring of the respiration chain (i.e., NADH) in a living cell and the evaluation of the effects of anticancer drugs in an MCF-7 cell. We believe that this integrated wireless asymmetric nanopore electrode provides promising building blocks for the future imaging of electron

  13. Mitochondrial DNA Targets Increase Sensitivity of Malaria Detection Using Loop-Mediated Isothermal Amplification

    PubMed Central

    Polley, Spencer D.; Mori, Yasuyoshi; Watson, Julie; Perkins, Mark D.; González, Iveth J.; Notomi, Tsugunori; Chiodini, Peter L.; Sutherland, Colin J.

    2010-01-01

    Loop-mediated isothermal amplification (LAMP) of DNA offers the ability to detect very small quantities of pathogen DNA following minimal tissue sample processing and is thus an attractive methodology for point-of-care diagnostics. Previous attempts to diagnose malaria by the use of blood samples and LAMP have targeted the parasite small-subunit rRNA gene, with a resultant sensitivity for Plasmodium falciparum of around 100 parasites per μl. Here we describe the use of mitochondrial targets for LAMP-based detection of any Plasmodium genus parasite and of P. falciparum specifically. These new targets allow routine amplification from samples containing as few as five parasites per μl of blood. Amplification is complete within 30 to 40 min and is assessed by real-time turbidimetry, thereby offering rapid diagnosis with greater sensitivity than is achieved by the most skilled microscopist or antigen detection using lateral flow immunoassays. PMID:20554824

  14. Ultrasensitive aptamer-based protein detection via a dual amplified biocatalytic strategy

    PubMed Central

    Xiang, Yun; Zhang, Yuyong; Qian, Xiaoqing; Chai, Yaqin; Wang, Joseph; Yuan, Ruo

    2010-01-01

    We present an ultrasensitive aptasensor for electronic monitoring of proteins through a dual amplified strategy in this paper. The target protein thrombin is sandwiched between an electrode surface confined aptamer and an aptamer-enzyme-carbon nanotube bioconjugate. The analytical signal amplification is achieved by coupling the signal amplification nature of multiple enzymes with the biocatalytic signal enhancement of redox-recycling. Our novel dramatic signal amplification strategy, with a detection limit of 8.3 fM, shows about 4 orders of magnitude improvement in sensitivity for thrombin detection compared to other universal single enzyme-based assay. This makes our approach an attractive alternative to other common PCR-based signal amplification in ultralow level of protein detection. PMID:20452761

  15. A Smart Detection System Based on Specific Magnetic and Rolling Cycle Amplification Signal-Amplified Dual-Aptamers to Accurately Monitor Minimal Residual Diseases in Patients with T-ALL.

    PubMed

    Li, Xa; Zhou, Bo; Zhao, Zilong; Hu, Zixi; Zhou, Sufang; Yang, Nuo; Huang, Yong; Zhang, Zhenghua; Su, Jing; Lan, Dan; Qin, Xue; Meng, Jinyu; Zheng, Duo; He, Jian; Huang, Xianing; Zhao, Jing; Zhang, Zhiyong; Tan, Weihong; Lu, Xiaoling; Zhao, Yongxiang

    2016-12-01

    It is a major clinical challenge for clinicians how to early find out minimal residual diseases (MRD) of leukemia. Here, we developed a smart detection system for MRD involving magnetic aptamer sgc8 probe (M-sgc8 probe) to capture CEM cells and rolling cycle amplification probe (RCA-sgc8 probe) to initiate RCA, producing a single-stranded tandem repeated copy of the circular template. The DNA products were hybridized with molecular beacon to generate the amplified fluorescence signal. An in vitro model to mimic MRD was established to evaluate the sensitivity of the smart detection system. The smart detection system was used to detect MRD in patients with T-ALL peri-chemotherapy, which could not only specifically captured T-ALL cells, but also significantly amplified fluorescence signals on them. The sensitivity was 1/20,000. These results indicate that the smart detection system with high specificity and sensitivity could more efficiently monitor the progress of T-ALL peri-chemotherapy.

  16. Wide range operation of regenerative optical parametric wavelength converter using ASE-degraded 43-Gb/s RZ-DPSK signals.

    PubMed

    Gao, Mingyi; Kurumida, Junya; Namiki, Shu

    2011-11-07

    For sustainable growth of the Internet, wavelength-tunable optical regeneration is the key to scaling up high energy-efficiency dynamic optical path networks while keeping the flexibility of the network. Wavelength-tunable optical parametric regenerator (T-OPR) based on the gain saturation effect of parametric amplification in a highly nonlinear fiber is promising for noise reduction in phase-shift keying signals. In this paper, we experimentally evaluated the T-OPR performance for ASE-degraded 43-Gb/s RZ-DPSK signals over a 20-nm input wavelength range between 1527 nm and 1547 nm. As a result, we achieved improved power penalty performance for the regenerated idler with a proper pump power range.

  17. Tip-enhanced fluorescence with radially polarized illumination for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA

    NASA Astrophysics Data System (ADS)

    Wei, Shih-Chung; Chuang, Tsung-Liang; Wang, Da-Shin; Lu, Hui-Hsin; Gu, Frank X.; Sung, Kung-Bin; Lin, Chii-Wann

    2015-02-01

    A tip nanobiosensor for monitoring DNA replication was presented. The effects of excitation power and polarization on tip-enhanced fluorescence (TEF) were assessed with the tip immersed in fluorescein isothiocyanate solution first. The photon count rose on average fivefold with radially polarized illumination at 50 mW. We then used polymerase-functionalized tips for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA. The amplicon-SYBR Green I complex was detected and compared to real-time loop-mediated isothermal amplification. The signals of the reaction using 4 and 0.004 ng/μl templates were detected 10 and 30 min earlier, respectively. The results showed the potential of TEF in developing a nanobiosensor for real-time DNA amplification.

  18. A novel nonenzymatic cascade amplification for ultrasensitive photoelectrochemical DNA sensing based on target driven to initiate cyclic assembly of hairpins.

    PubMed

    Wen, Guangming; Dong, Wenxia; Liu, Bin; Li, Zhongping; Fan, Lifang

    2018-05-29

    A novel cascade photoelectrochemical (PEC) signal amplification biosensing tactics was developed for DNA detection based on a target-driven DNA association to induce cyclic hairpin assembly. In the circulatory system there are two ssDNA (A and B) and two hairpins (C and D). The hybridization of these ssDNA led to the formation of an A-target-B structure. The close proximity of their toehold and branch-migration regions was able to induce the cyclic hairpin assembly. Afterwards, the assembly result further causes the separation of a double-stranded probe DNA (Q:F) to switch the PEC signal via toehold-mediated strand replacement. As such, the signal stranded DNA-CdS QDs (F) as the signal tag was released in the presence of the target DNA. The signal DNA-CdS QDs was then coated to F-doped tin oxide (FTO) electrode leading to the "signal-on" PEC signal. The designed biosensing strategy showed a low detection limit of 21.3 pM for target DNA and a broad linear range from 50 pM to 100 nM. This signal amplification PEC sensing method exhibited a potential application to detect protein molecules, RNA or metal ions via changing the sequence of A and B recognition. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Amplification of earthquake ground motions in Washington, DC, and implications for hazard assessments in central and eastern North America

    USGS Publications Warehouse

    Pratt, Thomas L.; Horton, J. Wright; Munoz, Jessica; Hough, Susan E.; Chapman, Martin C.; Olgun, C. Guney

    2017-01-01

    The extent of damage in Washington, DC, from the 2011 Mw 5.8 Mineral, VA, earthquake was surprising for an epicenter 130 km away; U.S. Geological Survey “Did-You-Feel-It” reports suggest that Atlantic Coastal Plain and other unconsolidated sediments amplified ground motions in the city. We measure this amplification relative to bedrock sites using earthquake signals recorded on a temporary seismometer array. The spectral ratios show strong amplification in the 0.7 to 4 Hz frequency range for sites on sediments. This range overlaps with resonant frequencies of buildings in the city as inferred from their heights, suggesting amplification at frequencies to which many buildings are vulnerable to damage. Our results emphasize that local amplification can raise moderate ground motions to damaging levels in stable continental regions, where low attenuation extends shaking levels over wide areas and unconsolidated deposits on crystalline metamorphic or igneous bedrock can result in strong contrasts in near-surface material properties.

  20. Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer.

    PubMed

    Al Roumy, Jalal; Perchoux, Julien; Lim, Yah Leng; Taimre, Thomas; Rakić, Aleksandar D; Bosch, Thierry

    2015-01-10

    We present a simple analytical model that describes the injection current and temperature dependence of optical feedback interferometry signal strength for a single-mode laser diode. The model is derived from the Lang and Kobayashi rate equations, and is developed both for signals acquired from the monitoring photodiode (proportional to the variations in optical power) and for those obtained by amplification of the corresponding variations in laser voltage. The model shows that both the photodiode and the voltage signal strengths are dependent on the laser slope efficiency, which itself is a function of the injection current and the temperature. Moreover, the model predicts that the photodiode and voltage signal strengths depend differently on injection current and temperature. This important model prediction was proven experimentally for a near-infrared distributed feedback laser by measuring both types of signals over a wide range of injection currents and temperatures. Therefore, this simple model provides important insight into the radically different biasing strategies required to achieve optimal sensor sensitivity for both interferometric signal acquisition schemes.

  1. Parametric amplification in quasi-PT symmetric coupled waveguide structures

    NASA Astrophysics Data System (ADS)

    Zhong, Q.; Ahmed, A.; Dadap, J. I.; Osgood, R. M., Jr.; El-Ganainy, R.

    2016-12-01

    The concept of non-Hermitian parametric amplification was recently proposed as a means to achieve an efficient energy conversion throughout the process of nonlinear three wave mixing in the absence of phase matching. Here we investigate this effect in a waveguide coupler arrangement whose characteristics are tailored to introduce passive PT symmetry only for the idler component. By means of analytical solutions and numerical analysis, we demonstrate the utility of these novel schemes and obtain the optimal design conditions for these devices.

  2. Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection.

    PubMed

    Wu, Mei-Sheng; Yuan, Da-Jing; Xu, Jing-Juan; Chen, Hong-Yuan

    2013-12-17

    Here we developed a novel hybrid bipolar electrode (BPE)-electrochemiluminescence (ECL) biosensor based on hybrid bipolar electrode (BPE) for the measurement of cancer cell surface protein using ferrocence (Fc) labeled aptamer as signal recognition and amplification probe. According to the electric neutrality of BPE, the cathode of U-shaped ITO BPE was electrochemically deposited by Au nanoparticles (NPs) to enhance its conductivity and surface area, decrease the overpotential of O2 reduction, which would correspondingly increase the oxidation current of Ru(bpy)3(2+)/tripropylamine (TPA) on the anode of BPE and resulting a ∼4-fold enhancement of ECL intensity. Then a signal amplification strategy was designed by introducing Fc modified aptamer on the anode surface of BPE through hybridization for detecting the amount of mucin-1 on MCF-7 cells. The presence of Fc could not only inhibit the oxidation of Ru(bpy)3(2+) because of its lower oxidation potential, its oxidation product Fc(+) could also quench the ECL of Ru(bpy)3(2+)/TPA by efficient energy-transfer from the excited-state Ru(bpy)3(2+)* to Fc(+), making the ECL intensity greatly quenched. On the basis of the cathodic Au NPs induced ECL enhancing coupled with anodic Fc induced signal quenching amplification, the approach allowed detection of mucin-1 aptamer at a concentration down to 0.5 fM and was capable of detecting a minimum of 20 MCF-7 cells. Besides, the amount of mucin-1 on MCF-7 cells was calculated to be 9041 ± 388 molecules/cell. This approach therefore shows great promise in bioanalysis.

  3. Helicase-dependent amplification of nucleic acids.

    PubMed

    Cao, Yun; Kim, Hyun-Jin; Li, Ying; Kong, Huimin; Lemieux, Bertrand

    2013-10-11

    Helicase-dependent amplification (HDA) is a novel method for the isothermal in vitro amplification of nucleic acids. The HDA reaction selectively amplifies a target sequence by extension of two oligonucleotide primers. Unlike the polymerase chain reaction (PCR), HDA uses a helicase enzyme to separate the deoxyribonucleic acid (DNA) strands, rather than heat denaturation. This allows DNA amplification without the need for thermal cycling. The helicase used in HDA is a helicase super family II protein obtained from a thermophilic organism, Thermoanaerobacter tengcongensis (TteUvrD). This thermostable helicase is capable of unwinding blunt-end nucleic acid substrates at elevated temperatures (60° to 65°C). The HDA reaction can also be coupled with reverse transcription for ribonucleic acid (RNA) amplification. The products of this reaction can be detected during the reaction using fluorescent probes when incubations are conducted in a fluorimeter. Alternatively, products can be detected after amplification using a disposable amplicon containment device that contains an embedded lateral flow strip. Copyright © 2013 John Wiley & Sons, Inc.

  4. A Model for Amplification of Hair-Bundle Motion by Cyclical Binding of Ca2+ to Mechanoelectrical-Transduction Channels

    NASA Astrophysics Data System (ADS)

    Choe, Yong; Magnasco, Marcelo O.; Hudspeth, A. J.

    1998-12-01

    Amplification of auditory stimuli by hair cells augments the sensitivity of the vertebrate inner ear. Cell-body contractions of outer hair cells are thought to mediate amplification in the mammalian cochlea. In vertebrates that lack these cells, and perhaps in mammals as well, active movements of hair bundles may underlie amplification. We have evaluated a mathematical model in which amplification stems from the activity of mechanoelectrical-transduction channels. The intracellular binding of Ca2+ to channels is posited to promote their closure, which increases the tension in gating springs and exerts a negative force on the hair bundle. By enhancing bundle motion, this force partially compensates for viscous damping by cochlear fluids. Linear stability analysis of a six-state kinetic model reveals Hopf bifurcations for parameter values in the physiological range. These bifurcations signal conditions under which the system's behavior changes from a damped oscillatory response to spontaneous limit-cycle oscillation. By varying the number of stereocilia in a bundle and the rate constant for Ca2+ binding, we calculate bifurcation frequencies spanning the observed range of auditory sensitivity for a representative receptor organ, the chicken's cochlea. Simulations using prebifurcation parameter values demonstrate frequency-selective amplification with a striking compressive nonlinearity. Because transduction channels occur universally in hair cells, this active-channel model describes a mechanism of auditory amplification potentially applicable across species and hair-cell types.

  5. Signal amplification strategy for biomarkers: Structural origins of epitaxial-growth twinned nanocrystals and D-π-A type polymers.

    PubMed

    Liu, He; Gu, Yue; Dong, Tao; Yan, Liuqing; Yan, Xiaoyi; Zhang, Tingting; Lu, Nannan; Xu, Zhiqian; Xu, Haixin; Zhang, Zhiquan; Bian, Ting

    2018-06-30

    The combination of nanoparticles and biomarkers yields functional nanostructured biointerface, which is playing a notable role in biotechnology development. Due to the 5-fold twined structure in the Au-Pt star-shaped decahedra not only allowed it to act as efficient scaffold for immobilization of antibody, but it also exhibits superior electrocatalytic activity toward H 2 O 2 reduction, the nanocrystal as the efficient signal transduction label is first employed to construct an electrochemical immunosensor. Donor-π-Acceptor (D-π-A) linking fashion generates a dipolar push-pull system and assures superior intramolecular charge transfer. It is considered as a suitable π-conjugated backbone for conducting polymer on biointerface application. Under a D-π-A architecture which imidazole as the π-bridge and amino phenyl/phenyl groups as peripheral electron-donating/withdrawing functional groups, 4-(2,4,5-triphenyl-1H-imidazol-1-yl) aniline (TPIDA) is designed and synthesized for good biocompatibility and high conductivity. In this proposal, we attempt to integrate the above-mentioned two features from nanobiotechnology and organic bioelectronics. Then, a novel nonenzymatic sandwich-type immunosensor is performed by Au-Pt core-shell with surface-engineered twinning as a label and π-conjugated D-π-A polymers as the signal amplification platform. Human IgG (HIgG) as the model target protein can be detected with a wide linear range from 0.1 pg mL -1 to 100 ng mL -1 . The detection limit is down to 0.06 pg mL -1 (S/N = 3). Moreover, as a practical application, the prepared biosensor is used to monitor HIgG level in human serum with desirable results obtained. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A nonenzymatic DNA nanomachine for biomolecular detection by target recycling of hairpin DNA cascade amplification.

    PubMed

    Zheng, Jiao; Li, Ningxing; Li, Chunrong; Wang, Xinxin; Liu, Yucheng; Mao, Guobin; Ji, Xinghu; He, Zhike

    2018-06-01

    Synthetic enzyme-free DNA nanomachine performs quasi-mechanical movements in response to external intervention, suggesting the promise of constructing sensitive and specific biosensors. Herein, a smart DNA nanomachine biosensor for biomolecule (such as nucleic acid, thrombin and adenosine) detection is developed by target-assisted enzyme-free hairpin DNA cascade amplifier. The whole DNA nanomachine system is constructed on gold nanoparticle which decorated with hundreds of locked hairpin substrate strands serving as DNA tracks, and the DNA nanomachine could be activated by target molecule toehold-mediated exchange on gold nanoparticle surface, resulted in the fluorescence recovery of fluorophore. The process is repeated so that each copy of the target can open multiplex fluorophore-labeled hairpin substrate strands, resulted in amplification of the fluorescence signal. Compared with the conventional biosensors of catalytic hairpin assembly (CHA) without substrate in solution, the DNA nanomachine could generate 2-3 orders of magnitude higher fluorescence signal. Furthermore, the DNA nanomachine could be used for nucleic acid, thrombin and adenosine highly sensitive specific detection based on isothermal, and homogeneous hairpin DNA cascade signal amplification in both buffer and a complicated biomatrix, and this kind of DNA nanomachine could be efficiently applied in the field of biomedical analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Ultrasensitive electrochemical detection of nucleic acids by template enhanced hybridization followed with rolling circle amplification.

    PubMed

    Ji, Hanxu; Yan, Feng; Lei, Jianping; Ju, Huangxian

    2012-08-21

    An ultrasensitive protocol for electrochemical detection of DNA is designed with quantum dots (QDs) as a signal tag by combining the template enhanced hybridization process (TEHP) and rolling circle amplification (RCA). Upon the recognition of the molecular beacon (MB) to target DNA, the MB hybridizes with assistants and target DNA to form a ternary ''Y-junction''. The target DNA can be dissociated from the structure under the reaction of nicking endonuclease to initiate the next hybridization process. The template enhanced MB fragments further act as the primers of the RCA reaction to produce thousands of repeated oligonucleotide sequences, which can bind with oligonucleotide functionalized QDs. The attached signal tags can be easily read out by square-wave voltammetry after dissolving with acid. Because of the cascade signal amplification and the specific TEHP and RCA reaction, this newly designed protocol provides an ultrasensitive electrochemical detection of DNA down to the attomolar level (11 aM) with a linear range of 6 orders of magnitude (from 1 × 10(-17) to 1 × 10(-11) M) and can discriminate mismatched DNA from perfect matched target DNA with high selectivity. The high sensitivity and specificity make this method a great potential for early diagnosis in gene-related diseases.

  8. Amplification sans bruit d'images optiques

    NASA Astrophysics Data System (ADS)

    Gigan, S.; Delaubert, V.; Lopez, L.; Treps, N.; Maitre, A.; Fabre, C.

    2004-11-01

    Nous utilisons un Oscillateur Paramétrique Optique (OPO) pompé sous le seuil dans le but d'amplifier une image multimode transverse sans dégradation du rapport signal à bruit. Le dispositif expérimental met en œuvre un OPO de type II triplement résonant et semi-confocal pour le faisceau amplifié. L'existence d'effets quantiques lors de l'amplification multimode dans un tel dispositif a été montrée expérimentalement. Plus généralement, ceci nous a amené à étudier les propriétés quantiques transverses des faisceaux lumineux amplifiés. Une telle étude peut trouver des applications non seulement en imagerie, mais également dans le traitement quantique de l'information.

  9. A new signal amplification strategy of photoelectrochemical immunoassay for highly sensitive interleukin-6 detection based on TiO2/CdS/CdSe dual co-sensitized structure.

    PubMed

    Fan, Gao-Chao; Ren, Xiao-Lin; Zhu, Cheng; Zhang, Jian-Rong; Zhu, Jun-Jie

    2014-09-15

    Dual co-sensitized structure of TiO2/CdS/CdSe was designed to develop a novel photoelectrochemical immunoassay for highly sensitive detection of human interleukin-6 (IL-6). To construct a sensing electrode, TiO2/CdS hybrid was prepared by successive adsorption and reaction of Cd(2+) and S(2-) ions on the surface of TiO2 and then was employed as matrix for immobilization of anti-IL-6 antibody, whereas CdSe QDs linked to IL-6 were used for signal amplification via the specific antibody-antigen immunoreaction between anti-IL-6 and IL-6-CdSe bioconjugate. Greatly enhanced sensitivity for IL-6 detection was derived from the new co-sensitization signal amplification strategy. First, the TiO2/CdS/CdSe co-sensitized structure extended the absorption range to long wavelength of white light, which adequately utilized the light energy. Second, the TiO2/CdS/CdSe co-sensitized structure possessed stepwise band-edge levels favoring ultrafast transfer of photogenerated electrons and significantly prompted the photoelectrochemical performance. Besides, the introduction of CdSe effectively prevented the recombination of photogenerated electrons in the conduction band of CdS, further causing an enhanced photocurrent. Accordingly, upon the co-sensitization strategy, a novel immunoassay based on the competitive binding of anti-IL-6 antibody with IL-6 antigen and IL-6-CdSe bioconjugate was developed, and it exhibited a wide linear range from 1.0 pg/mL to 100 ng/mL with a low detection limit of 0.38 pg/mL for IL-6 detection. The proposed co-sensitization strategy presented high sensitivity, reproducibility, specificity and stability, and also opened up a new promising platform for detection of other biomarkers. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A novel, sensitive and label-free loop-mediated isothermal amplification detection method for nucleic acids using luminophore dyes.

    PubMed

    Roy, Sharmili; Wei, Sim Xiao; Ying, Jean Liew Zhi; Safavieh, Mohammadali; Ahmed, Minhaz Uddin

    2016-12-15

    Electrochemiluminescence (ECL) has been widely rendered for nucleic acid testing. Here, we integrate loop-mediated isothermal amplification (LAMP) with ECL technique for DNA detection and quantification. The target LAMP DNA bound electrostatically with [Ru(bpy)3](+2) on the carbon electrode surface, and an ECL reaction was triggered by tripropylamine (TPrA) to yield luminescence. We illustrated this method as a new and highly sensitive strategy for the detection of sequence-specific DNA from different meat species at picogram levels. The proposed strategy renders the signal amplification capacities of TPrA and combines LAMP with inherently high sensitivity of the ECL technique, to facilitate the detection of low quantities of DNA. By leveraging this technique, target DNA of Sus scrofa (pork) meat was detected as low as 1pg/µL (3.43×10(-1)copies/µL). In addition, the proposed technique was applied for detection of Bacillus subtilis DNA samples and detection limit of 10pg/µL (2.2×10(3)copies/µL) was achieved. The advantages of being isothermal, sensitive and robust with ability for multiplex detection of bio-analytes makes this method a facile and appealing sensing modality in hand-held devices to be used at the point-of-care (POC). Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    PubMed Central

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.

    2014-01-01

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content. PMID:24689588

  12. Comparison of an assay using signal amplification of the heat-dissociated p24 antigen with the Roche Monitor human immunodeficiency virus RNA assay.

    PubMed

    Pascual, Alvaro; Cachafeiro, Ada; Funk, Michele L; Fiscus, Susan A

    2002-07-01

    We compared an assay using signal amplification of a heat-dissociated p24 antigen (HDAg) with the Roche Monitor human immunodeficiency virus (HIV) RNA assay. The two assays gave comparable results when 130 specimens from 130 patients were tested (r = 0.60, P < 0.0001). The HDAg assay was almost as sensitive (85%) as the Roche HIV RNA kit (95%), just as specific (25 negative results from 25 HIV seronegative volunteers [100%]), less variable (mean log standard deviation of 0.07 compared to 0.11 when eight specimens were tested three or four times), and less expensive (reagent and labor costs, $8 versus $75). The assay appeared to be useful for monitoring established patients (n = 17) and identifying seroconverters (n = 4). HIV subtypes A to F were all recognized. This assay should be useful for monitoring patients in resource-poor countries and for monitoring vaccine recipients.

  13. Astigmatism transfer phenomena in the optical parametric amplification process

    NASA Astrophysics Data System (ADS)

    Li, Wenkai; Chen, Yun; Li, Yanyan; Xu, Yi; Guo, Xiaoyang; Lu, Jun; Leng, Yuxin

    2017-01-01

    We numerically and experimentally investigate the astigmatism transfer phenomena in femtosecond optical parametric amplification (OPA). We model the OPA process based on the coupled second-order three-wave nonlinear propagation equations. The numerical and experimental results support that the input pump pulse astigmatism can be transferred into the idler pulse but not the signal pulse, and the idler pulse astigmatism originating from spatial walk-off is less than the idler pulse astigmatism received from the pump. Thus, we can provide a clear understanding of astigmatism transfer mechanisms in the OPA process, and make better use of broadband tunable OPA sources.

  14. Factors influencing Recombinase Polymerase Amplification (RPA) assay outcomes at point of care

    PubMed Central

    Lillis, Lorraine; Siverson, Joshua; Lee, Arthur; Cantera, Jason; Parker, Matthew; Piepenburg, Olaf; Lehman, Dara A.; Boyle, David S.

    2016-01-01

    Recombinase Polymerase Amplification (RPA) can be used to detect pathogen-specific DNA or RNA in under 20 minutes without the need for complex instrumentation. These properties enable its potential use in resource limited settings. However, there are concerns that deviations from the manufacturer’s protocol and/or storage conditions could influence its performance in low resource settings. RPA amplification relies upon viscous crowding agents for optimal nucleic acid amplification, and thus an interval mixing step after 3–6 minutes of incubation is recommended to distribute amplicons and improve performance. In this study we used a HIV-1 RPA assay to evaluate the effects of this mixing step on assay performance. A lack of mixing led to a longer time to amplification and inferior detection signal, compromising the sensitivity of the assay. However lowering the assay volume from 50 μL to 5 μL showed similar sensitivity with or without mixing. We present the first peer-reviewed study that assesses long term stability of RPA reagents without a cold chain. Reagents stored at −20°C, and 25°C for up to 12 weeks were able to detect 10 HIV-1 DNA copies. Reagents stored at 45°C for up to 3 weeks were able to detect 10 HIV-1 DNA copies, with reduced sensitivity only after >3 weeks at 45°C. Together our results show that reducing reaction volumes bypassed the need for the mixing step and that RPA reagents were stable even when stored for 3 weeks at very high temperatures. PMID:26854117

  15. Factors influencing Recombinase polymerase amplification (RPA) assay outcomes at point of care.

    PubMed

    Lillis, Lorraine; Siverson, Joshua; Lee, Arthur; Cantera, Jason; Parker, Mathew; Piepenburg, Olaf; Lehman, Dara A; Boyle, David S

    2016-04-01

    Recombinase Polymerase Amplification (RPA) can be used to detect pathogen-specific DNA or RNA in under 20 min without the need for complex instrumentation. These properties enable its potential use in resource limited settings. However, there are concerns that deviations from the manufacturer's protocol and/or storage conditions could influence its performance in low resource settings. RPA amplification relies upon viscous crowding agents for optimal nucleic acid amplification, and thus an interval mixing step after 3-6 min of incubation is recommended to distribute amplicons and improve performance. In this study we used a HIV-1 RPA assay to evaluate the effects of this mixing step on assay performance. A lack of mixing led to a longer time to amplification and inferior detection signal, compromising the sensitivity of the assay. However lowering the assay volume from 50 μL to 5 μL showed similar sensitivity with or without mixing. We present the first peer-reviewed study that assesses long term stability of RPA reagents without a cold chain. Reagents stored at -20 °C, and 25 °C for up to 12 weeks were able to detect 10 HIV-1 DNA copies. Reagents stored at 45 °C for up to 3 weeks were able to detect 10 HIV-1 DNA copies, with reduced sensitivity only after >3 weeks at 45 °C. Together our results show that reducing reaction volumes bypassed the need for the mixing step and that RPA reagents were stable even when stored for 3 weeks at very high temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Optical chirped beam amplification and propagation

    DOEpatents

    Barty, Christopher P.

    2004-10-12

    A short pulse laser system uses dispersive optics in a chirped-beam amplification architecture to produce high peak power pulses and high peak intensities without the potential for intensity dependent damage to downstream optical components after amplification.

  17. Repressor logic modules assembled by rolling circle amplification platform to construct a set of logic gates

    PubMed Central

    Wei, Hua; Hu, Bo; Tang, Suming; Zhao, Guojie; Guan, Yifu

    2016-01-01

    Small molecule metabolites and their allosterically regulated repressors play an important role in many gene expression and metabolic disorder processes. These natural sensors, though valuable as good logic switches, have rarely been employed without transcription machinery in cells. Here, two pairs of repressors, which function in opposite ways, were cloned, purified and used to control DNA replication in rolling circle amplification (RCA) in vitro. By using metabolites and repressors as inputs, RCA signals as outputs, four basic logic modules were constructed successfully. To achieve various logic computations based on these basic modules, we designed series and parallel strategies of circular templates, which can further assemble these repressor modules in an RCA platform to realize twelve two-input Boolean logic gates and a three-input logic gate. The RCA-output and RCA-assembled platform was proved to be easy and flexible for complex logic processes and might have application potential in molecular computing and synthetic biology. PMID:27869177

  18. Ultrabright multikilovolt x-ray source: saturated amplification on noble gas transition arrays from hollow atom states

    DOEpatents

    Rhodes, Charles K.; Boyer, Keith

    2004-02-17

    An apparatus and method for the generation of ultrabright multikilovolt x-rays from saturated amplification on noble gas transition arrays from hollow atom states is described. Conditions for x-ray amplification in this spectral region combine the production of cold, high-Z matter, with the direct, selective multiphoton excitation of hollow atoms from clusters using ultraviolet radiation and a nonlinear mode of confined, self-channeled propagation in plasmas. Data obtained is consistent with the presence of saturated amplification on several transition arrays of the hollow atom Xe(L) spectrum (.lambda..about.2.9 .ANG.). An estimate of the peak brightness achieved is .about.10.sup.29 .gamma..multidot.s.sup.-1.multidot.mm.sup.-2.multidot.mr.sup.-2 (0.1% Bandwidth).sup.-1, that is .about.10.sup.5 -fold higher than presently available synchotron technology.

  19. Three-input majority function as the unique optimal function for the bias amplification using nonlocal boxes

    NASA Astrophysics Data System (ADS)

    Mori, Ryuhei

    2016-11-01

    Brassard et al. [Phys. Rev. Lett. 96, 250401 (2006), 10.1103/PhysRevLett.96.250401] showed that shared nonlocal boxes with a CHSH (Clauser, Horne, Shimony, and Holt) probability greater than 3/+√{6 } 6 yield trivial communication complexity. There still exists a gap with the maximum CHSH probability 2/+√{2 } 4 achievable by quantum mechanics. It is an interesting open question to determine the exact threshold for the trivial communication complexity. Brassard et al.'s idea is based on recursive bias amplification by the three-input majority function. It was not obvious if another choice of function exhibits stronger bias amplification. We show that the three-input majority function is the unique optimal function, so that one cannot improve the threshold 3/+√{6 } 6 by Brassard et al.'s bias amplification. In this work, protocols for computing the function used for the bias amplification are restricted to be nonadaptive protocols or a particular adaptive protocol inspired by Pawłowski et al.'s protocol for information causality [Nature (London) 461, 1101 (2009), 10.1038/nature08400]. We first show an adaptive protocol inspired by Pawłowski et al.'s protocol, and then show that the adaptive protocol improves upon nonadaptive protocols. Finally, we show that the three-input majority function is the unique optimal function for the bias amplification if we apply the adaptive protocol to each step of the bias amplification.

  20. Homogenous assay for protein detection based on proximity DNA hybridization and isothermal circular strand displacement amplification reaction.

    PubMed

    Zhang, Manjun; Li, Ruimin; Ling, Liansheng

    2017-06-01

    This work proposed a homogenous fluorescence assay for proteins, based on the target-triggered proximity DNA hybridization in combination with strand displacement amplification (SDA). It benefited from target-triggered proximity DNA hybridization to specifically recognize the target and SDA making recycling signal amplification. The system included a molecular beacon (MB), an extended probe (EP), and an assistant probe (AP), which were not self-assembly in the absence of target proteins, due to the short length of the designed complementary sequence among MB, EP, and AP. Upon addition of the target proteins, EP and AP are bound to the target proteins, which induced the occurrence of proximity hybridization between MB, EP, and AP and followed by strand displacement amplification. Through the primer extension, a tripartite complex of probes and target was displaced and recycled to hybridize with another MB, and the more opened MB enabled the detection signal to amplify. Under optimum conditions, it was used for the detection of streptavidin and thrombin. Fluorescence intensity was proportional to the concentration of streptavidin and thrombin in the range of 0.2-30 and 0.2-35 nmol/L, respectively. Furthermore, this fluorescent method has a good selectivity, in which the fluorescence intensity of thrombin was ~37-fold or even larger than that of the other proteins at the same concentration. It is a new and simple method for SDA-involved target protein detection and possesses a great potential for other protein detection in the future. Graphical abstract A homogenous assay for protein detection is based on proximity DNA hybridization and strand displacement amplification reaction.

  1. Empirical evidence for acceleration-dependent amplification factors

    USGS Publications Warehouse

    Borcherdt, R.D.

    2002-01-01

    Site-specific amplification factors, Fa and Fv, used in current U.S. building codes decrease with increasing base acceleration level as implied by the Loma Prieta earthquake at 0.1g and extrapolated using numerical models and laboratory results. The Northridge earthquake recordings of 17 January 1994 and subsequent geotechnical data permit empirical estimates of amplification at base acceleration levels up to 0.5g. Distance measures and normalization procedures used to infer amplification ratios from soil-rock pairs in predetermined azimuth-distance bins significantly influence the dependence of amplification estimates on base acceleration. Factors inferred using a hypocentral distance norm do not show a statistically significant dependence on base acceleration. Factors inferred using norms implied by the attenuation functions of Abrahamson and Silva show a statistically significant decrease with increasing base acceleration. The decrease is statistically more significant for stiff clay and sandy soil (site class D) sites than for stiffer sites underlain by gravely soils and soft rock (site class C). The decrease in amplification with increasing base acceleration is more pronounced for the short-period amplification factor, Fa, than for the midperiod factor, Fv.

  2. Offset-Free Gigahertz Midinfrared Frequency Comb Based on Optical Parametric Amplification in a Periodically Poled Lithium Niobate Waveguide

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Phillips, C. R.; Langrock, C.; Klenner, A.; Johnson, A. R.; Luke, K.; Okawachi, Y.; Lipson, M.; Gaeta, A. L.; Fejer, M. M.; Keller, U.

    2016-11-01

    We report the generation of an optical-frequency comb in the midinfrared region with 1-GHz comb-line spacing and no offset with respect to absolute-zero frequency. This comb is tunable from 2.5 to 4.2 μ m and covers a critical spectral region for important environmental and industrial applications, such as molecular spectroscopy of trace gases. We obtain such a comb using a highly efficient frequency conversion of a near-infrared frequency comb. The latter is based on a compact diode-pumped semiconductor saturable absorber mirror-mode-locked ytterbium-doped calcium-aluminum gadolynate (Yb:CALGO) laser operating at 1 μ m . The frequency-conversion process is based on optical parametric amplification (OPA) in a periodically poled lithium niobate (PPLN) chip containing buried waveguides fabricated by reverse proton exchange. The laser with a repetition rate of 1 GHz is the only active element of the system. It provides the pump pulses for the OPA process as well as seed photons in the range of 1.4 - 1.8 μ m via supercontinuum generation in a silicon-nitride (Si3 N4 ) waveguide. Both the PPLN and Si3 N4 waveguides represent particularly suitable platforms for low-energy nonlinear interactions; they allow for mid-IR comb powers per comb line at the microwatt level and signal amplification levels up to 35 dB, with 2 orders of magnitude less pulse energy than reported in OPA systems using bulk devices. Based on numerical simulations, we explain how high amplification can be achieved at low energy using the interplay between mode confinement and a favorable group-velocity mismatch configuration where the mid-IR pulse moves at the same velocity as the pump.

  3. Internal Light Source-Driven Photoelectrochemical 3D-rGO/Cellulose Device Based on Cascade DNA Amplification Strategy Integrating Target Analog Chain and DNA Mimic Enzyme.

    PubMed

    Lan, Feifei; Liang, Linlin; Zhang, Yan; Li, Li; Ren, Na; Yan, Mei; Ge, Shenguang; Yu, Jinghua

    2017-11-01

    In this work, a chemiluminescence-driven collapsible greeting card-like photoelectrochemical lab-on-paper device (GPECD) with hollow channel was demonstrated, in which target-triggering cascade DNA amplification strategy was ingeniously introduced. The GPECD had the functions of reagents storage and signal collection, and the change of configuration could control fluidic path, reaction time and alterations in electrical connectivity. In addition, three-dimentional reduced graphene oxide affixed Au flower was in situ grown on paper cellulose fiber for achieving excellent conductivity and biocompatibility. The cascade DNA amplification strategy referred to the cyclic formation of target analog chain and its trigger action to hybridization chain reaction (HCR), leading to the formation of numerous hemin/G-quadruplex DNA mimic enzyme with the presence of hemin. Subjected to the catalysis of hemin/G-quadruplex, the strong chemiluminiscence of luminol-H 2 O 2 system was obtained, which then was used as internal light source to excite photoactive materials realizing the simplification of instrument. In this analyzing process, thrombin served as proof-of-concept, and the concentration of target was converted into the DNA signal output by the specific recognition of aptamer-protein and target analog chain recycling. The target analog chain was produced in quantity with the presence of target, which further triggered abundant HCR and introduced hemin/G-quadruplex into the system. The photocurrent signal was obtained after the nitrogen-doped carbon dots sensitized ZnO was stimulated by chemiluminescence. The proposed GPECD exhibited excellent specificity and sensitivity toward thrombin with a detection limit of 16.7 fM. This judiciously engineered GPECD paved a luciferous way for detecting other protein with trace amounts in bioanalysis and clinical biomedicine.

  4. Sensitive Detection Using Microfluidics and Nonlinear Amplification

    DTIC Science & Technology

    2011-07-22

    Quantification of Nucleic Acids via Simultaneous Chemical Initiation of Recombinase Polymerase Amplification Reactions on SlipChip" 2011, 83, 3533... Amplification 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-08-1-0936 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Rustem F. Ismagilov 5d. PROJECT NUMBER 5e...concentrations by combining controlled chemical autocatalytic amplification and stochastic confinement of small particles with the microfluidic

  5. Breast cancers with EGFR and HER2 co-amplification favor distant metastasis and poor clinical outcome

    PubMed Central

    Guo, Peng; Pu, Tianjie; Chen, Shinan; Qiu, Yan; Zhong, Xiaorong; Zheng, Hong; Chen, Lina; Bu, Hong; Ye, Feng

    2017-01-01

    ErbB signaling serves essential roles in invasive ductal carcinoma (IDC). The aim of the present study was to assess gene amplification in ErbB family members in IDC with clinical implications. Quantitative polymerase chain reaction and fluorescence in situ hybridization were performed on formalin-fixed paraffin-embedded tumor samples for gene amplification detection. The clinical and histopathological characteristics, as well as the prognostic significance, were analyzed. Among the 119 IDC patients evaluated, epidermal growth factor receptor [EGFR; also known as human epidermal growth factor receptor (HER)1], HER2, HER3 and HER4 gene amplification was observed in 30 (25.2%), 44 (36.9%), 0 (0.0%) and 1 (0.8%) patients, respectively. EGFR amplification was associated with estrogen receptor status (P=0.028) and higher possibilities of recurrence (P=0.015) and distant metastasis (following initial surgery) (P=0.011). In survival analysis, EGFR amplification was also associated with disease-free survival (DFS) (P=0.001) and overall survival (OS) (P=0.003). HER2 amplification was associated with larger tumor size (P=0.006), later clinical stage (P=0.003) and distant metastasis (following initial surgery) (P=0.006). In survival analysis, HER2 amplification was also associated with DFS (P=0.011). Notably, the present study identified a group of patients in whom EGFR and HER2 were co-amplified. This group of patients appeared to have a higher possibility of metastasis (when diagnosed) (P=0.014) and distant metastasis (following initial surgery) (P<0.001). In survival analysis, these patients were noticed to be associated with DFS (P<0.001) and OS (P=0.002). With respect to treatment regimen, this was also true for the DFS association with chemotherapy (P<0.001), radiotherapy (P<0.001) and hormonal therapy (P=0.001). The present results suggest that EGFR and HER2 amplification favor distant metastasis following initial surgery and are significantly associated with poor

  6. Improved Performance of Loop-Mediated Isothermal Amplification Assays via Swarm Priming.

    PubMed

    Martineau, Rhett L; Murray, Sarah A; Ci, Shufang; Gao, Weimin; Chao, Shih-Hui; Meldrum, Deirdre R

    2017-01-03

    This work describes an enhancement to the loop-mediated isothermal amplification (LAMP) reaction which results in improved performance. Enhancement is achieved by adding a new set of primers to conventional LAMP reactions. These primers are termed "swarm primers" based on their relatively high concentration and their ability to create new amplicons despite the theoretical lack of single-stranded annealing sites. The primers target a region upstream of the FIP/BIP primer recognition sequences on opposite strands, substantially overlapping F1/B1 sites. Thus, despite the addition of a new primer set to an already complex assay, no significant increase in assay complexity is incurred. Swarm priming is presented for three DNA templates: Lambda phage, Synechocystis sp. PCC 6803 rbcL gene, and human HFE. The results of adding swarm primers to conventional LAMP reactions include increased amplification speed, increased indicator contrast, and increased reaction products. For at least one template, minor improvements in assay repeatability are also shown. In addition, swarm priming is shown to be effective at increasing the reaction speed for RNA amplification via RT-LAMP. Collectively, these results suggest that the addition of swarm primers will likely benefit most if not all existing LAMP assays based on state-of-the-art, six-primer reactions.

  7. Optimisation of frequency-modulated characteristics of output radiation in a lidar with Raman amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigorievsky, V I; Tezadov, Ya A

    2016-03-31

    The reported study is aimed at increasing the power in the transmission path of a lidar with Raman amplification for longpath sensing of methane by optimising the frequency-modulated characteristics of the output radiation. The pump current of the used distributed-feedback master laser was modulated by a linearfrequency signal with simultaneous application of a non-synchronous high-frequency signal. For such a modulation regime, the Raman amplifier provided the mean output power of 2.5 W at a wavelength of 1650 nm. The spectral broadening did not significantly decrease the lidar sensitivity at long paths. (lidars)

  8. EnVision+, a new dextran polymer-based signal enhancement technique for in situ hybridization (ISH).

    PubMed

    Wiedorn, K H; Goldmann, T; Henne, C; Kühl, H; Vollmer, E

    2001-09-01

    Seventy paraffin-embedded cervical biopsy specimens and condylomata were tested for the presence of human papillomavirus (HPV) by conventional in situ hybridization (ISH) and ISH with subsequent signal amplification. Signal amplification was performed either by a commercial biotinyl-tyramide-based detection system [GenPoint (GP)] or by the novel two-layer dextran polymer visualization system EnVision+ (EV), in which both EV-horseradish peroxidase (EV-HRP) and EV-alkaline phosphatase (EV-AP) were applied. We could demonstrate for the first time, that EV in combination with preceding ISH results in a considerable increase in signal intensity and sensitivity without loss of specificity compared to conventional ISH. Compared to GP, EV revealed a somewhat lower sensitivity, as measured by determination of the integrated optical density (IOD) of the positively stained cells. However, EV is easier to perform, requires a shorter assay time, and does not raise the background problems that may be encountered with biotinyl-tyramide-based amplification systems. (J Histochem Cytochem 49:1067-1071, 2001)

  9. A novel electrochemiluminescence strategy for ultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labeling and amplification of gold nanoparticles and biotin-streptavidin system.

    PubMed

    Chai, Ying; Tian, Dayong; Wang, Wei; Cui, Hua

    2010-10-28

    Luminol functionalized gold nanoparticles were used as labels for electrochemiluminescence signal amplification and an ultrasensitive, highly selective, convenient, low cost DNA detection strategy was developed.

  10. Chronic centrosome amplification without tumorigenesis

    PubMed Central

    Vitre, Benjamin; Holland, Andrew J.; Kulukian, Anita; Shoshani, Ofer; Hirai, Maretoshi; Wang, Yin; Maldonado, Marcus; Cho, Thomas; Boubaker, Jihane; Swing, Deborah A.; Tessarollo, Lino; Evans, Sylvia M.; Fuchs, Elaine; Cleveland, Don W.

    2015-01-01

    Centrosomes are microtubule-organizing centers that facilitate bipolar mitotic spindle assembly and chromosome segregation. Recognizing that centrosome amplification is a common feature of aneuploid cancer cells, we tested whether supernumerary centrosomes are sufficient to drive tumor development. To do this, we constructed and analyzed mice in which centrosome amplification can be induced by a Cre-recombinase–mediated increase in expression of Polo-like kinase 4 (Plk4). Elevated Plk4 in mouse fibroblasts produced supernumerary centrosomes and enhanced the expected mitotic errors, but proliferation continued only after inactivation of the p53 tumor suppressor. Increasing Plk4 levels in mice with functional p53 produced centrosome amplification in liver and skin, but this did not promote spontaneous tumor development in these tissues or enhance the growth of chemically induced skin tumors. In the absence of p53, Plk4 overexpression generated widespread centrosome amplification, but did not drive additional tumors or affect development of the fatal thymic lymphomas that arise in animals lacking p53. We conclude that, independent of p53 status, supernumerary centrosomes are not sufficient to drive tumor formation. PMID:26578792

  11. Frequent amplification of PTP1B is associated with poor survival of gastric cancer patients.

    PubMed

    Wang, Na; She, Junjun; Liu, Wei; Shi, Jing; Yang, Qi; Shi, Bingyin; Hou, Peng

    2015-01-01

    The protein tyrosine phosphatase 1B (PTP1B), a non-transmembrane protein tyrosine phosphatase, has been implicated in gastric pathogenesis. Several lines of recent evidences have shown that PTP1B is highly amplified in breast and prostate cancers. The aim of this study was to investigate PTP1B amplification in gastric cancer and its association with poor prognosis of gastric cancer patients, and further determine the role of PTP1B in gastric tumorigenesis. Our data demonstrated that PTP1B was significantly up-regulated in gastric cancer tissues as compared with matched normal gastric tissues by using quantitative RT-PCR (qRT-PCR) assay. In addition, copy number analysis showed that PTP1B was amplified in 68/131 (51.9%) gastric cancer cases, whereas no amplification was found in the control subjects. Notably, PTP1B amplification was positively associated with its protein expression, and was significantly related to poor survival of gastric cancer patients. Knocking down PTP1B expression in gastric cancer cells significantly inhibited cell proliferation, colony formation, migration and invasion, and induced cell cycle arrested and apoptosis. Mechanically, PTP1B promotes gastric cancer cell proliferation, survival and invasiveness through modulating Src-related signaling pathways, such as Src/Ras/MAPK and Src/phosphatidylinositol-3-kinase (PI3K)/Akt pathways. Collectively, our data demonstrated frequent overexpression and amplification PTP1B in gastric cancer, and further determined the oncogenic role of PTP1B in gastric carcinogenesis. Importantly, PTP1B amplification predicts poor survival of gastric cancer patients.

  12. IL-1β-induced and p38MAPK-dependent activation of the mitogen-activated protein kinase-activated protein kinase 2 (MK2) in hepatocytes: Signal transduction with robust and concentration-independent signal amplification

    PubMed Central

    Kulawik, Andreas; Engesser, Raphael; Ehlting, Christian; Raue, Andreas; Albrecht, Ute; Hahn, Bettina; Lehmann, Wolf-Dieter; Gaestel, Matthias; Klingmüller, Ursula; Häussinger, Dieter; Timmer, Jens; Bode, Johannes G.

    2017-01-01

    The IL-1β induced activation of the p38MAPK/MAPK-activated protein kinase 2 (MK2) pathway in hepatocytes is important for control of the acute phase response and regulation of liver regeneration. Many aspects of the regulatory relevance of this pathway have been investigated in immune cells in the context of inflammation. However, very little is known about concentration-dependent activation kinetics and signal propagation in hepatocytes and the role of MK2. We established a mathematical model for IL-1β-induced activation of the p38MAPK/MK2 pathway in hepatocytes that was calibrated to quantitative data on time- and IL-1β concentration-dependent phosphorylation of p38MAPK and MK2 in primary mouse hepatocytes. This analysis showed that, in hepatocytes, signal transduction from IL-1β via p38MAPK to MK2 is characterized by strong signal amplification. Quantification of p38MAPK and MK2 revealed that, in hepatocytes, at maximum, 11.3% of p38MAPK molecules and 36.5% of MK2 molecules are activated in response to IL-1β. The mathematical model was experimentally validated by employing phosphatase inhibitors and the p38MAPK inhibitor SB203580. Model simulations predicted an IC50 of 1–1.2 μm for SB203580 in hepatocytes. In silico analyses and experimental validation demonstrated that the kinase activity of p38MAPK determines signal amplitude, whereas phosphatase activity affects both signal amplitude and duration. p38MAPK and MK2 concentrations and responsiveness toward IL-1β were quantitatively compared between hepatocytes and macrophages. In macrophages, the absolute p38MAPK and MK2 concentration was significantly higher. Finally, in line with experimental observations, the mathematical model predicted a significantly higher half-maximal effective concentration for IL-1β-induced pathway activation in macrophages compared with hepatocytes, underscoring the importance of cell type-specific differences in pathway regulation. PMID:28223354

  13. An electrochemical aptasensor for multiplex antibiotics detection based on metal ions doped nanoscale MOFs as signal tracers and RecJf exonuclease-assisted targets recycling amplification.

    PubMed

    Chen, Meng; Gan, Ning; Zhou, You; Li, Tianhua; Xu, Qing; Cao, Yuting; Chen, Yinji

    2016-12-01

    An ultrasensitive electrochemical aptasensor for simultaneous detection of oxytetracycline (OTC) and kanamycin (KAN) has been developed based on metal ions doped metal organic frame materials (MOFs) as signal tracers and RecJ f exonuclease-catalyzed targets recycling amplification. The aptasensor consists of capture beads (the anti-single-stranded DNA Antibody, as anti-ssDNA Ab, labeled on Dynabeads) and nanoscale MOF (NMOF) based signal tracers (simplified as Apts-MNM, the NMOF labeled with metal ions and the aptamers). Particularly, the MOF (UiO-66-NH 2 ), with large internal surface areas, ultrahigh porosity and abundant amine groups in the pores, was employed as substrates to carry plenty of metal ions (Pb 2+ or Cd 2+ ) and label aptamers of OTC or KAN. Thus, the aptasensor is formed by the specific recognition between anti-ssDNA Ab and aptamers. In the presence of targets (OTC and KAN), aptamers prefer to form targets-Apts-MNM complexes in lieu of anti-ssDNA Ab-aptamer complexes, which results in the dissociation of Apts-MNM from capture beads. With the employment of RecJ f exonuclease, targets-Apts-MNM in supernatant was digested into mononucleotides and liberated the target, which can further participate in the next reaction cycling to produce more signal tracers. After magnetic separation, the enhanced square wave voltammetry (SWV) signals were produced from signal tracers. The aptasensor exhibited a linear correlation in the range from 0.5pM to 50nM, with detection limits of 0.18pM and 0.15pM (S/N=3) toward OTC and KAN respectively. This strategy provides specificity and sensitive approach for multiplex antibiotics detection and has promising applications in food analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Electrochemical DNA probe for Hg(2+) detection based on a triple-helix DNA and Multistage Signal Amplification Strategy.

    PubMed

    Wang, Huan; Zhang, Yihe; Ma, Hongmin; Ren, Xiang; Wang, Yaoguang; Zhang, Yong; Wei, Qin

    2016-12-15

    In this work, an ultrasensitive electrochemical sensor was developed for detection of Hg(2+). Gold nanoparticles decorated bovine serum albumin reduction of graphene oxide (AuNP-BSA-rGO) were used as subsurface material for the immobilization of triple-helix DNA. The triple-helix DNA containing a thiol labelled single-stranded DNA (sDNA) and a thymine-rich DNA (T-rich DNA), which could be unwinded in the present of Hg(2+) to form more stable thymine-Hg(2+)-thymine (T-Hg(2+)-T) complex. T-Hg(2+)-T complex was then removed and the sDNA was left on the electrode. At this time, gold nanoparticle carrying thiol labelled cytosine-rich complementary DNA (cDNA-AuNP) could bind with the free sDNA. Meanwhile, the other free cDNA on AuNP could bind with each other in the present of Ag(+) to form the stable cytosine-Ag(+)-cytosine (C-Ag(+)-C) complex and circle amplification. Plenty of C-Ag(+)-C could form silver nanoclusters by electrochemical reduction and the striping signal of Ag could be measured for purpose of the final electrochemical detection of Hg(2+). This sensor could detect Hg(2+) over a wide concentration range from 0.1 to 130nM with a detection limit of 0.03nM. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Immobilized rolling circle amplification on extended-gate field-effect transistors with integrated readout circuits for early detection of platelet-derived growth factor.

    PubMed

    Lin, Ming-Yu; Hsu, Wen-Yang; Yang, Yuh-Shyong; Huang, Jo-Wen; Chung, Yueh-Lin; Chen, Hsin

    2016-07-01

    Detection of tumor-related proteins with high specificity and sensitivity is important for early diagnosis and prognosis of cancers. While protein sensors based on antibodies are not easy to keep for a long time, aptamers (single-stranded DNA) are found to be a good alternative for recognizing tumor-related protein specifically. This study investigates the feasibility of employing aptamers to recognize the platelet-derived growth factor (PDGF) specifically and subsequently triggering rolling circle amplification (RCA) of DNAs on extended-gate field-effect transistors (EGFETs) to enhance the sensitivity. The EGFETs are fabricated by the standard CMOS technology and integrated with readout circuits monolithically. The monolithic integration not only avoids the wiring complexity for a large sensor array but also enhances the sensor reliability and facilitates massive production for commercialization. With the RCA primers immobilized on the sensory surface, the protein signal is amplified as the elongation of DNA, allowing the EGFET to achieve a sensitivity of 8.8 pM, more than three orders better than that achieved by conventional EGFETs. Moreover, the responses of EGFETs are able to indicate quantitatively the reaction rates of RCA, facilitating the estimation on the protein concentration. Our experimental results demonstrate that immobilized RCA on EGFETs is a useful, label-free method for early diagnosis of diseases related to low-concentrated tumor makers (e.g., PDGF) for serum sample, as well as for monitoring the synthesis of various DNA nanostructures in real time. Graphical Abstract The tumor-related protein, PDGF, is detected by immobilizing rolling circle amplification on an EGFET with integrated readout circuit.

  16. KSHV cell attachment sites revealed by ultra sensitive tyramide signal amplification (TSA) localize to membrane microdomains that are up-regulated on mitotic cells.

    PubMed

    Garrigues, H Jacques; Rubinchikova, Yelena E; Rose, Timothy M

    2014-03-01

    Cell surface structures initiating attachment of Kaposi's sarcoma-associated herpesvirus (KSHV) were characterized using purified hapten-labeled virions visualized by confocal microscopy with a sensitive fluorescent enhancement using tyramide signal amplification (TSA). KSHV attachment sites were present in specific cellular domains, including actin-based filopodia, lamellipodia, ruffled membranes, microvilli and intercellular junctions. Isolated microdomains were identified on the dorsal surface, which were heterogeneous in size with a variable distribution that depended on cellular confluence and cell cycle stage. KSHV binding domains ranged from scarce on interphase cells to dense and continuous on mitotic cells, and quantitation of bound virus revealed a significant increase on mitotic compared to interphase cells. KSHV also bound to a supranuclear domain that was distinct from microdomains in confluent and interphase cells. These results suggest that rearrangement of the cellular membrane during mitosis induces changes in cell surface receptors implicated in the initial attachment stage of KSHV entry. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Zaslavsky, V. Yu.; Nizhny Novgorod State University, 23 Gagarin Ave., 603950 Nizhny Novgorod

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of themore » incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.« less

  18. Biologically relevant effects of mRNA amplification on gene expression profiles.

    PubMed

    van Haaften, Rachel I M; Schroen, Blanche; Janssen, Ben J A; van Erk, Arie; Debets, Jacques J M; Smeets, Hubert J M; Smits, Jos F M; van den Wijngaard, Arthur; Pinto, Yigal M; Evelo, Chris T A

    2006-04-11

    biopsies is representative for the whole left ventricle of the rat heart. However, specific gene transcripts present in parental tissues were undetectable in the minute left ventricular biopsies. Transcripts that were lost due to the amplification process were not randomly distributed, but had higher GC-content and hairpins in the sequence and were mainly found in the lower intensity range which includes many transcription factors from specific signalling pathways.

  19. Biologically relevant effects of mRNA amplification on gene expression profiles

    PubMed Central

    van Haaften, Rachel IM; Schroen, Blanche; Janssen, Ben JA; van Erk, Arie; Debets, Jacques JM; Smeets, Hubert JM; Smits, Jos FM; van den Wijngaard, Arthur; Pinto, Yigal M; Evelo, Chris TA

    2006-01-01

    amplification of mRNA of left ventricular biopsies is representative for the whole left ventricle of the rat heart. However, specific gene transcripts present in parental tissues were undetectable in the minute left ventricular biopsies. Transcripts that were lost due to the amplification process were not randomly distributed, but had higher GC-content and hairpins in the sequence and were mainly found in the lower intensity range which includes many transcription factors from specific signalling pathways. PMID:16608515

  20. Markovian Dynamics of Josephson Parametric Amplification

    NASA Astrophysics Data System (ADS)

    Kaiser, Waldemar; Haider, Michael; Russer, Johannes A.; Russer, Peter; Jirauschek, Christian

    2017-09-01

    In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA). The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.